4122 lines
1.1 MiB
4122 lines
1.1 MiB
var Mm=Object.defineProperty,LJ=Object.prototype.hasOwnProperty,ES=(r,l)=>()=>(l||(l={exports:{}},r(l.exports,l)),l.exports),XC=r=>Mm(r,"__esModule",{value:!0}),Pm=(r,l)=>{XC(r);for(var u in l)Mm(r,u,{get:l[u],enumerable:!0})},SJ=(r,l)=>{if(XC(r),typeof l=="object"||typeof l=="function")for(let u in l)!LJ.call(r,u)&&u!=="default"&&Mm(r,u,{get:()=>l[u],enumerable:!0});return r},Je=r=>r&&r.__esModule?r:SJ(Mm({},"default",{value:r,enumerable:!0}),r);var ZC=ES((Ac,JC)=>{"use strict";var IJ=function(){if(typeof self!="undefined")return self;if(typeof window!="undefined")return window;if(typeof mr!="undefined")return mr;throw new Error("unable to locate global object")},mr=IJ();JC.exports=Ac=mr.fetch;mr.fetch&&(Ac.default=mr.fetch.bind(mr));Ac.Headers=mr.Headers;Ac.Request=mr.Request;Ac.Response=mr.Response});var Ze=ES((zm,QC)=>{(function(r,l){typeof zm=="object"&&typeof QC!="undefined"?l(zm):typeof define=="function"&&define.amd?define(["exports"],l):(r=r||self,l(r.tf=r.tf||{}))})(zm,function(r){"use strict";const l=1e-7,u=1e-4;class p{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}}class y{time(e){return g("time")}read(e){return g("read")}readSync(e){return g("readSync")}numDataIds(){return g("numDataIds")}disposeData(e){return g("disposeData")}write(e,t,n){return g("write")}move(e,t,n,s){return g("move")}memory(){return g("memory")}floatPrecision(){return g("floatPrecision")}epsilon(){return this.floatPrecision()===32?l:u}batchMatMul(e,t,n,s){return g("batchMatMul")}fusedBatchMatMul({a:e,b:t,transposeA:n,transposeB:s,bias:i,activation:o,preluActivationWeights:a}){return g("fusedBatchMatMul")}slice(e,t,n){return g("slice")}stridedSlice(e,t,n,s){return g("stridedSlice")}unstack(e,t){return g("unstack")}reverse(e,t){return g("reverse")}concat(e,t){return g("concat")}neg(e){return g("neg")}add(e,t){return g("add")}addN(e){return g("addN")}subtract(e,t){return g("subtract")}multiply(e,t){return g("multiply")}realDivide(e,t){return g("realDivide")}floorDiv(e,t){return g("floorDiv")}sum(e,t){return g("sum")}prod(e,t){return g("prod")}unsortedSegmentSum(e,t,n){return g("unsortedSegmentSum")}argMin(e,t){return g("argMin")}argMax(e,t){return g("argMax")}equal(e,t){return g("equal")}notEqual(e,t){return g("notEqual")}less(e,t){return g("less")}lessEqual(e,t){return g("lessEqual")}greater(e,t){return g("greater")}greaterEqual(e,t){return g("greaterEqual")}logicalNot(e){return g("logicalNot")}logicalAnd(e,t){return g("logicalAnd")}logicalOr(e,t){return g("logicalOr")}where(e){return g("where")}select(e,t,n){return g("select")}topk(e,t,n){return g("topk")}min(e,t){return g("min")}minimum(e,t){return g("minimum")}mod(e,t){return g("mod")}max(e,t){return g("max")}maximum(e,t){return g("maximum")}all(e,t){return g("all")}any(e,t){return g("any")}squaredDifference(e,t){return g("squaredDifference")}ceil(e){return g("ceil")}floor(e){return g("floor")}round(e){return g("round")}sign(e){return g("sign")}isNaN(e){return g("isNaN")}isInf(e){return g("isInf")}isFinite(e){return g("isFinite")}pow(e,t){return g("pow")}exp(e){return g("exp")}expm1(e){return g("expm1")}softmax(e,t){return g("softmax")}log(e){return g("log")}log1p(e){return g("log1p")}sqrt(e){return g("sqrt")}rsqrt(e){return g("rsqrt")}square(e){return g("square")}reciprocal(e){return g("reciprocal")}relu(e){return g("relu")}relu6(e){return g("relu6")}prelu(e,t){return g("prelu")}elu(e){return g("elu")}eluDer(e,t){return g("eluDer")}selu(e){return g("selu")}int(e){return g("int")}clip(e,t,n){return g("clip")}abs(e){return g("abs")}complexAbs(e){return g("complexAbs")}sigmoid(e){return g("sigmoid")}softplus(e){return g("softplus")}sin(e){return g("sin")}cos(e){return g("cos")}tan(e){return g("tan")}asin(e){return g("asin")}acos(e){return g("acos")}atan(e){return g("atan")}atan2(e,t){return g("atan2")}sinh(e){return g("sinh")}cosh(e){return g("cosh")}tanh(e){return g("tanh")}asinh(e){return g("asinh")}acosh(e){return g("acosh")}atanh(e){return g("atanh")}erf(e){return g("erf")}step(e,t){return g("step")}fusedConv2d({input:e,filter:t,convInfo:n,bias:s,activation:i,preluActivationWeights:o}){return g("fusedConv2d")}conv2d(e,t,n){return g("conv2d")}conv2dDerInput(e,t,n){return g("conv2dDerInput")}conv2dDerFilter(e,t,n){return g("conv2dDerFilter")}fusedDepthwiseConv2D({input:e,filter:t,convInfo:n,bias:s,activation:i,preluActivationWeights:o}){return g("fusedDepthwiseConv2D")}depthwiseConv2D(e,t,n){return g("depthwiseConv2D")}depthwiseConv2DDerInput(e,t,n){return g("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(e,t,n){return g("depthwiseConv2DDerFilter")}conv3d(e,t,n){return g("conv3d")}conv3dDerInput(e,t,n){return g("conv3dDerInput")}conv3dDerFilter(e,t,n){return g("conv3dDerFilter")}maxPool(e,t){return g("maxPool")}maxPoolBackprop(e,t,n,s){return g("maxPoolBackprop")}avgPool(e,t){return g("avgPool")}avgPoolBackprop(e,t,n){return g("avgPoolBackprop")}avgPool3d(e,t){return g("avgPool3d")}avgPool3dBackprop(e,t,n){return g("avgPool3dBackprop")}maxPool3d(e,t){return g("maxPool3d")}maxPool3dBackprop(e,t,n,s){return g("maxPool3dBackprop")}reshape(e,t){return g("reshape")}cast(e,t){return g("cast")}tile(e,t){return g("tile")}pad(e,t,n){return g("pad")}transpose(e,t){return g("transpose")}gather(e,t,n){return g("gather")}gatherND(e,t){return g("gatherND")}scatterND(e,t,n){return g("scatterND")}batchToSpaceND(e,t,n){return g("batchToSpaceND")}spaceToBatchND(e,t,n){return g("spaceToBatchND")}resizeBilinear(e,t,n,s){return g("resizeBilinear")}resizeBilinearBackprop(e,t,n){return g("resizeBilinearBackprop")}resizeNearestNeighbor(e,t,n,s){return g("resizeNearestNeighbor")}resizeNearestNeighborBackprop(e,t,n){return g("resizeNearestNeighborBackprop")}batchNorm(e,t,n,s,i,o){return g("batchNorm")}localResponseNormalization4D(e,t,n,s,i){return g("localResponseNormalization4D")}LRNGrad(e,t,n,s,i,o,a){return g("LRNGrad")}multinomial(e,t,n,s){return g("multinomial")}oneHot(e,t,n,s){return g("oneHot")}cumsum(e,t,n,s){return g("cumsum")}nonMaxSuppression(e,t,n,s,i){return g("nonMaxSuppression")}fft(e){return g("fft")}ifft(e){return g("ifft")}complex(e,t){return g("complex")}real(e){return g("real")}imag(e){return g("imag")}cropAndResize(e,t,n,s,i,o){return g("cropAndResize")}depthToSpace(e,t,n){return g("depthToSpace")}split(e,t,n){return g("split")}sparseToDense(e,t,n,s){return g("sparseToDense")}diag(e){return g("diag")}fill(e,t,n){return g("fill")}onesLike(e){return g("onesLike")}zerosLike(e){return g("zerosLike")}linspace(e,t,n){return g("linspace")}dispose(){return g("dispose")}}function g(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function I(e){let t=e.length,n=0,s=0;for(;t>0;)s=Math.random()*t|0,t--,n=e[t],e[t]=e[s],e[s]=n}function S(e,t,n){return Math.max(e,Math.min(t,n))}function T(e){return e%2===0?e:e+1}function C(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function D(e,t){const n=Math.random();return t*n+(1-n)*e}function _(e,t){let n=0;for(let s=0;s<e.length;s++){const i=Number(e[s])-Number(t[s]);n+=i*i}return n}function A(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function B(e,t,n=""){A(ae(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ne(e){A(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function te(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let s=0;s<e.length;++s)te(e[s],t,n);else t.push(e);return t}function P(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function ge(e){return e.length===0}function ae(e,t){if(e===t)return!0;if(e==null||t==null)return!1;if(e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Le(e){return e%1===0}function ve(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{const t=Math.exp(2*e);return(t-1)/(t+1)}}function Ve(e){const t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function at(e){const t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return I(t),t}function pt(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function $t(e,t=s=>0,n){return new Promise((s,i)=>{let o=0;const a=()=>{if(e()){s();return}o++;const c=t(o);if(n!=null&&o>=n){i();return}setTimeout(a,c)};a()})}function Vt(e,t){let n=1,s=-1;for(let o=0;o<e.length;++o)if(e[o]>=0)n*=e[o];else if(e[o]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${o}`);s=o}else if(e[o]<0)throw Error(`Shapes can not be < 0. Found ${e[o]} at dim ${o}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);const i=e.slice();return i[s]=t/n,i}function qe(e,t){const n=t.length;return e=e==null?t.map((s,i)=>i):[].concat(e),A(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),A(e.every(s=>Le(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function ln(e,t){const n=[],s=[],i=t!=null&&Array.isArray(t)&&t.length===0,o=t==null||i?null:qe(t,e).sort();let a=0;for(let c=0;c<e.length;++c){if(o!=null){if(o[a]===c&&e[c]!==1)throw new Error(`Can't squeeze axis ${c} since its dim '${e[c]}' is not 1`);(o[a]==null||o[a]>c)&&e[c]===1&&(n.push(e[c]),s.push(c)),o[a]<=c&&a++}e[c]!==1&&(n.push(e[c]),s.push(c))}return{newShape:n,keptDims:s}}function bt(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function ws(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Nr(e,t){for(let n=0;n<e.length;n++){const s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function Cr(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function ba(e,t){return t==="complex64"||(t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64")?!1:!(t==="bool"&&e==="bool")}function hn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Bg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Ix(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Yi(e){return typeof e=="string"||e instanceof String}function xx(e){return typeof e=="boolean"}function Qu(e){return typeof e=="number"}function wa(e){return Array.isArray(e)?wa(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Qu(e)?"float32":Yi(e)?"string":xx(e)?"bool":"float32"}function Rr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function ed(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function je(e){const t=e.length;if(t<2)return[];const n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function Tx(e,t,n){const s=new Array;if(t.length===1){const i=t[0];for(let o=0;o<i;o++)s[o]=n[e+o]}else{const i=t[0],o=t.slice(1),a=o.reduce((c,h)=>c*h);for(let c=0;c<i;c++)s[c]=Tx(e+c*a,o,n)}return s}function Ls(e,t){if(e.length===0)return t[0];const n=e.reduce((s,i)=>s*i);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return Tx(0,e,t)}function Mg(e,t){const n=La(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function La(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function Pg(e,t){const n=e.reduce((s,i)=>s*i,1);if(t==null||t==="float32")return Ls(e,new Float32Array(n));if(t==="int32")return Ls(e,new Int32Array(n));if(t==="bool")return Ls(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function zg(e){e.forEach(t=>{A(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function _s(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let i=0;i<e.length-1;++i)s+=n[i]*e[i];return s}function yo(e,t,n){if(t===0)return[];if(t===1)return[e];const s=new Array(t);for(let i=0;i<s.length-1;++i)s[i]=Math.floor(e/n[i]),e-=s[i]*n[i];return s[s.length-1]=e,s}function bo(e){return e&&e.then&&typeof e.then=="function"}const Ax="tfjsflags";class vx{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){const s=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];const t=this.evaluateFlag(e);if(bo(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;const e=zD(this.global.location.search);if(Ax in e){const t=e[Ax].split(",");t.forEach(n=>{const[s,i]=n.split(":");this.urlFlags[s]=GD(s,i)})}}}function zD(e){const t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(VD(t,s[0],s[1]),s.join("="))),t}function VD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function GD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function oe(){return r.ENV}r.ENV=null;function YD(e){r.ENV=e}let Vg;function Nx(){if(Vg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Vg=e}return Vg}function HD(){const e=Nx();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Cx(e,t){const n=HD();if(n.has(e))return n.get(e);{const s=t();return n.set(e,s),n.get(e)}}const td="Abs",ol="Acos",al="Acosh",wo="Add",Gg="AddN",Rx="All",Ox="Any",Yg="ArgMax",Hg="ArgMin",cl="Asin",ll="Asinh",hl="Atan",ul="Atanh",nd="Atan2",dl="AvgPool",sd="AvgPoolBackprop",qg="AvgPool3D",Ex="AvgPool3DBackprop",id="BatchMatMul",jg="BatchToSpaceND",Kg="BroadcastTo",Sa="Cast",pl="Ceil",ml="ClipByValue",rd="Complex",fl="Concat",od="Conv2D",Xg="Conv2DBackpropFilter",ad="Conv2DBackpropInput",cd="Conv3D",Jg="Conv3DBackpropFilterV2",Zg="Conv3DBackpropInputV2",Ia="Cos",gl="Cosh",Qg="Cumsum",Dx="CropAndResize",kx="DepthToSpace",ld="DepthwiseConv2dNative",ey="DepthwiseConv2dNativeBackpropFilter",ty="DepthwiseConv2dNativeBackpropInput",Fx="Diag",hd="Dilation2D",ud="Dilation2DBackpropInput",dd="Dilation2DBackpropFilter",xa="Div",yl="Elu",_x="EluGrad",bl="Erf",Wx="Equal",wl="Exp",Ll="Expm1",pd="FFT",ny="Fill",md="FlipLeftRight",Sl="Floor",sy="FloorDiv",Il="FusedBatchNorm",iy="GatherV2",$x="GatherNd",Ux="Greater",ry="GreaterEqual",xl="Identity",fd="IFFT",gd="Imag",Tl="IsFinite",Al="IsInf",vl="IsNan",Bx="Less",Mx="LessEqual",Px="LinSpace",Nl="Log",Cl="Log1p",zx="LogicalAnd",yd="LogicalNot",Vx="LogicalOr",oy="LogSoftmax",ay="LRN",Gx="LRNBackprop",Rl="Max",cy="Maximum",Ol="MaxPool",bd="MaxPoolBackprop",ly="MaxPool3D",Yx="MaxPool3DBackprop",wd="MaxPoolWithArgmax",hy="Mean",uy="Min",dy="Minimum",El="MirrorPad",py="Mod",Ta="Multiply",my="Negate",Dl="NotEqual",fy="NonMaxSuppressionV3",Ld="NonMaxSuppressionV4",Sd="NonMaxSuppressionV5",gy="OnesLike",yy="OneHot",Id="PadV2",qD="Pool",by="Pow",xd="Prelu",Hx="Prod",qx="Range",Td="Real",kl="Reciprocal",Fl="Relu",_l="Reshape",wy="ResizeNearestNeighbor",jx="ResizeNearestNeighborGrad",Ly="ResizeBilinear",Kx="ResizeBilinearGrad",Wl="Relu6",Sy="Reverse",$l="Round",Ul="Rsqrt",Xx="ScatterNd",Iy="SelectV2",Bl="Selu",Ad="Slice",Aa="Sin",Ml="Sinh",Pl="Sign",zl="Sigmoid",Vl="Softplus",Gl="Sqrt",xy="Sum",vd="SpaceToBatchND",Ty="SplitV",Ay="Softmax",va="SquaredDifference",Nd="Square",Na="Sub",Jx="SparseToDense",Zx="StridedSlice",Ca="Tan",Yl="Tanh",vy="Tile",Qx="TopK",Hl="Transpose",Cd="Unique",Ny="Unpack",Cy="UnsortedSegmentSum",Ry="ZerosLike",ql="Step",Rd="FromPixels",Od="RotateWithOffset",Ed="_FusedMatMul",Dd="FusedConv2D",kd="FusedDepthwiseConv2D";const Ra=Cx("kernelRegistry",()=>new Map),jl=Cx("gradRegistry",()=>new Map);function Oy(e,t){const n=Dy(e,t);return Ra.get(n)}function Ey(e){return jl.get(e)}function Fd(e){const t=Ra.entries(),n=[];for(;;){const{done:s,value:i}=t.next();if(s)break;const[o,a]=i,[c]=o.split("_");c===e&&n.push(a)}return n}function _d(e){const{kernelName:t,backendName:n}=e,s=Dy(t,n);Ra.has(s)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Ra.set(s,e)}function eT(e){const{kernelName:t}=e;jl.has(t)&&(oe().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`)),jl.set(t,e)}function jD(e,t){const n=Dy(e,t);if(!Ra.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Ra.delete(n)}function KD(e){if(!jl.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);jl.delete(e)}function XD(e,t){const n=Fd(e);n.forEach(s=>{const i=Object.assign({},s,{backendName:t});_d(i)})}function Dy(e,t){return`${t}_${e}`}function tT(e,t){return t==="string"?Wd(e):Or([e],t)}function JD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Or(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=te(e)),oe().getBool("DEBUG")&&Nr(e,t),JD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){const n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function jn(){return oe().platform.now()}function nT(e,t){return oe().platform.fetch(e,t)}function Wd(e,t="utf-8"){return t=t||"utf-8",oe().platform.encode(e,t)}function Kl(e,t="utf-8"){return t=t||"utf-8",oe().platform.decode(e,t)}var ZD=Object.freeze({__proto__:null,createScalarValue:tT,toTypedArray:Or,now:jn,fetch:nT,encodeString:Wd,decodeString:Kl,shuffle:I,clamp:S,nearestLargerEven:T,sum:C,randUniform:D,distSquared:_,assert:A,assertShapesMatch:B,assertNonNull:ne,flatten:te,sizeFromShape:P,isScalarShape:ge,arraysEqual:ae,isInt:Le,tanh:ve,sizeToSquarishShape:Ve,createShuffledIndices:at,rightPad:pt,repeatedTry:$t,inferFromImplicitShape:Vt,parseAxisParam:qe,squeezeShape:ln,getTypedArrayFromDType:bt,getArrayFromDType:ws,checkConversionForErrors:Nr,isValidDtype:Cr,hasEncodingLoss:ba,isTypedArray:hn,bytesPerElement:Bg,bytesFromStringArray:Ix,isString:Yi,isBoolean:xx,isNumber:Qu,inferDtype:wa,isFunction:Rr,nearestDivisor:ed,computeStrides:je,toNestedArray:Ls,makeOnesTypedArray:Mg,makeZerosTypedArray:La,makeZerosNestedTypedArray:Pg,assertNonNegativeIntegerDimensions:zg,locToIndex:_s,indexToLoc:yo,isPromise:bo});class QD{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new tk)}profileKernel(e,t,n){let s;const i=()=>{s=n()},o=this.backendTimer.time(i);for(let c=0;c<s.length;c++){const h=s[c];h.data().then(d=>{ek(d,h.dtype,e)})}const a={kernelName:e,outputs:s,inputs:t,timeMs:o.then(c=>c.kernelMs),extraInfo:o.then(c=>c.getExtraProfileInfo!=null?c.getExtraProfileInfo():"")};return a}logKernelProfile(e){const{kernelName:t,outputs:n,timeMs:s,inputs:i,extraInfo:o}=e;n.forEach(a=>{Promise.all([a.data(),s,o]).then(c=>{this.logger.logKernelProfile(t,a,c[0],c[1],i,c[2])})})}}function ek(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){const i=e[s];if(isNaN(i)||!isFinite(i))return console.warn(`Found ${i} in the result of '${n}'`),!0}return!1}class tk{logKernelProfile(e,t,n,s,i,o){const a=typeof s=="number"?pt(`${s}ms`,9):s.error,c=pt(e,25),h=t.rank,d=t.size,m=pt(t.shape.toString(),14);let f="";for(const b in i){const w=i[b];if(w!=null){const L=w.shape||t.shape,x=L.length;f+=`${b}: ${x}D ${x>0?L:""} `}}console.log(`%c${c} %c${a} %c${h}D ${m} %c${d} %c${f} %c${o}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}}function nk(e,t,n){const s={},i={};for(let h=0;h<t.length;h++)s[t[h].id]=!0;for(let h=0;h<e.length;h++){const d=e[h],m=d.inputs;for(const f in m){const b=m[f];let w=!1;for(let L=0;L<t.length;L++)if(s[b.id]){d.outputs.forEach(x=>s[x.id]=!0),w=!0,i[d.id]=!0;break}if(w)break}}const o={};o[n.id]=!0;const a={};for(let h=e.length-1;h>=0;h--){const d=e[h],m=d.inputs;for(let f=0;f<d.outputs.length;f++)if(o[d.outputs[f].id]){for(const b in m)o[m[b].id]=!0,a[d.id]=!0;break}}const c=[];for(let h=0;h<e.length;h++){const d=e[h];if(i[d.id]&&a[d.id]){const m={};for(const b in d.inputs){const w=d.inputs[b];s[w.id]&&(m[b]=w)}const f=Object.assign({},d);f.inputs=m,f.outputs=d.outputs,c.push(f)}}return c}function sk(e,t,n,s){for(let i=t.length-1;i>=0;i--){const o=t[i],a=[];if(o.outputs.forEach(h=>{const d=e[h.id];d!=null?a.push(d):a.push(null)}),o.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${o.kernelName}.`);const c=o.gradient(a);for(const h in o.inputs){if(!(h in c))throw new Error(`Cannot backprop through input ${h}. Available gradients found: ${Object.keys(c)}.`);const d=n(()=>c[h]());if(d.dtype!=="float32")throw new Error(`Error in gradient for op ${o.kernelName}. The gradient of input ${h} must have 'float32' dtype, but has '${d.dtype}'`);const m=o.inputs[h];if(!ae(d.shape,m.shape))throw new Error(`Error in gradient for op ${o.kernelName}. The gradient of input '${h}' has shape '${d.shape}', which does not match the shape of the input '${m.shape}'`);if(e[m.id]==null)e[m.id]=d;else{const f=e[m.id];e[m.id]=s(f,d),f.dispose()}}}}const sT=20,Xl=3,ky=7;function ik(e,t,n,s){const i=je(t),o=rk(e,t,n,i),a=t.length,c=$d(e,t,n,i,o),h=["Tensor"];return s&&(h.push(` dtype: ${n}`),h.push(` rank: ${a}`),h.push(` shape: [${t}]`),h.push(" values:")),h.push(c.map(d=>" "+d).join(`
|
|
`)),h.join(`
|
|
`)}function rk(e,t,n,s){const i=P(t),o=s[s.length-1],a=new Array(o).fill(0),c=t.length,h=n==="complex64"?Zl(e):e;if(c>1)for(let d=0;d<i/o;d++){const m=d*o;for(let f=0;f<o;f++)a[f]=Math.max(a[f],Jl(h[m+f],0,n).length)}return a}function Jl(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(ky))} + ${parseFloat(e[1].toFixed(ky))}j`:Yi(e)?s=`'${e}'`:n==="bool"?s=iT(e):s=parseFloat(e.toFixed(ky)).toString(),pt(s,t)}function iT(e){return e===0?"false":"true"}function $d(e,t,n,s,i,o=!0){const a=n==="complex64"?2:1,c=t[0],h=t.length;if(h===0){if(n==="complex64"){const x=Zl(e);return[Jl(x[0],0,n)]}return n==="bool"?[iT(e[0])]:[e[0].toString()]}if(h===1){if(c>sT){const v=Xl*a;let N=Array.from(e.slice(0,v)),O=Array.from(e.slice((c-Xl)*a,c*a));return n==="complex64"&&(N=Zl(N),O=Zl(O)),["["+N.map((E,k)=>Jl(E,i[k],n)).join(", ")+", ..., "+O.map((E,k)=>Jl(E,i[c-Xl+k],n)).join(", ")+"]"]}const x=n==="complex64"?Zl(e):Array.from(e);return["["+x.map((v,N)=>Jl(v,i[N],n)).join(", ")+"]"]}const d=t.slice(1),m=s.slice(1),f=s[0]*a,b=[];if(c>sT){for(let x=0;x<Xl;x++){const v=x*f,N=v+f;b.push(...$d(e.slice(v,N),d,n,m,i,!1))}b.push("...");for(let x=c-Xl;x<c;x++){const v=x*f,N=v+f;b.push(...$d(e.slice(v,N),d,n,m,i,x===c-1))}}else for(let x=0;x<c;x++){const v=x*f,N=v+f;b.push(...$d(e.slice(v,N),d,n,m,i,x===c-1))}const w=h===2?",":"";b[0]="["+b[0]+w;for(let x=1;x<b.length-1;x++)b[x]=" "+b[x]+w;let L=`,
|
|
`;for(let x=2;x<h;x++)L+=`
|
|
`;return b[b.length-1]=" "+b[b.length-1]+"]"+(o?"":L),b}function Zl(e){const t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}class an{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=P(e),n!=null){const s=n.length;A(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||ws(t,this.size),this.strides=je(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);const n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(const s of e){if(s<0||s>=this.shape[t]){const i=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(i)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];const t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Si().makeTensor(this.values,this.shape,this.dtype)}}let Si=null,Oa=null,rT=null;function ok(e){Si=e}function ak(e){Oa=e}function ck(e){rT=e}class ee{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=P(e),this.strides=je(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){const e=await this.data();return Oa.buffer(this.shape,this.dtype,e)}bufferSync(){return Oa.buffer(this.shape,this.dtype,this.dataSync())}async array(){const e=await this.data();return Ls(this.shape,e)}arraySync(){return Ls(this.shape,this.dataSync())}async data(){this.throwIfDisposed();const e=Si().read(this.dataId);if(this.dtype==="string"){const t=await e;try{return t.map(n=>Kl(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();const e=Si().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Kl(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();const e=await Si().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){if(this.isDisposed)return;Si().disposeTensor(this),this.isDisposedInternal=!0}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Oa.print(this,e)}clone(){return this.throwIfDisposed(),Oa.clone(this)}toString(e=!1){const t=this.dataSync();return ik(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Oa.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Si().makeVariable(this,e,t,n)}}Object.defineProperty(ee,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});class Ql extends ee{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ae(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Si().disposeTensor(this),this.dataId=e.dataId,Si().incRef(this,null)}dispose(){Si().disposeVariable(this),this.isDisposedInternal=!0}}Object.defineProperty(Ql,Symbol.hasInstance,{value:e=>e instanceof ee&&e.assign!=null&&e.assign instanceof Function});(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(r.Rank||(r.Rank={}));var Fy;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Fy||(Fy={}));var _y;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(_y||(_y={}));var Wy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Wy||(Wy={}));var $y;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})($y||($y={}));const lk={float32:Wy,int32:Fy,bool:_y,complex64:$y};function $n(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return lk[e][t]}function Ud(e){return $n(e,"int32")}function Gt(e,t){if(e.dtype===t.dtype)return[e,t];const n=$n(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function oT(e,t){A(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function Bd(e,t){return t.some(n=>n.id===e.id)}function Hi(e){const t=[],n=new Set;return aT(e,t,n),t}function aT(e,t,n){if(e==null)return;if(e instanceof ee){t.push(e);return}if(!hk(e))return;const s=e;for(const i in s){const o=s[i];n.has(o)||(n.add(o),aT(o,t,n))}}function hk(e){return Array.isArray(e)||typeof e=="object"}var uk=Object.freeze({__proto__:null,makeTypesMatch:Gt,assertTypesMatch:oT,isTensorInList:Bd,getTensorsInContainer:Hi});class cT{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null}}dispose(){for(const e in this.registeredVariables)this.registeredVariables[e].dispose()}}class eh{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new cT}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;const e=this.getSortedBackends();for(let t=0;t<e.length;t++){const n=e[t],s=await this.initializeBackend(n).success;if(s){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){const{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){const{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;const{success:t,asyncInit:n}=this.initializeBackend(e),s=n?await t:t;if(!s)return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new QD(this.backendInstance),!0}setupRegisteredKernels(){const e=Fd(this.backendName);e.forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){const t=Fd(e);t.forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){const t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{const n=t.factory();if(n&&!(n instanceof y)&&typeof n.then=="function"){const s=++this.pendingBackendInitId,i=n.then(o=>s<this.pendingBackendInitId?!1:(this.registry[e]=o,this.pendingBackendInit=null,!0)).catch(o=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(o.stack||o.message)),!1));return this.pendingBackendInit=i,{success:i,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){const e=this.getSortedBackends();for(let t=0;t<e.length;t++){const n=e[t],{success:s,asyncInit:i}=this.initializeBackend(n);if(i||s)return{name:n,asyncInit:i}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){const n=this.state.tensorInfo.get(t),s=n.backend,i=this.readSync(t);s.disposeData(t),n.backend=e,e.move(t,i,n.shape,n.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{const s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return eh.nextTensorId++}nextVariableId(){return eh.nextVariableId++}clone(e){const t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),n={x:e},s=o=>({x:()=>{const a="float32",c={x:o},h={dtype:a};return G.runKernelFunc(d=>d.cast(o,a),c,null,Sa,h)}}),i=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,i,{}),t}runKernel(e,t,n,s,i){const o=null,a=null;return this.runKernelFunc(o,t,a,e,n,s,i)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){const s=this.backend.numDataIds();let i=0;n.forEach(c=>{i+=c.dtype==="complex64"?3:1});const o=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],a=s-t-i-o;if(a>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${a} data ids) after running '${e}'`)}runKernelFunc(e,t,n,s,i,o,a){let c,h=[];const d=this.isTapeOn();s==null&&(s=this.state.activeScope!=null?this.state.activeScope.name:"");const m=this.state.numBytes,f=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let b;const w=Oy(s,this.backendName);let L;if(w!=null)b=()=>{const v=this.backend.numDataIds();L=w.kernelFunc({inputs:t,attrs:i,backend:this.backend});const N=Array.isArray(L)?L:[L];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(s,v,N);const O=N.map(({dataId:E,shape:k,dtype:F})=>this.makeTensorFromDataId(E,k,F));if(d){let E=this.getTensorsForGradient(s,t,O);if(E==null){a==null&&(a=[]);const k=O.filter((F,U)=>a[U]);E=(o||[]).slice().concat(k)}h=this.saveTensorsForBackwardMode(E)}return O};else{const v=N=>{if(!d)return;h=N.map(O=>this.keep(this.clone(O)))};b=()=>{const N=this.backend.numDataIds();L=this.tidy(()=>e(this.backend,v));const O=Array.isArray(L)?L:[L];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(s,N,O),O}}let x;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?c=b():(x=this.profiler.profileKernel(s,t,()=>b()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(x),c=x.outputs)}),d&&this.addTapeNode(s,t,c,n,h,i),this.state.profiling&&this.state.activeProfile.kernels.push({name:s,bytesAdded:this.state.numBytes-m,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-f,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(t).map(v=>t[v]!=null?t[v].shape:null),outputShapes:c.map(v=>v.shape),kernelTimeMs:x.timeMs,extraInfo:x.extraInfo}),Array.isArray(L)?c:c[0]}saveTensorsForBackwardMode(e){const t=e.map(n=>this.keep(this.clone(n)));return t}getTensorsForGradient(e,t,n){const s=Ey(e);if(s!=null){const i=s.inputsToSave||[],o=s.outputsToSave||[];let a;s.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),a=Object.keys(t).map(h=>t[h])):a=i.map(h=>t[h]);const c=n.filter((h,d)=>o[d]);return a.concat(c)}return null}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let i=e;n==="string"&&Yi(e[0])&&(i=e.map(c=>Wd(c)));const o=s.write(i,t,n),a=new ee(t,n,o,this.nextTensorId());if(this.incRef(a,s),n==="string"){const c=this.state.tensorInfo.get(o),h=Ix(i);this.state.numBytes+=h-c.bytes,c.bytes=h}return a}makeTensorFromDataId(e,t,n,s){n=n||"float32";const i=new ee(t,n,e,this.nextTensorId());return this.incRef(i,s),i}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));const i=new Ql(e,t,n,this.nextTensorId());if(this.state.registeredVariables[i.name]!=null)throw new Error(`Variable with name ${i.name} was already registered`);return this.state.registeredVariables[i.name]=i,this.incRef(i,this.backend),i}incRef(e,t){const n=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,n===0){this.state.numDataBuffers++;let s=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(s=e.size*Bg(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:s,refCount:0}),this.state.numBytes+=s}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof Ql||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;const t=this.state.tensorInfo.get(e.dataId),n=t.refCount;n<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):this.state.tensorInfo.get(e.dataId).refCount--}disposeVariables(){for(const e in this.state.registeredVariables){const t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){const e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;const t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(const s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,i,o){const a={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:i},c=Ey(e);c!=null&&(s=c.gradFunc),s!=null&&(a.gradient=h=>(h=h.map((d,m)=>{if(d==null){const f=n[m],b=La(f.size,f.dtype);return this.makeTensor(b,f.shape,f.dtype)}return d}),s(h.length>1?h:h[0],i,o))),this.state.activeTape.push(a)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){const t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){const t=Hi(e),n=new Set(t.map(i=>i.id));for(let i=0;i<this.state.activeScope.track.length;i++){const o=this.state.activeScope.track[i];!o.kept&&!n.has(o.id)&&o.dispose()}const s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(i=>{!i.kept&&i.scopeId===s.id&&this.track(i)})}gradients(e,t,n,s=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);const i=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(i instanceof ee,()=>"The result y returned by f() must be a tensor.");const o=nk(this.state.activeTape,t,i);if(!s&&o.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{const a={};a[i.id]=n==null?dk(i.shape):n,sk(a,o,h=>this.tidy(h),pk);const c=t.map(h=>a[h.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(h=>{for(const d of h.saved)d.dispose()}),this.state.activeTape=null),{value:i,grads:c}})}customGrad(e){return A(Rr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof ee),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n;const s={};return t.forEach((i,o)=>{s[o]=i}),this.runKernelFunc((i,o)=>(n=e(...t,o),A(n.value instanceof ee,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(Rr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s,(i,o)=>{const a=n.gradFunc(i,o),c=Array.isArray(a)?a:[a];A(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(c.every(d=>d instanceof ee),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");const h={};return c.forEach((d,m)=>{h[m]=()=>d}),h})}}readSync(e){const t=this.state.tensorInfo.get(e);return t.backend.readSync(e)}read(e){const t=this.state.tensorInfo.get(e);return t.backend.read(e)}async time(e){const t=jn(),n=await this.backend.time(e);return n.wallMs=jn()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new cT;for(const e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}}eh.nextTensorId=0,eh.nextVariableId=0;function dk(e){const t=Mg(P(e),"float32");return G.makeTensor(t,e,"float32")}function lT(){const e=Nx();if(e._tfengine==null){const t=new vx(e);e._tfengine=new eh(t)}return YD(e._tfengine.ENV),ok(()=>e._tfengine),e._tfengine}const G=lT();function pk(e,t){const n={a:e,b:t};return G.runKernelFunc((s,i)=>{const o=s.add(e,t);return i([e,t]),o},n,null,wo)}function mk(){return typeof navigator!="undefined"&&navigator!=null}function hT(){if(mk()){const e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function Uy(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var fk=Object.freeze({__proto__:null,isMobile:hT,isBrowser:Uy});const qi=oe();qi.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")}),qi.registerFlag("IS_BROWSER",()=>Uy()),qi.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined"),qi.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor)),qi.registerFlag("PROD",()=>!1),qi.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>qi.getBool("DEBUG")),qi.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0),qi.registerFlag("IS_TEST",()=>!1);function Ii(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];const s=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&oe().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&uT(e,s,[]),s}function uT(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){A(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}A(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),A(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);const s=t.slice(1);for(let i=0;i<e.length;++i)uT(e[i],s,n.concat(i))}function dT(e,t,n,s){if(e==null)return;if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}function W(e,t,n,s="numeric"){if(e instanceof ee)return dT(s,e.dtype,t,n),e;let i=wa(e);if(i!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(i=s),dT(s,i,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){const h=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${h}'`)}const o=Ii(e,i);!hn(e)&&!Array.isArray(e)&&(e=[e]);const a=!0,c=i!=="string"?Or(e,i):te(e,[],a);return G.makeTensor(c,o,i)}function th(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);const i=e;return i.map((o,a)=>W(o,`${t}[${a}]`,n),s)}const pT="__op";function z(e){const t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0];const s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+pT;const i=(...o)=>{G.startScope(n);try{const a=s(...o);return bo(a)&&console.error("Cannot return a Promise inside of tidy."),G.endScope(a),a}catch(a){throw G.endScope(null),a}};return Object.defineProperty(i,"name",{value:n,configurable:!0}),i}function gk(e,t){const n=W(e,"real","complex"),s=W(t,"imag","complex");B(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);const i=a=>a.complex(n,s),o={real:n,imag:s};return G.runKernelFunc(i,o,null,rd)}const ji=z({complex_:gk});function Er(e,t,n,s){if(s==null&&(s=wa(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){zg(t);const i=P(t),o=P(n);A(i===o,()=>`Based on the provided shape, [${t}], the tensor should have ${i} values but has ${o}`);for(let a=0;a<n.length;++a){const c=n[a],h=a===n.length-1?c!==P(t.slice(a)):!0;A(n[a]===t[a]||!h,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Or(e,s):te(e,[],!0),G.makeTensor(e,t,s)}function sn(e,t,n){const s=Ii(e,n);return Er(e,t,s,n)}const By={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};const Md=4;async function My(e,t){const n=[],s=[],i=Array.isArray(e)?e.map(a=>a.name):Object.keys(e);for(let a=0;a<i.length;++a){const c=i[a],h=Array.isArray(e)?e[a].tensor:e[c];if(h.dtype!=="float32"&&h.dtype!=="int32"&&h.dtype!=="bool"&&h.dtype!=="string"&&h.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${c}': ${h.dtype}`);const d={name:c,shape:h.shape,dtype:h.dtype};if(h.dtype==="string"){const m=new Promise(async f=>{const b=await h.bytes(),w=b.reduce((v,N)=>v+N.length,0)+Md*b.length,L=new Uint8Array(w);let x=0;for(let v=0;v<b.length;v++){const N=b[v],O=new Uint8Array(new Uint32Array([N.length]).buffer);L.set(O,x),x+=Md,L.set(N,x),x+=N.length}f(L)});s.push(m)}else s.push(h.data());t!=null&&(d.group=t),n.push(d)}const o=await Promise.all(s);return{data:yk(o),specs:n}}function Pd(e,t){const n={};let s,i=0;for(const o of t){const a=o.name,c=o.dtype,h=o.shape,d=P(h);let m;if("quantization"in o){const f=o.quantization;if(f.dtype==="uint8"||f.dtype==="uint16"){if(!("min"in f&&"scale"in f))throw new Error(`Weight ${o.name} with quantization ${f.dtype} doesn't have corresponding metadata min and scale.`)}else if(f.dtype==="float16"){if(c!=="float32")throw new Error(`Weight ${o.name} is quantized with ${f.dtype} which only supports weights of type float32 not ${c}.`)}else throw new Error(`Weight ${o.name} has unknown quantization dtype ${f.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);const b=By[f.dtype],w=e.slice(i,i+d*b),L=f.dtype==="uint8"?new Uint8Array(w):new Uint16Array(w);if(c==="float32")if(f.dtype==="uint8"||f.dtype==="uint16"){m=new Float32Array(L.length);for(let x=0;x<L.length;x++){const v=L[x];m[x]=v*f.scale+f.min}}else if(f.dtype==="float16")s===void 0&&(s=xk()),m=s(L);else throw new Error(`Unsupported quantization type ${f.dtype} for weight type float32.`);else if(c==="int32"){if(f.dtype!=="uint8"&&f.dtype!=="uint16")throw new Error(`Unsupported quantization type ${f.dtype} for weight type int32.`);m=new Int32Array(L.length);for(let x=0;x<L.length;x++){const v=L[x];m[x]=Math.round(v*f.scale+f.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${c}`);i+=d*b}else if(c==="string"){const f=P(o.shape);m=[];for(let b=0;b<f;b++){const w=new Uint32Array(e.slice(i,i+Md))[0];i+=Md;const L=new Uint8Array(e.slice(i,i+w));m.push(L),i+=w}}else{const f=By[c],b=e.slice(i,i+d*f);if(c==="float32")m=new Float32Array(b);else if(c==="int32")m=new Int32Array(b);else if(c==="bool")m=new Uint8Array(b);else if(c==="complex64"){m=new Float32Array(b);const w=new Float32Array(m.length/2),L=new Float32Array(m.length/2);for(let N=0;N<w.length;N++)w[N]=m[N*2],L[N]=m[N*2+1];const x=sn(w,h,"float32"),v=sn(L,h,"float32");n[a]=ji(x,v),x.dispose(),v.dispose()}else throw new Error(`Unsupported dtype in weight '${a}': ${c}`);i+=d*f}c!=="complex64"&&(n[a]=sn(m,h,c))}return n}function yk(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0;const n=[];e.forEach(o=>{if(t+=o.byteLength,n.push(o.byteLength===o.buffer.byteLength?o:new o.constructor(o)),!(o instanceof Float32Array||o instanceof Int32Array||o instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${o.constructor.name}`)});const s=new Uint8Array(t);let i=0;return n.forEach(o=>{s.set(new Uint8Array(o.buffer),i),i+=o.byteLength}),s.buffer}const Py=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function mT(e){return Py?Buffer.byteLength(e):new Blob([e]).size}function bk(e){if(Py)return Buffer.from(e).toString("base64");const t=new Uint8Array(e);let n="";for(let s=0,i=t.length;s<i;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function wk(e){if(Py){const s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}const t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function zd(e){if(e.length===1)return e[0];let t=0;e.forEach(i=>{t+=i.byteLength});const n=new Uint8Array(t);let s=0;return e.forEach(i=>{n.set(new Uint8Array(i),s),s+=i.byteLength}),n.buffer}function fT(e){const t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);const n=e.split(t);return n[n.length-1]}function nh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:mT(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:mT(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function Lk(){const e=n=>{let s=n<<13,i=0;for(;(s&8388608)===0;)i-=8388608,s<<=1;return s&=~8388608,i+=947912704,s|i},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function Sk(){const e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function Ik(){const e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function xk(){const e=Lk(),t=Sk(),n=Ik();return s=>{const i=new ArrayBuffer(4*s.length),o=new Uint32Array(i);for(let a=0;a<s.length;a++){const c=s[a],h=e[n[c>>10]+(c&1023)]+t[c>>10];o[a]=h}return new Float32Array(i)}}class en{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return en.instance==null&&(en.instance=new en),en.instance}static registerSaveRouter(e){en.getInstance().saveRouters.push(e)}static registerLoadRouter(e){en.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return en.getHandlers(e,"save")}static getLoadHandlers(e,t){return en.getHandlers(e,"load",t)}static getHandlers(e,t,n){const s=[],i=t==="load"?en.getInstance().loadRouters:en.getInstance().saveRouters;return i.forEach(o=>{const a=o(e,n);a!==null&&s.push(a)}),s}}const Tk=e=>en.registerSaveRouter(e),Ak=e=>en.registerLoadRouter(e),zy=e=>en.getSaveHandlers(e),Vy=(e,t)=>en.getLoadHandlers(e,t);const Vd="tensorflowjs",Gy=1,Lo="models_store",Dr="model_info_store";async function bee(){const e=Yy();return new Promise((t,n)=>{const s=e.deleteDatabase(Vd);s.onsuccess=()=>t(),s.onerror=i=>n(i)})}function Yy(){if(!oe().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");const e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Hy(e){const t=e.result;t.createObjectStore(Lo,{keyPath:"modelPath"}),t.createObjectStore(Dr,{keyPath:"modelPath"})}class So{constructor(e){if(this.indexedDB=Yy(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{const i=this.indexedDB.open(Vd,Gy);i.onupgradeneeded=()=>Hy(i),i.onsuccess=()=>{const o=i.result;if(t==null){const a=o.transaction(Lo,"readonly"),c=a.objectStore(Lo),h=c.get(this.modelPath);h.onsuccess=()=>{if(h.result==null)return o.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(h.result.modelArtifacts)},h.onerror=d=>(o.close(),s(h.error)),a.oncomplete=()=>o.close()}else{const a=nh(t),c=o.transaction(Dr,"readwrite");let h=c.objectStore(Dr);const d=h.put({modelPath:this.modelPath,modelArtifactsInfo:a});let m;d.onsuccess=()=>{m=o.transaction(Lo,"readwrite");const f=m.objectStore(Lo),b=f.put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:a});b.onsuccess=()=>n({modelArtifactsInfo:a}),b.onerror=w=>{h=c.objectStore(Dr);const L=h.delete(this.modelPath);L.onsuccess=()=>(o.close(),s(b.error)),L.onerror=x=>(o.close(),s(b.error))}},d.onerror=f=>(o.close(),s(d.error)),c.oncomplete=()=>{m==null?o.close():m.oncomplete=()=>o.close()}}},i.onerror=o=>s(i.error)})}}So.URL_SCHEME="indexeddb://";const gT=e=>oe().getBool("IS_BROWSER")&&(!Array.isArray(e)&&e.startsWith(So.URL_SCHEME))?vk(e.slice(So.URL_SCHEME.length)):null;en.registerSaveRouter(gT),en.registerLoadRouter(gT);function vk(e){return new So(e)}function Nk(e){return e.startsWith(So.URL_SCHEME)?e.slice(So.URL_SCHEME.length):e}class Ck{constructor(){this.indexedDB=Yy()}async listModels(){return new Promise((e,t)=>{const n=this.indexedDB.open(Vd,Gy);n.onupgradeneeded=()=>Hy(n),n.onsuccess=()=>{const s=n.result,i=s.transaction(Dr,"readonly"),o=i.objectStore(Dr),a=o.getAll();a.onsuccess=()=>{const c={};for(const h of a.result)c[h.modelPath]=h.modelArtifactsInfo;e(c)},a.onerror=c=>(s.close(),t(a.error)),i.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=Nk(e),new Promise((t,n)=>{const s=this.indexedDB.open(Vd,Gy);s.onupgradeneeded=()=>Hy(s),s.onsuccess=()=>{const i=s.result,o=i.transaction(Dr,"readwrite"),a=o.objectStore(Dr),c=a.get(e);let h;c.onsuccess=()=>{if(c.result==null)return i.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{const d=a.delete(e),m=()=>{h=i.transaction(Lo,"readwrite");const f=h.objectStore(Lo),b=f.delete(e);b.onsuccess=()=>t(c.result.modelArtifactsInfo),b.onerror=w=>n(c.error)};d.onsuccess=m,d.onerror=f=>(m(),i.close(),n(c.error))}},c.onerror=d=>(i.close(),n(c.error)),o.oncomplete=()=>{h==null?i.close():h.oncomplete=()=>i.close()}},s.onerror=i=>n(s.error)})}}const xi="/",Io="tensorflowjs_models",yT="info",Rk="model_topology",Ok="weight_specs",Ek="weight_data",Dk="model_metadata";function wee(){if(!oe().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("purgeLocalStorageModels() cannot proceed because local storage is unavailable in the current environment.");const e=window.localStorage,t=[];for(let n=0;n<e.length;++n){const s=e.key(n),i=Io+xi;if(s.startsWith(i)&&s.length>i.length){e.removeItem(s);const o=wT(s);t.indexOf(o)===-1&&t.push(o)}}return t}function bT(e){return{info:[Io,e,yT].join(xi),topology:[Io,e,Rk].join(xi),weightSpecs:[Io,e,Ok].join(xi),weightData:[Io,e,Ek].join(xi),modelMetadata:[Io,e,Dk].join(xi)}}function wT(e){const t=e.split(xi);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(xi)}function kk(e){return e.startsWith(xo.URL_SCHEME)?e.slice(xo.URL_SCHEME.length):e}class xo{constructor(e){if(!oe().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=bT(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{const t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=nh(e);try{return this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,bk(e.weightData)),this.LS.setItem(this.keys.modelMetadata,JSON.stringify({format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,userDefinedMetadata:e.userDefinedMetadata})),{modelArtifactsInfo:s}}catch(i){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){const e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");const t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;const s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;const i=this.LS.getItem(this.keys.modelMetadata);if(i!=null){const a=JSON.parse(i);t.format=a.format,t.generatedBy=a.generatedBy,t.convertedBy=a.convertedBy,t.userDefinedMetadata=a.userDefinedMetadata}const o=this.LS.getItem(this.keys.weightData);if(o==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=wk(o),t}}xo.URL_SCHEME="localstorage://";const LT=e=>oe().getBool("IS_BROWSER")&&(!Array.isArray(e)&&e.startsWith(xo.URL_SCHEME))?Fk(e.slice(xo.URL_SCHEME.length)):null;en.registerSaveRouter(LT),en.registerLoadRouter(LT);function Fk(e){return new xo(e)}class _k{constructor(){A(oe().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){const e={},t=Io+xi,n=xi+yT;for(let s=0;s<this.LS.length;++s){const i=this.LS.key(s);if(i.startsWith(t)&&i.endsWith(n)){const o=wT(i);e[o]=JSON.parse(this.LS.getItem(i))}}return e}async removeModel(e){e=kk(e);const t=bT(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);const n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}}const Ea="://";class Ss{constructor(){this.managers={}}static getInstance(){return Ss.instance==null&&(Ss.instance=new Ss),Ss.instance}static registerManager(e,t){A(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Ea)&&(e=e.slice(0,e.indexOf(Ea))),A(e.length>0,()=>"scheme must not be an empty string.");const n=Ss.getInstance();A(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){const t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}}function Gd(e){if(e.indexOf(Ea)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Ss.getSchemes().join(",")}`);return{scheme:e.split(Ea)[0],path:e.split(Ea)[1]}}async function ST(e,t,n=!1){A(e!==t,()=>`Old path and new path are the same: '${e}'`);const s=en.getLoadHandlers(e);A(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),A(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);const i=s[0],o=en.getSaveHandlers(t);A(o.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),A(o.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);const a=o[0],c=Gd(e).scheme,h=Gd(e).path,d=c===Gd(e).scheme,m=await i.load();n&&d&&await Ss.getManager(c).removeModel(h);const f=await a.save(m);return n&&!d&&await Ss.getManager(c).removeModel(h),f.modelArtifactsInfo}async function Wk(){const e=Ss.getSchemes(),t={};for(const n of e){const s=await Ss.getManager(n).listModels();for(const i in s){const o=n+Ea+i;t[o]=s[i]}}return t}async function $k(e){const t=Gd(e),n=Ss.getManager(t.scheme);return n.removeModel(t.path)}async function Uk(e,t){const n=!1;return ST(e,t,n)}async function Bk(e,t){const n=!0;return ST(e,t,n)}class Mk{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}}if(oe().get("IS_BROWSER")){oe().setPlatform("browser",new Mk);try{Ss.registerManager(xo.URL_SCHEME,new _k)}catch(e){}try{Ss.registerManager(So.URL_SCHEME,new Ck)}catch(e){}}const Pk={importFetch:()=>ZC()};let Da;function Lee(){Da=null}function See(e){Da=e}function Iee(){return Da}class zk{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return oe().global.fetch!=null?oe().global.fetch(e,t):(Da==null&&(Da=Pk.importFetch()),Da(e,t))}now(){const e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}}oe().get("IS_NODE")&&oe().setPlatform("node",new zk);function wt(e,t="float32",n){return t=t||"float32",zg(e),new an(e,t,n)}function Vk(e,t){const n=W(e,"x","cast");if(!Cr(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");const s={x:n},i={dtype:t};return G.runKernelFunc(o=>o.cast(n,t),s,null,Sa,i)}const Ae=z({cast_:Vk});function Gk(e){const t=W(e,"x","clone",null),n=()=>G.makeTensorFromDataId(t.dataId,t.shape,t.dtype),s={x:t};return G.runKernelFunc(n,s,null,xl)}const kr=z({clone_:Gk});function IT(e,t=!1){console.log(e.toString(t))}lT();const Yk={buffer:wt,cast:Ae,clone:kr,print:IT};ak(Yk);const Hk="model",qk=".json",jk=".weights.bin";function xT(e){return new Promise(t=>setTimeout(t)).then(e)}class ka{constructor(e){if(!oe().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ka.URL_SCHEME)&&(e=e.slice(ka.URL_SCHEME.length)),(e==null||e.length===0)&&(e=Hk),this.modelTopologyFileName=e+qk,this.weightDataFileName=e+jk}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");const t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{const n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n},i=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),o=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(o.download=this.modelTopologyFileName,o.href=i,await xT(()=>o.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){const a=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;a.download=this.weightDataFileName,a.href=t,await xT(()=>a.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:nh(e)}}}}ka.URL_SCHEME="downloads://";class Kk{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){const e=this.files[0],t=this.files.slice(1);return new Promise((n,s)=>{const i=new FileReader;i.onload=o=>{const a=JSON.parse(o.target.result),c=a.modelTopology;if(c==null){s(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:c});const h=a.weightsManifest;if(h==null){s(new Error(`weightManifest field is missing from file ${e.name}`));return}let d;try{d=this.checkManifestAndWeightFiles(h,t)}catch(w){s(w);return}const m=[],f=[],b=[];h.forEach(w=>{w.paths.forEach(L=>{f.push(L),b.push(null)}),m.push(...w.weights)}),h.forEach(w=>{w.paths.forEach(L=>{const x=new FileReader;x.onload=v=>{const N=v.target.result,O=f.indexOf(L);b[O]=N,b.indexOf(null)===-1&&n({modelTopology:c,weightSpecs:m,weightData:zd(b),format:a.format,generatedBy:a.generatedBy,convertedBy:a.convertedBy,userDefinedMetadata:a.userDefinedMetadata})},x.onerror=v=>s(`Failed to weights data from file of path '${L}'.`),x.readAsArrayBuffer(d[L])})})},i.onerror=o=>s(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),i.readAsText(e)})}checkManifestAndWeightFiles(e,t){const n=[],s=t.map(o=>fT(o.name)),i={};for(const o of e)o.paths.forEach(a=>{const c=fT(a);if(n.indexOf(c)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${c}'`);if(n.push(c),s.indexOf(c)===-1)throw new Error(`Weight file with basename '${c}' is not provided.`);i[a]=t[s.indexOf(c)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return i}}const Xk=e=>oe().getBool("IS_BROWSER")&&(!Array.isArray(e)&&e.startsWith(ka.URL_SCHEME))?Jk(e.slice(ka.URL_SCHEME.length)):null;en.registerSaveRouter(Xk);function Jk(e="model"){return new ka(e)}function Zk(e){return new Kk(e)}function TT(e,t,n,s){a(e),n=n==null?0:n,s=s==null?1:s,c(n,s);let i=0;const o=h=>(h.then(d=>{const m=n+ ++i/e.length*(s-n);return t(m),d}),h);function a(h){A(h!=null&&Array.isArray(h)&&h.length>0,()=>"promises must be a none empty array")}function c(h,d){A(h>=0&&h<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${h}`),A(d>=0&&d<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${d}`),A(d>=h,()=>`startFraction must be no more than endFraction, but got startFraction ${h} and endFraction ${d}`)}return Promise.all(e.map(o))}async function AT(e,t){t==null&&(t={});const n=t.fetchFunc==null?oe().platform.fetch:t.fetchFunc,s=e.map(f=>n(f,t.requestInit,{isBinary:!0})),i=0,o=.5,a=t.onProgress==null?await Promise.all(s):await TT(s,t.onProgress,i,o),c=a.map(f=>f.arrayBuffer()),h=.5,d=1,m=t.onProgress==null?await Promise.all(c):await TT(c,t.onProgress,h,d);return m}async function vT(e,t="",n,s){const i=a=>AT(a,{requestInit:s}),o=NT(i);return o(e,t,n)}function NT(e){return async(t,n="",s)=>{const i=t.map(()=>!1),o={},a=s!=null?s.map(()=>!1):[],c=[];if(t.forEach((w,L)=>{let x=0;w.weights.forEach(v=>{const N="quantization"in v?v.quantization.dtype:v.dtype,O=By[N]*P(v.shape),E=()=>{i[L]=!0,o[L]==null&&(o[L]=[]),o[L].push({manifestEntry:v,groupOffset:x,sizeBytes:O})};s!=null?s.forEach((k,F)=>{k===v.name&&(E(),a[F]=!0)}):E(),c.push(v.name),x+=O})}),!a.every(w=>w)){const w=s.filter((L,x)=>!a[x]);throw new Error(`Could not find weights in manifest with names: ${w.join(", ")}.
|
|
Manifest JSON has weights with names: ${c.join(", ")}.`)}const h=i.reduce((w,L,x)=>(L&&w.push(x),w),[]),d=[];h.forEach(w=>{t[w].paths.forEach(L=>{const x=n+(n.endsWith("/")?"":"/")+L;d.push(x)})});const m=await e(d),f={};let b=0;return h.forEach(w=>{const L=t[w].paths.length;let x=0;for(let k=0;k<L;k++)x+=m[b+k].byteLength;const v=new ArrayBuffer(x),N=new Uint8Array(v);let O=0;for(let k=0;k<L;k++){const F=new Uint8Array(m[b+k]);N.set(F,O),O+=F.byteLength}const E=o[w];E.forEach(k=>{const F=v.slice(k.groupOffset,k.groupOffset+k.sizeBytes),U=Pd(F,[k.manifestEntry]);for(const $ in U)f[$]=U[$]}),b+=L}),f}}const Qk="application/octet-stream",eF="application/json";class qy{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=oe().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");const t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;const n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,userDefinedMetadata:e.userDefinedMetadata,weightsManifest:n};t.body.append("model.json",new Blob([JSON.stringify(s)],{type:eF}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:Qk}),"model.weights.bin");const i=await this.fetch(this.path,t);if(i.ok)return{modelArtifactsInfo:nh(e),responses:[i]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${i.status}.`)}async load(){const e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(b){let w=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?w+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":w+=" Please make sure the server is serving valid JSON for this request.",new Error(w)}const n=t.modelTopology,s=t.weightsManifest,i=t.generatedBy,o=t.convertedBy,a=t.format,c=t.userDefinedMetadata;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let h,d;if(s!=null){const b=await this.loadWeights(s);[h,d]=b}const m={modelTopology:n,weightSpecs:h,weightData:d,userDefinedMetadata:c,generatedBy:i,convertedBy:o,format:a},f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){const t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=tF(t),i=this.weightPathPrefix||n,o=[];for(const d of e)o.push(...d.weights);const a=[],c=[];for(const d of e)for(const m of d.paths)this.weightUrlConverter!=null?c.push(this.weightUrlConverter(m)):a.push(i+m+s);this.weightUrlConverter&&a.push(...await Promise.all(c));const h=await AT(a,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[o,zd(h)]}}qy.URL_SCHEME_REGEX=/^https?:\/\//;function tF(e){const t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),i=n>t?e.substring(n):"";return[s+"/",i]}function jy(e){return e.match(qy.URL_SCHEME_REGEX)!=null}const CT=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>jy(s)):n=jy(e),n)return Ky(e,t)}return null};en.registerSaveRouter(CT),en.registerLoadRouter(CT);function Ky(e,t){return new qy(e,t)}function Yd(e,t){return Ky(e,t)}class Xy{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}}class nF{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}}function sF(e,t,n,s){if(arguments.length===1){const i=e.modelTopology!=null||e.weightSpecs!=null;return i?new Xy(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Xy({modelTopology:e}))}else return console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Xy({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s})}function iF(e){return new nF(e)}var rF=Object.freeze({__proto__:null,browserFiles:Zk,browserHTTPRequest:Yd,concatenateArrayBuffers:zd,decodeWeights:Pd,encodeWeights:My,fromMemory:sF,getLoadHandlers:Vy,getModelArtifactsInfoForJSON:nh,getSaveHandlers:zy,http:Ky,isHTTPScheme:jy,loadWeights:vT,registerLoadRouter:Ak,registerSaveRouter:Tk,weightsLoaderFactory:NT,withSaveHandler:iF,copyModel:Uk,listModels:Wk,moveModel:Bk,removeModel:$k});function oF(e,t){const n=W(e,"x","reshape",null),s={x:n},i={shape:t},o=(a,c)=>(t=Vt(t,n.size),A(n.size===P(t),()=>"new shape and old shape must have the same number of elements."),c([n]),a.reshape(n,t));return G.runKernelFunc(o,s,null,_l,i)}const K=z({reshape_:oF});function aF(e,t,n=!1,s=!1){let i=W(e,"a","matMul"),o=W(t,"b","matMul");[i,o]=Gt(i,o);const a=(d,m)=>{m([i,o]);const f=n?i.shape[i.rank-2]:i.shape[i.rank-1],b=s?o.shape[o.rank-1]:o.shape[o.rank-2],w=n?i.shape[i.rank-1]:i.shape[i.rank-2],L=s?o.shape[o.rank-2]:o.shape[o.rank-1],x=i.shape.slice(0,-2),v=o.shape.slice(0,-2),N=P(x),O=P(v),E=N===O||N===1||O===1;A(i.rank>=2&&o.rank>=2&&E,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${x}) and (${v}).`),A(f===b,()=>`Error in matMul: inner shapes (${f}) and (${b}) of Tensors with shapes ${i.shape} and ${o.shape} and transposeA=${n} and transposeB=${s} must match.`);const k=N>O?x:v,F=k.concat([w,L]),U=n?K(i,[N,f,w]):K(i,[N,w,f]),$=s?K(o,[O,L,b]):K(o,[O,b,L]),Y=d.batchMatMul(U,$,n,s);return K(Y,F)},c={a:i,b:o},h={transposeA:n,transposeB:s};return G.runKernelFunc(a,c,null,id,h)}const ct=z({matMul_:aF});function cF(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);const i=W(e,"indices","oneHot","int32"),o=[...i.shape,t],a=(d,m)=>(m([i]),K(d.oneHot(K(i,[i.size]),t,n,s),o)),c={indices:i},h={depth:t,onValue:n,offValue:s};return G.runKernelFunc(a,c,null,yy,h)}const To=z({oneHot_:cF});function lF(e,t){const n=W(e,"x","transpose");if(t==null&&(t=n.shape.map((o,a)=>a).reverse()),A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(o=>{A(o>=0&&o<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();const s={x:n},i={perm:t};return G.runKernelFunc(o=>o.transpose(n,t),s,null,Hl,i)}const Ye=z({transpose_:lF});function hF(e,t,n){const s=W(e,"labels","confusionMatrix"),i=W(t,"predictions","confusionMatrix");A(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),A(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),A(i.rank===1,()=>`Expected the rank of predictions to be 1, but got ${i.rank}`),A(s.shape[0]===i.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${i.shape[0]}. Labels and predictions should have the same number of elements.`),A(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);const o=To(Ae(s,"int32"),n),a=To(Ae(i,"int32"),n),c=Ye(o),h=ct(c,a);return Ae(h,"int32")}const uF=z({confusionMatrix_:hF});var dF=Object.freeze({__proto__:null,confusionMatrix:uF});function RT(e,t,n){if(ne(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");const s=Ii(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Er(e,t,s,n)}let Fa;function pF(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,i=!1,o=!1,a=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)i=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)o=!0;else if(e.getContext!=null)a=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(i){const w=2;if(i&&e.readyState<w)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}const c=Oy(Rd,G.backendName);if(c!=null){const w={pixels:e},L={numChannels:t};return G.runKernel(Rd,w,L)}const[h,d]=i?[e.videoWidth,e.videoHeight]:[e.width,e.height];let m;a?m=e.getContext("2d").getImageData(0,0,h,d).data:s||n?m=e.data:(o||i)&&(Fa==null&&(Fa=document.createElement("canvas").getContext("2d")),Fa.canvas.width=h,Fa.canvas.height=d,Fa.drawImage(e,0,0,h,d),m=Fa.getImageData(0,0,h,d).data);let f;if(t===4)f=new Int32Array(m);else{const w=h*d;f=new Int32Array(w*t);for(let L=0;L<w;L++)for(let x=0;x<t;++x)f[L*t+x]=m[L*4+x]}const b=[d,h,t];return RT(f,b,"int32")}async function mF(e,t){let n=W(e,"img","toPixels");if(!(e instanceof ee)){const d=n;n=Ae(d,"int32"),d.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);const[s,i]=n.shape.slice(0,2),o=n.rank===2?1:n.shape[2];if(o>4||o===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${o}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);const a=await n.data(),c=n.dtype==="float32"?255:1,h=new Uint8ClampedArray(i*s*4);for(let d=0;d<s*i;++d){const m=[0,0,0,255];for(let b=0;b<o;b++){const w=a[d*o+b];if(n.dtype==="float32"){if(w<0||w>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${w}.`)}else if(n.dtype==="int32"&&(w<0||w>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${w}.`);o===1?(m[0]=w*c,m[1]=w*c,m[2]=w*c):m[b]=w*c}const f=d*4;h[f+0]=Math.round(m[0]),h[f+1]=Math.round(m[1]),h[f+2]=Math.round(m[2]),h[f+3]=Math.round(m[3])}if(t!=null){t.width=i,t.height=s;const d=t.getContext("2d"),m=new ImageData(h,i,s);d.putImageData(m,0,0)}return n!==e&&n.dispose(),h}const OT=z({fromPixels_:pF});var fF=Object.freeze({__proto__:null,toPixels:mF,fromPixels:OT});function Hd(e,t){if(e.rank<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.rank<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[t.rank-1]>e.rank)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[t.rank-1]} vs. ${e.rank}`);if(e.size===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);const n=t.shape,s=n[n.length-1];let i=1;for(let d=0;d<n.length-1;++d)i*=n[d];const o=e.shape,a=n.slice();a.pop();let c=1;for(let d=s;d<e.rank;++d)c*=o[d],a.push(o[d]);const h=[...je(e.shape).map(d=>d/c),1].slice(0,s);return[a,i,c,h]}var gF=Object.freeze({__proto__:null,prepareAndValidate:Hd});function Jy(e,t,n){const s=t.rank>1?t.shape[t.rank-1]:1,i=t.rank>1?t.rank-1:1,o=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${i}.`;if(n.rank<i)throw new Error(o+` update.rank < ${i}. `);if(e.length<s+(n.rank-i))throw new Error(o+` Output shape length < ${s+(n.rank-i)}`);if(n.rank!==i+e.length-s)throw new Error(o+` update.rank != ${i+e.length-s}`);for(let a=0;a<i;++a)if(n.shape[a]!==t.shape[a])throw new Error(o+` updates.shape[${a}] (${n.shape[a]}) != indices.shape[${a}] (${t.shape[a]}).`);for(let a=0;a<n.rank-i;++a)if(n.shape[a+i]!==e[a+s])throw new Error(o+` updates.shape[${a+i}] (${n.shape[a+i]}) != shape[${a+i}] (${e[a+i]})`)}function Zy(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Jy(n,t,e)}function _a(e,t,n){const s=t.shape.length,i=s>1?t.shape[s-1]:1,o=n.length;let a=1;for(let f=i;f<o;++f)a*=n[f];const c=i<1?1:i,h=P(t.shape)/c,d=[...je(n.slice(0,i)),1],m=P(n);return{sliceRank:i,numUpdates:h,sliceSize:a,strides:d,outputSize:m}}var yF=Object.freeze({__proto__:null,validateUpdateShape:Jy,validateInput:Zy,calculateShapes:_a});function Qy(e,t,n){const s=e.shape.length;A(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),A(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let i=0;i<s;++i)A(t[i]+n[i]<=e.shape[i],()=>`Error in slice${s}D: begin[${i}] + size[${i}] (${t[i]+n[i]}) would overflow input.shape[${i}] (${e.shape[i]})`)}function qd(e){const t=[];let n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function jd(e,t,n){const s=[];for(let i=0;i<e.length;i++)s[i]=Math.ceil((t[i]-e[i])/n[i]);return s}function ET(e,t,n,s){const i=[...e];for(let o=i.length;o<s.length;o++)i.push(1);for(let o=0;o<n;o++)o===0?i[t]=1:(i.splice(t,0,1),i.pop());return i}function DT(e,t,n){return n<=e?n:n-(t-1)}function kT(e,t){const n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function FT(e,t,n,s,i,o,a,c,h){const d=e.length;let m=new Array(d),f=new Array(d),b=new Array(d);if(t.length&&n>0){const w=t[0],L=n+1;m=_T(a,w,L,s,e),f=WT(c,w,L,i,e),b=ET(o,w,L,e)}else for(let w=0;w<d;w++)m[w]=UT(a,s,o,e,w,h),f[w]=BT(c,i,o,e,w,h),b[w]=$T(o,w,h);return{begin:m,end:f,strides:b}}function _T(e,t,n,s,i){const o=[...i],a=kT(n,t);for(let c=0;c<o.length;c++)if(a.indexOf(c)>-1)o[c]=0;else{const h=DT(t,n,c);let d=s[h];e&1<<h&&(d=0),o[c]=d}return o}function WT(e,t,n,s,i){const o=[...i],a=kT(n,t);for(let c=0;c<o.length;c++)if(a.indexOf(c)>-1)o[c]=Number.MAX_SAFE_INTEGER;else{const h=DT(t,n,c);let d=s[h];e&1<<h&&(d=Number.MAX_SAFE_INTEGER),o[c]=d}for(let c=0;c<o.length;c++){const h=i[c];o[c]<0&&(o[c]+=h),o[c]=S(0,o[c],i[c])}return o}function $T(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function UT(e,t,n,s,i,o){let a=t[i];const c=n[i]||1;(e&1<<i||o&1<<i||a==null)&&(c>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);const h=s[i];return a<0&&(a+=h),a=S(0,a,h-1),a}function BT(e,t,n,s,i,o){let a=t[i];const c=n[i]||1;(e&1<<i||o&1<<i||a==null)&&(c>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);const h=s[i];return a<0&&(a+=h),c>0?a=S(0,a,h):a=S(-1,a,h-1),a}function eb(e,t,n){let s=n.length;for(let i=0;i<n.length;i++)if(n[i]>1){s=i;break}for(let i=s+1;i<n.length;i++)if(t[i]>0||n[i]!==e[i])return!1;return!0}function tb(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function Kd(e,t,n){let s;const i=e.shape.length;typeof t=="number"?s=[t,...new Array(i-1).fill(0)]:t.length<i?s=t.concat(new Array(i-t.length).fill(0)):s=t.slice(),s.forEach(a=>{A(a!==-1,()=>"slice() does not support negative begin indexing.")});let o;return n==null?o=new Array(i).fill(-1):typeof n=="number"?o=[n,...new Array(i-1).fill(-1)]:n.length<i?o=n.concat(new Array(i-n.length).fill(-1)):o=n,o=o.map((a,c)=>a>=0?a:(A(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${c}.`),e.shape[c]-s[c])),[s,o]}var MT=Object.freeze({__proto__:null,assertParamsValid:Qy,maskToAxes:qd,computeOutShape:jd,stridesWithElidedDims:ET,getNormalizedAxes:FT,startIndicesWithElidedDims:_T,stopIndicesWithElidedDims:WT,stridesForAxis:$T,startForAxis:UT,stopForAxis:BT,isSliceContinous:eb,computeFlatOffset:tb,parseSliceParams:Kd});class Ao{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}}class Ws{constructor(){this.classNameMap={}}static getMap(){return Ws.instance==null&&(Ws.instance=new Ws),Ws.instance}static register(e){Ws.getMap().classNameMap[e.className]=[e,e.fromConfig]}}function fe(e){A(e.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),A(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ws.register(e)}var bF=Object.freeze({__proto__:null,Serializable:Ao,SerializationMap:Ws,registerClass:fe});const wF=.001,PT=.1;function LF(e,t,n){return n==null&&(n=Xd()),nb(e,t,(s,i)=>ib(s,i,n))}function Xd(){return G.backend.floatPrecision()===32?wF:PT}function nb(e,t,n){let s=!0;if((hn(e)||hn(t))&&(s=!1),hn(e)&&hn(t)&&(s=!0),s){const a=e.constructor.name,c=t.constructor.name;if(a!==c)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${c}`)}if(Array.isArray(e)&&Array.isArray(t)){const a=Ii(e),c=Ii(t);if(!ae(a,c))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${c}]`)}const i=hn(e)?e:te(e),o=hn(t)?t:te(t);if(i.length!==o.length)throw new Error(`Arrays have different lengths actual: ${i.length} vs expected: ${o.length}.
|
|
Actual: ${i}.
|
|
Expected: ${o}.`);for(let a=0;a<o.length;++a){const c=i[a],h=o[a];if(!n(c,h))throw new Error(`Arrays differ: actual[${a}] = ${c}, expected[${a}] = ${h}.
|
|
Actual: ${i}.
|
|
Expected: ${o}.`)}}function SF(e,t){e().then(()=>t.fail(),()=>t())}function IF(e,t){const n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Yi(e)||Yi(e[0])||Yi(t)||Yi(t[0])?nb(e,n,(s,i)=>s==i):nb(e,t,(s,i)=>ib(s,i,0))}function sb(e,t,n){if(n==null&&(n=Xd()),!ib(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function ib(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function xF(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function TF(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}var AF=Object.freeze({__proto__:null,TEST_EPSILON_FLOAT16:PT,expectArraysClose:LF,testEpsilon:Xd,expectPromiseToFail:SF,expectArraysEqual:IF,expectNumbersClose:sb,expectValuesInRange:xF,expectArrayBuffersEqual:TF});const zT="2.7.0";function vF(){oe().set("PROD",!0)}function NF(){oe().set("DEBUG",!0)}function CF(){oe().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function un(e){oe().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}ck(un);function RF(){G.disposeVariables()}function Ki(){return G}function Jd(){return G.memory()}function OF(e){return G.profile(e)}function Q(e,t){return G.tidy(e,t)}function He(e){const t=Hi(e);t.forEach(n=>n.dispose())}function bn(e){return G.keep(e)}function EF(e){return G.time(e)}function VT(e){return G.setBackend(e)}function DF(){return G.ready()}function kF(){return G.backendName}function FF(e){G.removeBackend(e)}function _F(e){return G.findBackend(e)}function WF(e){return G.findBackendFactory(e)}function rb(e,t,n=1){return G.registerBackend(e,t,n)}function GT(){return G.backend}function $F(e,t){oe().setPlatform(e,t)}function UF(e,t){let n=W(e,"a","add"),s=W(t,"b","add");[n,s]=Gt(n,s);const i=(a,c)=>{const h=a.add(n,s);return c([n,s]),h},o={a:n,b:s};return G.runKernelFunc(i,o,null,wo)}const be=z({add_:UF});function BF(e,t){let n=W(e,"a","floorDiv"),s=W(t,"b","floorDiv");[n,s]=Gt(n,s);const i=(a,c)=>{const h=a.floorDiv(n,s);return c([n,s]),h},o={a:n,b:s};return G.runKernelFunc(i,o,null,sy)}const Zd=z({floorDiv_:BF});function MF(e,t){let n=W(e,"a","div"),s=W(t,"b","div");if([n,s]=Gt(n,s),n.dtype==="int32"&&s.dtype==="int32")return Zd(n,s);const i=(c,h)=>{const d=c.realDivide(n,s);return h([n,s]),d},o={a:n,b:s},a={};return G.runKernelFunc(i,o,null,xa,a)}const We=z({div_:MF});function PF(e,t){let n=W(e,"a","mul"),s=W(t,"b","mul");[n,s]=Gt(n,s);const i=(a,c)=>{const h=a.multiply(n,s);return c([n,s]),h},o={a:n,b:s};return G.runKernelFunc(i,o,null,Ta)}const X=z({mul_:PF});function zF(e){const t=W(e,"x","abs"),n={x:t};return G.runKernelFunc((s,i)=>(i([t]),t.dtype==="complex64"?s.complexAbs(t):s.abs(t)),n,null,td)}const dn=z({abs_:zF});function VF(e){const t=W(e,"x","acos"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.acos(t);return i([t]),o},n,null,ol)}const ob=z({acos_:VF});function GF(e){const t=W(e,"x","acosh"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.acosh(t);return i([t]),o},n,null,al)}const ab=z({acosh_:GF});function YF(e){A(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),A(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);const t=e.map((o,a)=>W(o,`tensors${a}`,"addN")),n=t[0];t.forEach(o=>{if(o.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(o=>{if(!ae(o.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});const s=(o,a)=>{const c=o.addN(t);return a(t),c},i=t;return G.runKernelFunc(s,i,null,Gg)}const YT=z({addN_:YF});function cb(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function HT(e,t,n){const s=e.length+t.length,i=[];let o=0,a=0;for(let c=0;c<s;c++)n.indexOf(c)===-1?i.push(e[o++]):i.push(t[a++]);return i}function An(e,t){const n=[],s=e.length;for(let o=0;o<s;o++)t.indexOf(o)===-1&&n.push(e[o]);const i=t.map(o=>e[o]);return[n,i]}function vn(e,t){const n=t.map(s=>1);return HT(e,n,t)}function Kn(e,t,n){A(cb(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Xn(e,t){if(cb(e,t))return null;const n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function sh(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function as(e,t){const n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function HF(e,t=null,n=!1){let s=W(e,"x","all","bool");const i=c=>{const h=qe(t,s.shape);let d=h;const m=Xn(d,s.rank);m!=null&&(s=Ye(s,m),d=as(d.length,s.rank));const f=c.all(s,d);if(n){const b=vn(f.shape,h);return K(f,b)}return f},o={x:s},a={axis:t,keepDims:n};return G.runKernelFunc(i,o,null,Rx,a)}const Qd=z({all_:HF});function qF(e,t=null,n=!1){let s=W(e,"x","any","bool");const i=c=>{const h=qe(t,s.shape);let d=h;const m=Xn(d,s.rank);m!=null&&(s=Ye(s,m),d=as(d.length,s.rank));const f=c.any(s,d);if(n){const b=vn(f.shape,h);return K(f,b)}return f},o={x:s},a={axis:t,keepDims:n};return G.runKernelFunc(i,o,null,Ox,a)}const ih=z({any_:qF});function jF(e,t=0){let n=W(e,"x","argMax");const s=(a,c)=>{c([n]);let h=qe(t,n.shape);const d=Xn(h,n.rank);return d!=null&&(n=Ye(n,d),h=as(h.length,n.rank)),a.argMax(n,h[0])},i={x:n},o={axis:t};return G.runKernelFunc(s,i,null,Yg,o)}const rh=z({argMax_:jF});function KF(e,t=0){let n=W(e,"x","argMin");const s=(a,c)=>{c([n]),t==null&&(t=0);let h=qe(t,n.shape);const d=Xn(h,n.rank);return d!=null&&(n=Ye(n,d),h=as(h.length,n.rank)),a.argMin(n,h[0])},i={x:n},o={axis:t};return G.runKernelFunc(s,i,null,Hg,o)}const lb=z({argMin_:KF});function XF(e){const t=W(e,"x","asin"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.asin(t);return i([t]),o},n,null,cl)}const hb=z({asin_:XF});function JF(e){const t=W(e,"x","asinh"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.asinh(t);return i([t]),o},n,null,ll)}const ub=z({asinh_:JF});function ZF(e){const t=W(e,"x","atan"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.atan(t);return i([t]),o},n,null,hl)}const db=z({atan_:ZF});function QF(e,t){let n=W(e,"a","atan2"),s=W(t,"b","atan2");[n,s]=Gt(n,s);const i=(a,c)=>{const h=a.atan2(n,s);return c([n,s]),h},o={a:n,b:s};return G.runKernelFunc(i,o,null,nd)}const pb=z({atan2_:QF});function e_(e){const t=W(e,"x","atanh"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.atanh(t);return i([t]),o},n,null,ul)}const mb=z({atanh_:e_});function ep(e,t,n,s,i="NHWC",o){const a=e[3],c=[...t,a],h=Wr(i);return kn(e,c,n,o,s,null,null,h)}function Un(e,t,n,s,i,o,a="channelsLast"){const[c,h]=tp(t);let d;if(a==="channelsLast")d=[c,h,e[3],e[3]];else if(a==="channelsFirst")d=[c,h,e[1],e[1]];else throw new Error(`Unknown dataFormat ${a}`);return kn(e,d,n,s,i,o,!1,a)}function oh(e,t,n,s,i,o,a="NDHWC"){const[c,h,d]=gb(t);let m,f;if(a==="NDHWC")f="channelsLast",m=[c,h,d,e[4],e[4]];else if(a==="NCDHW")f="channelsFirst",m=[c,h,d,e[1],e[1]];else throw new Error(`Unknown dataFormat ${a}`);return Fr(e,m,n,s,i,!1,f,o)}function kn(e,t,n,s,i,o,a=!1,c="channelsLast"){let[h,d,m,f]=[-1,-1,-1,-1];if(c==="channelsLast")[h,d,m,f]=e;else if(c==="channelsFirst")[h,f,d,m]=e;else throw new Error(`Unknown dataFormat ${c}`);const[b,w,,L]=t,[x,v]=tp(n),[N,O]=tp(s),E=Wa(b,N),k=Wa(w,O),{padInfo:F,outHeight:U,outWidth:$}=s_(i,d,m,x,v,E,k,o,c),Y=a?L*f:L;let j;return c==="channelsFirst"?j=[h,Y,U,$]:c==="channelsLast"&&(j=[h,U,$,Y]),{batchSize:h,dataFormat:c,inHeight:d,inWidth:m,inChannels:f,outHeight:U,outWidth:$,outChannels:Y,padInfo:F,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,effectiveFilterHeight:E,effectiveFilterWidth:k,dilationHeight:N,dilationWidth:O,inShape:e,outShape:j,filterShape:t}}function Fr(e,t,n,s,i,o=!1,a="channelsLast",c){let[h,d,m,f,b]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[h,d,m,f,b]=e;else if(a==="channelsFirst")[h,b,d,m,f]=e;else throw new Error(`Unknown dataFormat ${a}`);const[w,L,x,,v]=t,[N,O,E]=gb(n),[k,F,U]=gb(s),$=Wa(w,k),Y=Wa(L,F),j=Wa(x,U),{padInfo:Z,outDepth:ie,outHeight:de,outWidth:he}=i_(i,d,m,f,N,O,E,$,Y,j,c),ue=o?v*b:v;let me;return a==="channelsFirst"?me=[h,ue,ie,de,he]:a==="channelsLast"&&(me=[h,ie,de,he,ue]),{batchSize:h,dataFormat:a,inDepth:d,inHeight:m,inWidth:f,inChannels:b,outDepth:ie,outHeight:de,outWidth:he,outChannels:ue,padInfo:Z,strideDepth:N,strideHeight:O,strideWidth:E,filterDepth:w,filterHeight:L,filterWidth:x,effectiveFilterDepth:$,effectiveFilterHeight:Y,effectiveFilterWidth:j,dilationDepth:k,dilationHeight:F,dilationWidth:U,inShape:e,outShape:me,filterShape:t}}function t_(e,t,n,s,i){s==null&&(s=fb(e,t,n));const o=e[0],a=e[1],c=vo((o-t+2*s)/n+1,i);A(Le(c),()=>`The output # of rows (${c}) must be an integer. Change the stride and/or zero pad parameters`);const h=vo((a-t+2*s)/n+1,i);return A(Le(h),()=>`The output # of columns (${h}) must be an integer. Change the stride and/or zero pad parameters`),[c,h]}function n_(e,t,n,s,i,o){i==null&&(i=fb(e,t,s));const a=e[0],c=e[1],h=e[2],d=vo((a-t+2*i)/s+1,o);A(Le(d),()=>`The output # of depths (${d}) must be an integer. Change the stride and/or zero pad parameters`);const m=vo((c-t+2*i)/s+1,o);A(Le(m),()=>`The output # of rows (${m}) must be an integer. Change the stride and/or zero pad parameters`);const f=vo((h-t+2*i)/s+1,o);return A(Le(f),()=>`The output # of columns (${f}) must be an integer. Change the stride and/or zero pad parameters`),[d,m,f,n]}function fb(e,t,n,s=1){const i=Wa(t,s);return Math.floor((e[0]*(n-1)-n+i)/2)}function tp(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function gb(e){return typeof e=="number"?[e,e,e]:e}function Wa(e,t){return t<=1?e:e+(e-1)*(t-1)}function s_(e,t,n,s,i,o,a,c,h){let d,m,f;if(typeof e=="number"){const b=e===0?"VALID":"NUMBER";d={top:e,bottom:e,left:e,right:e,type:b};const w=t_([t,n],o,s,e,c);m=w[0],f=w[1]}else if(e==="same"){m=Math.ceil(t/s),f=Math.ceil(n/i);const b=Math.max(0,(m-1)*s+o-t),w=Math.max(0,(f-1)*i+a-n),L=Math.floor(b/2),x=b-L,v=Math.floor(w/2),N=w-v;d={top:L,bottom:x,left:v,right:N,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,type:"VALID"},m=Math.ceil((t-o+1)/s),f=Math.ceil((n-a+1)/i);else if(typeof e=="object"){const b=h==="channelsLast"?e[1][0]:e[2][0],w=h==="channelsLast"?e[1][1]:e[2][1],L=h==="channelsLast"?e[2][0]:e[3][0],x=h==="channelsLast"?e[2][1]:e[3][1],v=b===0&&w===0&&L===0&&x===0?"VALID":"EXPLICIT";d={top:b,bottom:w,left:L,right:x,type:v},m=vo((t-o+b+w)/s+1,c),f=vo((n-a+L+x)/i+1,c)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outHeight:m,outWidth:f}}function i_(e,t,n,s,i,o,a,c,h,d,m){let f,b,w,L;if(typeof e=="number"){const x=e===0?"VALID":"NUMBER";f={top:e,bottom:e,left:e,right:e,front:e,back:e,type:x};const v=n_([t,n,s,1],c,1,i,e,m);b=v[0],w=v[1],L=v[2]}else if(e==="same"){b=Math.ceil(t/i),w=Math.ceil(n/o),L=Math.ceil(s/a);const x=(b-1)*i+c-t,v=(w-1)*o+h-n,N=(L-1)*a+d-s,O=Math.floor(x/2),E=x-O,k=Math.floor(v/2),F=v-k,U=Math.floor(N/2),$=N-U;f={top:k,bottom:F,left:U,right:$,front:O,back:E,type:"SAME"}}else if(e==="valid")f={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},b=Math.ceil((t-c+1)/i),w=Math.ceil((n-h+1)/o),L=Math.ceil((s-d+1)/a);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:f,outDepth:b,outHeight:w,outWidth:L}}function vo(e,t){if(!t)return e;switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function _r(e){const[t,n,s]=tp(e);return t===1&&n===1&&s===1}function cn(e,t){return _r(e)||_r(t)}function Wr(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function r_(e,t,n,s,i){const o=W(e,"x","avgPool","float32"),a=1;A(cn(n,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let c=o,h=!1;o.rank===3&&(h=!0,c=K(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(c.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${c.rank}.`),i!=null&&A(Le(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);const d=(w,L)=>{const x=Un(c.shape,t,n,1,s,i);return L([c]),x.filterWidth===1&&x.filterHeight===1&&ae(x.inShape,x.outShape)?c.clone():w.avgPool(c,x)},m={x:c},f={filterSize:t,strides:n,pad:s,dimRoundingMode:i};let b=G.runKernelFunc(d,m,null,dl,f);return b=Ae(b,o.dtype),h?K(b,[b.shape[1],b.shape[2],b.shape[3]]):b}const ah=z({avgPool_:r_});function o_(e,t,n,s,i,o="NDHWC",a){a==null?a=[1,1,1]:un("dilations is deprecated, this field will be gone in v3.0.0.");const c=W(e,"x","avgPool3d","float32");let h=c,d=!1;c.rank===4&&(d=!0,h=K(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),A(h.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${h.rank}.`),A(o==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${o}`),A(cn(n,a),()=>`Error in avgPool3d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),i!=null&&A(Le(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);const m=(L,x)=>{a==null&&(a=[1,1,1]);const v=oh(h.shape,t,n,a,s,i,o);return x([h]),L.avgPool3d(h,v)},f={x:h},b={filterSize:t,strides:n,pad:s,dimRoundingMode:i,dataFormat:o,dilations:a};let w=G.runKernelFunc(m,f,null,qg,b);return w=Ae(w,h.dtype),d?K(w,[w.shape[1],w.shape[2],w.shape[3],w.shape[4]]):w}const yb=z({avgPool3d_:o_});function np(e,t){const n=e[0].length;e.forEach((i,o)=>{A(i.length===n,()=>`Error in concat${n}D: rank of tensors[${o}] must be the same as the rank of the rest (${n})`)}),A(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);const s=e[0];e.forEach((i,o)=>{for(let a=0;a<n;a++)A(a===t||i[a]===s[a],()=>`Error in concat${n}D: Shape of tensors[${o}] (${i}) does not match the shape of the rest (${s}) along the non-concatenated axis ${o}.`)})}function Xi(e,t){const n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}function a_(e,t=0){A(e.length>=1,()=>"Pass at least one tensor to concat");let n=th(e,"tensors","concat");n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)});const s=(a,c)=>{const h=qe(t,n[0].shape)[0],d=Xi(n.map(b=>b.shape),h);if(P(d)===0)return sn([],d);if(n=n.filter(b=>b.size>0),n.length===1)return n[0];const m=n.map(b=>b.shape);np(m,h);const f=a.concat(n,h);return c(n),f},i=n,o={axis:t};return G.runKernelFunc(s,i,null,fl,o)}const Yt=z({concat_:a_});function c_(e){const t=W(e,"x","sigmoid"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.sigmoid(t);return i([o]),o},n,null,zl)}const Ti=z({sigmoid_:c_});function l_(e,t,n){const s=W(e,"x","slice");if(s.rank===0)throw new Error("Slicing scalar is not possible");const i=(c,h)=>{const[d,m]=Kd(s,t,n);return Qy(s,d,m),h([s]),c.slice(s,d,m)},o={x:s},a={begin:t,size:n};return G.runKernelFunc(i,o,null,Ad,a)}const tt=z({slice_:l_});function h_(e){const t=W(e,"x","tanh"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.tanh(t);return i([o]),o},n,null,Yl)}const $a=z({tanh_:h_});function u_(e,t,n,s,i,o){const a=W(e,"forgetBias","basicLSTMCell"),c=W(t,"lstmKernel","basicLSTMCell"),h=W(n,"lstmBias","basicLSTMCell"),d=W(s,"data","basicLSTMCell"),m=W(i,"c","basicLSTMCell"),f=W(o,"h","basicLSTMCell"),b=Yt([d,f],1),w=ct(b,c),L=be(w,h),x=L.shape[0],v=L.shape[1]/4,N=[x,v],O=tt(L,[0,0],N),E=tt(L,[0,v],N),k=tt(L,[0,v*2],N),F=tt(L,[0,v*3],N),U=be(X(Ti(O),$a(E)),X(m,Ti(be(a,k)))),$=X($a(U),Ti(F));return[U,$]}const d_=z({basicLSTMCell_:u_});function p_(e,t,n){const s=W(e,"x","batchToSpaceND"),i=t.reduce((h,d)=>h*d);A(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),A(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),A(s.shape[0]%i===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${i}`);const o=h=>h.batchToSpaceND(s,t,n),a={x:s},c={blockShape:t,crops:n};return G.runKernelFunc(o,a,null,jg,c)}const ch=z({batchToSpaceND_:p_});function m_(e){let t;return e.rank===0||e.rank===1?t=K(e,[1,1,1,e.size]):e.rank===2?t=K(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=K(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function f_(e,t,n,s,i,o){o==null&&(o=.001);const a=W(e,"x","batchNorm"),c=W(t,"mean","batchNorm"),h=W(n,"variance","batchNorm");let d;i!=null&&(d=W(i,"scale","batchNorm"));let m;s!=null&&(m=W(s,"offset","batchNorm")),A(c.rank===h.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(m==null||c.rank===m.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(d==null||c.rank===d.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");const f=m_(a),b=(v,N)=>(N([f,c,h,d]),v.batchNorm(f,sp(c),sp(h),sp(m),sp(d),o)),w={x:f,scale:d,offset:m,mean:c,variance:h},L={varianceEpsilon:o},x=G.runKernelFunc(b,w,null,Il,L);return K(x,a.shape)}function sp(e){return e==null?null:e.rank===0?K(e,[e.size]):e.rank===1?e:e.rank===2?K(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?K(e,[1,e.shape[0],e.shape[1],e.shape[2]]):e}const No=z({batchNorm_:f_});function g_(e,t,n,s,i,o){const a=W(e,"x","batchNorm"),c=W(t,"mean","batchNorm"),h=W(n,"variance","batchNorm");let d;i!=null&&(d=W(i,"scale","batchNorm"));let m;return s!=null&&(m=W(s,"offset","batchNorm")),A(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),A(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${c.rank}.`),A(h.rank===2||h.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${h.rank}.`),d!=null&&A(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${d.rank}.`),m!=null&&A(m.rank===2||m.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${m.rank}.`),No(a,c,h,m,d,o)}const qT=z({batchNorm2d_:g_});function y_(e,t,n,s,i,o){const a=W(e,"x","batchNorm"),c=W(t,"mean","batchNorm"),h=W(n,"variance","batchNorm");let d;i!=null&&(d=W(i,"scale","batchNorm"));let m;return s!=null&&(m=W(s,"offset","batchNorm")),A(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),A(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${c.rank}.`),A(h.rank===3||h.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${h.rank}.`),d!=null&&A(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${d.rank}.`),m!=null&&A(m.rank===3||m.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${m.rank}.`),No(a,c,h,m,d,o)}const jT=z({batchNorm3d_:y_});function b_(e,t,n,s,i,o){const a=W(e,"x","batchNorm"),c=W(t,"mean","batchNorm"),h=W(n,"variance","batchNorm");let d;i!=null&&(d=W(i,"scale","batchNorm"));let m;return s!=null&&(m=W(s,"offset","batchNorm")),A(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),A(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${c.rank}.`),A(h.rank===4||h.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${h.rank}.`),d!=null&&A(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${d.rank}.`),m!=null&&A(m.rank===4||m.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${m.rank}.`),No(a,c,h,m,d,o)}const KT=z({batchNorm4d_:b_});function w_(e,t){let n=W(e,"broadcastTo","x");const s=n.shape;if(t.some(m=>!(m>0)||m%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){const m=n.shape.slice();for(;m.length<t.length;)m.unshift(1);n=K(n,m)}const i=n.shape,o=Array.from(t);for(let m=t.length-1;m>=0;m--)if(i[m]===t[m])o[m]=1;else if(n.shape[m]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);const a=o.map((m,f)=>m>1?f:-1).filter(m=>m>=0);if(a.length===0)return kr(n);const c=m=>m.tile(n,o),h={x:n},d={shape:t,inputShape:i};return G.runKernelFunc(c,h,null,Kg,d)}const lh=z({broadcastTo_:w_});function L_(e){const t=W(e,"x","ceil"),n={x:t};return G.runKernelFunc(s=>s.ceil(t),n,null,pl)}const bb=z({ceil_:L_});function S_(e,t,n){const s=W(e,"x","clipByValue");A(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);const i={x:s},o={clipValueMin:t,clipValueMax:n};return G.runKernelFunc((a,c)=>{const h=a.clip(s,t,n);return c([s]),h},i,null,ml,o)}const Jn=z({clipByValue_:S_});function I_(e){return Yt(e,0)}const XT=z({concat1d_:I_});function x_(e,t){return Yt(e,t)}const JT=z({concat2d_:x_});function T_(e,t){return Yt(e,t)}const ZT=z({concat3d_:T_});function A_(e,t){return Yt(e,t)}const QT=z({concat4d_:A_});function v_(e,t,n,s,i="NHWC",o=[1,1],a){const c=W(e,"x","conv2d"),h=W(t,"filter","conv2d");let d=c,m=!1;c.rank===3&&(m=!0,d=K(c,[1,c.shape[0],c.shape[1],c.shape[2]])),A(d.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${d.rank}.`),A(h.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${h.rank}.`),a!=null&&A(Le(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);const f=i==="NHWC"?d.shape[3]:d.shape[1];A(f===h.shape[2],()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${h.shape[2]}.`),A(cn(n,o),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);const b=(v,N)=>{const O=Wr(i),E=kn(d.shape,h.shape,n,o,s,a,!1,O),k=v.conv2d(d,h,E);return N([d,h]),k},w={x:d,filter:h},L={strides:n,pad:s,dataFormat:i,dilations:o,dimRoundingMode:a},x=G.runKernelFunc(b,w,null,od,L);return m?K(x,[x.shape[1],x.shape[2],x.shape[3]]):x}const Ji=z({conv2d_:v_});function N_(e,t,n,s,i="NWC",o=1,a){const c=W(e,"x","conv1d"),h=W(t,"filter","conv1d");let d=c,m=!1;c.rank===2&&(m=!0,d=K(c,[1,c.shape[0],c.shape[1]])),A(d.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${d.rank}.`),A(h.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${h.rank}.`),a!=null&&A(Le(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),A(d.shape[2]===h.shape[1],()=>`Error in conv1d: depth of input (${d.shape[2]}) must match input depth for filter ${h.shape[1]}.`),A(cn(n,o),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${o}'`),A(i==="NWC",()=>`Error in conv1d: got dataFormat of ${i} but only NWC is currently supported.`);const f=K(h,[1,h.shape[0],h.shape[1],h.shape[2]]),b=K(d,[d.shape[0],1,d.shape[1],d.shape[2]]),w=[1,n],L=[1,o],x="NHWC",v=Ji(b,f,w,s,x,L,a);return m?K(v,[v.shape[2],v.shape[3]]):K(v,[v.shape[0],v.shape[2],v.shape[3]])}const ip=z({conv1d_:N_});function C_(e,t,n,s,i,o="NHWC",a){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let c=e,h=t,d=!1;t.rank===3&&(d=!0,h=K(t,[1,t.shape[0],t.shape[1],t.shape[2]]),c=[1,e[0],e[1],e[2]]),A(c.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${c.length}.`),A(h.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${h.rank}`),A(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);const m=o==="NHWC"?c[3]:c[1],f=o==="NHWC"?h.shape[3]:h.shape[1];A(m===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${m}) must match input depth for filter ${n.shape[2]}.`),A(f===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${f}) must match output depth for filter ${n.shape[3]}.`),a!=null&&A(Le(i),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${i}.`);const b=(v,N)=>{const O=1,E=Wr(o),k=kn(c,n.shape,s,O,i,a,!1,E),F=v.conv2dDerInput(h,n,k);return N([h,n]),F},w={dy:h,filter:n},L={strides:s,pad:i,dataFormat:o,dimRoundingMode:a,inputShape:c},x=G.runKernelFunc(b,w,null,ad,L);return d?K(x,[x.shape[1],x.shape[2],x.shape[3]]):x}const wb=z({conv2DBackpropInput_:C_});function R_(e,t,n,s,i,o){const a=W(e,"x","conv2dTranspose"),c=W(t,"filter","conv2dTranspose");return wb(n,a,c,s,i,"NHWC",o)}const rp=z({conv2dTranspose_:R_});function O_(e,t,n,s,i="NDHWC",o=[1,1,1]){const a=W(e,"x","conv3d"),c=W(t,"filter","conv3d");let h=a,d=!1;a.rank===4&&(d=!0,h=K(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(h.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${h.rank}.`),A(c.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${c.rank}.`),A(h.shape[4]===c.shape[3],()=>`Error in conv3d: depth of input (${h.shape[4]}) must match input depth for filter ${c.shape[3]}.`),A(cn(n,o),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),A(i==="NDHWC",()=>`Error in conv3d: got dataFormat of ${i} but only NDHWC is currently supported.`);const m=(L,x)=>{const v=Fr(h.shape,c.shape,n,o,s),N=L.conv3d(h,c,v);return x([h,c]),N},f={x:h,filter:c},b={strides:n,pad:s,dataFormat:i,dilations:o},w=G.runKernelFunc(m,f,null,cd,b);return d?K(w,[w.shape[1],w.shape[2],w.shape[3],w.shape[4]]):w}const Lb=z({conv3d_:O_});function E_(e,t,n,s,i){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,a=t,c=!1;t.rank===4&&(c=!0,a=K(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),o=[1,e[0],e[1],e[2],e[3]]);const h=o[4],d=a.shape[4];A(o.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${o.length}.`),A(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),A(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),A(h===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${h}) must match input depth for filter ${n.shape[3]}.`),A(d===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[4]}.`);const m=L=>{const x=1,v=Fr(o,n.shape,s,x,i);return L.conv3dDerInput(a,n,v)},f={dy:a,filter:n},b={pad:i,strides:s,inputShape:o},w=G.runKernelFunc(m,f,null,Zg,b);return c?K(w,[w.shape[1],w.shape[2],w.shape[3],w.shape[4]]):w}const eA=z({conv3DBackpropInput_:E_});function D_(e,t,n,s,i){const o=W(e,"x","conv3dTranspose"),a=W(t,"filter","conv3dTranspose");return eA(n,o,a,s,i)}const k_=z({conv3dTranspose_:D_});function F_(e){const t=W(e,"x","cos"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.cos(t);return i([t]),o},n,null,Ia)}const hh=z({cos_:F_});function __(e){const t=W(e,"x","cosh"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.cosh(t);return i([t]),o},n,null,gl)}const op=z({cosh_:__});function W_(e,t=0,n=!1,s=!1){const i=W(e,"x","cumsum"),o=(h,d)=>{const m=Xn([t],i.rank);let f=i;m!=null&&(f=Ye(i,m));const b=as(1,i.rank)[0];let w=h.cumsum(f,b,n,s);if(d([i]),m!=null){const L=sh(m);w=Ye(w,L)}return w},a={x:i},c={axis:t,exclusive:n,reverse:s};return G.runKernelFunc(o,a,null,Qg,c)}const ap=z({cumsum_:W_});function $_(e,t,n="NHWC"){const s=W(e,"x","depthToSpace"),i=n==="NHWC"?s.shape[1]:s.shape[2],o=n==="NHWC"?s.shape[2]:s.shape[3],a=n==="NHWC"?s.shape[3]:s.shape[1];A(i*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${i} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),A(o*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${o} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),A(a%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${a} for depthToSpace with input shape ${s.shape}`);const c=m=>m.depthToSpace(s,t,n),h={x:s},d={blockSize:t,dataFormat:n};return G.runKernelFunc(c,h,null,kx,d)}const Sb=z({depthToSpace_:$_});function U_(e,t,n,s,i="NHWC",o=[1,1],a){const c=W(e,"x","depthwiseConv2d"),h=W(t,"filter","depthwiseConv2d");let d=c,m=!1;c.rank===3&&(m=!0,d=K(c,[1,c.shape[0],c.shape[1],c.shape[2]])),A(d.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${d.rank}.`),A(h.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),A(d.shape[3]===h.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a!=null&&A(Le(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);const f=(x,v)=>{o==null&&(o=[1,1]),A(cn(n,o),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);const N=kn(d.shape,h.shape,n,o,s,a,!0),O=x.depthwiseConv2D(d,h,N);return v([d,h]),O},b={x:d,filter:h},w={strides:n,pad:s,dataFormat:i,dilations:o,dimRoundingMode:a},L=G.runKernelFunc(f,b,null,ld,w);return m?K(L,[L.shape[1],L.shape[2],L.shape[3]]):L}const Co=z({depthwiseConv2d_:U_});function B_(e){const t=W(e,"x","diag"),n=i=>{const o=K(t,[t.size]),a=i.diag(o),c=[...e.shape,...e.shape];return K(a,c)},s={x:t};return G.runKernelFunc(n,s,null,Fx)}const M_=z({diag_:B_});function P_(e,t,n,s,i=[1,1],o="NHWC"){const a=W(e,"x","dilation2d"),c=W(t,"filter","dilation2d");A(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),A(c.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${c.rank}.`),A(o==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${o}`);let h=a,d=!1;a.rank===3&&(h=K(a,[1,a.shape[0],a.shape[1],a.shape[2]]),d=!0);const m={x:h,filter:c},f={strides:n,pad:s,dilations:i},b=G.runKernel(hd,m,f);return d?K(b,[b.shape[1],b.shape[2],b.shape[3]]):b}const Ib=z({dilation2d_:P_});function Ro(e,t){const n=e.length,s=[];for(let i=0;i<n;i++){const o=n-1-i,a=e[o]||1,c=t[t.length-1-i]||1;c>1&&a===1&&s.unshift(o)}return s}function pn(e,t){const n=[];for(let s=0;s<t.length;s++){const i=e[e.length-s-1],o=t.length-s-1,a=t[o];(i==null||i===1&&a>1)&&n.unshift(o)}return n}function nt(e,t){const n=[],s=Math.max(e.length,t.length);for(let i=0;i<s;i++){let o=e[e.length-i-1];o==null&&(o=1);let a=t[t.length-i-1];if(a==null&&(a=1),o===1)n.unshift(a);else if(a===1)n.unshift(o);else if(o!==a){const c=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(c)}else n.unshift(o)}return n}function z_(e,t){let n=W(e,"a","equal"),s=W(t,"b","equal");[n,s]=Gt(n,s),nt(n.shape,s.shape);const i=a=>a.equal(n,s),o={a:n,b:s};return G.runKernelFunc(i,o,null,Wx)}const Xs=z({equal_:z_});function V_(e,t,n){const s=W(t,"a","where"),i=W(n,"b","where"),o=W(e,"condition","where","bool"),a=nt(s.shape,i.shape),c=lh(s,a),h=lh(i,a);o.rank===1&&A(o.shape[0]===s.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),o.rank!==1&&B(o.shape,h.shape,"Error in where: ");const d=(f,b)=>{const w=f.select(o,c,h);return b([o]),w},m={condition:o,t:c,e:h};return G.runKernelFunc(d,m,null,Iy)}const Bn=z({where_:V_});function G_(e){const t=W(e,"x","zerosLike"),n={x:t};return G.runKernelFunc(s=>s.zerosLike(t),n,null,Ry)}const et=z({zerosLike_:G_});function Y_(e,t){let n=W(e,"a","div"),s=W(t,"b","div");[n,s]=Gt(n,s);const i=We(n,s),o=et(i),a=Xs(s,o);return Bn(a,o,i)}const xb=z({divNoNan_:Y_});function H_(e,t){const n=W(e,"t1","dot"),s=W(t,"t2","dot");A((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);const i=n.rank===1?n.size:n.shape[1],o=s.rank===1?s.size:s.shape[0];if(A(i===o,()=>`Error in dot: inner dimensions of inputs must match, but got ${i} and ${o}.`),n.rank===1&&s.rank===1){const a=K(n,[1,-1]),c=K(s,[-1,1]),h=ct(a,c);return K(h,[])}else if(n.rank===1&&s.rank===2){const a=K(n,[1,-1]),c=K(s,[s.shape[0],s.shape[1]]),h=ct(a,c);return K(h,[h.size])}else if(n.rank===2&&s.rank===1){const a=K(s,[-1,1]),c=ct(n,a);return K(c,[c.size])}else{const a=K(s,[s.shape[0],s.shape[1]]),c=ct(n,a);return c}}const tA=z({dot_:H_});function q_(e){const t=W(e,"x","elu"),n=(i,o)=>{const a=i.elu(t);return o([a]),a},s={x:t};return G.runKernelFunc(n,s,null,yl)}const Ua=z({elu_:q_});function j_(e){let t=W(e,"x","erf");A(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Ae(t,"float32"));const n={x:t};return G.runKernelFunc((s,i)=>{const o=s.erf(t);return i([t]),o},n,null,bl)}const Tb=z({erf_:j_});function K_(e){const t=W(e,"x","exp"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.exp(t);return i([o]),o},n,null,wl)}const Is=z({exp_:K_});function X_(e,t=0){const n=null,s=W(e,"x","expandDims",n);A(t<=s.rank,()=>"Axis must be <= rank of the tensor");const i=s.shape.slice();return t<0&&(A(-(s.rank+1)<=t,()=>`Axis must be in the interval [${-(s.rank+1)}, ${s.rank}]`),t=s.rank+t+1),i.splice(t,0,1),K(s,i)}const Zn=z({expandDims_:X_});function J_(e){const t=W(e,"x","expm1"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.expm1(t);return i([t]),o},n,null,Ll)}const Ab=z({expm1_:J_});function Z_(e,t){const n=null,s=W(e,"x","tile",n);A(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of reps ${t}.`);const i=(h,d)=>{const m=h.tile(s,t);return d([s]),m},o=[s],a={x:s},c={reps:t};return G.runKernelFunc(i,a,null,vy,c,o)}const $r=z({tile_:Z_});function Q_(e,t,n,s="float32"){t==null&&(t=e);const i=wt([e,t],s),o=e<=t?e:t;for(let c=0;c<o;++c)i.set(1,c,c);const a=K(i.toTensor(),[e,t]);if(n==null)return a;if(n.length===1)return $r(Zn(a,0),[n[0],1,1]);if(n.length===2)return $r(Zn(Zn(a,0),0),[n[0],n[1],1,1]);if(n.length===3)return $r(Zn(Zn(Zn(a,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}const cp=z({eye_:Q_});function Ba(e,t,n){const s={shape:e,value:t,dtype:n};return G.runKernelFunc(i=>i.fill(e,t,n),{},null,ny,s)}function eW(e){const t=W(e,"x","floor"),n={x:t};return G.runKernelFunc(s=>s.floor(t),n,null,Sl)}const Ma=z({floor_:eW});const vb=30;function uh(e){return e<=vb?e:ed(e,Math.floor(Math.sqrt(e)))}function tW(e,t){let n=!1,s;for(e<=vb?(s=e,n=!0):s=ed(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=ed(e,s+1);return s}function nW(e,t,n){const s=[],i=e.length;for(let o=0;o<i;o++)o!==t?s.push(e[o]):s.push(n);return s}function nA(e,t,n){const s=e.shape[n],i=[];let o=1,a=1;for(let c=0;c<n;c++)i.push(e.shape[c]),o*=e.shape[c];for(let c=0;c<t.rank;c++)i.push(t.shape[c]);for(let c=n+1;c<e.rank;c++)i.push(e.shape[c]),a*=e.shape[c];return{batchSize:o,sliceSize:a,dimSize:s,outputShape:i}}var sW=Object.freeze({__proto__:null,segOpComputeOptimalWindowSize:tW,computeOutShape:nW,collectGatherOpShapeInfo:nA});function iW(e,t,n=0){const s=W(e,"x","gather"),i=W(t,"indices","gather","int32"),o={x:s,indices:i},a={axis:n},c=(h,d)=>{const m=qe(n,s.shape)[0],f=nA(s,i,m),b=h.gather(s,K(i,[i.size]),m);return d([s,i]),K(b,f.outputShape)};return G.runKernelFunc(c,o,null,iy,a)}const Pa=z({gather_:iW});function rW(e,t){let n=W(e,"a","greater"),s=W(t,"b","greater");[n,s]=Gt(n,s),nt(n.shape,s.shape);const i=a=>a.greater(n,s),o={a:n,b:s};return G.runKernelFunc(i,o,null,Ux)}const xs=z({greater_:rW});function oW(e,t){let n=W(e,"a","greaterEqual"),s=W(t,"b","greaterEqual");[n,s]=Gt(n,s),nt(n.shape,s.shape);const i=(a,c)=>{const h=a.greaterEqual(n,s);return c([n,s]),h},o={a:n,b:s};return G.runKernelFunc(i,o,null,ry)}const Zi=z({greaterEqual_:oW});function aW(e){const t=W(e,"input","imag"),n=i=>i.imag(t),s={input:t};return G.runKernelFunc(n,s,null,gd)}const dh=z({imag_:aW});function cW(e){const t=W(e,"x","isFinite"),n={x:t};return G.runKernelFunc(s=>s.isFinite(t),n,null,Tl)}const sA=z({isFinite_:cW});function lW(e){const t=W(e,"x","isInf"),n={x:t};return G.runKernelFunc(s=>s.isInf(t),n,null,Al)}const iA=z({isInf_:lW});function hW(e){const t=W(e,"x","isNaN"),n={x:t};return G.runKernelFunc(s=>s.isNaN(t),n,null,vl)}const rA=z({isNaN_:hW});function uW(e,t){let n=W(e,"a","maximum"),s=W(t,"b","maximum");[n,s]=Gt(n,s),n.dtype==="bool"&&(n=Ae(n,"int32"),s=Ae(s,"int32")),nt(n.shape,s.shape);const i=(a,c)=>{const h=a.maximum(n,s);return c([n,s]),h},o={a:n,b:s};return G.runKernelFunc(i,o,null,cy)}const $s=z({maximum_:uW});function Ce(e,t){if((hn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&hn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");const n=[],s=[];return Er(e,n,s,t)}function dW(e,t=.2){const n=W(e,"x","leakyRelu");return $s(X(Ce(t),n),n)}const lp=z({leakyRelu_:dW});function pW(e,t){let n=W(e,"a","less"),s=W(t,"b","less");[n,s]=Gt(n,s),nt(n.shape,s.shape);const i=a=>a.less(n,s),o={a:n,b:s};return G.runKernelFunc(i,o,null,Bx)}const ph=z({less_:pW});function mW(e,t){let n=W(e,"a","lessEqual"),s=W(t,"b","lessEqual");[n,s]=Gt(n,s),nt(n.shape,s.shape);const i=(a,c)=>{const h=a.lessEqual(n,s);return c([n,s]),h},o={a:n,b:s};return G.runKernelFunc(i,o,null,Mx)}const Ur=z({lessEqual_:mW});function oA(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");const s={start:e,stop:t,num:n};return G.runKernelFunc(i=>i.linspace(e,t,n),{},null,Px,s)}function fW(e,t=5,n=1,s=1,i=.5){const o=W(e,"x","localResponseNormalization");A(o.rank===4||o.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${o.rank}.`),A(Le(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let a=o,c=!1;o.rank===3&&(c=!0,a=K(o,[1,o.shape[0],o.shape[1],o.shape[2]]));const h=(b,w)=>{const L=b.localResponseNormalization4D(a,t,n,s,i);return w([a,L]),L},d={x:a},m={depthRadius:t,bias:n,alpha:s,beta:i},f=G.runKernelFunc(h,d,null,ay,m);return c?K(f,[f.shape[1],f.shape[2],f.shape[3]]):f}const Nb=z({localResponseNormalization_:fW});function gW(e){const t=W(e,"x","log"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.log(t);return i([t]),o},n,null,Nl)}const cs=z({log_:gW});function yW(e){const t=W(e,"x","log1p"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.log1p(t);return i([t]),o},n,null,Cl)}const hp=z({log1p_:yW});function bW(e){return A(Rr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{const s=W(t,"x","tf.grad",null),i=n!=null?W(n,"dy","tf.grad"):null;return G.tidy(()=>{const{value:o,grads:a}=G.gradients(()=>e(s),[s],i);return i!=null&&B(o.shape,i.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),up(a),a[0]})}}function wW(e){return A(Rr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{A(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");const s=th(t,"args","tf.grads",null),i=n!=null?W(n,"dy","tf.grads"):null;return G.tidy(()=>{const{value:o,grads:a}=G.gradients(()=>e(...s),s,i);return i!=null&&B(o.shape,i.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),up(a),a})}}function LW(e){return A(Rr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{A(t instanceof ee,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(n==null||n instanceof ee,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");const{grads:s,value:i}=G.gradients(()=>e(t),[t],n);return up(s),{grad:s[0],value:i}}}function SW(e){return A(Rr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{A(Array.isArray(t)&&t.every(i=>i instanceof ee),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(n==null||n instanceof ee,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");const s=G.gradients(()=>e(...t),t,n);return n!=null&&B(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),up(s.grads),s}}function Cb(e,t){A(Rr(e),()=>"The f passed in variableGrads(f) must be a function"),A(t==null||Array.isArray(t)&&t.every(d=>d instanceof Ql),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");const n=t!=null;if(!n){t=[];for(const d in G.registeredVariables)t.push(G.registeredVariables[d])}const s=n?t.filter(d=>!d.trainable):null,i=t.length;t=t.filter(d=>d.trainable),A(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${i} variables is trainable.`);const o=!0,{value:a,grads:c}=G.gradients(e,t,null,o);A(c.some(d=>d!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);const h={};return t.forEach((d,m)=>{c[m]!=null&&(h[d.name]=c[m])}),s!=null&&s.forEach(d=>h[d.name]=null),{value:a,grads:h}}function Ai(e){return G.customGrad(e)}function up(e){const t=e.filter(n=>n==null).length;if(t>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function IW(e){const t=W(e,"x","neg"),n={x:t};return G.runKernelFunc(s=>s.neg(t),n,null,my)}const Ht=z({neg_:IW});function xW(e){const t=W(e,"x","softplus"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.softplus(t);return i([t]),o},n,null,Vl)}const za=z({softplus_:xW});function TW(e){const t=W(e,"x","logSigmoid"),n=Ai(s=>{const i=Ht(za(Ht(s))),o=a=>{const c=X(a,Ti(Ht(s)));return c};return{value:i,gradFunc:o}});return n(t)}const aA=z({logSigmoid_:TW});function AW(e,t=null,n=!1){const s=W(e,"x","max"),i=(c,h)=>{const d=qe(t,s.shape);let m=d;const f=Xn(m,s.rank);let b=s;f!=null&&(b=Ye(s,f),m=as(m.length,b.rank));const w=c.max(b,m);f!=null&&b.dispose();let L=w;if(n){const x=vn(L.shape,qe(t,s.shape));L=K(L,x),w.dispose()}return h([s,L]),L},o={x:s},a={reductionIndices:t,keepDims:n};return G.runKernelFunc(i,o,null,Rl,a)}const Qn=z({max_:AW});function vW(e,t){let n=W(e,"a","sub"),s=W(t,"b","sub");[n,s]=Gt(n,s);const i=(a,c)=>{const h=a.subtract(n,s);return c([n,s]),h},o={a:n,b:s};return G.runKernelFunc(i,o,null,Na)}const Re=z({sub_:vW});function NW(e,t=null,n=!1){let s=W(e,"x","sum");s.dtype==="bool"&&(s=Ae(s,"int32"));const i=(c,h)=>{h([s]);const d=qe(t,s.shape),m=Xn(d,s.rank);let f=d,b=s;m!=null&&(b=Ye(s,m),f=as(f.length,s.rank));let w=c.sum(b,f);if(n){const L=vn(w.shape,d);w=K(w,L)}return w},o={x:s},a={axis:t,keepDims:n};return G.runKernelFunc(i,o,null,xy,a)}const $e=z({sum_:NW});function CW(e,t=-1){const n=W(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);const s=(a,c)=>{const h=!0,d=Qn(e,t,!0),m=Re(e,d),f=Re(Ae(m,"float32"),cs($e(Is(m),t,h)));return c([f]),f},i={logits:n},o={axis:t};return G.runKernelFunc(s,i,null,oy,o)}const dp=z({logSoftmax_:CW});function RW(e,t=null,n=!1){const s=W(e,"x","logSumExp"),i=qe(t,s.shape),o=Qn(s,i,!0),a=Re(s,o),c=Is(a),h=$e(c,i),d=cs(h),m=be(K(o,d.shape),d);if(n){const f=vn(m.shape,i);return K(m,f)}return m}const Rb=z({logSumExp_:RW});function OW(e,t){const n=W(e,"a","logicalAnd","bool"),s=W(t,"b","logicalAnd","bool");nt(n.shape,s.shape);const i={a:n,b:s};return G.runKernelFunc(o=>o.logicalAnd(n,s),i,null,zx)}const Us=z({logicalAnd_:OW});function EW(e){const t=W(e,"x","logicalNot","bool"),n={x:t};return G.runKernelFunc(s=>s.logicalNot(t),n,null,yd)}const mh=z({logicalNot_:EW});function DW(e,t){const n=W(e,"a","logicalOr","bool"),s=W(t,"b","logicalOr","bool");nt(n.shape,s.shape);const i={a:n,b:s};return G.runKernelFunc(o=>o.logicalOr(n,s),i,null,Vx)}const pp=z({logicalOr_:DW});function kW(e,t){const n=W(e,"a","logicalXor","bool"),s=W(t,"b","logicalXor","bool");return nt(n.shape,s.shape),Us(pp(e,t),mh(Us(e,t)))}const cA=z({logicalXor_:kW});function FW(e,t,n,s,i){const o=W(e,"x","maxPool"),a=1;let c=o,h=!1;o.rank===3&&(h=!0,c=K(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(c.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${c.rank}.`),A(cn(n,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),i!=null&&A(Le(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);const d=(w,L)=>{const x=Un(c.shape,t,n,1,s,i);let v;return x.filterWidth===1&&x.filterHeight===1&&ae(x.inShape,x.outShape)?v=c.clone():v=w.maxPool(c,x),L([c,v]),v},m={x:c},f={filterSize:t,strides:n,pad:s,dimRoundingMode:i},b=G.runKernelFunc(d,m,null,Ol,f);return h?K(b,[b.shape[1],b.shape[2],b.shape[3]]):b}const fh=z({maxPool_:FW});function _W(e,t=[1,1,1],n,s,i,o="NDHWC",a){a==null?a=[1,1,1]:un("dilations is deprecated, this field will be gone in v3.0.0.");const c=W(e,"x","maxPool3d");let h=c,d=!1;c.rank===4&&(d=!0,h=K(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),A(h.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${h.rank}.`),A(o==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${o}`),A(cn(n,a),()=>`Error in maxPool3d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),i!=null&&A(Le(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);const m=(L,x)=>{a==null&&(a=[1,1,1]);const v=oh(h.shape,t,n,a,s,i,o),N=L.maxPool3d(h,v);return x([h,N]),N},f={x:h},b={filterSize:t,strides:n,pad:s,dimRoundingMode:i,dataFormat:o,dilations:a},w=G.runKernelFunc(m,f,null,ly,b);return d?K(w,[w.shape[1],w.shape[2],w.shape[3],w.shape[4]]):w}const Ob=z({maxPool3d_:_W});function WW(e,t,n,s,i=!1){const o=W(e,"x","maxPoolWithArgmax"),a={x:o},c={filterSize:t,strides:n,pad:s,includeBatchInIndex:i},h=G.runKernel(wd,a,c);return{result:h[0],indexes:h[1]}}const lA=z({maxPoolWithArgmax_:WW});function dt(e,t="float32"){if(t==="complex64"){const s=dt(e,"float32"),i=dt(e,"float32");return ji(s,i)}const n=La(P(e),t);return G.makeTensor(n,e,t)}function Js(e,t="float32"){if(t==="complex64"){const s=Js(e,"float32"),i=dt(e,"float32");return ji(s,i)}const n=Mg(P(e),t);return G.makeTensor(n,e,t)}function $W(e,t=null,n=!1){const s=W(e,"x","mean"),i=qe(t,s.shape),o=An(s.shape,i),a=o[1],c=P(a),h={x:s},d={axis:t,keepDims:n},m=()=>{const b=Ce(c),w=b.dtype===s.dtype?s:Ae(s,b.dtype),L=We(w,b);return $e(L,t,n)},f=Ai(b=>{const w=G.runKernelFunc(m,h,null,hy,d),L=x=>{const v=b.shape.slice();i.forEach(E=>{v[E]=1});const N=K(x,v),O=We(X(N,Js(b.shape,"float32")),c);return O};return{value:w,gradFunc:L}});return f(s)}const qt=z({mean_:$W});function UW(e,t=null,n=!1){const s=W(e,"x","min"),i=(c,h)=>{const d=qe(t,s.shape);let m=d;const f=Xn(m,s.rank);let b=s;f!=null&&(b=Ye(s,f),m=as(m.length,s.rank));const w=c.min(b,m);f!=null&&b.dispose();let L=w;if(n){const x=vn(L.shape,d);L=K(w,x),w.dispose()}return h([s,L]),L},o={x:s},a={axis:t,keepDims:n};return G.runKernelFunc(i,o,null,uy,a)}const Va=z({min_:UW});function BW(e,t){let n=W(e,"a","minimum"),s=W(t,"b","minimum");[n,s]=Gt(n,s),n.dtype==="bool"&&(n=Ae(n,"int32"),s=Ae(s,"int32")),nt(n.shape,s.shape);const i=(a,c)=>{const h=a.minimum(n,s);return c([n,s]),h},o={a:n,b:s};return G.runKernelFunc(i,o,null,dy)}const Oo=z({minimum_:BW});function MW(e,t,n){A(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);const s=W(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);const i=n==="reflect"?1:0;for(let c=0;c<s.rank;c++)A(t[c].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(t[c][0]>=0&&t[c][0]<=s.shape[c]-i&&t[c][1]>=0&&t[c][1]<=s.shape[c]-i,()=>`Padding in dimension ${c} cannot be greater than or equal to ${s.shape[c]-i} or less than 0 for input of shape ${s.shape}`);const o={paddings:t,mode:n},a={x:s};return G.runKernel(El,a,o)}const Eb=z({mirrorPad_:MW});function PW(e,t){let n=W(e,"a","mod"),s=W(t,"b","mod");[n,s]=Gt(n,s);const i=(a,c)=>{const h=a.mod(n,s);return c([n,s]),h},o={a:n,b:s};return G.runKernelFunc(i,o,null,py)}const mp=z({mod_:PW});function zW(e){const t=W(e,"x","square"),n={},s=[t],i=[];return G.runKernelFunc((o,a)=>(a([t]),o.square(t)),{x:t},null,"Square",n,s,i)}const At=z({square_:zW});function VW(e,t=null,n=!1){e=W(e,"x","moments");const s=qe(t,e.shape),i=qt(e,s,n);let o=i.shape;n||(o=vn(i.shape,s));const a=At(Re(Ae(e,"float32"),K(i,o))),c=qt(a,s,n);return{mean:i,variance:c}}const fp=z({moments_:VW});function GW(e,t,n,s){const i=W(t,"data","multiRNNCell"),o=th(n,"c","multiRNNCell"),a=th(s,"h","multiRNNCell");let c=i;const h=[];for(let f=0;f<e.length;f++){const b=e[f](c,o[f],a[f]);h.push(b[0]),h.push(b[1]),c=b[1]}const d=[],m=[];for(let f=0;f<h.length;f+=2)d.push(h[f]),m.push(h[f+1]);return[d,m]}const YW=z({multiRNNCell_:GW});function HW(e,t,n,s=!1){const i=W(e,"logits","multinomial"),o=i.size,a=i.rank;if(o<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${o}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);n=n||Math.random();const c=a===1?K(i,[1,-1]):i,h=G.runKernelFunc(d=>d.multinomial(c,s,t,n),{logits2D:c});return a===1?K(h,[h.size]):h}const hA=z({multinomial_:HW});function qW(e,t){let n=W(e,"a","notEqual"),s=W(t,"b","notEqual");[n,s]=Gt(n,s),nt(n.shape,s.shape);const i=a=>a.notEqual(n,s),o={a:n,b:s};return G.runKernelFunc(i,o,null,Dl)}const Br=z({notEqual_:qW});function jW(e){const t=W(e,"input","real"),n=i=>i.real(t),s={input:t};return G.runKernelFunc(n,s,null,Td)}const Ga=z({real_:jW});function KW(e){const t=W(e,"x","onesLike"),n=(i,o)=>{if(t.dtype==="complex64"){const a=Fn(Ga(t)),c=et(dh(t));return ji(a,c)}return i.onesLike(t)},s={x:t};return G.runKernelFunc(n,s,null,gy)}const Fn=z({onesLike_:KW});function XW(e,t){const n=W(e,"v1","outerProduct"),s=W(t,"v2","outerProduct");A(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);const i=K(n,[-1,1]),o=K(s,[1,-1]);return ct(i,o)}const JW=z({outerProduct_:XW});function ZW(e,t,n=0){const s=W(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");const i=(c,h)=>(h([s]),c.pad(s,t,n)),o={paddings:t,constantValue:n},a={x:s};return G.runKernelFunc(i,a,null,Id,o)}const vi=z({pad_:ZW});function QW(e,t,n=0){return A(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),vi(e,[t],n)}const e$=z({pad1d_:QW});function t$(e,t,n=0){return A(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),vi(e,t,n)}const n$=z({pad2d_:t$});function s$(e,t,n=0){return A(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),vi(e,t,n)}const i$=z({pad3d_:s$});function r$(e,t,n=0){return A(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),vi(e,t,n)}const o$=z({pad4d_:r$});function a$(e,t,n){const s=W(e,"x","spaceToBatchND");A(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),A(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),A(s.shape.reduce((c,h,d)=>d>0&&d<=t.length?c&&(h+n[d-1][0]+n[d-1][1])%t[d-1]===0:c,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);const i=c=>c.spaceToBatchND(s,t,n),o={x:s},a={blockShape:t,paddings:n};return G.runKernelFunc(i,o,null,vd,a)}const gh=z({spaceToBatchND_:a$});function c$(e,t,n,s,i,o){i==null&&(i=[1,1]),o==null&&(o=1),s===0&&(s="valid");const a=W(e,"x","maxPool");let c=a,h=!1;a.rank===3&&(h=!0,c=K(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A(cn(o,i),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${o} and dilations '${i}'`);const d=Un(c.shape,t,o,i,s),m=[d.dilationHeight,d.dilationWidth];let f;s==="same"?f=h$([d.filterHeight,d.filterWidth],m):f=[[0,0],[0,0]];const b=m[0]===1&&m[1]===1,[w,L]=l$([d.inHeight,d.inWidth],m,f),x=b?s:"valid",v=b?c:gh(c,m,w),N=n==="avg"?()=>ah(v,t,o,x):()=>fh(v,t,o,x),O=N(),E=b?O:ch(O,m,L);return h?K(E,[E.shape[1],E.shape[2],E.shape[3]]):E}function l$(e,t,n){const s=n.map(m=>m[0]),i=n.map(m=>m[1]),o=e.concat(s,i),a=t.map((m,f)=>(m-o[f]%m)%m),c=i.map((m,f)=>m+a[f]),h=t.map((m,f)=>[s[f],c[f]]),d=t.map((m,f)=>[0,a[f]]);return[h,d]}function h$(e,t){const n=e.map((a,c)=>a+(a-1)*(t[c]-1)),s=n.map(a=>a-1),i=s.map(a=>Math.floor(a/2)),o=s.map((a,c)=>a-i[c]);return s.map((a,c)=>[i[c],o[c]])}const uA=z({pool_:c$});function u$(e,t){let n=W(e,"base","pow"),s=W(t,"exp","pow");[n,s]=Gt(n,s);const i={a:n,b:s},o=(a,c)=>{const h=a.pow(n,s);return c([n,s,h]),h};return G.runKernelFunc(o,i,null,by)}const Zs=z({pow_:u$});function d$(e,t){const n=W(e,"x","prelu"),s=W(t,"alpha","prelu"),i=(a,c)=>{const h=a.prelu(n,s);return c([n,s]),h},o={x:n,alpha:s};return G.runKernelFunc(i,o,null,xd)}const yh=z({prelu_:d$});function p$(e,t=null,n=!1){let s=W(e,"x","prod");s.dtype==="bool"&&(s=Ae(s,"int32"));const i=c=>{const h=qe(t,s.shape),d=Xn(h,s.rank);let m=h,f=s;d!=null&&(f=Ye(s,d),m=as(m.length,s.rank));let b=c.prod(f,m);if(n){const w=vn(b.shape,h);b=K(b,w)}return b},o={x:s},a={axis:t,keepDims:n};return G.runKernelFunc(i,o,null,Hx,a)}const gp=z({prod_:p$});function m$(e,t,n){const s=P(e);let i=null;if(n==null||n==="float32")i=new Float32Array(s);else if(n==="int32")i=new Int32Array(s);else if(n==="bool")i=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let o=0;o<s;o++)i[o]=t();return G.makeTensor(i,e,n)}const f$=z({rand_:m$});var Ya=typeof globalThis!="undefined"?globalThis:typeof window!="undefined"?window:typeof global!="undefined"?global:typeof self!="undefined"?self:{};function xee(e){return e&&e.__esModule&&Object.prototype.hasOwnProperty.call(e,"default")?e.default:e}function Eo(e,t){return t={exports:{}},e(t,t.exports),t.exports}function Tee(e){return e&&e.default||e}function Aee(){throw new Error("Dynamic requires are not currently supported by @rollup/plugin-commonjs")}var g$=Eo(function(e){(function(t,n,s){function i(h){var d=this,m=c();d.next=function(){var f=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=f-(d.c=f|0)},d.c=1,d.s0=m(" "),d.s1=m(" "),d.s2=m(" "),d.s0-=m(h),d.s0<0&&(d.s0+=1),d.s1-=m(h),d.s1<0&&(d.s1+=1),d.s2-=m(h),d.s2<0&&(d.s2+=1),m=null}function o(h,d){return d.c=h.c,d.s0=h.s0,d.s1=h.s1,d.s2=h.s2,d}function a(h,d){var m=new i(h),f=d&&d.state,b=m.next;return b.int32=function(){return m.next()*4294967296|0},b.double=function(){return b()+(b()*2097152|0)*11102230246251565e-32},b.quick=b,f&&(typeof f=="object"&&o(f,m),b.state=function(){return o(m,{})}),b}function c(){var h=4022871197,d=function(m){m=m.toString();for(var f=0;f<m.length;f++){h+=m.charCodeAt(f);var b=.02519603282416938*h;h=b>>>0,b-=h,b*=h,h=b>>>0,b-=h,h+=b*4294967296}return(h>>>0)*23283064365386963e-26};return d}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.alea=a})(Ya,e,!1)}),y$=Eo(function(e){(function(t,n,s){function i(c){var h=this,d="";h.x=0,h.y=0,h.z=0,h.w=0,h.next=function(){var f=h.x^h.x<<11;return h.x=h.y,h.y=h.z,h.z=h.w,h.w^=h.w>>>19^f^f>>>8},c===(c|0)?h.x=c:d+=c;for(var m=0;m<d.length+64;m++)h.x^=d.charCodeAt(m)|0,h.next()}function o(c,h){return h.x=c.x,h.y=c.y,h.z=c.z,h.w=c.w,h}function a(c,h){var d=new i(c),m=h&&h.state,f=function(){return(d.next()>>>0)/4294967296};return f.double=function(){do var b=d.next()>>>11,w=(d.next()>>>0)/4294967296,L=(b+w)/(1<<21);while(L===0);return L},f.int32=d.next,f.quick=f,m&&(typeof m=="object"&&o(m,d),f.state=function(){return o(d,{})}),f}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.xor128=a})(Ya,e,!1)}),b$=Eo(function(e){(function(t,n,s){function i(c){var h=this,d="";h.next=function(){var f=h.x^h.x>>>2;return h.x=h.y,h.y=h.z,h.z=h.w,h.w=h.v,(h.d=h.d+362437|0)+(h.v=h.v^h.v<<4^(f^f<<1))|0},h.x=0,h.y=0,h.z=0,h.w=0,h.v=0,c===(c|0)?h.x=c:d+=c;for(var m=0;m<d.length+64;m++)h.x^=d.charCodeAt(m)|0,m==d.length&&(h.d=h.x<<10^h.x>>>4),h.next()}function o(c,h){return h.x=c.x,h.y=c.y,h.z=c.z,h.w=c.w,h.v=c.v,h.d=c.d,h}function a(c,h){var d=new i(c),m=h&&h.state,f=function(){return(d.next()>>>0)/4294967296};return f.double=function(){do var b=d.next()>>>11,w=(d.next()>>>0)/4294967296,L=(b+w)/(1<<21);while(L===0);return L},f.int32=d.next,f.quick=f,m&&(typeof m=="object"&&o(m,d),f.state=function(){return o(d,{})}),f}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.xorwow=a})(Ya,e,!1)}),w$=Eo(function(e){(function(t,n,s){function i(c){var h=this;h.next=function(){var m=h.x,f=h.i,b,w,L;return b=m[f],b^=b>>>7,w=b^b<<24,b=m[f+1&7],w^=b^b>>>10,b=m[f+3&7],w^=b^b>>>3,b=m[f+4&7],w^=b^b<<7,b=m[f+7&7],b=b^b<<13,w^=b^b<<9,m[f]=w,h.i=f+1&7,w};function d(m,f){var b,w,L=[];if(f===(f|0))w=L[0]=f;else for(f=""+f,b=0;b<f.length;++b)L[b&7]=L[b&7]<<15^f.charCodeAt(b)+L[b+1&7]<<13;for(;L.length<8;)L.push(0);for(b=0;b<8&&L[b]===0;++b);for(b==8?w=L[7]=-1:w=L[b],m.x=L,m.i=0,b=256;b>0;--b)m.next()}d(h,c)}function o(c,h){return h.x=c.x.slice(),h.i=c.i,h}function a(c,h){c==null&&(c=+new Date);var d=new i(c),m=h&&h.state,f=function(){return(d.next()>>>0)/4294967296};return f.double=function(){do var b=d.next()>>>11,w=(d.next()>>>0)/4294967296,L=(b+w)/(1<<21);while(L===0);return L},f.int32=d.next,f.quick=f,m&&(m.x&&o(m,d),f.state=function(){return o(d,{})}),f}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.xorshift7=a})(Ya,e,!1)}),L$=Eo(function(e){(function(t,n,s){function i(c){var h=this;h.next=function(){var m=h.w,f=h.X,b=h.i,w,L;return h.w=m=m+1640531527|0,L=f[b+34&127],w=f[b=b+1&127],L^=L<<13,w^=w<<17,L^=L>>>15,w^=w>>>12,L=f[b]=L^w,h.i=b,L+(m^m>>>16)|0};function d(m,f){var b,w,L,x,v,N=[],O=128;for(f===(f|0)?(w=f,f=null):(f=f+"\0",w=0,O=Math.max(O,f.length)),L=0,x=-32;x<O;++x)f&&(w^=f.charCodeAt((x+32)%f.length)),x===0&&(v=w),w^=w<<10,w^=w>>>15,w^=w<<4,w^=w>>>13,x>=0&&(v=v+1640531527|0,b=N[x&127]^=w+v,L=b==0?L+1:0);for(L>=128&&(N[(f&&f.length||0)&127]=-1),L=127,x=4*128;x>0;--x)w=N[L+34&127],b=N[L=L+1&127],w^=w<<13,b^=b<<17,w^=w>>>15,b^=b>>>12,N[L]=w^b;m.w=v,m.X=N,m.i=L}d(h,c)}function o(c,h){return h.i=c.i,h.w=c.w,h.X=c.X.slice(),h}function a(c,h){c==null&&(c=+new Date);var d=new i(c),m=h&&h.state,f=function(){return(d.next()>>>0)/4294967296};return f.double=function(){do var b=d.next()>>>11,w=(d.next()>>>0)/4294967296,L=(b+w)/(1<<21);while(L===0);return L},f.int32=d.next,f.quick=f,m&&(m.X&&o(m,d),f.state=function(){return o(d,{})}),f}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.xor4096=a})(Ya,e,!1)}),S$=Eo(function(e){(function(t,n,s){function i(c){var h=this,d="";h.next=function(){var f=h.b,b=h.c,w=h.d,L=h.a;return f=f<<25^f>>>7^b,b=b-w|0,w=w<<24^w>>>8^L,L=L-f|0,h.b=f=f<<20^f>>>12^b,h.c=b=b-w|0,h.d=w<<16^b>>>16^L,h.a=L-f|0},h.a=0,h.b=0,h.c=2654435769|0,h.d=1367130551,c===Math.floor(c)?(h.a=c/4294967296|0,h.b=c|0):d+=c;for(var m=0;m<d.length+20;m++)h.b^=d.charCodeAt(m)|0,h.next()}function o(c,h){return h.a=c.a,h.b=c.b,h.c=c.c,h.d=c.d,h}function a(c,h){var d=new i(c),m=h&&h.state,f=function(){return(d.next()>>>0)/4294967296};return f.double=function(){do var b=d.next()>>>11,w=(d.next()>>>0)/4294967296,L=(b+w)/(1<<21);while(L===0);return L},f.int32=d.next,f.quick=f,m&&(typeof m=="object"&&o(m,d),f.state=function(){return o(d,{})}),f}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.tychei=a})(Ya,e,!1)}),Do=Eo(function(e){(function(t,n){var s=this,i=256,o=6,a=52,c="random",h=n.pow(i,o),d=n.pow(2,a),m=d*2,f=i-1,b;function w(k,F,U){var $=[];F=F==!0?{entropy:!0}:F||{};var Y=N(v(F.entropy?[k,E(t)]:k==null?O():k,3),$),j=new L($),Z=function(){for(var ie=j.g(o),de=h,he=0;ie<d;)ie=(ie+he)*i,de*=i,he=j.g(1);for(;ie>=m;)ie/=2,de/=2,he>>>=1;return(ie+he)/de};return Z.int32=function(){return j.g(4)|0},Z.quick=function(){return j.g(4)/4294967296},Z.double=Z,N(E(j.S),t),(F.pass||U||function(ie,de,he,ue){return ue&&(ue.S&&x(ue,j),ie.state=function(){return x(j,{})}),he?(n[c]=ie,de):ie})(Z,Y,"global"in F?F.global:this==n,F.state)}n["seed"+c]=w;function L(k){var F,U=k.length,$=this,Y=0,j=$.i=$.j=0,Z=$.S=[];for(U||(k=[U++]);Y<i;)Z[Y]=Y++;for(Y=0;Y<i;Y++)Z[Y]=Z[j=f&j+k[Y%U]+(F=Z[Y])],Z[j]=F;($.g=function(ie){for(var de,he=0,ue=$.i,me=$.j,ce=$.S;ie--;)de=ce[ue=f&ue+1],he=he*i+ce[f&(ce[ue]=ce[me=f&me+de])+(ce[me]=de)];return $.i=ue,$.j=me,he})(i)}function x(k,F){return F.i=k.i,F.j=k.j,F.S=k.S.slice(),F}function v(k,F){var U=[],$=typeof k,Y;if(F&&$=="object")for(Y in k)try{U.push(v(k[Y],F-1))}catch(j){}return U.length?U:$=="string"?k:k+"\0"}function N(k,F){for(var U=k+"",$,Y=0;Y<U.length;)F[f&Y]=f&($^=F[f&Y]*19)+U.charCodeAt(Y++);return E(F)}function O(){try{var k;return b&&(k=b.randomBytes)?k=k(i):(k=new Uint8Array(i),(s.crypto||s.msCrypto).getRandomValues(k)),E(k)}catch($){var F=s.navigator,U=F&&F.plugins;return[+new Date,s,U,s.screen,E(t)]}}function E(k){return String.fromCharCode.apply(0,k)}if(N(n.random(),t),e.exports){e.exports=w;try{b=require("crypto")}catch(k){}}})([],Math)});Do.alea=g$,Do.xor128=y$,Do.xorwow=b$,Do.xorshift7=w$,Do.xor4096=L$,Do.tychei=S$;var I$=Do,Ha=I$.alea;class Db{constructor(e,t,n,s,i){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);const o=i||Math.random();this.random=Ha(o.toString())}nextValue(){if(!isNaN(this.nextVal)){const s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,i,o;do s=2*this.random()-1,i=2*this.random()-1,o=s*s+i*i;while(o>=1||o===0);const a=Math.sqrt(-2*Math.log(o)/o);e=this.mean+this.stdDev*s*a,t=this.mean+this.stdDev*i*a,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}}class x${constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;const i=s||Math.random();this.randu=Ha(i.toString()),this.randn=new Db(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,i,o;for(;;){do s=this.randn.nextValue(),o=1+this.c*s;while(o<=0);if(o*=o*o,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-o+Math.log(o)),i=this.randu(),i<t||Math.log(i)<n)break}return o=1/this.beta*this.d*o,this.alpha<1&&(o*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(o)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}}class T${constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Ha(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}}function vee(e){const t=e.length,n=N$(e),s=v$(e),i=t/6*(Math.pow(n,2)+.25*Math.pow(s-3,2)),o=5.991;if(i>o)throw new Error(`Invalid p-value for JB: ${i}`)}function Nee(e,t,n,s){s==null&&(s=Xd());const i=kb(e);sb(i,t,s),sb(A$(e,i),n,s)}function kb(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t/e.length}function A$(e,t){let n=0;for(let s=0;s<e.length;s++){const i=e[s]-t;n+=i*i}return Math.sqrt(n/e.length)}function v$(e){const t=kb(e),n=e.length;let s=0,i=0;for(let o=0;o<n;o++){const a=e[o]-t;s+=Math.pow(a,2),i+=Math.pow(a,4)}return 1/n*i/Math.pow(1/n*s,2)}function N$(e){const t=kb(e),n=e.length;let s=0,i=0;for(let o=0;o<n;o++){const a=e[o]-t;s+=Math.pow(a,2),i+=Math.pow(a,3)}return 1/n*i/Math.pow(1/(n-1)*s,3/2)}function C$(e,t,n=1,s="float32",i){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);const o=new x$(t,n,s,i),a=wt(e,s);for(let c=0;c<a.values.length;c++)a.values[c]=o.nextValue();return a.toTensor()}const R$=z({randomGamma_:C$});function O$(e,t=0,n=1,s,i){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);const o=new Db(t,n,s,!1,i),a=wt(e,s);for(let c=0;c<a.values.length;c++)a.values[c]=o.nextValue();return a.toTensor()}const Fb=z({randomNormal_:O$});function E$(e,t=0,n=1,s="float32",i){const o=wt(e,s),a=new T$(t,n,null,i);for(let c=0;c<o.values.length;c++)o.values[c]=a.nextValue();return o.toTensor()}const ko=z({randomUniform_:E$});function ls(e,t){ne(e);const n=Ii(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");const s=null;return Er(e,s,n,t)}function bh(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");const i=()=>{const a=e===t,c=e<t&&n<0,h=t<e&&n>1;if(a||c||h)return dt([0],s);const d=Math.abs(Math.ceil((t-e)/n)),m=La(d,s);t<e&&n===1&&(n=-1),m[0]=e;for(let f=1;f<m.length;f++)m[f]=m[f-1]+n;return ls(m,s)},o={start:e,stop:t,step:n,dtype:s};return G.runKernelFunc(i,{},null,qx,o)}function D$(e){const t=W(e,"x","reciprocal"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.reciprocal(t);return i([t]),o},n,null,kl)}const _b=z({reciprocal_:D$});function k$(e){const t=W(e,"x","relu"),n=(i,o)=>(o([t]),t.dtype==="bool"?Ae(t,"int32"):i.relu(t)),s={x:t};return G.runKernelFunc(n,s,null,Fl)}const Ni=z({relu_:k$});function F$(e){const t=W(e,"x","relu6"),n=(i,o)=>(o([t]),t.dtype==="bool"?Ae(t,"int32"):i.relu6(t)),s={x:t};return G.runKernelFunc(n,s,null,Wl)}const Wb=z({relu6_:F$});function _$(e,t){const n=W(e,"x","reverse"),s=a=>{const c=qe(t,n.shape);if(n.rank===0)return kr(n);const h=a.reverse(n,c);return K(h,n.shape)},i={x:n},o={dims:t};return G.runKernelFunc(s,i,null,Sy,o)}const Ts=z({reverse_:_$});function W$(e){const t=W(e,"x","reverse");return A(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ts(t,0)}const $$=z({reverse1d_:W$});function U$(e,t){const n=W(e,"x","reverse");return A(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ts(n,t)}const B$=z({reverse2d_:U$});function M$(e,t){const n=W(e,"x","reverse");return A(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ts(n,t)}const P$=z({reverse3d_:M$});function z$(e,t){const n=W(e,"x","reverse");return A(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ts(n,t)}const V$=z({reverse4d_:z$});function G$(e){const t=W(e,"x","round"),n={x:t};return G.runKernelFunc(s=>s.round(t),n,null,$l)}const $b=z({round_:G$});function Y$(e){const t=W(e,"x","rsqrt"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.rsqrt(t);return i([t]),o},n,null,Ul)}const yp=z({rsqrt_:Y$});function H$(e){const t=W(e,"x","selu"),n=(i,o)=>{const a=i.selu(t);return o([t]),a},s={x:t};return G.runKernelFunc(n,s,null,Bl)}const bp=z({selu_:H$});function q$(e,t,n,s,i,o=[1,1],a="NHWC"){const c=W(e,"x","separableConv2d"),h=W(t,"depthwiseFilter","separableConv2d"),d=W(n,"pointwiseFilter","separableConv2d");let m=c,f=!1;if(c.rank===3&&(f=!0,m=K(c,[1,c.shape[0],c.shape[1],c.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(m.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${m.rank}.`),A(h.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${h.rank}.`),A(d.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${h.rank}.`),A(d.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${d.shape[0]}.`),A(d.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${d.shape[1]}.`);const b=h.shape[2],w=h.shape[3];A(d.shape[2]===b*w,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${b*w}, but got ${d.shape[2]}.`);const L=Co(m,h,s,i,a,o),x=1,v=Ji(L,d,x,"valid",a);return f?K(v,[v.shape[1],v.shape[2],v.shape[3]]):v}const Ub=z({separableConv2d_:q$});async function j$(e,t){const n=W(e,"x","setdiff1d"),s=W(t,"y","setdiff1d");A(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),A(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),A(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);const i=await n.data(),o=await s.data(),a=new Set(o);let c=0;for(let m=0;m<i.length;m++)a.has(i[m])||c++;const h=new an([c],n.dtype),d=new an([c],"int32");for(let m=0,f=0;m<i.length;m++)a.has(i[m])||(h.values[f]=i[m],d.values[f]=m,f++);return[h.toTensor(),d.toTensor()]}const dA=j$;function K$(e){const t=W(e,"x","sign"),n={x:t};return G.runKernelFunc(s=>s.sign(t),n,null,Pl)}const Bb=z({sign_:K$});function X$(e){const t=W(e,"x","sin"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.sin(t);return i([t]),o},n,null,Aa)}const wp=z({sin_:X$});function J$(e){const t=W(e,"x","sinh"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.sinh(t);return i([t]),o},n,null,Ml)}const Lp=z({sinh_:J$});function Z$(e,t,n){const s=W(e,"x","slice1d");return A(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),tt(s,[t],[n])}const Sp=z({slice1d_:Z$});function Q$(e,t,n){const s=W(e,"x","slice2d");return A(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),tt(s,t,n)}const Mb=z({slice2d_:Q$});function eU(e,t,n){const s=W(e,"x","slice3d");return A(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),tt(s,t,n)}const Ip=z({slice3d_:eU});function tU(e,t,n){const s=W(e,"x","slice4d");return A(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),tt(s,t,n)}const wh=z({slice4d_:tU});function nU(e,t=-1){const n=W(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);const s={logits:n},i={dim:t};return G.runKernelFunc((o,a)=>{const c=o.softmax(n,t);return a([c]),c},s,null,Ay,i)}const Fo=z({softmax_:nU});function sU(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);const t={input:e};return G.runKernelFunc(n=>{const s=e.shape[e.shape.length-1],i=e.size/s,o=e.as2D(i,s),a=n.fft(o);return a.reshape(e.shape)},t,null,pd)}const Lh=z({fft_:sU});function iU(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);const t={input:e};return G.runKernelFunc(n=>{const s=e.shape[e.shape.length-1],i=e.size/s,o=K(e,[i,s]),a=n.ifft(o);return K(a,e.shape)},t,null,fd)}const qa=z({ifft_:iU});function rU(e){const t=e.shape[e.shape.length-1],n=e.size/t;let s;if(t<=2){const i=K(e,[n,t]);s=qa(i)}else{const i=[n,2*(t-1)],o=K(Ga(e),[n,t]),a=K(dh(e),[n,t]),c=Ts(tt(o,[0,1],[n,t-2]),1),h=X(Ts(tt(a,[0,1],[n,t-2]),1),Ce(-1)),d=Yt([o,c],1),m=Yt([a,h],1),f=K(ji(d,m),[i[0],i[1]]);s=qa(f)}if(s=Ga(s),e.rank===3&&e.shape[0]!==0){const i=s,o=e.shape[0];s=K(s,[o,s.shape[0]/o,s.shape[1]]),i.dispose()}return s}const xp=z({irfft_:rU});function pA(e,t,n=0){let s=[];if(typeof t=="number")A(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{const i=t.reduce((a,c)=>(c===-1&&(a+=1),a),0);A(i<=1,()=>"There should be only one negative value in split array.");const o=t.indexOf(-1);if(o!==-1){const a=t.reduce((c,h)=>h>0?c+h:c);t[o]=e.shape[n]-a}A(e.shape[n]===t.reduce((a,c)=>a+c),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function oU(e,t,n=0){const s=W(e,"x","split"),i=(c,h)=>{const d=qe(n,s.shape)[0],m=pA(s,t,d);return c.split(s,m,d)},o={x:s},a={numOrSizeSplits:t,axis:n};return G.runKernelFunc(i,o,null,Ty,a)}const hs=z({split_:oU});function aU(e,t){A(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1];const s=e.size/n;let i;if(t!=null&&t<n){const L=e.shape.map(v=>0),x=e.shape.map(v=>v);x[e.shape.length-1]=t,i=tt(e,L,x),n=t}else if(t!=null&&t>n){const L=e.shape.map(x=>x);L[e.shape.length-1]=t-n,i=Yt([e,dt(L)],e.shape.length-1),n=t}else i=e;const o=et(i),a=K(ji(i,o),[s,n]),c=Lh(a),h=Math.floor(n/2)+1,d=Ga(c),m=dh(c),f=hs(d,[h,n-h],d.shape.length-1),b=hs(m,[h,n-h],m.shape.length-1),w=i.shape.slice();return w[i.shape.length-1]=h,K(ji(f[0],b[0]),w)}const Sh=z({rfft_:aU});function cU(e){const t=W(e,"x","sqrt"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.sqrt(t);return i([t]),o},n,null,Gl)}const Nn=z({sqrt_:cU});function lU(e,t){let n=W(e,"a","squaredDifference"),s=W(t,"b","squaredDifference");[n,s]=Gt(n,s),nt(n.shape,s.shape);const i=(c,h)=>{const d=c.squaredDifference(n,s);return h([n,s]),d},o={a:n,b:s},a={};return G.runKernelFunc(i,o,null,va,a)}const Ih=z({squaredDifference_:lU});function hU(e,t){const n=W(e,"x","squeeze");return K(n,ln(n.shape,t).newShape)}const Mr=z({squeeze_:hU});function uU(e,t=0){const n=th(e,"tensors","stack");if(A(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length===1)return Zn(n[0],t);const s=n[0].rank,i=n[0].shape,o=n[0].dtype;A(t<=s,()=>"Axis must be <= rank of the tensor"),n.forEach(c=>{B(i,c.shape,"All tensors passed to stack must have matching shapes"),A(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});const a=n.map(c=>Zn(c,t));return Yt(a,t)}const es=z({stack_:uU});function dU(e,t=0){const n=W(e,"x","step"),s={x:n},i={alpha:t};return G.runKernelFunc(o=>o.step(n,t),s,null,ql,i)}const ja=z({step_:dU});function pU(e,t,n,s,i=0,o=0,a=0,c=0,h=0){let d=W(e,"x","stridedSlice");const m=w=>{s==null&&(s=new Array(t.length));const L=qd(a);if(L.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&c!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&h!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");const x=d.rank-t.length,v=qd(c),N=d.shape.slice();v.forEach(Z=>{t[Z]=0,n[Z]=1,N.splice(Z,0,1)}),d=K(d,N);const{begin:O,end:E,strides:k}=FT(d.shape,L,x,t,n,s,i,o,a);t=O,n=E,s=k;const F=qd(h);F.forEach(Z=>{n[Z]=t[Z]+1,s[Z]=1});const U=jd(t,n,s),$=U.filter((Z,ie)=>F.indexOf(ie)===-1),Y=s.every(Z=>Z===1);if(Y)return K(tt(d,t,U),$);const j=w.stridedSlice(d,t,n,s);return K(j,$)},f={x:d},b={begin:t,end:n,strides:s,beginMask:i,endMask:o,ellipsisMask:a,newAxisMask:c,shrinkAxisMask:h};return G.runKernelFunc(m,f,null,Zx,b)}const Pb=z({stridedSlice_:pU});function mU(e){const t=W(e,"x","tan"),n={x:t};return G.runKernelFunc((s,i)=>{const o=s.tan(t);return i([t]),o},n,null,Ca)}const zb=z({tan_:mU});function Pr(e,t,n){if(ne(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");const s=Ii(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Er(e,t,s,n)}function Ka(e,t,n){if(ne(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");const s=Ii(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Er(e,t,s,n)}function fU(e,t,n){if(ne(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");const s=Ii(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Er(e,t,s,n)}function gU(e,t,n){if(ne(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");const s=Ii(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Er(e,t,s,n)}function yU(e,t=1,n=!0){const s=W(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");const i=s.shape[s.shape.length-1];if(t>i)throw new Error(`'k' passed to topk() must be <= the last dimension (${i}) but got ${t}`);const o={x:s},a={k:t,sorted:n},[c,h]=G.runKernelFunc(d=>d.topk(s,t,n),o,null,Qx,a);return{values:c,indices:h}}const Vb=z({topk_:yU});function bU(e,t=0,n=1,s,i){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");const o=new Db(t,n,s,!0,i),a=wt(e,s);for(let c=0;c<a.values.length;c++)a.values[c]=o.nextValue();return a.toTensor()}const xh=z({truncatedNormal_:bU});function wU(e,t=0){const n=W(e,"x","unique",null);A(n.rank>0,()=>"The input tensor must be at least 1D");const s={x:n},i={axis:t},[o,a]=G.runKernel(Cd,s,i);return{values:o,indices:a}}const Tp=z({unique_:wU});function LU(e,t,n){const s=W(e,"x","unsortedSegmentSum"),i=W(t,"segmentIds","unsortedSegmentSum","int32");A(Le(n),()=>"numSegments must be of dtype int");const o={x:s,segmentIds:i},a={numSegments:n},c=(h,d)=>{const m=h.unsortedSegmentSum(s,i,n);return d([i]),m};return G.runKernelFunc(c,o,null,Cy,a)}const Gb=z({unsortedSegmentSum_:LU});function SU(e,t=0){const n=W(e,"x","unstack");A(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`),t<0&&(t+=n.shape.length);const s={value:n},i={axis:t},o=a=>a.unstack(n,t);return G.runKernelFunc(o,s,null,Ny,i)}const Qs=z({unstack_:SU});function mA(e,t=!0,n,s){return G.makeVariable(e,t,n,s)}function Ap(e,t){const n=[];for(let o=0;o<t.length;o++)t[o]&&n.push(o);const s=wt(e,"int32"),i=wt([n.length,e.length],"int32");for(let o=0;o<n.length;o++){const a=s.indexToLoc(n[o]),c=o*e.length;i.values.set(a,c)}return i.toTensor()}async function IU(e){const t=W(e,"condition","whereAsync","bool"),n=await t.data(),s=Ap(t.shape,n);return e!==t&&t.dispose(),s}const Yb=IU;async function xU(e,t,n){const s=W(e,"tensor","boolMask"),i=W(t,"mask","boolMask","bool"),o=n==null?0:n,a=i.rank,c=s.shape;A(a>0,()=>"mask cannot be scalar"),B(c.slice(o,o+a),i.shape,"mask's shape must match the first K dimensions of tensor's shape,");let h=1;for(let x=o;x<o+a;x++)h*=c[x];const d=c.slice(0,o).concat([h],c.slice(o+a)),m=K(s,d),f=K(i,[-1]),b=await Yb(f),w=Mr(b,[1]),L=Pa(m,w,o);return e!==s&&s.dispose(),t!==i&&i.dispose(),w.dispose(),m.dispose(),f.dispose(),b.dispose(),L}const TU=xU;function AU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","notEqualStrict"),s=W(t,"b","notEqualStrict");return B(n.shape,s.shape,"Error in notEqualStrict: "),Br(n,s)}function vU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","lessStrict"),s=W(t,"b","lessStrict");return B(n.shape,s.shape,"Error in lessStrict: "),ph(n,s)}function NU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","equalStrict"),s=W(t,"b","equalStrict");return B(n.shape,s.shape,"Error in equalStrict: "),Xs(n,s)}function CU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","lessEqualStrict"),s=W(t,"b","lessEqualStrict");return B(n.shape,s.shape,"Error in lessEqualStrict: "),Ur(n,s)}function RU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","greaterStrict"),s=W(t,"b","greaterStrict");return B(n.shape,s.shape,"Error in greaterStrict: "),xs(n,s)}function OU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","greaterEqualStrict"),s=W(t,"b","greaterEqualStrict");return B(n.shape,s.shape,"Error in greaterEqualStrict: "),Zi(n,s)}const fA=z({equalStrict_:NU}),gA=z({greaterEqualStrict_:OU}),yA=z({greaterStrict_:RU}),bA=z({lessEqualStrict_:CU}),wA=z({lessStrict_:vU}),LA=z({notEqualStrict_:AU});function EU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","addStrict"),s=W(t,"b","addStrict");return B(n.shape,s.shape,"Error in addStrict: "),be(n,s)}function DU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","subStrict"),s=W(t,"b","subStrict");return B(n.shape,s.shape,"Error in subStrict: "),Re(n,s)}function kU(e,t){return un("strict variants of ops have been deprecated and will be removed in future"),B(e.shape,t.shape,"Error in powStrict: "),Zs(e,t)}function FU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","mul"),s=W(t,"b","mul");return B(n.shape,s.shape,"Error in multiplyStrict: "),X(n,s)}function _U(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","div"),s=W(t,"b","div");return B(n.shape,s.shape,"Error in divideStrict: "),We(n,s)}function WU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","modStrict"),s=W(t,"b","modStrict");return B(n.shape,s.shape,"Error in modStrict: "),mp(n,s)}function $U(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","minimumStrict"),s=W(t,"b","minimumStrict");return B(n.shape,s.shape,"Error in minimumStrict: "),Oo(n,s)}function UU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","maximumStrict"),s=W(t,"b","maximumStrict");return B(n.shape,s.shape,"Error in maximumStrict: "),$s(n,s)}function BU(e,t){un("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","squaredDifferenceStrict"),s=W(t,"b","squaredDifferenceStrict");return B(n.shape,s.shape,"Error in squaredDifferenceStrict: "),Ih(n,s)}const SA=z({addStrict_:EU}),IA=z({divStrict_:_U}),xA=z({maximumStrict_:UU}),TA=z({minimumStrict_:$U}),AA=z({modStrict_:WU}),vA=z({mulStrict_:FU}),NA=z({powStrict_:kU}),CA=z({squaredDifferenceStrict_:BU}),RA=z({subStrict_:DU});function MU(e,t="euclidean",n=null,s=!1){e=W(e,"x","norm");const i=OA(e,t,n);let o=i.shape;if(s){const a=qe(n,e.shape);o=vn(i.shape,a)}return K(i,o)}function OA(e,t,n=null){if(e.rank===0)return dn(e);if(e.rank!==1&&n===null)return OA(K(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return $e(dn(e),n);if(t===Infinity)return Qn(dn(e),n);if(t===-Infinity)return Va(dn(e),n);if(t==="euclidean"||t===2)return Nn($e(Zs(dn(e),Ce(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Qn($e(dn(e),n[0]),n[1]-1);if(t===Infinity)return Qn($e(dn(e),n[1]),n[0]);if(t===-Infinity)return Va($e(dn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Nn($e(At(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}const vp=z({norm_:MU});function PU(e,t,n,s,i=!0){const o=W(e,"v","movingAverage"),a=W(t,"x","movingAverage"),c=W(n,"decay","movingAverage");oT(o,a),A(ae(o.shape,a.shape),()=>"Shape mismatch in v and x");const h=Ce(1),d=Re(h,c);let m=X(Re(a,o),d);if(i){A(s!=null,()=>"When using zeroDebias: true, step is required.");const f=W(s,"step","movingAverage");m=We(m,Re(h,Zs(c,f)))}return be(o,m)}const zU=z({movingAverage_:PU});function VU(e,t,n){const s=W(e,"indices","scatterND","int32"),i=W(t,"updates","scatterND");Zy(i,s,n);const o=h=>h.scatterND(s,i,n),a={indices:s,updates:i},c={shape:n};return G.runKernelFunc(o,a,null,Xx,c)}const EA=z({scatterND_:VU});function GU(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);const i=e.rank>0?e.shape[0]:1,o=e.rank>1?e.shape[1]:1;if(n.length!==o)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${o}.`);const a=t.size;if(!(t.rank===0||t.rank===1&&a===i))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${i}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function YU(e,t,n,s=0){const i=W(e,"sparseIndices","sparseToDense","int32"),o=W(t,"sparseValues","sparseToDense"),a=W(s,"defaultValue","sparseToDense",o.dtype);GU(i,o,n,a);const c={sparseIndices:i,sparseValues:o,defaultValue:a},h={outputShape:n};return G.runKernelFunc(d=>d.sparseToDense(i,o,n,a),c,null,Jx,h)}const Hb=z({sparseToDense_:YU});function HU(e,t){const n=W(t,"indices","gatherND","int32"),s=W(e,"x","gatherND"),i=a=>a.gatherND(s,n),o={params:s,indices:n};return G.runKernelFunc(i,o,null,$x)}const DA=z({gatherND_:HU});function qU(e,t){if(t==null)return e.shape.slice();if(ae(e.shape,t))return t;if(e.shape.length===t.length){const n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function jU(e,t,n,s){const i=W(e,"x","dropout");if(A(i.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${i.dtype} tensor instead.`),A(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof ee?i.clone():i;const o=qU(i,n),a=1-t,c=We(Ma(be(ko(o,0,1,"float32",s),a)),a);return X(i,c)}const kA=z({dropout_:jU});function FA(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function qb(e,t,n){const s=1-e%2,i=new Float32Array(e);for(let o=0;o<e;++o){const a=2*Math.PI*o/(e+s-1);i[o]=t-n*Math.cos(a)}return ls(i,"float32")}async function KU(e,t,n=1){const s=W(e,"predictions","inTopK"),i=W(t,"targets","inTopK");A(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),A(s.rank-1===i.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${i.rank}`),B(s.shape.slice(0,s.shape.length-1),i.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");const o=s.shape[s.shape.length-1];A(n>0&&n<=o,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${o}), but got ${n}`);const a=await s.data(),c=await i.data(),[h,d]=[a.length/o,o],m=bt("bool",h);for(let f=0;f<h;f++){const b=f*d,w=a.subarray(b,b+d),L=[];for(let x=0;x<w.length;x++)L.push({value:w[x],index:x});L.sort((x,v)=>v.value-x.value),m[f]=0;for(let x=0;x<n;x++)if(L[x].index===c[f]){m[f]=1;break}}return e!==s&&s.dispose(),t!==i&&i.dispose(),sn(m,i.shape,"bool")}const XU=KU;function JU(e,t,n,s,i,o="NHWC",a){let c=e;e.rank===3&&(c=K(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let h=t;h.rank===3&&(h=K(t,[1,t.shape[0],t.shape[1],t.shape[2]])),A(c.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${c.shape}.`),A(h.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${h.shape}.`),A(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);const d=o==="NHWC"?c.shape[3]:c.shape[1],m=o==="NHWC"?h.shape[3]:h.shape[1];A(d===n[2],()=>`Error in conv2dDerFilter: depth of input ${d}) must match input depth in filter (${n[2]}.`),A(m===n[3],()=>`Error in conv2dDerFilter: depth of dy (${m}) must match output depth for filter (${n[3]}).`),a!=null&&A(Le(i),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${i}.`);const f=L=>{const x=1,v=Wr(o),N=kn(c.shape,n,s,x,i,a,!1,v);return L.conv2dDerFilter(c,h,N)},b={x:c,dy:h},w={strides:s,pad:i,dataFormat:o,dimRoundingMode:a,filterShape:n};return G.runKernelFunc(f,b,null,Xg,w)}const jb=z({conv2DBackpropFilter_:JU});function Np(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return X(e,ja(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Cp(e,t){let n=t;const s=pn(e.shape,t.shape);return s.length>0&&(n=$e(n,s)),K(n,e.shape)}function Rp(e,t,n){if(t==="linear")return e;if(t==="relu")return Ni(e);if(t==="elu")return Ua(e);if(t==="relu6")return Wb(e);if(t==="prelu")return yh(e,n);throw new Error(`Unknown fused activation ${t}.`)}const Op=(e,t)=>{const n=e>0;return!n||t==="linear"};function ZU({x:e,filter:t,strides:n,pad:s,dataFormat:i="NHWC",dilations:o=[1,1],dimRoundingMode:a,bias:c,activation:h="linear",preluActivationWeights:d}){if(h=h||"linear",Op(G.state.gradientDepth,h)===!1){let F=Ji(e,t,n,s,i,o,a);return c!=null&&(F=be(F,c)),Rp(F,h,d)}const m=W(e,"x","conv2d"),f=W(t,"filter","conv2d");let b=m,w=!1;m.rank===3&&(w=!0,b=K(m,[1,m.shape[0],m.shape[1],m.shape[2]])),A(b.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${b.rank}.`),A(f.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${f.rank}.`),a!=null&&A(Le(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),A(b.shape[3]===f.shape[2],()=>`Error in conv2d: depth of input (${b.shape[3]}) must match input depth for filter ${f.shape[2]}.`),A(cn(n,o),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),A(i==="NHWC",()=>`Error in conv2d: got dataFormat of ${i} but only NHWC is currently supported.`);const L=kn(b.shape,f.shape,n,o,s,a);let x;c!=null&&(x=W(c,"bias","fused conv2d"),[x]=Gt(x,m),nt(L.outShape,x.shape));let v;d!=null&&(v=W(d,"prelu weights","fused conv2d"));const N=(F,U)=>{const[$,Y,j,Z]=U,ie=Np(F,j,h);A(_r(o),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${o}'`);const de=wb(Y.shape,ie,$,n,s),he=jb(Y,ie,$.shape,n,s),ue=[de,he];if(Z!=null){const me=Cp(Z,ie);ue.push(me)}return ue},O=F=>{const U=F.fusedConv2d({input:b,filter:f,convInfo:L,bias:x,activation:h,preluActivationWeights:v});return U},E={x:b,filter:f,bias:x,preluActivationWeights:v},k={strides:n,pad:s,dataFormat:i,dilations:o,dimRoundingMode:a,activation:h};if(c==null){const F=Ai((U,$,Y)=>{let j=G.runKernelFunc(O,E,null,Dd,k);return Y([$,U,j]),w&&(j=K(j,[j.shape[1],j.shape[2],j.shape[3]])),{value:j,gradFunc:N}});return F(b,f)}else{const F=Ai((U,$,Y,j)=>{let Z=G.runKernelFunc(O,E,null,Dd,k);return j([$,U,Z,Y]),w&&(Z=K(Z,[Z.shape[1],Z.shape[2],Z.shape[3]])),{value:Z,gradFunc:N}});return F(b,f,x)}}const Kb=z({fusedConv2d_:ZU});function QU(e,t,n,s,i,o=[1,1],a){let c=e;e.rank===3&&(c=K(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let h=t;h.rank===3&&(h=K(t,[1,t.shape[0],t.shape[1],t.shape[2]]));const d=b=>{const w=kn(e.shape,n,s,o,i,a,!0);return b.depthwiseConv2DDerFilter(c,h,w)},m={x:c,dy:h},f={strides:s,pad:i,dimRoundingMode:a,dilations:o,filterShape:n};return G.runKernelFunc(d,m,null,ey,f)}const _A=z({depthwiseConv2dNativeBackpropFilter_:QU});function eB(e,t,n,s,i,o=[1,1],a){let c=t,h=!1;t.rank===3&&(h=!0,c=K(t,[1,t.shape[0],t.shape[1],t.shape[2]]));const d=w=>{const L=kn(e,n.shape,s,o,i,a,!0);return w.depthwiseConv2DDerInput(c,n,L)},m={dy:c,filter:n},f={strides:s,pad:i,dimRoundingMode:a,dilations:o,inputShape:e},b=G.runKernelFunc(d,m,null,ty,f);return h?K(b,[b.shape[1],b.shape[2],b.shape[3]]):b}const WA=z({depthwiseConv2dNativeBackpropInput_:eB});function tB({x:e,filter:t,strides:n,pad:s,dataFormat:i="NHWC",dilations:o=[1,1],dimRoundingMode:a,bias:c,activation:h="linear",preluActivationWeights:d}){if(Op(G.state.gradientDepth,h)===!1){let F=Co(e,t,n,s,i,o,a);return c!=null&&(F=be(F,c)),Rp(F,h,d)}const m=W(e,"x","depthwiseConv2d"),f=W(t,"filter","depthwiseConv2d");let b=m,w=!1;m.rank===3&&(w=!0,b=K(m,[1,m.shape[0],m.shape[1],m.shape[2]])),A(b.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${b.rank}.`),A(f.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${f.rank}.`),A(b.shape[3]===f.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${b.shape[3]}) must match the inChannels dimension in filter ${f.shape[2]}.`),o==null&&(o=[1,1]),A(cn(n,o),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),a!=null&&A(Le(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${s}.`);const L=kn(b.shape,f.shape,n,o,s,a,!0);let x;c!=null&&(x=W(c,"bias","fused conv2d"),[x]=Gt(x,m),nt(L.outShape,x.shape));let v;d!=null&&(v=W(d,"prelu weights","fused depthwiseConv2d"));const N=(F,U)=>{A(_r(o),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);const[$,Y,j,Z]=U,ie=Np(F,j,h),de=WA(Y.shape,ie,$,n,s,o,a),he=_A(Y,ie,$.shape,n,s,o,a);if(Z!=null){const ue=Cp(x,ie);return[de,he,ue]}return[de,he]},O=F=>{const U=F.fusedDepthwiseConv2D({input:b,filter:f,convInfo:L,bias:x,activation:h,preluActivationWeights:v});return U},E={x:b,filter:f,bias:x,preluActivationWeights:v},k={strides:n,pad:s,dataFormat:i,dilations:o,dimRoundingMode:a,activation:h};if(c==null){const F=Ai((U,$,Y)=>{let j=G.runKernelFunc(O,E,null,kd,k);return Y([$,U,j]),w&&(j=K(j,[j.shape[1],j.shape[2],j.shape[3]])),{value:j,gradFunc:N}});return F(b,f)}else{const F=Ai((U,$,Y,j)=>{let Z=G.runKernelFunc(O,E,null,kd,k);return j([$,U,Z,Y]),w&&(Z=K(Z,[Z.shape[1],Z.shape[2],Z.shape[3]])),{value:Z,gradFunc:N}});return F(b,f,x)}}const $A=z({fusedDepthwiseConv2d_:tB});function nB({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:i,activation:o="linear",preluActivationWeights:a}){if(Op(G.state.gradientDepth,o)===!1){let Z=ct(e,t,n,s);return i!=null&&(Z=be(Z,i)),Rp(Z,o,a)}let c=W(e,"a","fused matMul"),h=W(t,"b","fused matMul");[c,h]=Gt(c,h);const d=n?c.shape[c.rank-2]:c.shape[c.rank-1],m=s?h.shape[h.rank-1]:h.shape[h.rank-2],f=n?c.shape[c.rank-1]:c.shape[c.rank-2],b=s?h.shape[h.rank-2]:h.shape[h.rank-1],w=c.shape.slice(0,-2),L=h.shape.slice(0,-2),x=P(w),v=P(L);A(c.rank>=2&&h.rank>=2&&c.rank===h.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${c.rank} and ${h.rank}.`),A(ae(w,L),()=>`Error in fused matMul: outer dimensions (${w}) and (${L}) of Tensors with shapes ${c.shape} and ${h.shape} must match.`),A(d===m,()=>`Error in fused matMul: inner shapes (${d}) and (${m}) of Tensors with shapes ${c.shape} and ${h.shape} and transposeA=${n} and transposeB=${s} must match.`);const N=c.shape.slice(0,-2).concat([f,b]),O=n?K(c,[x,d,f]):K(c,[x,f,d]),E=s?K(h,[v,b,m]):K(h,[v,m,b]);let k;i!=null&&(k=W(i,"bias","fused matMul"),[k]=Gt(k,c),nt(N,k.shape));let F;a!=null&&(F=W(a,"prelu weights","fused matMul"));const U=(Z,ie)=>{const[de,he,ue,me]=ie,ce=Np(K(Z,ue.shape),ue,o);let ye,pe;if(!n&&!s?(ye=ct(ce,he,!1,!0),pe=ct(de,ce,!0,!1)):!n&&s?(ye=ct(ce,he,!1,!1),pe=ct(ce,de,!0,!1)):n&&!s?(ye=ct(he,ce,!1,!0),pe=ct(de,ce,!1,!1)):(ye=ct(he,ce,!0,!0),pe=ct(ce,de,!0,!0)),i!=null){const we=Cp(me,ce);return[ye,pe,we]}else return[ye,pe]},$=Z=>{const ie=Z.fusedBatchMatMul({a:O,b:E,transposeA:n,transposeB:s,bias:k,activation:o,preluActivationWeights:F});return ie},Y={a:O,b:E,bias:k,preluActivationWeights:F},j={transposeA:n,transposeB:s,activation:o};if(i==null){const Z=Ai((ie,de,he)=>{const ue=G.runKernelFunc($,Y,null,Ed,j);return he([ie,de,ue]),{value:K(ue,N),gradFunc:U}});return Z(O,E)}else{const Z=Ai((ie,de,he,ue)=>{const me=G.runKernelFunc($,Y,null,Ed,j);return ue([ie,de,me,he]),{value:K(me,N),gradFunc:U}});return Z(O,E,k)}}const Ep=z({fusedMatMul_:nB});var sB=Object.freeze({__proto__:null,conv2d:Kb,depthwiseConv2d:$A,matMul:Ep});function iB(e){return qb(e,.54,.46)}const rB=z({hammingWindow_:iB});function oB(e){return qb(e,.5,.5)}const UA=z({hannWindow_:oB});function aB(e,t,n,s=!1,i=0){let o=0;const a=[];for(;o+t<=e.size;)a.push(tt(e,o,t)),o+=n;if(s)for(;o<e.size;){const c=o+t-e.size,h=Yt([tt(e,o,t-c),Ba([c],i)]);a.push(h),o+=n}return a.length===0?Pr([],[0,t]):K(Yt(a),[a.length,t])}const BA=z({frame_:aB});function cB(e,t,n,s,i=UA){s==null&&(s=FA(t));const o=BA(e,t,n),a=X(o,i(t)),c=[];for(let h=0;h<o.shape[0];h++)c.push(Sh(tt(a,[h,0],[1,t]),s));return Yt(c)}const lB=z({stft_:cB});function hB(e,t,n,s,i,o){const a=W(e,"image","cropAndResize"),c=W(t,"boxes","cropAndResize","float32"),h=W(n,"boxInd","cropAndResize","int32");i=i||"bilinear",o=o||0;const d=c.shape[0];A(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),A(c.rank===2&&c.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${d},4] but had shape ${c.shape}.`),A(h.rank===1&&h.shape[0]===d,()=>`Error in cropAndResize: boxInd must be have size [${d}] but had shape ${c.shape}.`),A(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),A(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),A(i==="bilinear"||i==="nearest",()=>`method must be bilinear or nearest, but was ${i}`);const m=L=>L.cropAndResize(a,c,h,s,i,o),f={image:a,boxes:c,boxInd:h},b={method:i,extrapolationValue:o,cropSize:s},w=G.runKernelFunc(m,f,null,Dx,b);return w}const uB=z({cropAndResize_:hB});function dB(e){const t=W(e,"image","flipLeftRight","float32");A(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);const n={image:t},s=G.runKernel(md,n,{});return s}const pB=z({flipLeftRight_:dB});function mB(e,t,n=0,s=.5){const i=W(e,"image","rotateWithOffset","float32");A(i.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${i.rank}.`);const o={image:i},a={radians:t,fillValue:n,center:s},c=G.runKernel(Od,o,a);return c}const fB=z({rotateWithOffset_:mB});function Xa(e,t,n,s,i,o){s==null&&(s=.5),i==null&&(i=Number.NEGATIVE_INFINITY),o==null&&(o=0);const a=e.shape[0];return n=Math.min(n,a),A(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),A(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),A(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),A(t.rank===1,()=>"scores must be a 1D tensor"),A(t.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${t.shape[0]}`),A(0<=o&&o<=1,()=>`softNmsSigma must be in [0, 1], but was '${o}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:i,softNmsSigma:o}}function gB(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY){const o=W(e,"boxes","nonMaxSuppression"),a=W(t,"scores","nonMaxSuppression"),c=Xa(o,a,n,s,i);n=c.maxOutputSize,s=c.iouThreshold,i=c.scoreThreshold;const h={maxOutputSize:n,iouThreshold:s,scoreThreshold:i};return G.runKernelFunc(d=>d.nonMaxSuppression(o,a,n,s,i),{boxes:o,scores:a},null,fy,h)}const yB=z({nonMaxSuppression_:gB});function bB(e,t,n){const s=wB(e,t,n),i=s<0?-(s+1):s;e.splice(i,0,t)}function wB(e,t,n){return SB(e,t,n||LB)}function LB(e,t){return e>t?1:e<t?-1:0}function SB(e,t,n){let s=0,i=e.length,o=0,a=!1;for(;s<i;){o=s+(i-s>>>1);const c=n(t,e[o]);c>0?s=o+1:(i=o,a=!c)}return a?s:-s-1}function Dp(e,t,n,s,i){return Xb(e,t,n,s,i,0).selectedIndices}function kp(e,t,n,s,i,o){return Xb(e,t,n,s,i,0,!1,o,!0)}function Fp(e,t,n,s,i,o){return Xb(e,t,n,s,i,o,!0)}function Xb(e,t,n,s,i,o,a=!1,c=!1,h=!1){const d=[];for(let v=0;v<t.length;v++)t[v]>i&&d.push({score:t[v],boxIndex:v,suppressBeginIndex:0});d.sort(MA);const m=o>0?-.5/o:0,f=[],b=[];for(;f.length<n&&d.length>0;){const v=d.pop(),{score:N,boxIndex:O,suppressBeginIndex:E}=v;if(N<i)break;let k=!1;for(let F=f.length-1;F>=E;--F){const U=IB(e,O,f[F]);if(U>=s){k=!0;break}if(v.score=v.score*xB(s,m,U),v.score<=i)break}v.suppressBeginIndex=f.length,k||(v.score===N?(f.push(O),b.push(v.score)):v.score>i&&bB(d,v,MA))}const w=f.length,L=n-w;c&&L>0&&(f.push(...new Array(L).fill(0)),b.push(...new Array(L).fill(0)));const x={selectedIndices:ls(f,"int32")};return a&&(x.selectedScores=ls(b,"float32")),h&&(x.validOutputs=Ce(w,"int32")),x}function IB(e,t,n){const s=e.subarray(t*4,t*4+4),i=e.subarray(n*4,n*4+4),o=Math.min(s[0],s[2]),a=Math.min(s[1],s[3]),c=Math.max(s[0],s[2]),h=Math.max(s[1],s[3]),d=Math.min(i[0],i[2]),m=Math.min(i[1],i[3]),f=Math.max(i[0],i[2]),b=Math.max(i[1],i[3]),w=(c-o)*(h-a),L=(f-d)*(b-m);if(w<=0||L<=0)return 0;const x=Math.max(o,d),v=Math.max(a,m),N=Math.min(c,f),O=Math.min(h,b),E=Math.max(N-x,0)*Math.max(O-v,0);return E/(w+L-E)}function xB(e,t,n){const s=Math.exp(t*n*n);return n<=e?s:0}function MA(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function TB(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY){const o=W(e,"boxes","nonMaxSuppressionAsync"),a=W(t,"scores","nonMaxSuppressionAsync"),c=Xa(o,a,n,s,i);n=c.maxOutputSize,s=c.iouThreshold,i=c.scoreThreshold;const h=await Promise.all([o.data(),a.data()]),d=h[0],m=h[1],f=Dp(d,m,n,s,i);return o!==e&&o.dispose(),a!==t&&a.dispose(),f}const AB=TB;function vB(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY,o=0){const a=W(e,"boxes","nonMaxSuppression"),c=W(t,"scores","nonMaxSuppression"),h=Xa(a,c,n,s,i,o);n=h.maxOutputSize,s=h.iouThreshold,i=h.scoreThreshold,o=h.softNmsSigma;const d={boxes:a,scores:c},m={maxOutputSize:n,iouThreshold:s,scoreThreshold:i,softNmsSigma:o},f=G.runKernel(Sd,d,m);return{selectedIndices:f[0],selectedScores:f[1]}}const NB=z({nonMaxSuppressionWithScore_:vB});async function CB(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY,o=0){const a=W(e,"boxes","nonMaxSuppressionAsync"),c=W(t,"scores","nonMaxSuppressionAsync"),h=Xa(a,c,n,s,i,o);n=h.maxOutputSize,s=h.iouThreshold,i=h.scoreThreshold,o=h.softNmsSigma;const d=await Promise.all([a.data(),c.data()]),m=d[0],f=d[1],b=Fp(m,f,n,s,i,o);return a!==e&&a.dispose(),c!==t&&c.dispose(),b}const RB=CB;function OB(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY,o=!1){const a=W(e,"boxes","nonMaxSuppression"),c=W(t,"scores","nonMaxSuppression"),h=Xa(a,c,n,s,i,null),d=h.maxOutputSize,m=h.iouThreshold,f=h.scoreThreshold,b={boxes:a,scores:c},w={maxOutputSize:d,iouThreshold:m,scoreThreshold:f,padToMaxOutputSize:o},L=G.runKernel(Ld,b,w);return{selectedIndices:L[0],validOutputs:L[1]}}const EB=z({nonMaxSuppressionPadded_:OB});async function DB(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY,o=!1){const a=W(e,"boxes","nonMaxSuppressionAsync"),c=W(t,"scores","nonMaxSuppressionAsync"),h=Xa(a,c,n,s,i,null),d=h.maxOutputSize,m=h.iouThreshold,f=h.scoreThreshold,[b,w]=await Promise.all([a.data(),c.data()]),L=kp(b,w,d,m,f,o);return a!==e&&a.dispose(),c!==t&&c.dispose(),L}const kB=DB;function FB(e,t,n=!1){const s=W(e,"images","resizeBilinear");A(s.rank===3||s.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${s.rank}.`),A(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=K(s,[1,s.shape[0],s.shape[1],s.shape[2]]));const[a,c]=t,h=(b,w)=>(w([i]),b.resizeBilinear(i,a,c,n)),d={images:i},m={alignCorners:n,size:t},f=G.runKernelFunc(h,d,null,Ly,m);return o?K(f,[f.shape[1],f.shape[2],f.shape[3]]):f}const PA=z({resizeBilinear_:FB});function _B(e,t,n=!1){const s=W(e,"images","resizeNearestNeighbor");A(s.rank===3||s.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${s.rank}.`),A(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),A(s.dtype==="float32"||s.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype");let i=s,o=!1;s.rank===3&&(o=!0,i=K(s,[1,s.shape[0],s.shape[1],s.shape[2]]));const[a,c]=t,h={images:i},d={alignCorners:n,size:t},m=(b,w)=>(w([i]),b.resizeNearestNeighbor(i,a,c,n)),f=G.runKernelFunc(m,h,null,wy,d);return o?K(f,[f.shape[1],f.shape[2],f.shape[3]]):f}const zA=z({resizeNearestNeighbor_:_B});function WB(e,t,n){A(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),A(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);const s=W(e,"a","bandPart");A(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);const i=s.shape,[o,a]=s.shape.slice(-2);if(!(t<=o))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${o}).`);if(!(n<=a))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${a}).`);t<0&&(t=o),n<0&&(n=a);const c=K(bh(0,o,1,"int32"),[-1,1]),h=bh(0,a,1,"int32"),d=Re(c,h),m=Us(Ur(d,Ce(+t,"int32")),Zi(d,Ce(-n,"int32"))),f=dt([o,a],s.dtype);return K(es(Qs(K(s,[-1,o,a])).map(b=>Bn(m,b,f))),i)}const $B=z({bandPart_:WB});function UB(e){let t;if(Array.isArray(e)){t=!1,A(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");const i=e[0].shape[0];for(let o=1;o<e.length;++o)A(e[o].shape[0]===i,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[o].shape[0]} vs. ${i})`)}else t=!0,e=hs(e,e.shape[0],0).map(i=>Mr(i,[0]));A(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);const n=[],s=e;for(let i=0;i<e.length;++i)n.push(G.tidy(()=>{let o=s[i];if(i>0)for(let a=0;a<i;++a){const c=X($e(X(n[a],o)),n[a]);o=Re(o,c)}return We(o,vp(o,"euclidean"))}));return t?es(n,0):n}const BB=z({gramSchmidt_:UB});function MB(e,t=!1){if(A(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return VA(e,t);{const n=e.shape.slice(0,e.shape.length-2).reduce((h,d)=>h*d),s=Qs(K(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),i=[],o=[];s.forEach(h=>{const[d,m]=VA(h,t);i.push(d),o.push(m)});const a=K(es(i,0),e.shape),c=K(es(o,0),e.shape);return[a,c]}}function VA(e,t=!1){return G.tidy(()=>{A(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);const n=e.shape[0],s=e.shape[1];let i=cp(n),o=kr(e);const a=Pr([[1]],[1,1]);let c=kr(a);const h=n>=s?s:n;for(let d=0;d<h;++d){const m=o,f=c,b=i;[c,o,i]=G.tidy(()=>{const w=tt(o,[d,d],[n-d,1]),L=vp(w),x=tt(o,[d,d],[1,1]),v=Bn(xs(x,0),Pr([[-1]]),Pr([[1]])),N=Re(x,X(v,L)),O=We(w,N);O.shape[0]===1?c=kr(a):c=Yt([a,tt(O,[1,0],[O.shape[0]-1,O.shape[1]])],0);const E=Ht(We(ct(v,N),L)),k=tt(o,[d,0],[n-d,s]),F=X(E,c),U=Ye(c);if(d===0)o=Re(k,ct(F,ct(U,k)));else{const j=Re(k,ct(F,ct(U,k)));o=Yt([tt(o,[0,0],[d,s]),j],0)}const $=Ye(F),Y=tt(i,[0,d],[n,i.shape[1]-d]);if(d===0)i=Re(Y,ct(ct(Y,c),$));else{const j=Re(Y,ct(ct(Y,c),$));i=Yt([tt(i,[0,0],[n,d]),j],1)}return[c,o,i]}),He([m,f,b])}return!t&&n>s&&(i=tt(i,[0,0],[n,s]),o=tt(o,[0,0],[s,s])),[i,o]})}const PB=z({qr_:MB});(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(r.Reduction||(r.Reduction={}));function zB(e,t,n=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const s=W(e,"losses","computeWeightedLoss");let i=null;t!=null&&(i=W(t,"weights","computeWeightedLoss"));const o=i==null?s:X(s,i);if(n===r.Reduction.NONE)return o;if(n===r.Reduction.SUM)return $e(o);if(n===r.Reduction.MEAN){if(i==null)return qt(o);{const a=s.size/i.size,c=We($e(o),$e(i));return a>1?We(c,Ce(a)):c}}if(n===r.Reduction.SUM_BY_NONZERO_WEIGHTS){if(i==null)return We($e(o),Ce(s.size));{const a=X(i,Js(s.shape)),c=Ae($e(Br(a,Ce(0))),"float32");return We($e(o),c)}}throw Error(`Unknown reduction: ${n}`)}const Qi=z({computeWeightedLoss_:zB});function VB(e,t,n,s=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const i=W(e,"labels","absoluteDifference"),o=W(t,"predictions","absoluteDifference");let a=null;n!=null&&(a=W(n,"weights","absoluteDifference")),B(i.shape,o.shape,"Error in absoluteDifference: ");const c=dn(Re(i,o));return Qi(c,a,s)}const GB=z({absoluteDifference_:VB});function YB(e,t,n,s,i=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const o=W(e,"labels","cosineDistance"),a=W(t,"predictions","cosineDistance");let c=null;s!=null&&(c=W(s,"weights","cosineDistance")),B(o.shape,a.shape,"Error in cosineDistance: ");const h=Ce(1),d=Re(h,$e(X(o,a),n,!0));return Qi(d,c,i)}const HB=z({cosineDistance_:YB});function qB(e,t,n,s=r.Reduction.SUM_BY_NONZERO_WEIGHTS){let i=W(e,"labels","hingeLoss");const o=W(t,"predictions","hingeLoss");let a=null;n!=null&&(a=W(n,"weights","hingeLoss")),B(i.shape,o.shape,"Error in hingeLoss: ");const c=Ce(1);i=Re(X(Ce(2),i),c);const h=Ni(Re(c,X(i,o)));return Qi(h,a,s)}const jB=z({hingeLoss_:qB});function KB(e,t,n,s=1,i=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const o=W(e,"labels","huberLoss"),a=W(t,"predictions","huberLoss");let c=null;n!=null&&(c=W(n,"weights","huberLoss")),B(o.shape,a.shape,"Error in huberLoss: ");const h=Ce(s),d=dn(Re(a,o)),m=Oo(d,h),f=Re(d,m),b=be(X(Ce(.5),At(m)),X(h,f));return Qi(b,c,i)}const XB=z({huberLoss_:KB});function JB(e,t,n,s=1e-7,i=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const o=W(e,"labels","logLoss"),a=W(t,"predictions","logLoss");let c=null;n!=null&&(c=W(n,"weights","logLoss")),B(o.shape,a.shape,"Error in logLoss: ");const h=Ce(1),d=Ce(s),m=Ht(X(o,cs(be(a,d)))),f=X(Re(h,o),cs(be(Re(h,a),d))),b=Re(m,f);return Qi(b,c,i)}const ZB=z({logLoss_:JB});function QB(e,t,n,s=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const i=W(e,"labels","meanSquaredError"),o=W(t,"predictions","meanSquaredError");let a=null;n!=null&&(a=W(n,"weights","meanSquaredError")),B(i.shape,o.shape,"Error in meanSquaredError: ");const c=Ih(i,o);return Qi(c,a,s)}const eM=z({meanSquaredError_:QB});function tM(e,t){const n=W(e,"labels","sigmoidCrossEntropyWithLogits"),s=W(t,"logits","sigmoidCrossEntropyWithLogits");B(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");const i=Ni(s),o=X(s,n),a=hp(Is(Ht(dn(s))));return be(Re(i,o),a)}function nM(e,t,n,s=0,i=r.Reduction.SUM_BY_NONZERO_WEIGHTS){let o=W(e,"multiClassLabels","sigmoidCrossEntropy");const a=W(t,"logits","sigmoidCrossEntropy");let c=null;if(n!=null&&(c=W(n,"weights","sigmoidCrossEntropy")),B(o.shape,a.shape,"Error in sigmoidCrossEntropy: "),s>0){const d=Ce(s),m=Ce(1),f=Ce(.5);o=be(X(o,Re(m,d)),X(f,d))}const h=tM(o,a);return Qi(h,c,i)}const sM=z({sigmoidCrossEntropy_:nM});function iM(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);const s=Ai((i,o,a)=>{const c=!0,h=Rb(o,[n],c),d=Re(Ae(o,"float32"),h);a([i,d]);const m=Ht(X(d,i)),f=$e(m,[n]),b=(w,L)=>{const[x,v]=L,N=vn(w.shape,[n]);return[X(K(w,N),Re(Ae(x,"float32"),Is(v))),X(K(w,N),Re(Is(v),Ae(x,"float32")))]};return{value:f,gradFunc:b}});return s(e,t)}function rM(e,t,n,s=0,i=r.Reduction.SUM_BY_NONZERO_WEIGHTS){let o=W(e,"onehotLabels","softmaxCrossEntropy");const a=W(t,"logits","softmaxCrossEntropy");let c=null;if(n!=null&&(c=W(n,"weights","softmaxCrossEntropy")),B(o.shape,a.shape,"Error in softmaxCrossEntropy: "),s>0){const d=Ce(s),m=Ce(1),f=Ce(o.shape[1]);o=be(X(o,Re(m,d)),We(d,f))}const h=iM(o,a);return Qi(h,c,i)}const oM=z({softmaxCrossEntropy_:rM});const aM={fft:Lh,ifft:qa,rfft:Sh,irfft:xp},cM={hammingWindow:rB,hannWindow:UA,frame:BA,stft:lB},zr={flipLeftRight:pB,resizeNearestNeighbor:zA,resizeBilinear:PA,rotateWithOffset:fB,cropAndResize:uB,nonMaxSuppression:yB,nonMaxSuppressionAsync:AB,nonMaxSuppressionWithScore:NB,nonMaxSuppressionWithScoreAsync:RB,nonMaxSuppressionPadded:EB,nonMaxSuppressionPaddedAsync:kB},GA={bandPart:$B,gramSchmidt:BB,qr:PB},lM={absoluteDifference:GB,computeWeightedLoss:Qi,cosineDistance:HB,hingeLoss:jB,huberLoss:XB,logLoss:ZB,meanSquaredError:eM,sigmoidCrossEntropy:sM,softmaxCrossEntropy:oM};class er extends Ao{minimize(e,t=!1,n){const{value:s,grads:i}=this.computeGradients(e,n);if(n!=null){const o=n.map(a=>({name:a.name,tensor:i[a.name]}));this.applyGradients(o)}else this.applyGradients(i);return He(i),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Cb(e,t)}dispose(){this.iterations_!=null&&He(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ce(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}}Object.defineProperty(er,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});class Th extends er{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=G.backend.epsilon())}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);t.forEach((n,s)=>{const i=G.registeredVariables[n],o=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:Q(()=>et(i).variable(o))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:Q(()=>et(i).variable(o))});const a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;const c=this.accumulatedGrads[s].variable,h=this.accumulatedUpdates[s].variable;Q(()=>{const d=be(X(c,this.rho),X(At(a),1-this.rho)),m=X(We(Nn(be(h,this.epsilon)),Nn(be(c,this.epsilon))),a),f=be(X(h,this.rho),X(At(m),1-this.rho));c.assign(d),h.assign(f);const b=be(X(m,-this.learningRate),i);i.assign(b)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(He(this.accumulatedGrads.map(e=>e.variable)),He(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){const e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}}Th.className="Adadelta",fe(Th);class Ah extends er{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);t.forEach((n,s)=>{const i=G.registeredVariables[n];if(this.accumulatedGrads[s]==null){const c=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:Q(()=>Ba(i.shape,this.initialAccumulatorValue).variable(c))}}const o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;const a=this.accumulatedGrads[s].variable;Q(()=>{const c=be(a,At(o));a.assign(c);const h=be(X(We(o,Nn(be(c,G.backend.epsilon()))),-this.learningRate),i);i.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&He(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}}Ah.className="Adagrad",fe(Ah);class vh extends er{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Q(()=>{this.accBeta1=Ce(t).variable(),this.accBeta2=Ce(n).variable()}),s==null&&(this.epsilon=G.backend.epsilon())}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Q(()=>{const n=Re(1,this.accBeta1),s=Re(1,this.accBeta2);t.forEach((i,o)=>{const a=G.registeredVariables[i],c=!1;this.accumulatedFirstMoment[o]==null&&(this.accumulatedFirstMoment[o]={originalName:`${i}/m`,variable:Q(()=>et(a).variable(c))}),this.accumulatedSecondMoment[o]==null&&(this.accumulatedSecondMoment[o]={originalName:`${i}/v`,variable:Q(()=>et(a).variable(c))});const h=Array.isArray(e)?e[o].tensor:e[i];if(h==null)return;const d=this.accumulatedFirstMoment[o].variable,m=this.accumulatedSecondMoment[o].variable,f=be(X(d,this.beta1),X(h,1-this.beta1)),b=be(X(m,this.beta2),X(At(h),1-this.beta2)),w=We(f,n),L=We(b,s);d.assign(f),m.assign(b);const x=be(X(We(w,be(Nn(L),this.epsilon)),-this.learningRate),a);a.assign(x)}),this.accBeta1.assign(X(this.accBeta1,this.beta1)),this.accBeta2.assign(X(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&He(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&He(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){const e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Q(()=>{this.accBeta1.assign(Zs(this.beta1,this.iterations_+1)),this.accBeta2.assign(Zs(this.beta2,this.iterations_+1))});const t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}}vh.className="Adam",fe(vh);class Nh extends er{constructor(e,t,n,s=null,i=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=i,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Q(()=>{this.iteration=Ce(0).variable(),this.accBeta1=Ce(t).variable()}),s==null&&(this.epsilon=G.backend.epsilon())}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Q(()=>{const n=Re(1,this.accBeta1),s=We(-this.learningRate,be(X(this.iteration,this.decay),1));t.forEach((i,o)=>{const a=G.registeredVariables[i],c=!1;this.accumulatedFirstMoment[o]==null&&(this.accumulatedFirstMoment[o]={originalName:`${i}/m`,variable:et(a).variable(c)}),this.accumulatedWeightedInfNorm[o]==null&&(this.accumulatedWeightedInfNorm[o]={originalName:`${i}/v`,variable:et(a).variable(c)});const h=Array.isArray(e)?e[o].tensor:e[i];if(h==null)return;const d=this.accumulatedFirstMoment[o].variable,m=this.accumulatedWeightedInfNorm[o].variable,f=be(X(d,this.beta1),X(h,1-this.beta1)),b=X(m,this.beta2),w=dn(h),L=$s(b,w);d.assign(f),m.assign(L);const x=be(X(We(s,n),We(f,be(L,this.epsilon))),a);a.assign(x)}),this.iteration.assign(be(this.iteration,1)),this.accBeta1.assign(X(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&He(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&He(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}}Nh.className="Adamax",fe(Nh);class Ja extends er{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);t.forEach((n,s)=>{const i=Array.isArray(e)?e[s].tensor:e[n];if(i==null)return;const o=G.registeredVariables[n];Q(()=>{const a=be(X(this.c,i),o);o.assign(a)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=bn(Ce(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}}Ja.className="SGD",fe(Ja);class Ch extends Ja{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ce(this.momentum)}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);t.forEach((n,s)=>{const i=G.registeredVariables[n];if(this.accumulations[s]==null){const c=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:Q(()=>et(i).variable(c))}}const o=this.accumulations[s].variable,a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;Q(()=>{let c;const h=be(X(this.m,o),a);this.useNesterov?c=be(X(this.c,be(a,X(h,this.m))),i):c=be(X(this.c,h),i),o.assign(h),i.assign(c)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&He(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}}Ch.className="Momentum",fe(Ch);class Rh extends er{constructor(e,t=.9,n=0,s=null,i=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=i,s==null&&(this.epsilon=G.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);t.forEach((n,s)=>{const i=G.registeredVariables[n],o=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:Q(()=>et(i).variable(o))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:Q(()=>et(i).variable(o))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:Q(()=>et(i).variable(o))});const a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;const c=this.accumulatedMeanSquares[s].variable,h=this.accumulatedMoments[s].variable;Q(()=>{const d=be(X(c,this.decay),X(At(a),1-this.decay));if(this.centered){const m=this.accumulatedMeanGrads[s].variable,f=be(X(m,this.decay),X(a,1-this.decay)),b=We(X(a,this.learningRate),Nn(Re(d,be(At(f),this.epsilon)))),w=be(X(h,this.momentum),b);c.assign(d),m.assign(f),h.assign(w);const L=Re(i,w);i.assign(L)}else{const m=be(X(c,this.decay),X(At(a),1-this.decay)),f=be(X(h,this.momentum),We(X(a,this.learningRate),Nn(be(m,this.epsilon))));c.assign(m),h.assign(f);const b=Re(i,f);i.assign(b)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&He(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&He(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&He(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){const e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}}Rh.className="RMSProp",fe(Rh);class _o{static sgd(e){return new Ja(e)}static momentum(e,t,n=!1){return new Ch(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,i=!1){return new Rh(e,t,n,s,i)}static adam(e=.001,t=.9,n=.999,s=null){return new vh(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new Th(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,i=0){return new Nh(e,t,n,s,i)}static adagrad(e,t=.1){return new Ah(e,t)}}const Wo={sgd:_o.sgd,momentum:_o.momentum,adadelta:_o.adadelta,adagrad:_o.adagrad,rmsprop:_o.rmsprop,adamax:_o.adamax,adam:_o.adam};const hM=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function _p(){return new Promise(e=>hM(()=>e()))}function Jb(e,t,n){const s=n*(typeof e=="number"?e:e[0]),i=t*(typeof e=="number"?e:e[1]);return[s,i]}function Oh(e,t,n,s=!0){let i=[];if(s)i=i.concat(t.slice(0)),i.push(e[0]/n),i=i.concat(e.slice(1));else{i=i.concat(e[0]);const o=t.length;for(let a=0;a<o;++a)i=i.concat([e[a+1]/t[a],t[a]]);i=i.concat(e.slice(o+1))}return i}function Eh(e,t,n=!0){const s=[];if(n){s.push(t);for(let i=t+1;i<e;++i)i<=2*t?(s.push(i),s.push(i-(t+1))):s.push(i)}else{const i=[],o=[];for(let a=1;a<e;++a)a>=t*2+1||a%2===1?o.push(a):i.push(a);s.push(...i),s.push(0),s.push(...o)}return s}function Dh(e,t,n,s=!0){const i=[];s?i.push(e[0]/n):i.push(e[0]*n);for(let o=1;o<e.length;++o)o<=t.length?s?i.push(t[o-1]*e[o]):i.push(e[o]/t[o-1]):i.push(e[o]);return i}function Zb(e,t){const n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function Qb(e,t,n){const s=e.slice(0,1);for(let i=0;i<n;++i)s.push(e[i+1]-t[i][0]-t[i][1]);return s}const Wp=1.7580993408473768,$p=1.0507009873554805;const ew=.3275911,tw=.254829592,nw=-.284496736,sw=1.421413741,iw=-1.453152027,rw=1.061405429;function Za(...e){oe().getBool("IS_TEST")||console.warn(...e)}function uM(...e){oe().getBool("IS_TEST")||console.log(...e)}function tr(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);const n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function YA(e){const t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function HA(e){const t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let i=0;i<e.length;i+=4)n[Math.floor(i/4)]=e[i],s[Math.floor(i/4)]=e[i+1];return{real:n,imag:s}}function qA(e){const t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let i=2;i<e.length;i+=4)n[Math.floor(i/4)]=e[i],s[Math.floor(i/4)]=e[i+1];return{real:n,imag:s}}function ow(e,t){const n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function jA(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function KA(e,t){const n=new Float32Array(e/2),s=new Float32Array(e/2);for(let i=0;i<Math.ceil(e/2);i++){const o=(t?2:-2)*Math.PI*(i/e);n[i]=Math.cos(o),s[i]=Math.sin(o)}return{real:n,imag:s}}function XA(e,t,n){const s=(n?2:-2)*Math.PI*(e/t),i=Math.cos(s),o=Math.sin(s);return{real:i,imag:o}}function dM(e,t,n){if(t==="complex64"){if(e.dtype==="complex64")return e.clone();const s=dt(e.shape),i=Ae(e,"float32"),o=n.complex(i,s);return s.dispose(),i.dispose(),o}if(!ba(e.dtype,t))return G.makeTensorFromDataId(e.dataId,e.shape,t);if(e.dtype==="complex64"){const s=n.real(e),i=Ae(s,t);return s.dispose(),i}if(t==="int32")return n.int(e);if(t==="bool"){const s=Ce(0,e.dtype),i=n.notEqual(e,s);return s.dispose(),i}else throw new Error(`Error in Cast: failed to cast ${e.dtype} to ${t}`)}function JA(e,t){return G.makeTensorFromDataId(e.dataId,t,e.dtype)}function aw(e,t,n){const s=(t-e)/(n-1),i=La(n,"float32");i[0]=e;for(let o=1;o<i.length;o++)i[o]=i[o-1]+s;return ls(i,"float32")}var cw=Object.freeze({__proto__:null,slice_util:MT,segment_util:sW,castTensor:dM,reshapeTensor:JA,linspaceImpl:aw,upcastType:$n,axesAreInnerMostDims:cb,combineLocations:HT,computeOutAndReduceShapes:An,expandShapeToKeepDim:vn,assertAxesAreInnerMostDims:Kn,getAxesPermutation:Xn,getUndoAxesPermutation:sh,getInnerMostAxes:as,getBroadcastDims:Ro,getReductionAxes:pn,assertAndGetBroadcastShape:nt,assertParamsConsistent:np,computeOutShape:Xi,computeDilation2DInfo:ep,computePool2DInfo:Un,computePool3DInfo:oh,computeConv2DInfo:kn,computeConv3DInfo:Fr,computeDefaultPad:fb,tupleValuesAreOne:_r,eitherStridesOrDilationsAreOne:cn,convertConv2DDataFormat:Wr,getFusedDyActivation:Np,getFusedBiasGradient:Cp,applyActivation:Rp,shouldFuse:Op,PARALLELIZE_THRESHOLD:vb,computeOptimalWindowSize:uh,getImageCenter:Jb,getReshaped:Oh,getPermuted:Eh,getReshapedPermuted:Dh,getSliceBeginCoords:Zb,getSliceSize:Qb,prepareAndValidate:Hd,validateUpdateShape:Jy,validateInput:Zy,calculateShapes:_a,SELU_SCALEALPHA:Wp,SELU_SCALE:$p,ERF_P:ew,ERF_A1:tw,ERF_A2:nw,ERF_A3:sw,ERF_A4:iw,ERF_A5:rw,warn:Za,log:uM,mergeRealAndImagArrays:tr,splitRealAndImagArrays:YA,complexWithEvenIndex:HA,complexWithOddIndex:qA,getComplexWithIndex:ow,assignToTypedArray:jA,exponents:KA,exponent:XA,prepareSplitSize:pA});function lw(e,t,n){const s=new Array(e.rank).fill(0),i=e.shape.slice();return t.map(o=>{const a=[...i];a[n]=o;const c=tt(e,s,a);return s[n]+=o,c})}function hw(e,t){const n=new Array(e.rank);for(let i=0;i<n.length;i++)n[i]=e.shape[i]*t[i];const s=wt(n,e.dtype);for(let i=0;i<s.values.length;++i){const o=s.indexToLoc(i),a=new Array(e.rank);for(let h=0;h<a.length;h++)a[h]=o[h]%e.shape[h];const c=e.locToIndex(a);s.values[i]=e.values[c]}return s.toTensor()}function uw(e,t,n,s,i){const o=t[t.length-1],[a,c]=[e.length/o,o],h=bt(n,a*s),d=bt("int32",a*s);for(let f=0;f<a;f++){const b=f*c,w=e.subarray(b,b+c),L=[];for(let O=0;O<w.length;O++)L.push({value:w[O],index:O});L.sort((O,E)=>E.value-O.value);const x=f*s,v=h.subarray(x,x+s),N=d.subarray(x,x+s);for(let O=0;O<s;O++)v[O]=L[O].value,N[O]=L[O].index}const m=t.slice();return m[m.length-1]=s,[sn(h,m,n),sn(d,m,"int32")]}var pM=Object.freeze({__proto__:null,nonMaxSuppressionV3Impl:Dp,nonMaxSuppressionV4Impl:kp,nonMaxSuppressionV5Impl:Fp,split:lw,tile:hw,topkImpl:uw,whereImpl:Ap});const mM={kernelName:td,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,ja(Ae(n,"float32"),-1))}}};const fM={kernelName:ol,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>{const s=At(Ae(n,"float32")),i=Nn(Re(Ce(1),s));return Ht(We(e,i))}}}};const gM={kernelName:al,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>{const s=Nn(Re(At(Ae(n,"float32")),1));return We(e,s)}}}};const yM={kernelName:wo,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=nt(n.shape,s.shape),o=()=>{let c=e;const h=pn(n.shape,i);return h.length>0&&(c=$e(c,h)),K(c,n.shape)},a=()=>{let c=e;const h=pn(s.shape,i);return h.length>0&&(c=$e(c,h)),K(c,s.shape)};return{a:o,b:a}}};const bM={kernelName:Gg,saveAllInputs:!0,gradFunc:(e,t)=>{const n={};return t.forEach((s,i)=>{n[i]=()=>e.clone()}),n}};const wM={kernelName:Yg,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>et(n)}}};const LM={kernelName:Hg,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>et(n)}}};const SM={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>We(e,Nn(Re(Ce(1),At(Ae(n,"float32")))))}}};const IM={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>{const s=Nn(be(Ce(1),At(Ae(n,"float32"))));return We(e,s)}}}};const xM={kernelName:nd,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=nt(n.shape,s.shape),o=()=>{const c=be(At(n),At(s));let h=X(e,We(s,c));const d=pn(n.shape,i);return d.length>0&&(h=$e(h,d)),K(h,n.shape)},a=()=>{const c=be(At(n),At(s));let h=Ht(X(e,We(n,c)));const d=pn(s.shape,i);return d.length>0&&(h=$e(h,d)),K(h,s.shape)};return{a:o,b:a}}};const TM={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>We(e,be(At(Ae(n,"float32")),1))}}};const AM={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>We(e,Re(Ce(1),At(Ae(n,"float32"))))}}};function vM(e,t,n,s,i=[1,1,1],o,a){const c=W(e,"dy","avgPool3dBackprop"),h=W(t,"input","avgPool3dBackprop");let d=c,m=h,f=!1;h.rank===4&&(f=!0,d=K(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]]),m=K(h,[1,h.shape[0],h.shape[1],h.shape[2],h.shape[3]])),A(d.rank===5,()=>`Error in avgPool3dBackprop: dy must be rank 5 but got rank ${d.rank}.`),A(m.rank===5,()=>`Error in avgPool3dBackprop: input must be rank 5 but got rank ${m.rank}.`),A(cn(s,i),()=>`Error in avgPool3dBackprop: Either strides or dilations must be 1. Got strides ${s} and dilations '${i}'`),a!=null&&A(Le(o),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);const b=v=>{const N=oh(m.shape,n,s,i,o,a);return v.avgPool3dBackprop(d,m,N)},w={dy:d,input:m},L={filterSize:n,strides:s,dilations:i,pad:o,dimRoundingMode:a},x=G.runKernelFunc(b,w,null,Ex,L);return f?K(x,[x.shape[1],x.shape[2],x.shape[3],x.shape[4]]):x}const NM=z({avgPool3dBackprop_:vM});const CM={kernelName:qg,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{filterSize:i,strides:o,dilations:a,pad:c,dimRoundingMode:h}=n,d=a==null?[1,1,1]:a;return{x:()=>NM(e,s,i,o,d,c,h)}}};function RM(e,t,n,s,i){const o=W(e,"dy","avgPoolBackprop"),a=W(t,"input","avgPoolBackprop");A(a.rank===o.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${o.rank})`);let c=a,h=o,d=!1;a.rank===3&&(d=!0,c=K(a,[1,a.shape[0],a.shape[1],a.shape[2]]),h=K(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(h.rank===4,()=>`Error in avgPoolBackprop: dy must be rank 4 but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in avgPoolBackprop: input must be rank 4 but got rank ${c.rank}.`);const m=L=>{const x=Un(c.shape,n,s,1,i);return L.avgPoolBackprop(h,c,x)},f={dy:h,input:c},b={filterSize:n,strides:s,pad:i},w=G.runKernelFunc(m,f,null,sd,b);return d?K(w,[w.shape[1],w.shape[2],w.shape[3]]):w}const OM=z({avgPoolBackprop_:RM});const EM={kernelName:dl,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{filterSize:i,strides:o,pad:a}=n;return{x:()=>OM(e,s,i,o,a)}}};const DM={kernelName:id,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{const[s,i]=t,{transposeA:o,transposeB:a}=n;return!o&&!a?{a:()=>ct(e,i,!1,!0),b:()=>ct(s,e,!0,!1)}:!o&&a?{a:()=>ct(e,i,!1,!1),b:()=>ct(e,s,!0,!1)}:o&&!a?{a:()=>ct(i,e,!1,!0),b:()=>ct(s,e,!1,!1)}:{a:()=>ct(i,e,!0,!0),b:()=>ct(e,s,!0,!0)}}};const kM={kernelName:jg,gradFunc:(e,t,n)=>{const{blockShape:s,crops:i}=n;return{x:()=>gh(e,s,i)}}};const FM={kernelName:Kg,gradFunc:(e,t,n)=>{const s=n,i=s.inputShape,o=s.shape,a=Array.from(o);for(let h=i.length-1;h>=0;h--)if(i[h]===o[h])a[h]=1;else if(i[h]!==1)throw new Error(`broadcastTo(): [${i}] cannot be broadcast to [${o}].`);const c=[];for(let h=0;h<a.length;h++)a[h]>1&&c.push(h);return{x:()=>$e(e,c,!0)}}};const _M={kernelName:Sa,gradFunc:e=>({x:()=>e.clone()})};const WM={kernelName:pl,gradFunc:e=>({x:()=>et(e)})};const $M={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{clipValueMin:i,clipValueMax:o}=n;return{x:()=>Bn(Us(Zi(s,i),Ur(s,o)),e,et(e))}}};const UM={kernelName:fl,saveAllInputs:!0,gradFunc:(e,t,n)=>{const s=t.map(h=>h.shape),{axis:i}=n,o=qe(i,t[0].shape)[0],a=s.map(h=>h[o]),c=hs(e,a,o);return c.map(h=>()=>h)}};const BM={kernelName:od,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{const[s,i]=t,{dilations:o,strides:a,pad:c,dataFormat:h}=n;return A(_r(o),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${o}'`),{x:()=>wb(s.shape,e,i,a,c,h),filter:()=>jb(s,e,i.shape,a,c,h)}}};const MM={kernelName:ad,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{const[s,i]=t,{strides:o,pad:a,dataFormat:c,dimRoundingMode:h}=n;return{dy:()=>Ji(e,i,o,a,c,1,h),filter:()=>jb(e,s,i.shape,o,a,c,h)}}};function PM(e,t,n,s,i){let o=e;e.rank===4&&(o=K(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let a=t;a.rank===4&&(a=K(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),A(o.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${o.shape}.`),A(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),A(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),A(o.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${o.shape[4]}) must match input depth in filter (${n[3]}.`),A(a.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${n[4]}).`);const c=m=>{const f=1,b=Fr(o.shape,n,s,f,i);return m.conv3dDerFilter(o,a,b)},h={x:o,dy:a},d={strides:s,pad:i,filterShape:n};return G.runKernelFunc(c,h,null,Jg,d)}const zM=z({conv3DBackpropFilter_:PM});const VM={kernelName:cd,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{const{dilations:s,strides:i,pad:o}=n;A(_r(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);const[a,c]=t;return{x:()=>eA(a.shape,e,c,i,o),filter:()=>zM(a,e,c.shape,i,o)}}};const GM={kernelName:Ia,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(Ht(wp(Ae(n,"float32"))),e)}}};const YM={kernelName:gl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(Lp(Ae(n,"float32")),e)}}};const HM={kernelName:Qg,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{axis:i,exclusive:o,reverse:a}=n;return{x:()=>{const c=Xn([i],s.rank);let h=ap(e,i,o,!a);return c!=null&&(h=Ye(h,c)),h}}}};const qM={kernelName:ld,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{const{dilations:s,strides:i,pad:o,dimRoundingMode:a}=n,c=s==null?[1,1]:s;A(_r(c),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${c}'`);const[h,d]=t;return A(h.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${h.rank}.`),A(d.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${d.rank}.`),A(h.shape[3]===d.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),A(cn(i,c),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'.`),a!=null&&A(Le(o),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),{x:()=>WA(h.shape,e,d,i,o,s,a),filter:()=>_A(h,e,d.shape,i,o,s,a)}}};const jM={kernelName:hd,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{const[s,i]=t,o={x:s,filter:i,dy:e},a={x:s,filter:i,dy:e};return{x:()=>G.runKernel(ud,o,n),filter:()=>G.runKernel(dd,a,n)}}};const KM={kernelName:xa,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=nt(n.shape,s.shape),o=()=>{const c=We(e,Ae(s,"float32")),h=pn(n.shape,i);return h.length>0?K($e(c,h),n.shape):c},a=()=>{let c=X(e,Ae(n,"float32"));const h=pn(s.shape,i);h.length>0&&(c=K($e(c,h),s.shape));const d=At(s);return Ht(We(c,Ae(d,"float32")))};return{a:o,b:a}}};const XM={kernelName:yl,outputsToSave:[!0],gradFunc:(e,t)=>{const[n]=t,s=o=>o.eluDer(e,n),i={dy:e,y:n};return{x:()=>G.runKernelFunc(s,i,null,_x)}}};const JM={kernelName:bl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t,s=X(Is(Ht(At(n))),2/Math.sqrt(Math.PI));return{x:()=>X(e,s)}}};const ZM={kernelName:wl,outputsToSave:[!0],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,n)}}};const QM={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,Is(n))}}};const eP={kernelName:Sl,gradFunc:e=>({x:()=>et(e)})};const tP={kernelName:sy,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=nt(n.shape,s.shape),o=()=>{const c=We(e,Ae(s,"float32")),h=pn(n.shape,i);return h.length>0?K($e(c,h),n.shape):c},a=()=>{let c=X(e,Ae(n,"float32"));const h=pn(s.shape,i);h.length>0&&(c=K($e(c,h),s.shape));const d=At(s);return Ht(We(c,Ae(d,"float32")))};return{a:o,b:a}}};const nP={kernelName:Il,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{const{varianceEpsilon:s}=n,[i,o,a,c]=t,h=c==null?Ce(1):c,d=pn(o.shape,i.shape),m=[];if(o.rank===1){for(let k=0;k<i.shape.length-1;++k)m.push(i.shape[k]);m.push(1)}const f=Re(i,o),b=X(e,h),w=yp(be(a,Ce(s))),L=X(X(X(w,w),w),Ce(-.5)),x=()=>o.rank===1?K(X(X(e,$r(K(w,[1,1,1,o.shape[0]]),m)),h),i.shape):K(X(X(e,w),h),i.shape),v=()=>{let k=X(X(w,Ce(-1)),b);return o.rank===1&&(k=$e(k,d)),K(k,o.shape)},N=()=>{let k=X(X(L,f),b);return o.rank===1&&(k=$e(k,d)),K(k,o.shape)},O=()=>{const k=X(f,w);let F=X(e,k);return o.rank===1&&(F=$e(F,d)),K(F,o.shape)},E=()=>{let k=e;return o.rank===1&&(k=$e(k,d)),K(k,o.shape)};return{x,mean:v,variance:N,scale:O,offset:E}}};const sP={kernelName:iy,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{const[s,i]=t,{axis:o}=n,a=qe(o,s.shape)[0],c=()=>{const h=s.shape,d=i.size,m=h.slice(0,a),f=m.length,b=h.slice(o,h.length).slice(1),w=b.length,L=ZA(0,f),x=ZA(f+1,f+1+w),v=QA([m,[d],b]),N=K(e,v),O=K(i,[d]),E=QA([[f],L,x]),k=Ye(N,E);let F=Gb(k,O,s.shape[a]);const U=sh(E);return F=Ye(F,U),F};return{x:c,indices:()=>i}}};function ZA(e,t){const n=[];for(let s=e;s<t;++s)n.push(s);return n}function QA(e){const t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}const iP={kernelName:ry,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t;return{a:()=>et(n),b:()=>et(s)}}};const rP={kernelName:xl,gradFunc:e=>({x:()=>Ae(e,"float32")})};const oP={kernelName:Tl,gradFunc:e=>({x:()=>et(e)})};const aP={kernelName:Al,gradFunc:e=>({x:()=>et(e)})};const cP={kernelName:vl,gradFunc:e=>({x:()=>et(e)})};const lP={kernelName:Cl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>We(e,be(n,1))}}};const hP={kernelName:Nl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>We(e,Ae(n,"float32"))}}};const uP={kernelName:oy,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{const[s]=t,{axis:i}=n;return{logits:()=>{const o=!0,a=Is(s);return Re(e,X($e(e,i,o),a))}}}};function dP(e,t,n,s=5,i=1,o=1,a=.5){const c=m=>m.LRNGrad(n,e,t,s,i,o,a),h={x:e,y:t,dy:n},d={depthRadius:s,bias:i,alpha:o,beta:a};return G.runKernelFunc(c,h,null,Gx,d)}const pP=z({localResponseNormalizationBackprop_:dP});const mP={kernelName:ay,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{const[s,i]=t,{depthRadius:o,bias:a,alpha:c,beta:h}=n;return{x:()=>pP(s,i,e,o,a,c,h)}}};function ev(e,t,n,s){return t.rank<n.rank&&(t=K(t,vn(t.shape,s))),e.rank<n.rank&&(e=K(e,vn(e.shape,s))),{x:()=>{const i=X(e,Ae(Xs(n,t),e.dtype));return i}}}const tv={kernelName:Rl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{const s=n,{reductionIndices:i}=s,o=t[0],a=t[1],c=qe(i,o.shape),h=ev(e,a,o,c);return{x:()=>h.x()}}};const fP={kernelName:cy,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=()=>X(e,Ae(Zi(n,s),"float32")),o=()=>X(e,Ae(ph(n,s),"float32"));return{a:i,b:o}}};function gP(e,t,n,s,i,o=[1,1,1],a,c){const h=W(e,"dy","maxPool3dBackprop"),d=W(t,"input","maxPool3dBackprop"),m=W(n,"output","maxPool3dBackprop");let f=h,b=d,w=m,L=!1;d.rank===4&&(L=!0,f=K(h,[1,h.shape[0],h.shape[1],h.shape[2],h.shape[3]]),b=K(d,[1,d.shape[0],d.shape[1],d.shape[2],d.shape[3]]),w=K(m,[1,m.shape[0],m.shape[1],m.shape[2],m.shape[3]])),A(f.rank===5,()=>`Error in maxPool3dBackprop: dy must be rank 5 but got rank ${f.rank}.`),A(b.rank===5,()=>`Error in maxPool3dBackprop: input must be rank 5 but got rank ${b.rank}.`),A(w.rank===5,()=>`Error in maxPool3dBackprop: output must be rank 5 but got rank ${w.rank}.`),A(cn(i,o),()=>`Error in maxPool3dBackprop: Either strides or dilations must be 1. Got strides ${i} and dilations '${o}'`),c!=null&&A(Le(a),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${c} but got pad ${a}.`);const x=E=>{const k=oh(b.shape,s,i,o,a,c);return E.maxPool3dBackprop(f,b,w,k)},v={dy:f,input:b,output:w},N={filterSize:s,strides:i,dilations:o,pad:a,dimRoundingMode:c},O=G.runKernelFunc(x,v,null,Yx,N);return L?K(O,[O.shape[1],O.shape[2],O.shape[3],O.shape[4]]):O}const yP=z({maxPool3dBackprop_:gP});const bP={kernelName:ly,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{const[s,i]=t,{filterSize:o,strides:a,dilations:c,pad:h,dimRoundingMode:d}=n,m=c==null?[1,1,1]:c;return{x:()=>yP(e,s,i,o,a,m,h,d)}}};function wP(e,t,n,s,i,o,a){const c=W(e,"dy","maxPoolBackprop"),h=W(t,"input","maxPoolBackprop"),d=W(n,"output","maxPoolBackprop");A(h.rank===c.rank,()=>`Rank of input (${h.rank}) does not match rank of dy (${c.rank})`),A(c.rank===4,()=>`Error in maxPoolBackprop: dy must be rank 4 but got rank ${c.rank}.`),A(h.rank===4,()=>`Error in maxPoolBackprop: input must be rank 4 but got rank ${h.rank}.`),a!=null&&A(Le(o),()=>`Error in maxPoolBackprop: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);const m=w=>{const L=Un(h.shape,s,i,1,o,a);return w.maxPoolBackprop(c,h,d,L)},f={dy:c,input:h,output:d},b={filterSize:s,strides:i,pad:o,dimRoundingMode:a};return G.runKernelFunc(m,f,null,bd,b)}const LP=z({maxPoolBackprop_:wP});const SP={kernelName:Ol,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{const[s,i]=t,{filterSize:o,strides:a,pad:c}=n;return{x:()=>LP(e,s,i,o,a,c)}}};const IP={kernelName:uy,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{const s=n,{axis:i}=s,[o,a]=t,c=qe(i,o.shape),h=ev(e,a,o,c);return{x:()=>h.x()}}};const xP={kernelName:dy,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=()=>X(e,Ae(Ur(n,s),"float32")),o=()=>X(e,Ae(xs(n,s),"float32"));return{a:i,b:o}}};const TP={kernelName:El,inputsToSave:["x"],gradFunc:(e,t,n)=>{const s=t[0],{paddings:i}=n,o=i.map(a=>a[0]);return{x:()=>tt(e,o,s.shape)}}};const AP={kernelName:py,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=nt(n.shape,s.shape),o=()=>{const c=pn(n.shape,i);return c.length>0?K($e(e,c),n.shape):e},a=()=>{const c=X(e,Ht(Ma(We(n,s)))),h=pn(s.shape,i);return h.length>0?K($e(c,h),s.shape):c};return{a:o,b:a}}};const vP={kernelName:Ta,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=nt(n.shape,s.shape),o=()=>{const c=X(e,Ae(s,"float32")),h=pn(n.shape,i);return h.length>0?K($e(c,h),n.shape):c},a=()=>{const c=X(e,Ae(n,"float32")),h=pn(s.shape,i);return h.length>0?K($e(c,h),s.shape):c};return{a:o,b:a}}};const NP={kernelName:my,gradFunc:e=>({x:()=>Ht(e)})};const CP={kernelName:yy,inputsToSave:["indices"],gradFunc:(e,t)=>{const n=t[0];return{indices:()=>dt(n.shape,"float32")}}};const RP={kernelName:gy,gradFunc:e=>({x:()=>et(e)})};const nv={kernelName:Id,inputsToSave:["x"],gradFunc:(e,t,n)=>{const s=t[0],{paddings:i}=n,o=i.map(a=>a[0]);return{x:()=>tt(e,o,s.shape)}}};const OP={kernelName:by,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{const[n,s,i]=t,o=n,a=s,c=nt(o.shape,a.shape),h=()=>{const m=Ae(a,"float32");let f=X(e,X(m,Zs(o,Re(m,Ce(1)))));const b=pn(o.shape,c);return b.length>0&&(f=$e(f,b)),K(f,o.shape)},d=()=>{const m=xs(o,0),f=Bn(m,cs(o),et(o));let b=X(e,X(i,f));const w=pn(a.shape,c);return w.length>0&&(b=$e(b,w)),K(b,a.shape)};return{a:h,b:d}}};const EP={kernelName:xd,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{const[n,s]=t,i=xs(n,0);return{x:()=>Bn(i,e,X(e,s)),alpha:()=>{let o=Bn(i,et(e),X(e,n));const a=pn(s.shape,e.shape);return a.length>0&&(o=$e(o,a)),K(o,s.shape)}}}};const DP={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>We(e,Ht(At(n)))}}};const kP={kernelName:Wl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t,s=X(Ur(n,6),ja(n));return{x:()=>X(e,Ae(s,"float32"))}}};const FP={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,Ae(ja(n),"float32"))}}};const _P={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>K(e,n.shape)}}};const WP={kernelName:Ly,inputsToSave:["images"],gradFunc:(e,t,n)=>{const[s]=t,i=c=>{const{alignCorners:h}=n;return c.resizeBilinearBackprop(e,s,h)},o={images:s},a=()=>G.runKernelFunc(i,o,null,Kx,n);return{images:a}}};const $P={kernelName:wy,inputsToSave:["images"],gradFunc:(e,t,n)=>{const[s]=t,i=c=>{const{alignCorners:h}=n;return c.resizeNearestNeighborBackprop(e,s,h)},o={images:s},a=()=>G.runKernelFunc(i,o,null,jx,n);return{images:a}}};const UP={kernelName:Sy,gradFunc:(e,t,n)=>{const{dims:s}=n,i=qe(s,e.shape);return{x:()=>Ts(e,i)}}};const BP={kernelName:$l,gradFunc:e=>({x:()=>et(e)})};const MP={kernelName:Ul,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>Ht(We(e,X(Zs(n,1.5),2)))}}};const PP={kernelName:Iy,inputsToSave:["condition"],gradFunc:(e,t)=>{const[n]=t;return{condition:()=>Ae(et(n),"float32"),t:()=>X(e,Ae(n,e.dtype)),e:()=>X(e,Ae(mh(n),e.dtype))}}};const zP={kernelName:Bl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>{const s=xs(n,Ce(0)),i=Ce(Wp),o=Ce($p),a=X(e,o),c=X(X(e,i),Is(Ae(n,"float32")));return Bn(s,a,c)}}}};const VP={kernelName:zl,outputsToSave:[!0],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,X(n,Re(Ce(1),n)))}}};const GP={kernelName:Pl,gradFunc:e=>({x:()=>et(e)})};const YP={kernelName:Aa,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(hh(Ae(n,"float32")),e)}}};const HP={kernelName:Ml,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(op(Ae(n,"float32")),e)}}};const qP={kernelName:Ad,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{begin:i,size:o}=n,a=s.shape,[c,h]=Kd(s,i,o),d=[];for(let m=0;m<e.rank;m++)d.push([c[m],a[m]-c[m]-h[m]]);return{x:()=>vi(e,d)}}};const jP={kernelName:Ay,outputsToSave:[!0],gradFunc:(e,t,n)=>{const[s]=t,{dim:i}=n,o=!0,a=X(e,s);return{logits:()=>Re(a,X($e(a,[i],o),s))}}};const KP={kernelName:Vl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,Ti(n))}}};const sv={kernelName:vd,gradFunc:(e,t,n)=>{const{blockShape:s,paddings:i}=n;return{x:()=>ch(e,s,i)}}};const iv={kernelName:Ty,gradFunc:(e,t,n)=>{const{axis:s}=n;return{x:()=>Yt(e,s)}}};const XP={kernelName:Gl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>We(e,X(Nn(Ae(n,"float32")),2))}}};const JP={kernelName:Nd,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,X(Ae(n,"float32"),2))}}};const ZP={kernelName:va,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=Ce(2),o=()=>X(e,X(i,Re(n,s))),a=()=>X(e,X(i,Re(s,n)));return{a:o,b:a}}};const QP={kernelName:ql,gradFunc:e=>({x:()=>et(e)})};const ez={kernelName:Na,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=nt(n.shape,s.shape),o=()=>{let c=e;const h=pn(n.shape,i);return h.length>0&&(c=$e(c,h)),K(c,n.shape)},a=()=>{let c=e;const h=pn(s.shape,i);return h.length>0&&(c=$e(c,h)),K(Ht(c),s.shape)};return{a:o,b:a}}};const tz={kernelName:xy,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,i=s.shape.slice(),{axis:o}=n,a=qe(o,s.shape);a.forEach(d=>{i[d]=1});const c=K(e,i),h=X(c,Js(s.shape,"float32"));return{x:()=>h}}};const nz={kernelName:Ca,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>We(e,At(hh(n)))}}};const sz={kernelName:Yl,outputsToSave:[!0],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(Re(Ce(1),At(n)),e)}}};const iz={kernelName:vy,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{reps:i}=n,o=()=>{let a=et(s);if(s.rank===1)for(let c=0;c<i[0];++c)a=be(a,tt(e,[c*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let c=0;c<i[0];++c)for(let h=0;h<i[1];++h)a=be(a,tt(e,[c*s.shape[0],h*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let c=0;c<i[0];++c)for(let h=0;h<i[1];++h)for(let d=0;d<i[2];++d)a=be(a,tt(e,[c*s.shape[0],h*s.shape[1],d*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let c=0;c<i[0];++c)for(let h=0;h<i[1];++h)for(let d=0;d<i[2];++d)for(let m=0;m<i[3];++m)a=be(a,tt(e,[c*s.shape[0],h*s.shape[1],d*s.shape[2],m*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return a};return{x:o}}};const rz={kernelName:Hl,gradFunc:(e,t,n)=>{const s=n,{perm:i}=s,o=sh(i);return{x:()=>Ye(e,o)}}};const oz={kernelName:Ny,gradFunc:(e,t,n)=>{const s=n,{axis:i}=s;return{value:()=>es(e,i)}}};const az={kernelName:Cy,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{const[n]=t,s=()=>cz(e,n);return{x:s}}};function cz(e,t){const n=$s(t,et(t)),s=Pa(e,n);let i=Zi(t,Ce(0,"int32"));const o=s.rank-i.rank;for(let c=0;c<o;++c)i=Zn(i,c+1);i=Us(i,Js(s.shape,"bool"));const a=et(s);return Bn(i,s,a)}const lz={kernelName:Ry,gradFunc:e=>({x:()=>et(e)})};const hz=[mM,fM,gM,yM,bM,wM,LM,SM,IM,xM,TM,AM,CM,EM,DM,kM,FM,_M,WM,$M,UM,MM,BM,VM,GM,YM,HM,qM,jM,KM,XM,JM,ZM,QM,tP,eP,nP,sP,iP,rP,oP,aP,cP,lP,hP,uP,mP,tv,tv,fP,bP,SP,IP,xP,TP,AP,vP,NP,CP,RP,nv,nv,OP,EP,DP,kP,FP,_P,WP,$P,UP,BP,MP,PP,zP,VP,GP,YP,HP,qP,jP,KP,sv,sv,iv,iv,XP,ZP,JP,QP,ez,tz,nz,sz,iz,rz,oz,az,lz];for(const e of hz)eT(e);ee.prototype.abs=function(){return this.throwIfDisposed(),dn(this)};ee.prototype.acos=function(){return this.throwIfDisposed(),ob(this)};ee.prototype.acosh=function(){return this.throwIfDisposed(),ab(this)};ee.prototype.addStrict=function(e){return this.throwIfDisposed(),SA(this,e)};ee.prototype.add=function(e){return this.throwIfDisposed(),be(this,e)};ee.prototype.all=function(e,t){return this.throwIfDisposed(),Qd(this,e,t)};ee.prototype.any=function(e,t){return this.throwIfDisposed(),ih(this,e,t)};ee.prototype.argMax=function(e){return this.throwIfDisposed(),rh(this,e)};ee.prototype.argMin=function(e){return this.throwIfDisposed(),lb(this,e)};ee.prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),K(this,[])};ee.prototype.asType=function(e){return this.throwIfDisposed(),Ae(this,e)};ee.prototype.as1D=function(){return this.throwIfDisposed(),K(this,[this.size])};ee.prototype.as2D=function(e,t){return this.throwIfDisposed(),K(this,[e,t])};ee.prototype.as3D=function(e,t,n){return this.throwIfDisposed(),K(this,[e,t,n])};ee.prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),K(this,[e,t,n,s])};ee.prototype.as5D=function(e,t,n,s,i){return this.throwIfDisposed(),K(this,[e,t,n,s,i])};ee.prototype.asin=function(){return this.throwIfDisposed(),hb(this)};ee.prototype.asinh=function(){return this.throwIfDisposed(),ub(this)};ee.prototype.atan=function(){return this.throwIfDisposed(),db(this)};ee.prototype.atan2=function(e){return this.throwIfDisposed(),pb(this,e)};ee.prototype.atanh=function(){return this.throwIfDisposed(),mb(this)};ee.prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),ah(this,e,t,n,s)};ee.prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),ch(this,e,t)};ee.prototype.batchNorm=function(e,t,n,s,i){return this.throwIfDisposed(),No(this,e,t,n,s,i)};ee.prototype.broadcastTo=function(e){return this.throwIfDisposed(),lh(this,e)};ee.prototype.cast=function(e){return this.throwIfDisposed(),Ae(this,e)};ee.prototype.ceil=function(){return this.throwIfDisposed(),bb(this)};ee.prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Jn(this,e,t)};ee.prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof ee&&(e=[e]),Yt([this,...e],t)};ee.prototype.conv1d=function(e,t,n,s,i,o){return this.throwIfDisposed(),ip(this,e,t,n,s,i,o)};ee.prototype.conv2dTranspose=function(e,t,n,s,i){return this.throwIfDisposed(),rp(this,e,t,n,s,i)};ee.prototype.conv2d=function(e,t,n,s,i,o){return this.throwIfDisposed(),Ji(this,e,t,n,s,i,o)};ee.prototype.cos=function(){return this.throwIfDisposed(),hh(this)};ee.prototype.cosh=function(){return this.throwIfDisposed(),op(this)};ee.prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),ap(this,e,t,n)};ee.prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Sb(this,e,t)};ee.prototype.depthwiseConv2D=function(e,t,n,s,i,o){return un("depthwiseConv2D is deprecated, use depthwiseConv2d instead"),this.throwIfDisposed(),Co(this,e,t,n,s,i,o)};ee.prototype.depthwiseConv2d=function(e,t,n,s,i,o){return this.throwIfDisposed(),Co(this,e,t,n,s,i,o)};ee.prototype.dilation2d=function(e,t,n,s,i){return this.throwIfDisposed(),Ib(this,e,t,n,s,i)};ee.prototype.divNoNan=function(e){return this.throwIfDisposed(),xb(this,e)};ee.prototype.divStrict=function(e){return this.throwIfDisposed(),IA(this,e)};ee.prototype.div=function(e){return this.throwIfDisposed(),We(this,e)};ee.prototype.dot=function(e){return this.throwIfDisposed(),tA(this,e)};ee.prototype.elu=function(){return this.throwIfDisposed(),Ua(this)};ee.prototype.equalStrict=function(e){return this.throwIfDisposed(),fA(this,e)};ee.prototype.equal=function(e){return this.throwIfDisposed(),Xs(this,e)};ee.prototype.erf=function(){return this.throwIfDisposed(),Tb(this)};ee.prototype.exp=function(){return this.throwIfDisposed(),Is(this)};ee.prototype.expandDims=function(e){return this.throwIfDisposed(),Zn(this,e)};ee.prototype.expm1=function(){return this.throwIfDisposed(),Ab(this)};ee.prototype.fft=function(){return this.throwIfDisposed(),Lh(this)};ee.prototype.flatten=function(){return this.throwIfDisposed(),K(this,[this.size])};ee.prototype.floor=function(){return this.throwIfDisposed(),Ma(this)};ee.prototype.floorDiv=function(e){return this.throwIfDisposed(),Zd(this,e)};ee.prototype.gather=function(e,t){return this.throwIfDisposed(),Pa(this,e,t)};ee.prototype.greaterEqualStrict=function(e){return this.throwIfDisposed(),gA(this,e)};ee.prototype.greaterEqual=function(e){return this.throwIfDisposed(),Zi(this,e)};ee.prototype.greaterStrict=function(e){return this.throwIfDisposed(),yA(this,e)};ee.prototype.greater=function(e){return this.throwIfDisposed(),xs(this,e)};ee.prototype.ifft=function(){return this.throwIfDisposed(),qa(this)};ee.prototype.irfft=function(){return this.throwIfDisposed(),xp(this)};ee.prototype.isFinite=function(){return this.throwIfDisposed(),sA(this)};ee.prototype.isInf=function(){return this.throwIfDisposed(),iA(this)};ee.prototype.isNaN=function(){return this.throwIfDisposed(),rA(this)};ee.prototype.leakyRelu=function(e){return this.throwIfDisposed(),lp(this,e)};ee.prototype.lessEqualStrict=function(e){return this.throwIfDisposed(),bA(this,e)};ee.prototype.lessEqual=function(e){return this.throwIfDisposed(),Ur(this,e)};ee.prototype.lessStrict=function(e){return this.throwIfDisposed(),wA(this,e)};ee.prototype.less=function(e){return this.throwIfDisposed(),ph(this,e)};ee.prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),Nb(this,e,t,n,s)};ee.prototype.logSigmoid=function(){return this.throwIfDisposed(),aA(this)};ee.prototype.logSoftmax=function(e){return this.throwIfDisposed(),dp(this,e)};ee.prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Rb(this,e,t)};ee.prototype.log=function(){return this.throwIfDisposed(),cs(this)};ee.prototype.log1p=function(){return this.throwIfDisposed(),hp(this)};ee.prototype.logicalAnd=function(e){return this.throwIfDisposed(),Us(this,e)};ee.prototype.logicalNot=function(){return this.throwIfDisposed(),mh(this)};ee.prototype.logicalOr=function(e){return this.throwIfDisposed(),pp(this,e)};ee.prototype.logicalXor=function(e){return this.throwIfDisposed(),cA(this,e)};ee.prototype.matMul=function(e,t,n){return this.throwIfDisposed(),ct(this,e,t,n)};ee.prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),fh(this,e,t,n,s)};ee.prototype.max=function(e,t){return this.throwIfDisposed(),Qn(this,e,t)};ee.prototype.maximumStrict=function(e){return this.throwIfDisposed(),xA(this,e)};ee.prototype.maximum=function(e){return this.throwIfDisposed(),$s(this,e)};ee.prototype.mean=function(e,t){return this.throwIfDisposed(),qt(this,e,t)};ee.prototype.min=function(e,t){return this.throwIfDisposed(),Va(this,e,t)};ee.prototype.minimumStrict=function(e){return this.throwIfDisposed(),TA(this,e)};ee.prototype.minimum=function(e){return this.throwIfDisposed(),Oo(this,e)};ee.prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Eb(this,e,t)};ee.prototype.modStrict=function(e){return this.throwIfDisposed(),AA(this,e)};ee.prototype.mod=function(e){return this.throwIfDisposed(),mp(this,e)};ee.prototype.mulStrict=function(e){return this.throwIfDisposed(),vA(this,e)};ee.prototype.mul=function(e){return this.throwIfDisposed(),X(this,e)};ee.prototype.neg=function(){return this.throwIfDisposed(),Ht(this)};ee.prototype.norm=function(e,t,n){return this.throwIfDisposed(),vp(this,e,t,n)};ee.prototype.notEqualStrict=function(e){return this.throwIfDisposed(),LA(this,e)};ee.prototype.notEqual=function(e){return this.throwIfDisposed(),Br(this,e)};ee.prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),To(this,e,t,n)};ee.prototype.onesLike=function(){return this.throwIfDisposed(),Fn(this)};ee.prototype.pad=function(e,t){return this.throwIfDisposed(),vi(this,e,t)};ee.prototype.pool=function(e,t,n,s,i){return this.throwIfDisposed(),uA(this,e,t,n,s,i)};ee.prototype.powStrict=function(e){return this.throwIfDisposed(),NA(this,e)};ee.prototype.pow=function(e){return this.throwIfDisposed(),Zs(this,e)};ee.prototype.prelu=function(e){return this.throwIfDisposed(),yh(this,e)};ee.prototype.prod=function(e,t){return this.throwIfDisposed(),gp(this,e,t)};ee.prototype.reciprocal=function(){return this.throwIfDisposed(),_b(this)};ee.prototype.relu=function(){return this.throwIfDisposed(),Ni(this)};ee.prototype.relu6=function(){return this.throwIfDisposed(),Wb(this)};ee.prototype.reshapeAs=function(e){return this.throwIfDisposed(),K(this,e.shape)};ee.prototype.reshape=function(e){return this.throwIfDisposed(),K(this,e)};ee.prototype.resizeBilinear=function(e,t){return this.throwIfDisposed(),PA(this,e,t)};ee.prototype.resizeNearestNeighbor=function(e,t){return this.throwIfDisposed(),zA(this,e,t)};ee.prototype.reverse=function(e){return this.throwIfDisposed(),Ts(this,e)};ee.prototype.rfft=function(){return this.throwIfDisposed(),Sh(this)};ee.prototype.round=function(){return this.throwIfDisposed(),$b(this)};ee.prototype.rsqrt=function(){return this.throwIfDisposed(),yp(this)};ee.prototype.selu=function(){return this.throwIfDisposed(),bp(this)};ee.prototype.separableConv2d=function(e,t,n,s,i,o){return this.throwIfDisposed(),Ub(this,e,t,n,s,i,o)};ee.prototype.sigmoid=function(){return this.throwIfDisposed(),Ti(this)};ee.prototype.sign=function(){return this.throwIfDisposed(),Bb(this)};ee.prototype.sin=function(){return this.throwIfDisposed(),wp(this)};ee.prototype.sinh=function(){return this.throwIfDisposed(),Lp(this)};ee.prototype.slice=function(e,t){return this.throwIfDisposed(),tt(this,e,t)};ee.prototype.softmax=function(e){return this.throwIfDisposed(),Fo(this,e)};ee.prototype.softplus=function(){return this.throwIfDisposed(),za(this)};ee.prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),gh(this,e,t)};ee.prototype.split=function(e,t){return this.throwIfDisposed(),hs(this,e,t)};ee.prototype.sqrt=function(){return this.throwIfDisposed(),Nn(this)};ee.prototype.square=function(){return this.throwIfDisposed(),At(this)};ee.prototype.squaredDifference=function(e){return this.throwIfDisposed(),Ih(this,e)};ee.prototype.squaredDifferenceStrict=function(e){return this.throwIfDisposed(),CA(this,e)};ee.prototype.squeeze=function(e){return this.throwIfDisposed(),Mr(this,e)};ee.prototype.stack=function(e,t){this.throwIfDisposed();const n=e instanceof ee?[this,e]:[this,...e];return es(n,t)};ee.prototype.step=function(e){return this.throwIfDisposed(),ja(this,e)};ee.prototype.stridedSlice=function(e,t,n,s,i,o,a,c){return this.throwIfDisposed(),Pb(this,e,t,n,s,i,o,a,c)};ee.prototype.subStrict=function(e){return this.throwIfDisposed(),RA(this,e)};ee.prototype.sub=function(e){return this.throwIfDisposed(),Re(this,e)};ee.prototype.sum=function(e,t){return this.throwIfDisposed(),$e(this,e,t)};ee.prototype.tan=function(){return this.throwIfDisposed(),zb(this)};ee.prototype.tanh=function(){return this.throwIfDisposed(),$a(this)};ee.prototype.tile=function(e){return this.throwIfDisposed(),$r(this,e)};ee.prototype.toBool=function(){return this.throwIfDisposed(),Ae(this,"bool")};ee.prototype.toFloat=function(){return this.throwIfDisposed(),Ae(this,"float32")};ee.prototype.toInt=function(){return this.throwIfDisposed(),Ae(this,"int32")};ee.prototype.topk=function(e,t){return this.throwIfDisposed(),Vb(this,e,t)};ee.prototype.transpose=function(e){return this.throwIfDisposed(),Ye(this,e)};ee.prototype.unique=function(e){return this.throwIfDisposed(),Tp(this,e)};ee.prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Gb(this,e,t)};ee.prototype.unstack=function(e){return this.throwIfDisposed(),Qs(this,e)};ee.prototype.where=function(e,t){return this.throwIfDisposed(),Bn(e,this,t)};ee.prototype.zerosLike=function(){return this.throwIfDisposed(),et(this)};let Up;function mn(){return Up==null&&(Up=GT().epsilon()),Up}function Cee(e){Up=e}function ei(){return"channelsLast"}class nr extends Error{constructor(e){super(e);Object.setPrototypeOf(this,nr.prototype)}}class ti extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ti.prototype)}}class q extends Error{constructor(e){super(e);Object.setPrototypeOf(this,q.prototype)}}class Pe extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Pe.prototype)}}class rv extends Error{constructor(e){super(e);Object.setPrototypeOf(this,rv.prototype)}}class uz extends Error{constructor(e){super(e);Object.setPrototypeOf(this,uz.prototype)}}function $o(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{const n=new Array(t);return n.fill(e),n}}function As(e,t){if(!e)throw new rv(t)}function ov(e,t){let n=0;for(const s of e)s===t&&n++;return n}function ts(e){return e.length===1?e[0]:e}function Et(e){return Array.isArray(e)?e:[e]}function Ree(e){const t=Et(e);let n="";for(const s of t){if(s.id==null)throw new q(`Object ${s} passed to objectListUid without an id`);n!==""&&(n=n+", "),n=`${n}${Math.abs(s.id)}`}return n}function sr(e){const t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2"),n=t.replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Uo(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}let Bs={};function dw(e){if(e==null)return null;const t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function pw(e){if(e==null||typeof e!="object")return;if(Array.isArray(e))e.forEach(t=>pw(t));else{const t=Object.keys(e);for(const n of t){const s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:pw(s))}}}function kh(e,t={},n={},s="object",i=!1){if(typeof e=="string"){const o=e;let a;if(o in n)a=n[o];else if(o in Bs)a=Bs[o];else if(a=t[o],a==null)throw new q(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{const o=e;if(o.className==null||o.config==null)throw new q(`${s}: Improper config format: ${JSON.stringify(o)}.
|
|
'className' and 'config' must set.`);const a=o.className;let c,h;if(a in n?[c,h]=n[a]:a in Bs?[c,h]=Bs.className:a in t&&([c,h]=t[a]),c==null)throw new q(`Unknown ${s}: ${a}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(h!=null){const d={};for(const w of Object.keys(Bs))d[w]=Bs[w];for(const w of Object.keys(n))d[w]=n[w];const m=o.config;m.customObjects=d;const f=Object.assign({},Bs);for(const w of Object.keys(n))Bs[w]=n[w];pw(o.config);const b=h(c,o.config,n,i);return Bs=Object.assign({},f),b}else{const d=Object.assign({},Bs);for(const f of Object.keys(n))Bs[f]=n[f];const m=new c(o.config);return Bs=Object.assign({},d),m}}}function dz(e,t){return e<t?-1:e>t?1:0}function Bp(e,t){return-1*dz(e,t)}function Oee(e){switch(e){case"float32":return"float32";default:throw new q(`Invalid dtype: ${e}`)}}function Eee(e,t){if(e==null||t==null)return e===t;if(e.length!==t.length)return!1;for(let n=0;n<e.length;++n)if(e[n]!==t[n])return!1;return!0}function Vr(e){if(e==null)return e;const t=[];for(const n of e)t.indexOf(n)===-1&&t.push(n);return t}function pz(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(const t in e)if(e.hasOwnProperty(t))return!1;return!0}function Qa(e,t,n){if(n==null)return;if(e.indexOf(n)<0)throw new q(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function mw(e,t,n=0,s=Infinity){return As(n>=0),As(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(i=>typeof i===t)}function wn(e,t){Array.isArray(e)?(A(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>wn(n,`element ${s+1} of ${t}`))):A(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${av(e)}.`)}function av(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>av(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function mz(e,t){let n=jn(),s;const i=(...o)=>{const a=jn();return a-n<t||(n=a,s=e(...o)),s};return i}function cv(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function Dee(...e){As(e.length>0,"arrayOfValues is empty");for(const t of e)As(Array.isArray(t),"one of the values is not an array"),As(t.length>0,"one of the values is empty");return e.reduce((t,n)=>t.length===0?n.map(s=>[s]):n.map(s=>t.map(i=>[...i,s])).reduce((s,i)=>s.concat(i),[]),[])}function fw(e,t){return Q(()=>Nn($e(X(e,e),t,!0)))}class Fh extends Ao{getConfig(){return{}}}class gw extends Fh{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Q(()=>{const t=fw(e,this.axis),n=Jn(t,0,this.maxValue);return X(e,We(n,be(mn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}}gw.className="MaxNorm",fe(gw);class yw extends Fh{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Q(()=>We(e,be(mn(),fw(e,this.axis))))}getConfig(){return{axis:this.axis}}}yw.className="UnitNorm",fe(yw);class bw extends Fh{apply(e){return Ni(e)}}bw.className="NonNeg",fe(bw);class ww extends Fh{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Q(()=>{const t=fw(e,this.axis),n=be(X(this.rate,Jn(t,this.minValue,this.maxValue)),X(1-this.rate,t));return X(e,We(n,be(mn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}}ww.className="MinMaxNorm",fe(ww);const lv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function fn(e){return dw(e)}function hv(e,t={}){return kh(e,Ws.getMap().classNameMap,t,"constraint")}function gn(e){if(e==null)return null;if(typeof e=="string"){const t=e in lv?lv[e]:e,n={className:t,config:{}};return hv(n)}else return e instanceof Fh?e:hv(e)}function fz(e){return new gw(e)}function gz(e){return new yw(e)}function yz(){return new bw}function bz(e){return new ww(e)}var wz=Object.freeze({__proto__:null,maxNorm:fz,unitNorm:gz,nonNeg:yz,minMaxNorm:bz});const Lz=["channelsFirst","channelsLast"],Sz=["valid","same","causal"],Iz=["max","avg"],xz=["sum","mul","concat","ave"],kee=["temporal"];const ec=new Map;function jt(e){Qa(Lz,"DataFormat",e)}function vs(e){Qa(Sz,"PaddingMode",e)}function uv(e){Qa(Iz,"PoolMode",e)}const _h=[],dv="/";function Bo(e,t){_h.push(e);try{const n=t();return _h.pop(),n}catch(n){throw _h.pop(),n}}function Tz(){return _h.length===0?"":_h.join(dv)+dv}function pv(e){if(!fv(e))throw new Error("Not a valid tensor name: '"+e+"'");return Tz()+e}function mv(e){if(!fv(e))throw new Error("Not a valid tensor name: '"+e+"'");ec.has(e)||ec.set(e,0);const t=ec.get(e);if(ec.set(e,ec.get(e)+1),t>0){const n=`${e}_${t}`;return ec.set(n,1),n}else return e}const Az=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function fv(e){return!!e.match(Az)}function vz(e){return e===parseInt(e.toString(),10)}function Gr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let i=t;i<n;++i)s*=e[i];return s}function Mp(e){return e=Array.isArray(e)?new Float32Array(e):e,ls(e)}function tc(e){return Va(Mp(e)).dataSync()[0]}function Yr(e){return Qn(Mp(e)).dataSync()[0]}function Nz(e){return $e(Mp(e)).dataSync()[0]}function Cz(e){return Nz(e)/e.length}function Fee(e){const t=Re(Mp(e),Ce(Cz(e))),n=$e(X(t,t)).dataSync()[0];return n/e.length}function _ee(e){const t=e.slice().sort((i,o)=>i-o),n=Math.floor((t.length-1)/2),s=Math.ceil((t.length-1)/2);return n===s?t[n]:(t[n]+t[s])/2}function ni(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);const n=[];for(let s=e;s<t;++s)n.push(s);return n}let gv="webgl";function Wee(e){VT(e),gv=e}function $ee(){return gv}function Uee(){return!1}function Bee(e){const t=e.shape;return t.length>0?t.reduce((n,s)=>n*s):1}function Wh(e,t){return e.asType(t)}function $h(e,t=-1){const n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function Rz(e,t){return Q(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);const n=$h(e,1);return Iw(n,[1,t,1])})}function Oz(e){const t=[Gr(e.shape)];return e.reshape(t)}function Ez(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);const t=[e.shape[0],Gr(e.shape,1)];return e.reshape(t)}function Mo(e,t,n){return Q(()=>{switch(e.rank){case 1:return Sp(e,t,n);case 2:return Mb(e,[t,0],[n,e.shape[1]]);case 3:return Ip(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return wh(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return tt(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return tt(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Lw(e,t,n){return Q(()=>{switch(e.rank){case 1:return Sp(e,t,n);case 2:return Mb(e,[0,t],[e.shape[0],n]);case 3:return Ip(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return wh(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Pp(e,t,n,s){return Q(()=>{switch(e.rank){case 1:return Sp(e,t,n);case 2:switch(s){case 1:return Mo(e,t,n);case 2:return Lw(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Mo(e,t,n);case 2:return Ip(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Lw(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Mo(e,t,n);case 2:return wh(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return wh(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Lw(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Sw(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Yt(e,t)}function yv(e,t){switch(e.rank){case 1:return XT([e,t]);case 2:return JT([e,t],0);case 3:return ZT([e,t],0);case 4:return QT([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Iw(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return $r(e,t)}function zp(e,t=0,n=1,s,i){return Fb(e,t,n,s,i)}function Ci(e,t,n,s){if(e.rank<2||t.rank<2)throw new Pe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){const i=e.shape.slice(-1)[0],o=t.shape.slice(-2)[0];if(i!==o)throw new Pe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){const i=!1,o=!1;return Ep({a:e,b:t,transposeA:i,transposeB:o,bias:s?xw(e.rank,s,ei()):null,activation:n})}else{const i=e.shape.slice(),o=i.pop();e=e.reshape([-1,o]);const a=t.shape.slice(),c=a.pop(),h=a.pop(),d=[...a,c],m=Array.from({length:t.rank},(L,x)=>x===0?t.rank-2:x<=t.rank-2?x-1:x);t=t.transpose(m).reshape([h,-1]);const f=[...i,...d],b=!1,w=!1;return Ep({a:e,b:t,transposeA:b,transposeB:w,bias:s?xw(e.rank,s,ei()):null,activation:n}).reshape(f)}}function Mee(e){return Q(()=>{const t=et(e),n=Fn(e);return Bn(Xs(e,t),t,Bn(xs(e,et(e)),n,X(-1,n)))})}function Pee(e,t){return Q(()=>{if(e.rank!==1)throw new Error("Only 1D one-hot tensors are supported in the deeplearn backend, at present.");return e=e.toInt(),To(e,t).toFloat()})}function bv(e,t,n){return Q(()=>(Array.isArray(t)?t=ls(t,"int32"):t=t.toInt(),Pa(e,t,n)))}function Uh(e){return X(e,e)}function zee(e,t){return Q(()=>{if(typeof t=="number"&&(t=Ce(Math.round(t),"int32")),t.dtype!=="int32")throw new Pe(`Non-int32 dtype (${t.dtype}) is not supported by pow() yet`);return Zs(e,t)})}function xw(e,t,n){const s=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?t.reshape([1,s[0],1,1,1]):t.reshape([1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?t.reshape([1,1,1,1,s[0]]):t.reshape([1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?t.reshape([1,s[0],1,1]):t.reshape([1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?t.reshape([1,1,1,s[0]]):t.reshape([1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?t.reshape([1,s[0],1]):t.reshape([1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?t.reshape([1,1,s[0]]):t.reshape([1].concat(s))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ri(e,t,n){return Q(()=>(n==null&&(n=ei()),jt(n),e.add(xw(e.rank,t,n))))}function Dz(e,t=1){if(t!==1)throw new Pe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Ua(e)}function kz(e){return Q(()=>We(e,dn(e).add(1)))}function wv(e,t,n,s){return Q(()=>kA(e,t,n,s))}function Fz(e){return Q(()=>{const t=be(.5,X(.2,e));return Jn(t,0,1)})}function Bh(e,t,n=!1){return n?e():t()}const _z=["fanIn","fanOut","fanAvg"],Wz=["normal","uniform","truncatedNormal"],Vee=["Zeros","Ones","Constant","RandomNormal","RandomUniform","TruncatedNormal","VarianceScaling","Orthogonal","Identity"];function $z(e){Qa(_z,"FanMode",e)}function Uz(e){Qa(Wz,"Distribution",e)}class Ms extends Ao{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}}class Tw extends Ms{apply(e,t){return dt(e,t)}}Tw.className="Zeros",fe(Tw);class Vp extends Ms{apply(e,t){return Js(e,t)}}Vp.className="Ones",fe(Vp);class Aw extends Ms{constructor(e){super();if(typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return Q(()=>X(Ce(this.value),Js(e,t)))}getConfig(){return{value:this.value}}}Aw.className="Constant",fe(Aw);class vw extends Ms{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return ko(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}}vw.className="RandomUniform",fe(vw);class Nw extends Ms{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`randomNormal does not support dType ${t}.`);return zp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}}Nw.className="RandomNormal",fe(Nw);class Cw extends Ms{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`truncatedNormal does not support dType ${t}.`);return xh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}}Cw.className="TruncatedNormal",fe(Cw);class Rw extends Ms{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return Q(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return X(this.gain,cp(e[0]))})}getConfig(){return{gain:this.gain}}}Rw.className="Identity",fe(Rw);function Bz(e,t="channelsLast"){let n,s;if(jt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){const i=Gr(e,2);n=e[1]*i,s=e[0]*i}else if(t==="channelsLast"){const i=Gr(e,0,e.length-2);n=e[e.length-2]*i,s=e[e.length-1]*i}}else{const i=Gr(e);n=Math.sqrt(i),s=Math.sqrt(i)}return[n,s]}class ns extends Ms{constructor(e){super();if(e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,$z(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Uz(this.distribution),this.seed=e.seed}apply(e,t){const n=Bz(e),s=n[0],i=n[1];let o=this.scale;if(this.mode==="fanIn"?o/=Math.max(1,s):this.mode==="fanOut"?o/=Math.max(1,i):o/=Math.max(1,(s+i)/2),this.distribution==="normal"){const a=Math.sqrt(o);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`${this.getClassName()} does not support dType ${t}.`);return xh(e,0,a,t,this.seed)}else{const a=Math.sqrt(3*o);return ko(e,-a,a,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}}ns.className="VarianceScaling",fe(ns);class Gp extends ns{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ns.className}}Gp.className="GlorotUniform",fe(Gp);class Yp extends ns{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ns.className}}Yp.className="GlorotNormal",fe(Yp);class Hp extends ns{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ns.className}}Hp.className="HeNormal",fe(Hp);class qp extends ns{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ns.className}}qp.className="HeUniform",fe(qp);class jp extends ns{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ns.className}}jp.className="LeCunNormal",fe(jp);class Kp extends ns{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ns.className}}Kp.className="LeCunNormal",fe(Kp);class Ow extends Ms{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Pe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return Q(()=>{if(e.length<2)throw new Pe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);const n=e[0]>e[1]?[e[1],e[0]]:e,s=zp(n,0,1,"float32");let i=GA.gramSchmidt(s);return e[0]>e[1]&&(i=i.transpose()),X(this.gain,i)})}getConfig(){return{gain:this.gain,seed:this.seed}}}Ow.className="Orthogonal",fe(Ow);const Lv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Sv(e,t={}){return kh(e,Ws.getMap().classNameMap,t,"initializer")}function Kt(e){return dw(e)}function Pt(e){if(typeof e=="string"){const t=e in Lv?Lv[e]:e;if(t==="GlorotNormal")return new Yp;if(t==="GlorotUniform")return new Gp;if(t==="HeNormal")return new Hp;if(t==="HeUniform")return new qp;if(t==="LeCunNormal")return new jp;if(t==="LeCunUniform")return new Kp;{const n={};return n.className=t,n.config={},Sv(n)}}else return e instanceof Ms?e:Sv(e)}function Mz(){return new Tw}function Pz(){return new Vp}function zz(e){return new Aw(e)}function Vz(e){return new vw(e)}function Gz(e){return new Nw(e)}function Yz(e){return new Cw(e)}function Hz(e){return new Rw(e)}function qz(e){return new ns(e)}function jz(e){return new Gp(e)}function Kz(e){return new Yp(e)}function Xz(e){return new Hp(e)}function Jz(e){return new qp(e)}function Zz(e){return new jp(e)}function Qz(e){return new Kp(e)}function e3(e){return new Ow(e)}var t3=Object.freeze({__proto__:null,zeros:Mz,ones:Pz,constant:zz,randomUniform:Vz,randomNormal:Gz,truncatedNormal:Yz,identity:Hz,varianceScaling:qz,glorotUniform:jz,glorotNormal:Kz,heNormal:Xz,heUniform:Jz,leCunNormal:Zz,leCunUniform:Qz,orthogonal:e3});let n3=0;function Iv(){return n3++}const Xp={};function Jp(e=""){return e in Xp||(Xp[e]=0),Xp[e]+=1,e+Xp[e].toString()}function Ew(e){return Array.isArray(e)&&Array.isArray(e[0])}function Zp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Xe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function Nt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Qp(e){let t=0;for(const n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,i)=>s*i);return t}const xv="Variable";class si{constructor(e,t="float32",n=xv,s=!0,i=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Iv(),n=n==null?xv:n,this.originalName=pv(n),this.name=mv(this.originalName),this.trainable_=s,this.constraint=i,this.val=mA(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),s3(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}}function s3(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Gee(e,t,n,s){return new si(e,t,n,!0,s)}function Yee(e,t,n){return new si(dt(e),t,n)}function Hee(e,t,n){return new si(et(e),t,n)}function qee(e,t,n){const s=Js(e);return new si(s,t,n)}function jee(e,t,n){const s=Fn(e);return new si(s,t,n)}function Kee(e,t,n){return new si(cp(e),t,n)}function Xee(e,t,n,s,i,o="randomUniform"){return new si(ko(e,t,n,s),s,o)}function Jee(e,t=0,n=1,s,i,o="truncatedNormal"){if(s=s||"float32",s!=="float32"&&s!=="int32")throw new Pe(`randomNormal does not support dType ${s}.`);return new si(xh(e,t,n,s,i),s,o)}function Zee(e,t=0,n=1,s,i,o="randomNormal"){if(s=s||"float32",s!=="float32"&&s!=="int32")throw new Pe(`randomNormalVariable does not support dType ${s}.`);return new si(Fb(e,t,n,s,i),s,o)}function Qee(e,t){return e.write(t)}function ete(e,t){return e.write(be(e.read(),t))}function tte(e,t){return e.write(Re(e.read(),t))}function Dw(e){return e.map(t=>t.read())}function kw(e){e.forEach(t=>{const n=t[0];n.write(t[1])})}function nte(e,t){const n=t.map(i=>i.read()),s=Cb(e,n);return t.map(i=>s.grads[i.name])}class Ln{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}}class ii{constructor(e,t,n,s,i,o,a){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=i,this.outputTensorIndex=a,this.id=Iv(),o!=null&&(this.originalName=pv(o),this.name=mv(this.originalName)),this.rank=t.length}}let i3=0;class em{constructor(e,t){this.callArgs=t,this.id=i3++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(const n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){const e=[];for(const t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}}let r3=0;class lt extends Ao{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=r3++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){const n=this.getClassName();t=sr(n)+"_"+Jp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let i=null;e.batchSize!=null&&(i=e.batchSize),n=[i].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new ti(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return ts(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return ts(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new nr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new nr(`Layer ${this.name} is not connected, no input to return.`);return ts(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new nr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new nr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return ts(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Et(e),this.inputSpec==null||this.inputSpec.length===0)return;const t=Et(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){const s=e[n],i=t[n];if(i==null)continue;const o=s.rank;if(i.ndim!=null&&o!==i.ndim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${i.ndim}, found ndim=${o}`);if(i.maxNDim!=null&&o>i.maxNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${i.maxNDim}, found ndim=${o}`);if(i.minNDim!=null&&o<i.minNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${i.minNDim}, found ndim=${o}.`);if(i.dtype!=null&&s.dtype!==i.dtype)throw new q(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${i.dtype}, found dtype=${s.dtype}.`);if(i.axes){const a=s.shape;for(const c in i.axes){const h=Number(c),d=i.axes[c],m=h>=0?a[h]:a[a.length+h];if(d!=null&&[d,null].indexOf(m)===-1)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected axis ${h} of input shape to have value ${d} but got shape ${a}.`)}}if(i.shape!=null)for(let a=0;a<i.shape.length;++a){const c=i.shape[a],h=s.shape[a];if(c!=null&&h!=null&&c!==h)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected shape=${i.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();const n=Et(e);let s=!0;for(const o of n)if(!(o instanceof ii)){s=!1;break}let i=!0;for(const o of n)if(o instanceof ii){i=!1;break}if(s===i)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return Bo(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);const o=[];for(const a of Et(e))o.push(a.shape);this.build(ts(o)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&i&&(this._refCount=1)}if(this.assertInputCompatibility(e),i){let o=this.call(e,t);const a=Et(o),c=[];for(let h of a)n.indexOf(h)!==-1&&(h=h.clone()),c.push(h);if(o=ts(c),this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}else{const o=o3(e),a=this.computeOutputShape(o);let c;const h=a3(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?o[0]:o),a!=null&&a.length>0&&Array.isArray(a[0])?c=a.map((d,m)=>new ii(h,d,this,Et(e),t,this.name,m)):c=new ii(h,a,this,Et(e),t,this.name),this.addInboundNode(e,c,null,null,o,a,t),this._refCount++,this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return c}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape==null)return;if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new nr(`The layer ${this.name} has never been called and thus has no defined output shape.`);const e=[];for(const t of this.inboundNodes){const n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){const t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new nr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new ti(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Qp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Dw(e?this.trainableWeights:this.weights)}setWeights(e){Q(()=>{const t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;const n=[],s=Dw(t);for(let i=0;i<s.length;++i){const o=s[i],a=t[i],c=e[i];if(!ae(o.shape,c.shape))throw new q(`Layer weight shape ${o.shape} not compatible with provided weight shape ${c.shape}`);n.push([a,c])}kw(n)})}addWeight(e,t,n,s,i,o,a){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=Pt("zeros"));const c=s.apply(t,n),h=new si(c,n,e,o,a);return c.dispose(),i!=null&&this.addLoss(()=>i.apply(h.read())),o==null&&(o=!0),o?this._trainableWeights.push(h):this._nonTrainableWeights.push(h),h}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){if(e==null||Array.isArray(e)&&e.length===0)return;e=Et(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e)}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,i,o,a=null){const c=Et(e);t=Et(t),n=Et(n),s=Et(s),i=Zp(i),o=Zp(o);const h=[],d=[],m=[];for(const f of c)h.push(f.sourceLayer),d.push(f.nodeIndex),m.push(f.tensorIndex);new em({outboundLayer:this,inboundLayers:h,nodeIndices:d,tensorIndices:m,inputTensors:c,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:i,outputShapes:o},a);for(let f=0;f<t.length;f++)t[f].sourceLayer=this,t[f].nodeIndex=this.inboundNodes.length-1,t[f].tensorIndex=f}getConfig(){const e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}}function o3(e){e=Et(e);const t=[];for(const n of e)t.push(n.shape);return ts(t)}function a3(e){return"float32"}function Tv(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{const s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{const i=[];for(let o=0;o<s.inboundLayers.length;o++){const a=s.inputTensors[o],c=s.inboundLayers[o],h=s.nodeIndices[o],d=Tv(a,c,h);for(const m of d)i.indexOf(m)===-1&&i.push(m)}return i}}}class nc extends lt{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Jp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");const n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];const s=new ii(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new em({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}}nc.className="InputLayer",fe(nc);function Av(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;n==null&&(n="float32");const s=new nc({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}),i=s.inboundNodes[0].outputTensors;return i[0]}async function Hr(e){if(e==null)return;const t=[],n=[],s=[];for(const i in e){const o=e[i];if(typeof o!="number"){const a=o;t.push(a.data()),n.push(i),s.push(a)}}if(t.length>0){const i=await Promise.all(t);for(let o=0;o<i.length;++o)e[n[o]]=i[o][0];He(s)}}function vv(e){if(e==null)return;for(const t in e){const n=e[t];typeof n!="number"&&n.dispose()}}var Nv;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Nv||(Nv={}));const c3=125;class sc{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}}class Cv{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(const t of this.callbacks)t.setParams(e)}setModel(e){for(const t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(const n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(const n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(const n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(const n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(const t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(const t of this.callbacks)await t.onTrainEnd(e)}}class l3 extends sc{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});const n=t.size==null?0:t.size;this.seen+=n;for(const s in t){const i=t[s];if(typeof i=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+i*n;else{let o;s in this.totals?o=this.totals[s]:this.totals[s]=0;const a=Q(()=>be(this.totals[s],X(i,n)));this.totals[s]=a,o!=null&&o.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(const n of this.params.metrics){if(this.totals[n]==null)continue;typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:Q(()=>{const s=X(We(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),bn(t[n])})}}}class Rv extends sc{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(const n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){const e=[],t=[],n=[];for(const i in this.history){const o=this.history[i];for(let a=0;a<o.length;++a)if(typeof o[a]!="number"){const c=o[a];e.push(c.data()),t.push(i),n.push(a)}}const s=await Promise.all(e);for(let i=0;i<s.length;++i){const o=this.history[t[i]][n[i]];o.dispose(),this.history[t[i]][n[i]]=s[i][0]}}}class Ov extends sc{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=c3),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");Qu(this.yieldEvery)&&(this.maybeWait=mz(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){const s=[];this.yield!=null&&(await Hr(n),s.push(this.yield(e,t,n))),s.push(_p()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Hr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){const n=[];this.epochEnd!=null&&(await Hr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(_p()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Hr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){const n=[];this.batchEnd!=null&&(await Hr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(_p()):Qu(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Hr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Hr(e),await this.trainEnd(e))}}function Ev(e,t){if(e==null&&(e={}),e instanceof sc)return[e];if(Array.isArray(e)&&e[0]instanceof sc)return e;const n=Et(e);return n.map(s=>new Ov(s,t))}class Ps{constructor(){}static registerCallbackConstructor(e,t){A(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ps.checkForDuplicate(t),Ps.constructors[e]==null&&(Ps.constructors[e]=[]),Ps.constructors[e].push(t)}static checkForDuplicate(e){for(const t in Ps.constructors){const n=Ps.constructors[+t];n.forEach(s=>{if(s===e)throw new q("Duplicate callback constructor.")})}}static clear(){Ps.constructors={}}static createCallbacks(e){const t=[];for(const n in Ps.constructors){const s=+n;e>=s&&t.push(...Ps.constructors[s])}return t.map(n=>new n)}}Ps.constructors={};function Dv(e,t,n,s,i,o,a,c,h){const d=new Rv,m=[new l3,...Ps.createCallbacks(t)];e!=null&&m.push(...e),m.push(d);const f=new Cv(m);return f.setParams({epochs:n,initialEpoch:s,samples:i,steps:o,batchSize:a,verbose:t,doValidation:c,metrics:h}),{callbackList:f,history:d}}function ri(e,t={},n=!1){return kh(e,Ws.getMap().classNameMap,t,"layer",n)}function tm(e,t){return Q(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));const n=$e(Uh(e),t,!0),s=Ba(n.shape,mn()),i=Nn($s(n,s));return We(e,i)})}function ir(e,t){return Q(()=>qt(Uh(Re(t,e)),-1))}function ic(e,t){return Q(()=>qt(dn(Re(t,e)),-1))}function qr(e,t){return Q(()=>{const n=Re(e,t),s=Jn(dn(e),mn(),Number.MAX_VALUE),i=dn(We(n,s));return X(100,qt(i,-1))})}function Fw(e,t){return Q(()=>{const n=Jn(t,mn(),Number.MAX_VALUE),s=cs(be(1,n)),i=Jn(e,mn(),Number.MAX_VALUE),o=cs(be(1,i));return qt(Uh(Re(s,o)),-1)})}function h3(e,t){return Q(()=>{const n=$s(0,Re(1,X(e,t)));return qt(Uh(n),-1)})}function u3(e,t){return Q(()=>{const n=$s(0,Re(1,X(e,t)));return qt(n,-1)})}function d3(e,t){return Q(()=>{const n=$e(X(e,t),-1),s=Qn(X(Re(1,e),t),-1);return $s(0,be(1,Re(s,n)))})}function p3(e,t){return Q(()=>{const n=Math.log(2),s=Re(t,e),i=Re(be(s,za(X(-2,s))),n);return qt(i,-1)})}function Mh(e,t,n=!1){return Q(()=>{if(n)t=Fo(t);else{const s=$e(t,t.shape.length-1,!0);t=We(t,s)}return t=Jn(t,mn(),1-mn()),Ht($e(X(e.toFloat(),cs(t)),t.shape.length-1))})}function nm(e,t,n=!1){return Q(()=>{const s=Ma(Oz(e)).toInt();t=Jn(t,mn(),1-mn());const i=t.shape,o=To(s,i[i.length-1]).reshape(i);return Mh(o,t,n)})}function m3(e,t){if(!ae(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return Q(()=>{const n=t.relu(),s=t.abs().neg();return n.sub(t.mul(e)).add(s.exp().log1p())})}function sm(e,t){return Q(()=>{let n;return n=Jn(t,mn(),1-mn()),n=cs(We(n,Re(1,n))),qt(m3(e,n),-1)})}function _w(e,t){return Q(()=>{const n=Jn(e,mn(),1),s=Jn(t,mn(),1);return $e(X(e,cs(We(n,s))),-1)})}function f3(e,t){return Q(()=>{const n=cs(be(mn(),t));return qt(Re(t,X(e,n)),-1)})}function im(e,t){return Q(()=>{const n=tm(e,-1),s=tm(t,-1),i=X(n,s);return Ht($e(i,-1))})}const ste=ir,ite=ir,rte=ic,ote=ic,ate=qr,cte=qr,lte=Fw,hte=Fw,ute=_w,dte=_w,pte=im,rm={meanSquaredError:ir,meanAbsoluteError:ic,meanAbsolutePercentageError:qr,meanSquaredLogarithmicError:Fw,squaredHinge:h3,hinge:u3,categoricalHinge:d3,logcosh:p3,categoricalCrossentropy:Mh,sparseCategoricalCrossentropy:nm,binaryCrossentropy:sm,kullbackLeiblerDivergence:_w,poisson:f3,cosineProximity:im};function Ww(e){if(typeof e=="string"){if(e in rm)return rm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function $w(e,t){return Q(()=>{const n=X(.5,Fn(t)),s=Wh(xs(t,n),e.dtype);return qt(Xs(e,s),-1)})}function Uw(e,t){return Q(()=>Wh(Xs(rh(e,-1),rh(t,-1)),"float32"))}function kv(e,t){return Q(()=>Us(e.equal(1),t.equal(1)).sum().cast("float32"))}function g3(e,t){return Q(()=>Us(e.equal(1),t.equal(0)).sum().cast("float32"))}function y3(e,t){return Q(()=>Us(e.equal(0),t.equal(1)).sum().cast("float32"))}function Fv(e,t){return Q(()=>{const n=kv(e,t),s=y3(e,t),i=n.add(s);return Bn(xs(i,0),n.div(i),0).cast("float32")})}function b3(e,t){return Q(()=>{const n=kv(e,t),s=g3(e,t),i=n.add(s);return Bn(xs(i,0),n.div(i),0).cast("float32")})}function _v(e,t){return sm(e,t)}function Wv(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Xs(e,t).asType("float32")}function mte(e,t){throw new Pe}function fte(e,t){throw new Pe}const w3=ir,L3=ir,S3=ic,I3=ic,x3=qr,T3=qr,Bw=Mh,A3=im,$v=nm,om={binaryAccuracy:$w,categoricalAccuracy:Uw,precision:Fv,categoricalCrossentropy:Bw,sparseCategoricalCrossentropy:$v,mse:w3,MSE:L3,mae:S3,MAE:I3,mape:x3,MAPE:T3,cosine:A3};function v3(e){if(typeof e=="string"&&e in om)return om[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function am(e){if(As(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(const n of Object.keys(rm))if(rm[n]===e){t=n;break}if(t!==void 0)return t;for(const n of Object.keys(om))if(om[n]===e){t=n;break}return t!==void 0?t:e.name}}function N3(e){const t={Adagrad:()=>Wo.adagrad(.01),Adadelta:()=>Wo.adadelta(1,.95,mn()),Adam:()=>Wo.adam(.001,.9,.999,mn()),Adamax:()=>Wo.adamax(.002,.9,.999,mn(),0),RMSProp:()=>Wo.rmsprop(.001,.9,0,mn()),SGD:()=>Wo.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}const Uv=1*1024*1024;function Bv(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Mw(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){const s=JSON.stringify(e);s.length>Uv&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Uv}.`)}}function Mw(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){const t=Object.keys(e);for(const n of t){if(typeof n!="string")return!1;if(!Mw(e[n]))return!1}return!0}else if(Array.isArray(e)){for(const t of e)if(!Mw(t))return!1;return!0}else return!1;else{const t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function C3(e,t,n,s=console.log){const i=O3(e),o=["Layer (type)","Output shape","Param #"];i?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(m=>Math.floor(t*m)));let a;if(!i){o.push("Receives inputs"),a=[];for(const m in e.nodesByDepth)a.push(...e.nodesByDepth[m])}s("_".repeat(t)),cm(o,n,s),s("=".repeat(t));const c=e.layers;for(let m=0;m<c.length;++m)i?E3(c[m],n,s):D3(c[m],n,a,s),s((m===c.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();const h=R3(e),d=Qp(e.nonTrainableWeights);s(`Total params: ${h+d}`),s(`Trainable params: ${h}`),s(`Non-trainable params: ${d}`),s("_".repeat(t))}function R3(e){let t;return e.collectedTrainableWeights!=null?t=Qp(e.collectedTrainableWeights):t=Qp(e.trainableWeights),t}function O3(e){let t=!0;const n=[],s=[];for(const i in e.nodesByDepth)n.push(e.nodesByDepth[i]);for(const i of n){if(i.length>1||i.length===1&&i[0].inboundLayers.length>1){t=!1;break}s.push(...i)}if(t)for(const i of e.layers){let o=!1;for(const a of i.inboundNodes)if(s.indexOf(a)!==-1)if(o){t=!1;break}else o=!0;if(!t)break}return t}function cm(e,t,n=console.log){let s="";for(let i=0;i<e.length;++i)i>0&&(s=s.slice(0,s.length-1)+" "),s+=e[i],s=s.slice(0,t[i]),s+=" ".repeat(t[i]-s.length);n(s)}function E3(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(c){s="multiple"}const i=e.name,o=e.getClassName(),a=[`${i} (${o})`,s,e.countParams().toString()];cm(a,t,n)}function D3(e,t,n,s){let i;try{i=JSON.stringify(e.outputShape)}catch(m){i="multiple"}const o=[];for(const m of e.inboundNodes){if(n!=null&&n.length>0&&n.indexOf(m)===-1)continue;for(let f=0;f<m.inboundLayers.length;++f){const b=m.inboundLayers[f].name,w=m.nodeIndices[f],L=m.tensorIndices[f];o.push(`${b}[${w}][${L}]`)}}const a=e.name,c=e.getClassName(),h=o.length===0?"":o[0],d=[`${a} (${c})`,i,e.countParams().toString(),h];cm(d,t,s);for(let m=1;m<o.length;++m)cm(["","","",o[m]],t,s)}function Mv(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Ph(e,t){if(e===null)return null;if(typeof e=="string")return Uo(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){const n=[],s=e.length;for(let i=0;i<s;++i){const o=e[i];Mv(t,i,o)?n.push(o):n.push(Ph(o,t))}return n}else{const n={};for(const s of Object.keys(e)){const i=e[s];if(s==="name"&&typeof i=="string")n[s]=i;else{const o=Uo(s);n[o]=Ph(i,o)}}return n}}function Pw(e,t){if(e==null)return null;if(typeof e=="string")return sr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){const n=[],s=e.length;for(let i=0;i<s;++i){const o=e[i];Mv(t,i,o)?n.push(o):n.push(Pw(o,t))}return n}else{const n={};for(const s of Object.keys(e)){const i=e[s],o=sr(s);(s==="name"||s==="className")&&typeof i=="string"?n[o]=i:n[o]=Pw(i,s)}return n}}const lm="2.7.0";function k3(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return Ae(t,e.dtype)}catch(n){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}class Po{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Po)for(const t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(const t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=k3(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof ii){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{const t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof ii){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{const t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&He(this.id2Mask)}}const zw={},Pv={};function zh(e,t,n,s){const i=n==null?!1:n.training,o=Array.isArray(e),a=o?e:[e],c=a.map(L=>L.name),h=[],d=t.names();for(const L of c)d.indexOf(L)!==-1?h.push(t.getValue(L)):h.push(null);s!=null&&(s.maxNumTensors=-Infinity,s.minNumTensors=Infinity);const m=c.join(",")+"|"+t.names().join(",");let f,b;if(zw[m]==null){const L=F3(a,t);f=L.sorted,b=L.recipientCounts,zw[m]=f,Pv[m]=b}f=zw[m],b={},i||Object.assign(b,Pv[m]);const w=new Po(t);for(let L=0;L<f.length;++L){if(s!=null){const j=Jd().numTensors;j>s.maxNumTensors&&(s.maxNumTensors=j),j<s.minNumTensors&&(s.minNumTensors=j)}const x=f[L],v=x.sourceLayer;if(v instanceof nc)continue;const N=[],O=[],E=[];let k=!1;for(const j of x.inputs){const Z=w.getValue(j),ie=w.getMask(j);N.push(Z),O.push(ie),ie!=null&&(k=!0),i||(b[j.name]--,b[j.name]===0&&!t.hasKey(j)&&c.indexOf(j.name)===-1&&!Z.isDisposed&&j.sourceLayer.stateful!==!0&&E.push(Z))}k&&(n=n||{},n.mask=O[0]);const F=Et(v.apply(N,n));let U=null;v.supportsMasking&&(U=v.computeMask(N,O));const $=W3(x),Y=Array.isArray($)?$:[$];for(let j=0;j<Y.length;++j){w.hasKey(Y[j])||w.add(Y[j],F[j],Array.isArray(U)?U[0]:U);const Z=c.indexOf(Y[j].name);Z!==-1&&(h[Z]=F[j])}i||He(E)}return w.disposeMasks(),o?h:h[0]}function F3(e,t){A(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){const i=zv(e[0],t);n=i.sorted,s=i.recipientMap}else{const i=new Set;for(const o of e){const{sorted:a,recipientMap:c}=zv(o,t);for(const h of a)i.has(h.name)||(n.push(h),i.add(h.name));for(const h in c)s[h]==null&&(s[h]=new Set),c[h].forEach(d=>s[h].add(d))}}return{sorted:n,recipientCounts:_3(s)}}function _3(e){const t={};for(const n in e)t[n]=e[n].size;return t}function zv(e,t){const n=new Set,s=[],i={};for(const c of t.names())n.add(c);const o=[],a=[];for(o.push(e);o.length>0;){const c=o[o.length-1];if(n.has(c.name)){o.pop();continue}const h=a[a.length-1]===o.length-1;if(c.inputs.length===0||h)o.pop(),s.push(c),n.add(c.name),h&&a.pop();else{a.push(o.length-1);for(const d of c.inputs){if(i[d.name]==null&&(i[d.name]=new Set),i[d.name].add(c.name),n.has(d.name))continue;o.push(d)}}}return{sorted:s,recipientMap:i}}function W3(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(const i of e.sourceLayer.inboundNodes[s].outputTensors)if(i.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}class Oi extends lt{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){const N=this.getClassName().toLowerCase();this.name=Jp(N)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Vr(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(N=>N.name)}`);Vr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(N=>N.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(const N of this.outputs){const O=N.sourceLayer,E=N.nodeIndex,k=N.tensorIndex;this.outputLayers.push(O),this.outputLayersNodeIndices.push(E),this.outputLayersTensorIndices.push(k)}for(const N of this.inputs){const O=N.sourceLayer,E=N.nodeIndex,k=N.tensorIndex;As(E===0,"input layer has >1 nodes"),As(k===0,"input layer has >1 tensors"),this.inputLayers.push(O),this.inputLayersNodeIndices.push(E),this.inputLayersTensorIndices.push(k)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let N=0;N<this.inputLayers.length;N++){const O=this.inputLayers[N];if(!(O instanceof nc))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${N} (0-based) originates from layer type ${O.getClassName()}.`);this.inputNames.push(O.name),this.feedInputShapes.push(O.batchInputShape),this.feedInputNames.push(O.name)}for(const N of this.outputLayers)this.outputNames.push(N.name);this.internalInputShapes=this.inputs.map(N=>N.shape),this.internalOutputShapes=this.outputs.map(N=>N.shape);const t={},n={},s={},i={},o={},a=[],c=(N,O,E,k,F,U)=>{(k==null||F==null||U==null)&&(k=N.sourceLayer,F=N.nodeIndex,U=N.tensorIndex);const $=k.inboundNodes[F];if(E.indexOf($)!==-1)throw new ti(`The tensor ${N.name} at layer "${k.name}" is part of a cycle.`);if(O.indexOf($)!==-1)return;this.containerNodes.add(Oi.nodeKey(k,F)),k.id in o||(o[k.id]=Object.keys(o).length),E.indexOf($)===-1&&E.push($);const Y=$.inboundLayers.length;for(let j=0;j<Y;j++){const Z=$.inputTensors[j],ie=$.inboundLayers[j],de=$.nodeIndices[j],he=$.tensorIndices[j];c(Z,O,E,ie,de,he)}for(O.push($);E.indexOf($)>=0;)E.splice(E.indexOf($),1);a.push($)},h=[],d=[];for(const N of this.outputs)c(N,h,d);const m=a.slice().reverse();for(const N of m){n[N.id]=N,N.id in t||(t[N.id]=0);let O=t[N.id];const E=s[N.outboundLayer.id]==null?0:s[N.outboundLayer.id];O=Math.max(O,E),s[N.outboundLayer.id]=O,i[N.outboundLayer.id]=N.outboundLayer,t[N.id]=O;for(let k=0;k<N.inboundLayers.length;k++){const F=N.inboundLayers[k],U=N.nodeIndices[k],$=F.inboundNodes[U],Y=t[$.id]==null?0:t[$.id];t[$.id]=Math.max(O+1,Y),n[$.id]=$}}const f={};for(const N in t){const O=t[N];O in f||(f[O]=[]),f[O].push(n[N])}const b={};for(const N in s){const O=s[N];O in b||(b[O]=[]),b[O].push(i[N])}let w=Object.keys(b).map(N=>parseInt(N,10)).sort(Bp);this.layers=[];for(const N of w){const O=b[N];O.sort((E,k)=>{const F=o[E.id],U=o[k.id];return F<U?-1:F>U?1:0});for(const E of O)E instanceof Oi&&this.internalContainerRefs.push(E),this.layers.push(E)}this.layersByDepth=b,w=Object.keys(f).map(N=>parseInt(N,10)).sort(Bp);const L=this.inputs.slice(),x=[];for(const N of w)for(const O of f[N]){const E=O.outboundLayer;if(E!=null){for(const k of O.inputTensors)if(L.indexOf(k)===-1)throw new ti(`Graph disconnected: cannot obtain value for tensor ${k} at layer "${E.name}". The following previous layers were accessed without issue: ${x}`);for(const k of O.outputTensors)L.push(k);x.push(E.name)}}this.nodesByDepth=f;const v=this.layers.map(N=>N.name);for(const N of v){const O=v.filter(E=>E===N).length;if(O!==1)throw new ti(`The name "${N}" is used ${O} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(v))}this.outboundNodes=[],this.inboundNodes=[],new em({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(N=>null),outputMasks:this.outputs.map(N=>null),inputShapes:this.inputs.map(N=>N.shape),outputShapes:this.outputs.map(N=>N.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();const e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(const t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(const t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(const t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){const e=[];for(const t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){const t=[];for(const n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){const n={};let s=0;for(const o of this.layers)for(const a of o.weights){if(n[a.originalName]!=null)throw new q(`Duplicate weight name: ${a.originalName}`);n[a.originalName]=a,s++}const i=[];for(const o in e){let a=o;if(n[o]==null){const c=o.split("/"),h=c.slice(0,-2).concat([c[c.length-1]]);a=h.join("/")}if(n[a]!=null)i.push([n[a],e[o]]);else if(t)throw new q(`Provided weight data has no target variable: ${o}`);delete n[a]}if(t){const o=[];for(const a in n)o.push(a);if(o.length>0)throw new q(`${o.length} of ${s} weights are not set: ${o}`)}kw(i)}updatedConfig(){const e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${lm}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){const n=Pw(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return Q(()=>{e=Et(e);const n=new Po;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return zh(this.outputs,n,t)})}computeMask(e,t){return Q(()=>{e=Et(e);let n;return t==null?n=$o(null,e.length):n=Et(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){const t=Zp(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);const n={};for(let a=0;a<t.length;a++){const c=this.inputLayers[a],h=t[a],d=c.name+"_0_0";n[d]=h}const s=Object.keys(this.nodesByDepth).map(a=>parseInt(a,10)).sort(Bp);if(s.length>1)for(const a of s){const c=this.nodesByDepth[a];for(const h of c){const d=h.outboundLayer;if(this.inputLayers.map(L=>L.id).indexOf(d.id)!==-1)continue;const m=[];for(let L=0;L<h.inboundLayers.length;L++){const x=h.inboundLayers[L],v=h.nodeIndices[L],N=h.tensorIndices[L],O=`${x.name}_${v}_${N}`,E=n[O];m.push(E)}const f=d.computeOutputShape(ts(m)),b=Zp(f),w=d.inboundNodes.indexOf(h);for(let L=0;L<b.length;L++){const x=`${d.name}_${w}_${L}`;n[x]=b[L]}}}const i=[],o=[];for(let a=0;a<this.outputLayers.length;a++){const c=this.outputLayers[a],h=this.outputLayersNodeIndices[a],d=this.outputLayersTensorIndices[a],m=`${c.name}_${h}_${d}`;o.push(m)}for(let a=0;a<o.length;a++){const c=o[a];As(c in n),i.push(n[c])}return ts(i)}runInternalGraph(e,t){t==null&&(t=$o(null,e.length));const n={};for(let c=0;c<this.inputs.length;++c){const h=this.inputs[c],d=e[c],m=t[c];n[h.id]=[d,m]}const s=Object.keys(this.nodesByDepth).map(c=>parseInt(c,10)).sort(Bp);for(const c of s){const h=this.nodesByDepth[c];for(const d of h){const m=d.outboundLayer,f=d.inputTensors,b=d.outputTensors,w=new Array;for(const L of f)L.id in n&&w.push(n[L.id]);if(w.length===f.length){let L={},x,v,N,O;if(d.callArgs!=null&&(L=d.callArgs),w.length===1){const[E,k]=w[0];L.mask==null&&(L.mask=k),N=Et(m.call(E,L)),O=Et(m.computeMask(E,k)),x=[E],v=[k]}else x=w.map(E=>E[0]),v=w.map(E=>E[1]),L.mask==null&&(L.mask=v),N=Et(m.call(x,L)),O=Et(m.computeMask(x,v));if(m.activityRegularizer)throw new Pe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let E=0;E<b.length;++E){const k=b[E],F=N[E],U=O[E];n[k.id]=[F,U]}}}}const i=[],o=[],a=[];for(const c of this.outputs){As(c.id in n,`Could not compute output ${c.name} : ${c.id}`);const[h,d]=n[c.id];a.push(h.shape),i.push(h),o.push(d)}return[i,o,a]}buildNodeConversionMap(e){const t={};let n;for(const s of this.layers){n=s instanceof Oi?1:0;for(let i=0;i<s.inboundNodes.length;i++){const o=Oi.nodeKey(s,i);this.containerNodes.has(o)&&(t[o]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(const n of this.layers)if(n.name===e)return n;throw new q(`No such layer: ${e}`)}calculateLosses(){return Q(()=>{const e=[];for(const t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){const s=Oi.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){const e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(const o of this.layers){const a=o.getClassName(),c=o.getConfig(),h=[];for(let m=0;m<o.inboundNodes.length;m++){const f=o.inboundNodes[m],b=Oi.nodeKey(o,m);let w={};if(this.containerNodes.has(b)){if(f.callArgs)try{JSON.stringify(f.callArgs),w=f.callArgs}catch(L){console.warn(`Layer ${o.name} was passed non-serializable keyword arguments: ${f.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),w={}}if(f.inboundLayers.length>0){const L=[];for(let x=0;x<f.inboundLayers.length;x++){const v=f.inboundLayers[x],N=f.nodeIndices[x],O=f.tensorIndices[x],E=Oi.nodeKey(v,N);let k=t[E];k==null&&(k=0),L.push([v.name,k,O,w])}h.push(L)}}}const d={};d.name=o.name,d.className=a,d.config=c,d.inboundNodes=h,n.push(d)}e.layers=n;const s=[];for(let o=0;o<this.inputLayers.length;o++){const a=this.inputLayers[o],c=this.inputLayersNodeIndices[o],h=Oi.nodeKey(a,c);if(!this.containerNodes.has(h))continue;let d=t[h];d==null&&(d=0);const m=this.inputLayersTensorIndices[o];s.push([a.name,d,m])}e.inputLayers=s;const i=[];for(let o=0;o<this.outputLayers.length;o++){const a=this.outputLayers[o],c=this.outputLayersNodeIndices[o],h=Oi.nodeKey(a,c);if(!this.containerNodes.has(h))continue;let d=t[h];d==null&&(d=0);const m=this.outputLayersTensorIndices[o];i.push([a.name,d,m])}return e.outputLayers=i,e}static fromConfig(e,t,n={},s=!1){const i={},o={};function a(x,v){x.name in o?o[x.name].push(v):o[x.name]=[v]}function c(x,v){const N=[];let O;for(const E of v){const k=E[0],F=E[1],U=E[2];if(O=E[3]==null?{}:E[3],!(k in i)){a(x,v);return}const $=i[k];if($.inboundNodes.length<=F){a(x,v);return}const Y=$.inboundNodes[F];N.push(Y.outputTensors[U])}N.length>0&&x.apply(ts(N),O)}function h(x){const v=x.name,N=ri(x,t.customObjects!=null?t.customObjects:{});N.setFastWeightInitDuringBuild(s),i[v]=N;const O=x.inboundNodes;O.forEach(E=>{if(!(E instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${E}`);a(N,E)})}const d=t.name,m=t.layers;for(const x of m)h(x);for(;!pz(o);)for(const x of m){const v=i[x.name];if(v.name in o){const N=o[v.name];delete o[v.name];for(const O of N)c(v,O)}}const f=[],b=[],w=t.inputLayers;for(const x of w){const v=x[0],N=x[1],O=x[2];As(v in i);const E=i[v],k=E.inboundNodes[N].outputTensors;f.push(k[O])}const L=t.outputLayers;for(const x of L){const v=x[0],N=x[1],O=x[2];As(v in i);const E=i[v],k=E.inboundNodes[N].outputTensors;b.push(k[O])}return new e({inputs:f,outputs:b,name:d})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(const e of this.layers)if(e.stateful)return!0;return!1}resetStates(){Q(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}}function Vv(e,t,n){const s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(i=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){const i=[];return t.forEach(o=>{o in e?i.push(e[o]):i.push(null)}),i}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Gv(e,t){return Vv(e,t,"classWeight")}function gte(e,t){return Vv(e,t,"sampleWeight")}async function Yv(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){const i=Q(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){const c=1;return e.argMax(c)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),o=Array.from(await i.data());He(i);const a=[];return o.forEach(c=>{if(n[c]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${c} exists in the data but not in classWeight`);a.push(n[c])}),ls(a,"float32")}else return null}function $3(e,t){return X(e,t)}const U3=32;function Hv(e,t){let n,s;const i=t;n=i.xs,s=i.ys,A(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);const o=qv("input",e.inputNames,n),a=qv("output",e.outputNames,s),c=o[0].shape[0];A(o.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${o.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),A(a.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let h=0;h<o.length;h++)A(o[h].shape[0]===c,()=>`Batch size mismatch: input ${e.inputNames[h]} has ${o[h].shape[0]}; expected ${c} based on input ${e.inputNames[0]}.`);for(let h=0;h<a.length;h++)A(a[h].shape[0]===c,()=>`Batch size mismatch: output ${e.outputNames[h]} has ${a[h].shape[0]}; expected ${c} based on input ${e.inputNames[0]}.`);return{xs:o,ys:a}}function qv(e,t,n){if(n instanceof ee)return[n];if(Array.isArray(n))return A(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{const s=[];for(const i of t){if(n[i]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${i}'.`);s.push(n[i])}return s}}function B3(e){if(e.length===3)throw new Pe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function M3(e,t,n){const s=n.batchesPerEpoch!=null;if(A(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),A(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),A(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),A(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),A(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{const i=n.validationData!=null;let o,a;if(i)if(jv(n.validationData))A(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{const v=B3(n.validationData);o=v.xs,a=v.ys}const c=e.makeTrainFunction(),h=e.getDedupedMetricsNames();let d;i?d=h.slice().concat(h.map(v=>"val_"+v)):d=h.slice();const m=Ev(n.callbacks,n.yieldEvery),f=n.verbose==null?1:n.verbose,{callbackList:b,history:w}=Dv(m,f,n.epochs,null,null,P3(t,n),null,i,d);b.setModel(e),e.history=w,await b.onTrainBegin(),e.stopTraining_=!1;let L=n.initialEpoch==null?0:n.initialEpoch,x=await t.iterator();for(;L<n.epochs;){const v={};await b.onEpochBegin(L);let N=0,O=0;for(s||(x=await t.iterator());s?N<n.batchesPerEpoch:!0;){const E=await x.next();if(s&&E.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${N} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(E.value!=null){const{xs:k,ys:F}=Hv(e,E.value),U={};U.batch=O,U.size=k[0].shape[0],await b.onBatchBegin(O,U);const $=[];if(n.classWeight!=null){const Z=Gv(n.classWeight,e.outputNames);for(let ie=0;ie<Z.length;++ie)$.push(await Yv(F[ie],null,Z[ie]))}const Y=k.concat(F).concat($),j=c(Y);He(Y);for(let Z=0;Z<h.length;++Z){const ie=h[Z],de=j[Z];U[ie]=de,bn(de)}await b.onBatchEnd(O,U),vv(U),O++,N++}if(s?N>=n.batchesPerEpoch:E.done){if(i){let k;jv(n.validationData)?k=Et(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):k=Et(e.evaluate(o,a,{batchSize:n.validationBatchSize==null?U3:n.validationBatchSize,verbose:0}));for(let F=0;F<e.metricsNames.length;++F)v[`val_${e.metricsNames[F]}`]=k[F]}break}if(e.stopTraining_)break}if(await b.onEpochEnd(L,v),L++,e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function P3(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function jv(e){return typeof e.iterator=="function"}function z3(e){return typeof e.next=="function"}async function V3(e,t,n){n=n||{};const s=n.batches!=null,i=e.testFunction;let o=[];if(n.verbose>0)throw new Pe("Verbose mode is not implemented yet.");A(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);const a=z3(t)?t:await t.iterator();let c=0,h=0;for(;s?h<n.batches:!0;){const d=await a.next();if(o=Q(()=>{if(d.value){const{xs:m,ys:f}=Hv(e,d.value),b=m.concat(f),w=Q(()=>i(b));if(He(b),h===0)for(let x=0;x<w.length;++x)o.push(Ce(0));const L=b[0].shape[0];for(let x=0;x<w.length;++x){const v=w[x],N=o[x];o[x]=Q(()=>be(o[x],X(L,v))),h>0&&He(N)}He(w),c+=L,++h}return o}),d.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let d=0;d<o.length;++d){const m=o[d];o[d]=We(o[d],c),He(m)}return ts(o)}function Vw(e){A(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Vh(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Mo(s,t,n-t)):Mo(e,t,n-t)}function Gw(e,t){return Q(()=>e==null?null:Array.isArray(e)?e.map(n=>Gw(n,t)):bv(e,t.dtype==="int32"?t:t.toInt()))}function Yw(e,t){const n=[];let s=0,i=null;for(;s<e;)i=s+t,i>=e&&(i=e),n.push([s,i]),s=i;return n}async function G3(e,t,n,s,i,o,a,c,h,d,m,f,b,w,L){i==null&&(i=32),o==null&&(o=1),m==null&&(m=!0),b==null&&(b=0);let x=!1;if(h!=null&&d!=null&&(x=!0),L!=null&&(x=!0,w==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");const v=e.checkNumSamples(n,i,w,"steps_per_epoch");let N;v!=null&&(N=ni(0,v)),a==null&&(a=1);const{callbackList:O,history:E}=Dv(c,a,o,b,v,w,i,x,f);O.setModel(e),e.history=E,await O.onTrainBegin(),e.stopTraining_=!1;for(let k=b;k<o;++k){await O.onEpochBegin(k);const F={};if(w!=null)throw new Pe("stepsPerEpoch mode is not implemented yet.");{if(m==="batch")throw new Pe("batch shuffling is not implemneted yet");m&&I(N);const U=ls(N),$=Yw(v,i);for(let Y=0;Y<$.length;++Y){const j={};if(await O.onBatchBegin(Y,j),Q(()=>{const Z=$[Y][0],ie=$[Y][1],de=Mo(U,Z,ie-Z);j.batch=Y,j.size=ie-Z;const he=Gw(n,de),ue=t(he);for(let me=0;me<s.length;++me){const ce=s[me],ye=ue[me];j[ce]=ye,bn(ye)}if(Y===$.length-1&&x){const me=e.testLoop(h,d,i);for(let ce=0;ce<s.length;++ce){const ye=s[ce],pe=me[ce];bn(pe),F["val_"+ye]=pe}}}),await O.onBatchEnd(Y,j),vv(j),e.stopTraining_)break}U.dispose()}if(await O.onEpochEnd(k,F),e.stopTraining_)break}return await O.onTrainEnd(),await e.history.syncData(),e.history}async function Y3(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let i,o,a,c,h,d,m;try{const f=s.batchSize==null?32:s.batchSize;Vw(f);const b=!1,w=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,b,f);i=w[0],o=w[1],m=w[2];let L=!1,x;if(s.validationData!=null&&s.validationData.length>0){if(L=!0,s.validationData.length===2)a=s.validationData[0],c=s.validationData[1];else throw s.validationData.length===3?new Pe("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);const $=!0,Y=await e.standardizeUserData(a,c,null,null,$,f);h=Y[0],d=Y[1],x=h.concat(d)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){L=!0;const $=Math.floor(i[0].shape[0]*(1-s.validationSplit)),Y=i[0].shape[0];h=Vh(i,$,Y),i=Vh(i,0,$),d=Vh(o,$,Y),o=Vh(o,0,$),x=h.concat(d)}else s.validationSteps!=null&&(L=!0);const v=i.concat(o).concat(m);e.checkTrainableWeightsConsistency();const N=e.makeTrainFunction(),O=e.getDedupedMetricsNames();let E,k;L?(e.makeTestFunction(),E=e.testFunction,k=O.slice().concat(O.map($=>"val_"+$))):(E=null,x=[],k=O.slice());const F=Ev(s.callbacks,s.yieldEvery),U=await G3(e,N,v,O,f,s.epochs,s.verbose,F,E,x,s.shuffle,k,s.initialEpoch,null,null);return U}finally{e.isTraining=!1,zo(i,t),zo(o,n),zo(h,a),zo(d,c),m!=null&&He(m)}}function Kv(e){const t=[];e instanceof ee&&(e=[e]);for(let n=0;n<e.length;++n){const s=e[n];if(s.rank===1)t.push($h(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function zo(e,t){if(e==null)return;const n=[];if(t instanceof ee)n.push(t.id);else if(Array.isArray(t))t.forEach(i=>n.push(i.id));else if(t!=null)for(const i in t){const o=t[i];n.push(o.id)}const s=[];if(e instanceof ee)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(i=>{n.indexOf(i.id)===-1&&s.push(i)});else if(e!=null)for(const i in e){const o=e[i];n.indexOf(o.id)===-1&&s.push(o)}s.forEach(i=>{i.isDisposed||i.dispose()})}function H3(e){return e instanceof ee}function Hw(e){return Array.isArray(e)}function Xv(e){return!H3(e)&&!Hw(e)}function Jv(e,t,n,s=!0,i=""){if(t==null||t.length===0){if(e!=null){let a=!1;if(Hw(e)&&e.length>0)a=!0;else if(Xv(e)){for(const c in e)if(e.hasOwnProperty(c)){a=!0;break}}else a=!0;if(a)throw new q(`Error when checking model ${i} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(a=>null);let o;if(Xv(e)){e=e,o=[];for(const a of t){if(e[a]==null)throw new q(`No data provided for "${a}". Need data for each key in: ${t}`);o.push(e[a])}}else if(Hw(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${i}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);o=e}else{if(e=e,t.length>1)throw new q(`The model ${i} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);o=[e]}if(o=Kv(o),n!=null)for(let a=0;a<t.length;++a){if(n[a]==null)continue;const c=o[a];if(c.shape.length!==n[a].length)throw new q(`Error when checking ${i}: expected ${t[a]} to have ${n[a].length} dimension(s). but got array with shape ${c.shape}`);for(let h=0;h<n[a].length;++h){if(h===0&&!s)continue;const d=c.shape[h],m=n[a][h];if(m!=null&&m>=0&&d!==m)throw new q(`Error when checking ${i}: expected ${t[a]} to have shape [${n[a]}], but got array with shape [${c.shape}].`)}}return o}function q3(e,t,n){const s=Vr(e.map(o=>o.shape[0]));s.sort();const i=Vr(t.map(o=>o.shape[0]));if(i.sort(),s.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(o=>o.shape))}`);if(i.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(o=>o.shape))}`);if(s.length>0&&i.length>0&&!ae(s,i))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${i[0]} target sample(s).`)}function j3(e,t,n){const s=[ir,sm,Mh];for(let i=0;i<e.length;++i){const o=e[i],a=t[i],c=n[i];if(a==null)continue;if(a===Mh&&o.shape[o.shape.length-1]===1)throw new q(`You are passing a target array of shape ${o.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(a)!==-1){const h=o.shape.slice(1),d=c.slice(1);for(let m=0;m<h.length;++m){const f=h[m],b=d[m];if(b!=null&&f!==b)throw new q(`A target Tensor with shape ${o.shape} was passed for an output of shape ${c}, while using a loss function that expects targets to have the same shape as the output.`)}}}}function Zv(e,t,n,s=!0,i=""){let o;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${i}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);o=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${i} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);o=[e]}if(n!=null)for(let a=0;a<t.length;++a){if(n[a]==null)continue;const c=o[a];if(c.shape.length!==n[a].length)throw new q(`Error when checking ${i}: expected ${t[a]} to have ${n[a].length} dimension(s), but got array with shape ${JSON.stringify(c.shape)}`);for(let h=0;h<n[a].length;++h){if(h===0&&!s)continue;const d=c.shape[h],m=n[a][h];if(m!=null&&m!==d)throw new q(`Error when checking ${i}: expected ${t[a]} to have shape ${JSON.stringify(n[a])} but got array with shape ${JSON.stringify(c.shape)}.`)}}}function K3(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{const s=[];for(const i of t){let o=n.hasOwnProperty(i)?n[i]:[];Array.isArray(o)||(o=[o]),s.push(o)}return s}}const X3="layers-model";class rr extends Oi{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");C3(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=N3(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof er))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(const o in e.loss)if(this.outputNames.indexOf(o)===-1)throw new q(`Unknown entry in loss dictionary: "${o}". Only expected the following keys: ${this.outputNames}`);for(const o of this.outputNames)e.loss[o]==null&&console.warn(`Output "${o}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${o} during training`),t.push(Ww(e.loss[o]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);const o=e.loss;t=o.map(a=>Ww(a))}else{const o=Ww(e.loss);this.outputs.forEach(a=>{t.push(o)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let o=0;o<this.outputs.length;++o){const a=this.internalOutputShapes[o],c=this.outputNames[o];this.feedOutputNames.push(c),this.feedOutputShapes.push(a),this.feedLossFns.push(this.lossFunctions[o])}const n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Bo("loss",()=>{for(let o=0;o<this.outputs.length;++o){if(n.indexOf(o)!==-1)continue;const a=this.lossFunctions[o];this.outputs.length>1&&(this.metricsTensors.push([a,o]),this.metricsNames.push(this.outputNames[o]+"_loss"))}});const s=K3(e.metrics,this.outputNames),i=(o,a,c)=>{this.outputNames.length>1&&(a=this.outputNames[o]+"_"+a),this.metricsNames.push(a),this.metricsTensors.push([c,o])};Bo("metric",()=>{for(let o=0;o<this.outputs.length;++o){if(n.indexOf(o)!==-1)continue;const a=s[o],c=h=>{const d="";let m,f,b;for(const w of h){if(typeof w=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(w)!==-1){const x=this.internalOutputShapes[o];x[x.length-1]===1||this.lossFunctions[o]===sm?["accuracy","acc"].indexOf(w)!==-1?f=$w:["crossentropy","ce"].indexOf(w)!==-1&&(f=_v):this.lossFunctions[o]===nm?["accuracy","acc"].indexOf(w)!==-1?f=Wv:["crossentropy","ce"].indexOf(w)!==-1&&(f=$v):["accuracy","acc"].indexOf(w)!==-1?f=Uw:["crossentropy","ce"].indexOf(w)!==-1&&(f=Bw);let v;["accuracy","acc"].indexOf(w)!==-1?v="acc":["crossentropy","ce"].indexOf(w)!==-1&&(v="ce"),b=f,m=d+v}else{const x=v3(w);b=x,m=d+am(w)}let L;Bo(m,()=>{L=b}),i(o,m,L)}};c(a)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){if(this.collectedTrainableWeights==null)return;this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){const s=n.batchSize==null?32:n.batchSize;Vw(s);const i=!0,o=this.standardizeUserDataXY(e,t,i,s);try{const a=o[0].concat(o[1]);this.makeTestFunction();const c=this.testFunction,h=this.testLoop(c,a,s,n.verbose,n.steps);return ts(h)}finally{zo(o[0],e),zo(o[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),V3(this,e,t)}checkNumSamples(e,t,n,s="steps"){let i;if(n!=null){if(i=null,t!=null)throw new q(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?i=e[0].shape[0]:i=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return i}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");const n=Array.isArray(t),s=n?t:[t],i=this.retrieveSymbolicTensors(s),o=new Po;if(e instanceof ee&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let c=0;c<this.inputs.length;++c)o.add(this.inputs[c],e[c])}else for(const c of this.inputs){const h=e[c.name];if(h==null)throw new q(`No value is provided for the model's input ${c.name}`);o.add(c,h)}const a=zh(i,o);return n?a:a[0]}retrieveSymbolicTensors(e){const t=$o(null,e.length);let n=e.length;for(const s of this.layers){const i=Array.isArray(s.output)?s.output:[s.output],o=i.map(a=>a.name);for(let a=0;a<e.length;++a){const c=o.indexOf(e[a]);if(c!==-1&&(t[a]=i[c],n--),n===0)break}if(n===0)break}if(n>0){const s=[];throw t.forEach((i,o)=>{i==null&&s.push(e[o])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return Q(()=>{const s=this.checkNumSamples(e);if(n)throw new Pe("Verbose predictLoop() is not implemented yet.");const i=Yw(s,t),o=this.outputs.map(a=>[]);for(let a=0;a<i.length;++a){const c=Q(()=>{const h=i[a][0],d=i[a][1],m=Vh(e,h,d),f=[];if(Array.isArray(m))for(let w=0;w<m.length;++w)f.push({key:this.inputs[w],value:m[w]});else f.push({key:this.inputs[0],value:m});const b=new Po(f);return zh(this.outputs,b)});c.forEach((h,d)=>o[d].push(h))}return ts(o.map(a=>Yt(a,0)))})}predict(e,t={}){const n=Kv(e);Zv(n,this.inputNames,this.feedInputShapes,!1);try{const s=t.batchSize==null?32:t.batchSize;return Vw(s),this.predictLoop(n,s)}finally{zo(n,e)}}predictOnBatch(e){Zv(e,this.inputNames,this.feedInputShapes,!0);const t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new ti("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");const i=[];for(let o=0;o<this.feedOutputShapes.length;++o){const a=this.feedOutputShapes[o],c=this.feedLossFns[o];c===nm?i.push(a.slice(0,a.length-1).concat([1])):i.push(a)}if(e=Jv(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Jv(t,this.feedOutputNames,i,!1,"target"),q3(e,t,null),j3(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,i=!0,o){const[a,c]=this.standardizeUserDataXY(e,t,i,o);if(n!=null)throw new Error("sample weight is not supported yet.");let h=null;if(s!=null){const d=Gv(s,this.outputNames);h=[];for(let m=0;m<d.length;++m)h.push(await Yv(c[m],null,d[m]))}return[a,c,h]}testLoop(e,t,n,s=0,i){return Q(()=>{const o=this.checkNumSamples(t,n,i,"steps"),a=[];if(s>0)throw new Pe("Verbose mode is not implemented yet.");if(i!=null)throw new Pe("steps mode in testLoop() is not implemented yet");{const c=Yw(o,n),h=ls(ni(0,o));for(let d=0;d<c.length;++d){const m=c[d][0],f=c[d][1],b=Mo(h,m,f-m),w=Gw(t,b),L=e(w);if(d===0)for(let x=0;x<L.length;++x)a.push(Ce(0));for(let x=0;x<L.length;++x){const v=L[x];a[x]=be(a[x],X(f-m,v))}}for(let d=0;d<a.length;++d)a[d]=We(a[d],o)}return a})}getDedupedMetricsNames(){const e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){const s=e[n];let i=s;if(ov(e,s)>1){const o=ov(e.slice(0,n),s);i+=`_${o}`}t.push(i)}return t}makeTrainFunction(){return e=>{const t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),i=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),o=[],a=()=>{const m=[];for(let L=0;L<this.inputs.length;++L)m.push({key:this.inputs[L],value:n[L]});const f=new Po(m),b=zh(this.outputs,f,{training:!0});let w;for(let L=0;L<this.lossFunctions.length;++L){const x=this.lossFunctions[L];let v=x(s[L],b[L]);i[L]!=null&&(v=$3(v,i[L]));const N=qt(v);t.push(N),L===0?w=v:w=be(w,v)}for(let L=0;L<this.metricsTensors.length;++L){let x;if(this.outputs.length>1&&L<this.outputs.length)x=t[L];else{const v=this.metricsTensors[L][0],N=this.metricsTensors[L][1];x=qt(v(s[N],b[N]))}bn(x),o.push(x)}return w=qt(w),this.calculateLosses().forEach(L=>{w=be(w,L)}),w},c=this.collectedTrainableWeights.map(m=>m.read()),h=!0,d=this.optimizer_.minimize(a,h,c);return[d].concat(o)}}makeTestFunction(){this.testFunction=e=>Q(()=>{const t=[];let n;const s=e.slice(0,this.inputs.length),i=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),o=[];for(let h=0;h<this.inputs.length;++h)o.push({key:this.inputs[h],value:s[h]});const a=new Po(o),c=zh(this.outputs,a);for(let h=0;h<this.lossFunctions.length;++h){const d=this.lossFunctions[h],m=qt(d(i[h],c[h]));h===0?n=m:n=be(n,m),t.push(n)}for(let h=0;h<this.metricsTensors.length;++h){const d=this.metricsTensors[h][0],m=this.metricsTensors[h][1],f=qt(d(i[m],c[m]));t.push(f)}return t})}async fit(e,t,n={}){return Y3(this,e,t,n)}async fitDataset(e,t){return M3(this,e,t)}async trainOnBatch(e,t){const n=await this.standardizeUserData(e,t),s=n[0],i=n[1],o=this.makeTrainFunction(),a=o(s.concat(i)),c=[];for(const h of a){const d=await h.data();c.push(d[0])}return He(a),ts(c)}getNamedWeights(e){const t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,i=this.getWeights(n);for(let o=0;o<s.length;++o){if(n&&!s[o].trainable)continue;t.push({name:s[o].originalName,tensor:i[o]})}return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){const e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){const t=Jd().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Jd().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=sr(this.loss);else if(Array.isArray(this.loss)){for(const t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>sr(t))}else{const t=Object.keys(this.loss);e={};const n=this.loss;for(const s of t)if(typeof n[s]=="string")e[s]=sr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[sr(am(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>sr(am(e)));{const e={};for(const t in this.metrics)e[t]=sr(am(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");const t=Ph(e.optimizer_config),n=ri(t);let s;if(typeof e.loss=="string")s=Uo(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(o=>Uo(o));else if(e.loss!=null){s={};for(const o in e.loss)s[o]=Uo(e.loss[o])}let i;if(Array.isArray(e.metrics))i=e.metrics.map(o=>Uo(o));else if(e.metrics!=null){i={};for(const o in e.metrics)i[o]=Uo(e.metrics[o])}this.compile({loss:s,metrics:i,optimizer:n})}async save(e,t){if(typeof e=="string"){const h=zy(e);if(h.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(h.length>1)throw new q(`Found more than one (${h.length}) save handlers for URL '${e}'`);e=h[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");const n=await My(this.getNamedWeights(t)),s=!1,i=null,o=this.toJSON(i,s),a={modelTopology:o,format:X3,generatedBy:`TensorFlow.js tfjs-layers v${lm}`,convertedBy:null},c=t==null?!1:t.includeOptimizer;if(c&&this.optimizer!=null){a.trainingConfig=this.getTrainingConfig();const h="optimizer",{data:d,specs:m}=await My(await this.optimizer.getWeights(),h);n.specs.push(...m),n.data=zd([n.data,d])}if(this.userDefinedMetadata!=null){const h=!0;Bv(this.userDefinedMetadata,this.name,h),a.userDefinedMetadata=this.userDefinedMetadata}return a.weightData=n.data,a.weightSpecs=n.specs,e.save(a)}setUserDefinedMetadata(e){Bv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}}rr.className="Model",fe(rr);class Qv extends rr{}Qv.className="Functional",fe(Qv);async function J3(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);const s=Ph(n),i=ri(s,t);if(e.weightsManifest!=null){const o=await vT(e.weightsManifest,e.pathPrefix,i.weights.map(c=>c.originalName)),a={};for(const c of i.weights)a[c.originalName]=o[c.originalName];i.loadWeights(a),He(o)}return i}async function Z3(e,t){if(t==null&&(t={}),typeof e=="string"){const n=Vy(e,t);if(n.length===0)n.push(Yd(e,t));else if(n.length>1)throw new q(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Q3(e,void 0,t)}async function Q3(e,t,n){if(n==null&&(n={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");const s=await e.load();let i=s.modelTopology;i.model_config!=null&&(i=i.model_config);const o=n.strict==null?!0:n.strict,a=s.weightData!=null&&s.weightSpecs!=null&&o,c=ri(Ph(i),t,a),h=s.trainingConfig;if(h!=null&&c.loadTrainingConfig(h),s.userDefinedMetadata!=null&&c.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");const{modelWeights:d,optimizerWeights:m}=eV(s.weightData,s.weightSpecs);c.loadWeights(d,o),c.optimizer!=null&&m.length>0&&await c.optimizer.setWeights(m),He(d),He(m.map(f=>f.tensor))}return c}function eV(e,t){const n=Pd(e,t),s={},i=[];return t.forEach(o=>{o.group==="optimizer"?i.push({name:o.name,tensor:n[o.name]}):s[o.name]=n[o.name]}),{modelWeights:s,optimizerWeights:i}}class rc extends rr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Jp("sequential_"),e.layers!=null)for(const t of e.layers)this.add(t)}checkShape(e){const t=e.inboundNodes[0].outputTensors[0].shape;if(t.some(n=>n<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){const t=e instanceof rc||e instanceof rr;let n;if(t){if(n=e,n.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");const s=Av({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Tv(this.outputs[0])}this.inboundNodes=[],new em({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:$o(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{const s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{const e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Nt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new rr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new ti("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new ti("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new ti("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new ti("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let i,o={};if(t instanceof Array){if(!(t[0].className!=null)||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");i=t}else A(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),i=t.layers,delete t.layers,o=t;const a=new e(o);if(!(a instanceof rc))throw new Pe(`Sequential.fromConfig called on non-Sequential input: ${a}`);for(const c of i){const h=void 0,d=ri(c,h,s);s&&d.setFastWeightInitDuringBuild(!0),a.add(d)}return a}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){const e=[];for(const t of this.layers){const n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}}rc.className="Sequential",fe(rc);function tV(e){return new rr(e)}function nV(e){return new rc(e)}function sV(e,t){return t==null&&(t={}),Z3(e,t)}function eN(e){return Av(e)}function iV(e,t){Ps.registerCallbackConstructor(e,t)}class us extends Ao{getConfig(){return{}}}class tN extends us{apply(e,t=1){return Dz(e,t)}}tN.className="elu",fe(tN);class nN extends us{apply(e){return bp(e)}}nN.className="selu",fe(nN);class sN extends us{apply(e){return Ni(e)}}sN.className="relu",fe(sN);class iN extends us{apply(e){return Q(()=>Oo(6,Ni(e)))}}iN.className="relu6",fe(iN);class rN extends us{apply(e){return e}}rN.className="linear",fe(rN);class oN extends us{apply(e){return Ti(e)}}oN.className="sigmoid",fe(oN);class aN extends us{apply(e){return Fz(e)}}aN.className="hardSigmoid",fe(aN);class cN extends us{apply(e){return za(e)}}cN.className="softplus",fe(cN);class lN extends us{apply(e){return kz(e)}}lN.className="softsign",fe(lN);class hN extends us{apply(e){return $a(e)}}hN.className="tanh",fe(hN);class qw extends us{apply(e,t=-1){return Fo(e,t)}}qw.className="softmax",fe(qw);class uN extends us{apply(e,t=-1){return dp(e,t)}}uN.className="logSoftmax",fe(uN);class dN extends us{apply(e,t=1){return Q(()=>Ti(e.mul(t)).mul(e))}}dN.className="swish",fe(dN);function jr(e){return e.getClassName()}function jw(e,t={}){return kh(e,Ws.getMap().classNameMap,t,"activation")}function Kr(e){if(e==null){const t={};return t.className="linear",t.config={},jw(t)}if(typeof e=="string"){const t={};return t.className=e,t.config={},jw(t)}else return e instanceof us?e:jw(e)}function Kw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}class pN extends Ao{}class Gh extends pN{constructor(e){super();Kw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return Q(()=>{let t=dt([1]);return this.hasL1&&(t=be(t,$e(X(this.l1,dn(e))))),this.hasL2&&(t=be(t,$e(X(this.l2,Uh(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}}Gh.className="L1L2",fe(Gh);function rV(e){return Kw(e),new Gh({l1:e!=null?e.l1:null,l2:0})}function oV(e){return Kw(e),new Gh({l2:e!=null?e.l2:null,l1:0})}const mN={l1l2:"L1L2"};function Ct(e){return dw(e)}function fN(e,t={}){return kh(e,Ws.getMap().classNameMap,t,"regularizer")}function zt(e){if(e==null)return null;if(typeof e=="string"){const t=e in mN?mN[e]:e,n={className:t,config:{}};return fN(n)}else return e instanceof pN?e:fN(e)}class Xw extends lt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Xe(e);let n=Ni(e);return this.maxValue!=null&&(n=Jn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){const e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}}Xw.className="ReLU",fe(Xw);class Jw extends lt{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){const n=Xe(e);return lp(n,this.alpha)}computeOutputShape(e){return e}getConfig(){const e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}}Jw.className="LeakyReLU",fe(Jw);class Zw extends lt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=zt(e.alphaRegularizer),this.alphaConstraint=gn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Nt(e);const t=e.slice(1);if(this.sharedAxes!=null)for(const s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);const n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Ln({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Xe(e),yh(e,this.alpha.read())}getConfig(){const e={alphaInitializer:Kt(this.alphaInitializer),alphaRegularizer:Ct(this.alphaRegularizer),alphaConstraint:fn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}}Zw.className="PReLU",fe(Zw);class Qw extends lt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Pe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){const n=Xe(e);return Ua(n)}computeOutputShape(e){return e}getConfig(){const e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}}Qw.className="ELU",fe(Qw);class eL extends lt{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){const n=Xe(e);return n.mul(Wh(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){const e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}}eL.className="ThresholdedReLU",fe(eL);class tL extends lt{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new qw().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){const n=Xe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){const e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}}tL.className="Softmax",fe(tL);function oc(e,t,n){if(typeof e=="number")return $o(e,t);if(e.length!==t)throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){const i=e[s];if(!vz(i))throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${i}`)}return e}function oi(e,t,n,s,i=1){if(e==null)return e;const o=t+(t-1)*(i-1);let a;return n==="same"?a=e:a=e-o+1,Math.floor((a+s-1)/s)}function hm(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+Yr([n-t,0]);else if(s==="same")e=e*t;else throw new q(`Unsupport padding mode: ${s}.`);return e}function nL(e,t){return Q(()=>(jt(t),t==="channelsFirst"?Ye(e,[0,2,3,1]):e))}function gN(e,t){return Q(()=>(jt(t),t==="channelsFirst"?Ye(e,[0,2,3,4,1]):e))}function yN(e,t,n,s=1,i="valid",o,a=1){return Q(()=>{if(o==null&&(o=ei()),jt(o),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(o==="channelsFirst"&&(e=Ye(e,[0,2,1])),i==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let c=ip(e,t,s,i==="same"?"same":"valid","NWC",a);return n!=null&&(c=Ri(c,n)),c})}function yte(e,t,n=1,s="valid",i,o=1){return Q(()=>(jt(i),yN(e,t,null,n,s,i,o)))}function bte(e,t,n=[1,1],s="valid",i,o){return Q(()=>(jt(i),sL(e,t,null,n,s,i,o)))}function sL(e,t,n,s=[1,1],i="valid",o,a,c=null){return Q(()=>{if(o==null&&(o=ei()),jt(o),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let h=nL(e,o);if(i==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return h=Kb({x:h,filter:t,strides:s,pad:i==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:n,activation:c}),o==="channelsFirst"&&(h=Ye(h,[0,3,1,2])),h})}function wte(e,t,n=[1,1,1],s="valid",i,o){return Q(()=>(jt(i),bN(e,t,null,n,s,i,o)))}function bN(e,t,n,s=[1,1,1],i="valid",o,a){return Q(()=>{if(o==null&&(o=ei()),jt(o),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let c=gN(e,o);if(i==="causal")throw new Pe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return c=Lb(c,t,s,i==="same"?"same":"valid","NDHWC",a),n!=null&&(c=Ri(c,n)),o==="channelsFirst"&&(c=Ye(c,[0,4,1,2,3])),c})}class iL extends lt{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",iL.verifyArgs(t),this.rank=e,wn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Pe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=oc(t.kernelSize,e,"kernelSize"),this.strides=oc(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,vs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,jt(this.dataFormat),this.activation=Kr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=gn(t.biasConstraint),this.biasRegularizer=zt(t.biasRegularizer),this.activityRegularizer=zt(t.activityRegularizer),this.dilationRate=oc(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(As("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!mw(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){const e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:jr(this.activation),useBias:this.useBias,biasInitializer:Kt(this.biasInitializer),biasRegularizer:Ct(this.biasRegularizer),activityRegularizer:Ct(this.activityRegularizer),biasConstraint:fn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}}class Yh extends iL{constructor(e,t){super(e,t);this.kernel=null,Yh.verifyArgs(t),this.filters=t.filters,wn(this.filters,"filters"),this.kernelInitializer=Pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=gn(t.kernelConstraint),this.kernelRegularizer=zt(t.kernelRegularizer)}build(e){e=Nt(e);const t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);const n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return Q(()=>{e=Xe(e);let n;const s=this.bias==null?null:this.bias.read(),i=cv(this.activation.getClassName());if(i!=null&&this.rank===2)n=sL(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,i);else{if(this.rank===1)n=yN(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=sL(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=bN(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Pe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=Nt(e);const t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let i=0;i<n.length;++i){const o=oi(n[i],this.kernelSize[i],this.padding,this.strides[i],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[i]);t.push(o)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){const e={filters:this.filters,kernelInitializer:Kt(this.kernelInitializer),kernelRegularizer:Ct(this.kernelRegularizer),kernelConstraint:fn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}}class Hh extends Yh{constructor(e){super(2,e);Hh.verifyArgs(e)}getConfig(){const e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!mw(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}}Hh.className="Conv2D",fe(Hh);class um extends Yh{constructor(e){super(3,e);um.verifyArgs(e)}getConfig(){const e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}}um.className="Conv3D",fe(um);class rL extends Hh{constructor(e){super(e);if(this.inputSpec=[new Ln({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Nt(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));const t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");const n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ln({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return Q(()=>{let n=Xe(e);if(n.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);const s=n.shape,i=s[0];let o,a;this.dataFormat==="channelsFirst"?(o=2,a=3):(o=1,a=2);const c=s[o],h=s[a],d=this.kernelSize[0],m=this.kernelSize[1],f=this.strides[0],b=this.strides[1],w=hm(c,f,d,this.padding),L=hm(h,b,m,this.padding),x=[i,w,L,this.filters];this.dataFormat!=="channelsLast"&&(n=Ye(n,[0,2,3,1]));let v=rp(n,this.kernel.read(),x,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=Ye(v,[0,3,1,2])),this.bias!=null&&(v=Ri(v,this.bias.read(),this.dataFormat)),this.activation!=null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=Nt(e);const t=e.slice();let n,s,i;this.dataFormat==="channelsFirst"?(n=1,s=2,i=3):(n=3,s=1,i=2);const o=this.kernelSize[0],a=this.kernelSize[1],c=this.strides[0],h=this.strides[1];return t[n]=this.filters,t[s]=hm(t[s],c,o,this.padding),t[i]=hm(t[i],h,a,this.padding),t}getConfig(){const e=super.getConfig();return delete e.dilationRate,e}}rL.className="Conv2DTranspose",fe(rL);class wN extends Yh{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=zt(t.depthwiseRegularizer),this.depthwiseConstraint=gn(t.depthwiseConstraint),this.pointwiseInitializer=Pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=zt(t.pointwiseRegularizer),this.pointwiseConstraint=gn(t.pointwiseConstraint)}build(e){if(e=Nt(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);const t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);const n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),i=[];for(let a=0;a<this.rank;++a)i.push(1);i.push(n*this.depthMultiplier,this.filters);const o=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,o,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",i,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,o,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,o,this.biasConstraint):this.bias=null,this.inputSpec=[new Ln({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return Q(()=>{e=Xe(e);let n;if(this.rank===1)throw new Pe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ye(e,[0,2,3,1])),n=Ub(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ri(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ye(n,[0,3,1,2])),n})}getConfig(){const e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Kt(this.depthwiseInitializer),e.pointwiseInitializer=Kt(this.pointwiseInitializer),e.depthwiseRegularizer=Ct(this.depthwiseRegularizer),e.pointwiseRegularizer=Ct(this.pointwiseRegularizer),e.depthwiseConstraint=fn(this.depthwiseConstraint),e.pointwiseConstraint=fn(this.pointwiseConstraint),e}}wN.className="SeparableConv";class oL extends wN{constructor(e){super(2,e)}}oL.className="SeparableConv2D",fe(oL);class dm extends Yh{constructor(e){super(1,e);dm.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){const e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!mw(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}}dm.className="Conv1D",fe(dm);class aL extends lt{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return Q(()=>{if(e=Xe(e),this.dataFormat==="channelsLast"){const n=Pp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Pp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{const n=Pp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Pp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){const e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}aL.className="Cropping2D",fe(aL);class cL extends lt{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){const t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{const t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return Q(()=>{let n=Xe(e);const s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ye(n,[0,2,3,1]);const i=this.size[0]*s[2],o=this.size[1]*s[3],a=n.resizeNearestNeighbor([i,o]);return Ye(a,[0,3,1,2])}else{const i=this.size[0]*s[1],o=this.size[1]*s[2];return n.resizeNearestNeighbor([i,o])}})}getConfig(){const e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}cL.className="UpSampling2D",fe(cL);function aV(e,t,n=[1,1],s="valid",i,o){return Q(()=>{i==null&&(i=ei()),jt(i);let a=nL(e,i);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return a=Co(a,t,n,s==="same"?"same":"valid","NHWC",o),i==="channelsFirst"&&(a=Ye(a,[0,3,1,2])),a})}class lL extends iL{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=gn(e.depthwiseConstraint),this.depthwiseRegularizer=zt(e.depthwiseRegularizer)}build(e){if(e=Nt(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);const t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);const n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Q(()=>{e=Xe(e);let n=aV(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ri(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=Nt(e);const t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,i=oi(t,this.kernelSize[0],this.padding,this.strides[0]),o=oi(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,i,o]:[e[0],i,o,s]}getConfig(){const e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Kt(this.depthwiseInitializer),e.depthwiseRegularizer=Ct(this.depthwiseRegularizer),e.depthwiseConstraint=fn(this.depthwiseRegularizer),e}}lL.className="DepthwiseConv2D",fe(lL);function LN(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function i(o){return o==null||Array.isArray(o)?o:[o]}return t=i(t),n=i(n),{inputs:e,initialState:t,constants:n}}function SN(e,t,n,s=!1,i,o,a=!1,c=!1){return Q(()=>{const h=t.shape.length;if(h<3)throw new q(`Input should be at least 3D, but is ${h}D.`);const d=[1,0].concat(ni(2,h));if(t=Ye(t,d),o!=null)throw new Pe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),i!=null&&(i=i.asType("bool").asType("float32"),i.rank===h-1&&(i=Zn(i,-1)),i=Ye(i,d)),s&&(t=Ts(t,0),i!=null&&(i=Ts(i,0)));const m=[];let f,b=n;const w=t.shape[0],L=Qs(t);let x;i!=null&&(x=Qs(i));for(let N=0;N<w;++N){const O=L[N],E=Q(()=>e(O,b));if(i==null)f=E[0],b=E[1];else{const k=Q(()=>{const F=x[N],U=Fn(F).sub(F),$=E[0].mul(F).add(b[0].mul(U)),Y=b.map((j,Z)=>E[1][Z].mul(F).add(j.mul(U)));return{output:$,newStates:Y}});f=k.output,b=k.newStates}c&&m.push(f)}let v;if(c){const N=1;v=es(m,N)}return[f,v,b]})}class Ei extends lt{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new fm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ln({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){const e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ni(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Ew(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);const n=t[0];let s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){const i=[];for(const o of t)i.push([e[0],o]);return[s].concat(i)}else return s}computeMask(e,t){return Q(()=>{Array.isArray(t)&&(t=t[0]);const n=this.returnSequences?t:null;if(this.returnState){const s=this.states.map(i=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){const e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){const t=null;if(this.numConstants!=null)throw new Pe("Constants support is not implemented in RNN yet.");Ew(e)&&(e=e[0]),e=e;const n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Ln({shape:[n,null,...s]});const i=[e[0]].concat(e.slice(2));if(t!=null)throw new Pe("Constants support is not implemented in RNN yet.");this.cell.build(i);let o;if(Array.isArray(this.cell.stateSize)?o=this.cell.stateSize:o=[this.cell.stateSize],this.stateSpec!=null){if(!ae(this.stateSpec.map(a=>a.shape[a.shape.length-1]),o))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=o.map(a=>new Ln({shape:[null,a]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){Q(()=>{if(!this.stateful)throw new nr("Cannot call resetStates() on an RNN Layer that is not stateful.");const n=this.inputSpec[0].shape[0];if(n==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>dt([n,s])):this.states_=[dt([n,this.cell.stateSize])];else if(e==null)He(this.states_),this.keptStates!=null&&(He(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>dt([n,s])):this.states_[0]=dt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):He(this.states_);for(let s=0;s<this.states_.length;++s){const i=e[s],o=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,a=[n,o];if(!ae(i.shape,a))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${a}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>bn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});const i=LN(e,n,s,this.numConstants);e=i.inputs,n=i.initialState,s=i.constants;let o=[],a=[];if(n!=null){t.initialState=n,o=o.concat(n),this.stateSpec=[];for(const h of n)this.stateSpec.push(new Ln({shape:h.shape}));a=a.concat(this.stateSpec)}s!=null&&(t.constants=s,o=o.concat(s),this.numConstants=s.length);const c=o[0]instanceof ii;if(c){const h=[e].concat(o),d=this.inputSpec.concat(a),m=this.inputSpec;this.inputSpec=d;const f=super.apply(h,t);return this.inputSpec=m,f}else return super.apply(e,t)}call(e,t){return Q(()=>{const n=t==null?null:t.mask,s=t==null?null:t.training;let i=t==null?null:t.initialState;e=Xe(e),i==null&&(this.stateful?i=this.states_:i=this.getInitialState(e));const o=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(i.length!==o)throw new q(`RNN Layer has ${o} state(s) but was passed ${i.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");const a={training:s},c=(w,L)=>{const x=this.cell.call([w].concat(L),a);return[x[0],x.slice(1)]},h=SN(c,e,i,this.goBackwards,n,null,this.unroll,this.returnSequences),d=h[0],m=h[1],f=h[2];this.stateful&&this.resetStates(f,s);const b=this.returnSequences?m:d;return this.returnState?[b].concat(f):b})}getInitialState(e){return Q(()=>{let t=dt(e.shape);return t=$e(t,[1,2]),t=$h(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Iw(t,[1,n]):t):this.cell.stateSize>1?[Iw(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){const e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);const n=this.cell.getConfig();return this.getClassName()===Ei.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){const s=t.cell,i=ri(s,n);return new e(Object.assign(t,{cell:i}))}}Ei.className="RNN",fe(Ei);class ac extends lt{}class pm extends ac{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,wn(this.units,"units"),this.activation=Kr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=zt(e.kernelRegularizer),this.recurrentRegularizer=zt(e.recurrentRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.kernelConstraint=gn(e.kernelConstraint),this.recurrentConstraint=gn(e.recurrentConstraint),this.biasConstraint=gn(e.biasConstraint),this.dropout=tc([1,Yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=tc([1,Yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Nt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Q(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];const s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Xr({ones:()=>Fn(e),rate:this.dropout,training:s})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Xr({ones:()=>Fn(n),rate:this.recurrentDropout,training:s}));let i;const o=this.dropoutMask,a=this.recurrentDropoutMask;o!=null?i=Ci(X(e,o),this.kernel.read()):i=Ci(e,this.kernel.read()),this.bias!=null&&(i=Ri(i,this.bias.read())),a!=null&&(n=X(n,a));let c=be(i,Ci(n,this.recurrentKernel.read()));return this.activation!=null&&(c=this.activation.apply(c)),[c,c]})}getConfig(){const e=super.getConfig(),t={units:this.units,activation:jr(this.activation),useBias:this.useBias,kernelInitializer:Kt(this.kernelInitializer),recurrentInitializer:Kt(this.recurrentInitializer),biasInitializer:Kt(this.biasInitializer),kernelRegularizer:Ct(this.kernelRegularizer),recurrentRegularizer:Ct(this.recurrentRegularizer),biasRegularizer:Ct(this.biasRegularizer),activityRegularizer:Ct(this.activityRegularizer),kernelConstraint:fn(this.kernelConstraint),recurrentConstraint:fn(this.recurrentConstraint),biasConstraint:fn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}}pm.className="SimpleRNNCell",fe(pm);class hL extends Ei{constructor(e){e.cell=new pm(e),super(e)}call(e,t){return Q(()=>{this.cell.dropoutMask!=null&&(He(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(He(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);const n=t==null?null:t.mask,s=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:i})})}static fromConfig(e,t){return new e(t)}}hL.className="SimpleRNN",fe(hL);class mm extends ac{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,wn(this.units,"units"),this.activation=Kr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Kr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=zt(e.kernelRegularizer),this.recurrentRegularizer=zt(e.recurrentRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.kernelConstraint=gn(e.kernelConstraint),this.recurrentConstraint=gn(e.recurrentConstraint),this.biasConstraint=gn(e.biasConstraint),this.dropout=tc([1,Yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=tc([1,Yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Nt(e);const t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Q(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);const n=t.training==null?!1:t.training;let s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Xr({ones:()=>Fn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Xr({ones:()=>Fn(s),rate:this.recurrentDropout,training:n,count:3}));const i=this.dropoutMask,o=this.recurrentDropoutMask;let a,c,h;0<this.dropout&&this.dropout<1&&(e=X(e,i[0]));let d=Ci(e,this.kernel.read());this.useBias&&(d=Ri(d,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=X(s,o[0]));const m=this.recurrentKernel.read(),[f,b]=hs(m,[2*this.units,this.units],m.rank-1),w=Ci(s,f),[L,x,v]=hs(d,3,d.rank-1),[N,O]=hs(w,2,w.rank-1);a=this.recurrentActivation.apply(be(L,N)),c=this.recurrentActivation.apply(be(x,O));const E=Ci(X(c,s),b);h=this.activation.apply(be(v,E));const k=be(X(a,s),X(be(1,Ht(a)),h));return[k,k]})}getConfig(){const e=super.getConfig(),t={units:this.units,activation:jr(this.activation),recurrentActivation:jr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Kt(this.kernelInitializer),recurrentInitializer:Kt(this.recurrentInitializer),biasInitializer:Kt(this.biasInitializer),kernelRegularizer:Ct(this.kernelRegularizer),recurrentRegularizer:Ct(this.recurrentRegularizer),biasRegularizer:Ct(this.biasRegularizer),activityRegularizer:Ct(this.activityRegularizer),kernelConstraint:fn(this.kernelConstraint),recurrentConstraint:fn(this.recurrentConstraint),biasConstraint:fn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}}mm.className="GRUCell",fe(mm);class uL extends Ei{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new mm(e),super(e)}call(e,t){return Q(()=>{this.cell.dropoutMask!=null&&(He(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(He(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);const n=t==null?null:t.mask,s=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:i})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}}uL.className="GRU",fe(uL);class qh extends ac{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,wn(this.units,"units"),this.activation=Kr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Kr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=zt(e.kernelRegularizer),this.recurrentRegularizer=zt(e.recurrentRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.kernelConstraint=gn(e.kernelConstraint),this.recurrentConstraint=gn(e.recurrentConstraint),this.biasConstraint=gn(e.biasConstraint),this.dropout=tc([1,Yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=tc([1,Yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Nt(e);const n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){const i=this.biasInitializer,o=this.units;s=new(t=class extends Ms{apply(c,h){const d=i.apply([o]),m=new Vp().apply([o]),f=i.apply([o*2]);return yv(yv(d,m),f)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return Q(()=>{const n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1];const i=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Xr({ones:()=>Fn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Xr({ones:()=>Fn(s),rate:this.recurrentDropout,training:n,count:4}));const o=this.dropoutMask,a=this.recurrentDropoutMask;let c,h,d,m;0<this.dropout&&this.dropout<1&&(e=X(e,o[0]));let f=Ci(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=X(s,a[0])),f=be(f,Ci(s,this.recurrentKernel.read())),this.useBias&&(f=Ri(f,this.bias.read()));const[b,w,L,x]=hs(f,4,f.rank-1);c=this.recurrentActivation.apply(b),h=this.recurrentActivation.apply(w),d=be(X(h,i),X(c,this.activation.apply(L))),m=this.recurrentActivation.apply(x);const v=X(m,this.activation.apply(d));return[v,v,d]})}getConfig(){const e=super.getConfig(),t={units:this.units,activation:jr(this.activation),recurrentActivation:jr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Kt(this.kernelInitializer),recurrentInitializer:Kt(this.recurrentInitializer),biasInitializer:Kt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:Ct(this.kernelRegularizer),recurrentRegularizer:Ct(this.recurrentRegularizer),biasRegularizer:Ct(this.biasRegularizer),activityRegularizer:Ct(this.activityRegularizer),kernelConstraint:fn(this.kernelConstraint),recurrentConstraint:fn(this.recurrentConstraint),biasConstraint:fn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}}qh.className="LSTMCell",fe(qh);class dL extends Ei{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new qh(e),super(e)}call(e,t){return Q(()=>{this.cell.dropoutMask!=null&&(He(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(He(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);const n=t==null?null:t.mask,s=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:i})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}}dL.className="LSTM",fe(dL);class fm extends ac{constructor(e){super(e);this.cells=e.cells}get stateSize(){const e=[];for(const t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return Q(()=>{e=e;let n=e.slice(1);const s=[];for(const a of this.cells.slice().reverse())Array.isArray(a.stateSize)?s.push(n.splice(0,a.stateSize.length)):s.push(n.splice(0,1));s.reverse();const i=[];let o;for(let a=0;a<this.cells.length;++a){const c=this.cells[a];n=s[a],a===0?o=[e[0]].concat(n):o=[o[0]].concat(n),o=c.call(o,t),i.push(o.slice(1))}n=[];for(const a of i.slice().reverse())n.push(...a);return[o[0]].concat(n)})}build(e){Ew(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Bo(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){const e=super.getConfig(),t=i=>({className:i.getClassName(),config:i.getConfig()}),n=this.cells.map(t),s={cells:n};return Object.assign({},e,s)}static fromConfig(e,t,n={}){const s=[];for(const i of t.cells)s.push(ri(i,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];const e=[];for(const t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){const e=[];for(const t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){const t=[];for(const n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){const e=[];for(const t of this.cells)e.push(...t.weights);return Dw(e)}setWeights(e){const t=[];for(const n of this.cells){const s=n.weights.length,i=e.splice(s);for(let o=0;o<n.weights.length;++o)t.push([n.weights[o],i[o]])}kw(t)}}fm.className="StackedRNNCells",fe(fm);function Xr(e){const{ones:t,rate:n,training:s=!1,count:i=1}=e,o=()=>wv(t(),n),a=()=>Bh(o,t,s);if(!i||i<=1)return bn(a().clone());const c=Array(i).fill(void 0).map(a);return c.map(h=>bn(h.clone()))}var cV=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var i=0,s=Object.getOwnPropertySymbols(e);i<s.length;i++)t.indexOf(s[i])<0&&Object.prototype.propertyIsEnumerable.call(e,s[i])&&(n[s[i]]=e[s[i]]);return n};class Lte extends ac{}class IN extends Ei{constructor(e){if(e.unroll)throw new Pe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Pe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ln({ndim:5})]}call(e,t){return Q(()=>{if(this.cell.dropoutMask!=null&&(He(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(He(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");const n=t==null?null:t.mask,s=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:i})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return Q(()=>{const{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),i=[s[0],...s.slice(2)],o=dt(i);return Array.isArray(t)?Array(t.length).fill(o):[o]})}resetStates(e,t=!1){Q(()=>{if(!this.stateful)throw new nr("Cannot call resetStates() on an RNN Layer that is not stateful.");const n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),i=[s[0],...s.slice(2)],o=n[0];if(o==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>dt(i)):this.states_=[dt(i)];else if(e==null)He(this.states_),this.keptStates!=null&&(He(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>dt(i)):this.states_[0]=dt(i);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):He(this.states_);for(let a=0;a<this.states_.length;++a){const c=e[a],h=i;if(!ae(c.shape,h))throw new q(`State ${a} is incompatible with layer ${this.name}: expected shape=${h}, received shape=${c.shape}`);this.states_[a]=c}}this.states_=this.states_.map(a=>bn(a.clone()))})}computeSingleOutputShape(e){const{dataFormat:t,filters:n,kernelSize:s,padding:i,strides:o,dilationRate:a}=this.cell,c=t==="channelsFirst",h=e[c?3:2],d=e[c?4:3],m=oi(h,s[0],i,o[0],a[0]),f=oi(d,s[1],i,o[1],a[1]),b=[...e.slice(0,2),...c?[n,m,f]:[m,f,n]];return b}}IN.className="ConvRNN2D";class gm extends qh{constructor(e){const{filters:t,kernelSize:n,strides:s,padding:i,dataFormat:o,dilationRate:a}=e;super(Object.assign({},e,{units:t}));this.filters=t,wn(this.filters,"filters"),this.kernelSize=oc(n,2,"kernelSize"),this.kernelSize.forEach(c=>wn(c,"kernelSize")),this.strides=oc(s||1,2,"strides"),this.strides.forEach(c=>wn(c,"strides")),this.padding=i||"valid",vs(this.padding),this.dataFormat=o||"channelsLast",jt(this.dataFormat),this.dilationRate=oc(a||1,2,"dilationRate"),this.dilationRate.forEach(c=>wn(c,"dilationRate"))}build(e){var t;e=Nt(e);const n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[n]}`);const s=e[n],i=4,o=this.kernelSize.concat([s,this.filters*i]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);const a=this.kernelSize.concat([this.filters,this.filters*i]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",a,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let c;if(this.unitForgetBias){const h=this.biasInitializer,d=this.filters;c=new(t=class extends Ms{apply(f,b){const w=h.apply([d]),L=Js([d]),x=h.apply([d*2]);return Sw([w,L,x])}},t.className="CustomInit",t)}else c=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*i],null,c,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return Q(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);const n=t.training||!1,s=e[0],i=e[1],o=e[2],a=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Xr({ones:()=>Fn(s),rate:this.dropout,training:n,count:a}));const c=this.dropoutMask,h=(we,Se,xe)=>!Se||!Se[xe]?we:X(Se[xe],we);let d=h(s,c,0),m=h(s,c,1),f=h(s,c,2),b=h(s,c,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Xr({ones:()=>Fn(i),rate:this.recurrentDropout,training:n,count:a}));const w=this.recurrentDropoutMask;let L=h(i,w,0),x=h(i,w,1),v=h(i,w,2),N=h(i,w,3);const O=3,[E,k,F,U]=hs(this.kernel.read(),a,O),[$,Y,j,Z]=this.useBias?hs(this.bias.read(),a):[null,null,null,null];d=this.inputConv(d,E,$,this.padding),m=this.inputConv(m,k,Y,this.padding),f=this.inputConv(f,F,j,this.padding),b=this.inputConv(b,U,Z,this.padding);const[ie,de,he,ue]=hs(this.recurrentKernel.read(),a,O);L=this.recurrentConv(L,ie),x=this.recurrentConv(x,de),v=this.recurrentConv(v,he),N=this.recurrentConv(N,ue);const me=this.recurrentActivation.apply(be(d,L)),ce=this.recurrentActivation.apply(be(m,x)),ye=be(X(ce,o),X(me,this.activation.apply(be(f,v)))),pe=X(this.recurrentActivation.apply(be(b,N)),this.activation.apply(ye));return[pe,pe,ye]})}getConfig(){const e=super.getConfig(),{units:t}=e,n=cV(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){const i=Ji(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ri(i,n,this.dataFormat):i}recurrentConv(e,t){const n=1;return Ji(e,t,n,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}}gm.className="ConvLSTM2DCell",fe(gm);class pL extends IN{constructor(e){const t=new gm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}}pL.className="ConvLSTM2D",fe(pL);class ym extends lt{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;const t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return Q(()=>{this.invokeCallHook(e,t);const n=Xe(e);if(0<this.rate&&this.rate<1){const s=t.training==null?!1:t.training,i=this.getNoiseShape(n),o=Bh(()=>wv(n,this.rate,i,this.seed),()=>n,s);return o}return e})}getConfig(){const e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}}ym.className="Dropout",fe(ym);class mL extends ym{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){const t=e.shape;return[t[0],1,t[2]]}}mL.className="SpatialDropout1D",fe(mL);class fL extends lt{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,wn(this.units,"units"),this.activation=Kr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=gn(e.kernelConstraint),this.biasConstraint=gn(e.biasConstraint),this.kernelRegularizer=zt(e.kernelRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.activityRegularizer=zt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Nt(e);const t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Nt(e);const t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return Q(()=>{this.invokeCallHook(e,t);const n=Xe(e),s=cv(this.activation.getClassName());let i;return s!=null?i=Ci(n,this.kernel.read(),s,this.bias?this.bias.read():null):(i=Ci(n,this.kernel.read()),this.bias!=null&&(i=Ri(i,this.bias.read())),this.activation!=null&&(i=this.activation.apply(i))),i})}getConfig(){const e={units:this.units,activation:jr(this.activation),useBias:this.useBias,kernelInitializer:Kt(this.kernelInitializer),biasInitializer:Kt(this.biasInitializer),kernelRegularizer:Ct(this.kernelRegularizer),biasRegularizer:Ct(this.biasRegularizer),activityRegularizer:Ct(this.activityRegularizer),kernelConstraint:fn(this.kernelConstraint),biasConstraint:fn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}}fL.className="Dense",fe(fL);class gL extends lt{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Nt(e);for(const t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Gr(e,1)]}call(e,t){return Q(()=>{this.invokeCallHook(e,t);let n=Xe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){const s=[0];for(let i=2;i<n.rank;++i)s.push(i);s.push(1),n=n.transpose(s)}return Ez(n)})}getConfig(){const e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);const t=super.getConfig();return Object.assign(e,t),e}}gL.className="Flatten",fe(gL);class yL extends lt{constructor(e){super(e);this.supportsMasking=!0,this.activation=Kr(e.activation)}call(e,t){return Q(()=>{this.invokeCallHook(e,t);const n=Xe(e);return this.activation.apply(n)})}getConfig(){const e={activation:jr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}}yL.className="Activation",fe(yL);class bL extends lt{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return Q(()=>(e=Xe(e),Rz(e,this.n)))}getConfig(){const e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}}bL.className="RepeatVector",fe(bL);class wL extends lt{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){const n="Total size of new array must be unchanged.",s=t.slice();let i=1,o=null;for(let c=0;c<s.length;++c){const h=s[c];if(this.isUnknown(h))if(o===null)o=c;else throw new q("Can only specifiy one unknown dimension.");else i*=h}const a=Gr(e);if(o!==null){if(i===0||a%i!==0)throw new q(n);s[o]=a/i}else if(a!==i)throw new q(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return Q(()=>{this.invokeCallHook(e,t);const n=Xe(e),s=n.shape,i=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return n.reshape(i)})}getConfig(){const e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}}wL.className="Reshape",fe(wL);class LL extends lt{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);const t=ni(1,e.dims.length+1);if(!ae(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ln({ndim:this.dims.length+1})]}computeOutputShape(e){e=Nt(e);const t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ye(Xe(e),this.dimsIncludingBatch)}getConfig(){const e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}}LL.className="Permute",fe(LL);class SL extends lt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){const n=Xe(e),s=-1;return ih(Br(n,this.maskValue),s)}call(e,t){return Q(()=>{this.invokeCallHook(e,t);const n=Xe(e),s=-1,i=!0,o=ih(Br(n,this.maskValue),s,i),a=n.mul(o.asType(n.dtype));return a})}}SL.className="Masking",fe(SL);class IL extends lt{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Et(e.inputLength))}this.inputDim=e.inputDim,wn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,wn(this.outputDim,"outputDim"),this.embeddingsInitializer=Pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=zt(e.embeddingsRegularizer),this.activityRegularizer=zt(e.activityRegularizer),this.embeddingsConstraint=gn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return Q(()=>this.maskZero?(e=Xe(e),Br(e,et(e))):null)}computeOutputShape(e){if(e=Nt(e),this.inputLength==null)return[...e,this.outputDim];const t=Et(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){const i=t[s],o=e[s+1];if(i!=null&&o!=null&&i!==o)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);i==null&&(t[n]=o),n++}}return[e[0],...t,this.outputDim]}call(e,t){return Q(()=>{this.invokeCallHook(e,t);let n=Xe(e);n.dtype!=="int32"&&(n=Wh(n,"int32"));const s=bv(this.embeddings.read(),n.as1D());return s.reshape(Nt(this.computeOutputShape(n.shape)))})}getConfig(){const e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Kt(this.embeddingsInitializer),embeddingsRegularizer:Ct(this.embeddingsRegularizer),activityRegularizer:Ct(this.activityRegularizer),embeddingsConstraint:fn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}}IL.className="Embedding",fe(IL);class Vo extends lt{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Pe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;const n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){const i=e[e.length-t.length+s],o=t[s];if(i==null||o==null||i<0||o<0)n.push(null);else if(i===1)n.push(o);else if(o===1)n.push(i);else{if(i!==o)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(i)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Nt(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(const i of e)i!=null&&i[0]!==null&&t.push(i[0]);if(t=Vr(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let i=1;i<e.length;++i){const o=e[i]==null?null:e[i].slice(1);n=this.computeElementwiseOpOutputShape(n,o)}const s=e.map(i=>i.length);e.indexOf(null)===-1&&Vr(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return Q(()=>{if(e=e,this.reshapeRequired){const n=[],s=e.map(i=>i.rank);if(s.indexOf(null)===-1){const i=Yr(s);for(let o of e){const a=o.rank;for(let c=0;c<i-a;++c)o=$h(o,1);n.push(o)}return this.mergeFunction(n)}else{let i=!1;for(const c of e){const h=c.rank;if(h==null){const d=c.shape,m=d[0],f=d.slice(1).concat([m]);let b=c.reshape([m].concat(Gr(d.slice(1))));b=Ye(b,[1,0]),b=b.reshape(f),n.push(b),i=!0}else if(h>1){const d=ni(1,h).concat([0]);n.push(Ye(c,d)),i=!0}else n.push(c)}let o=this.mergeFunction(n);const a=o.rank;if(i){if(a==null){const c=o.shape,h=c.length,d=c[h-1],m=[d].concat(c.slice(0,c.length-1));o=Ye(o.reshape([-1,d]),[1,0]).reshape(m)}else if(a>1){const c=[a-1].concat(ni(0,a-1));o=Ye(o,c)}}return o}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){const i=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,i)}let n=[];for(const s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Vr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return Q(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Zn(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Us(n,t[s]);return n})}}class jh extends Vo{constructor(e){super(e)}mergeFunction(e){return Q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=be(t,e[n]);return t})}}jh.className="Add",fe(jh);function Ste(e){if(Array.isArray(e)){const t=new jh({});return t.apply(e)}else return new jh(e)}class Kh extends Vo{constructor(e){super(e)}mergeFunction(e){return Q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=X(t,e[n]);return t})}}Kh.className="Multiply",fe(Kh);function Ite(e){if(Array.isArray(e)){const t=new Kh({});return t.apply(e)}else return new Kh(e)}class Xh extends Vo{constructor(e){super(e)}mergeFunction(e){return Q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=be(t,e[n]);return X(1/e.length,t)})}}Xh.className="Average",fe(Xh);function xte(e){if(Array.isArray(e)){const t=new Xh({});return t.apply(e)}else return new Xh(e)}class Jh extends Vo{constructor(e){super(e)}mergeFunction(e){return Q(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=$s(t,e[n]);return t})}}Jh.className="Maximum",fe(Jh);function Tte(e){if(Array.isArray(e)){const t=new Jh({});return t.apply(e)}else return new Jh(e)}class Zh extends Vo{constructor(e){super(e)}mergeFunction(e){return Q(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Oo(t,e[n]);return t})}}Zh.className="Minimum",fe(Zh);function Ate(e){if(Array.isArray(e)){const t=new Zh({});return t.apply(e)}else return new Zh(e)}class Qh extends Vo{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(const s of e)if(s!=null){t=!1;break}if(t)return;const n=[];for(let s=0;s<e.length;++s){const i=e[s].slice();i.splice(this.axis,1);let o=!1;for(const a of n)if(ae(a,i)){o=!0;break}o||n.push(i)}if(n.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return Q(()=>Sw(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");const t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(const i of t.slice(1)){if(n[s]==null||i[s]==null){n[s]=null;break}n[s]+=i[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return Q(()=>{let n=!0;if(t.forEach(o=>{if(o!=null){n=!1;return}}),n)return null;const s=[];for(let o=0;o<e.length;++o)t[o]==null?s.push(Fn(e[o]).asType("bool")):t[o].rank<e[o].rank?s.push(Zn(t[o],-1)):s.push(t[o]);const i=Yt(s,this.axis);return Qd(i,-1,!1)})}getConfig(){const e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}}Qh.className="Concatenate",fe(Qh);function vte(e){if(Array.isArray(e)){const t=new Qh({});return t.apply(e)}else return new Qh(e)}function eu(e,t){for(;e<0;)e+=t;return e}function lV(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Pe("batchDot is not implemented for tensors of 4D or higher rank yet");if(A(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),A(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Pe("batchDot is not implemented for complex64-type Tensors yet.");const s=e.shape.length,i=t.shape.length;n==null&&(n=[s-1,i-2]);const o=n;return Q(()=>{let a;if(s>i){a=s-i;const h=[];for(let d=0;d<a;++d)h.push(1);t=t.reshape(t.shape.concat(h))}else if(i>s){a=i-s;const h=[];for(let d=0;d<a;++d)h.push(1);e=e.reshape(e.shape.concat(h))}else a=0;let c;if(e.shape.length===2&&t.shape.length===2)o[0]===o[1]?c=e.mul(t).sum(o[0]):c=e.transpose([1,0]).mul(t).sum(o[1]);else{const h=o[0]!==e.shape.length-1,d=o[1]===t.shape.length-1;c=e.matMul(t,h,d)}if(a>0){let h;s>i?h=s+i-3:h=s-1;const d=[];for(let m=h;m<h+a;++m)d.push(m);c=c.squeeze(d)}return c.shape.length===1&&(c=c.expandDims(1)),c})}class xL extends Vo{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){A(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");const t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");const s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new q(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((i,o)=>eu(i,e[o].shape.length)):s=[eu(this.axes,t.shape.length),eu(this.axes,n.shape.length)],this.normalize&&(t=tm(t,s[0]),n=tm(n,s[1])),lV(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[eu(this.axes,e.length),eu(this.axes,t.length)],n}computeOutputShape(e){A(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");const t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");const s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);const i=t.concat(n);return i.length===1&&i.push(1),i}computeMask(e,t){return null}getConfig(){const e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}}xL.className="Dot",fe(xL);class TL extends lt{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return Q(()=>{this.invokeCallHook(e,t);const n=Xe(e),s=()=>zp(n.shape,0,this.stddev).add(n),i=Bh(s,()=>n,t.training||!1);return i})}}TL.className="GaussianNoise",fe(TL);class AL extends lt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Q(()=>{this.invokeCallHook(e,t);const n=Xe(e);if(this.rate>0&&this.rate<1){const s=()=>{const i=Math.sqrt(this.rate/(1-this.rate));return n.mul(zp(n.shape,1,i))};return Bh(s,()=>n,t.training||!1)}return n})}}AL.className="GaussianDropout",fe(AL);class vL extends lt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Xe(e).shape}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Q(()=>{if(this.rate<1&&this.rate>0){const n=this._getNoiseShape(e),s=()=>{const i=Xe(e),o=1.6732632423543772,a=1.0507009873554805,c=-o*a;let h=Zi(ko(n),this.rate);h=Wh(h,"float32");const d=((1-this.rate)*(1+this.rate*c**2))**-.5,m=-d*c*this.rate,f=i.mul(h).add(h.add(-1).mul(c));return f.mul(d).add(m)};return Bh(s,()=>Xe(e),t.training||!1)}return e})}}vL.className="AlphaDropout",fe(vL);function tu(e,t,n,s,i,o=.001){let a;if(e.rank===2)a=qT(e,t,n,s,i,o);else if(e.rank===3)a=jT(e,t,n,s,i,o);else if(e.rank===4)a=KT(e,t,n,s,i,o);else throw new Pe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return a}function hV(e,t,n,s,i=.001){return Q(()=>{const o=fp(e,s),a=o.mean,c=o.variance,h=tu(e,a,c,n,t,i);return[h,a,c]})}function uV(e,t,n,s,i=.001){return Q(()=>{const o=fp(e,s),a=o.mean,c=o.variance,h=[];for(const L of ni(0,e.rank))s.indexOf(L)!==-1?h.push(1):h.push(e.shape[L]);const d=a.reshape(h),m=c.reshape(h),f=t==null?null:t.reshape(h),b=n==null?null:n.reshape(h),w=tu(e,d,m,b,f,i);return[w,a,c]})}function dV(e,t,n,s,i=.001){return ae(s.slice().sort(),ni(0,e.rank-1))?hV(e,t,n,s,i):uV(e,t,n,s,i)}class NL extends lt{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Pt(e.betaInitializer||"zeros"),this.gammaInitializer=Pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=gn(e.betaConstraint),this.gammaConstraint=gn(e.gammaConstraint),this.betaRegularizer=zt(e.betaRegularizer),this.gammaRegularizer=zt(e.gammaRegularizer)}build(e){e=Nt(e);const t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ln({ndim:e.length,axes:{[t]:n}})];const s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return Q(()=>{const n=t.training==null?!1:t.training,s=Xe(e),i=s.shape,o=i.length,a=ni(0,o),c=this.axis>=0?this.axis:this.axis+o;a.splice(c,1);const h=$o(1,o);h[c]=i[c];const d=a.slice();d.sort();const m=!ae(d,ni(0,o).slice(0,o-1)),f=()=>{if(m){const N=this.movingMean.read().reshape(h),O=this.movingVariance.read().reshape(h),E=this.center?this.beta.read().reshape(h):null,k=this.scale?this.gamma.read().reshape(h):null;return tu(s,N,O,E,k,this.epsilon)}else return tu(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return f();const[b,w,L]=dV(s,this.gamma.read(),this.beta.read(),a,this.epsilon),x=(N,O,E)=>{Q(()=>{const k=1-E,F=N.read(),U=F.sub(O).mul(k);N.write(F.sub(U))})},v=()=>{x(this.movingMean,w,this.momentum),x(this.movingVariance,L,this.momentum)};return v(),b})}getConfig(){const e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Kt(this.betaInitializer),gammaInitializer:Kt(this.gammaInitializer),movingMeanInitializer:Kt(this.movingMeanInitializer),movingVarianceInitializer:Kt(this.movingVarianceInitializer),betaRegularizer:Ct(this.betaRegularizer),gammaRegularizer:Ct(this.gammaRegularizer),betaConstraint:fn(this.betaConstraint),gammaConstraint:fn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}}NL.className="BatchNormalization",fe(NL);class CL extends lt{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(const t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Pt(e.betaInitializer||"zeros"),this.gammaInitializer=Pt(e.gammaInitializer||"ones"),this.betaRegularizer=zt(e.betaRegularizer),this.gammaRegularizer=zt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Nt(e);const t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let i=0;i<this.axis.length;++i)this.axis[i]<0&&(this.axis[i]+=t);for(const i of this.axis)if(i<0||i>=t)throw new Error(`Invalid axis: ${i}`);if(this.axis.length!==Vr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);const n=this.axis.map(i=>e[i]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){const n=Xe(e),s=n.shape,i=s.length;return Q(()=>{const o=!0;let{mean:a,variance:c}=fp(n,this.axis,o);const h=$o(1,i);for(const L of this.axis)h[L]=s[L];const d=L=>L!=null&&L.shape.length!==i&&this.axis!==[i-1]?L.reshape(h):L;let m=d(this.gamma.read()),f=d(this.beta.read());const b=[],w=[];for(let L=0;L<i;++L)this.axis.indexOf(L)!==-1?(b.push(s[L]),w.push(1)):(b.push(1),w.push(s[L]));return a=a.tile(b),c=c.tile(b),m=m.tile(w),f=f.tile(w),tu(n,a,c,f,m,this.epsilon)})}getConfig(){const e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Kt(this.betaInitializer),gammaInitializer:Kt(this.gammaInitializer),betaRegularizer:Ct(this.betaRegularizer),gammaRegularizer:Ct(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}}CL.className="LayerNormalization",fe(CL);function Nte(e,t){return Q(()=>{if(e.rank!==3)throw new q(`temporalPadding expects input tensor to be 3-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[1,1]),t.length!==2)throw new q(`temporalPadding expects input padding pattern to be a length-2 array, but received a length-${t.length} array.`);const n=[[0,0],t,[0,0]];return vi(e,n)})}function pV(e,t,n){return Q(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=ei()),n!=="channelsLast"&&n!=="channelsFirst")throw new q(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],vi(e,s)})}class RL extends lt{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ei():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ln({ndim:4})]}computeOutputShape(e){e=Nt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return Q(()=>pV(Xe(e),this.padding,this.dataFormat))}getConfig(){const e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}RL.className="ZeroPadding2D",fe(RL);function bm(e,t,n,s,i,o){return Q(()=>{jt(i),uv(o),vs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),i==null&&(i=ei()),o==null&&(o="max"),e=nL(e,i);let a;const c=s==="same"?"same":"valid";return o==="max"?a=fh(e,t,n,c):a=ah(e,t,n,c),i==="channelsFirst"&&(a=Ye(a,[0,3,1,2])),a})}function xN(e,t,n,s,i,o){return Q(()=>{jt(i),uv(o),vs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),i==null&&(i=ei()),o==null&&(o="max"),e=gN(e,i);let a;const c=s==="same"?"same":"valid";return o==="max"?a=Ob(e,t,n,c):a=yb(e,t,n,c),i==="channelsFirst"&&(a=Ye(a,[0,4,1,2,3])),a})}class TN extends lt{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(wn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);wn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,vs(this.padding),this.inputSpec=[new Ln({ndim:3})]}computeOutputShape(e){e=Nt(e);const t=oi(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return Q(()=>{this.invokeCallHook(e,t),e=$h(Xe(e),2);const n=this.poolingFunction(Xe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Mr(n,[2])})}getConfig(){const e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}}class OL extends TN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return jt(i),vs(s),bm(e,t,n,s,i,"max")}}OL.className="MaxPooling1D",fe(OL);class EL extends TN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return jt(i),vs(s),bm(e,t,n,s,i,"avg")}}EL.className="AveragePooling1D",fe(EL);class AN extends lt{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];wn(this.poolSize,"poolSize"),wn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),vs(this.padding),this.inputSpec=[new Ln({ndim:4})]}computeOutputShape(e){e=Nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=oi(t,this.poolSize[0],this.padding,this.strides[0]),n=oi(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return Q(()=>(this.invokeCallHook(e,t),this.poolingFunction(Xe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){const e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}class DL extends AN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return jt(i),vs(s),bm(e,t,n,s,i,"max")}}DL.className="MaxPooling2D",fe(DL);class kL extends AN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return jt(i),vs(s),bm(e,t,n,s,i,"avg")}}kL.className="AveragePooling2D",fe(kL);class vN extends lt{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];wn(this.poolSize,"poolSize"),wn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),vs(this.padding),this.inputSpec=[new Ln({ndim:5})]}computeOutputShape(e){e=Nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=oi(t,this.poolSize[0],this.padding,this.strides[0]),n=oi(n,this.poolSize[1],this.padding,this.strides[1]),s=oi(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return Q(()=>(this.invokeCallHook(e,t),this.poolingFunction(Xe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){const e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}class FL extends vN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return jt(i),vs(s),xN(e,t,n,s,i,"max")}}FL.className="MaxPooling3D",fe(FL);class _L extends vN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return jt(i),vs(s),xN(e,t,n,s,i,"avg")}}_L.className="AveragePooling3D",fe(_L);class NN extends lt{constructor(e){super(e);this.inputSpec=[new Ln({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Pe}}class WL extends NN{constructor(e){super(e||{})}call(e,t){return Q(()=>{const n=Xe(e);return qt(n,1)})}}WL.className="GlobalAveragePooling1D",fe(WL);class $L extends NN{constructor(e){super(e||{})}call(e,t){return Q(()=>{const n=Xe(e);return Qn(n,1)})}}$L.className="GlobalMaxPooling1D",fe($L);class CN extends lt{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.inputSpec=[new Ln({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Pe}getConfig(){const e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}class UL extends CN{call(e,t){return Q(()=>{const n=Xe(e);return this.dataFormat==="channelsLast"?qt(n,[1,2]):qt(n,[2,3])})}}UL.className="GlobalAveragePooling2D",fe(UL);class BL extends CN{call(e,t){return Q(()=>{const n=Xe(e);return this.dataFormat==="channelsLast"?Qn(n,[1,2]):Qn(n,[2,3])})}}BL.className="GlobalMaxPooling2D",fe(BL);class RN extends lt{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){const e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){const s=t.layer,i=ri(s,n);delete t.layer;const o={layer:i};return Object.assign(o,t),new e(o)}}class ML extends RN{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=Nt(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];const t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Nt(e);const t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return Q(()=>{e=Xe(e);const n=(o,a)=>{const c=Xe(this.layer.call(o,t));return[c,[]]},s=SN(n,e,[],!1,null,null,!1,!0),i=s[1];return i})}}ML.className="TimeDistributed",fe(ML);function mV(e){Qa(xz,"BidirectionalMergeMode",e)}const fV="concat";class PL extends RN{constructor(e){super(e);const t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=ri(n),t.goBackwards=!(t.goBackwards===!0);const s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=ri(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?fV:e.mergeMode,mV(this.mergeMode),e.weights)throw new Pe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){const t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,i;return this.returnState&&(i=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(i).concat(i.slice()):[n].concat(i).concat(i.slice()):ts(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});const i=LN(e,n,s,this.numConstants);if(e=i.inputs,n=i.initialState,s=i.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);const o=[],a=[];if(n!=null){const h=n.length;if(h%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,o.push(...n);const d=n.map(m=>new Ln({shape:m.shape}));this.forwardLayer.stateSpec=d.slice(0,h/2),this.backwardLayer.stateSpec=d.slice(h/2),a.push(...d)}if(s!=null)throw new Pe("Support for constants in Bidirectional layers is not implemented yet.");const c=o[0]instanceof ii;for(const h of o)if(h instanceof ii!==c)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(c){const h=[e].concat(o),d=this.inputSpec.concat(a),m=this.inputSpec;this.inputSpec=d;const f=super.apply(h,t);return this.inputSpec=m,f}else return super.apply(e,t)}call(e,t){return Q(()=>{const n=t.initialState;let s,i;if(n==null)s=this.forwardLayer.call(e,t),i=this.backwardLayer.call(e,t);else{const c=n.slice(0,n.length/2),h=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:c})),i=this.backwardLayer.call(e,Object.assign(t,{initialState:h}))}let o;this.returnState&&(Array.isArray(s)&&(o=s.slice(1).concat(i.slice(1))),s=s[0],i=i[0]),this.returnSequences&&(i=Ts(i,1));let a;return this.mergeMode==="concat"?a=Sw([s,i]):this.mergeMode==="sum"?a=be(s,i):this.mergeMode==="ave"?a=X(.5,be(s,i)):this.mergeMode==="mul"?a=X(s,i):this.mergeMode==null&&(a=[s,i]),this.returnState?this.mergeMode==null?a.concat(o):[a].concat(o):a})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Bo(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Bo(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){const s=this.forwardLayer.states,i=s.map(o=>null);return Array.isArray(n)?n.concat(i).concat(i):[n].concat(i).concat(i)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){const e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){const n=ri(t.layer);if(delete t.layer,t.numConstants!=null)throw new Pe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");const s=t;return s.layer=n,new e(s)}}PL.className="Bidirectional",fe(PL);function gV(e){return new nc(e)}function yV(e){return new Qw(e)}function bV(e){return new Xw(e)}function wV(e){return new Jw(e)}function LV(e){return new Zw(e)}function SV(e){return new tL(e)}function IV(e){return new eL(e)}function xV(e){return new dm(e)}function TV(e){return new Hh(e)}function AV(e){return new rL(e)}function vV(e){return new um(e)}function NV(e){return new oL(e)}function CV(e){return new aL(e)}function RV(e){return new cL(e)}function OV(e){return new lL(e)}function EV(e){return new yL(e)}function DV(e){return new fL(e)}function kV(e){return new ym(e)}function FV(e){return new mL(e)}function _V(e){return new gL(e)}function WV(e){return new bL(e)}function $V(e){return new wL(e)}function UV(e){return new LL(e)}function BV(e){return new IL(e)}function MV(e){return new jh(e)}function PV(e){return new Xh(e)}function zV(e){return new Qh(e)}function VV(e){return new Jh(e)}function GV(e){return new Zh(e)}function YV(e){return new Kh(e)}function HV(e){return new xL(e)}function qV(e){return new NL(e)}function jV(e){return new CL(e)}function KV(e){return new RL(e)}function zL(e){return new EL(e)}function XV(e){return zL(e)}function JV(e){return zL(e)}function VL(e){return new kL(e)}function ZV(e){return VL(e)}function QV(e){return VL(e)}function GL(e){return new _L(e)}function eG(e){return GL(e)}function tG(e){return GL(e)}function nG(e){return new WL(e)}function sG(e){return new UL(e)}function ON(e){return new $L(e)}function EN(e){return new BL(e)}function DN(e){return new OL(e)}function kN(e){return new DL(e)}function iG(e){return new FL(e)}function rG(e){return new uL(e)}function oG(e){return new mm(e)}function aG(e){return new dL(e)}function cG(e){return new qh(e)}function lG(e){return new hL(e)}function hG(e){return new pm(e)}function uG(e){return new pL(e)}function dG(e){return new gm(e)}function pG(e){return new Ei(e)}function mG(e){return new fm(e)}function fG(e){return new PL(e)}function gG(e){return new ML(e)}const yG=ON,bG=EN,wG=DN,LG=kN;function SG(e){return new TL(e)}function IG(e){return new AL(e)}function xG(e){return new vL(e)}function TG(e){return new SL(e)}var AG=Object.freeze({__proto__:null,inputLayer:gV,elu:yV,reLU:bV,leakyReLU:wV,prelu:LV,softmax:SV,thresholdedReLU:IV,conv1d:xV,conv2d:TV,conv2dTranspose:AV,conv3d:vV,separableConv2d:NV,cropping2D:CV,upSampling2d:RV,depthwiseConv2d:OV,activation:EV,dense:DV,dropout:kV,spatialDropout1d:FV,flatten:_V,repeatVector:WV,reshape:$V,permute:UV,embedding:BV,add:MV,average:PV,concatenate:zV,maximum:VV,minimum:GV,multiply:YV,dot:HV,batchNormalization:qV,layerNormalization:jV,zeroPadding2d:KV,averagePooling1d:zL,avgPool1d:XV,avgPooling1d:JV,averagePooling2d:VL,avgPool2d:ZV,avgPooling2d:QV,averagePooling3d:GL,avgPool3d:eG,avgPooling3d:tG,globalAveragePooling1d:nG,globalAveragePooling2d:sG,globalMaxPooling1d:ON,globalMaxPooling2d:EN,maxPooling1d:DN,maxPooling2d:kN,maxPooling3d:iG,gru:rG,gruCell:oG,lstm:aG,lstmCell:cG,simpleRNN:lG,simpleRNNCell:hG,convLstm2d:uG,convLstm2dCell:dG,rnn:pG,stackedRNNCells:mG,bidirectional:fG,timeDistributed:gG,globalMaxPool1d:yG,globalMaxPool2d:bG,maxPool1d:wG,maxPool2d:LG,Layer:lt,RNN:Ei,RNNCell:ac,input:eN,gaussianNoise:SG,gaussianDropout:IG,alphaDropout:xG,masking:TG});function vG(e,t){return $w(e,t)}function NG(e,t){return _v(e,t)}function CG(e,t){return Wv(e,t)}function RG(e,t){return Uw(e,t)}function OG(e,t){return Bw(e,t)}function EG(e,t){return Fv(e,t)}function DG(e,t){return b3(e,t)}function kG(e,t){return im(e,t)}function FG(e,t){return ic(e,t)}function _G(e,t){return qr(e,t)}function WG(e,t){return qr(e,t)}function $G(e,t){return qr(e,t)}function UG(e,t){return ir(e,t)}function BG(e,t){return ir(e,t)}function MG(e,t){return ir(e,t)}var PG=Object.freeze({__proto__:null,binaryAccuracy:vG,binaryCrossentropy:NG,sparseCategoricalAccuracy:CG,categoricalAccuracy:RG,categoricalCrossentropy:OG,precision:EG,recall:DG,cosineProximity:kG,meanAbsoluteError:FG,meanAbsolutePercentageError:_G,MAPE:WG,mape:$G,meanSquaredError:UG,MSE:BG,mse:MG});var zG=Object.freeze({__proto__:null,modelFromJSON:J3});function VG(e){return new Gh(e)}function GG(e){return rV(e)}function YG(e){return oV(e)}var HG=Object.freeze({__proto__:null,l1l2:VG,l1:GG,l2:YG});class FN extends sc{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof rr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}}function wm(e,t){return e<t}function _N(e,t){return e>t}class WN extends FN{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Pe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=wm:this.mode==="max"?this.monitorFunc=_N:this.monitor.indexOf("acc")!==-1?this.monitorFunc=_N:this.monitorFunc=wm,this.monitorFunc===wm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===wm?Infinity:-Infinity}async onEpochEnd(e,t){await Hr(t);const n=this.getMonitorValue(t);if(n==null)return;this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});const t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}}function qG(e){return new WN(e)}const jG={earlyStopping:qG};var ai;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(ai||(ai={}));var $N;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})($N||($N={}));const YL={};function KG(e,t){const n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};YL[e]=n}function UN(e){return YL[e]}function XG(e){delete YL[e]}function R(e,t,n,s,i){const o=t.inputParams[e];if(o&&o.inputIndexStart!==void 0){const c=o.inputIndexStart,h=o.inputIndexEnd===0?void 0:o.inputIndexEnd===void 0?c+1:o.inputIndexEnd;if(o.type==="tensor")return ss(t.inputNames[o.inputIndexStart],n,s,i);if(o.type==="tensors"){const f=t.inputNames.slice(c,h);return f.map(b=>ss(b,n,s,i))}const d=ss(t.inputNames.slice(c)[0],n,s,i),m=d.dataSync();return o.type==="number"?m[0]:Ls(d.shape,m)}const a=t.attrParams[e];return a&&a.value}function ss(e,t,n,s){const[i,o]=ds(e);if(s!=null){const c=s.getHashTableHandleByName(i);if(c!=null)return c}const a=n.currentContextIds.find(c=>!!t[Lm(i,c)]);return a!==void 0?t[Lm(i,a)][o]:void 0}function JG(e,t,n){return t[Lm(e,n.currentContextId)]}function or(e,t){const[n,s]=ds(e);return[Lm(n,t&&t.currentContextId),s]}function Lm(e,t){return t?`${e}-${t}`:e}function ds(e){const t=e.split(":");if(t.length===1)return[e,0];const n=t[0];return[n,Number(t[t.length-1])]}function Cte(e,t){const n=[];for(let s=0;s<e.length;s+=t)n.push(e.slice(s,s+t));return n}function Sm(e,t,n){let s=R("pad",e,t,n);if(s==="explicit"){s=R("explicitPaddings",e,t,n);const i=[[0,0],[0,0],[0,0],[0,0]];for(let o=0;o<4;o++)i[o][0]=s[o*2],i[o][1]=s[o*2+1];return i}return s}function ar(e){return e.kept?e:kr(e)}const ZG=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var QG=Object.freeze({__proto__:null,json:ZG});const eY=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"clip_value_min",name:"clipValueMin",type:"number"},{tfName:"clip_value_max",name:"clipValueMax",type:"number"}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"clipValueMin",name:"clipValueMin",type:"number",defaultValue:0},{tfName:"clipValueMax",name:"clipValueMax",type:"number",defaultValue:6}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var tY=Object.freeze({__proto__:null,json:eY});const nY=[{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var sY=Object.freeze({__proto__:null,json:nY});const iY=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var rY=Object.freeze({__proto__:null,json:iY});const oY=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var aY=Object.freeze({__proto__:null,json:oY});const cY=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var lY=Object.freeze({__proto__:null,json:cY});const hY=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var uY=Object.freeze({__proto__:null,json:hY});const dY=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var pY=Object.freeze({__proto__:null,json:dY});const mY=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}];var fY=Object.freeze({__proto__:null,json:mY});const gY=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var yY=Object.freeze({__proto__:null,json:gY});const bY=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var wY=Object.freeze({__proto__:null,json:bY});const LY=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var SY=Object.freeze({__proto__:null,json:LY});const IY=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var xY=Object.freeze({__proto__:null,json:IY});const TY=[{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var AY=Object.freeze({__proto__:null,json:TY});const vY=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool",notSupported:!0}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var NY=Object.freeze({__proto__:null,json:vY});const CY=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var RY=Object.freeze({__proto__:null,json:CY});const OY=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var EY=Object.freeze({__proto__:null,json:OY});class BN{static get Instance(){return this._instance||(this._instance=new this)}constructor(){const e=[QG,tY,sY,rY,aY,lY,uY,wY,yY,pY,SY,xY,AY,NY,RY,EY,fY],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){const n=e.node,s=[],i=[],o=[],a=n.reduce((L,x)=>(L[x.name]=this.mapNode(x),x.op.startsWith("Placeholder")?s.push(L[x.name]):x.op==="Const"?i.push(L[x.name]):(x.input==null||x.input.length===0)&&o.push(L[x.name]),L),{});let c=[];const h=[];let d={},m={};t!=null&&(d=this.mapSignatureEntries(t.inputs),m=this.mapSignatureEntries(t.outputs));const f=Object.keys(a);f.forEach(L=>{const x=a[L];x.inputNames.forEach(v=>{const[N]=or(v);x.inputs.push(a[N]),a[N].children.push(x)})}),Object.keys(m).length===0?f.forEach(L=>{const x=a[L];x.children.length===0&&h.push(x)}):Object.keys(m).forEach(L=>{const[x]=or(L),v=a[x];v!=null&&(v.signatureKey=m[L],h.push(v))}),Object.keys(d).length>0?Object.keys(d).forEach(L=>{const[x]=or(L),v=a[x];v&&(v.signatureKey=d[L],c.push(v))}):c=s;let b={};e.library!=null&&e.library.function!=null&&(b=e.library.function.reduce((L,x)=>(L[x.signature.name]=this.mapFunction(x),L),{}));const w={nodes:a,inputs:c,outputs:h,weights:i,placeholders:s,signature:t,functions:b};return o.length>0&&(w.initNodes=o),w}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){const t=UN(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});const n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,i)=>(s[i.name]={type:i.type,inputIndexStart:i.start,inputIndexEnd:i.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,i)=>{const o=i.type;let a;switch(i.type){case"string":a=HL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=HL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"string[]":a=eS(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=eS(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"number":a=jL(e.attr,i.tfName,i.defaultValue||0),a===void 0&&!!i.tfDeprecatedName&&(a=jL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"number[]":a=QL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=QL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"bool":a=qL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=qL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"bool[]":a=nS(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=nS(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"shape":a=ZL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=ZL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"shape[]":a=tS(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=tS(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"dtype":a=XL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=XL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"dtype[]":a=JL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=JL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"func":a=PN(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=PN(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${i.type} for op: ${e.op}`)}return s[i.name]={value:a,type:o},s},{})),n}mapFunction(e){const t=e.nodeDef,n=[],s=[];let i={};t!=null&&(i=t.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op==="Const"&&s.push(m[f.name]),m),{}));const o=[],a=[];e.signature.inputArg.forEach(m=>{const[f]=or(m.name),b={name:f,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:KL(m.type),type:"dtype"}},children:[]};b.signatureKey=m.name,o.push(b),i[f]=b});const c=Object.keys(i);c.forEach(m=>{const f=i[m];f.inputNames.forEach(b=>{const[w]=or(b);f.inputs.push(i[w]),i[w].children.push(f)})});const h=e.ret;e.signature.outputArg.forEach(m=>{const[f,b]=or(h[m.name]),w=i[f];w!=null&&(w.defaultOutput=b,a.push(w))});const d=this.mapArgsToSignature(e);return{nodes:i,inputs:o,outputs:a,weights:s,placeholders:n,signature:d}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}}function DY(e){const t=oe().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function MN(e,t){const n=Array.isArray(e)?String.fromCharCode.apply(null,e):DY(e);return t?n:n.toLowerCase()}function HL(e,t,n,s=!1){const i=e[t];return i!=null?MN(i.s,s):n}function qL(e,t,n){const s=e[t];return s?s.b:n}function jL(e,t,n){const s=e[t]||{},i=s.i!=null?s.i:s.f!=null?s.f:n;return typeof i=="number"?i:parseInt(i,10)}function KL(e){typeof e=="string"&&(e=ai[e]);switch(e){case ai.DT_FLOAT:return"float32";case ai.DT_INT32:case ai.DT_INT64:case ai.DT_INT8:case ai.DT_UINT8:return"int32";case ai.DT_BOOL:return"bool";case ai.DT_DOUBLE:return"float32";case ai.DT_STRING:return"string";default:return null}}function PN(e,t,n){const s=e[t];return s&&s.func?s.func.name:n}function XL(e,t,n){const s=e[t];return s&&s.type?KL(s.type):n}function JL(e,t,n){const s=e[t];return s&&s.list&&s.list.type?s.list.type.map(i=>KL(i)):n}function zN(e){return e.unknownRank?void 0:e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ZL(e,t,n){const s=e[t];return s&&s.shape?zN(s.shape):n}function QL(e,t,n){const s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(i=>typeof i=="number"?i:parseInt(i,10)):n}function eS(e,t,n,s=!1){const i=e[t];return i&&i.list&&i.list.s?i.list.s.map(o=>MN(o,s)):n}function tS(e,t,n){const s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(i=>zN(i)):n}function nS(e,t,n){const s=e[t];return s&&s.list&&s.list.b?s.list.b:n}class kY{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,i)=>(s[i]=this.getAttr(i),s),{}))}getInput(e){return ss(e,this.tensorMap,this.context)}getAttr(e,t){const n=this.node.rawAttrs[e];if(n.tensor!=null)return ss(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return jL(this.node.rawAttrs,e,t);if(n.s!=null)return HL(this.node.rawAttrs,e,t);if(n.b!=null)return qL(this.node.rawAttrs,e,t);if(n.shape!=null)return ZL(this.node.rawAttrs,e,t);if(n.type!=null)return XL(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return QL(this.node.rawAttrs,e,t);if(n.list.s!=null)return eS(this.node.rawAttrs,e,t);if(n.list.shape!=null)return tS(this.node.rawAttrs,e,t);if(n.list.b!=null)return nS(this.node.rawAttrs,e,t);if(n.list.type!=null)return JL(this.node.rawAttrs,e,t)}return t}}const FY=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[be(R("a",e,t,n),R("b",e,t,n))];case"AddN":return[YT(R("tensors",e,t,n))];case"FloorMod":case"Mod":return[mp(R("a",e,t,n),R("b",e,t,n))];case"Mul":return[X(R("a",e,t,n),R("b",e,t,n))];case"RealDiv":case"Div":return[We(R("a",e,t,n),R("b",e,t,n))];case"DivNoNan":return[xb(R("a",e,t,n),R("b",e,t,n))];case"FloorDiv":return[Zd(R("a",e,t,n),R("b",e,t,n))];case"Sub":return[Re(R("a",e,t,n),R("b",e,t,n))];case"Minimum":return[Oo(R("a",e,t,n),R("b",e,t,n))];case"Maximum":return[$s(R("a",e,t,n),R("b",e,t,n))];case"Pow":return[Zs(R("a",e,t,n),R("b",e,t,n))];case"SquaredDifference":return[Ih(R("a",e,t,n),R("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rte="arithmetic";const _Y=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[dn(R("x",e,t,n))];case"Acos":return[ob(R("x",e,t,n))];case"Acosh":return[ab(R("x",e,t,n))];case"Asin":return[hb(R("x",e,t,n))];case"Asinh":return[ub(R("x",e,t,n))];case"Atan":return[db(R("x",e,t,n))];case"Atan2":return[pb(R("x",e,t,n),R("y",e,t,n))];case"Atanh":return[mb(R("x",e,t,n))];case"Ceil":return[bb(R("x",e,t,n))];case"Complex":return[ji(R("real",e,t,n),R("imag",e,t,n))];case"Cos":return[hh(R("x",e,t,n))];case"Cosh":return[op(R("x",e,t,n))];case"Elu":return[Ua(R("x",e,t,n))];case"Erf":return[Tb(R("x",e,t,n))];case"Exp":return[Is(R("x",e,t,n))];case"Expm1":return[Ab(R("x",e,t,n))];case"Floor":return[Ma(R("x",e,t,n))];case"Log":return[cs(R("x",e,t,n))];case"Log1p":return[hp(R("x",e,t,n))];case"Imag":return[dh(R("x",e,t,n))];case"Neg":return[Ht(R("x",e,t,n))];case"Reciprocal":return[_b(R("x",e,t,n))];case"Real":return[Ga(R("x",e,t,n))];case"Relu":return[Ni(R("x",e,t,n))];case"Round":return[$b(R("x",e,t,n))];case"Selu":return[bp(R("x",e,t,n))];case"Sigmoid":return[Ti(R("x",e,t,n))];case"Sin":return[wp(R("x",e,t,n))];case"Sign":return[Bb(R("x",e,t,n))];case"Sinh":return[Lp(R("x",e,t,n))];case"Softplus":return[za(R("x",e,t,n))];case"Sqrt":return[Nn(R("x",e,t,n))];case"Square":return[At(R("x",e,t,n))];case"Tanh":return[$a(R("x",e,t,n))];case"Tan":return[zb(R("x",e,t,n))];case"Relu6":case"ClipByValue":return[Jn(R("x",e,t,n),R("clipValueMin",e,t,n),R("clipValueMax",e,t,n))];case"Rsqrt":return[yp(ss(e.inputNames[0],t,n))];case"Prod":return[gp(R("x",e,t,n),R("axes",e,t,n))];case"LeakyRelu":return[lp(R("x",e,t,n),R("alpha",e,t,n))];case"Prelu":return[yh(R("x",e,t,n),R("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ote="basic_math";function zs(e,t,n=""){A(WY(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function WY(e,t){if(e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==-1&&t[n]!==-1&&e[n]!==t[n])return!1;return!0}class $Y{constructor(e,t,n,s,i,o,a){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=i,this.dynamicSize=o,this.clearAfterRead=a,this.tensors=[],this.closed_=!1,this.idTensor=Ce(0),bn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);const t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);const n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),zs(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,bn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return sn([],[0].concat(this.elementShape));const n=this.readMany(e);return zs(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),es(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return sn([],[0].concat(this.elementShape));const t=[];for(let s=0;s<this.size();s++)t.push(s);const n=this.readMany(t);return zs(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Yt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);const n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Qs(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0;const s=e.map(c=>(n+=c,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);const i=n===0?0:t.size/n,o=[];Q(()=>{t=K(t,[1,n,i]);for(let c=0;c<e.length;++c){const h=c===0?0:s[c-1],d=[0,h,0],m=[1,e[c],i];o[c]=K(tt(t,d,m),this.elementShape)}return o});const a=[];for(let c=0;c<e.length;c++)a[c]=c;this.writeMany(a,o)}}class nu{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(i=>{if(n!==i.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${i.dtype}`);zs(t,i.shape,"TensorList shape mismatch: "),bn(i)}),this.idTensor=Ce(0),this.maxNumElements=s,bn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new nu([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);return zs(e,this.elementShape,"TensorList shape mismatch: "),Q(()=>{const s=this.tensors.map(i=>K(i,e));return es(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");const n=this.tensors.pop();return zs(n.shape,e,"TensorList shape mismatch: "),K(n,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(zs(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");bn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return zs(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);zs(this.elementShape,t.shape,"TensorList shape mismatch: "),bn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return zs(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?sn([],[0].concat(this.elementShape)):Q(()=>{const s=e.map(i=>K(this.tensors[i],n));return es(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return zs(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?sn([],[0].concat(this.elementShape)):Q(()=>{const n=this.tensors.map(s=>K(s,t));return Yt(n,0)})}}function UY(e,t,n){const s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);const i=e.shape.slice(1);zs(i,t,"TensorList shape mismatch: ");const o=Qs(e);return new nu(o,t,s)}function BY(e,t,n){return new nu([],e,t,n)}function MY(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);const i=Math.max(...t);if(s!=null&&s!==-1&&i>=s)throw new Error(`Max index must be < array size (${i} vs. ${s})`);const o=new nu([],n,e.dtype,s),a=Qs(e,0);return t.forEach((c,h)=>{o.setItem(c,a[h])}),o}function PY(e,t,n){let s=0;const i=t.map(h=>(s+=h,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);const o=s===0?0:e.size/s,a=Q(()=>{const h=[];e=K(e,[1,s,o]);for(let d=0;d<t.length;++d){const m=d===0?0:i[d-1],f=[0,m,0],b=[1,t[d],o];h[d]=K(tt(e,f,b),n)}return e.dispose(),h}),c=new nu([],n,e.dtype,t.length);for(let h=0;h<a.length;h++)c.setItem(h,a[h]);return c}const zY=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{const s=R("thenBranch",e,t,n),i=R("elseBranch",e,t,n),o=R("cond",e,t,n),a=R("args",e,t,n),c=await o.data();return c[0]?n.functionMap[s].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap):n.functionMap[i].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{const s=R("body",e,t,n),i=R("cond",e,t,n),o=R("args",e,t,n),a=await n.functionMap[i].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap),c=o.map(m=>m.id);let h=await a[0].data();a.forEach(m=>{!m.kept&&c.indexOf(m.id)===-1&&m.dispose()});let d=o;for(;h[0];){const m=d;d=await n.functionMap[s].executeFunctionAsync(d,n.tensorArrayMap,n.tensorListMap);const f=d.map(w=>w.id);m.forEach(w=>{!w.kept&&c.indexOf(w.id)===-1&&f.indexOf(w.id)===-1&&w.dispose()});const b=await n.functionMap[i].executeFunctionAsync(d,n.tensorArrayMap,n.tensorListMap);h=await b[0].data(),b.forEach(w=>{!w.kept&&c.indexOf(w.id)===-1&&f.indexOf(w.id)===-1&&w.dispose()})}return d}case"LoopCond":{const s=R("pred",e,t,n);return[ar(s)]}case"Switch":{const s=R("pred",e,t,n);let i=R("data",e,t,n);return i.kept||(i=ar(i)),(await s.data())[0]?[void 0,i]:[i,void 0]}case"Merge":{const s=e.inputNames.find(i=>ss(i,t,n)!==void 0);if(s){const i=ss(s,t,n);return[ar(i)]}return}case"Enter":{const s=R("frameName",e,t,n),i=R("tensor",e,t,n);return n.enterFrame(s),[ar(i)]}case"Exit":{const s=R("tensor",e,t,n);return n.exitFrame(),[ar(s)]}case"NextIteration":{const s=R("tensor",e,t,n);return n.nextIteration(),[ar(s)]}case"TensorArrayV3":{const s=R("size",e,t,n),i=R("dtype",e,t,n),o=R("elementShape",e,t,n),a=R("dynamicSize",e,t,n),c=R("clearAfterRead",e,t,n),h=R("identicalElementShapes",e,t,n),d=R("name",e,t,n),m=new $Y(d,i,s,o,h,a,c);return n.addTensorArray(m),[m.idTensor,Ce(1)]}case"TensorArrayWriteV3":{const s=R("tensorArrayId",e,t,n),i=R("index",e,t,n),o=R("tensor",e,t,n),a=n.getTensorArray(s.id);return a.write(i,o),[a.idTensor]}case"TensorArrayReadV3":{const s=R("tensorArrayId",e,t,n),i=R("index",e,t,n),o=n.getTensorArray(s.id);return[o.read(i)]}case"TensorArrayGatherV3":{const s=R("tensorArrayId",e,t,n),i=R("indices",e,t,n),o=R("dtype",e,t,n),a=n.getTensorArray(s.id);return[a.gather(i,o)]}case"TensorArrayScatterV3":{const s=R("tensorArrayId",e,t,n),i=R("indices",e,t,n),o=R("tensor",e,t,n),a=n.getTensorArray(s.id);return a.scatter(i,o),[a.idTensor]}case"TensorArrayConcatV3":{const s=R("tensorArrayId",e,t,n),i=n.getTensorArray(s.id),o=R("dtype",e,t,n);return[i.concat(o)]}case"TensorArraySplitV3":{const s=R("tensorArrayId",e,t,n),i=R("tensor",e,t,n),o=R("lengths",e,t,n),a=n.getTensorArray(s.id);return a.split(o,i),[a.idTensor]}case"TensorArraySizeV3":{const s=R("tensorArrayId",e,t,n),i=n.getTensorArray(s.id);return[Ce(i.size(),"int32")]}case"TensorArrayCloseV3":{const s=R("tensorArrayId",e,t,n),i=n.getTensorArray(s.id);return i.clearAndClose(),[i.idTensor]}case"TensorListSetItem":{const s=R("tensorListId",e,t,n),i=R("index",e,t,n),o=R("tensor",e,t,n),a=n.getTensorList(s.id);return a.setItem(i,o),[a.idTensor]}case"TensorListGetItem":{const s=R("tensorListId",e,t,n),i=R("index",e,t,n),o=R("elementShape",e,t,n),a=R("elementDType",e,t,n),c=n.getTensorList(s.id);return[c.getItem(i,o,a)]}case"TensorListScatterV2":case"TensorListScatter":{const s=R("indices",e,t,n),i=R("tensor",e,t,n),o=R("elementShape",e,t,n),a=R("numElements",e,t,n),c=MY(i,s,o,a);return n.addTensorList(c),[c.idTensor]}case"TensorListReserve":{const s=R("elementShape",e,t,n),i=R("elementDType",e,t,n),o=R("numElements",e,t,n),a=BY(s,i,o);return n.addTensorList(a),[a.idTensor]}case"TensorListGather":{const s=R("tensorListId",e,t,n),i=R("indices",e,t,n),o=R("elementShape",e,t,n),a=R("elementDType",e,t,n),c=n.getTensorList(s.id);return[c.gather(i,a,o)]}case"TensorListStack":{const s=R("tensorListId",e,t,n),i=R("elementShape",e,t,n),o=R("elementDType",e,t,n),a=R("numElements",e,t,n),c=n.getTensorList(s.id);return[c.stack(i,o,a)]}case"TensorListFromTensor":{const s=R("tensor",e,t,n),i=R("elementShape",e,t,n),o=R("elementDType",e,t,n),a=UY(s,i,o);return n.addTensorList(a),[a.idTensor]}case"TensorListConcat":{const s=R("tensorListId",e,t,n),i=n.getTensorList(s.id),o=R("dtype",e,t,n),a=R("elementShape",e,t,n);return[i.concat(o,a)]}case"TensorListPushBack":{const s=R("tensorListId",e,t,n),i=R("tensor",e,t,n),o=n.getTensorList(s.id);return o.pushBack(i),[o.idTensor]}case"TensorListPopBack":{const s=R("tensorListId",e,t,n),i=R("elementShape",e,t,n),o=R("elementDType",e,t,n),a=n.getTensorList(s.id);return[a.popBack(i,o)]}case"TensorListSplit":{const s=R("tensor",e,t,n),i=R("elementShape",e,t,n),o=R("lengths",e,t,n),a=PY(s,o,i);return n.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ete="control";function VN(e,t,n){const[s,i]=R("fusedOps",e,t,n),o=s==="biasadd",a=i==="prelu",c=s==="fusedbatchnorm",h=R("numArgs",e,t,n);if(o){if(a&&h!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&h!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(c)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");const d=R("strides",e,t,n),m=Sm(e,t,n),f=R("dataFormat",e,t,n).toUpperCase(),b=R("dilations",e,t,n),[w,L]=R("args",e,t,n);return{stride:d,pad:m,dataFormat:f,dilations:b,biasArg:w,preluArg:L,activationFunc:i}}const VY=(e,t,n)=>{switch(e.op){case"Conv1D":{const s=R("stride",e,t,n),i=R("pad",e,t,n),o=R("dataFormat",e,t,n).toUpperCase(),a=R("dilation",e,t,n);return[ip(R("x",e,t,n),R("filter",e,t,n),s,i,o,a)]}case"Conv2D":{const s=R("strides",e,t,n),i=Sm(e,t,n),o=R("dataFormat",e,t,n).toUpperCase(),a=R("dilations",e,t,n);return[Ji(R("x",e,t,n),R("filter",e,t,n),[s[1],s[2]],i,o,[a[1],a[2]])]}case"_FusedConv2D":{const{stride:s,pad:i,dataFormat:o,dilations:a,biasArg:c,preluArg:h,activationFunc:d}=VN(e,t,n);return[Kb({x:R("x",e,t,n),filter:R("filter",e,t,n),strides:[s[1],s[2]],pad:i,dataFormat:o,dilations:[a[1],a[2]],bias:c,activation:d,preluActivationWeights:h})]}case"FusedDepthwiseConv2dNative":{const{stride:s,pad:i,dataFormat:o,dilations:a,biasArg:c,preluArg:h,activationFunc:d}=VN(e,t,n);return[$A({x:R("x",e,t,n),filter:R("filter",e,t,n),strides:[s[1],s[2]],pad:i,dataFormat:o,dilations:[a[1],a[2]],bias:c,activation:d,preluActivationWeights:h})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{const s=R("outputShape",e,t,n),i=R("strides",e,t,n),o=Sm(e,t,n);return[rp(R("x",e,t,n),R("filter",e,t,n),s,[i[1],i[2]],o)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{const s=R("strides",e,t,n),i=Sm(e,t,n),o=R("dilations",e,t,n),a=R("dataFormat",e,t,n).toUpperCase();return[Co(R("input",e,t,n),R("filter",e,t,n),[s[1],s[2]],i,a,[o[1],o[2]])]}case"Conv3D":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("dataFormat",e,t,n).toUpperCase(),a=R("dilations",e,t,n);return[Lb(R("x",e,t,n),R("filter",e,t,n),[s[1],s[2],s[3]],i,o,[a[1],a[2],a[3]])]}case"AvgPool":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("kernelSize",e,t,n);return[ah(R("x",e,t,n),[o[1],o[2]],[s[1],s[2]],i)]}case"MaxPool":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("kernelSize",e,t,n);return[fh(R("x",e,t,n),[o[1],o[2]],[s[1],s[2]],i)]}case"MaxPoolWithArgmax":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("kernelSize",e,t,n),a=R("includeBatchInIndex",e,t,n),{result:c,indexes:h}=lA(R("x",e,t,n),[o[1],o[2]],[s[1],s[2]],i,a);return[c,h]}case"AvgPool3D":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("kernelSize",e,t,n);return[yb(R("x",e,t,n),[o[1],o[2],o[3]],[s[1],s[2],s[3]],i)]}case"MaxPool3D":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("kernelSize",e,t,n);return[Ob(R("x",e,t,n),[o[1],o[2],o[3]],[s[1],s[2],s[3]],i)]}case"Dilation2D":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("dilations",e,t,n),a=s[1],c=s[2],h=o[1],d=o[2];return[Ib(R("x",e,t,n),R("filter",e,t,n),[a,c],i,[h,d],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dte="convolution";const GY=(e,t,n)=>{switch(e.op){case"Fill":{const s=R("shape",e,t,n),i=R("dtype",e,t,n),o=R("value",e,t,n);return[Ba(s,o,i)]}case"LinSpace":{const s=R("start",e,t,n),i=R("stop",e,t,n),o=R("num",e,t,n);return[oA(s,i,o)]}case"Multinomial":{const s=R("logits",e,t,n),i=R("numSamples",e,t,n),o=R("seed",e,t,n);return[hA(s,i,o)]}case"OneHot":{const s=R("indices",e,t,n),i=R("depth",e,t,n),o=R("onValue",e,t,n),a=R("offValue",e,t,n);return[To(s,i,o,a)]}case"Ones":return[Js(R("shape",e,t,n),R("dtype",e,t,n))];case"OnesLike":return[Fn(R("x",e,t,n))];case"RandomUniform":return[ko(R("shape",e,t,n),R("minval",e,t,n),R("maxval",e,t,n),R("dtype",e,t,n))];case"Range":{const s=R("start",e,t,n),i=R("stop",e,t,n),o=R("step",e,t,n);return[bh(s,i,o,R("dtype",e,t,n))]}case"TruncatedNormal":{const s=R("shape",e,t,n),i=R("mean",e,t,n),o=R("stdDev",e,t,n),a=R("seed",e,t,n);return[xh(s,i,o,R("dtype",e,t,n),a)]}case"Zeros":return[dt(R("shape",e,t,n),R("dtype",e,t,n))];case"ZerosLike":return[et(R("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kte="creation";function sS(e,t,n){const s=R("boxes",e,t,n),i=R("scores",e,t,n),o=R("maxOutputSize",e,t,n),a=R("iouThreshold",e,t,n),c=R("scoreThreshold",e,t,n),h=R("softNmsSigma",e,t,n);return{boxes:s,scores:i,maxOutputSize:o,iouThreshold:a,scoreThreshold:c,softNmsSigma:h}}const YY=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{const{boxes:s,scores:i,maxOutputSize:o,iouThreshold:a,scoreThreshold:c,softNmsSigma:h}=sS(e,t,n),d=await zr.nonMaxSuppressionWithScoreAsync(s,i,o,a,c,h);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{const{boxes:s,scores:i,maxOutputSize:o,iouThreshold:a,scoreThreshold:c}=sS(e,t,n),h=R("padToMaxOutputSize",e,t,n),d=await zr.nonMaxSuppressionPaddedAsync(s,i,o,a,c,h);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{const{boxes:s,scores:i,maxOutputSize:o,iouThreshold:a,scoreThreshold:c}=sS(e,t,n);return[await zr.nonMaxSuppressionAsync(s,i,o,a,c)]}case"Where":{const s=Ae(R("condition",e,t,n),"bool"),i=[await Yb(s)];return s.dispose(),i}case"ListDiff":return dA(R("x",e,t,n),R("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fte="dynamic";const HY=(e,t,n)=>{switch(e.op){case"TopKV2":{const s=R("x",e,t,n),i=R("k",e,t,n),o=R("sorted",e,t,n),a=Vb(s,i,o);return[a.values,a.indices]}case"Unique":{const s=R("x",e,t,n),i=Tp(s);return[i.values,i.indices]}case"UniqueV2":{const s=R("x",e,t,n),i=R("axis",e,t,n),o=Tp(s,i);return[o.values,o.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_te="evaluation";const qY=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":const s=R("default",e,t,n);return[ss(e.name,t,n)||s];case"Placeholder":return[ss(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{const d=R("x",e,t,n);return[ar(d)]}case"IdentityN":return R("x",e,t,n).map(d=>ar(d));case"Snapshot":const i=R("x",e,t,n);return[ar(i)];case"Shape":return[ls(R("x",e,t,n).shape,"int32")];case"ShapeN":return R("x",e,t,n).map(d=>ls(d.shape));case"Size":return[Ce(R("x",e,t,n).size,"int32")];case"Rank":return[Ce(R("x",e,t,n).rank,"int32")];case"NoOp":return[Ce(1)];case"Print":const o=R("x",e,t,n),a=R("data",e,t,n),c=R("message",e,t,n),h=R("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(c);for(let d=0;d<a.length;d++)console.log(Array.prototype.slice.call(a[d].dataSync()).slice(0,h));return[o];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wte="graph";class jY{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ce(0),this.tensorMap=new Map,bn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);const n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),Q(()=>{const s=Qs(t),i=n.length,o=s.length;A(i===o,()=>`The number of elements doesn't match, keys has ${i} elements, the values has ${o} elements.`);for(let a=0;a<i;a++){const c=n[a],h=s[a];bn(h),this.tensorMap.set(c,h)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);const n=await e.data();return Q(()=>{const s=[];for(let i=0;i<n.length;i++){const o=n[i],a=this.findWithDefault(o,t);s.push(a)}return es(s)})}findWithDefault(e,t){const n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}}const KY=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{const i=R("keyDType",e,t,n),o=R("valueDType",e,t,n),a=new jY(i,o);return s.addHashTable(e.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{const i=R("tableHandle",e,t,n,s),o=R("keys",e,t,n),a=R("values",e,t,n),c=s.getHashTableById(i.id);return[await c.import(o,a)]}case"LookupTableFind":case"LookupTableFindV2":{const i=R("tableHandle",e,t,n,s),o=R("keys",e,t,n),a=R("defaultValue",e,t,n),c=s.getHashTableById(i.id);return[await c.find(o,a)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$te="hash_table";const XY=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{const s=R("images",e,t,n),i=R("size",e,t,n),o=R("alignCorners",e,t,n);return[zr.resizeBilinear(s,[i[0],i[1]],o)]}case"ResizeNearestNeighbor":{const s=R("images",e,t,n),i=R("size",e,t,n),o=R("alignCorners",e,t,n);return[zr.resizeNearestNeighbor(s,[i[0],i[1]],o)]}case"CropAndResize":{const s=R("image",e,t,n),i=R("boxes",e,t,n),o=R("boxInd",e,t,n),a=R("cropSize",e,t,n),c=R("method",e,t,n),h=R("extrapolationValue",e,t,n);return[zr.cropAndResize(s,i,o,a,c,h)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ute="image";const JY=(e,t,n)=>{switch(e.op){case"Equal":return[Xs(R("a",e,t,n),R("b",e,t,n))];case"NotEqual":return[Br(R("a",e,t,n),R("b",e,t,n))];case"Greater":return[xs(R("a",e,t,n),R("b",e,t,n))];case"GreaterEqual":return[Zi(R("a",e,t,n),R("b",e,t,n))];case"Less":return[ph(R("a",e,t,n),R("b",e,t,n))];case"LessEqual":return[Ur(R("a",e,t,n),R("b",e,t,n))];case"LogicalAnd":return[Us(R("a",e,t,n),R("b",e,t,n))];case"LogicalNot":return[mh(R("a",e,t,n))];case"LogicalOr":return[pp(R("a",e,t,n),R("b",e,t,n))];case"Select":case"SelectV2":return[Bn(R("condition",e,t,n),R("a",e,t,n),R("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bte="logical";const ZY=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ct(R("a",e,t,n),R("b",e,t,n),R("transposeA",e,t,n),R("transposeB",e,t,n))];case"Transpose":return[Ye(R("x",e,t,n),R("perm",e,t,n))];case"_FusedMatMul":const[s,i]=R("fusedOps",e,t,n),o=s==="biasadd",a=i==="prelu",c=R("numArgs",e,t,n);if(o){if(a&&c!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&c!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}const[h,d]=R("args",e,t,n);return[Ep({a:R("a",e,t,n),b:R("b",e,t,n),transposeA:R("transposeA",e,t,n),transposeB:R("transposeB",e,t,n),bias:h,activation:i,preluActivationWeights:d})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mte="matrices";const QY=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[No(R("x",e,t,n),R("mean",e,t,n),R("variance",e,t,n),R("offset",e,t,n),R("scale",e,t,n),R("epsilon",e,t,n))];case"FusedBatchNormV3":return[No(R("x",e,t,n),R("mean",e,t,n),R("variance",e,t,n),R("offset",e,t,n),R("scale",e,t,n),R("epsilon",e,t,n))];case"LRN":return[Nb(R("x",e,t,n),R("radius",e,t,n),R("bias",e,t,n),R("alpha",e,t,n),R("beta",e,t,n))];case"Softmax":return[Fo(R("x",e,t,n))];case"LogSoftmax":return[dp(R("x",e,t,n))];case"SparseToDense":return[Hb(R("sparseIndices",e,t,n),R("outputShape",e,t,n),R("sparseValues",e,t,n),R("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pte="normalization";const eH=(e,t,n)=>{switch(e.op){case"Max":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[Qn(R("x",e,t,n),s,i)]}case"Mean":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[qt(R("x",e,t,n),s,i)]}case"Min":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[Va(R("x",e,t,n),s,i)]}case"Sum":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[$e(R("x",e,t,n),s,i)]}case"All":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[Qd(R("x",e,t,n),s,i)]}case"Any":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[ih(R("x",e,t,n),s,i)]}case"ArgMax":{const s=R("axis",e,t,n);return[rh(R("x",e,t,n),s)]}case"ArgMin":{const s=R("axis",e,t,n);return[lb(R("x",e,t,n),s)]}case"Prod":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[gp(R("x",e,t,n),s,i)]}case"Cumsum":{const s=R("axis",e,t,n),i=R("exclusive",e,t,n),o=R("reverse",e,t,n);return[ap(R("x",e,t,n),s,i,o)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zte="reduction";const tH=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{const s=R("n",e,t,n),i=R("axis",e,t,n);let o=R("tensors",e,t,n);return o=o.slice(0,s),[Yt(o,i)]}case"GatherV2":case"Gather":{const s=R("axis",e,t,n),i=R("x",e,t,n),o=R("indices",e,t,n);return[Pa(i,Ae(o,"int32"),s)]}case"ReverseV2":case"Reverse":{const s=R("axis",e,t,n),i=R("x",e,t,n);return[Ts(i,s)]}case"Slice":{const s=R("begin",e,t,n),i=R("size",e,t,n);return[tt(R("x",e,t,n),s,i)]}case"StridedSlice":{const s=R("begin",e,t,n),i=R("end",e,t,n),o=R("strides",e,t,n),a=R("beginMask",e,t,n),c=R("endMask",e,t,n),h=R("ellipsisMask",e,t,n),d=R("newAxisMask",e,t,n),m=R("shrinkAxisMask",e,t,n),f=R("x",e,t,n);return[Pb(f,s,i,o,a,c,h,d,m)]}case"Pack":return Q(()=>{const s=R("axis",e,t,n),i=R("tensors",e,t,n),o=i[0].shape,a=Mr(i[0]).shape,c=i.map(h=>{const d=ae(h.shape,o);if(!d&&!ae(Mr(h).shape,a))throw new Error("the input tensors shape does not match");return d?h:K(h,o)});return[es(c,s)]});case"Unpack":{const s=R("axis",e,t,n),i=R("tensor",e,t,n);return Qs(i,s)}case"Tile":{const s=R("reps",e,t,n);return[$r(R("x",e,t,n),s)]}case"Split":case"SplitV":{const s=R("axis",e,t,n),i=R("numOrSizeSplits",e,t,n),o=R("x",e,t,n);return hs(o,i,s)}case"ScatterNd":{const s=R("indices",e,t,n),i=R("values",e,t,n),o=R("shape",e,t,n);return[EA(s,i,o)]}case"GatherNd":{const s=R("x",e,t,n),i=R("indices",e,t,n);return[DA(s,i)]}case"SparseToDense":{const s=R("sparseIndices",e,t,n),i=R("outputShape",e,t,n),o=R("sparseValues",e,t,n),a=R("defaultValue",e,t,n);return[Hb(s,o,i,o.dtype===a.dtype?a:Ae(a,o.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vte="slice_join";const nH=(e,t,n)=>{switch(e.op){case"FFT":return[Lh(R("x",e,t,n))];case"IFFT":return[qa(R("x",e,t,n))];case"RFFT":return[Sh(R("x",e,t,n))];case"IRFFT":return[xp(R("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gte="spectral";const sH=(e,t,n)=>{switch(e.op){case"Cast":return[Ae(R("x",e,t,n),R("dtype",e,t,n))];case"ExpandDims":{const s=R("axis",e,t,n);return[Zn(R("x",e,t,n),s)]}case"Squeeze":{const s=R("axis",e,t,n);return[Mr(R("x",e,t,n),s)]}case"Reshape":return[K(R("x",e,t,n),R("shape",e,t,n))];case"MirrorPad":return[Eb(R("x",e,t,n),R("padding",e,t,n),R("mode",e,t,n))];case"PadV2":case"Pad":return[vi(R("x",e,t,n),R("padding",e,t,n),R("constantValue",e,t,n))];case"SpaceToBatchND":{const s=R("blockShape",e,t,n),i=R("paddings",e,t,n);return[gh(R("x",e,t,n),s,i)]}case"BatchToSpaceND":{const s=R("blockShape",e,t,n),i=R("crops",e,t,n);return[ch(R("x",e,t,n),s,i)]}case"DepthToSpace":{const s=R("blockSize",e,t,n),i=R("dataFormat",e,t,n).toUpperCase();return[Sb(R("x",e,t,n),s,i)]}case"BroadcastTo":return[lh(R("x",e,t,n),R("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Yte="transformation";function GN(e,t,n,s){const i=((o,a,c)=>{switch(o.category){case"arithmetic":return Q(()=>FY(o,a,c));case"basic_math":return Q(()=>_Y(o,a,c));case"control":return zY(o,a,c);case"convolution":return Q(()=>VY(o,a,c));case"creation":return Q(()=>GY(o,a,c));case"dynamic":return YY(o,a,c);case"evaluation":return Q(()=>HY(o,a,c));case"image":return Q(()=>XY(o,a,c));case"graph":return Q(()=>qY(o,a,c));case"logical":return Q(()=>JY(o,a,c));case"matrices":return Q(()=>ZY(o,a,c));case"normalization":return Q(()=>QY(o,a,c));case"reduction":return Q(()=>eH(o,a,c));case"slice_join":return Q(()=>tH(o,a,c));case"spectral":return Q(()=>nH(o,a,c));case"transformation":return Q(()=>sH(o,a,c));case"hash_table":return KY(o,a,c,s);case"custom":const h=UN(o.op);if(h&&h.customExecutor)return h.customExecutor(new kY(o,a,c));throw TypeError(`Custom op ${o.op} is not registered.`);default:throw TypeError(`Unknown op '${o.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return bo(i)?i.then(o=>[].concat(o)):[].concat(i)}class YN{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){const e=[];for(let t=0;t<this.contexts.length-1;t++){const n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;const e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(const t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(const t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}}function HN(e,t,n,s){const i=new Set,o=[];let a=null,c=null;const h=new Set,d=Object.keys(e).map(b=>ds(b)[0]);let m=[];s!=null&&(m=s.map(b=>ds(b.name)[0]));const f=[...t];for(;f.length>0;){const b=f.pop();if((qN(b)||cH(b)||lH(b))&&(a==null&&(a=b,c=a.children.map(w=>w.name).filter(w=>i.has(w)))),i.add(b.name),n[b.name]!=null)continue;if(d.indexOf(b.name)!==-1)continue;if(m.indexOf(b.name)!==-1)continue;if(b.inputs.length===0){o.push(b.name);continue}b.inputs.forEach(w=>{if(h.has(w.name))return;h.add(w.name),f.push(w)})}return{inputs:e,outputs:t,usedNodes:i,missingInputs:o,dynamicNode:a,syncInputs:c}}function iH(e,t,n){const{usedNodes:s,inputs:i}=n,o=[],a=Object.keys(i).map(m=>ds(m)[0]).map(m=>e.nodes[m]),c=e.initNodes;a.forEach(m=>{s.has(m.name)&&o.push(m)}),e.weights.forEach(m=>{s.has(m.name)&&o.push(m)}),c!=null&&c.forEach(m=>{s.has(m.name)&&o.push(m)});const h=new Set,d=[];for(;o.length>0;){const m=o.pop();h.add(m.name),t[m.name]||d.push(m),m.children.forEach(f=>{!h.has(f.name)&&s.has(f.name)&&f.inputs.every(b=>h.has(b.name))&&o.push(f)})}return d}const rH=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],oH=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],aH=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function qN(e){return rH.indexOf(e.op)>=0}function cH(e){return oH.indexOf(e.op)>=0}function lH(e){return aH.indexOf(e.op)>=0}class iS{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new iS(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){const t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{const t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){const n=e.map(i=>i.name).sort(),s=t.map(i=>i.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){const n=HN(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:i,syncInputs:o}=n;if(i!=null)throw new Error(`This execution contains the node '${i.name}', which has the dynamic op '${i.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${o}]`);if(s.length>0){const a=t.map(h=>h.name),c=Object.keys(e);throw new Error(`Cannot compute the outputs [${a}] from the provided inputs [${c}]. Missing the following inputs: [${s}]`)}return iH(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);const n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);const s=n.map(m=>this.graph.nodes[ds(m)[0]]),i=t.map(m=>ds(m)[0]);let o=i.map(m=>this.graph.nodes[m]);o.length===0&&(o=this._outputs);const a=this.getCompilationKey(s,o);let c=this.compiledMap.get(a);c==null&&(c=this.compile(e,o),this.compiledMap.set(a,c));const h={},d={};return Q(()=>{const m=new YN(this.weightMap,h,d,this.functionExecutorMap),f=Object.assign({},this.weightMap);Object.keys(e).forEach(L=>{const[x,v]=ds(L),N=[];N[v]=e[L],f[x]=N});const b=this.getFrozenTensorIds(f),w={};for(let L=0;L<c.length;L++){const x=c[L];if(!f[x.name]){const v=GN(x,f,m,this._resourceManager);if(bo(v))throw new Error(`The execution of the op '${x.op}' returned a promise. Please use model.executeAsync() instead.`);f[x.name]=v,this.checkTensorForDisposal(x.name,x,f,m,b,i,w)}}return this.parent==null&&m.dispose(b),t.map(L=>ss(L,f,m))})}getFrozenTensorIds(e){const t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,i,o,a){if(t.category==="control"||o.indexOf(e)!==-1)return;n[e].forEach(c=>{c!=null&&(a[c.id]=(a[c.id]||0)+t.children.length)}),t.inputs.forEach(c=>{if(c.category!=="control"){const h=JG(c.name,n,s);h!=null&&h.forEach(d=>{if(d&&!i.has(d.id)){const m=a[d.id];m===1?(d.dispose(),delete a[d.id]):m!=null&&a[d.id]--}})}})}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},i={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));const o=new YN(this.weightMap,s,i,this.functionExecutorMap),a=await this.executeWithControlFlow(e,o,t,n),c=t.map(f=>ss(f,a,o)),h=c.map(f=>f.id),d=Object.keys(e).map(f=>e[f].id),m=new Set([...h,...d,...this.weightIds]);return Object.keys(a).forEach(f=>{const b=a[f];b.forEach(w=>{w&&!w.isDisposed&&!m.has(w.id)&&w.dispose()})}),this.parent==null&&o.dispose(m),c}async executeFunctionAsync(e,t,n){const s=e.reduce((i,o,a)=>(i[this.inputs[a].name]=o,i),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){const i=Object.keys(e),o=i.map(O=>this.graph.nodes[ds(O)[0]]),a=n.map(O=>ds(O)[0]);let c=a.map(O=>this.graph.nodes[O]);c.length===0&&(c=this._outputs);const{usedNodes:h,missingInputs:d,dynamicNode:m,syncInputs:f}=HN(e,c,this.weightMap,this._initNodes),b=[...o,...this.graph.weights,...this._initNodes||[]].map(O=>({node:O,contexts:t.currentContext})),w=Object.assign({},this.weightMap);Object.keys(e).forEach(O=>{const[E,k]=ds(O),F=[];F[k]=e[O],w[E]=F});const L={},x=this.getFrozenTensorIds(w),v={};for(;b.length>0;){const O=this.processStack(o,b,t,w,v,x,a,L,h);await Promise.all(O)}m==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");const N=c.filter(O=>!qN(O)&&!ss(O.name,w,t)).map(O=>O.name);if(N.length>0){let O="";throw m!=null&&(O=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${f}]`),new Error(`Cannot compute the outputs [${N}] from the provided inputs [${i}]. Consider providing the following inputs: [${d}]. ${O}`)}return w}processStack(e,t,n,s,i,o,a,c,h){const d=[];for(;t.length>0;){const m=t.pop();n.currentContext=m.contexts;let f="";if(m.node.op==="Enter"&&R("isConstant",m.node,s,n)&&([f]=or(m.node.name,n)),s[m.node.name]==null){const b=GN(m.node,s,n,this._resourceManager);f||([f]=or(m.node.name,n));const w=n.currentContext;bo(b)?d.push(b.then(L=>(s[f]=L,n.currentContext=w,this.checkTensorForDisposal(f,m.node,s,n,o,a,c),this.processChildNodes(m.node,t,n,s,i,h),L))):(s[f]=b,this.checkTensorForDisposal(f,m.node,s,n,o,a,c),this.processChildNodes(m.node,t,n,s,i,h))}else this.processChildNodes(m.node,t,n,s,i,h)}return d}processChildNodes(e,t,n,s,i,o){e.children.forEach(a=>{const[c]=or(a.name,n);if(i[c]||!o.has(a.name))return;a.op==="Merge"?a.inputNames.some(h=>!!ss(h,s,n))&&(i[c]=!0,t.push({contexts:n.currentContext,node:a})):a.inputNames.every(h=>!!ss(h,s,n))&&(i[c]=!0,t.push({contexts:n.currentContext,node:a}))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{const n=e[t],[s]=ds(t),i=this.graph.nodes[s];if(i.attrParams.shape&&i.attrParams.shape.value){const o=i.attrParams.shape.value,a=o.length===n.shape.length&&n.shape.every((c,h)=>o[h]===-1||o[h]===c);A(a,()=>`The shape of dict['${i.name}'] provided in model.execute(dict) must be [${o}], but was [${n.shape}]`)}i.attrParams.dtype&&i.attrParams.dtype.value&&A(n.dtype===i.attrParams.dtype.value,()=>`The dtype of dict['${i.name}'] provided in model.execute(dict) must be ${i.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){const t={};for(const n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){const s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){const t=Object.keys(e).filter(n=>{const[s]=ds(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>{if(this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null){const n=this._signature.outputs[t];return n.name}return t},{})}checkOutputs(e){e.forEach(t=>{const[n]=ds(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}}class hH{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(const e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(const e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}}const uH="?tfjs-format=file",dH="model.json";class jN{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new hH}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}findIOHandler(){const e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Yd(e,this.loadOptions);else{const t=Vy(e,this.loadOptions);if(t.length===0)t.push(Yd(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");const e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;const t=this.artifacts.modelTopology;let n={};this.artifacts.userDefinedMetadata!=null&&(n=this.artifacts.userDefinedMetadata.signature),this.version=`${t.versions.producer}.${t.versions.minConsumer}`;const s=Pd(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new iS(BN.Instance.transformGraph(t,n)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null){const i=BN.Instance.transformGraph(e.modelInitializer);this.initializer=new iS(i),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){const n=zy(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof ee)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);const n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);const n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}}async function pH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&(e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${dH}${uH}`));const n=new jN(e,t);return await n.load(),n}const KN="2.7.0";function mH(e,t){return Im(e,t)}function Im(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);const i=t(e);if(i.recurse&&i.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(i.recurse)if(cc(e)){const o=Array.isArray(e)?[]:{};s.add(e);for(const a in e){const c=e[a],h=Im(c,t,n,s);o[a]=h}return s.delete(e),o}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,i.value),i.value}function fH(e,t=JN){return XN(e,t)}function XN(e,t,n=new Set){const s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");const i=t(e);if(i.recurse&&i.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(i.recurse)if(cc(s)){const o=Array.isArray(s)?[]:{};n.add(s);for(const a in s){const c=e.map(d=>d[a]),h=XN(c,t,n);o[a]=h}return n.delete(s),o}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return i.value}function JN(e){return e===null?null:cc(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function ZN(e,t){const n=new Map;Im(e,t,n);for(const i of Array.from(n.keys())){const o=n.get(i);if(bo(o)){const a=await o;n.set(i,a)}}const s=Im(e,t,n);return s}function cc(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof ee))}function gH(e){return e==null||yH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof ee||hn(e)}function yH(e){return e===null||typeof e!="object"&&typeof e!="function"}function bH(e){return mH(e,wH)}function wH(e){return e instanceof ee?{value:e.clone(),recurse:!1}:cc(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}class QN{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(const t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);const e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");const e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");const t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}}class rS extends QN{constructor(){super(rS.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){const e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}}rS.INITIAL_CAPACITY=32;function e0(e){return new SH(e)}function Hte(e){let t=e;return su(()=>({value:t++,done:!1}))}function su(e){return new IH(e)}function t0(e,t){return new s0(e,t)}function qte(e,t,n){return t0(su(e).take(t),n)}function LH(e,t=Jr.FAIL){return new EH(e,t)}class Sn{async toArray(){const e=[];let t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){const e=this.prefetch(100),t=[];let n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new RH(this,e)}filter(e){return new NH(this,e)}map(e){return new CH(this,e)}mapAsync(e){return new n0(this,e)}serialMapAsync(e){return new n0(this,e).serial()}flatmap(e){return new OH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new vH(this,e,t)}columnMajorBatch(e,t=!0,n=JN){const s=this.rowMajorBatch(e,t);return s.map(i=>fH(i,n))}concatenate(e,t){return new s0(e0([this,e]),t)}take(e){return e<0||e==null?this:new AH(this,e)}skip(e){return e<0||e==null?this:new TH(this,e)}prefetch(e){return new i0(this,e)}shuffle(e,t){return new DH(this,e,t)}serial(){return new xH(this)}}class SH extends Sn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};const e=this.items[this.trav];return this.trav++,{value:bH(e),done:!1}}}class IH extends Sn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}}class xH extends Sn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}}class TH extends Sn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){const e=await this.upstream.next();if(e.done)return e;He(e.value)}return this.upstream.next()}}class AH extends Sn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}}class vH extends Sn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){const e=[];for(;e.length<this.batchSize;){const t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}}class NH extends Sn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){const e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;He(e.value)}}}class CH extends Sn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){const e=await this.upstream.next();if(e.done)return{value:null,done:!0};const t=Hi(e.value),n=this.transform(e.value),s=Hi(n);for(const i of t)Bd(i,s)||i.dispose();return{value:n,done:!1}}}class RH extends Sn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}}class n0 extends Sn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){const e=await this.upstream.next();if(e.done)return{value:null,done:!0};const t=Hi(e.value),n=await this.transform(e.value),s=Hi(n);for(const i of t)Bd(i,s)||i.dispose();return{value:n,done:!1}}}class oS extends Sn{constructor(){super();this.outputQueue=new rS,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}}class OH extends oS{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){const e=await this.upstream.next();if(e.done)return!1;const t=Hi(e.value),n=this.transform(e.value),s=Hi(n);this.outputQueue.pushAll(n);for(const i of t)Bd(i,s)||i.dispose();return!0}}class s0 extends Sn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){const e="TODO: fill in upstream of chained summaries";return`${e} -> Chained`}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){const n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}const t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}}var Jr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Jr||(Jr={}));class EH extends Sn{constructor(e,t=Jr.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){const e="TODO: fill in upstream of zip summaries";return`{${e}} -> Zip`}async nextState(e){await e;let t=0,n=0;function s(o){if(o instanceof Sn){const a=o.next();return{value:a.then(c=>(t++,c.done&&n++,c.value)),recurse:!1}}else return{value:null,recurse:!0}}const i=await ZN(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Jr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Jr.SHORTEST:return{value:null,done:!0};case Jr.LONGEST:default:}return this.count++,{value:i,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}}class i0 extends Sn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new QN(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){const e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}}class DH extends i0{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Ha(n||jn().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){const e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}}class lc{constructor(){this.size=null}batch(e,t=!0){const n=this;A(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===Infinity||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),ps(async()=>(await n.iterator()).columnMajorBatch(e,t,_H),s)}concatenate(e){const t=this;let n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,ps(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){const t=this;let n;return this.size===Infinity?n=Infinity:n=null,ps(async()=>(await t.iterator()).filter(s=>Q(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){const t=this;return ps(async()=>(await t.iterator()).map(n=>Q(()=>e(n))),this.size)}mapAsync(e){const t=this;return ps(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");const t=this;return ps(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){const t=this;let n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,ps(async()=>{const s=su(async()=>({value:await t.iterator(),done:!1}));return t0(s.take(e))},n)}skip(e){const t=this;let n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,ps(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);const s=this,i=Ha(t||jn().toString());return ps(async()=>{let o=i.int32();return n&&(o+=i.int32()),(await s.iterator()).shuffle(e,o.toString())},this.size)}take(e){const t=this;let n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,ps(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}}lc.MAX_BUFFER_SIZE=1e4;function ps(e,t=null){return new class extends lc{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function kH(e){return ps(async()=>e0(e),e.length)}function FH(e){if(!cc(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(const n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return ps(async()=>{const n=await ZN(e,s=>{if(s instanceof lc)return{value:s.iterator(),recurse:!1};if(cc(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return LH(n,Jr.SHORTEST)},t)}function _H(e){if(e===null)return null;const t=e[0];if(gH(t)){const n=WH(e);return{value:n,recurse:!1}}return{value:null,recurse:!0}}function WH(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof ee?es(e):sn(e)}class r0 extends lc{constructor(e){super();this.input=e}async iterator(){const e=await this.input.iterator(),t=e.decodeUTF8(),n=t.split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s));return n}}const xm='"',iu=Symbol("out"),o0=Symbol("field"),Tm=Symbol("quote"),aS=Symbol("quoteafterquote"),a0=Symbol("quoteinquote");class c0 extends lc{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new r0(e),t||(t={}),this.hasHeader=!(t.hasHeader===!1),this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(A(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){const e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&A(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);const t=this.fullColumnNames.reduce((s,i)=>(s[i]=s[i]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(A(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs)for(const s of Object.keys(this.columnConfigs)){const i=this.fullColumnNames.indexOf(s);if(i===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){const e=await this.base.iterator(),t=await e.next();if(t.done)throw new Error("No data was found for CSV parsing.");const n=t.value,s=this.parseRow(n,!1);return s}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){const t=this.parseRow(e),n={},s={};for(let i=0;i<this.fullColumnNames.length;i++){const o=this.fullColumnNames[i],a=this.columnConfigs?this.columnConfigs[o]:null;if(this.configuredColumnsOnly&&!a)continue;{const c=t[i];let h=null;if(c==="")if(a&&a.default!==void 0)h=a.default;else{if(a&&(a.required||a.isLabel))throw new Error(`Required column ${o} is empty in this line: ${e}`);h=void 0}else{const d=Number(c);if(isNaN(d))a&&a.dtype==="bool"?h=this.getBoolean(c):h=c;else if(!a||!a.dtype)h=d;else switch(a.dtype){case"float32":h=d;break;case"int32":h=Math.floor(d);break;case"bool":h=this.getBoolean(c);break;default:h=d}}a&&a.isLabel?s[o]=h:n[o]=h}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){const n=[];let s=0;const i=e.length;let o=iu;for(let a=0;a<i;a++)switch(o){case iu:switch(e.charAt(a)){case xm:s=a+1,o=Tm;break;case this.delimiter:if(s=a+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),o=iu;break;default:o=o0,s=a;break}break;case o0:switch(e.charAt(a)){case this.delimiter:n.push(e.substring(s,a)),o=iu,s=a+1;break;default:}break;case Tm:switch(e.charAt(a)){case xm:o=aS;break;default:}break;case aS:switch(e.charAt(a)){case this.delimiter:n.push(e.substring(s,a-1)),o=iu,s=a+1;break;case xm:o=Tm;break;default:o=a0;break}break;case a0:switch(e.charAt(a)){case xm:o=Tm;break;default:}break;default:}if(o===aS?n.push(e.substring(s,i-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}}class l0 extends Sn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;const t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=!(e.includeSpectrogram===!1),this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(oe().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");const t=new l0(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");const e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);const t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize);return}async next(){if(this.isClosed)return{value:null,done:!0};let e,t;const n=await this.getAudioData();if(this.includeSpectrogram){const s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){const s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){const e=[],t=[];let n=0;return new Promise(s=>{const i=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(i),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){const t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,i)=>n.set(s,i*t)),n}getTensorFromAudioDataArray(e,t){const n=new Float32Array(P(t));return n.set(e,n.length-e.length),sn(n,t)}}class h0 extends Sn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=ls([0],"int32"),this.webcamConfig.centerCrop){const n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,i=(1-n)/2,o=(1-s)/2,a=i+n,c=s+o;this.cropBox=Pr([o,i,c,a],[1,4])}else this.cropBox=Pr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(oe().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}const n=new h0(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&A(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=OT(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return Q(()=>{const t=e.toFloat().expandDims(0);let n;n=zr.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");const s=n.shape;return n.reshape(s.slice(1))})}async capture(){return(await this.next()).value}stop(){const e=this.stream.getTracks();e.forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}}class u0{}class d0 extends Sn{split(e){return new $H(this,e)}}class $H extends d0{constructor(e,t){super();this.upstream=e,this.impl=new UH(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}}class UH extends oS{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){const e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);const t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(const n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}}class BH extends Sn{decodeUTF8(){return new MH(this)}}class MH extends d0{constructor(e){super();this.upstream=e,this.impl=new PH(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}}class PH extends oS{constructor(e){super();if(this.upstream=e,oe().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{const{StringDecoder:t}=require("string_decoder");this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){const e=await this.upstream.next();let t;if(e.done)return!1;t=e.value;let n;return oe().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}}class p0 extends BH{constructor(e,t={}){super();this.file=e,this.options=t,A(e instanceof Uint8Array||(oe().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){if(this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size))return{value:null,done:!0};const e=new Promise((t,n)=>{const s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{const i=new FileReader;i.onload=a=>{let c=i.result;if(c instanceof ArrayBuffer&&(c=new Uint8Array(c)),!(c instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(c)},i.onabort=a=>n(new Error("Aborted")),i.onerror=a=>n(new Error(a.type));const o=this.file.slice(this.offset,s);i.readAsArrayBuffer(o)}this.offset=s});return{value:await e,done:!1}}}async function zH(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=VH(e));const i=await nT(n,s);if(i.ok){const o=new Uint8Array(await i.arrayBuffer());return new p0(o,t)}else throw new Error(i.statusText)}const VH=e=>{const t={method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity};return t};function m0(e){return typeof e=="string"&&e.substr(0,7)==="file://"}class f0 extends u0{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(m0(this.input)&&oe().get("IS_NODE")){const e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new p0(this.input,this.options)}}class g0 extends u0{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return m0(this.url)?new f0(this.url,this.fileOptions).iterator():zH(this.url,this.fileOptions)}}function GH(e,t={}){return new c0(new g0(e),t)}function YH(e){const t=su(e);return ps(async()=>t)}function HH(e){return ps(async()=>{const t=await e();return su(()=>t.next())})}async function qH(e,t){return h0.create(e,t)}async function jH(e){return l0.create(e)}const y0="2.7.0";var KH=Object.freeze({__proto__:null,array:kH,Dataset:lc,zip:FH,CSVDataset:c0,TextLineDataset:r0,csv:GH,func:YH,generator:HH,microphone:jH,webcam:qH,FileDataSource:f0,URLDataSource:g0,version_data:y0});function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&A(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}const XH=Dp,JH=lw,ZH=hw,QH=uw,eq=Ap;class tq extends y{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new p(this,Ki())}write(e,t,n){this.firstUse&&(this.firstUse=!1,oe().get("IS_NODE")&&Za(`
|
|
============================
|
|
Hi there 👋. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));const s={};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&Yi(n[0])){const i=n.map(o=>Wd(o));s=this.write(i,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}incRef(e){const t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){const t=this.data.get(e);t.refCount--}}move(e,t,n,s){this.data.set(e,{values:t,dtype:s,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){const{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){const s=this.readSync(n.real.dataId),i=this.readSync(n.imag.dataId);return tr(s,i)}return this.data.get(e).values}bufferSync(e){const t=this.readSync(e.dataId);let n=t;if(e.dtype==="string")try{n=t.map(s=>Kl(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return wt(e.shape,e.dtype,n)}makeOutput(e,t,n){const s=this.write(e,t,n);return Ki().makeTensorFromDataId(s,t,n,this)}disposeData(e){if(this.data.has(e)){const{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){const t=e.dataId;if(this.data.has(t)){const n=this.data.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}async time(e){const t=jn();e();const n=jn()-t;return{kernelMs:n}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}stridedSlice(e,t,n,s){Te(e,"stridedSlice");const i=jd(t,n,s);if(i.some(c=>c===0))return sn([],i);const o=wt(i,e.dtype),a=this.bufferSync(e);for(let c=0;c<o.size;c++){const h=o.indexToLoc(c),d=new Array(h.length);for(let m=0;m<d.length;m++)d[m]=h[m]*s[m]+t[m];o.set(a.get(...d),...h)}return o.toTensor()}diag(e){const t=this.readSync(e.dataId),n=wt([e.size,e.size],e.dtype),s=n.values;for(let i=0;i<t.length;i++)s[i*e.size+i]=t[i];return n.toTensor()}unstack(e,t){const n=e.shape[t],s=new Array(e.rank-1);let i=0;for(let h=0;h<e.rank;h++)h!==t&&(s[i++]=e.shape[h]);const o=new Array(e.rank).fill(0),a=e.shape.slice();a[t]=1;const c=new Array(n);for(let h=0;h<c.length;h++)o[t]=h,c[h]=tt(e,o,a).reshape(s);return c}reverse(e,t){Te(e,"reverse");const n=wt(e.shape,e.dtype),s=this.bufferSync(e);for(let i=0;i<n.size;i++){const o=n.indexToLoc(i),a=o.slice();t.forEach(c=>a[c]=e.shape[c]-1-a[c]),n.set(s.get(...a),...o)}return n.toTensor()}neg(e){return Te(e,"neg"),X(Ce(-1),e)}addN(e){Te(e,"addN");const t=e.map(i=>this.readSync(i.dataId)),n=wt(e[0].shape,e[0].dtype),s=n.values;for(let i=0;i<e.length;i++){const o=t[i];for(let a=0;a<s.length;a++)s[a]+=o[a]}return n.toTensor()}softmax(e,t){const n=qe([t],e.shape),s=Qn(e,n),i=vn(s.shape,n),o=Re(e,s.reshape(i)),a=Is(o),c=this.sum(a,n).reshape(i);return We(a,c)}pow(e,t){return Te([e,t],"pow"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>Math.pow(n,s))}floorDiv(e,t){Te([e,t],"floorDiv");const n=(i,o)=>Math.floor(i/o),s="int32";return this.broadcastedBinaryOp(e,t,s,n)}sum(e,t){Te(e,"sum"),Kn("sum",t,e.rank);const[n,s]=An(e.shape,t),i=$n(e.dtype,"int32"),o=dt(n,i),a=P(s),c=this.readSync(o.dataId),h=this.readSync(e.dataId);for(let d=0;d<c.length;++d){const m=d*a;let f=0;for(let b=0;b<a;++b)f+=h[m+b];c[d]=f}return o}prod(e,t){Te(e,"sum");const[n,s]=An(e.shape,t),i=$n(e.dtype,"int32"),o=dt(n,i),a=P(s),c=this.readSync(o.dataId),h=this.readSync(e.dataId);for(let d=0;d<c.length;++d){const m=d*a;let f=1;for(let b=0;b<a;++b)f*=h[m+b];c[d]=f}return o}unsortedSegmentSum(e,t,n){Te(e,"unsortedSegmentSum");const s=[],i=e.rank-t.rank;for(let o=0;o<i;++o)t=t.expandDims(o+1);for(let o=0;o<n;++o){const a=Ce(o,"int32"),c=Xs(a,t).asType("float32"),h=c.mul(e).sum(0);s.push(h)}return es(s)}argMin(e,t){Te(e,"argMin");const n=[t];Kn("argMin",n,e.rank);const[s,i]=An(e.shape,n),o=dt(s,"int32"),a=P(i),c=this.readSync(o.dataId),h=this.readSync(e.dataId);for(let d=0;d<c.length;++d){const m=d*a;let f=h[m],b=0;for(let w=0;w<a;++w){const L=h[m+w];L<f&&(f=L,b=w)}c[d]=b}return o}argMax(e,t){Te(e,"argMax");const n=[t];Kn("argMax",n,e.rank);const[s,i]=An(e.shape,n),o=dt(s,"int32"),a=P(i),c=this.readSync(o.dataId),h=this.readSync(e.dataId);for(let d=0;d<c.length;++d){const m=d*a;let f=h[m],b=0;for(let w=0;w<a;++w){const L=h[m+w];L>f&&(f=L,b=w)}c[d]=b}return o}cumsum(e,t,n,s){if(Te(e,"cumsum"),t!==e.rank-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${e.rank-1} but got axis=${t}`);const i=$n(e.dtype,"int32"),o=dt(e.shape,i),a=this.readSync(o.dataId),c=this.readSync(e.dataId),h=e.shape[e.rank-1],d=s?(m,f)=>m+h-f-1:(m,f)=>m+f;for(let m=0;m<c.length;m+=h)for(let f=0;f<h;f++){const b=d(m,f);if(f===0)a[b]=n?0:c[b];else{const w=d(m,f-1);a[b]=n?c[w]+a[w]:c[b]+a[w]}}return o}equal(e,t){return Te([e,t],"equal"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n===s?1:0)}notEqual(e,t){return Te([e,t],"notEqual"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n!==s?1:0)}less(e,t){return Te([e,t],"less"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n<s?1:0)}lessEqual(e,t){return Te([e,t],"lessEqual"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n<=s?1:0)}greater(e,t){return Te([e,t],"greater"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n>s?1:0)}greaterEqual(e,t){return Te([e,t],"greaterEqual"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n>=s?1:0)}logicalAnd(e,t){return Te([e,t],"logicalAnd"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n&&s)}logicalOr(e,t){return Te([e,t],"logicalOr"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n||s)}select(e,t,n){Te([e,t,n],"select");const s=this.readSync(e.dataId),i=this.readSync(t.dataId),o=this.readSync(n.dataId),a=dt(t.shape,$n(t.dtype,n.dtype)),c=this.readSync(a.dataId);let h=0;const d=e.rank===0||e.rank>1||t.rank===1?1:P(t.shape.slice(1));for(let m=0;m<s.length;m++)for(let f=0;f<d;f++)s[m]===1?c[h++]=i[m]:c[h++]=o[m];return a}where(e){Te([e],"where");const t=this.readSync(e.dataId);return eq(e.shape,t)}topk(e,t,n){Te(e,"topk");const s=this.readSync(e.dataId);return QH(s,e.shape,e.dtype,t,n)}min(e,t){Te(e,"min"),Kn("min",t,e.rank);const[n,s]=An(e.shape,t),i=dt(n,e.dtype),o=P(s),a=this.readSync(i.dataId),c=this.readSync(e.dataId);for(let h=0;h<a.length;++h){const d=h*o;let m=c[d];for(let f=0;f<o;++f){const b=c[d+f];b<m&&(m=b)}a[h]=m}return i}minimum(e,t){return Te([e,t],"minimum"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>Math.min(n,s))}mod(e,t){return Te([e,t],"mod"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>{const i=n%s;return n<0&&s<0||n>=0&&s>=0?i:(i+s)%s})}maximum(e,t){return Te([e,t],"maximum"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>Math.max(n,s))}all(e,t){Te(e,"all"),Kn("all",t,e.rank);const[n,s]=An(e.shape,t),i=dt(n,e.dtype),o=P(s),a=this.readSync(i.dataId),c=this.readSync(e.dataId);for(let h=0;h<a.length;++h){const d=h*o;let m=c[d];for(let f=0;f<o;++f){const b=c[d+f];m=m&&b}a[h]=m}return i}any(e,t){Te(e,"any"),Kn("any",t,e.rank);const[n,s]=An(e.shape,t),i=dt(n,e.dtype),o=P(s),a=this.readSync(i.dataId),c=this.readSync(e.dataId);for(let h=0;h<a.length;++h){const d=h*o;let m=c[d];for(let f=0;f<o;++f){const b=c[d+f];m=m||b}a[h]=m}return i}squaredDifference(e,t){return Te([e,t],"squaredDifference"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>{const i=n-s;return i*i})}eluDer(e,t){Te([e,t],"eluDer");const n=new Float32Array(t.size),s=this.readSync(t.dataId),i=this.readSync(e.dataId);for(let o=0;o<s.length;++o){const a=s[o];a>=1?n[o]=i[o]:n[o]=i[o]*(a+1)}return this.makeOutput(n,t.shape,"float32")}atan2(e,t){return Te([e,t],"atan2"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>Math.atan2(n,s))}tile(e,t){return Te(e,"tile"),ZH(this.bufferSync(e),t)}gather(e,t,n){Te([e,t],"gather");const s=e.shape.slice(),i=this.readSync(t.dataId);s[n]=i.length;const o=wt(s,e.dtype),a=this.bufferSync(e);for(let c=0;c<o.size;++c){const h=o.indexToLoc(c),d=h.slice();d[n]=i[h[n]];const m=a.locToIndex(d);o.values[c]=a.values[m]}return o.toTensor()}batchToSpaceND(e,t,n){Te([e],"batchToSpaceND");const s=t.reduce((d,m)=>d*m),i=Oh(e.shape,t,s),o=Eh(i.length,t.length),a=Dh(e.shape,t,s),c=Zb(n,t.length),h=Qb(a,n,t.length);return Ye(e.reshape(i),o).reshape(a).slice(c,h)}pool3d(e,t,n){Te(e,"pool3d");const s=t.strideDepth,i=t.strideHeight,o=t.strideWidth,a=t.dilationDepth,c=t.dilationHeight,h=t.dilationWidth,d=t.effectiveFilterDepth,m=t.effectiveFilterHeight,f=t.effectiveFilterWidth,b=t.padInfo.front,w=t.padInfo.top,L=t.padInfo.left,x=n==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,v=this.readSync(e.dataId),N=wt(t.outShape,e.dtype),O=N.values,E=t.outShape[1]*t.outShape[2]*t.outShape[3]*t.outShape[4],k=t.outShape[2]*t.outShape[3]*t.outShape[4],F=t.outShape[3]*t.outShape[4],U=t.outShape[4];for(let $=0;$<t.batchSize;++$){const Y=$*E,j=$*e.strides[0];for(let Z=0;Z<t.inChannels;++Z)for(let ie=0;ie<t.outDepth;++ie){const de=ie*s-b;let he=de;for(;he<0;)he+=a;const ue=Math.min(t.inDepth,d+de),me=Y+ie*k;for(let ce=0;ce<t.outHeight;++ce){const ye=ce*i-w;let pe=ye;for(;pe<0;)pe+=c;const we=Math.min(t.inHeight,m+ye),Se=me+ce*F;for(let xe=0;xe<t.outWidth;++xe){const Oe=xe*o-L;let Ne=Oe;for(;Ne<0;)Ne+=h;const De=Math.min(t.inWidth,f+Oe),Ue=Se+xe*U;let ze=x,ht=0,it=0;for(let mt=he;mt<ue;mt+=a){const ut=j+mt*e.strides[1];for(let Dt=pe;Dt<we;Dt+=c){const rn=ut+Dt*e.strides[2];for(let Ut=Ne;Ut<De;Ut+=h){const kt=rn+Ut*e.strides[3],Ft=v[kt+Z];if(n==="max"&&Ft>ze?ze=Ft:n==="avg"&&(ht+=Ft,it++),isNaN(ze))break}if(isNaN(ze))break}if(isNaN(ze))break}const rt=Ue+Z;O[rt]=n==="avg"?ht/it:ze}}}}return N.toTensor()}avgPool3d(e,t){return Te(e,"avgPool3d"),this.pool3d(e,t,"avg").toFloat()}avgPool3dBackprop(e,t,n){Te([e,t],"avgPool3dBackprop");const s=n.strideDepth,i=n.strideHeight,o=n.strideWidth,a=n.filterDepth,c=n.filterHeight,h=n.filterWidth,d=n.dilationDepth,m=n.dilationHeight,f=n.dilationWidth,b=n.effectiveFilterDepth,w=n.effectiveFilterHeight,L=n.effectiveFilterWidth,x=b-1-n.padInfo.front,v=L-1-n.padInfo.left,N=w-1-n.padInfo.top,O=wt(t.shape,"float32"),E=1/(a*c*h),k=this.bufferSync(e);for(let F=0;F<n.batchSize;++F)for(let U=0;U<n.inChannels;++U)for(let $=0;$<n.inDepth;++$)for(let Y=0;Y<n.inHeight;++Y)for(let j=0;j<n.inWidth;++j){const Z=$-x,ie=Y-N,de=j-v;let he=0;for(let ue=0;ue<b;ue+=d){const me=(Z+ue)/s;if(me<0||me>=n.outDepth||Math.floor(me)!==me)continue;for(let ce=0;ce<w;ce+=m){const ye=(ie+ce)/i;if(ye<0||ye>=n.outHeight||Math.floor(ye)!==ye)continue;for(let pe=0;pe<L;pe+=f){const we=(de+pe)/o;if(we<0||we>=n.outWidth||Math.floor(we)!==we)continue;const Se=k.get(F,me,ye,we,U);he+=Se}}}O.set(he*E,F,$,Y,j,U)}return O.toTensor()}maxPool3d(e,t){return Te(e,"maxPool3d"),this.pool3d(e,t,"max").toFloat()}maxPool3dPositions(e,t){const n=wt(t.outShape,"int32"),s=t.strideDepth,i=t.strideHeight,o=t.strideWidth,a=t.dilationDepth,c=t.dilationHeight,h=t.dilationWidth,d=t.effectiveFilterDepth,m=t.effectiveFilterHeight,f=t.effectiveFilterWidth,b=t.padInfo.front,w=t.padInfo.top,L=t.padInfo.left,x=this.bufferSync(e);for(let v=0;v<t.batchSize;++v)for(let N=0;N<t.inChannels;++N)for(let O=0;O<t.outDepth;++O){const E=O*s-b;let k=E;for(;k<0;)k+=a;const F=Math.min(t.inDepth,d+E);for(let U=0;U<t.outHeight;++U){const $=U*i-w;let Y=$;for(;Y<0;)Y+=c;const j=Math.min(t.inHeight,m+$);for(let Z=0;Z<t.outWidth;++Z){const ie=Z*o-L;let de=ie;for(;de<0;)de+=h;const he=Math.min(t.inWidth,f+ie);let ue=Number.NEGATIVE_INFINITY,me=-1;for(let ce=k;ce<F;ce+=a){const ye=ce-E;for(let pe=Y;pe<j;pe+=c){const we=pe-$;for(let Se=de;Se<he;Se+=h){const xe=Se-ie,Oe=x.get(v,ce,pe,Se,N);Oe>=ue&&(ue=Oe,me=ye*m*f+we*m+xe)}}}n.set(me,v,O,U,Z,N)}}}return n.toTensor()}maxPool3dBackprop(e,t,n,s){Te([t,n],"maxPool3dBackprop");const i=this.maxPool3dPositions(t,s),o=s.strideDepth,a=s.strideHeight,c=s.strideWidth,h=s.dilationDepth,d=s.dilationHeight,m=s.dilationWidth,f=s.effectiveFilterDepth,b=s.effectiveFilterHeight,w=s.effectiveFilterWidth,L=f-1-s.padInfo.front,x=w-1-s.padInfo.left,v=b-1-s.padInfo.top,N=wt(t.shape,"float32"),O=this.bufferSync(i),E=this.bufferSync(e);for(let k=0;k<s.batchSize;++k)for(let F=0;F<s.inChannels;++F)for(let U=0;U<s.inDepth;++U)for(let $=0;$<s.inHeight;++$)for(let Y=0;Y<s.inWidth;++Y){const j=U-L,Z=$-v,ie=Y-x;let de=0;for(let he=0;he<f;he+=h){const ue=(j+he)/o;if(ue<0||ue>=s.outDepth||Math.floor(ue)!==ue)continue;for(let me=0;me<b;me+=d){const ce=(Z+me)/a;if(ce<0||ce>=s.outHeight||Math.floor(ce)!==ce)continue;for(let ye=0;ye<w;ye+=m){const pe=(ie+ye)/c;if(pe<0||pe>=s.outWidth||Math.floor(pe)!==pe)continue;const we=f*b*w-1-O.get(k,ue,ce,pe,F),Se=he*b*w+me*w+ye,xe=we===Se?1:0;if(xe===0)continue;const Oe=E.get(k,ue,ce,pe,F);de+=Oe*xe}}}N.set(de,k,U,$,Y,F)}return N.toTensor()}resizeBilinear(e,t,n,s){Te(e,"resizeBilinear");const[i,o,a,c]=e.shape,h=this.readSync(e.dataId),d=new Float32Array(P([i,t,n,c])),m=[s&&t>1?o-1:o,s&&n>1?a-1:a],f=[s&&t>1?t-1:t,s&&n>1?n-1:n];let b=0;const w=m[0]/f[0],L=m[1]/f[1];for(let x=0;x<i;x++)for(let v=0;v<t;v++){const N=w*v,O=Math.floor(N),E=N-O,k=Math.min(o-1,Math.ceil(N)),F=x*e.strides[0]+O*e.strides[1],U=x*e.strides[0]+k*e.strides[1];for(let $=0;$<n;$++){const Y=L*$,j=Math.floor(Y),Z=Y-j,ie=Math.min(a-1,Math.ceil(Y)),de=F+j*e.strides[2],he=U+j*e.strides[2],ue=F+ie*e.strides[2],me=U+ie*e.strides[2];for(let ce=0;ce<c;ce++){const ye=h[de+ce],pe=h[he+ce],we=h[ue+ce],Se=h[me+ce],xe=ye+(we-ye)*Z,Oe=pe+(Se-pe)*Z,Ne=xe+(Oe-xe)*E;d[b++]=Ne}}}return sn(d,[i,t,n,c])}resizeBilinearBackprop(e,t,n){Te([e,t],"resizeBilinearBackprop");const[s,i,o,a]=t.shape,[,c,h]=e.shape,d=new Float32Array(s*i*o*a),m=[n&&c>1?i-1:i,n&&h>1?o-1:o],f=[n&&c>1?c-1:c,n&&h>1?h-1:h],b=m[0]/f[0],w=m[1]/f[1],L=this.readSync(e.dataId);let x=0;for(let v=0;v<s;v++){const N=v*t.strides[0];for(let O=0;O<c;O++){const E=O*b,k=Math.floor(E),F=Math.min(Math.ceil(E),i-1),U=N+k*t.strides[1],$=N+F*t.strides[1],Y=E-k,j=1-Y;for(let Z=0;Z<h;Z++){const ie=Z*w,de=Math.floor(ie),he=Math.min(Math.ceil(ie),o-1),ue=ie-de,me=1-ue,ce=U+de*t.strides[2],ye=U+he*t.strides[2],pe=$+de*t.strides[2],we=$+he*t.strides[2],Se=j*me,xe=j*ue,Oe=Y*me,Ne=Y*ue;for(let De=0;De<a;De++){const Ue=L[x++];d[ce+De]+=Ue*Se,d[ye+De]+=Ue*xe,d[pe+De]+=Ue*Oe,d[we+De]+=Ue*Ne}}}}return Ka(d,[s,o,i,a],t.dtype)}resizeNearestNeighbor(e,t,n,s){Te(e,"resizeNearestNeighbor");const[i,o,a,c]=e.shape,h=this.readSync(e.dataId),d=new Float32Array(i*t*n*c),m=[s&&t>1?o-1:o,s&&n>1?a-1:a],f=[s&&t>1?t-1:t,s&&n>1?n-1:n],b=m[0]/f[0],w=m[1]/f[1];let L=0;for(let x=0;x<i;x++){const v=x*e.strides[0];for(let N=0;N<t;N++){const O=b*N,E=Math.min(o-1,s?Math.round(O):Math.floor(O)),k=v+E*e.strides[1];for(let F=0;F<n;F++){const U=w*F,$=Math.min(a-1,s?Math.round(U):Math.floor(U)),Y=k+$*e.strides[2];for(let j=0;j<c;j++){const Z=h[Y+j];d[L++]=Z}}}}return sn(d,[i,t,n,c],e.dtype)}resizeNearestNeighborBackprop(e,t,n){Te([e,t],"resizeNearestNeighborBackprop");const[s,i,o,a]=t.shape,[,c,h]=e.shape,d=new Float32Array(s*i*o*a),m=this.readSync(e.dataId),f=[n&&c>1?i-1:i,n&&h>1?o-1:o],b=[n&&c>1?c-1:c,n&&h>1?h-1:h],w=f[0]/b[0],L=f[1]/b[1],x=1/w,v=1/L,N=Math.ceil(x)*2+2,O=Math.ceil(v)*2+2;for(let E=0;E<s;E++){const k=E*t.strides[0];for(let F=0;F<i;F++){const U=k+F*t.strides[1],$=Math.floor(F*x),Y=Math.floor($-N/2);for(let j=0;j<o;j++){const Z=U+j*t.strides[2],ie=Math.floor(j*v),de=Math.floor(ie-O/2);for(let he=0;he<a;he++){let ue=0;for(let me=0;me<N;me++){const ce=me+Y;if(ce<0||ce>=c)continue;const ye=k+ce*e.strides[1],pe=ce*w,we=Math.min(i-1,n?Math.round(pe):Math.floor(pe));if(F!==we)continue;for(let Se=0;Se<O;Se++){const xe=Se+de;if(xe<0||xe>=h)continue;const Oe=ye+xe*e.strides[2],Ne=xe*L,De=Math.min(o-1,n?Math.round(Ne):Math.floor(Ne));j===De&&(ue+=m[Oe+he])}}d[Z+he]=ue}}}}return Ka(d,t.shape,t.dtype)}localResponseNormalization4D(e,t,n,s,i){Te(e,"localResponseNormalization4D");const o=e.shape[3],a=o-1,c=this.readSync(e.dataId),h=e.size,d=new Float32Array(h);function m(f){const b=f%o;let w=f-b+Math.max(0,b-t);const L=f-b+Math.min(b+t,a);let x=0;for(;w<=L;w++){const v=c[w];x+=v*v}return x}for(let f=0;f<h;f++){const b=m(f),w=c[f]*Math.pow(n+s*b,-i);d[f]=w}return Ka(d,e.shape)}LRNGrad(e,t,n,s,i,o,a){Te(e,"LRNGrad");const c=e.shape[3],h=this.readSync(e.dataId),d=this.readSync(t.dataId),m=this.readSync(n.dataId),f=new Float32Array(e.size),b=e.size;for(let w=0;w<b;w++){const L=w%c,x=w-L+Math.max(0,L-s),v=w-L+Math.min(c,L+s+1);let N=0;for(let O=x;O<v;O++)N+=Math.pow(d[O],2);N=o*N+i;for(let O=x;O<v;O++){let E=-2*o*a*d[O]*m[w]/N;w===O&&(E+=Math.pow(N,-a)),E*=h[w],f[O]+=E}}return Ka(f,e.shape)}multinomial(e,t,n,s){Te(e,"multinomial");const i=t?e:Fo(e),o=i.shape[0],a=i.shape[1],c=dt([o,n],"int32"),h=this.readSync(c.dataId),d=this.readSync(i.dataId);for(let m=0;m<o;++m){const f=m*a,b=new Float32Array(a-1);b[0]=d[f];for(let x=1;x<b.length;++x)b[x]=b[x-1]+d[f+x];const w=Ha(s.toString()),L=m*n;for(let x=0;x<n;++x){const v=w();h[L+x]=b.length;for(let N=0;N<b.length;N++)if(v<b[N]){h[L+x]=N;break}}}return c}oneHot(e,t,n,s){Te(e,"oneHot");const i=new Float32Array(e.size*t);i.fill(s);const o=this.readSync(e.dataId);for(let a=0;a<e.size;++a)o[a]>=0&&o[a]<t&&(i[a*t+o[a]]=n);return Pr(i,[e.size,t],"int32")}nonMaxSuppression(e,t,n,s,i){Te(e,"nonMaxSuppression");const o=this.readSync(e.dataId),a=this.readSync(t.dataId);return XH(o,a,n,s,i)}depthToSpace(e,t,n){A(n==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${n}`),A(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`);const s=e.shape[0],i=e.shape[1],o=e.shape[2],a=e.shape[3],c=i*t,h=o*t,d=a/(t*t),m=this.readSync(e.dataId),f=new Float32Array(s*c*h*d);let b=0;for(let w=0;w<s;++w)for(let L=0;L<c;++L){const x=Math.floor(L/t),v=L%t;for(let N=0;N<h;++N){const O=Math.floor(N/t),E=N%t,k=(v*t+E)*d;for(let F=0;F<d;++F){const U=F+k,$=U+a*(O+o*(x+i*w));f[b++]=m[$]}}}return Ka(f,[s,c,h,d])}broadcastedBinaryOp(e,t,n,s){const i=nt(e.shape,t.shape),o=wt(i,n),a=this.readSync(e.dataId),c=this.readSync(t.dataId),h=Ro(e.shape,i),d=Ro(t.shape,i),m=o.values;if(h.length+d.length===0)for(let f=0;f<m.length;++f)m[f]=s(a[f%a.length],c[f%c.length]);else{const f=this.bufferSync(e),b=this.bufferSync(t);for(let w=0;w<m.length;++w){const L=o.indexToLoc(w),x=L.slice(-e.rank);h.forEach(E=>x[E]=0);const v=f.locToIndex(x),N=L.slice(-t.rank);d.forEach(E=>N[E]=0);const O=b.locToIndex(N);m[w]=s(a[v],c[O])}}return o.toTensor()}split(e,t,n){return JH(e,t,n)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}cropAndResize(e,t,n,s,i,o){const[a,c,h,d]=e.shape,m=t.shape[0],[f,b]=s,w=wt([m,f,b,d],"float32"),L=this.readSync(t.dataId),x=this.readSync(n.dataId),v=this.readSync(e.dataId),N=e.strides,O=w.strides;for(let E=0;E<m;E++){const k=E*4,F=L[k],U=L[k+1],$=L[k+2],Y=L[k+3],j=x[E];if(j>=a)continue;const Z=f>1?($-F)*(c-1)/(f-1):0,ie=b>1?(Y-U)*(h-1)/(b-1):0;for(let de=0;de<f;de++){const he=f>1?F*(c-1)+de*Z:.5*(F+$)*(c-1);if(he<0||he>c-1){for(let ue=0;ue<b;ue++)for(let me=0;me<d;me++){const ce=me+ue*O[2]+de*O[1]+E*O[0];w.values[ce]=o}continue}if(i==="bilinear"){const ue=Math.floor(he),me=Math.ceil(he),ce=he-ue;for(let ye=0;ye<b;ye++){const pe=b>1?U*(h-1)+ye*ie:.5*(U+Y)*(h-1);if(pe<0||pe>h-1){for(let Oe=0;Oe<d;Oe++){const Ne=Oe+ye*O[2]+de*O[1]+E*O[0];w.values[Ne]=o}continue}const we=Math.floor(pe),Se=Math.ceil(pe),xe=pe-we;for(let Oe=0;Oe<d;Oe++){let Ne=Oe+we*N[2]+ue*N[1]+j*N[0];const De=v[Ne];Ne=Oe+Se*N[2]+ue*N[1]+j*N[0];const Ue=v[Ne];Ne=Oe+we*N[2]+me*N[1]+j*N[0];const ze=v[Ne];Ne=Oe+Se*N[2]+me*N[1]+j*N[0];const ht=v[Ne],it=De+(Ue-De)*xe,rt=ze+(ht-ze)*xe;Ne=Oe+ye*O[2]+de*O[1]+E*O[0],w.values[Ne]=it+(rt-it)*ce}}}else for(let ue=0;ue<b;++ue){const me=b>1?U*(h-1)+ue*ie:.5*(U+Y)*(h-1);if(me<0||me>h-1){for(let pe=0;pe<d;pe++){const we=pe+ue*O[2]+de*O[1]+E*O[0];w.values[we]=o}continue}const ce=Math.round(me),ye=Math.round(he);for(let pe=0;pe<d;pe++){const we=pe+ce*N[2]+ye*N[1]+j*N[0],Se=pe+ue*O[2]+de*O[1]+E*O[0];w.values[Se]=v[we]}}}}return w.toTensor()}sparseToDense(e,t,n,s){const{sliceRank:i,numUpdates:o,sliceSize:a,strides:c,outputSize:h}=_a(t,e,n),d=!1;return this.scatter(e,t,n,h,a,o,i,c,s,d)}gatherND(e,t){const n=t.shape,s=n[n.length-1],[i,o,a,c]=Hd(e,t);if(o===0)return sn([],i,e.dtype);const h=new an([o,a],e.dtype),d=this.readSync(t.dataId),m=this.readSync(e.dataId);for(let f=0;f<o;f++){const b=[];let w=0;for(let L=0;L<s;L++){const x=d[f*s+L];w+=x*c[L],b.push(x)}if(w<0||w>=e.size/a)throw new Error(`Invalid indices: ${b} does not index into ${e.shape}`);for(let L=0;L<a;L++)h.values[f*a+L]=m[w*a+L]}return h.toTensor().reshape(i)}scatterND(e,t,n){const{sliceRank:s,numUpdates:i,sliceSize:o,strides:a,outputSize:c}=_a(t,e,n),h=Ce(0),d=!0;return this.scatter(e,t,n,c,o,i,s,a,h,d)}onesLike(e){if(e.dtype==="string")throw new Error("onesLike is not supported for string tensors");return Ba(e.shape,1,e.dtype)}zerosLike(e){const t=ws(e.dtype,P(e.shape));return this.makeOutput(t,e.shape,e.dtype)}linspace(e,t,n){return aw(e,t,n)}scatter(e,t,n,s,i,o,a,c,h,d){const m=[s/i,i],f=this.readSync(e.dataId),b=this.readSync(t.dataId);if(s===0)return sn([],n,t.dtype);const w=new an(m,t.dtype);w.values.fill(this.readSync(h.dataId)[0]);for(let L=0;L<o;L++){const x=[];let v=0;for(let N=0;N<a;N++){const O=f[L*a+N];x.push(O),v+=O*c[N]}if(v<0||v>=s/i)throw new Error(`Invalid indices: ${x} does not index into ${n}`);for(let N=0;N<i;N++)d?w.values[v*i+N]+=b[L*i+N]:w.values[v*i+N]=t.rank===0?b[0]:b[L*i+N]}return w.toTensor().reshape(n)}}function b0(e){const t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}const nq=e=>{const{x:t}=e.inputs,n=e.backend;let s=new Float32Array(P(t.shape));if(t.dtype!=="complex64"){const i=n.data.get(t.dataId).values;s=b0(i)}else{const i=n.data.get(t.dataId),o=i.complexTensorInfos.real,a=i.complexTensorInfos.imag,c=n.data.get(o.dataId).values,h=n.data.get(a.dataId).values;for(let d=0;d<c.length;d++){const m=c[d],f=h[d];s[d]=Math.hypot(m,f)}}return n.makeOutput(s,t.shape,"float32")},sq={kernelName:td,backendName:"cpu",kernelFunc:nq};function Zr(e){return(t,n,s,i,o)=>{const a=nt(t,n),c=a.length,h=je(a),d=P(a),m=bt(o,d),f=t.length,b=n.length,w=je(t),L=je(n),x=Ro(t,a),v=Ro(n,a);if(x.length+v.length===0)for(let N=0;N<m.length;++N)m[N]=e(s[N%s.length],i[N%i.length]);else for(let N=0;N<m.length;++N){const O=yo(N,c,h),E=O.slice(-f);x.forEach($=>E[$]=0);const k=_s(E,f,w),F=O.slice(-b);v.forEach($=>F[$]=0);const U=_s(F,b,L);m[N]=e(s[k],i[U])}return[m,a]}}function ci(e){const{inputs:t,backend:n}=e,{real:s,imag:i}=t,o=n.data.get(s.dataId).values,a=n.data.get(i.dataId).values,c=n.makeTensorInfo(s.shape,"complex64"),h=n.data.get(c.dataId);return h.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",o),imag:n.makeTensorInfo(i.shape,"float32",a)},c}const iq={kernelName:rd,backendName:"cpu",kernelFunc:ci};function Go(e){const{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}const rq={kernelName:xl,backendName:"cpu",kernelFunc:Go};function ru(e){const{inputs:t,backend:n}=e,{input:s}=t,i=n.data.get(s.dataId).complexTensorInfos.real,o=n.data.get(i.dataId).values;return n.makeTensorInfo(i.shape,i.dtype,o)}const oq={kernelName:Td,backendName:"cpu",kernelFunc:ru};function ou(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{dtype:o}=s;if(o==="complex64"){if(i.dtype==="complex64")return Go({inputs:{x:i},backend:n});const a=dt(i.shape),c=ou({inputs:{x:i},backend:n,attrs:{dtype:"float32"}}),h=ci({inputs:{real:c,imag:a},backend:n});return a.dispose(),n.disposeIntermediateTensorInfo(c),h}if(i.dtype==="complex64"){const a=ru({inputs:{input:i},backend:n}),c=ou({inputs:{x:a},backend:n,attrs:{dtype:o}});return n.disposeIntermediateTensorInfo(a),c}if(!ba(i.dtype,o)){const a=Go({inputs:{x:i},backend:n});return{dataId:a.dataId,shape:a.shape,dtype:o}}if(o==="int32"){const a=n.data.get(i.dataId).values,c=Int32Array.from(a);return n.makeTensorInfo(i.shape,"int32",c)}if(o==="bool"){const a=n.data.get(i.dataId).values,c=Or([0],i.dtype),[h,d]=Zr((m,f)=>m!==f?1:0)(i.shape,[],a,c,"bool");return n.makeTensorInfo(d,"bool",h)}throw new Error(`Error in Cast: failed to cast ${i.dtype} to ${o}`)}const aq={kernelName:Sa,backendName:"cpu",kernelFunc:ou};function hc(e,t,n,s){return n==null?({inputs:i,backend:o})=>{const{a,b:c}=i,h=o;Te([a,c],e);const d=h.data.get(a.dataId).values,m=h.data.get(c.dataId).values,f=s||a.dtype,[b,w]=t(a.shape,c.shape,d,m,f);return h.makeTensorInfo(w,f,b)}:({inputs:i,backend:o})=>{const{a,b:c}=i,h=o;if(a.dtype==="complex64"||c.dtype==="complex64"){const d=ou({inputs:{x:a},backend:h,attrs:{dtype:"complex64"}}),m=h.data.get(d.dataId),f=m.complexTensorInfos.real,b=m.complexTensorInfos.imag,w=h.data.get(f.dataId).values,L=h.data.get(b.dataId).values,x=ou({inputs:{x:c},backend:h,attrs:{dtype:"complex64"}}),v=h.data.get(x.dataId),N=v.complexTensorInfos.real,O=v.complexTensorInfos.imag,E=h.data.get(N.dataId).values,k=h.data.get(O.dataId).values,[F,U,$]=n(a.shape,c.shape,w,L,E,k),Y=h.makeTensorInfo($,"float32",F),j=h.makeTensorInfo($,"float32",U),Z=ci({inputs:{real:Y,imag:j},backend:h});return h.disposeIntermediateTensorInfo(d),h.disposeIntermediateTensorInfo(x),h.disposeIntermediateTensorInfo(Y),h.disposeIntermediateTensorInfo(j),Z}else{const d=h.data.get(a.dataId).values,m=h.data.get(c.dataId).values,f=s||a.dtype,[b,w]=t(a.shape,c.shape,d,m,f);return h.makeTensorInfo(w,f,b)}}}function cS(e){return(t,n,s,i,o,a)=>{const c=nt(t,n),h=P(c),d=c.length,m=je(c),f=bt("float32",h),b=bt("float32",h),w=Ro(t,c),L=Ro(n,c),x=tr(s,i),v=tr(o,a),N=t.length,O=je(t),E=n.length,k=je(n);if(w.length+L.length===0)for(let F=0;F<f.length;F++){const U=F%x.length,$=F%v.length,Y=e(x[U*2],x[U*2+1],v[$*2],v[$*2+1]);f[F]=Y.real,b[F]=Y.imag}else for(let F=0;F<f.length;F++){const U=yo(F,d,m),$=U.slice(-N);w.forEach(de=>$[de]=0);const Y=_s($,N,O),j=U.slice(-E);L.forEach(de=>j[de]=0);const Z=_s(j,E,k),ie=e(x[Y*2],x[Y*2+1],v[Z*2],v[Z*2+1]);f[F]=ie.real,b[F]=ie.imag}return[f,b,c]}}const w0=Zr((e,t)=>e+t),cq=cS((e,t,n,s)=>({real:e+n,imag:t+s})),au=hc(wo,w0,cq),lq={kernelName:wo,backendName:"cpu",kernelFunc:au};function uc(e){return(t,n,s)=>{const i=bt(n,t.length);for(let o=0;o<t.length;++o)i[o]=e(t[o],s);return i}}function xt(e,t,n){return({inputs:s,attrs:i,backend:o})=>{const{x:a}=s;if(Te(a,e),a.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");const c=o,h=c.data.get(a.dataId).values,d=P(a.shape),m=n||a.dtype,f=ws(m,d);for(let b=0;b<d;++b)f[b]=t(h[b],i);return c.makeTensorInfo(a.shape,m,f)}}function dc(e,t,n){return({inputs:s,attrs:i,backend:o})=>{const{x:a}=s;if(Te(a,e),a.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");const c=o,h=c.data.get(a.dataId).values,d=n||a.dtype,m=t(h,d,i);return c.makeTensorInfo(a.shape,d,m)}}const L0=uc(e=>Math.ceil(e)),hq=dc(pl,L0),uq={kernelName:pl,backendName:"cpu",kernelFunc:hq};const S0=uc(e=>Math.exp(e)),dq=dc(wl,S0),pq={kernelName:wl,backendName:"cpu",kernelFunc:dq};const I0=uc(e=>Math.expm1(e)),mq=dc(Ll,I0),fq={kernelName:Ll,backendName:"cpu",kernelFunc:mq};const x0=uc(e=>Math.floor(e)),gq=dc(Sl,x0),yq={kernelName:Sl,backendName:"cpu",kernelFunc:gq};const T0=uc(e=>Math.log(e)),bq=dc(Nl,T0),wq={kernelName:Nl,backendName:"cpu",kernelFunc:bq};function A0(e,t,n,s){const i=bt(s,P(n));for(let o=0;o<i.length;++o){const a=o*t;let c=e[a];for(let h=0;h<t;++h){const d=e[a+h];d>c&&(c=d)}i[o]=c}return i}const v0=Zr((e,t)=>e*t),Lq=cS((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),N0=hc(Ta,v0,Lq),Sq={kernelName:Ta,backendName:"cpu",kernelFunc:N0};const C0=Zr((e,t)=>e!==t?1:0),Iq=hc(Dl,C0,null,"bool"),xq={kernelName:Dl,backendName:"cpu",kernelFunc:Iq};const R0=uc(e=>1/Math.sqrt(e)),Tq=dc(Ul,R0),Aq={kernelName:Ul,backendName:"cpu",kernelFunc:Tq};function O0(e,t,n,s,i){const o=eb(s,t,n),a=P(n),c=je(s);if(o){const d=tb(t,c);return e.subarray(d,d+a)}const h=bt(i,a);for(let d=0;d<a;++d){const m=n.length,f=je(n),b=yo(d,m,f),w=b.map((x,v)=>x+t[v]),L=_s(w,s.length,c);h[d]=e[L]}return h}function lS(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{begin:o,size:a}=s;Te(i,"slice");const[c,h]=Kd(i,o,a);Qy(i,c,h);const d=n.data.get(i.dataId).values,m=O0(d,c,h,i.shape,i.dtype);return n.makeTensorInfo(h,i.dtype,m)}const vq={kernelName:Ad,backendName:"cpu",kernelFunc:lS};const E0=Zr((e,t)=>{const n=e-t;return n*n}),Nq=hc(va,E0),Cq={kernelName:va,backendName:"cpu",kernelFunc:Nq};const D0=Zr((e,t)=>e-t),Rq=cS((e,t,n,s)=>({real:e-n,imag:t-s})),k0=hc(Na,D0,Rq),Oq={kernelName:Na,backendName:"cpu",kernelFunc:k0};function hS(e,t,n,s,i){const o=t.length,a=P(t),c=je(t),h=je(i),d=bt(n,P(i));for(let m=0;m<a;++m){const f=yo(m,o,c),b=new Array(f.length);for(let L=0;L<b.length;L++)b[L]=f[s[L]];const w=_s(b,o,h);d[w]=e[m]}return d}function F0(e,t,n,s){const i=qe(t,n)[0],o=[1,n[0],1];for(let L=0;L<i;L++)o[0]*=n[L];o[1]=n[i];for(let L=i+1;L<n.length;L++)o[2]*=n[L];const a={},c=new Int32Array(n[i]),h=new an(o,s,e),d=[],m=o[0]===1&&o[2]===1;for(let L=0;L<n[i];L++){let x;if(m)x=e[L].toString();else{const v=[];for(let N=0;N<o[0];N++)for(let O=0;O<o[2];O++)v.push(h.get(N,L,O));x=v.join(",")}if(a[x]!==void 0)c[L]=a[x];else{const v=Object.keys(a).length;a[x]=v,c[L]=v,d.push(L)}}const f=o.slice();f[1]=Object.keys(a).length;const b=new an(f,s);d.forEach((L,x)=>{for(let v=0;v<o[0];v++)for(let N=0;N<o[2];N++)b.set(h.get(v,L,N),v,x,N)});const w=n.slice();return w[i]=f[1],{outputValues:b.values,outputShape:w,indices:c}}var Eq=Object.freeze({__proto__:null,simpleAbsImpl:b0,addImpl:w0,ceilImpl:L0,expImpl:S0,expm1Impl:I0,floorImpl:x0,logImpl:T0,maxImpl:A0,multiplyImpl:v0,notEqualImpl:C0,rsqrtImpl:R0,sliceImpl:O0,squaredDifferenceImpl:E0,subImpl:D0,transposeImpl:hS,uniqueImpl:F0});const Dq="2.7.0";rb("cpu",()=>new tq,1);const _0=xt(yl,e=>e>=0?e:Math.exp(e)-1),kq={kernelName:yl,backendName:"cpu",kernelFunc:_0};const Fq=Zr((e,t)=>e<0?t*e:e);function W0(e){const{inputs:t,backend:n}=e,{x:s,alpha:i}=t;Te([s,i],"prelu");const o=n.data.get(s.dataId).values,a=n.data.get(i.dataId).values,[c,h]=Fq(s.shape,i.shape,o,a,s.dtype);return n.makeTensorInfo(h,s.dtype,c)}const _q={kernelName:xd,backendName:"cpu",kernelFunc:W0};const $0=xt(Fl,e=>Math.max(0,e)),Wq={kernelName:Fl,backendName:"cpu",kernelFunc:$0};const U0=xt(Wl,e=>Math.min(Math.max(0,e),6)),$q={kernelName:Wl,backendName:"cpu",kernelFunc:U0};function uS(e,t,n,s){if(n==="linear")return Go({inputs:{x:t},backend:e});if(n==="relu")return $0({inputs:{x:t},backend:e});if(n==="elu")return _0({inputs:{x:t},backend:e});if(n==="relu6")return U0({inputs:{x:t},backend:e});if(n==="prelu")return W0({inputs:{x:t,alpha:s},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Di(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{shape:o}=s,a=P(i.shape),c=Vt(o,a),h=P(c);A(a===h,()=>`The new shape (${c}) has ${h} elements and the old shape (${i.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),n.incRef(i.dataId);const d=n.data.get(i.dataId);if(d.complexTensorInfos!=null){const m=d.complexTensorInfos.real,f=d.complexTensorInfos.imag;m.shape=c,f.shape=c}return{dataId:i.dataId,shape:c,dtype:i.dtype}}const Uq={kernelName:_l,backendName:"cpu",kernelFunc:Di};function B0(e){const{inputs:t,backend:n,attrs:s}=e,{a:i,b:o}=t,{transposeA:a,transposeB:c}=s;Te([i,o],"matMul");const h=i.shape.length,d=o.shape.length,m=a?i.shape[h-2]:i.shape[h-1],f=c?o.shape[d-1]:o.shape[d-2],b=a?i.shape[h-1]:i.shape[h-2],w=c?o.shape[d-2]:o.shape[d-1],L=i.shape.slice(0,-2),x=o.shape.slice(0,-2),v=P(L),N=P(x),O=v===N||v===1||N===1;A(h>=2&&d>=2&&O,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${L}) and (${x}).`);const E=v>N?i.shape.slice(0,-2):o.shape.slice(0,-2),k=E.concat([b,w]);A(m===f,()=>`Error in matMul: inner shapes (${m}) and (${f}) of Tensors with shapes ${i.shape} and ${o.shape} and transposeA=${a} and transposeB=${c} must match.`);const F=a?[v,m,b]:[v,b,m],U=c?[N,w,f]:[N,f,w],$=Di({inputs:{x:i},backend:n,attrs:{shape:F}}),Y=Di({inputs:{x:o},backend:n,attrs:{shape:U}}),j=a?$.shape[1]:$.shape[2],Z=a?$.shape[2]:$.shape[1],ie=c?Y.shape[1]:Y.shape[2],de=Math.max(v,N),he=n.data.get($.dataId).values,ue=n.data.get(Y.dataId).values,me=je($.shape),ce=je(Y.shape),[ye,pe,we]=a?[me[0],1,me[1]]:[me[0],me[1],1],[Se,xe,Oe]=c?[1,ce[1],ce[0]]:[ce[1],1,ce[0]],Ne=Z*ie,De=wt([de,Z,ie],$.dtype),Ue=De.values,ze=n.blockSize;for(let ht=0;ht<de;ht++)for(let it=0;it<Z;it+=ze)for(let rt=0;rt<ie;rt+=ze)for(let mt=0;mt<j;mt+=ze){const ut=Math.min(it+ze,Z),Dt=Math.min(rt+ze,ie),rn=Math.min(mt+ze,j);for(let Ut=it;Ut<ut;Ut++)for(let kt=rt;kt<Dt;kt++){let Ft=0;for(let Xt=mt;Xt<rn;Xt++){const Rn=Math.min(ht,v-1)*ye,pr=Math.min(ht,N-1)*Oe,On=he[Rn+Ut*pe+Xt*we],li=ue[Xt*Se+kt*xe+pr];Ft+=On*li}Ue[ht*Ne+(Ut*ie+kt)]+=Ft}}return n.disposeIntermediateTensorInfo($),n.disposeIntermediateTensorInfo(Y),n.makeTensorInfo(k,De.dtype,De.values)}const Bq={kernelName:id,backendName:"cpu",kernelFunc:B0};function Mq(e){const{inputs:t,backend:n,attrs:s}=e,{a:i,b:o,bias:a,preluActivationWeights:c}=t,{transposeA:h,transposeB:d,activation:m}=s;let f,b,w;const L=[],x=B0({inputs:{a:i,b:o},attrs:{transposeA:h,transposeB:d},backend:n});f=x,a&&(b=au({inputs:{a:f,b:a},backend:n}),L.push(f),f=b),m&&(w=uS(n,f,m,c),L.push(f),f=w);for(const v of L)n.disposeIntermediateTensorInfo(v);return f}const Pq={kernelName:Ed,backendName:"cpu",kernelFunc:Mq};const zq=xt(ol,e=>Math.acos(e)),Vq={kernelName:ol,backendName:"cpu",kernelFunc:zq};const Gq=xt(al,e=>Math.acosh(e)),Yq={kernelName:al,backendName:"cpu",kernelFunc:Gq};const Hq=xt(cl,e=>Math.asin(e)),qq={kernelName:cl,backendName:"cpu",kernelFunc:Hq};const jq=xt(ll,e=>Math.asinh(e)),Kq={kernelName:ll,backendName:"cpu",kernelFunc:jq};const Xq=xt(hl,e=>Math.atan(e)),Jq={kernelName:hl,backendName:"cpu",kernelFunc:Xq};const Zq=xt(ul,e=>Math.atanh(e)),Qq={kernelName:ul,backendName:"cpu",kernelFunc:Zq};function dS(e,t,n,s,i,o){const a=i.strideHeight,c=i.strideWidth,h=i.dilationHeight,d=i.dilationWidth,m=i.effectiveFilterHeight,f=i.effectiveFilterWidth,b=i.padInfo.top,w=i.padInfo.left,L=o==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=wt(i.outShape,n),v=x.values,N=i.outShape[1]*i.outShape[2]*i.outShape[3],O=i.outShape[2]*i.outShape[3],E=i.outShape[3];for(let k=0;k<i.batchSize;++k){const F=k*N,U=k*s[0];for(let $=0;$<i.inChannels;++$)for(let Y=0;Y<i.outHeight;++Y){const j=Y*a-b,Z=Math.max(0,j),ie=Math.min(i.inHeight,m+j),de=F+Y*O;for(let he=0;he<i.outWidth;++he){const ue=he*c-w,me=Math.max(0,ue),ce=Math.min(i.inWidth,f+ue);let ye=L,pe=0,we=0;for(let xe=Z;xe<ie;xe+=h){const Oe=U+xe*s[1];for(let Ne=me;Ne<ce;Ne+=d){const De=Oe+Ne*s[2],Ue=e[De+$];o==="max"&&Ue>ye?ye=Ue:o==="avg"&&(pe+=Ue,we++)}if(isNaN(ye))break}const Se=de+he*E+$;v[Se]=o==="avg"?pe/we:ye}}}return x}function M0(e,t,n,s,i=!1,o=!1){const a=wt(s.outShape,"int32"),c=s.strideHeight,h=s.strideWidth,d=s.dilationHeight,m=s.dilationWidth,f=s.effectiveFilterHeight,b=s.effectiveFilterWidth,w=s.padInfo.top,L=s.padInfo.left,x=wt(t,n,e);for(let v=0;v<s.batchSize;++v)for(let N=0;N<s.inChannels;++N)for(let O=0;O<s.outHeight;++O){const E=O*c-w;let k=E;for(;k<0;)k+=d;const F=Math.min(s.inHeight,f+E);for(let U=0;U<s.outWidth;++U){const $=U*h-L;let Y=$;for(;Y<0;)Y+=m;const j=Math.min(s.inWidth,b+$);let Z=Number.NEGATIVE_INFINITY,ie=-1;for(let de=k;de<F;de+=d){const he=de-E;for(let ue=Y;ue<j;ue+=m){const me=ue-$,ce=x.get(v,de,ue,N);ce>Z&&(Z=ce,i?ie=o?((v*s.inHeight+de)*s.inWidth+ue)*s.inChannels+N:(de*s.inWidth+ue)*s.inChannels+N:ie=he*b+me)}}a.set(ie,v,O,U,N)}}return a}function e4(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t;Te(i,"avgPool");const{filterSize:o,strides:a,pad:c,dimRoundingMode:h}=s,d=1;A(cn(a,d),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${d}'`);const m=Un(i.shape,o,a,d,c,h);let f;if(m.filterWidth===1&&m.filterHeight===1&&ae(m.inShape,m.outShape))f=Go({inputs:{x:i},backend:n});else{const b=n.data.get(i.dataId).values,w=je(i.shape),L=dS(b,i.shape,i.dtype,w,m,"avg");f=n.makeTensorInfo(m.outShape,i.dtype,L.values)}return f}const t4={kernelName:dl,backendName:"cpu",kernelFunc:e4};function n4(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,input:o}=t,a=o;Te([i,o],"avgPoolBackprop");const{filterSize:c,strides:h,pad:d}=s,m=Un(a.shape,c,h,1,d),f=m.strideHeight,b=m.strideWidth,w=m.filterHeight,L=m.filterWidth,x=m.dilationHeight,v=m.dilationWidth,N=m.effectiveFilterHeight,O=m.effectiveFilterWidth,E=O-1-m.padInfo.left,k=N-1-m.padInfo.top,F=wt(a.shape,"float32"),U=1/(w*L),$=n.data.get(i.dataId).values,Y=wt(i.shape,"float32",$);for(let j=0;j<m.batchSize;++j)for(let Z=0;Z<m.inChannels;++Z)for(let ie=0;ie<m.inHeight;++ie)for(let de=0;de<m.inWidth;++de){const he=ie-k,ue=de-E;let me=0;for(let ce=0;ce<N;ce+=x){const ye=(he+ce)/f;if(ye<0||ye>=m.outHeight||Math.floor(ye)!==ye)continue;for(let pe=0;pe<O;pe+=v){const we=(ue+pe)/b;if(we<0||we>=m.outWidth||Math.floor(we)!==we)continue;const Se=Y.get(j,ye,we,Z);me+=Se}}F.set(me*U,j,ie,de,Z)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}const s4={kernelName:sd,backendName:"cpu",kernelFunc:n4};function i4(e){const{inputs:t,backend:n,attrs:s}=e,{x:i,scale:o,offset:a,mean:c,variance:h}=t;A(c.shape.length===h.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(a==null||c.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(o==null||c.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([i,c,h,o,a],"batchNorm");let{varianceEpsilon:d}=s;d==null&&(d=.001);const m=n.data.get(i.dataId).values,f=n.data.get(c.dataId).values,b=n.data.get(h.dataId).values,w=o?n.data.get(o.dataId).values:new Float32Array([1]),L=a?n.data.get(a.dataId).values:new Float32Array([0]),x=new Float32Array(m.length),v=L.length,N=w.length,O=b.length,E=f.length;let k=0,F=0,U=0,$=0;for(let Y=0;Y<m.length;++Y)x[Y]=L[k++]+(m[Y]-f[F++])*w[U++]/Math.sqrt(b[$++]+d),k>=v&&(k=0),F>=E&&(F=0),U>=N&&(U=0),$>=O&&($=0);return n.makeTensorInfo(i.shape,i.dtype,x)}const r4={kernelName:Il,backendName:"cpu",kernelFunc:i4};const o4=xt(ml,(e,t)=>{const n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),a4={kernelName:ml,backendName:"cpu",kernelFunc:o4};function Am(e){const{inputs:t,backend:n}=e,{input:s}=t,i=n.data.get(s.dataId).complexTensorInfos.imag,o=n.data.get(i.dataId).values;return n.makeTensorInfo(i.shape,i.dtype,o)}const c4={kernelName:gd,backendName:"cpu",kernelFunc:Am};function cu(e){const{inputs:t,backend:n,attrs:s}=e,{axis:i}=s,o=qe(i,t[0].shape)[0];let a=Xi(t.map(w=>w.shape),o);if(P(a)===0)return n.makeTensorInfo(a,t[0].dtype,[]);const c=t.filter(w=>P(w.shape)>0);if(c.length===1)return c[0];const h=c.map(w=>w.shape);if(np(h,o),c[0].dtype==="complex64"){const w=c.map(O=>ru({inputs:{input:O},backend:n})),L=c.map(O=>Am({inputs:{input:O},backend:n})),x=cu({inputs:w,backend:n,attrs:{axis:o}}),v=cu({inputs:L,backend:n,attrs:{axis:o}}),N=ci({inputs:{real:x,imag:v},backend:n});return w.forEach(O=>n.disposeIntermediateTensorInfo(O)),L.forEach(O=>n.disposeIntermediateTensorInfo(O)),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),N}const d=c.map(w=>{const L=P(w.shape.slice(o)),x=[-1,L];return Di({inputs:{x:w},backend:n,attrs:{shape:x}})});a=Xi(d.map(w=>w.shape),1);const m=bt(c[0].dtype,P(a));if(d[0].shape[0]===1){let w=0;d.forEach(L=>{const x=n.data.get(L.dataId).values,v=P(L.shape);m.set(x,w),w+=v})}else{let w=0;d.forEach(L=>{const x=n.data.get(L.dataId).values;let v=0;for(let N=0;N<L.shape[0];++N){const O=N*a[1]+w;for(let E=0;E<L.shape[1];++E)m[O+E]=x[v++]}w+=L.shape[1]})}const f=Xi(c.map(w=>w.shape),o),b=n.makeTensorInfo(f,t[0].dtype,m);return d.forEach(w=>n.disposeIntermediateTensorInfo(w)),b}const l4={kernelName:fl,backendName:"cpu",kernelFunc:cu};function P0(e){const{inputs:t,backend:n,attrs:s}=e,{x:i,filter:o}=t,{strides:a,pad:c,dataFormat:h,dilations:d,dimRoundingMode:m}=s;Te([i,o],"conv2d");const f=Wr(h),b=kn(i.shape,o.shape,a,d,c,m,!1,f),w=b.filterHeight,L=b.filterWidth,x=b.dilationHeight,v=b.dilationWidth,N=b.padInfo.left,O=b.padInfo.top,E=b.dataFormat==="channelsLast",k=new an(b.outShape,i.dtype),F=je(i.shape),U=je(o.shape),$=F[0],Y=E?F[1]:F[2],j=E?F[2]:1,Z=E?1:F[1],ie=k.strides[0],de=E?k.strides[1]:k.strides[2],he=E?k.strides[2]:1,ue=E?1:k.strides[1],me=n.data.get(i.dataId).values,ce=n.data.get(o.dataId).values,ye=k.values;for(let pe=0;pe<b.batchSize;++pe){const we=pe*$,Se=pe*ie;for(let xe=0;xe<b.outHeight;++xe){const Oe=Se+xe*de,Ne=xe*b.strideHeight-O;for(let De=0;De<w;++De){const Ue=Ne+De*x;if(Ue<0||Ue>=b.inHeight)continue;const ze=De*U[0],ht=we+Ue*Y;for(let it=0;it<b.outWidth;++it){const rt=Oe+it*he,mt=it*b.strideWidth-N;for(let ut=0;ut<L;++ut){const Dt=mt+ut*v;if(Dt<0||Dt>=b.inWidth)continue;const rn=ze+ut*U[1],Ut=ht+Dt*j;let kt=rn;for(let Ft=0;Ft<b.inChannels;++Ft){const Xt=me[Ut+Ft*Z];for(let Rn=0;Rn<b.outChannels;++Rn)ye[rt+Rn*ue]+=Xt*ce[kt+Rn];kt+=b.outChannels}}}}}}return n.makeTensorInfo(k.shape,k.dtype,ye)}const h4={kernelName:od,backendName:"cpu",kernelFunc:P0};function u4(e){const{inputs:t,backend:n,attrs:s}=e,{x:i,dy:o}=t,{strides:a,pad:c,dataFormat:h,dimRoundingMode:d,filterShape:m}=s;Te([i,o],"conv2dBackpropFilter");const f=Wr(h),b=kn(i.shape,m,a,1,c,d,!1,f),{strideHeight:w,strideWidth:L,filterHeight:x,filterWidth:v}=b,N=b.dataFormat==="channelsLast",O=new an(b.filterShape,"float32"),E=b.padInfo.left,k=b.padInfo.top,F=n.data.get(i.dataId).values,U=n.data.get(o.dataId).values,$=new an(i.shape,i.dtype,F),Y=new an(o.shape,o.dtype,U);for(let j=0;j<x;++j){const Z=Math.max(0,Math.ceil((k-j)/w)),ie=Math.min(b.outHeight,(b.inHeight+k-j)/w);for(let de=0;de<v;++de){const he=Math.max(0,Math.ceil((E-de)/L)),ue=Math.min(b.outWidth,(b.inWidth+E-de)/L);for(let me=0;me<b.inChannels;++me)for(let ce=0;ce<b.outChannels;++ce){let ye=0;for(let pe=0;pe<b.batchSize;++pe)for(let we=Z;we<ie;++we){const Se=j+we*w-k;for(let xe=he;xe<ue;++xe){const Oe=de+xe*L-E;N?ye+=$.get(pe,Se,Oe,me)*Y.get(pe,we,xe,ce):ye+=$.get(pe,me,Se,Oe)*Y.get(pe,ce,we,xe)}}O.set(ye,j,de,me,ce)}}}return n.makeTensorInfo(O.shape,O.dtype,O.values)}const d4={kernelName:Xg,backendName:"cpu",kernelFunc:u4};function p4(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,filter:o}=t,{inputShape:a,strides:c,pad:h,dataFormat:d,dimRoundingMode:m}=s;Te([i,o],"conv2dBackpropInput");const f=je(o.shape),b=je(i.shape);let w=Wr(d);const L=kn(a,o.shape,c,1,h,m,!1,w),x=new an(L.inShape,"float32"),v=x.values,N=n.data.get(i.dataId).values,O=n.data.get(o.dataId).values,[E,k,F]=f,{batchSize:U,filterHeight:$,filterWidth:Y,inChannels:j,inHeight:Z,inWidth:ie,outChannels:de,outHeight:he,outWidth:ue,strideHeight:me,strideWidth:ce}=L;w=L.dataFormat;const ye=$-1-L.padInfo.top,pe=Y-1-L.padInfo.left,we=w==="channelsLast",Se=x.strides[0],xe=we?x.strides[1]:x.strides[2],Oe=we?x.strides[2]:1,Ne=we?1:x.strides[1],De=b[0],Ue=we?b[1]:b[2],ze=we?b[2]:1,ht=we?1:b[1];for(let it=0;it<U;++it)for(let rt=0;rt<j;++rt)for(let mt=0;mt<Z;++mt){const ut=mt-ye,Dt=Math.max(0,Math.ceil(ut/me)),rn=Math.min(he,($+ut)/me);for(let Ut=0;Ut<ie;++Ut){const kt=Ut-pe,Ft=Math.max(0,Math.ceil(kt/ce)),Xt=Math.min(ue,(Y+kt)/ce);let Rn=0;for(let On=Dt;On<rn;++On){const li=On*me-ut;for(let Cs=Ft;Cs<Xt;++Cs){const qo=Cs*ce-kt,hi=De*it+Ue*On+ze*Cs,Fi=E*($-1-li)+k*(Y-1-qo)+F*rt;for(let eo=0;eo<de;++eo){const to=N[hi+ht*eo],no=O[Fi+eo];Rn+=to*no}}}const pr=Se*it+xe*mt+Oe*Ut+Ne*rt;v[pr]=Rn}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}const m4={kernelName:ad,backendName:"cpu",kernelFunc:p4};function f4(e){const{inputs:t,backend:n,attrs:s}=e,{x:i,filter:o}=t,{strides:a,pad:c,dilations:h}=s;Te([i,o],"conv3d");const d=Fr(i.shape,o.shape,a,h,c),{filterDepth:m,filterHeight:f,filterWidth:b,dilationDepth:w,dilationHeight:L,dilationWidth:x,padInfo:v}=d,N=v.front,O=v.left,E=v.top,k=new an(d.outShape,i.dtype),F=n.data.get(i.dataId).values,U=n.data.get(o.dataId).values,$=k.values,Y=je(i.shape),j=je(o.shape);for(let Z=0;Z<d.batchSize;++Z){const ie=Z*Y[0],de=Z*k.strides[0];for(let he=0;he<d.outDepth;++he){const ue=de+he*k.strides[1],me=he*d.strideDepth-N;for(let ce=0;ce<m;++ce){const ye=me+ce*w;if(ye<0||ye>=d.inDepth)continue;const pe=ce*j[0],we=ie+ye*Y[1];for(let Se=0;Se<d.outHeight;++Se){const xe=ue+Se*k.strides[2],Oe=Se*d.strideHeight-E;for(let Ne=0;Ne<f;++Ne){const De=Oe+Ne*L;if(De<0||De>=d.inHeight)continue;const Ue=pe+Ne*j[1],ze=we+De*Y[2];for(let ht=0;ht<d.outWidth;++ht){const it=xe+ht*d.outChannels,rt=ht*d.strideWidth-O;for(let mt=0;mt<b;++mt){const ut=rt+mt*x;if(ut<0||ut>=d.inWidth)continue;const Dt=Ue+mt*j[2],rn=ze+ut*d.inChannels;let Ut=Dt;for(let kt=0;kt<d.inChannels;++kt){const Ft=F[rn+kt];for(let Xt=0;Xt<d.outChannels;++Xt)$[it+Xt]+=Ft*U[Ut+Xt];Ut+=d.outChannels}}}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}const g4={kernelName:cd,backendName:"cpu",kernelFunc:f4};function y4(e){const{inputs:t,backend:n,attrs:s}=e,{x:i,dy:o}=t,{strides:a,pad:c,filterShape:h}=s;Te([i,o],"conv3dBackpropFilterV2");const d=je(i.shape),m=je(o.shape),f=Fr(i.shape,h,a,1,c),b=f.strideDepth,w=f.strideHeight,L=f.strideWidth,x=f.filterDepth,v=f.filterHeight,N=f.filterWidth,O=new an(f.filterShape,"float32"),E=O.values,[k,F,U,$]=O.strides,Y=n.data.get(o.dataId).values,[j,Z,ie,de]=m,he=n.data.get(i.dataId).values,[ue,me,ce,ye]=d,pe=f.padInfo.front,we=f.padInfo.left,Se=f.padInfo.top;for(let xe=0;xe<x;++xe){const Oe=Math.max(0,Math.ceil((pe-xe)/b)),Ne=Math.min(f.outDepth,(f.inDepth+pe-xe)/b),De=xe*k;for(let Ue=0;Ue<v;++Ue){const ze=Math.max(0,Math.ceil((Se-Ue)/w)),ht=Math.min(f.outHeight,(f.inHeight+Se-Ue)/w),it=Ue*F+De;for(let rt=0;rt<N;++rt){const mt=Math.max(0,Math.ceil((we-rt)/L)),ut=Math.min(f.outWidth,(f.inWidth+we-rt)/L),Dt=rt*U+it;for(let rn=0;rn<f.inChannels;++rn){const Ut=rn*$+Dt;for(let kt=0;kt<f.outChannels;++kt){let Ft=0;for(let Xt=0;Xt<f.batchSize;++Xt){const Rn=Xt*ue,pr=Xt*j;for(let On=Oe;On<Ne;++On){const li=xe+On*b-pe,Cs=li*me+Rn,qo=On*Z+pr;for(let hi=ze;hi<ht;++hi){const Fi=Ue+hi*w-Se,eo=Fi*ce+Cs,to=hi*ie+qo;for(let no=mt;no<ut;++no){const Tc=rt+no*L-we,RS=Tc*ye+eo,OS=no*de+to;Ft+=he[RS+rn]*Y[OS+kt]}}}}E[Ut+kt]=Ft}}}}}return n.makeTensorInfo(O.shape,O.dtype,O.values)}const b4={kernelName:Jg,backendName:"cpu",kernelFunc:y4};function w4(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,filter:o}=t,{pad:a,strides:c,inputShape:h}=s;Te([i],"conv3dBackpropInputV2");const d=je(i.shape),m=je(o.shape),f=Fr(h,o.shape,c,1,a),b=new an(f.inShape,"float32"),w=b.values,[L,x,v,N]=b.strides,O=n.data.get(i.dataId).values,[E,k,F,U]=d,$=n.data.get(o.dataId).values,[Y,j,Z,ie]=m,{batchSize:de,filterDepth:he,filterHeight:ue,filterWidth:me,inChannels:ce,inDepth:ye,inHeight:pe,inWidth:we,outChannels:Se,outDepth:xe,outHeight:Oe,outWidth:Ne,strideDepth:De,strideHeight:Ue,strideWidth:ze}=f,ht=he-1-f.padInfo.front,it=ue-1-f.padInfo.top,rt=me-1-f.padInfo.left;for(let mt=0;mt<de;++mt)for(let ut=0;ut<ce;++ut)for(let Dt=0;Dt<ye;++Dt){const rn=Dt-ht,Ut=Math.max(0,Math.ceil(rn/De)),kt=Math.min(xe,(he+rn)/De);for(let Ft=0;Ft<pe;++Ft){const Xt=Ft-it,Rn=Math.max(0,Math.ceil(Xt/Ue)),pr=Math.min(Oe,(ue+Xt)/Ue);for(let On=0;On<we;++On){const li=On-rt,Cs=Math.max(0,Math.ceil(li/ze)),qo=Math.min(Ne,(me+li)/ze);let hi=0;for(let Fi=Ut;Fi<kt;++Fi){const eo=Fi*De-rn;for(let to=Rn;to<pr;++to){const no=to*Ue-Xt;for(let Tc=Cs;Tc<qo;++Tc){const RS=Tc*ze-li,OS=E*mt+k*Fi+F*to+U*Tc,yJ=Y*(he-1-eo)+j*(ue-1-no)+Z*(me-1-RS)+ie*ut;for(let Bm=0;Bm<Se;++Bm){const bJ=O[OS+Bm],wJ=$[yJ+Bm];hi+=bJ*wJ}}}}w[L*mt+x*Dt+v*Ft+N*On+ut]=hi}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}const L4={kernelName:Zg,backendName:"cpu",kernelFunc:w4};const S4=xt(Ia,e=>Math.cos(e)),I4={kernelName:Ia,backendName:"cpu",kernelFunc:S4};const x4=xt(gl,e=>Math.cosh(e)),T4={kernelName:gl,backendName:"cpu",kernelFunc:x4};function z0(e){const{inputs:t,backend:n,attrs:s}=e,{x:i,filter:o}=t,{strides:a,pad:c,dilations:h,dimRoundingMode:d}=s;Te([i,o],"depthwiseConv2DNative");const m=je(i.shape),f=je(o.shape);let b=h;b==null&&(b=[1,1]),A(cn(a,b),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${b}'`);const w=kn(i.shape,o.shape,a,b,c,d,!0),{filterHeight:L,filterWidth:x,dilationHeight:v,dilationWidth:N,padInfo:O}=w,E=O.left,k=O.top,F=w.outChannels/w.inChannels,U=new an(w.outShape,i.dtype),$=n.data.get(i.dataId).values,Y=n.data.get(o.dataId).values,j=U.values;for(let Z=0;Z<w.batchSize;++Z){const ie=Z*m[0],de=Z*U.strides[0];for(let he=0;he<w.outHeight;++he){const ue=de+he*U.strides[1],me=he*w.strideHeight-E;for(let ce=0;ce<L;++ce){const ye=me+ce*v;if(ye<0||ye>=w.inHeight)continue;const pe=ce*f[0],we=ie+ye*m[1];for(let Se=0;Se<w.outWidth;++Se){const xe=ue+Se*U.strides[2],Oe=Se*w.strideWidth-k;for(let Ne=0;Ne<x;++Ne){const De=Oe+Ne*N;if(De<0||De>=w.inWidth)continue;const Ue=pe+Ne*f[1],ze=we+De*w.inChannels;let ht=xe,it=Ue;for(let rt=0;rt<w.inChannels;++rt){const mt=$[ze+rt];for(let ut=0;ut<F;++ut)j[ht+ut]+=mt*Y[it+ut];ht+=F,it+=F}}}}}}return n.makeTensorInfo(U.shape,U.dtype,U.values)}const A4={kernelName:ld,backendName:"cpu",kernelFunc:z0};function v4(e){const{inputs:t,backend:n,attrs:s}=e,{x:i,dy:o}=t,{strides:a,dilations:c,pad:h,dimRoundingMode:d,filterShape:m}=s;Te([i,o],"depthwiseConv2dNativeBackpropFilter");const f=kn(i.shape,m,a,c,h,d,!0),{strideHeight:b,strideWidth:w,filterHeight:L,filterWidth:x}=f,v=new an(f.filterShape,"float32"),N=f.padInfo.left,O=f.padInfo.top,E=f.outChannels/f.inChannels,k=n.data.get(i.dataId).values,F=new an(i.shape,i.dtype,k),U=n.data.get(o.dataId).values,$=new an(o.shape,o.dtype,U);for(let Y=0;Y<L;++Y){const j=Math.max(0,Math.ceil((O-Y)/b)),Z=Math.min(f.outHeight,(f.inHeight+O-Y)/b);for(let ie=0;ie<x;++ie){const de=Math.max(0,Math.ceil((N-ie)/w)),he=Math.min(f.outWidth,(f.inWidth+N-ie)/w);for(let ue=0;ue<f.outChannels;++ue){const me=Math.trunc(ue/E),ce=ue%E;let ye=0;for(let pe=0;pe<f.batchSize;++pe)for(let we=j;we<Z;++we){const Se=Y+we*b-O;for(let xe=de;xe<he;++xe){const Oe=ie+xe*w-N;ye+=F.get(pe,Se,Oe,me)*$.get(pe,we,xe,ue)}}v.set(ye,Y,ie,me,ce)}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}const N4={kernelName:ey,backendName:"cpu",kernelFunc:v4};function C4(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,filter:o}=t,{strides:a,dilations:c,pad:h,dimRoundingMode:d,inputShape:m}=s;Te([i,o],"depthwiseConv2DNativeBackpropInput");const f=je(i.shape),b=je(o.shape),w=kn(m,o.shape,a,c,h,d,!0),L=new an(w.inShape,"float32"),x=L.values,[v,N,O]=L.strides,E=n.data.get(i.dataId).values,[k,F,U]=f,$=n.data.get(o.dataId).values,[Y,j,Z]=b,{batchSize:ie,filterHeight:de,filterWidth:he,inChannels:ue,inHeight:me,inWidth:ce,outChannels:ye,outHeight:pe,outWidth:we,strideHeight:Se,strideWidth:xe}=w,Oe=de-1-w.padInfo.top,Ne=he-1-w.padInfo.left,De=ye/ue;for(let Ue=0;Ue<ie;++Ue)for(let ze=0;ze<ue;++ze)for(let ht=0;ht<me;++ht){const it=ht-Oe,rt=Math.max(0,Math.ceil(it/Se)),mt=Math.min(pe,(de+it)/Se);for(let ut=0;ut<ce;++ut){const Dt=ut-Ne,rn=Math.max(0,Math.ceil(Dt/xe)),Ut=Math.min(we,(he+Dt)/xe);let kt=0;for(let Ft=rt;Ft<mt;++Ft){const Xt=Ft*Se-it;for(let Rn=rn;Rn<Ut;++Rn){const pr=Rn*xe-Dt,On=k*Ue+F*Ft+U*Rn,li=Y*(de-1-Xt)+j*(he-1-pr)+Z*ze;for(let Cs=0;Cs<De;++Cs){const qo=ze*De+Cs,hi=E[On+qo],Fi=$[li+Cs];kt+=hi*Fi}}}x[v*Ue+N*ht+O*ut+ze]=kt}}return n.makeTensorInfo(L.shape,L.dtype,L.values)}const R4={kernelName:ty,backendName:"cpu",kernelFunc:C4};const O4={kernelName:hd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{const{x:s,filter:i}=e,{strides:o,pad:a,dilations:c}=n,h=t,d=h.data.get(s.dataId).values,m=s.shape.length,f=h.data.get(i.dataId).values,b=i.shape.length,{batchSize:w,inHeight:L,inWidth:x,inChannels:v,outHeight:N,outWidth:O,padInfo:E,strideHeight:k,strideWidth:F,filterHeight:U,filterWidth:$,dilationHeight:Y,dilationWidth:j,outShape:Z}=ep(s.shape,i.shape,o,a,"NHWC",c),ie=P(Z),de=Z.length,he=ws(s.dtype,ie);for(let me=0;me<w;++me)for(let ce=0;ce<N;++ce){const ye=ce*k-E.top;for(let pe=0;pe<O;++pe){const we=pe*F-E.left;for(let Se=0;Se<v;++Se){let xe=Number.MIN_SAFE_INTEGER;for(let Ne=0;Ne<U;++Ne){const De=ye+Ne*Y;if(De>=0&&De<L)for(let Ue=0;Ue<$;++Ue){const ze=we+Ue*j;if(ze>=0&&ze<x){const ht=_s([me,De,ze,Se],m,je(s.shape)),it=_s([Ne,Ue,Se],b,je(i.shape)),rt=d[ht]+f[it];rt>xe&&(xe=rt)}}}const Oe=_s([me,ce,pe,Se],de,je(Z));he[Oe]=xe}}}const ue=h.write(Or(he,s.dtype),Z,s.dtype);return{dataId:ue,shape:Z,dtype:s.dtype}}};const E4={kernelName:dd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{const{x:s,filter:i,dy:o}=e,{strides:a,pad:c,dilations:h}=n,d=t,m=Ls(s.shape,d.data.get(s.dataId).values),f=Ls(i.shape,d.data.get(i.dataId).values),{batchSize:b,inHeight:w,inWidth:L,inChannels:x,outHeight:v,outWidth:N,padInfo:O,strideHeight:E,strideWidth:k,filterHeight:F,filterWidth:U,dilationHeight:$,dilationWidth:Y,outShape:j}=ep(s.shape,i.shape,a,c,"NHWC",h);A(o.rank===j.length,()=>`Error in ${dd}, dy must have the same rank as output ${j.length}, but got ${o.rank}`);const Z=Ls(j,d.data.get(o.dataId).values),ie=Pg(i.shape,i.dtype);for(let he=0;he<b;++he)for(let ue=0;ue<v;++ue){const me=ue*E-O.top;for(let ce=0;ce<N;++ce){const ye=ce*k-O.left;for(let pe=0;pe<x;++pe){let we=Number.MIN_SAFE_INTEGER,Se=0,xe=0;for(let Oe=0;Oe<F;++Oe){const Ne=me+Oe*$;if(Ne>=0&&Ne<w)for(let De=0;De<U;++De){const Ue=ye+De*Y;if(Ue>=0&&Ue<L){const ze=m[he][Ne][Ue][pe]+f[Oe][De][pe];ze>we&&(we=ze,Se=Oe,xe=De)}}}ie[Se][xe][pe]+=Z[he][ue][ce][pe]}}}const de=d.write(Or(ie,s.dtype),i.shape,i.dtype);return{dataId:de,shape:i.shape,dtype:i.dtype}}};const D4={kernelName:ud,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{const{x:s,filter:i,dy:o}=e,{strides:a,pad:c,dilations:h}=n,d=t,m=Ls(s.shape,d.data.get(s.dataId).values),f=Ls(i.shape,d.data.get(i.dataId).values),{batchSize:b,inHeight:w,inWidth:L,inChannels:x,outHeight:v,outWidth:N,padInfo:O,strideHeight:E,strideWidth:k,filterHeight:F,filterWidth:U,dilationHeight:$,dilationWidth:Y,outShape:j}=ep(s.shape,i.shape,a,c,"NHWC",h);A(o.rank===j.length,()=>`Error in ${ud}, dy must have the same rank as output ${j.length}, but got ${o.rank}`);const Z=Ls(j,d.data.get(o.dataId).values),ie=Pg(s.shape,s.dtype);for(let he=0;he<b;++he)for(let ue=0;ue<v;++ue){const me=ue*E-O.top;for(let ce=0;ce<N;++ce){const ye=ce*k-O.left;for(let pe=0;pe<x;++pe){let we=Number.MIN_SAFE_INTEGER,Se=me<0?0:me,xe=ye<0?0:ye;for(let Oe=0;Oe<F;++Oe){const Ne=me+Oe*$;if(Ne>=0&&Ne<w)for(let De=0;De<U;++De){const Ue=ye+De*Y;if(Ue>=0&&Ue<L){const ze=m[he][Ne][Ue][pe]+f[Oe][De][pe];ze>we&&(we=ze,Se=Ne,xe=Ue)}}}ie[he][Se][xe][pe]+=Z[he][ue][ce][pe]}}}const de=d.write(Or(ie,s.dtype),s.shape,s.dtype);return{dataId:de,shape:s.shape,dtype:s.dtype}}};const k4=Zr((e,t)=>e/t),F4=hc(xa,k4),pS={kernelName:xa,backendName:"cpu",kernelFunc:F4};const _4=ew,W4=tw,$4=nw,U4=sw,B4=iw,M4=rw,P4=xt(bl,e=>{const t=Math.sign(e),n=Math.abs(e),s=1/(1+_4*n);return t*(1-((((M4*s+B4)*s+U4)*s+$4)*s+W4)*s*Math.exp(-n*n))}),z4={kernelName:bl,backendName:"cpu",kernelFunc:P4};function V0(e,t,n){const s=e.shape,i=s[0],o=s[1],a=n.data.get(e.dataId),c=a.complexTensorInfos.real,h=a.complexTensorInfos.imag,d=[i,o],m=P(d),f=bt("float32",m),b=bt("float32",m);for(let v=0;v<i;v++){const N=lS({inputs:{x:c},backend:n,attrs:{begin:[v,0],size:[1,o]}}),O=lS({inputs:{x:h},backend:n,attrs:{begin:[v,0],size:[1,o]}}),E=ci({inputs:{real:N,imag:O},backend:n}),{real:k,imag:F}=V4(E,t,n),U=tr(k,F);for(let $=0;$<o;$++){const Y=ow(U,$);f[v*o+$]=Y.real,b[v*o+$]=Y.imag}n.disposeIntermediateTensorInfo(N),n.disposeIntermediateTensorInfo(O),n.disposeIntermediateTensorInfo(E)}const w=n.makeTensorInfo(d,"float32",f),L=n.makeTensorInfo(d,"float32",b),x=ci({inputs:{real:w,imag:L},backend:n});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(L),x}function V4(e,t,n){const s=P(e.shape),i=n.data.get(e.dataId),o=n.data.get(i.complexTensorInfos.real.dataId).values,a=n.data.get(i.complexTensorInfos.imag.dataId).values;if(G4(s)){const c=mS(o,a,s,t,n),h=[e.shape[0],e.shape[1]];if(t){const d=n.makeTensorInfo(h,"float32",c.real),m=n.makeTensorInfo(h,"float32",c.imag),f=n.makeTensorInfo([],"float32",tT(s,"float32")),b=Go({inputs:{x:f},backend:n}),w=pS.kernelFunc({inputs:{a:d,b:f},backend:n}),L=pS.kernelFunc({inputs:{a:m,b},backend:n}),x=n.data.get(w.dataId).values,v=n.data.get(L.dataId).values;return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(L),{real:x,imag:v}}return c}else{const c=tr(o,a),h=Y4(c,s,t);return YA(h)}}function G4(e){return(e&e-1)===0}function mS(e,t,n,s,i){if(n===1)return{real:e,imag:t};const o=tr(e,t),a=n/2,c=HA(o),h=c.real,d=c.imag,m=[h.length],f=i.makeTensorInfo(m,"float32",h),b=i.makeTensorInfo(m,"float32",d),w=ci({inputs:{real:f,imag:b},backend:i}),L=qA(o),x=L.real,v=L.imag,N=[x.length],O=i.makeTensorInfo(N,"float32",x),E=i.makeTensorInfo(N,"float32",v),k=ci({inputs:{real:O,imag:E},backend:i}),F=mS(h,d,a,s,i),U=F.real,$=F.imag,Y=[U.length],j=i.makeTensorInfo(Y,"float32",U),Z=i.makeTensorInfo(Y,"float32",$),ie=ci({inputs:{real:j,imag:Z},backend:i}),de=mS(x,v,a,s,i),he=de.real,ue=de.imag,me=[he.length],ce=i.makeTensorInfo(me,"float32",he),ye=i.makeTensorInfo(me,"float32",ue),pe=ci({inputs:{real:ce,imag:ye},backend:i}),we=KA(n,s),Se=[we.real.length],xe=i.makeTensorInfo(Se,"float32",we.real),Oe=i.makeTensorInfo(Se,"float32",we.imag),Ne=ci({inputs:{real:xe,imag:Oe},backend:i}),De=N0({inputs:{a:Ne,b:pe},backend:i}),Ue=au({inputs:{a:ie,b:De},backend:i}),ze=k0({inputs:{a:ie,b:De},backend:i}),ht=ru({inputs:{input:Ue},backend:i}),it=ru({inputs:{input:ze},backend:i}),rt=Am({inputs:{input:Ue},backend:i}),mt=Am({inputs:{input:ze},backend:i}),ut=cu({inputs:[ht,it],backend:i,attrs:{axis:0}}),Dt=cu({inputs:[rt,mt],backend:i,attrs:{axis:0}}),rn=i.data.get(ut.dataId).values,Ut=i.data.get(Dt.dataId).values;return i.disposeIntermediateTensorInfo(f),i.disposeIntermediateTensorInfo(b),i.disposeIntermediateTensorInfo(w),i.disposeIntermediateTensorInfo(O),i.disposeIntermediateTensorInfo(E),i.disposeIntermediateTensorInfo(k),i.disposeIntermediateTensorInfo(j),i.disposeIntermediateTensorInfo(Z),i.disposeIntermediateTensorInfo(ie),i.disposeIntermediateTensorInfo(ce),i.disposeIntermediateTensorInfo(ye),i.disposeIntermediateTensorInfo(pe),i.disposeIntermediateTensorInfo(xe),i.disposeIntermediateTensorInfo(Oe),i.disposeIntermediateTensorInfo(Ne),i.disposeIntermediateTensorInfo(De),i.disposeIntermediateTensorInfo(Ue),i.disposeIntermediateTensorInfo(ze),i.disposeIntermediateTensorInfo(ht),i.disposeIntermediateTensorInfo(rt),i.disposeIntermediateTensorInfo(it),i.disposeIntermediateTensorInfo(mt),i.disposeIntermediateTensorInfo(ut),i.disposeIntermediateTensorInfo(Dt),{real:rn,imag:Ut}}function Y4(e,t,n){const s=new Float32Array(t*2);for(let i=0;i<t;i++){let o=0,a=0;for(let c=0;c<t;c++){const h=XA(i*c,t,n),d=ow(e,c);o+=d.real*h.real-d.imag*h.imag,a+=d.real*h.imag+d.imag*h.real}n&&(o/=t,a/=t),jA(s,o,a,i)}return s}function H4(e){const{inputs:t,backend:n}=e,{input:s}=t,i=P(s.shape),o=s.shape[s.shape.length-1],a=i/o,c=Di({inputs:{x:s},backend:n,attrs:{shape:[a,o]}}),h=V0(c,!1,n),d=Di({inputs:{x:h},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}const q4={kernelName:pd,backendName:"cpu",kernelFunc:H4};function j4(e){const{backend:t,attrs:n}=e,{shape:s,value:i,dtype:o}=n,a=o||wa(i),c=ws(a,P(s));return X4(c,i,a),t.makeTensorInfo(s,a,c)}const K4={kernelName:ny,backendName:"cpu",kernelFunc:j4};function X4(e,t,n){n==="string",e.fill(t)}const J4={kernelName:md,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{image:s}=e,i=n,o=bt(s.dtype,P(s.shape)),[a,c,h,d]=s.shape,m=i.data.get(s.dataId).values;for(let b=0;b<a;b++){const w=b*h*c*d;for(let L=0;L<c;L++){const x=L*(h*d);for(let v=0;v<h;v++){const N=v*d;for(let O=0;O<d;O++){const E=[a,L,v,O],k=E[2],F=Math.round(h-k),U=w+x+N+O;let $=m[U];if(F>=0&&F<h){const Y=F*d,j=w+x+Y+O;$=m[j]}o[U]=$}}}}const f=i.write(o,s.shape,s.dtype);return{dataId:f,shape:s.shape,dtype:s.dtype}}};function Z4(e){const{inputs:t,backend:n,attrs:s}=e,{x:i,filter:o,bias:a,preluActivationWeights:c}=t,{strides:h,pad:d,dataFormat:m,dilations:f,dimRoundingMode:b,activation:w}=s;let L=P0({inputs:{x:i,filter:o},backend:n,attrs:{strides:h,pad:d,dataFormat:m,dilations:f,dimRoundingMode:b}});if(a){const x=L;L=au({inputs:{a:L,b:a},backend:n}),n.disposeIntermediateTensorInfo(x)}if(w){const x=L;L=uS(n,L,w,c),n.disposeIntermediateTensorInfo(x)}return L}const Q4={kernelName:Dd,backendName:"cpu",kernelFunc:Z4};function ej(e){const{inputs:t,backend:n,attrs:s}=e,{x:i,filter:o,bias:a,preluActivationWeights:c}=t,{strides:h,pad:d,dataFormat:m,dilations:f,dimRoundingMode:b,activation:w}=s;let L=z0({inputs:{x:i,filter:o},backend:n,attrs:{strides:h,pad:d,dataFormat:m,dilations:f,dimRoundingMode:b}});if(a){const x=L;L=au({inputs:{a:L,b:a},backend:n}),n.disposeIntermediateTensorInfo(x)}if(w){const x=L;L=uS(n,L,w,c),n.disposeIntermediateTensorInfo(x)}return L}const tj={kernelName:kd,backendName:"cpu",kernelFunc:ej};function nj(e){const{inputs:t,backend:n}=e,{input:s}=t,i=P(s.shape),o=s.shape[s.shape.length-1],a=i/o,c=Di({inputs:{x:s},backend:n,attrs:{shape:[a,o]}}),h=V0(c,!0,n),d=Di({inputs:{x:h},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}const sj={kernelName:fd,backendName:"cpu",kernelFunc:nj};const ij=xt(Tl,e=>Number.isFinite(e)?1:0,"bool"),rj={kernelName:Tl,backendName:"cpu",kernelFunc:ij};const oj=xt(Al,e=>Math.abs(e)===Infinity?1:0,"bool"),aj={kernelName:Al,backendName:"cpu",kernelFunc:oj};const cj=xt(vl,e=>Number.isNaN(e)?1:0,"bool"),lj={kernelName:vl,backendName:"cpu",kernelFunc:cj};const hj=xt(Cl,e=>Math.log1p(e)),uj={kernelName:Cl,backendName:"cpu",kernelFunc:hj};const dj=xt(yd,e=>e?0:1,"bool"),pj={kernelName:yd,backendName:"cpu",kernelFunc:dj};const mj={kernelName:Rl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{reductionIndices:i,keepDims:o}=t,a=n;let c=s.shape;const h=c.length,d=qe(i,c);let m=d;const f=Xn(m,h);let b=a.data.get(s.dataId).values;if(f!=null){const E=new Array(h);for(let k=0;k<E.length;k++)E[k]=c[f[k]];b=hS(b,c,s.dtype,f,E),m=as(m.length,h),c=E}Te(s,"max"),Kn("max",m,h);const[w,L]=An(c,m),x=P(L),v=A0(b,x,w,s.dtype),N=a.write(v,w,s.dtype);let O=w;if(o){const E=vn(w,d);O=E}return{dataId:N,shape:O,dtype:s.dtype}}};function fj(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t;Te(i,"maxPool");const{filterSize:o,strides:a,pad:c,dimRoundingMode:h}=s,d=1;A(cn(a,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${d}'`);const m=Un(i.shape,o,a,d,c,h);let f;if(m.filterWidth===1&&m.filterHeight===1&&ae(m.inShape,m.outShape))f=Go({inputs:{x:i},backend:n});else{const b=n.data.get(i.dataId).values,w=je(i.shape),L=dS(b,i.shape,i.dtype,w,m,"max");f=n.makeTensorInfo(m.outShape,i.dtype,L.values)}return f}const gj={kernelName:Ol,backendName:"cpu",kernelFunc:fj};function yj(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,input:o,output:a}=t,c=o;Te([o,a],"maxPoolBackprop");const{filterSize:h,strides:d,pad:m,dimRoundingMode:f}=s,b=Un(c.shape,h,d,1,m,f),w=n.data.get(c.dataId).values,L=wt(b.outShape,c.dtype,M0(w,c.shape,c.dtype,b).values),x=b.strideHeight,v=b.strideWidth,N=b.dilationHeight,O=b.dilationWidth,E=b.effectiveFilterHeight,k=b.effectiveFilterWidth,F=k-1-b.padInfo.left,U=E-1-b.padInfo.top,$=wt(c.shape,"float32"),Y=n.data.get(i.dataId).values,j=wt(i.shape,"float32",Y);for(let Z=0;Z<b.batchSize;++Z)for(let ie=0;ie<b.inChannels;++ie)for(let de=0;de<b.inHeight;++de)for(let he=0;he<b.inWidth;++he){const ue=de-U,me=he-F;let ce=0;for(let ye=0;ye<E;ye+=N){const pe=(ue+ye)/x;if(pe<0||pe>=b.outHeight||Math.floor(pe)!==pe)continue;for(let we=0;we<k;we+=O){const Se=(me+we)/v;if(Se<0||Se>=b.outWidth||Math.floor(Se)!==Se)continue;const xe=E*k-1-L.get(Z,pe,Se,ie),Oe=ye*k+we,Ne=xe===Oe?1:0;if(Ne===0)continue;const De=j.get(Z,pe,Se,ie);ce+=De*Ne}}$.set(ce,Z,de,he,ie)}return n.makeTensorInfo($.shape,$.dtype,$.values)}const bj={kernelName:bd,backendName:"cpu",kernelFunc:yj};function wj(e,t,n,s,i){const o=je(t),a=dS(e,t,n,o,i,"max"),c=M0(e,t,n,i,!0,s);return[a.values,c.values]}const Lj={kernelName:wd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{filterSize:i,strides:o,pad:a,includeBatchInIndex:c}=t,h=n;Te(s,"MaxPoolWithArgmax");const d=h.data.get(s.dataId).values,m=Un(s.shape,i,o,[1,1],a),[f,b]=wj(d,s.shape,s.dtype,c,m),w=h.write(f,m.outShape,s.dtype),L=h.write(b,m.outShape,s.dtype);return[{dataId:w,shape:m.outShape,dtype:s.dtype},{dataId:L,shape:m.outShape,dtype:"int32"}]}};function Sj(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{paddings:o,mode:a}=s;Te(i,"mirrorPad");const c=o.map((E,k)=>E[0]+i.shape[k]+E[1]),h=o.map(E=>E[0]),d=o.map((E,k)=>E[0]+i.shape[k]),m=a==="reflect"?0:1,f=n.data.get(i.dataId).values,b=i.shape.length,w=je(i.shape),L=P(c),x=c.length,v=je(c),N=bt(i.dtype,L);for(let E=0;E<L;E++){let k=yo(E,x,v);for(let U=0;U<x;U++)k[U]<h[U]?k[U]=h[U]*2-k[U]-m:k[U]>=d[U]&&(k[U]=(d[U]-1)*2-k[U]+m);k=k.map((U,$)=>U-h[$]);const F=_s(k,b,w);N[E]=f[F]}const O=n.write(N,c,i.dtype);return{dataId:O,shape:c,dtype:i.dtype}}const Ij={kernelName:El,backendName:"cpu",kernelFunc:Sj};const xj=kp,Tj={kernelName:Ld,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{const{boxes:s,scores:i}=e,{maxOutputSize:o,iouThreshold:a,scoreThreshold:c,padToMaxOutputSize:h}=n,d=t;Te(s,"NonMaxSuppressionPadded");const m=d.data.get(s.dataId).values,f=d.data.get(i.dataId).values,{selectedIndices:b,validOutputs:w}=xj(m,f,o,a,c,h);return[b,w]}};const Aj=Fp,vj={kernelName:Sd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{const{boxes:s,scores:i}=e,{maxOutputSize:o,iouThreshold:a,scoreThreshold:c,softNmsSigma:h}=n,d=t;Te(s,"NonMaxSuppressionWithScore");const m=d.data.get(s.dataId).values,f=d.data.get(i.dataId).values,b=o,w=a,L=c,x=h,{selectedIndices:v,selectedScores:N}=Aj(m,f,b,w,L,x);return[v,N]}};function Nj(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{paddings:o,constantValue:a}=s;Te(i,"pad");const c=o.map((O,E)=>O[0]+i.shape[E]+O[1]),h=o.map(O=>O[0]),d=n.data.get(i.dataId).values,m=P(i.shape),f=i.shape.length,b=je(i.shape),w=P(c),L=c.length,x=je(c),v=bt(i.dtype,w);a!==0&&v.fill(a);for(let O=0;O<m;O++){const E=yo(O,f,b),k=E.map((U,$)=>U+h[$]),F=_s(k,L,x);v[F]=d[O]}const N=n.write(v,c,i.dtype);return{dataId:N,shape:c,dtype:i.dtype}}const G0={kernelName:Id,backendName:"cpu",kernelFunc:Nj};const Cj=xt(kl,e=>1/e),Rj={kernelName:kl,backendName:"cpu",kernelFunc:Cj};const Oj={kernelName:Od,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{image:s}=e,{radians:i,fillValue:o,center:a}=t,c=n,h=bt(s.dtype,P(s.shape)),[d,m,f,b]=s.shape,[w,L]=Jb(a,m,f),x=255,v=Math.sin(i),N=Math.cos(i),O=c.data.get(s.dataId).values;for(let k=0;k<d;k++){const F=k*f*m*b;for(let U=0;U<m;U++){const $=U*(f*b);for(let Y=0;Y<f;Y++){const j=Y*b;for(let Z=0;Z<b;Z++){const ie=[d,U,Y,Z],de=ie[2],he=ie[1];let ue=(de-w)*N-(he-L)*v,me=(de-w)*v+(he-L)*N;ue=Math.round(ue+w),me=Math.round(me+L);let ce=o;if(typeof o!="number"&&(Z===3?ce=x:ce=o[Z]),ue>=0&&ue<f&&me>=0&&me<m){const pe=me*(f*b),we=ue*b,Se=F+pe+we+Z;ce=O[Se]}const ye=F+$+j+Z;h[ye]=ce}}}}const E=c.write(h,s.shape,s.dtype);return{dataId:E,shape:s.shape,dtype:s.dtype}}};const Ej=xt($l,e=>{const t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),Dj={kernelName:$l,backendName:"cpu",kernelFunc:Ej};const kj=Wp,Fj=$p,_j=xt(Bl,e=>e>=0?Fj*e:kj*(Math.exp(e)-1)),Wj={kernelName:Bl,backendName:"cpu",kernelFunc:_j};const $j=xt(zl,e=>1/(1+Math.exp(-e))),Uj={kernelName:zl,backendName:"cpu",kernelFunc:$j};const Bj=xt(Pl,e=>e<0?-1:e>0?1:0),Mj={kernelName:Pl,backendName:"cpu",kernelFunc:Bj};const Pj=xt(Aa,e=>Math.sin(e)),zj={kernelName:Aa,backendName:"cpu",kernelFunc:Pj};const Vj=xt(Ml,e=>Math.sinh(e)),Gj={kernelName:Ml,backendName:"cpu",kernelFunc:Vj};const Yj=11920928955078125e-23,Y0=Math.log(Yj)+2,Hj=xt(Vl,e=>{const t=e>-Y0,n=e<Y0,s=Math.exp(e);let i;return n?i=s:t?i=e:i=Math.log(1+s),i}),qj={kernelName:Vl,backendName:"cpu",kernelFunc:Hj};function H0(e){const{inputs:t,attrs:n,backend:s}=e,{x:i}=t,{perm:o}=n;Te(i,"transpose");const a=i.shape.length,c=new Array(a);for(let f=0;f<c.length;f++)c[f]=i.shape[o[f]];const h=s.data.get(i.dataId).values,d=hS(h,i.shape,i.dtype,o,c),m=s.write(d,c,i.dtype);return{dataId:m,shape:c,dtype:i.dtype}}const jj={kernelName:Hl,backendName:"cpu",kernelFunc:H0};function Kj(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{blockShape:o,paddings:a}=s;Te([i],"spaceToBatchND");const c=P(o),h=[[0,0]];h.push(...a);for(let U=1+o.length;U<i.shape.length;++U)h.push([0,0]);const d=G0.kernelFunc({inputs:{x:i},backend:n,attrs:{paddings:h,constantValue:0}}),m=Oh(d.shape,o,c,!1),f=Eh(m.length,o.length,!1),b=Dh(d.shape,o,c,!1),w={x:d},L={shape:m},x=Di({inputs:w,backend:n,attrs:L}),v={x},N={perm:f},O=H0({inputs:v,backend:n,attrs:N}),E={x:O},k={shape:b},F=Di({inputs:E,backend:n,attrs:k});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(O),F}const Xj={kernelName:vd,backendName:"cpu",kernelFunc:Kj};const Jj=xt(Gl,e=>Math.sqrt(e)),Zj={kernelName:Gl,backendName:"cpu",kernelFunc:Jj};const Qj={kernelName:Nd,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{const{x:n}=e,s=t;Te(n,"square");const i=s.data.get(n.dataId).values,o=new Float32Array(i.length);for(let c=0;c<i.length;++c){const h=i[c];o[c]=h*h}const a=s.write(o,n.shape,n.dtype);return{dataId:a,shape:n.shape,dtype:n.dtype}}};const eK=xt(ql,(e,t)=>{const n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),tK={kernelName:ql,backendName:"cpu",kernelFunc:eK};const nK=xt(Ca,e=>Math.tan(e)),sK={kernelName:Ca,backendName:"cpu",kernelFunc:nK};const iK=xt(Yl,e=>Math.tanh(e)),rK={kernelName:Yl,backendName:"cpu",kernelFunc:iK};function oK(e){const{inputs:t,attrs:n,backend:s}=e,{axis:i}=n,{x:o}=t;Te(o,"unique");const a=s.data.get(o.dataId).values,{outputValues:c,outputShape:h,indices:d}=F0(a,i,o.shape,o.dtype);return[s.makeTensorInfo(h,o.dtype,c),s.makeTensorInfo([d.length],"int32",d)]}const aK={kernelName:Cd,backendName:"cpu",kernelFunc:oK};const cK=[Pq,sq,Vq,Yq,lq,qq,Kq,Jq,Qq,t4,s4,Bq,r4,aq,uq,a4,iq,l4,d4,m4,h4,b4,L4,g4,I4,T4,A4,N4,R4,O4,D4,E4,pS,kq,z4,pq,fq,q4,K4,J4,yq,Q4,tj,rq,sj,c4,rj,aj,lj,wq,uj,pj,gj,bj,Lj,mj,Ij,Sq,Tj,vj,xq,G0,_q,oq,Rj,Wq,$q,Uq,Oj,Dj,Aq,Wj,Uj,Mj,zj,Gj,vq,qj,Xj,Zj,Qj,Cq,tK,Oq,sK,rK,jj,aK];for(const e of cK)_d(e);const Qr={},fS={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function jte(e){delete Qr[e]}function lK(e,t){Qr[e]=t}function ki(e){if(!(e in Qr)){const n=uK(e);if(n!==null)Qr[e]=n;else return console.log("Could not get context for WebGL version",e),null}const t=Qr[e];return t.isContextLost()?(delete Qr[e],ki(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Qr[e])}function hK(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function uK(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");const t=hK(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Qr[e]},!1),e===1?t.getContext("webgl",fS)||t.getContext("experimental-webgl",fS):t.getContext("webgl2",fS)}var lu;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(lu||(lu={}));var Ns;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Ns||(Ns={}));var Cn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Cn||(Cn={}));function hu(e,t){return[t,e]}function dK(e,t){return e*t}function Kte(e,t){return[t*4,e]}function uu(e){const t=P(e),n=Math.ceil(t/4);return Ve(n)}function Xte(e,t){if(e%t!==0)throw new Error(`unpackedSize (${e}) must be a multiple of ${t}`);return e/t}function Jte(e,t,n){const s=e.length*n/4;if(t.length<s)throw new Error(`matrix length (${t.length}) must be >= ${s}`);let i=0;for(let o=0;o<e.length;o+=4)for(let a=0;a<n;a++)t[i++]=e[o+a]}function pc(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function pK(e,t){const[n,s]=pc(e,t);return n*s*4}function gS(e,t){const n=e;let s,i,o,a,c,h,d,m,f,b;return oe().getNumber("WEBGL_VERSION")===2?(s=n.R32F,i=n.R16F,o=n.RGBA16F,a=n.RGBA32F,c=n.RED,d=4,m=1,f=n.HALF_FLOAT,b=n.FLOAT):(s=e.RGBA,i=e.RGBA,o=e.RGBA,a=n.RGBA,c=e.RGBA,d=4,m=4,f=t!=null?t.HALF_FLOAT_OES:null,b=e.FLOAT),h=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:i,internalFormatPackedHalfFloat:o,internalFormatPackedFloat:a,textureFormatFloat:c,downloadTextureFormat:h,downloadUnpackNumChannels:d,defaultNumChannels:m,textureTypeHalfFloat:f,textureTypeFloat:b}}function Ee(e,t){const n=t();return oe().getBool("DEBUG")&&mK(e),n}function mK(e){const t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+bK(e,t))}const fK=596e-10,gK=65504;function yK(e){return!!(oe().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||fK<Math.abs(e)&&Math.abs(e)<gK)}function bK(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function vm(e,t){return cr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function wK(e,t){const n=cr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ee(e,()=>e.shaderSource(n,t)),Ee(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function LK(e,t){const n=cr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ee(e,()=>e.shaderSource(n,t)),Ee(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw IK(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}const SK=/ERROR: [0-9]+:([0-9]+):/g;function IK(e,t){const n=SK.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}const s=+n[1],i=e.split(`
|
|
`),o=i.length.toString().length+2,a=i.map((f,b)=>pt((b+1).toString(),o)+f);let c=0;for(let f=0;f<a.length;f++)c=Math.max(a[f].length,c);const h=a.slice(0,s-1),d=a.slice(s-1,s),m=a.slice(s);console.log(h.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${pt(d[0],c)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(m.join(`
|
|
`))}function xK(e){return cr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function TK(e,t){if(Ee(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function yS(e,t){if(Ee(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function AK(e,t){const n=cr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ee(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ee(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function vK(e,t){const n=cr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ee(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ee(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Zte(){return oe().getNumber("WEBGL_VERSION")===2?1:4}function NK(e){return cr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function CK(e,t){const n=oe().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){const s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){const s=`[${e}x${t}]`,i=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+i+".")}}function RK(e){return cr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function q0(e,t,n,s,i,o,a){const c=e.getAttribLocation(t,n);return c===-1?!1:(Ee(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ee(e,()=>e.vertexAttribPointer(c,i,e.FLOAT,!1,o,a)),Ee(e,()=>e.enableVertexAttribArray(c)),!0)}function OK(e,t,n){K0(e,n),Ee(e,()=>e.activeTexture(e.TEXTURE0+n)),Ee(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function Qte(e,t){K0(e,t),Ee(e,()=>e.activeTexture(e.TEXTURE0+t)),Ee(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function EK(e,t,n){return cr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function DK(e,t,n){return e.getUniformLocation(t,n)}function kK(e,t,n,s){Ee(e,()=>OK(e,t,s)),Ee(e,()=>e.uniform1i(n,s))}function ene(e){Ee(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ee(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ee(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function bS(e,t,n){Ee(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ee(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function j0(e,t){Ee(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ee(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Nm(e){const t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+FK(e,t))}function FK(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function cr(e,t,n){const s=Ee(e,()=>t());if(s==null)throw new Error(n);return s}function K0(e,t){const n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){const i=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${i}.`)}}function mc(e,t=2){return P(e.slice(0,e.length-t))}function fc(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function wS(e){let t=[1,1,1];const n=e.length===0||e.length===1&&e[0]===1;return n||(t=[mc(e),...fc(e)]),t}function _K(e,t=!1){let n=oe().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(t&&(n=n*2,e=e.map((i,o)=>o>=e.length-2?T(e[o]):e[o]),e.length===1&&(e=[2,e[0]])),e.length!==2){const i=ln(e);e=i.newShape}let s=P(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){const i=mc(e);let o=2,a=2;return e.length&&([o,a]=fc(e)),s=i*(o/2)*(a/2),Ve(s).map(c=>c*2)}return Ve(s)}function Cm(e){return e%2===0}function Rm(e,t){if(e=e.slice(-2),t=t.slice(-2),ae(e,t))return!0;if(!e.length||!t.length)return!0;if(e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){const n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s)return!0;if(Cm(n)&&Cm(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Cm(e[0])&&Cm(t[0])}let Om,Em;function WK(e){if(Om==null){const t=ki(e);Om=t.getParameter(t.MAX_TEXTURE_SIZE)}return Om}function tne(){Om=null}function nne(){Em=null}function $K(e){if(Em==null){const t=ki(e);Em=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Em)}function UK(e){if(e===0)return 0;let t;const n=ki(e);return Vs(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Vs(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Vs(e,t){const n=e.getExtension(t);return n!=null}function X0(e){try{const t=ki(e);if(t!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function BK(e){if(e===0)return!1;const t=ki(e);if(e===1){if(!Vs(t,"OES_texture_float"))return!1}else if(!Vs(t,"EXT_color_buffer_float"))return!1;const n=LS(t);return n}function MK(e){if(e===0)return!1;const t=ki(e);if(e===1){if(!Vs(t,"OES_texture_float"))return!1;if(!Vs(t,"WEBGL_color_buffer_float"))return!1}else{if(Vs(t,"EXT_color_buffer_float"))return LS(t);const s="EXT_color_buffer_half_float";if(Vs(t,s)){const i=t.getExtension(s);return PK(t,i)}return!1}const n=LS(t);return n}function LS(e){const t=gS(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);const s=1,i=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,i,0,t.textureFormatFloat,t.textureTypeFloat,null);const o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);const a=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(o),a}function PK(e,t){const n=gS(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);const i=1,o=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,i,o,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);const a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);const c=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(a),c}function zK(e){if(e!==2)return!1;const t=ki(e),n=t.fenceSync!=null;return n}function du(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&A(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}const Ge=oe();Ge.registerFlag("HAS_WEBGL",()=>Ge.getNumber("WEBGL_VERSION")>0),Ge.registerFlag("WEBGL_VERSION",()=>X0(2)?2:X0(1)?1:0),Ge.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1),Ge.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ge.get("WEBGL_VERSION")===2),Ge.registerFlag("WEBGL_CPU_FORWARD",()=>!0),Ge.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1),Ge.registerFlag("WEBGL_PACK",()=>Ge.getBool("HAS_WEBGL")),Ge.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_CLIP",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1),Ge.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_REDUCE",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_CONV_IM2COL",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>WK(Ge.getNumber("WEBGL_VERSION"))),Ge.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>$K(Ge.getNumber("WEBGL_VERSION"))),Ge.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{const e=Ge.getNumber("WEBGL_VERSION");return e===0?0:UK(e)}),Ge.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ge.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!hT()),Ge.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>BK(Ge.getNumber("WEBGL_VERSION"))),Ge.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ge.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ge.getBool("WEBGL_RENDER_FLOAT32_CAPABLE")),Ge.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>MK(Ge.getNumber("WEBGL_VERSION"))),Ge.registerFlag("WEBGL_FENCE_API_ENABLED",()=>zK(Ge.getNumber("WEBGL_VERSION"))),Ge.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>{const e=Ge.getBool("WEBGL_RENDER_FLOAT32_ENABLED");return e?4:0}),Ge.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});const{simpleAbsImpl:VK,addImpl:GK,ceilImpl:YK,expImpl:HK,expm1Impl:qK,floorImpl:jK,logImpl:KK,maxImpl:XK,multiplyImpl:JK,rsqrtImpl:ZK,sliceImpl:QK,subImpl:e5,transposeImpl:SS,uniqueImpl:t5}=Eq;class n5{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((i,o)=>`T${o}`);const n=[];this.variableNames.forEach(i=>{n.push(`float v${i} = get${i}AtOutCoords();`)});const s=this.variableNames.map(i=>`v${i}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}}class s5{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((i,o)=>`T${o}`);const n=[];this.variableNames.forEach(i=>{n.push(`vec4 v${i} = get${i}AtOutCoords();`)});const s=this.variableNames.map(i=>`v${i}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}}class i5{constructor(e,t,n){this.variableNames=["A"];const{windowSize:s,batchSize:i,outSize:o}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[i,o];const a=t==="max"?">":"<",c=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${c};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${a} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}}function J0(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Mn(e,t){return t===1?[e]:J0(e,t)}function r5(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}function Pn(){let e,t,n,s,i,o,a,c,h,d;return oe().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",i="texture",o="outputColor",a="out vec4 outputColor;",c=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,h="",d=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",i="texture2D",o="gl_FragColor",a="",c=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,h=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,d=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:i,output:o,defineOutput:a,defineSpecialNaN:c,defineSpecialInf:h,defineRound:d}}function Yo(e,t,n="index"){const s=je(t);return s.map((i,o)=>{const a=`int ${e[o]} = ${n} / ${i}`,c=o===s.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${i}`:`index -= ${e[o]} * ${i}`;return`${a}; ${c};`}).join("")}function Dm(e){return e.length===1?`${e[0]}`:`vec${e.length}(${e.join(",")})`}function sne(e,t){if(e.length!==t.length)throw new Error(`Vectors to be dotted must be of the same length -got ${e.length} and ${t.length}`);const n=[],s=Math.floor(e.length/4),i=e.length%4;for(let o=0;o<s;o++){const a=e.slice(o*4,o*4+4),c=t.slice(o*4,o*4+4);n.push(`${Dm(a)}, ${Dm(c)}`)}if(i!==0){let o=e.slice(s*4),a=t.slice(s*4);o.length===1&&(o=o.map(c=>`float(${c})`),a=a.map(c=>`float(${c})`)),n.push(`${Dm(o)}, ${Dm(a)}`)}return n.map((o,a)=>`dot(${o})`).join("+")}function IS(e){const t=je(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}const Z0=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`;const{getBroadcastDims:Q0}=cw;function o5(e,t,n,s){const i=[];e.forEach(L=>{const x=P(L.shapeInfo.logicalShape);L.shapeInfo.isUniform?i.push(`uniform float ${L.name}${x>1?`[${x}]`:""};`):(i.push(`uniform sampler2D ${L.name};`),i.push(`uniform int offset${L.name};`))});const o=i.join(`
|
|
`),a=e.map(L=>a5(L,t,s)).join(`
|
|
`),c=t.texShape,h=Pn(),d=h5(h);let m,f,b=p5(h);t.isPacked?(m=c5(t.logicalShape,c),f=d5(h)):(m=l5(t.logicalShape,c),f=u5(h)),s&&(b+=y5);const w=[b,d,f,o,m,a,n].join(`
|
|
`);return w}function gc(e){const t=e.shapeInfo.logicalShape;switch(t.length){case 0:return R5(e);case 1:return E5(e);case 2:return k5(e);case 3:return _5(e);case 4:return $5(e);case 5:return U5(e);case 6:return B5(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function eC(e){const t=e.shapeInfo.logicalShape;switch(t.length){case 0:return C5(e);case 1:return O5(e);case 2:return D5(e);case 3:return F5(e);default:return W5(e)}}function a5(e,t,n=!1){let s="";n?s+=eC(e):s+=gc(e);const i=e.shapeInfo.logicalShape,o=t.logicalShape;return i.length<=o.length&&(n?s+=M5(e,t):s+=P5(e,t)),s}function c5(e,t){switch(e.length){case 0:return tC();case 1:return b5(e,t);case 2:return v5(e,t);case 3:return L5(e,t);default:return I5(e,t)}}function l5(e,t){switch(e.length){case 0:return tC();case 1:return w5(e,t);case 2:return N5(e,t);case 3:return S5(e,t);case 4:return x5(e,t);case 5:return T5(e,t);case 6:return A5(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function h5(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function u5(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function d5(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function p5(e){const t=`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${m5}
|
|
${f5}
|
|
${g5}
|
|
`;return t}const m5=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,f5=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,g5=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,y5=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function tC(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function b5(e,t){const n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function w5(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function L5(e,t){const n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[2]/2),i=s*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${i};
|
|
index -= b * ${i};
|
|
|
|
int r = 2 * (index / ${s});
|
|
int c = imod(index, ${s}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function S5(e,t){const n=Yo(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function I5(e,t){const n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[e.length-1]/2),i=s*Math.ceil(e[e.length-2]/2);let o=i,a="",c="b, r, c";for(let h=2;h<e.length-1;h++)o*=e[e.length-h-1],a=`
|
|
int b${h} = index / ${o};
|
|
index -= b${h} * ${o};
|
|
`+a,c=`b${h}, `+c;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${a}
|
|
|
|
int b = index / ${i};
|
|
index -= b * ${i};
|
|
|
|
int r = 2 * (index / ${s});
|
|
int c = imod(index, ${s}) * 2;
|
|
|
|
return ivec${e.length}(${c});
|
|
}
|
|
`}function x5(e,t){const n=Yo(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function T5(e,t){const n=Yo(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function A5(e,t){const n=Yo(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function v5(e,t){const n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(ae(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;const s=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${s});
|
|
int c = imod(index, ${s}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function N5(e,t){return ae(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ho(e){return`offset${e}`}function C5(e){const t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=Pn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function R5(e){const t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;const[s,i]=e.shapeInfo.texShape;if(s===1&&i===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;const[o,a]=e.shapeInfo.texShape,c=Ho(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${o}, ${a}, ${c});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function O5(e){const t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=Pn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${o.texture2D}(${t}, uv);
|
|
}
|
|
`}function E5(e){const t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${yc(e)}
|
|
}
|
|
`;const s=e.shapeInfo.texShape,i=s[0],o=s[1];if(o===1&&i===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;const a=Ho(t);return o===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${i}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:i===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${i}, ${o}, index + ${a});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function D5(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=e.shapeInfo.texShape,o=i[0],a=i[1],c=Pn();if(i!=null&&ae(t,i))return`
|
|
vec4 ${s}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${o}.0);
|
|
|
|
return ${c.texture2D}(${n}, uv);
|
|
}
|
|
`;const h=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],d=Math.ceil(t[1]/2);return`
|
|
vec4 ${s}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${d}, ${h[0]}, ${h[1]}, row, col);
|
|
return ${c.texture2D}(${n}, uv);
|
|
}
|
|
`}function k5(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=e.shapeInfo.texShape;if(i!=null&&ae(t,i)){const f=i[0],b=i[1];return`
|
|
float ${s}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${b}.0, ${f}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}const{newShape:o,keptDims:a}=ln(t),c=o;if(c.length<t.length){const f=bc(e,c),b=["row","col"];return`
|
|
${gc(f)}
|
|
float ${s}(int row, int col) {
|
|
return ${s}(${wc(b,a)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${yc(e)}
|
|
}
|
|
`;const h=i[0],d=i[1],m=Ho(n);return d===1?`
|
|
float ${s}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${m}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:h===1?`
|
|
float ${s}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${m}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${d}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${d}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function F5(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=e.shapeInfo.texShape,o=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)];if(t[0]===1){const f=t.slice(1),b=[1,2],w=bc(e,f),L=["b","row","col"];return`
|
|
${eC(w)}
|
|
vec4 ${s}(int b, int row, int col) {
|
|
return ${s}(${wc(L,b)});
|
|
}
|
|
`}const a=o[0],c=o[1],h=Math.ceil(t[2]/2),d=h*Math.ceil(t[1]/2),m=Pn();return`
|
|
vec4 ${s}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${a}, ${c}, ${d}, ${h}, b, row, col);
|
|
return ${m.texture2D}(${n}, uv);
|
|
}
|
|
`}function _5(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=t[1]*t[2],o=t[2],{newShape:a,keptDims:c}=ln(t),h=a;if(h.length<t.length){const L=bc(e,h),x=["row","col","depth"];return`
|
|
${gc(L)}
|
|
float ${s}(int row, int col, int depth) {
|
|
return ${s}(${wc(x,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${i}, ${o}, 1)));
|
|
${yc(e)}
|
|
}
|
|
`;const d=e.shapeInfo.texShape,m=d[0],f=d[1],b=e.shapeInfo.flatOffset;if(f===i&&b==null)return`
|
|
float ${s}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&b==null)return`
|
|
float ${s}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;const w=Ho(n);return`
|
|
float ${s}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth + ${w};
|
|
vec2 uv = uvFromFlat(${m}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function W5(e){const t=e.shapeInfo.logicalShape,n=t.length,s=e.name,i="get"+s.charAt(0).toUpperCase()+s.slice(1),o=e.shapeInfo.texShape,a=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],c=a[0],h=a[1],d=Math.ceil(t[n-1]/2);let m=d*Math.ceil(t[n-2]/2),f="int b, int row, int col",b=`b * ${m} + (row / 2) * ${d} + (col / 2)`;for(let L=2;L<n-1;L++)f=`int b${L}, `+f,m*=t[n-L-1],b=`b${L} * ${m} + `+b;const w=Pn();return`
|
|
vec4 ${i}(${f}) {
|
|
int index = ${b};
|
|
int texR = index / ${h};
|
|
int texC = index - texR * ${h};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}, ${c});
|
|
return ${w.texture2D}(${s}, uv);
|
|
}
|
|
`}function $5(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=t[3],o=t[2]*i,a=t[1]*o,{newShape:c,keptDims:h}=ln(t);if(c.length<t.length){const L=bc(e,c),x=["row","col","depth","depth2"];return`
|
|
${gc(L)}
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
return ${s}(${wc(x,h)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${a}, ${o}, ${i}, 1)));
|
|
${yc(e)}
|
|
}
|
|
`;const d=e.shapeInfo.flatOffset,m=e.shapeInfo.texShape,f=m[0],b=m[1];if(b===a&&d==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${b}.0, ${f}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(b===i&&d==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${b}.0, ${f}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;const w=Ho(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} +
|
|
depth * ${i} + depth2;
|
|
vec2 uv = uvFromFlat(${f}, ${b}, index + ${w});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function U5(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=t[4],o=t[3]*i,a=t[2]*o,c=t[1]*a,{newShape:h,keptDims:d}=ln(t);if(h.length<t.length){const x=bc(e,h),v=["row","col","depth","depth2","depth3"];return`
|
|
${gc(x)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${wc(v,d)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${a}, ${o}, ${i})) +
|
|
depth3;
|
|
${yc(e)}
|
|
}
|
|
`;const m=e.shapeInfo.flatOffset,f=e.shapeInfo.texShape,b=f[0],w=f[1];if(w===c&&m==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${a}, ${o}, ${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${w}.0, ${b}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(w===i&&m==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${w}.0, ${b}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;const L=Ho(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${a} + depth * ${o} +
|
|
depth2 * ${i} + depth3 + ${L};
|
|
vec2 uv = uvFromFlat(${b}, ${w}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function B5(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:i,keptDims:o}=ln(t);if(i.length<t.length){const v=bc(e,i),N=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${gc(v)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${wc(N,o)});
|
|
}
|
|
`}const a=t[5],c=t[4]*a,h=t[3]*c,d=t[2]*h,m=t[1]*d;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${m}, ${d}, ${h}, ${c})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${a}, 1)));
|
|
${yc(e)}
|
|
}
|
|
`;const f=e.shapeInfo.flatOffset,b=e.shapeInfo.texShape,w=b[0],L=b[1];if(L===m&&f==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${d}, ${h}, ${c}, ${a})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${L}.0, ${w}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(L===a&&f==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${L}.0, ${w}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;const x=Ho(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${m} + col * ${d} + depth * ${h} +
|
|
depth2 * ${c} + depth3 * ${a} + depth4 + ${x};
|
|
vec2 uv = uvFromFlat(${w}, ${L}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function yc(e){const t=e.name,n=P(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function M5(e,t){const n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),i="get"+s+"AtOutCoords",o=e.shapeInfo.logicalShape.length,a=t.logicalShape.length,c=Q0(e.shapeInfo.logicalShape,t.logicalShape),h=Rt(a),d=a-o;let m;const f=["x","y","z","w","u","v"];o===0?m="":a<2&&c.length>=1?m="coords = 0;":m=c.map(O=>`coords.${f[O+d]} = 0;`).join(`
|
|
`);let b="";a<2&&o>0?b="coords":b=e.shapeInfo.logicalShape.map((O,E)=>`coords.${f[E+d]}`).join(", ");let w="return outputValue;";const L=P(e.shapeInfo.logicalShape),x=L===1,v=P(t.logicalShape),N=v===1;if(o===1&&!x&&!N)w=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(x&&!N)a===1?w=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:w=`
|
|
return vec4(outputValue.x);
|
|
`;else if(c.length){const O=o-2,E=o-1;c.indexOf(O)>-1&&c.indexOf(E)>-1?w="return vec4(outputValue.x);":c.indexOf(O)>-1?w="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":c.indexOf(E)>-1&&(w="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${i}() {
|
|
${h} coords = getOutputCoords();
|
|
${m}
|
|
vec4 outputValue = get${s}(${b});
|
|
${w}
|
|
}
|
|
`}function P5(e,t){const n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),i="get"+s+"AtOutCoords",o=t.texShape,a=e.shapeInfo.texShape,c=e.shapeInfo.logicalShape.length,h=t.logicalShape.length;if(!e.shapeInfo.isUniform&&c===h&&e.shapeInfo.flatOffset==null&&ae(a,o))return`
|
|
float ${i}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;const d=Rt(h),m=Q0(e.shapeInfo.logicalShape,t.logicalShape),f=h-c;let b;const w=["x","y","z","w","u","v"];c===0?b="":h<2&&m.length>=1?b="coords = 0;":b=m.map(x=>`coords.${w[x+f]} = 0;`).join(`
|
|
`);let L="";return h<2&&c>0?L="coords":L=e.shapeInfo.logicalShape.map((x,v)=>`coords.${w[v+f]}`).join(", "),`
|
|
float ${i}() {
|
|
${d} coords = getOutputCoords();
|
|
${b}
|
|
return get${s}(${L});
|
|
}
|
|
`}function Rt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function bc(e,t){const n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function wc(e,t){return t.map(n=>e[n]).join(", ")}class z5{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,A(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);const i=e[e.length-1],o=Math.ceil(i/t);this.outputShape=e.slice(0,-1),o>1&&this.outputShape.push(o),s||this.variableNames.push("bestIndicesA");const a=this.outputShape,c=a.length,h=Rt(c),d=Mn("coords",c);let m,f;if(o===1){f=c+1;const $=Rt(f);m=`
|
|
${$} sourceLocR = ${$}(${d.join()}, 0);
|
|
++${d[c-1]};
|
|
${$} sourceLocG = ${$}(${d.join()}, 0);
|
|
++${d[c-2]};
|
|
${$} sourceLocA = ${$}(${d.join()}, 0);
|
|
--${d[c-1]};
|
|
${$} sourceLocB = ${$}(${d.join()}, 0);
|
|
--${d[c-2]};`}else f=c,m=`
|
|
${h} sourceLocR = coords;
|
|
++${d[c-1]};
|
|
${h} sourceLocG = coords;
|
|
++${d[c-2]};
|
|
${h} sourceLocA = coords;
|
|
--${d[c-1]};
|
|
${h} sourceLocB = coords;
|
|
--${d[c-2]};`;const b=["x","y","z","w","u","v"].slice(0,f),w="."+b[f-1],L=b.map($=>"int "+$),x=Mn("sourceLocR",f-1).concat("inIdx.r"),v=Mn("sourceLocG",f-1).concat("inIdx.g"),N=Mn("sourceLocB",f-1).concat("inIdx.b"),O=Mn("sourceLocA",f-1).concat("inIdx.a"),E=n==="max"?"greaterThan":"lessThan",k=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${x.join()}),
|
|
getBestIndicesAChannel(${v.join()}),
|
|
getBestIndicesAChannel(${N.join()}),
|
|
getBestIndicesAChannel(${O.join()})));`,F=`vec4(
|
|
getAChannel(${x.join()}),
|
|
hasNextCol ? getAChannel(${v.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${N.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${O.join()}) : 0.)`,U=s?"":`
|
|
float getBestIndicesAChannel(${L.join()}) {
|
|
return getChannel(getBestIndicesA(${b.join()}),
|
|
vec2(${b.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${L.join()}) {
|
|
return getChannel(getA(${b.join()}),
|
|
vec2(${b.slice(-2).join()}));
|
|
}
|
|
${U}
|
|
void main() {
|
|
${h} coords = getOutputCoords();
|
|
bool hasNextCol = ${d[c-1]} < ${a[c-1]-1};
|
|
bool hasNextRow = ${d[c-2]} < ${a[c-2]-1};
|
|
${m}
|
|
ivec4 srcIdx = ivec4(sourceLocR${w}, sourceLocG${w},
|
|
sourceLocB${w}, sourceLocA${w}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${F};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${k}
|
|
vec4 candidate = ${F};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${E}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}}class V5{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;const t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,i=e.strideWidth,o=e.dilationHeight,a=e.dilationWidth,c=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=c-1-e.padInfo.top,m=h-1-e.padInfo.left,f=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${d}, ${m});
|
|
const float avgMultiplier = float(${f});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${o}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC+= ${a}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}class G5{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;const t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,a=e.strideWidth,c=e.dilationDepth,h=e.dilationHeight,d=e.dilationWidth,m=e.effectiveFilterDepth,f=e.effectiveFilterHeight,b=e.effectiveFilterWidth,w=m-1-e.padInfo.front,L=f-1-e.padInfo.top,x=b-1-e.padInfo.left,v=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${w}, ${L}, ${x});
|
|
const float avgMultiplier = float(${v});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${m};
|
|
wD += ${c}) {
|
|
float dyD = float(dyDCorner + wD) / ${i}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${f};
|
|
wR += ${h}) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${b};
|
|
wC += ${d}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}const nC=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Y5=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,H5=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,ine="return (a - b) * (a - b);",q5="return float(a == b);",j5="return float(a < b);",K5="return float(a <= b);",X5="return float(a > b);",J5="return float(a >= b);",Z5="return float(a >= 1.0 && b >= 1.0);",Q5="return float(a >= 1.0 || b >= 1.0);",e8=nC+`
|
|
return max(a, b);
|
|
`,t8=nC+`
|
|
return min(a, b);
|
|
`,n8=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,s8="return (b >= 1.0) ? a : a * (b + 1.0);",sC="return (a < 0.) ? b * a : a;";class _n{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=nt(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}}const km=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,i8=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,r8=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+km+`
|
|
return result;
|
|
`,iC=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`,o8=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,a8=`
|
|
return vec4(equal(a, b));
|
|
`,rne=`
|
|
return vec4(notEqual(a, b));
|
|
`,c8=`
|
|
return vec4(lessThan(a, b));
|
|
`,l8=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,h8=`
|
|
return vec4(greaterThan(a, b));
|
|
`,u8=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,d8=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,p8=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,m8=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+km+`
|
|
return result;
|
|
`,f8=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+km+`
|
|
return result;
|
|
`,g8=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+km+`
|
|
return result;
|
|
`;class lr{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=nt(t,n);const i=this.outputShape.length;let o="";if(s)if(i===0||P(this.outputShape)===1)o=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{const a=Rt(i);if(o=`
|
|
${a} coords = getOutputCoords();
|
|
`,i===1)o+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{const c=Mn("coords",i);o+=`
|
|
bool nextRowOutOfBounds =
|
|
(${c[i-2]} + 1) >= ${this.outputShape[i-2]};
|
|
bool nextColOutOfBounds =
|
|
(${c[i-1]} + 1) >= ${this.outputShape[i-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${o}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}}class y8{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,s)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(s,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(s,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}}class b8{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,s)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(s,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(s,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}}class w8{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}}class L8{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;const t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,i=e.padInfo.left,o=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${o}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}class S8{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;const t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,i=e.strideWidth,o=e.dataFormat==="channelsLast",a=t-1-e.padInfo.top,c=n-1-e.padInfo.left,h=o?1:2,d=o?2:3,m=o?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${c});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${m}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${h}], coords[${d}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${o}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}class I8{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;const t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,i=e.padInfo.front,o=e.padInfo.top,a=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${o};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}class x8{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;const t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,a=e.strideWidth,c=t-1-e.padInfo.front,h=n-1-e.padInfo.top,d=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${h}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${i}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}class T8{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;const t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,i=e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${o} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}class A8{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;const t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.top,a=n-1-e.padInfo.left,c=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${a});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${c}; dm++) {
|
|
int d2 = d1 * ${c} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}class rC{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;const i=e.padInfo.top,o=e.padInfo.left,a=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,b=Math.floor(e.inChannels/4)*4,w=e.inChannels%4,L=e.dataFormat==="channelsLast",x=L?1:2,v=L?2:3,N=L?3:1;let O="",E="";n&&(s?O=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:O=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,E="result = activation(result);");const k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.userCode=`
|
|
${O}
|
|
|
|
const ivec2 strides = ivec2(${a}, ${c});
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${N}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${x}], coords[${v}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${h};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${b}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${L}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${w===1}) {
|
|
|
|
if (${L}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${b}) *
|
|
getW(wR, wC, ${b}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${b}, xR, xC) *
|
|
getW(wR, wC, ${b}, d2);
|
|
}
|
|
|
|
} else if (${w===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${b}, d2),
|
|
getW(wR, wC, ${b} + 1, d2)
|
|
);
|
|
|
|
if (${L}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${b}),
|
|
getX(batch, xR, xC, ${b} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${b}, xR, xC),
|
|
getX(batch, ${b} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${w===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${b}, d2),
|
|
getW(wR, wC, ${b} + 1, d2),
|
|
getW(wR, wC, ${b} + 2, d2)
|
|
);
|
|
|
|
if (${L}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${b}),
|
|
getX(batch, xR, xC, ${b} + 1),
|
|
getX(batch, xR, xC, ${b} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${b}, xR, xC),
|
|
getX(batch, ${b} + 1, xR, xC),
|
|
getX(batch, ${b} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${k}
|
|
${E}
|
|
setOutput(result);
|
|
}
|
|
`}}class v8{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;const t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,i=e.strideDepth,o=e.strideHeight,a=e.strideWidth,c=e.dilationDepth,h=e.dilationHeight,d=e.dilationWidth,m=e.filterDepth,f=e.filterHeight,b=e.filterWidth,w=Math.floor(e.inChannels/4)*4,L=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${i}, ${o}, ${a});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${m}; wF++) {
|
|
int xF = xFCorner + wF * ${c};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${f}; wR++) {
|
|
int xR = xRCorner + wR * ${h};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${w}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${L===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${w}) *
|
|
getW(wF, wR, wC, ${w}, d2);
|
|
} else if (${L===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${w}),
|
|
getX(batch, xF, xR, xC, ${w} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${w}, d2),
|
|
getW(wF, wR, wC, ${w} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${L===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${w}),
|
|
getX(batch, xF, xR, xC, ${w} + 1),
|
|
getX(batch, xF, xR, xC, ${w} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${w}, d2),
|
|
getW(wF, wR, wC, ${w} + 1, d2),
|
|
getW(wF, wR, wC, ${w} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}class oC{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;const i=e.inHeight,o=e.inWidth,a=e.padInfo.top,c=e.padInfo.left,h=e.strideHeight,d=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,b=e.filterHeight,w=e.filterWidth,L=e.outChannels/e.inChannels;let x="",v="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,v="result = activation(result);");const N=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${h}, ${d});
|
|
const ivec2 pads = ivec2(${a}, ${c});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${L};
|
|
int q = d2 - d1 * ${L};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${b}; wR++) {
|
|
int xR = xRCorner + wR * ${m};
|
|
|
|
if (xR < 0 || xR >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC++) {
|
|
int xC = xCCorner + wC * ${f};
|
|
|
|
if (xC < 0 || xC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${N}
|
|
${v}
|
|
setOutput(result);
|
|
}
|
|
`}}class aC{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;const i=e.inHeight,o=e.inWidth,a=e.padInfo.top,c=e.padInfo.left,h=e.strideHeight,d=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,b=e.filterHeight,w=e.filterWidth,L=w;let x="int xR; int xC; int xCOffset;";for(let E=0;E<b;E++)for(let k=0;k<w;k++)x+=`
|
|
vec4 xTexelR${E}C${k*2} = vec4(0.);
|
|
vec4 wR${E}C${k} = vec4(0.);
|
|
vec4 xR${E}C${k} = vec4(0.);`;for(let E=0;E<b;E++)for(let k=0;k<L;k++){const F=k*2;if(x+=`
|
|
xR = xRCorner + ${E*m};
|
|
xC = xCCorner + ${F*f};
|
|
`,d===1){if(F<w&&(c%2===1?x+=`
|
|
xCOffset = xC + 1;
|
|
if(xR >= 0 && xR < ${i} && xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelR${E}C${F} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${o}) {
|
|
xTexelR${E}C${F}.zw = vec2(0.);
|
|
}
|
|
} else {
|
|
xTexelR${E}C${F} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + 1 - 2;
|
|
if(xR >= 0 && xR < ${i} && xCOffset >= 0 && xCOffset < ${o}) {
|
|
vec4 previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${o}) {
|
|
previous.zw = vec2(0.);
|
|
}
|
|
|
|
xR${E}C${F} = vec4(previous.zw, xTexelR${E}C${F}.xy);
|
|
} else {
|
|
xR${E}C${F} = vec4(0, 0, xTexelR${E}C${F}.xy);
|
|
}
|
|
`:x+=`
|
|
if(xR >= 0 && xR < ${i} && xC >= 0 && xC < ${o}) {
|
|
xTexelR${E}C${F} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${E}C${F} = vec4(0.);
|
|
}
|
|
|
|
xR${E}C${F} = xTexelR${E}C${F};
|
|
`,F+1<w)){const U=c%2===0?T(f):f;f%2===0&&c%2===1||f%2!==0&&c%2!==1?(x+=`
|
|
xCOffset = xC + ${c%2} + ${U};
|
|
|
|
if(xR >= 0 && xR < ${i} &&
|
|
xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelR${E}C${F+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`,f>1&&(x+=`
|
|
xCOffset -= 2;
|
|
if(xR >= 0 && xR < ${i} &&
|
|
xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelR${E}C${F} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${E}C${F} = vec4(0.);
|
|
}
|
|
`),x+=`
|
|
xR${E}C${F+1} = vec4(
|
|
xTexelR${E}C${F}.zw, xTexelR${E}C${F+2}.xy);
|
|
`):x+=`
|
|
xCOffset = xC + ${U};
|
|
|
|
if(xR >= 0 && xR < ${i} &&
|
|
xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelR${E}C${F+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
|
|
xR${E}C${F+1} = xTexelR${E}C${F+2};
|
|
`}}else F<w&&(x+=`
|
|
if(xR >= 0 && xR < ${i}) {
|
|
`,c%2===1?(x+=`
|
|
xCOffset = xC + 1 - ${d};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelR${E}C${F} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${E}C${F} = vec4(0.);
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${o}) {
|
|
xTexelR${E}C${F+2} = getX(batch, xR, xC + 1, d1);
|
|
} else {
|
|
xTexelR${E}C${F+2} = vec4(0.);
|
|
}
|
|
|
|
xR${E}C${F} = vec4(
|
|
xTexelR${E}C${F}.zw, xTexelR${E}C${F+2}.zw);
|
|
`,F+1<w&&(x+=`
|
|
vec4 final = vec4(0.);
|
|
xCOffset = xC + 1 + ${d};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xR${E}C${F+1} = vec4(xTexelR${E}C${F+2}.xy, final.xy);
|
|
`)):(x+=`
|
|
if(xC >= 0 && xC < ${o}) {
|
|
xTexelR${E}C${F} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${E}C${F} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + ${d};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
xTexelR${E}C${F+2} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${E}C${F+2} = vec4(0.);
|
|
}
|
|
|
|
xR${E}C${F} = vec4(
|
|
xTexelR${E}C${F}.xy, xTexelR${E}C${F+2}.xy);
|
|
`,F+1<w&&(x+=`
|
|
xR${E}C${F+1} = vec4(
|
|
xTexelR${E}C${F}.zw, xTexelR${E}C${F+2}.zw);
|
|
`)),x+="}");F<w&&(x+=`
|
|
vec4 wTexelR${E}C${F} = getW(${E}, ${F}, d1, q);
|
|
wR${E}C${F} = vec4(wTexelR${E}C${F}.xz, wTexelR${E}C${F}.xz);
|
|
`,F+1<w&&(x+=`
|
|
vec4 wTexelR${E}C${F+1} = getW(${E}, ${F+1}, d1, q);
|
|
wR${E}C${F+1} =
|
|
vec4(wTexelR${E}C${F+1}.xz, wTexelR${E}C${F+1}.xz);`))}for(let E=0;E<b;E++)for(let k=0;k<w;k++)x+=`dotProd += xR${E}C${k} * wR${E}C${k};`;let v="",N="";n&&(s?v=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:v=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,N="result = activation(result);");const O=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.userCode=`
|
|
${v}
|
|
|
|
const ivec2 strides = ivec2(${h}, ${d});
|
|
const ivec2 pads = ivec2(${a}, ${c});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2;
|
|
int q = 0;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
vec4 dotProd = vec4(0.);
|
|
|
|
${x}
|
|
|
|
vec4 result = dotProd;
|
|
${O}
|
|
${N}
|
|
setOutput(result);
|
|
}
|
|
`}}class N8{constructor(e,t,n,s,i){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];const[o,a,c,h]=e,[d]=t,[m,f]=n;this.outputShape=[d,m,f,h];const b=s==="bilinear"?1:0,[w,L]=[`${a-1}.0`,`${c-1}.0`],[x,v,N]=m>1?[`${(a-1)/(m-1)}`,"(y2-y1) * height_ratio",`y1*${w} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${w}`],[O,E,k]=f>1?[`${(c-1)/(f-1)}`,"(x2-x1) * width_ratio",`x1*${L} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${L}`];this.userCode=`
|
|
const float height_ratio = float(${x});
|
|
const float width_ratio = float(${O});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${o}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${v};
|
|
float width_scale = ${E};
|
|
|
|
float in_y = ${N};
|
|
if( in_y < 0.0 || in_y > ${w} ) {
|
|
setOutput(float(${i}));
|
|
return;
|
|
}
|
|
float in_x = ${k};
|
|
if( in_x < 0.0 || in_x > ${L} ) {
|
|
setOutput(float(${i}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${b} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}}class cC{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;const s=e.length,i=t?"0.0":`getX(${lC(s,"coords")})`,o=e[e.length-1];let a="",c="";t?(a=n?`end != ${o-1}`:"end != 0",c=n?"end + 1":"end - 1"):(a=n?`end + pow2 < ${o}`:"end >= pow2",c=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${Rt(s)} coords = getOutputCoords();
|
|
int end = ${hC(s,"coords")};
|
|
float val = ${i};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${a}) {
|
|
int idx = ${c};
|
|
${hC(s,"coords")} = idx;
|
|
val += getX(${lC(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}}function lC(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function hC(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}class C8{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=lu.DENSE;const t=uu(e),n=Pn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Yo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}}class R8{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=lu.DENSE;const t=uu(e),n=Pn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Yo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}}class O8{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}}class E8{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}}class D8{constructor(e){this.variableNames=["A"],this.outTexUsage=Ns.DOWNLOAD;const t=Pn();this.outputShape=e,this.userCode=`
|
|
${Z0}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}}class k8{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Ns.DOWNLOAD;const t=Pn();this.outputShape=e,this.userCode=`
|
|
${Z0}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}}class F8{constructor(e,t,n=!1){this.variableNames=["A"];const s=Pn(),[i,o]=t;this.outputShape=e;let a="result";n&&(a="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${IS(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${o};
|
|
int c = imod(flatIndex, ${o});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
vec4 values = ${s.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${s.output} = vec4(${a}, 0., 0., 0.);
|
|
}
|
|
`}}class _8{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;const s=Pn(),[i,o]=t;this.outputShape=e;let a="",c="result";n&&(c="floor(result * 255. + 0.5)");for(let h=0;h<=1;h++)for(let d=0;d<=1;d++){const m=h*2+d;a+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${d} < ${e[2]}) {
|
|
localCoords[2] += ${d};
|
|
if(localCoords[1] + ${h} < ${e[1]}) {
|
|
localCoords[1] += ${h};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${o};
|
|
c = imod(flatIndex, ${o});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
values = ${s.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${m}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${m}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${m}] = values[2];
|
|
} else {
|
|
result[${m}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${IS(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${a}
|
|
|
|
${s.output} = ${c};
|
|
}
|
|
`}}class W8{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}}class $8{constructor(e,t,n){this.variableNames=["A","indices"];const s=e.slice();s[n]=t,this.outputShape=s,this.rank=s.length;const i=Rt(this.rank),o=U8(e,n);this.userCode=`
|
|
void main() {
|
|
${i} resRC = getOutputCoords();
|
|
setOutput(getA(${o}));
|
|
}
|
|
`}}function U8(e,t){const n=e.length;if(n>4)throw Error(`Gather for rank ${n} is not yet supported`);if(n===1)return"int(getIndices(resRC))";const s=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[];for(let o=0;o<e.length;o++)o===t?i.push(`int(getIndices(${s[o]}))`):i.push(`${s[o]}`);return i.join()}class B8{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;const s=Rt(t.length),i=Rt(n.length),o=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${i} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${o};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}}function M8(e){const t=Pn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return wK(e,n)}function P8(e){const t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return AK(e,t)}function z8(e){const t=new Uint16Array([0,1,2,2,1,3]);return vK(e,t)}function pu(e,t,n,s,i,o){CK(t,n);const a=NK(e),c=e.TEXTURE_2D;return Ee(e,()=>e.bindTexture(c,a)),Ee(e,()=>e.texParameteri(c,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ee(e,()=>e.texParameteri(c,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ee(e,()=>e.texParameteri(c,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ee(e,()=>e.texParameteri(c,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ee(e,()=>e.texImage2D(c,0,s,t,n,0,i,o,null)),Ee(e,()=>e.bindTexture(e.TEXTURE_2D,null)),a}function uC(e){return e.internalFormatFloat}function V8(e,t,n,s){const[i,o]=hu(t,n);return pu(e,i,o,uC(s),s.textureFormatFloat,e.FLOAT)}function dC(e){return e.internalFormatHalfFloat}function G8(e,t,n,s){const[i,o]=hu(t,n);return pu(e,i,o,dC(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function pC(e){return e.downloadTextureFormat}function Y8(e,t,n,s){const[i,o]=hu(t,n);return pu(e,i,o,pC(s),e.RGBA,e.UNSIGNED_BYTE)}function mC(e){return e.internalFormatPackedFloat}function H8(e,t,n,s){const[i,o]=pc(t,n);return pu(e,i,o,mC(s),e.RGBA,e.FLOAT)}function fC(e){return e.internalFormatPackedHalfFloat}function q8(e,t,n,s){const[i,o]=pc(t,n);return pu(e,i,o,fC(s),e.RGBA,s.textureTypeHalfFloat)}function j8(e,t,n){const s=0,i=3*4,o=3*4+2*4;Ee(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n));const a=q0(e,t,"clipSpacePos",n,3,o,s);return a&&q0(e,t,"uv",n,2,o,i)}function K8(e,t,n,s,i,o){Ee(e,()=>e.bindTexture(e.TEXTURE_2D,t));let a,c,h;i instanceof Uint8Array?(a=new Uint8Array(n*s*4),c=e.UNSIGNED_BYTE,h=e.RGBA):(a=new Float32Array(n*s*4),c=e.FLOAT,h=o.internalFormatPackedFloat),a.set(i),Ee(e,()=>e.texImage2D(e.TEXTURE_2D,0,h,n,s,0,e.RGBA,c,a)),Ee(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function X8(e,t,n){Ee(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ee(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ee(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ee(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function J8(e,t,n,s){const i=e.createBuffer();Ee(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,i));const o=4,a=4,c=o*a*t*n;return Ee(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,c,e.STREAM_READ)),Ee(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ee(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),i}function Z8(e,t,n){const s=e,i=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,i),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),i}function Q8(e,t,n,s){const[i,o]=hu(t,n),a=4,c=new Uint8Array(dK(t*n,a));return Ee(e,()=>e.readPixels(0,0,i,o,s.downloadTextureFormat,e.UNSIGNED_BYTE,c)),new Float32Array(c.buffer)}function e6(e,t,n,s,i,o,a,c){const h=e,d=new Float32Array(pK(o,a));return h.bindBuffer(h.PIXEL_PACK_BUFFER,t),h.getBufferSubData(h.PIXEL_PACK_BUFFER,0,d),h.bindBuffer(h.PIXEL_PACK_BUFFER,null),d}function t6(e,t,n){const s=new Float32Array(t*n*4);return Ee(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}class n6{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];const t=oe().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,lK(t,e)):this.gl=ki(t);let n="WEBGL_color_buffer_float";const s="EXT_color_buffer_half_float";if(oe().getNumber("WEBGL_VERSION")===1){const i="OES_texture_float",o="OES_texture_half_float";if(this.textureFloatExtension=vm(this.gl,i),Vs(this.gl,o))this.textureHalfFloatExtension=vm(this.gl,o);else if(oe().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Vs(this.gl,s))this.colorBufferHalfFloatExtension=vm(this.gl,s);else if(oe().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Vs(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Vs(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=P8(this.gl),this.indexBuffer=z8(this.gl),this.framebuffer=RK(this.gl),this.textureConfig=gS(this.gl,this.textureHalfFloatExtension)}get debug(){return oe().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");const e=this.gl;Ee(e,()=>e.finish()),Ee(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ee(e,()=>e.deleteFramebuffer(this.framebuffer)),Ee(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ee(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ee(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),V8(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),G8(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Y8(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),X8(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),K8(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),q8(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),H8(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(j0(this.gl,this.framebuffer),this.outputTexture=null),Ee(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Q8(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,i,o){return e6(this.gl,e,t,n,s,i,o,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Z8(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);const s=J8(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){const e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(oe().getBool("WEBGL_FENCE_API_ENABLED")){const s=e,i=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{const o=s.clientWaitSync(i,0,0);return o===s.ALREADY_SIGNALED||o===s.CONDITION_SATISFIED},t=i}else oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>t6(this.gl,t,n))}createProgram(e){this.throwIfDisposed();const t=this.gl,n=LK(t,e),s=M8(t),i=xK(t);return Ee(t,()=>t.attachShader(i,s)),Ee(t,()=>t.attachShader(i,n)),TK(t,i),this.debug&&yS(t,i),this.vertexAttrsAreBound||(this.setProgram(i),this.vertexAttrsAreBound=j8(t,this.program,this.vertexBuffer)),i}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ee(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&yS(this.gl,this.program),Ee(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?EK(this.gl,e,t):DK(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ee(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),kK(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();const[s,i]=pc(t,n);this.setOutputMatrixTextureDriver(e,s,i)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&yS(this.gl,this.program),Nm(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();const e=this.gl;this.debug&&this.debugValidate(),Ee(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ee(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=vm(this.gl,oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){const n=this.gl,s=this.getQueryTimerExtensionWebGL2(),i=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,i),i}const e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){const t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}const e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await $t(()=>this.disposed||this.isQueryAvailable(e,oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){const n=this.gl,s=n.getQueryParameter(e,n.QUERY_RESULT);return s/1e6}else{const n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT);return s/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){const n=this.gl,s=this.getQueryTimerExtensionWebGL2(),i=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),i&&!this.disjoint}else{const n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){const e=s6(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){const{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;$t(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),bS(this.gl,e,this.framebuffer),this.debug&&Nm(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(bS(this.gl,this.outputTexture,this.framebuffer),this.debug&&Nm(this.gl)):j0(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);const n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();const s=this.gl;bS(s,e,this.framebuffer),this.debug&&Nm(s),this.outputTexture=e,Ee(s,()=>s.viewport(0,0,t,n)),Ee(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ee(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}}function s6(e){let t=0;for(;t<e.length;++t){const n=e[t]();if(!n)break}return t-1}function i6(e,t,n,s){const i=t.userCode,o=n.map((w,L)=>{const x={logicalShape:w.shape,texShape:w.isUniform?null:w.texData.texShape,isUniform:w.isUniform,isPacked:w.isUniform?!1:w.texData.isPacked,flatOffset:null};return w.texData!=null&&w.texData.slice!=null&&w.texData.slice.flatOffset>0&&(x.flatOffset=w.texData.slice.flatOffset),{name:t.variableNames[L],shapeInfo:x}}),a=o.map(w=>w.shapeInfo),c={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},h=o5(o,c,i,t.packedInputs),d=e.createProgram(h);let m=null;const f=e.getUniformLocation(d,"NAN",!1);oe().getNumber("WEBGL_VERSION")===1&&(m=e.getUniformLocation(d,"INFINITY",!1));const b={};for(let w=0;w<t.variableNames.length;w++){const L=t.variableNames[w],x=!1;b[L]=e.getUniformLocation(d,L,x),b[`offset${L}`]=e.getUniformLocation(d,`offset${L}`,x)}return{program:t,source:h,webGLProgram:d,uniformLocations:b,inShapeInfos:a,outShapeInfo:c,infLoc:m,nanLoc:f}}function gC(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{const i=n.logicalShape,o=t[s],a=o.shape;if(!ae(i,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${i} and ${a} must match`);if(n.isUniform&&o.isUniform)return;const c=n.texShape,h=o.isUniform?null:o.texData.texShape;if(!ae(c,h))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${c} and ${h} must match`)})}function r6(e,t,n,s,i){gC(t.inShapeInfos,n),gC([t.outShapeInfo],[s]);const o=s.texData.texture,a=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(o,a[0],a[1]):e.setOutputMatrixTexture(o,a[0],a[1]),e.setProgram(t.webGLProgram),oe().getNumber("WEBGL_VERSION")===1&&(t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity)),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((c,h)=>{const d=t.program.variableNames[h],m=t.uniformLocations[d],f=t.uniformLocations[`offset${d}`];if(m==null)return;if(c.isUniform){if(P(c.shape)<2)e.gl.uniform1f(m,c.uniformValues[0]);else{let b=c.uniformValues;b instanceof Float32Array||(b=new Float32Array(b)),e.gl.uniform1fv(m,b)}return}c.texData.slice!=null&&f!=null&&e.gl.uniform1i(f,c.texData.slice.flatOffset),e.setInputMatrixTexture(c.texData.texture,m,h)}),i!=null&&i(e,t.webGLProgram),e.executeProgram()}function o6(e,t,n){let s="";t.concat(n).forEach(a=>{const c=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,h=a.isUniform?"uniform":a.texData.texShape;s+=`${a.shape}_${h}_${c}`});const i=e.userCode;let o=e.constructor.name;return o+="_"+s+"_"+i,o}class a6{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;const{filterWidth:s,inChannels:i,strideWidth:o,strideHeight:a,padInfo:c,outWidth:h,dilationWidth:d,dilationHeight:m,dataFormat:f}=n,{left:b,top:w}=c,L=i*s,x=Pn(),v=f==="channelsLast",N=v?0:1,O=v?1:2;let E="";for(let k=0;k<=1;k++)for(let F=0;F<=1;F++)E+=`
|
|
blockIndex = rc.y + ${F};
|
|
pos = rc.x + ${k};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${h})) * ${a} - ${w};
|
|
d0 = offsetY + ${m} * (pos / ${L});
|
|
|
|
if(d0 < ${t[N]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${h}.) * ${o}. - ${b}.);
|
|
d1 = offsetX + ${d} * (int(mod(float(pos), ${L}.) / ${i}.));
|
|
|
|
if(d1 < ${t[O]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${i}.));
|
|
|
|
if (${v}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${k*2+F}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${k*2+F}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${E}
|
|
|
|
${x.output} = result;
|
|
}
|
|
`}}class c6{constructor(e,t,n,s,i){this.variableNames=["x"],this.outputShape=[];const o=t,a=e[3]-1;this.outputShape=e;let c;const h=`float(${n}) + float(${s}) * sum`;i===.5?c=`inversesqrt(${h})`:i===1?c=`1.0/(${h})`:c=`exp(log(${h}) * float(-${i}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${o}; j <= ${o}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${a}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${c};
|
|
setOutput(val);
|
|
}
|
|
`}}class l6{constructor(e,t,n,s,i){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=i,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${i})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${i});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}}class h6{constructor(e,t,n,s,i){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;const o=t,a=e[3]-1;this.outputShape=e;let c;const h=`float(${n}) + float(${s}) * sum`;i===.5?c=`inversesqrt(${h})`:i===1?c=`1.0/(${h})`:c=`exp(log(${h}) * float(-${i}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${o};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${o}; j <= ${o}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${a}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${c};
|
|
setOutput(result);
|
|
}
|
|
`}}class u6{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;const t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,i=e.effectiveFilterHeight,o=e.effectiveFilterWidth,a=i-1-e.padInfo.top,c=o-1-e.padInfo.left,h=i*o-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${c});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${h} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${o} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}class d6{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;const t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,i=e.dilationDepth,o=e.dilationHeight,a=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,m=c-1-e.padInfo.front,f=h-1-e.padInfo.top,b=d-1-e.padInfo.left,w=c*h*d-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${m}, ${f}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${o}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${a}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${w} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${h} * ${d} +
|
|
wR * ${d} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}}class xS{constructor(e,t,n,s=!1,i=!1,o=!1,a=null,c=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;const h=s?e[1]:e[2],d=Math.ceil(h/2),m=s?"i * 2, rc.y":"rc.y, i * 2",f=i?"rc.z, i * 2":"i * 2, rc.z",b=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],w=i?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"];let L="",x="";a&&(c?L=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${a}
|
|
}`:L=`vec4 activation(vec4 x) {
|
|
${a}
|
|
}`,x="result = activation(result);");const v=o?"result += getBiasAtOutCoords();":"";o&&this.variableNames.push("bias"),c&&this.variableNames.push("preluActivationWeights");let N="rc.x",O="rc.x";e[0]<t[0]?N=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(O=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${L}
|
|
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${N};
|
|
int batchB = ${O};
|
|
vec4 a = getMatrixA(batchA, ${m});
|
|
vec4 b = getMatrixB(batchB, ${f});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${b[0]} * ${w[0]});
|
|
result += (${b[1]} * ${w[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${v}
|
|
|
|
${x}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}}class p6{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}}class m6{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}}class f6{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;const t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{const n=Mn("rc",t),s=Rt(t),i=y6(t,e,n),o=b6(t,e[e.length-1],e[e.length-2],n),a=w6(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${i}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${o}
|
|
|
|
setOutput(vec4(${a}));
|
|
}
|
|
}
|
|
`}}}function g6(e,t){const n=[];for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=`${s===0?"r":"rp1"}, ${i===0?"c":"cp1"}`;for(let a=2;a<e;a++)o=`${t[t.length-1-a]},`+o;n.push(o)}return n}function y6(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let i=e-2;i<e;i++)s+=`${n[i]} >= ${t[i]}`,i<e-1&&(s+="||");return s}function b6(e,t,n,s){if(e===1)return"";const i=s.slice(-2);return`
|
|
int r = ${i[0]};
|
|
int c = ${i[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function w6(e,t){const n=e.length,s=g6(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}class L6{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((h,d)=>h[0]+e[d]+h[1]);const s=e.length,i=Rt(s),o=t.map(h=>h[0]).join(","),a=t.map((h,d)=>h[0]+e[d]).join(","),c=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${o};
|
|
int end = ${a};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${i} start = ${i}(${o});
|
|
${i} end = ${i}(${a});
|
|
|
|
void main() {
|
|
${i} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
${i} coords = outC - start;
|
|
setOutput(getX(${c}));
|
|
}
|
|
}
|
|
`}}class S6{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((L,x)=>L[0]+e[x]+L[1]);const s=e.length,i=Rt(s),o=t.map(L=>L[0]).join(","),a=t.map((L,x)=>L[0]+e[x]).join(","),c=Mn("rc",s),h=Mn("source",s),d=`${c[s-1]} < ${this.outputShape[s-1]}`,m=s===1?"source":`vec2(${h.slice(-2).join()})`,f=[`${i} rc = outputLoc;`,`${c[s-1]} += 1;
|
|
if(${d}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${c[s-2]} += 1;
|
|
if(${c[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${c[s-1]} += 1;
|
|
if(${d}) {`],b=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))";let w="";for(let L=0,x=s===1?2:4;L<x;L++)w+=`
|
|
${f[L]}
|
|
if (${b}) {
|
|
result[${L}] = float(${n});
|
|
} else {
|
|
${i} source = rc - start;
|
|
result[${L}] = getChannel(getX(${h.join()}), ${m});
|
|
}
|
|
`;w+=s===1?"} ":"}}",this.userCode=`
|
|
const ${i} start = ${i}(${o});
|
|
const ${i} end = ${i}(${a});
|
|
|
|
void main() {
|
|
${i} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${w}
|
|
setOutput(result);
|
|
}
|
|
`}}class mu{constructor(e,t,n,s=!1,i=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");const o=e.filterWidth,a=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,b=e.padInfo.top,w=e.padInfo.left;this.outputShape=e.outShape;const L=t==="avg",x=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,v=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`;let N="0.0";if(L||(N="-1.0 / 1e-20"),n){const $=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${c});
|
|
const ivec2 pads = ivec2(${b}, ${w});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${m};
|
|
wR += ${h}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?i?x:v:`wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}const O="max";let E=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(E="avgValue / count");const k=Math.floor(o/4)*4,F=o%4,U=`
|
|
if (${L}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${O}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${c});
|
|
const ivec2 pads = ivec2(${b}, ${w});
|
|
const float initializationValue = ${N};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${N});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${m};
|
|
wR += ${h}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${d}, d),
|
|
getValue(batch, xR, xC + 2 * ${d}, d),
|
|
getValue(batch, xR, xC + 3 * ${d}, d)
|
|
);
|
|
|
|
${U}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${F===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${U}
|
|
} else if (${F===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${d}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${U}
|
|
} else if (${F===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${d}, d),
|
|
getValue(batch, xR, xC + 2 * ${d}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${U}
|
|
}
|
|
}
|
|
setOutput(${E});
|
|
}
|
|
`}}class TS{constructor(e,t,n,s=!1,i=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");const o=e.filterWidth,a=e.strideDepth,c=e.strideHeight,h=e.strideWidth,d=e.dilationDepth,m=e.dilationHeight,f=e.dilationWidth,b=e.effectiveFilterDepth,w=e.effectiveFilterHeight,L=e.effectiveFilterWidth,x=e.padInfo.front,v=e.padInfo.top,N=e.padInfo.left;this.outputShape=e.outShape;const O=t==="avg";let E="0.0";if(O||(E="-1.0 / 1e-20"),n){const j=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${a}, ${c}, ${h});
|
|
const ivec3 pads = ivec3(${x}, ${v}, ${N});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${b};
|
|
wD += ${d}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${w};
|
|
wR += ${m}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${L};
|
|
wC += ${f}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${j} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?i?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${w} * ${L} +
|
|
wR * ${L} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}const k="max";let F=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(F="avgValue / count");const U=Math.floor(o/4)*4,$=o%4,Y=`
|
|
if (${O}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${k}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${a}, ${c}, ${h});
|
|
const ivec3 pads = ivec3(${x}, ${v}, ${N});
|
|
const float initializationValue = ${E};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${E});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${b};
|
|
wD += ${d}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${w};
|
|
wR += ${m}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${U}; wC += 4) {
|
|
int xC = xCCorner + wC * ${f};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${f}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${f}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${f}, ch)
|
|
);
|
|
|
|
${Y}
|
|
}
|
|
|
|
int xC = xCCorner + ${U};
|
|
if (${$===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${Y}
|
|
} else if (${$===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${f}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${Y}
|
|
} else if (${$===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${f}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${f}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${Y}
|
|
}
|
|
}
|
|
setOutput(${F});
|
|
}
|
|
}
|
|
`}}class yC{constructor(e,t){this.variableNames=["x"];const{windowSize:n,batchSize:s,inSize:i,outSize:o}=e;this.outputShape=[s,o];let a="0.0",c="";t==="prod"?a="1.0":t==="min"?(a="1.0 / 1e-20",c="min"):t==="max"&&(a="-1.0 / 1e-20",c="max");let h=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?h="sumValue":t==="prod"?h="prodValue":t==="all"?h="allValue":t==="any"&&(h="anyValue");const d=Math.floor(n/4)*4,m=n%4;let f=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${c}(values, minMaxValue);
|
|
}
|
|
`,b="vec4";t==="all"?(a="1.0",f=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,b="bvec4"):t==="any"&&(a="0.0",f=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,b="bvec4");let w="";i%n>0&&(w=`
|
|
if (inIdx < 0 || inIdx >= ${i}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${a};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${w}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${a});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${d}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${b} values = ${b}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${f}
|
|
}
|
|
|
|
int inIdx = inOffset + ${d};
|
|
if (${m===1}) {
|
|
${b} values = ${b}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${f}
|
|
} else if (${m===2}) {
|
|
${b} values = ${b}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${f}
|
|
} else if (${m===3}) {
|
|
${b} values = ${b}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${f}
|
|
}
|
|
setOutput(${h});
|
|
}
|
|
`}}class bC{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let s=0;s<4;s++){let i="thisRC = rc;";s%2===1&&(i+="thisRC.z += 1;"),s>1&&(i+="thisRC.y += 1;"),n+=`
|
|
${i}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${I6(t)}
|
|
${IS(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}}function I6(e){const t=Yo(["r","c","d"],e);return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}class x6{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t.shape;const[,s,i]=t.shape,[,o,a]=e.shape,c=[n&&o>1?s-1:s,n&&a>1?i-1:i],h=[n&&o>1?o-1:o,n&&a>1?a-1:a],d=c[0]/h[0],m=c[1]/h[1],f=1/d,b=1/m,w=Math.ceil(f)*2+2,L=Math.ceil(b)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${d});
|
|
const float widthScale = float(${m});
|
|
|
|
const float invHeightScale = float(${f});
|
|
const float invWidthScale = float(${b});
|
|
|
|
const int winHeight = int(${w});
|
|
const int winWidth = int(${L});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${i-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}}class T6{constructor(e,t,n,s){this.variableNames=["A"],this.outputShape=[];const[i,o,a,c]=e;this.outputShape=[i,t,n,c];const h=[s&&t>1?o-1:o,s&&n>1?a-1:a],d=[s&&t>1?t-1:t,s&&n>1?n-1:n];this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${h[0]/d[0]},
|
|
${h[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${a}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC;
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(sourceFracIndexRC);
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}}class A6{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];const[i,o,a,c]=e;this.outputShape=[i,t,n,c];const h=[s&&t>1?o-1:o,s&&n>1?a-1:a],d=[s&&t>1?t-1:t,s&&n>1?n-1:n];this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${h[0]/d[0]},
|
|
${h[1]/d[1]},
|
|
${h[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${a}.0,
|
|
${a}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = vec3(yRC) * effectiveInputOverOutputRatioRC;
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(sourceFracIndexRC);
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${c-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}}class v6{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t.shape;const[,s,i]=t.shape,[,o,a]=e.shape,c=[n&&o>1?s-1:s,n&&a>1?i-1:i],h=[n&&o>1?o-1:o,n&&a>1?a-1:a],d=c[0]/h[0],m=c[1]/h[1],f=1/d,b=1/m,w=Math.ceil(f)*2+2,L=Math.ceil(b)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${d});
|
|
const float widthScale = float(${m});
|
|
|
|
const float invHeightScale = float(${f});
|
|
const float invWidthScale = float(${b});
|
|
|
|
const int winHeight = int(${w});
|
|
const int winWidth = int(${L});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${c[0]}) *
|
|
(float(dyR) / float(${h[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${c[1]}) *
|
|
(float(dyC) / float(${h[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${i}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}}class N6{constructor(e,t,n,s){this.variableNames=["A"],this.outputShape=[];const[i,o,a,c]=e;this.outputShape=[i,t,n,c];const h=[s&&t>1?o-1:o,s&&n>1?a-1:a],d=[s&&t>1?t-1:t,s&&n>1?n-1:n],m=s?"0.5":"0.0";this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${h[0]/d[0]},
|
|
${h[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${a}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC;
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
|
|
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}}class C6{constructor(e,t){this.variableNames=["x"];const n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}const s=a=>t.indexOf(a)!==-1&&e[a]!==1?`${e[a]} - coords[${a}] - 1`:`coords[${a}]`,i=e.map((a,c)=>s(c)).join(","),o=Rt(n);this.userCode=`
|
|
void main() {
|
|
${o} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}}class R6{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;const n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;const s=Mn("rc",n),i=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,o=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,a=Rt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${i}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${c(s.slice())};
|
|
if(${i}){
|
|
result.g = ${h(s.slice())};
|
|
}
|
|
if(${o}) {
|
|
result.b = ${d(s.slice())};
|
|
if(${i}) {
|
|
result.a = ${m(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function c(w){return f(w)}function h(w){return w[n-1]="("+w[n-1]+" + 1)",f(w)}function d(w){return w[n-2]="("+w[n-2]+" + 1)",f(w)}function m(w){return w[n-1]="("+w[n-1]+" + 1)",w[n-2]="("+w[n-2]+" + 1)",f(w)}function f(w){const L=e.map((N,O)=>b(O,w)),x=L.join(","),v=L.slice(-2).join(",");return`getChannel(getX(${x}), vec2(${v}))`}function b(w,L){return t.indexOf(w)!==-1&&e[w]!==1?`${e[w]} - ${L[w]} - 1`:`${L[w]}`}}}class wC{constructor(e,t,n,s,i,o,a=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=o;const c=Rt(i.length),h=Rt(o.length);let d="";n===1?d="i":n===2&&(d="i, j");const m=`getIndices(${d})`;let f="";s===1?f="i":s===2&&(f="i, coords[1]");const b=`getUpdates(${f})`,w=t>1?"strides[j]":"strides";this.userCode=`
|
|
${c} strides = ${c}(${i});
|
|
|
|
void main() {
|
|
${h} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${m});
|
|
flattenedIndex += index * ${w};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${b};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}}class O6{constructor(e,t){this.variableNames=["x","segmentIds"];const n=e.windowSize,s=e.batchSize,i=e.inSize,o=e.numSegments,a=o*Math.ceil(i/n);this.outputShape=[s,a];const c="0.0",h="sumValue",d=Math.floor(n/4)*4,m=n%4,f=`
|
|
sumValue += dot(values, segFilter);
|
|
`;let b="";i%n>0&&(b=`
|
|
if (inIdx < 0 || inIdx >= ${i}) {
|
|
return initializationValue;
|
|
}
|
|
`);let w="";i%n>0&&(w=`
|
|
if (inIdx < 0 || inIdx >= ${i}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${c};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${b}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${w}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${o})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${o})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${d}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${f}
|
|
}
|
|
|
|
int inIdx = inOffset + ${d};
|
|
if (${m===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${f}
|
|
} else if (${m===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${f}
|
|
} else if (${m===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${f}
|
|
}
|
|
setOutput(${h});
|
|
}
|
|
`}}class E6{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,i;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)i="resRC",s="resRC";else{const a=["resRC.x","resRC.y","resRC.z","resRC.w"],c=[],h=[];for(let d=0;d<t.length;d++)h.push(`${a[d]}`),d<e&&c.push(`${a[d]}`);s=c.join(),i=h.join()}const o=Rt(n);this.userCode=`
|
|
void main() {
|
|
${o} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${i}));
|
|
} else {
|
|
setOutput(getB(${i}));
|
|
}
|
|
}
|
|
`}}class D6{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;const t=Rt(this.rank),n=`uniform int start[${this.rank}];`,s=k6(this.rank);let i;const o=e.map((a,c)=>`sourceLoc.${AS[c]} = start[${c}] + coords.${AS[c]};`);i=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${o.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${i}
|
|
setOutput(getSource(${s}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{if(this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null))return;t.gl.uniform1iv(this.startLoc,e)}}}const AS=["x","y","z","w","u","v"];function k6(e){if(e===1)return"sourceLoc";if(e<=6)return AS.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}class F6{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;const t=Rt(this.rank),n=Mn("coords",this.rank),s=Mn("sourceLoc",this.rank),i=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,o=`getChannel(getSource(${s.join()}), ${i})`,a=`
|
|
result.x = ${o};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${o};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,c=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${o};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${o};
|
|
}
|
|
}
|
|
`,h=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((d,m)=>`start[${m}]`).join()});`:e.map((d,m)=>`${s[m]} = ${n[m]} + start[${m}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${h}
|
|
vec4 result = vec4(0.);
|
|
${a}
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{if(this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null))return;t.gl.uniform1iv(this.startLoc,e)}}}class _6{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;const s=n.length,i=Rt(n.length),o=Rt(n.length);let a="";if(s===1)a="coords * strides + begin";else{let c=0;a=n.map((h,d)=>(c++,n.length===1?`coords * strides[${d}] + begin[${d}]`:`coords[${c-1}] * strides[${d}] + begin[${d}]`)).join(",")}this.userCode=`
|
|
${i} begin = ${i}(${e});
|
|
${i} strides = ${i}(${t});
|
|
|
|
void main() {
|
|
${o} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}}class W6{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){const s=SC(t,n),i=IC(e,s,n);i in this.freeTextures||(this.freeTextures[i]=[]),i in this.usedTextures||(this.usedTextures[i]=[]);const o=LC(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[i].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=o,this.log();const c=this.freeTextures[i].shift();return this.usedTextures[i].push(c),c}let a;return s===Cn.PACKED_2X2_FLOAT32?a=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Cn.PACKED_2X2_FLOAT16?a=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Cn.UNPACKED_FLOAT32?a=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Cn.UNPACKED_FLOAT16?a=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Cn.PACKED_4X1_UNSIGNED_BYTE&&(a=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[i].push(a),this.numUsedTextures++,this._numBytesAllocated+=o,this.log(),a}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;const i=SC(n,s),o=IC(t,i,s);o in this.freeTextures||(this.freeTextures[o]=[]);const a=LC(t,i,this.gpgpu.gl,this.gpgpu.textureConfig,s),c=oe().get("WEBGL_DELETE_TEXTURE_THRESHOLD");c!==-1&&this._numBytesAllocated>c?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=a):(this.freeTextures[o].push(e),this.numFreeTextures++,this._numBytesFree+=a),this.numUsedTextures--;const h=this.usedTextures[o],d=h.indexOf(e);if(d<0)throw new Error("Cannot release a texture that was never provided by this texture manager");h.splice(d,1),this.log()}log(){if(!this.logEnabled)return;const e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);const t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures==null)return;for(const e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(const e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}function $6(e,t){const n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function LC(e,t,n,s,i){const o=U6(t,s);let a;if(i){const[h,d]=pc(e[0],e[1]);a=h*d}else{const[h,d]=hu(e[0],e[1]);a=h*d}const c=$6(n,o);return a*c}function U6(e,t){switch(e){case Cn.PACKED_2X2_FLOAT32:return mC(t);case Cn.PACKED_2X2_FLOAT16:return fC(t);case Cn.UNPACKED_FLOAT32:return uC(t);case Cn.UNPACKED_FLOAT16:return dC(t);case Cn.PACKED_4X1_UNSIGNED_BYTE:return pC(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function B6(e){return oe().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Cn.PACKED_2X2_FLOAT32:Cn.UNPACKED_FLOAT32:e?Cn.PACKED_2X2_FLOAT16:Cn.UNPACKED_FLOAT16}function SC(e,t){if(e===Ns.UPLOAD)return Cn.PACKED_2X2_FLOAT32;if(e===Ns.RENDER||e==null)return B6(t);if(e===Ns.DOWNLOAD||e===Ns.PIXELS)return Cn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function IC(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}class M6{constructor(e,t){this.variableNames=["A"];const n=new Array(e.length);for(let o=0;o<n.length;o++)n[o]=e[o]*t[o];this.outputShape=n,this.rank=n.length;const s=Rt(this.rank),i=P6(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${i}));
|
|
}
|
|
`}}function P6(e){const t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;const n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let i=0;i<e.length;i++)s.push(`imod(${n[i]}, ${e[i]})`);return s.join()}class st{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}}const hr="if (isnan(x)) return x;",z6="return x;",xC="return abs(x);",TC=hr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,AC=hr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,vC="return (x >= 0.0) ? x : (exp(x) - 1.0);",V6=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${Wp};
|
|
float scale = ${$p};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`;function G6(e=0){return hr+`
|
|
return x > 0.0 ? 1.0 : float(${e});
|
|
`}const NC="return -x;",CC="return ceil(x);",RC="return floor(x);",Y6=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,H6="return float(isnan(x));",q6="return float(isinf(x));",j6="return float(!isnan(x) && !isinf(x));",K6=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,OC="return exp(x);",EC="return exp(x) - 1.0;",X6=`if (x < 0.0) return NAN;
|
|
return log(x);`,J6="return log(1.0 + x);",Z6="return sqrt(x);",Q6="return inversesqrt(x);",eX="return 1.0 / (1.0 + exp(-1.0 * x));",tX=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,nX=hr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,sX=hr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,iX=hr+`
|
|
return atan(x);
|
|
`,rX=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,oX=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,aX=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,cX=hr+"return log(x + sqrt(x * x + 1.0));",lX=hr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,hX=hr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,uX=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${ew};
|
|
float a1 = ${tw};
|
|
float a2 = ${nw};
|
|
float a3 = ${sw};
|
|
float a4 = ${iw};
|
|
float a5 = ${rw};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,dX="return 1.0 / x;",pX="return float(!(x >= 1.0));",Fm="return x;";const mX="return x;",fX=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,DC=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,kC=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,FC=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`;class fu{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}}class gX{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;const t=e.length,n=Mn("rc",t),s=Rt(t),i=r5(t,n),o=n.slice(-2),a=t<=1?"rc":`vec2(${o.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${i});
|
|
|
|
setOutput(getChannel(packedInput, ${a}));
|
|
}
|
|
`}}const{segment_util:_C}=cw,yX=lw,bX=hw,wX=uw,LX=Ap,SX=1e-7,IX=1e-4,_m={};function xX(e){return e in _m||(_m[e]={}),_m[e]}function Wm(e,t=!1){if(e==="linear")return t?mX:z6;if(e==="relu")return t?DC:TC;if(e==="elu")return t?FC:vC;if(e==="relu6")return t?kC:AC;if(e==="prelu")return t?iC:sC;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}const TX=128,AX=600;function vX(){return oe().global.screen==null?1024:oe().global.screen.height*oe().global.screen.width*window.devicePixelRatio*AX/1024/1024}const WC=1e3;class NX extends y{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!oe().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){const t=ki(oe().getNumber("WEBGL_VERSION"));this.binaryCache=xX(oe().getNumber("WEBGL_VERSION")),this.gpgpu=new n6(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new W6(this.gpgpu),this.numMBBeforeWarning=vX(),this.texData=new p(this,Ki())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((oe().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||oe().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");const s={};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Ns.UPLOAD,refCount:1,complexParentRefCount:0}),s}incRef(e){const t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){const t=this.texData.get(e);t.refCount--}}move(e,t,n,s){if(oe().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Ns.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(e){const t=e.dataId;if(this.texData.has(t)){const n=this.texData.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}readSync(e){const t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:i,slice:o,shape:a,isPacked:c}=t;if(o!=null){let f;c?f=new fu(a,Fm):f=new st(a,Fm);const b=this.runWebGLProgram(f,[{dataId:e,shape:a,dtype:s}],s),w=this.readSync(b.dataId);return this.disposeIntermediateTensorInfo(b),w}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;const h=this.activeTimers!=null;let d;h&&(d=jn());let m;if(s==="complex64"){const f=this.readSync(i.real.dataId),b=this.readSync(i.imag.dataId);m=tr(f,b)}else m=this.getValuesFromTexture(e);return h&&(this.downloadWaitMs+=jn()-d),this.convertAndCacheOnCPU(e,m)}async read(e){if(this.pendingRead.has(e)){const w=this.pendingRead.get(e);return new Promise(L=>w.push(L))}const t=this.texData.get(e),{values:n,shape:s,slice:i,dtype:o,complexTensorInfos:a,isPacked:c}=t;if(i!=null){let w;c?w=new fu(s,Fm):w=new st(s,Fm);const L=this.runWebGLProgram(w,[{dataId:e,shape:s,dtype:o}],o),x=this.read(L.dataId);return this.disposeIntermediateTensorInfo(L),x}if(n!=null)return this.convertAndCacheOnCPU(e);if(!oe().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&oe().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let h=null,d;if(o!=="complex64"&&oe().get("WEBGL_BUFFER_SUPPORTED")){d=this.decode(e);const w=this.texData.get(d.dataId);h=this.gpgpu.createBufferFromTexture(w.texture,...uu(s))}this.pendingRead.set(e,[]),o!=="complex64"&&await this.gpgpu.createAndWaitForFence();let m;if(o==="complex64"){const w=await Promise.all([this.read(a.real.dataId),this.read(a.imag.dataId)]),L=w[0],x=w[1];m=tr(L,x)}else if(h==null)m=this.getValuesFromTexture(e);else{const w=P(s);m=this.gpgpu.downloadFloat32MatrixFromBuffer(h,w)}d!=null&&this.disposeIntermediateTensorInfo(d);const f=this.convertAndCacheOnCPU(e,m),b=this.pendingRead.get(e);return this.pendingRead.delete(e),b.forEach(w=>w(f)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),f}checkNumericalProblems(e){if(e==null)return;for(let t=0;t<e.length;t++){const n=e[t];if(!yK(n))throw oe().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){const{shape:t,dtype:n,isPacked:s}=this.texData.get(e),i=P(t);if(oe().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){const f=this.decode(e),b=this.texData.get(f.dataId),w=this.gpgpu.downloadMatrixFromPackedTexture(b.texture,...uu(t)).subarray(0,i);return this.disposeIntermediateTensorInfo(f),w}const o=oe().getBool("WEBGL_PACK")&&s===!0,a=o?wS(t):t,c=o?new k8(a):new D8(a),h=this.runWebGLProgram(c,[{shape:a,dtype:n,dataId:e}],"float32"),d=this.texData.get(h.dataId),m=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(d.texture,d.texShape[0],d.texShape[1]).subarray(0,i);return this.disposeIntermediateTensorInfo(h),m}async time(e){const t=this.activeTimers,n=[];let s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();const i=te(this.activeTimers.map(c=>c.query)).filter(c=>c!=null),o=te(this.activeTimers.map(c=>c.name)).filter(c=>c!=null);this.activeTimers=t,s&&(this.programTimersStack=null);const a={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){const c=await Promise.all(i);a.kernelMs=C(c),a.getExtraProfileInfo=()=>c.map((h,d)=>({name:o[d],ms:h})).map(h=>`${h.name}: ${h.ms}`).join(", ")}else a.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,a}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:jn(),endMs:null}}endTimer(e){return oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=jn(),e)}async getQueryTime(e){if(oe().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);const t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;if(this.texData.get(e).complexParentRefCount>0){this.texData.get(e).refCount--;return}this.releaseGPUData(e);const{complexTensorInfos:t}=this.texData.get(e);t!=null&&(this.texData.get(t.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.real),this.texData.get(t.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.imag)),this.texData.delete(e)}releaseGPUData(e){const{texture:t,dtype:n,texShape:s,usage:i,isPacked:o,slice:a}=this.texData.get(e),c=a&&a.origDataId||e,h=this.dataRefCount.get(c);h>1?this.dataRefCount.set(c,h-1):(this.dataRefCount.delete(c),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,i,o)));const d=this.texData.get(e);d.texture=null,d.texShape=null,d.isPacked=!1,d.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return oe().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Ki().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=TX){const n=this.getCPUBackend();return!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(s=>this.texData.get(s.dataId).texture==null&&P(s.shape)<t)}getGPGPUContext(){return this.gpgpu}slice(e,t,n){if(this.shouldExecuteOnCPU([e])){const o=QK(this.texData.get(e.dataId).values,t,n,e.shape,e.dtype);return this.makeOutput(n,e.dtype,o)}if(P(n)===0)return sn([],n,e.dtype);const{isPacked:s}=this.texData.get(e.dataId),i=eb(e.shape,t,n);if(s||!i){const o=oe().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new F6(n):new D6(n),a=o.getCustomSetupFunc(t);return this.compileAndRun(o,[e],null,a)}return this.uploadToGPU(e.dataId),this.shallowSlice(e,t,n)}shallowSlice(e,t,n){const s=this.texData.get(e.dataId),i=this.makeOutput(n,e.dtype),o=this.texData.get(i.dataId);Object.assign(o,s),o.shape=n,o.dtype=e.dtype;let a=tb(t,e.strides);s.slice&&(a+=s.slice.flatOffset),o.slice={flatOffset:a,origDataId:s.slice&&s.slice.origDataId||e.dataId};const c=this.dataRefCount.get(o.slice.origDataId)||1;return this.dataRefCount.set(o.slice.origDataId,c+1),i}stridedSlice(e,t,n,s){const i=this.tryRunOnCpuOrThrow([e],()=>this.cpuBackend.stridedSlice(e,t,n,s));if(i)return i;const o=jd(t,n,s);if(o.some(c=>c===0))return sn([],o);const a=new _6(t,s,o);return this.compileAndRun(a,[e])}reverse(e,t){const n=oe().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new R6(e.shape,t):new C6(e.shape,t);return this.compileAndRun(n,[e])}neg(e){const t=this.tryRunOnCpuOrThrow([e],()=>this.cpuBackend.neg(e));if(t)return t;if(oe().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,NC,e.dtype);const n=new st(e.shape,NC);return this.compileAndRun(n,[e])}batchMatMul(e,t,n,s){const i=n?e.shape[2]:e.shape[1],o=s?t.shape[1]:t.shape[2],a=n?e.shape[1]:e.shape[2],c=Math.max(e.shape[0],t.shape[0]);if((i===1||o===1)&&a>WC){n&&(e=Ye(e,[0,2,1])),s&&(t=Ye(t,[0,2,1]));const m=o===1?e:e.as3D(c,a,1),f=o===1?2:1,b=o===1?t.as3D(c,1,a):t,w=X(m,b);return w.sum(f,!0)}const h=$n(e.dtype,t.dtype),d=new xS(e.shape,t.shape,[c,i,o],n,s);return this.compileAndRun(d,[e,t],h)}fusedBatchMatMul({a:e,b:t,transposeA:n,transposeB:s,bias:i,activation:o,preluActivationWeights:a}){const c=n?e.shape[2]:e.shape[1],h=s?t.shape[1]:t.shape[2],d=Math.max(e.shape[0],t.shape[0]),m=$n(e.dtype,t.dtype),f=i!=null,b=a!=null,w=o?Wm(o,!0):null,L=new xS(e.shape,t.shape,[d,c,h],n,s,f,w,b),x=[e,t];return i&&x.push(i),a&&x.push(a),this.compileAndRun(L,x,m)}localResponseNormalization4D(e,t,n,s,i){const o=oe().getBool("WEBGL_PACK_NORMALIZATION")?new h6(e.shape,t,n,s,i):new c6(e.shape,t,n,s,i);return this.compileAndRun(o,[e])}LRNGrad(e,t,n,s,i,o,a){const c=new l6(t.shape,s,i,o,a);return this.compileAndRun(c,[t,n,e])}tile(e,t){if(e.dtype==="string"){const s=this.readSync(e.dataId),i=s.map(a=>Kl(a)),o=wt(e.shape,e.dtype,i);return bX(o,t)}const n=new M6(e.shape,t);return this.compileAndRun(n,[e])}pad(e,t,n){const s=oe().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new S6(e.shape,t,n):new L6(e.shape,t,n);return this.compileAndRun(s,[e])}gather(e,t,n){const s=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.gather(e,t,n));if(s)return s;const i=new $8(e.shape,t.size,n);return this.compileAndRun(i,[e,t])}batchToSpaceND(e,t,n){A(e.rank<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");const s=t.reduce((d,m)=>d*m),i=Oh(e.shape,t,s),o=Eh(i.length,t.length),a=Dh(e.shape,t,s),c=Zb(n,t.length),h=Qb(a,n,t.length);return Ye(e.reshape(i),o).reshape(a).slice(c,h)}spaceToBatchND(e,t,n){A(e.rank<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");const s=t.reduce((m,f)=>m*f),i=[[0,0]];i.push(...n);for(let m=1+t.length;m<e.shape.length;++m)i.push([0,0]);const o=e.pad(i),a=Oh(o.shape,t,s,!1),c=Eh(a.length,t.length,!1),h=Dh(o.shape,t,s,!1),d=Ye(o.reshape(a),c);return K(d,h)}reduce(e,t,n){const s=e.shape[0],i=e.shape[1],o=uh(i),a=Math.ceil(i/o),c={windowSize:o,inSize:i,batchSize:s,outSize:a},h=new yC(c,t),d=this.compileAndRun(h,[e],n);return d.shape[1]===1?d:this.reduce(d,t,n)}argReduce(e,t,n=null){let s=e.shape[0],i=e.shape[1];n!=null&&(s=n.shape[0],i=n.shape[1]);const o=uh(i),a={windowSize:o,inSize:i,batchSize:s,outSize:Math.ceil(i/o)},c=new i5(a,t,n==null),h=[e];n!=null&&h.push(n);const d=this.compileAndRun(c,h,"int32");return d.shape[1]===1?d:this.argReduce(e,t,d)}argReducePacked(e,t,n=null){const s=n!=null?n.shape:e.shape,i=s[s.length-1],o=uh(i),a=new z5(s,o,t,n==null),c=n==null?[e]:[e,n],h=this.compileAndRun(a,c,"int32");return h.rank===e.rank?this.argReducePacked(e,t,h):h}sum(e,t){Kn("sum",t,e.rank);const[n,s]=An(e.shape,t),i=P(s),o=e.as2D(-1,i),a=Ud(e.dtype);return this.reduce(o,"sum",a).reshape(n)}prod(e,t){const n=this.tryRunOnCpuOrThrow([e],()=>this.cpuBackend.prod(e,t));if(n)return n;const[s,i]=An(e.shape,t),o=P(i),a=e.as2D(-1,o),c=Ud(e.dtype);return this.reduce(a,"prod",c).reshape(s)}unsortedSegmentSum(e,t,n){let s=0;const i=Xn([s],e.rank);let o=e;i!=null&&(o=Ye(e,i),s=as(1,e.rank)[0]);const a=_C.computeOutShape(o.shape,s,n),c=P([o.shape[s]]),h=o.as2D(-1,c),d=Ud(e.dtype);let m=this.segOpCompute(h,"unsortedSegmentSum",t,d,n).reshape(a);return i!=null&&(m=Ye(m,sh(i))),m}segOpCompute(e,t,n,s,i){const o=e.shape[0],a=e.shape[1],c=_C.segOpComputeOptimalWindowSize(a,i),h={windowSize:c,inSize:a,batchSize:o,numSegments:i},d=new O6(h,t),m=this.compileAndRun(d,[e,n],s);return m.shape[1]===i?m:(n=bh(0,i).tile([a/c]),this.segOpCompute(m,t,n,s,i))}argMinMaxReduce(e,t,n){const s=[t];if(Kn("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.rank),!oe().getBool("WEBGL_PACK_REDUCE")||e.rank<=2){const[i,o]=An(e.shape,s),a=P(o),c=e.as2D(-1,a);return this.argReduce(c,n).reshape(i)}return this.argReducePacked(e,n)}argMin(e,t){return this.argMinMaxReduce(e,t,"min")}argMax(e,t){return this.argMinMaxReduce(e,t,"max")}cumsum(e,t,n,s){if(t!==e.rank-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${e.rank-1} but got axis=${t}`);const i=e.shape[t];let o=e;for(let a=0;a<=Math.ceil(Math.log2(i))-1;a++){const c=new cC(e.shape,!1,s),h=c.getCustomSetupFunc(a),d=o;o=this.compileAndRun(c,[o],o.dtype,h),d.dispose()}if(n){const a=new cC(e.shape,n,s),c=o;o=this.compileAndRun(a,[o]),c.dispose()}return o}equal(e,t){if(oe().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,a8,"bool");const n=new _n(q5,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}less(e,t){const n=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.less(e,t));if(n)return n;if(oe().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,c8,"bool");const s=new _n(j5,e.shape,t.shape);return this.compileAndRun(s,[e,t],"bool")}lessEqual(e,t){if(oe().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,l8,"bool");const n=new _n(K5,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}greater(e,t){const n=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.greater(e,t));if(n)return n;if(oe().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,h8,"bool");const s=new _n(X5,e.shape,t.shape);return this.compileAndRun(s,[e,t],"bool")}greaterEqual(e,t){if(oe().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,u8,"bool");const n=new _n(J5,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}logicalNot(e){const t=new st(e.shape,pX);return this.compileAndRun(t,[e])}logicalAnd(e,t){if(oe().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,d8,"bool");const n=new _n(Z5,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}logicalOr(e,t){if(oe().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,p8,"bool");const n=new _n(Q5,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}select(e,t,n){const s=new E6(e.rank,t.shape,t.rank);return this.compileAndRun(s,[e,t,n],$n(t.dtype,n.dtype))}where(e){Za("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");const t=e.dataSync();return LX(e.shape,t)}topk(e,t,n){const s=e.dataSync();return wX(s,e.shape,e.dtype,t,n)}min(e,t){Kn("min",t,e.rank);const[n,s]=An(e.shape,t),i=P(s),o=e.as2D(-1,i);return this.reduce(o,"min",o.dtype).reshape(n)}minimum(e,t){const n=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.minimum(e,t));if(n)return n;const s=oe().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new lr(f8,e.shape,t.shape):new _n(t8,e.shape,t.shape);return this.compileAndRun(s,[e,t])}mod(e,t){const n=oe().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new lr(g8,e.shape,t.shape):new _n(n8,e.shape,t.shape);return this.compileAndRun(n,[e,t])}maximum(e,t){const n=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.maximum(e,t));if(n)return n;const s=oe().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new lr(m8,e.shape,t.shape):new _n(e8,e.shape,t.shape);return this.compileAndRun(s,[e,t])}all(e,t){Kn("all",t,e.rank);const[n,s]=An(e.shape,t),i=P(s),o=e.as2D(-1,i);return this.reduce(o,"all",o.dtype).reshape(n)}any(e,t){Kn("any",t,e.rank);const[n,s]=An(e.shape,t),i=P(s),o=e.as2D(-1,i);return this.reduce(o,"any",o.dtype).reshape(n)}floorDiv(e,t){const n=Y5,s="int32";if(oe().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,i8,s);const i=new _n(n,e.shape,t.shape);return this.compileAndRun(i,[e,t],s)}packedUnaryOp(e,t,n){const s=new fu(e.shape,t);return this.compileAndRun(s,[e],n)}packedBinaryOp(e,t,n,s,i=!1){const o=new lr(n,e.shape,t.shape,i);return this.compileAndRun(o,[e,t],s)}makeComplexComponentTensorInfo(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}addN(e){if(e.length===1)return e[0];if(e.length>oe().get("WEBGL_MAX_TEXTURES_IN_SHADER")){const o=Math.floor(e.length/2),a=this.addN(e.slice(0,o)),c=this.addN(e.slice(o));return this.addN([a,c])}const t=e.map(o=>o.dtype).reduce((o,a)=>$n(o,a)),n=e.map(o=>o.shape),s=oe().getBool("WEBGL_PACK"),i=s?new s5(e[0].shape,n):new n5(e[0].shape,n);return this.compileAndRun(i,e,t)}pow(e,t){const n=oe().getBool("WEBGL_PACK_BINARY_OPERATIONS"),s=n?new lr(r8,e.shape,t.shape):new _n(H5,e.shape,t.shape),i=$n(e.dtype,t.dtype);return this.compileAndRun(s,[e,t],i)}ceil(e){if(this.shouldExecuteOnCPU([e])){const n=YK(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}if(oe().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,CC,e.dtype);const t=new st(e.shape,CC);return this.compileAndRun(t,[e])}floor(e){if(this.shouldExecuteOnCPU([e])){const n=jK(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}if(oe().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,RC,e.dtype);const t=new st(e.shape,RC);return this.compileAndRun(t,[e])}sign(e){const t=new st(e.shape,Y6);return this.compileAndRun(t,[e])}isNaN(e){const t=new st(e.shape,H6);return this.compileAndRun(t,[e],"bool")}isInf(e){const t=new st(e.shape,q6);return this.compileAndRun(t,[e],"bool")}isFinite(e){const t=new st(e.shape,j6);return this.compileAndRun(t,[e],"bool")}round(e){const t=new st(e.shape,K6);return this.compileAndRun(t,[e])}exp(e){if(this.shouldExecuteOnCPU([e])){const n=HK(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}if(oe().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,OC,e.dtype);const t=new st(e.shape,OC);return this.compileAndRun(t,[e])}expm1(e){if(this.shouldExecuteOnCPU([e])){const n=qK(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}if(oe().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,EC,e.dtype);const t=new st(e.shape,EC);return this.compileAndRun(t,[e])}softmax(e,t){const n=qe([t],e.shape),s=Qn(e,n),i=vn(s.shape,n),o=Re(e,s.reshape(i)),a=this.exp(o),c=this.sum(a,n).reshape(i);return We(a,c)}log(e){if(this.shouldExecuteOnCPU([e])){const n=KK(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}if(oe().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,fX,e.dtype);const t=new st(e.shape,X6);return this.compileAndRun(t,[e])}log1p(e){const t=new st(e.shape,J6);return this.compileAndRun(t,[e])}sqrt(e){const t=new st(e.shape,Z6);return this.compileAndRun(t,[e])}rsqrt(e){if(this.shouldExecuteOnCPU([e])){const n=ZK(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}const t=new st(e.shape,Q6);return this.compileAndRun(t,[e])}reciprocal(e){const t=new st(e.shape,dX);return this.compileAndRun(t,[e])}relu(e){let t;return oe().getBool("WEBGL_PACK")?t=new fu(e.shape,DC):t=new st(e.shape,TC),this.compileAndRun(t,[e])}relu6(e){let t;return oe().getBool("WEBGL_PACK")?t=new fu(e.shape,kC):t=new st(e.shape,AC),this.compileAndRun(t,[e])}prelu(e,t){const n=oe().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new lr(iC,e.shape,t.shape):new _n(sC,e.shape,t.shape);return this.compileAndRun(n,[e,t])}elu(e){if(oe().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,FC,e.dtype);const t=new st(e.shape,vC);return this.compileAndRun(t,[e])}eluDer(e,t){const n=oe().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new lr(o8,e.shape,t.shape):new _n(s8,e.shape,t.shape);return this.compileAndRun(n,[e,t])}selu(e){const t=new st(e.shape,V6);return this.compileAndRun(t,[e])}clip(e,t,n){let s;oe().getBool("WEBGL_PACK_CLIP")?s=new b8(e.shape):s=new y8(e.shape);const i=s.getCustomSetupFunc(t,n);return this.compileAndRun(s,[e],null,i)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){const n=VK(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(oe().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,xC,e.dtype);const t=new st(e.shape,xC);return this.compileAndRun(t,[e])}complexAbs(e){const t=this.texData.get(e.dataId),n=new w8(e.shape),s=[this.makeComplexComponentTensorInfo(e,t.complexTensorInfos.real),this.makeComplexComponentTensorInfo(e,t.complexTensorInfos.imag)];return this.compileAndRun(n,s)}sigmoid(e){const t=new st(e.shape,eX);return this.compileAndRun(t,[e])}softplus(e){const t=new st(e.shape,tX);return this.compileAndRun(t,[e])}asin(e){const t=new st(e.shape,nX);return this.compileAndRun(t,[e])}acos(e){const t=new st(e.shape,sX);return this.compileAndRun(t,[e])}atan(e){const t=new st(e.shape,iX);return this.compileAndRun(t,[e])}sinh(e){const t=new st(e.shape,rX);return this.compileAndRun(t,[e])}cosh(e){const t=new st(e.shape,oX);return this.compileAndRun(t,[e])}tanh(e){const t=new st(e.shape,aX);return this.compileAndRun(t,[e])}asinh(e){const t=new st(e.shape,cX);return this.compileAndRun(t,[e])}acosh(e){const t=new st(e.shape,lX);return this.compileAndRun(t,[e])}atanh(e){const t=new st(e.shape,hX);return this.compileAndRun(t,[e])}erf(e){const t=new st(e.shape,uX);return this.compileAndRun(t,[e])}step(e,t){const n=new st(e.shape,G6(t));return this.compileAndRun(n,[e])}conv2dByMatMul(e,t,n,s,i,o){const a=e.shape,c=this.texData.get(e.dataId),h=n.inChannels,d=a[0]*a[1]*a[2],m=n.outChannels,f=n.dataFormat==="channelsLast",b=!1,w=!1,L=(d===1||m===1)&&h>WC,x=a[2]%2!==0&&!!c.isPacked;if(L||!oe().getBool("WEBGL_LAZILY_UNPACK")||!oe().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){const U=f?a[0]*a[1]*a[2]:a[0]*a[2]*a[3],$=K(e,[1,U,n.inChannels]),Y=K(t,[1,n.inChannels,n.outChannels]),j=this.fusedBatchMatMul({a:$,b:Y,transposeA:b,transposeB:w,bias:s,activation:i,preluActivationWeights:o});return K(j,n.outShape)}const v=f?a[0]*a[1]*(a[2]+1):a[0]*a[2]*(a[3]+1),N={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},O=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,A(Rm(c.shape,N.shape),()=>`packed reshape ${c.shape} to ${N.shape} isn't free`);const E=K(t,[1,n.inChannels,n.outChannels]),k=this.fusedBatchMatMul({a:N,b:E,transposeA:b,transposeB:w,bias:s,activation:i,preluActivationWeights:o}),F=this.texData.get(k.dataId);return A(F.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=O,F.shape=n.outShape,Ki().makeTensorFromDataId(k.dataId,n.outShape,k.dtype)}conv2dWithIm2Row(e,t,n,s,i,o){const{filterWidth:a,filterHeight:c,inChannels:h,outWidth:d,outHeight:m,dataFormat:f}=n,b=f==="channelsLast",w=a*c*h,L=m*d,x=[w,L],v=!0,N=!1,O=e.squeeze([0]),E=t.reshape([1,w,-1]),k=new a6(x,O.shape,n),F=this.compileAndRun(k,[O]).reshape([1,x[0],x[1]]),U=s!=null,$=o!=null,Y=i?Wm(i,!0):null,j=new xS(F.shape,E.shape,[1,L,n.outChannels],v,N,U,Y,$),Z=[F,E];s&&Z.push(s),$&&Z.push(o);const ie=this.compileAndRun(j,Z);return b?ie.reshape([1,m,d,n.outChannels]):ie.reshape([1,n.outChannels,m,d])}fusedConv2d({input:e,filter:t,convInfo:n,bias:s,activation:i,preluActivationWeights:o}){if(n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return this.conv2dByMatMul(e,t,n,s,i,o);if(oe().getBool("WEBGL_CONV_IM2COL")&&e.shape[0]===1)return this.conv2dWithIm2Row(e,t,n,s,i,o);const a=s!=null,c=o!=null,h=i?Wm(i,!1):null,d=new rC(n,a,h,c),m=[e,t];return s&&m.push(s),o&&m.push(o),this.compileAndRun(d,m)}conv2d(e,t,n){if(n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return this.conv2dByMatMul(e,t,n);if(oe().getBool("WEBGL_CONV_IM2COL")&&e.shape[0]===1)return this.conv2dWithIm2Row(e,t,n);const s=new rC(n);return this.compileAndRun(s,[e,t])}conv2dDerInput(e,t,n){const s=new S8(n);return this.compileAndRun(s,[e,t])}conv2dDerFilter(e,t,n){const s=new L8(n);return this.compileAndRun(s,[e,t])}fusedDepthwiseConv2D({input:e,filter:t,convInfo:n,bias:s,activation:i,preluActivationWeights:o}){const a=oe().getBool("WEBGL_PACK_DEPTHWISECONV")&&n.strideWidth<=2&&n.outChannels/n.inChannels===1,c=i?Wm(i,a):null,h=[e,t],d=s!=null,m=o!=null;d&&h.push(s),m&&h.push(o);let f;return a?(f=new aC(n,d,c,m),this.compileAndRun(f,h)):(f=new oC(n,d,c,m),this.compileAndRun(f,h))}depthwiseConv2D(e,t,n){let s;return oe().getBool("WEBGL_PACK_DEPTHWISECONV")&&n.strideWidth<=2&&n.outChannels/n.inChannels===1?(s=new aC(n),this.compileAndRun(s,[e,t])):(s=new oC(n),this.compileAndRun(s,[e,t]))}depthwiseConv2DDerInput(e,t,n){const s=new A8(n);return this.compileAndRun(s,[e,t])}depthwiseConv2DDerFilter(e,t,n){const s=new T8(n);return this.compileAndRun(s,[e,t])}conv3d(e,t,n){const s=new v8(n);return this.compileAndRun(s,[e,t])}conv3dDerInput(e,t,n){const s=new x8(n);return this.compileAndRun(s,[e,t])}conv3dDerFilter(e,t,n){const s=new I8(n);return this.compileAndRun(s,[e,t])}unstack(e,t){const n=e.shape[t],s=new Array(e.rank-1);let i=0;for(let h=0;h<e.rank;h++)h!==t&&(s[i++]=e.shape[h]);const o=new Array(e.rank).fill(0),a=e.shape.slice();a[t]=1;const c=new Array(n);for(let h=0;h<c.length;h++)o[t]=h,c[h]=this.slice(e,o,a).reshape(s);return c}avgPool3d(e,t){const n=new TS(t,"avg",!1);return this.compileAndRun(n,[e],"float32")}avgPool3dBackprop(e,t,n){const s=new G5(n);return this.compileAndRun(s,[e],t.dtype)}maxPool3d(e,t){const n=new TS(t,"max",!1);return this.compileAndRun(n,[e],"float32")}maxPool3dBackprop(e,t,n,s){const i=!0,o=new TS(s,"max",i),a=this.compileAndRun(o,[t]),c=new d6(s),h=this.compileAndRun(c,[e,a],t.dtype);return a.dispose(),h}resizeBilinear(e,t,n,s){const i=oe().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new A6(e.shape,t,n,s):new T6(e.shape,t,n,s);return this.compileAndRun(i,[e],"float32")}resizeBilinearBackprop(e,t,n){const s=new x6(e,t,n);return this.compileAndRun(s,[e])}resizeNearestNeighbor(e,t,n,s){const i=new N6(e.shape,t,n,s);return this.compileAndRun(i,[e])}resizeNearestNeighborBackprop(e,t,n){const s=new v6(e,t,n);return this.compileAndRun(s,[e])}multinomial(e,t,n,s){const i=t?e:Fo(e),o=i.shape[0],a=i.shape[1],c=new p6(o,a,n),h=c.getCustomSetupFunc(s);return this.compileAndRun(c,[i],"int32",h)}oneHot(e,t,n,s){const i=new m6(e.size,t,n,s);return this.compileAndRun(i,[e])}diag(e){const t=new E8(e.size);return this.compileAndRun(t,[e])}cropAndResize(e,t,n,s,i,o){const a=new N8(e.shape,t.shape,s,i,o);return this.compileAndRun(a,[e,t,n],"float32")}depthToSpace(e,t,n){A(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`);const s=e.shape[0],i=n==="NHWC"?e.shape[1]:e.shape[2],o=n==="NHWC"?e.shape[2]:e.shape[3],a=n==="NHWC"?e.shape[3]:e.shape[1],c=i*t,h=o*t,d=a/(t*t),m=n==="NHWC"?[s,c,h,d]:[s,d,c,h],f=new O8(m,t,n);return this.compileAndRun(f,[e])}split(e,t,n){return yX(e,t,n)}scatterND(e,t,n){const{sliceRank:s,numUpdates:i,sliceSize:o,strides:a,outputSize:c}=_a(t,e,n),h=[c/o,o],d=e.reshape([i,s]),m=t.reshape([i,o]);if(c===0)return JA(sn([]),n);const f=Ce(0),b=new wC(i,s,d.rank,m.rank,a,h),w=this.compileAndRun(b,[m,d,f]);return w.reshape(n)}sparseToDense(e,t,n,s){const{sliceRank:i,numUpdates:o,strides:a,outputSize:c}=_a(t,e,n),h=!1,d=new wC(o,i,e.rank,t.rank,a,[c,1],h),m=this.compileAndRun(d,[t,e,s]);return m.reshape(n)}gatherND(e,t){const n=t.shape,s=n[n.length-1],[i,o,a,c]=Hd(e,t),h=t.reshape([o,s]),d=e.reshape([e.size/a,a]),m=new B8(s,c,[o,a]),f=this.compileAndRun(m,[d,h]);return f.reshape(i)}fill(e,t,n){if(n=n||wa(t),n==="string"){const s=ws(n,P(e));return s.fill(t),Ki().makeTensor(s,e,n,this)}else{const s=new W8(e,t),i=s.getCustomSetupFunc(t);return this.compileAndRun(s,[],n,i)}}onesLike(e){if(e.dtype==="string")throw new Error("onesLike is not supported under string dtype");return this.fill(e.shape,1,e.dtype)}zerosLike(e){return this.fill(e.shape,e.dtype==="string"?"":0,e.dtype)}linspace(e,t,n){return aw(e,t,n)}makeTensorInfo(e,t,n){const s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){const{dataId:s}=this.makeTensorInfo(e,t,n);return Ki().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){const t=new gX(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){const t=new f6(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){const n=[mc(e.shape),...fc(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},i=[mc(t),...fc(t)],o=new bC(i,n),a=!0,c=this.runWebGLProgram(o,[s],e.dtype,null,a);return{dataId:c.dataId,shape:t,dtype:c.dtype}}decode(e){const t=this.texData.get(e),{isPacked:n,shape:s,dtype:i}=t,o=wS(s);let a;n?a=new R8(o):a=new C8(o);const c=!0,h=this.runWebGLProgram(a,[{shape:o,dtype:i,dataId:e}],i,null,c);return{dtype:i,shape:s,dataId:h.dataId}}runWebGLProgram(e,t,n,s,i=!1){const o=this.makeTensorInfo(e.outputShape,n),a=this.texData.get(o.dataId);if(e.packedOutput&&(a.isPacked=!0),e.outPackingScheme===lu.DENSE){const L=uu(e.outputShape);a.texShape=L.map(x=>x*2)}if(e.outTexUsage!=null&&(a.usage=e.outTexUsage),P(o.shape)===0)return a.values=bt(o.dtype,0),o;const c=[],h=t.map(L=>{if(L.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let x=this.texData.get(L.dataId);if(x.texture==null){if(!e.packedInputs&&P(L.shape)<=oe().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:L.shape,texData:null,isUniform:!0,uniformValues:x.values};e.packedInputs&&(x.isPacked=!0,x.shape=L.shape)}else if(!!x.isPacked!==!!e.packedInputs)L=x.isPacked?this.unpackTensor(L):this.packTensor(L),c.push(L),x=this.texData.get(L.dataId);else if(x.isPacked&&!Rm(x.shape,L.shape)){const v=L,N=L.shape;L.shape=x.shape,L=this.packedReshape(L,N),c.push(L),x=this.texData.get(L.dataId),v.shape=N}return this.uploadToGPU(L.dataId),{shape:L.shape,texData:x,isUniform:!1}});this.uploadToGPU(o.dataId);const d={shape:o.shape,texData:a,isUniform:!1},m=o6(e,h,d),f=this.getAndSaveBinary(m,()=>i6(this.gpgpu,e,h,d)),b=this.activeTimers!=null;let w;if(b&&(w=this.startTimer()),r6(this.gpgpu,f,h,d,s),c.forEach(L=>this.disposeIntermediateTensorInfo(L)),b&&(w=this.endTimer(w),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(w)})),!oe().getBool("WEBGL_LAZILY_UNPACK")&&a.isPacked&&i===!1){const L=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),L}return o}compileAndRun(e,t,n,s,i=!1){n=n||t[0].dtype;const o=this.runWebGLProgram(e,t,n,s,i);return Ki().makeTensorFromDataId(o.dataId,o.shape,o.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){if(this.disposed)return;if(!oe().getBool("IS_TEST")){const e=Object.keys(this.binaryCache);e.forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]})}this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=Q(()=>{if(!oe().get("WEBGL_RENDER_FLOAT32_ENABLED")){const e=oe().getBool("DEBUG");oe().set("DEBUG",!1);const t=this.abs(Ce(1e-8)).dataSync()[0];if(oe().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?SX:IX}uploadToGPU(e){const t=this.texData.get(e),{shape:n,dtype:s,values:i,texture:o,usage:a,isPacked:c}=t;if(o!=null)return;const h=this.activeTimers!=null;let d;h&&(d=jn());let m=t.texShape;if(m==null&&(m=_K(n,c),t.texShape=m),i!=null){const f=wS(n);let b,w=m[1],L=m[0];const x=i instanceof Uint8Array;c?([w,L]=pc(m[0],m[1]),b=new _8(f,[L,w],x)):b=new F8(f,[L,w],x);const v=this.makeTensorInfo([L,w],s);x?this.texData.get(v.dataId).usage=Ns.PIXELS:this.texData.get(v.dataId).usage=Ns.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(v.dataId),w,L,i);const N=!0,O=this.runWebGLProgram(b,[v],s,null,N),E=this.texData.get(O.dataId);t.texture=E.texture,t.texShape=E.texShape,t.isPacked=E.isPacked,t.usage=E.usage,this.disposeIntermediateTensorInfo(v),this.texData.delete(O.dataId),t.values=null,h&&(this.uploadWaitMs+=jn()-d)}else{const f=this.acquireTexture(m,a,s,c);t.texture=f}}convertAndCacheOnCPU(e,t){const n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=CX(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){const i=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${i} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*Bg(t)}tryRunOnCpuOrThrow(e,t){if(this.shouldExecuteOnCPU(e))try{return t()}catch(n){if(oe().getBool("IS_TEST"))throw new Error("CPU forwarding failed")}return null}}function CX(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){const n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}const RX="2.7.0";function OX(){oe().set("WEBGL_FORCE_F16_TEXTURES",!0)}Uy()&&rb("webgl",()=>new NX,2);const one={forceHalfFloat:OX};function ur(e){const{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}const EX={kernelName:xl,backendName:"webgl",kernelFunc:ur};function Lc(e){const{inputs:t,backend:n}=e,{real:s,imag:i}=t,o=n.makeTensorInfo(s.shape,"complex64"),a=n.texData.get(o.dataId),c=ur({inputs:{x:s},backend:n}),h=n.texData.get(c.dataId);h.complexParentRefCount++;const d=ur({inputs:{x:i},backend:n}),m=n.texData.get(d.dataId);return m.complexParentRefCount++,a.complexTensorInfos={real:c,imag:d},o}const DX={kernelName:rd,backendName:"webgl",kernelFunc:Lc};const $C="if (isnan(x)) return x;",kX=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,FX=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function $m(e){return({inputs:t,backend:n})=>{const{x:s}=t,i=n,o=new st(s.shape,e);return i.runWebGLProgram(o,[s],s.dtype)}}function Sc({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:i,dtype:o}){return({inputs:a,backend:c})=>{const{a:h,b:d}=a,m=c;if(s&&h.dtype==="complex64"){const L=m.texData.get(h.dataId),x=m.texData.get(d.dataId),[v,N]=[[L.complexTensorInfos.real,x.complexTensorInfos.real],[L.complexTensorInfos.imag,x.complexTensorInfos.imag]].map(E=>{const[k,F]=E,U={dataId:k.dataId,dtype:k.dtype,shape:h.shape},$={dataId:F.dataId,dtype:F.dtype,shape:d.shape},Y=new _n(e,h.shape,d.shape);return m.runWebGLProgram(Y,[U,$],$n(k.dtype,F.dtype))}),O=Lc({inputs:{real:v,imag:N},backend:m});return m.disposeIntermediateTensorInfo(v),m.disposeIntermediateTensorInfo(N),O}const f=o||$n(h.dtype,d.dtype);if(m.shouldExecuteOnCPU([h,d])&&i!=null){const L=m.texData.get(h.dataId),x=m.texData.get(d.dataId),[v,N]=i(h.shape,d.shape,L.values,x.values,f),O=m.makeTensorInfo(N,f),E=m.texData.get(O.dataId);return E.values=v,O}const b=oe().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null;let w;return b?w=new lr(t,h.shape,d.shape,n):w=new _n(e,h.shape,d.shape),m.runWebGLProgram(w,[h,d],f)}}const UC="return a + b;",_X=Sc({opSnippet:UC,packedOpSnippet:UC,supportsComplex:!0,cpuKernelImpl:GK}),WX={kernelName:wo,backendName:"webgl",kernelFunc:_X};const $X=kX+`
|
|
return atan(a, b);
|
|
`,UX=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+FX+`
|
|
return result;
|
|
`,BX=Sc({opSnippet:$X,packedOpSnippet:UX}),MX={kernelName:nd,backendName:"webgl",kernelFunc:BX};function PX(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t;du(i,"avgPool");const{filterSize:o,strides:a,pad:c,dimRoundingMode:h}=s,d=1;A(cn(a,d),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${d}'`);const m=Un(i.shape,o,a,d,c,h);if(m.filterWidth===1&&m.filterHeight===1&&ae(m.inShape,m.outShape))return ur({inputs:{x:i},backend:n});const f=new mu(m,"avg",!1);return n.runWebGLProgram(f,[i],"float32")}const zX={kernelName:dl,backendName:"webgl",kernelFunc:PX};function VX(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,input:o}=t,a=o;du([i,o],"avgPoolBackprop");const{filterSize:c,strides:h,pad:d}=s,m=Un(a.shape,c,h,1,d),f=new V5(m);return n.runWebGLProgram(f,[i],a.dtype)}const GX={kernelName:sd,backendName:"webgl",kernelFunc:VX};class YX{constructor(e,t,n,s,i,o){this.outputShape=[],this.variableNames=["x","mean","variance"],nt(e,t),nt(e,n);let a="0.0";s!=null&&(nt(e,s),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let c="1.0";i!=null&&(nt(e,i),this.variableNames.push("scale"),c="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${a};
|
|
float scale = ${c};
|
|
float inv = scale * inversesqrt(variance + float(${o}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}}class HX{constructor(e,t,n,s,i,o){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],nt(e,t),nt(e,n);let a="vec4(0.0)";s!=null&&(nt(e,s),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let c="vec4(1.0)";i!=null&&(nt(e,i),this.variableNames.push("scale"),c="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${a};
|
|
vec4 scale = ${c};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${o}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}}const qX=({inputs:e,backend:t,attrs:n})=>{const{x:s,mean:i,variance:o,offset:a,scale:c}=e;A(i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(c==null||i.shape.length===c.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:h}=n;h==null&&(h=.001);const d=[s,i,o];let m=null;a!=null&&(m=a.shape,d.push(a));let f=null;c!=null&&(f=c.shape,d.push(c));const b=oe().getBool("WEBGL_PACK_NORMALIZATION")?new HX(s.shape,i.shape,o.shape,m,f,h):new YX(s.shape,i.shape,o.shape,m,f,h),w=t.runWebGLProgram(b,d,d[0].dtype);return w},jX={kernelName:Il,backendName:"webgl",kernelFunc:qX};const KX="return float(a != b);",BC=Sc({opSnippet:KX,dtype:"bool"}),XX={kernelName:Dl,backendName:"webgl",kernelFunc:BC};function vS(e){const{inputs:t,backend:n}=e,{input:s}=t,i=n.texData.get(s.dataId);return ur({inputs:{x:i.complexTensorInfos.real},backend:n})}const JX={kernelName:Td,backendName:"webgl",kernelFunc:vS};const ZX="return float(int(x));";function QX(e,t){const n=new st(e.shape,ZX),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function NS(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{dtype:o}=s;if(o==="complex64"){if(i.dtype==="complex64")return ur({inputs:{x:i},backend:n});const a=dt(i.shape),c=NS({inputs:{x:i},backend:n,attrs:{dtype:"float32"}}),h=Lc({inputs:{real:c,imag:a},backend:n});return a.dispose(),n.disposeIntermediateTensorInfo(c),h}if(i.dtype==="complex64"){const a=vS({inputs:{input:i},backend:n}),c=NS({inputs:{x:a},backend:n,attrs:{dtype:o}});return n.disposeIntermediateTensorInfo(a),c}if(!ba(i.dtype,o)){const a=ur({inputs:{x:i},backend:n});return{dataId:a.dataId,shape:a.shape,dtype:o}}if(o==="int32")return QX(i,n);if(o==="bool"){const a=n.makeTensorInfo([],"bool",bt("bool",1)),c={a:i,b:a},h=BC({inputs:c,backend:n});return n.disposeIntermediateTensorInfo(a),h}throw new Error(`Error in Cast: failed to cast ${i.dtype} to ${o}`)}const e7={kernelName:Sa,backendName:"webgl",kernelFunc:NS};class t7{constructor(e){this.outputShape=[],this.outputShape=Xi(e,1),this.variableNames=e.map((o,a)=>`T${a}`);const t=new Array(e.length-1);t[0]=e[0][1];for(let o=1;o<t.length;o++)t[o]=t[o-1]+e[o][1];const n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let o=1;o<t.length;o++){const a=t[o-1];n.push(`else if (yC < ${t[o]}) setOutput(getT${o}(yR, yC-${a}));`)}const s=t.length,i=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${i}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}}class n7{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=Xi(e,t);const n=this.outputShape,s=n.length,i=Rt(s),o=Mn("coords",s),a=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((L,x)=>`T${x}`);const c=new Array(e.length-1);c[0]=e[0][t];for(let L=1;L<c.length;L++)c[L]=c[L-1]+e[L][t];const h=a[t],d=a.slice(-2),m=a.join();let f=`if (${h} < ${c[0]}) {
|
|
return getChannel(
|
|
getT0(${m}), vec2(${d.join()}));
|
|
}`;for(let L=1;L<c.length;L++){const x=c[L-1];f+=`
|
|
if (${h} < ${c[L]} && ${h} >= ${c[L-1]}) {
|
|
return getChannel(
|
|
getT${L}(${Um(a,h,x)}),
|
|
vec2(${Um(d,h,x)}));
|
|
}`}const b=c.length,w=c[c.length-1];f+=`
|
|
return getChannel(
|
|
getT${b}(${Um(a,h,w)}),
|
|
vec2(${Um(d,h,w)}));`,this.userCode=`
|
|
float getValue(${a.map(L=>"int "+L)}) {
|
|
${f}
|
|
}
|
|
|
|
void main() {
|
|
${i} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${o}), 0., 0., 0.);
|
|
|
|
${o[s-1]} = ${o[s-1]} + 1;
|
|
if (${o[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${o});
|
|
}
|
|
|
|
${o[s-2]} = ${o[s-2]} + 1;
|
|
if (${o[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${o});
|
|
}
|
|
|
|
${o[s-1]} = ${o[s-1]} - 1;
|
|
if (${o[s-2]} < ${n[s-2]} &&
|
|
${o[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${o});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}}function Um(e,t,n){const s=e.indexOf(t),i=e.map((o,a)=>a===s?`${o} - ${n}`:o);return i.join()}function MC(e){const{inputs:t,backend:n}=e,{input:s}=t,i=n.texData.get(s.dataId);return ur({inputs:{x:i.complexTensorInfos.imag},backend:n})}const s7={kernelName:gd,backendName:"webgl",kernelFunc:MC};function i7(e,t,n){const s=[mc(e.shape),...fc(e.shape)],i={dtype:e.dtype,shape:s,dataId:e.dataId},o=[mc(t),...fc(t)],a=new bC(o,s),c=!0,h=n.runWebGLProgram(a,[i],e.dtype,null,c);return{dataId:h.dataId,shape:t,dtype:h.dtype}}function dr(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{shape:o}=s,a=n,c=P(i.shape),h=Vt(o,c),d=P(h);A(c===d,()=>`The new shape (${h}) has ${d} elements and the old shape (${i.shape}) has ${c} elements. The new shape and old shape must have the same number of elements.`);const m=a.texData.get(i.dataId);return m.isPacked&&!Rm(i.shape,h)&&!(m.texture!==null&&Rm(m.shape,h))?i7(i,h,a):(a.incRef(i.dataId),{dataId:i.dataId,shape:h,dtype:i.dtype})}const r7={kernelName:_l,backendName:"webgl",kernelFunc:dr};function Ic(e,t,n){const s=e[0].dtype;if(s==="complex64"){const d=e.map(L=>vS({inputs:{input:L},backend:n})),m=e.map(L=>MC({inputs:{input:L},backend:n})),f=Ic(d,t,n),b=Ic(m,t,n),w=Lc({inputs:{real:f,imag:b},backend:n});return d.forEach(L=>n.disposeIntermediateTensorInfo(L)),m.forEach(L=>n.disposeIntermediateTensorInfo(L)),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),w}if(e.length>oe().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){const d=Math.floor(e.length/2),m=Ic(e.slice(0,d),t,n),f=Ic(e.slice(d),t,n),b=Ic([m,f],t,n);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),b}if(oe().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){const d=new n7(e.map(m=>m.shape),t);return n.runWebGLProgram(d,e,s)}const i=Xi(e.map(d=>d.shape),t),o=e.map(d=>dr({inputs:{x:d},attrs:{shape:[-1,P(d.shape.slice(t))]},backend:n})),a=new t7(o.map(d=>d.shape)),c=n.runWebGLProgram(a,o,s);o.forEach(d=>n.disposeIntermediateTensorInfo(d));const h=dr({inputs:{x:c},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(c),h}function o7(e){const{inputs:t,backend:n,attrs:s}=e,{axis:i}=s,o=qe(i,t[0].shape)[0],a=Xi(t.map(d=>d.shape),o);if(P(a)===0)return n.makeTensorInfo(a,t[0].dtype,[]);const c=t.filter(d=>P(d.shape)>0);if(c.length===1)return c[0];const h=c.map(d=>d.shape);return np(h,o),Ic(c,o,n)}const a7={kernelName:fl,backendName:"webgl",kernelFunc:o7};const c7=$C+`
|
|
return cos(x);
|
|
`,l7=$m(c7),h7={kernelName:Ia,backendName:"webgl",kernelFunc:l7};const u7=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,d7=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,p7=Sc({opSnippet:u7,packedOpSnippet:d7,checkOutOfBounds:!0}),m7={kernelName:xa,backendName:"webgl",kernelFunc:p7};class PC{constructor(e,t,n){this.variableNames=["real","imag"];const s=t[1];this.outputShape=t;const i=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,o=n?`${s}.0`:"1.0";let a;if(e==="real")a="return real * expR - imag * expI;";else if(e==="imag")a="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${i};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${a}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${o};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}}function zC(e,t,n){const s=n.texData.get(e.dataId),i=P(e.shape),o=e.shape[e.shape.length-1],a=i/o,c=dr({inputs:{x:e},backend:n,attrs:{shape:[a,o]}}),h=c.shape,d=new PC("real",h,t),m=new PC("imag",h,t),f=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:h},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:h}],b=n.runWebGLProgram(d,f,"float32"),w=n.runWebGLProgram(m,f,"float32"),L=Lc({inputs:{real:b,imag:w},backend:n});n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(w);const x=dr({inputs:{x:L},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(x),x}function f7(e){const{inputs:t,backend:n}=e,{input:s}=t;return zC(s,!1,n)}const g7={kernelName:pd,backendName:"webgl",kernelFunc:f7};class y7{constructor(e){this.variableNames=["Image"],this.outputShape=[];const t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}}const b7={kernelName:md,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{const{image:n}=e,s=t,i=new y7(n.shape),o=s.runWebGLProgram(i,[n],n.dtype);return o}};class w7{constructor(e){this.variableNames=["A"];const t=Pn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}}class L7{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;const t=Pn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}}const S7={kernelName:Rd,backendName:"webgl",kernelFunc:I7};let xc;function I7(e){const{inputs:t,backend:n,attrs:s}=e;let{pixels:i}=t;const{numChannels:o}=s,a=typeof HTMLVideoElement!="undefined"&&i instanceof HTMLVideoElement,c=typeof HTMLImageElement!="undefined"&&i instanceof HTMLImageElement,[h,d]=a?[i.videoWidth,i.videoHeight]:[i.width,i.height],m=[d,h],f=[d,h,o];(c||a)&&(xc==null&&(xc=document.createElement("canvas").getContext("2d")),xc.canvas.width=h,xc.canvas.height=d,xc.drawImage(i,0,0,h,d),i=xc.canvas);const b=n.makeTensorInfo(m,"int32");n.texData.get(b.dataId).usage=Ns.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(b.dataId),i);const w=oe().getBool("WEBGL_PACK")?new L7(f):new w7(f),L=n.runWebGLProgram(w,[b],"int32");return n.disposeData(b.dataId),L}function x7(e){const{inputs:t,backend:n}=e,{input:s}=t;return zC(s,!0,n)}const T7={kernelName:fd,backendName:"webgl",kernelFunc:x7};class VC{constructor(e,t){this.variableNames=["x"];const{windowSize:n,batchSize:s,inSize:i,outSize:o}=e;this.outputShape=[s,o];const a=Math.floor(n/4)*4,c=n%4;let h="sumValue += dot(values, ones);";if(t!=null){const m=1/t;h=`sumValue += dot(values * ${Le(m)?m.toPrecision(2):m}, ones);`}let d="";i%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${i}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${a};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${h}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}}function A7(e){const t=[];for(;t.length===0||t[t.length-1].outSize!==1;){const n=t.length?t[t.length-1].outSize:e[1],s=uh(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function GC(e,t,n,s){const i=A7(e.shape);let o=e;for(let a=0;a<i.length;a++){const{inSize:c,windowSize:h,outSize:d}=i[a];let m,f;n==="mean"?m=a===0?new VC({windowSize:h,inSize:c,batchSize:e.shape[0],outSize:d},c):new VC({windowSize:h,inSize:c,batchSize:e.shape[0],outSize:d}):m=new yC({windowSize:h,inSize:c,batchSize:e.shape[0],outSize:d},n),f=o,o=s.runWebGLProgram(m,[o],t),f.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(f)}return o}function v7(e,t,n,s){const i=P(t),o=P(e.shape),a=o/i,c=dr({inputs:{x:e},attrs:{shape:[a,i]},backend:s}),h=GC(c,e.dtype,"max",s),d=dr({inputs:{x:h},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(c),s.disposeIntermediateTensorInfo(h),d}class N7{constructor(e,t){this.variableNames=["A"];const n=new Array(e.length);for(let o=0;o<n.length;o++)n[o]=e[t[o]];this.outputShape=n,this.rank=n.length;const s=Rt(this.rank),i=C7(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${i}));
|
|
}
|
|
`}}function C7(e){const t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);const n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let i=0;i<e.length;i++)s[e[i]]=n[i];return s.join()}class R7{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;const n=new Array(e.length);for(let d=0;d<n.length;d++)n[d]=e[t[d]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);const s=Rt(this.rank),i=J0("rc",this.rank),o=new Array(this.rank);for(let d=0;d<t.length;d++)o[t[d]]=i[d];const a=`vec2(${o.slice(-2).join()})`,c=`++${i[this.rank-1]} < ${n[this.rank-1]}`,h=`getChannel(getA(${o.join()}), ${a})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${h};
|
|
if(${c}) {
|
|
result[1] = ${h};
|
|
}
|
|
--${i[this.rank-1]};
|
|
if(++${i[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${h};
|
|
if(${c}) {
|
|
result[3] = ${h};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}}function CS(e,t,n){const s=oe().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new R7(e.shape,t):new N7(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}const O7={kernelName:Rl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{reductionIndices:i,keepDims:o}=t,a=n,c=s.shape.length,h=qe(i,s.shape);let d=h;const m=Xn(d,c),f=m!=null,b=a.shouldExecuteOnCPU([s]);let w=s;if(f){if(b){const O=a.texData.get(w.dataId),E=O.values,k=new Array(c);for(let $=0;$<k.length;$++)k[$]=s.shape[m[$]];const F=SS(E,s.shape,s.dtype,m,k);w=a.makeTensorInfo(k,s.dtype);const U=a.texData.get(w.dataId);U.values=F}else w=CS(s,m,a);d=as(d.length,c)}Kn("max",d,c);const[L,x]=An(w.shape,d);let v=L;o&&(v=vn(L,h));let N;if(b){const O=a.texData.get(w.dataId),E=O.values,k=XK(E,P(x),v,s.dtype);N=a.makeTensorInfo(v,s.dtype);const F=a.texData.get(N.dataId);F.values=k}else N=v7(w,x,v,a);return f&&a.disposeIntermediateTensorInfo(w),N}};function E7(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t;du(i,"maxPool");const{filterSize:o,strides:a,pad:c,dimRoundingMode:h}=s,d=1;A(cn(a,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${d}'`);const m=Un(i.shape,o,a,d,c,h);if(m.filterWidth===1&&m.filterHeight===1&&ae(m.inShape,m.outShape))return ur({inputs:{x:i},backend:n});const f=new mu(m,"max",!1);return n.runWebGLProgram(f,[i],i.dtype)}const D7={kernelName:Ol,backendName:"webgl",kernelFunc:E7};function k7(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,input:o,output:a}=t,c=o;du([o,a],"maxPoolBackprop");const{filterSize:h,strides:d,pad:m,dimRoundingMode:f}=s,b=Un(c.shape,h,d,1,m,f),w=!0,L=new mu(b,"max",w),x=n.runWebGLProgram(L,[c],c.dtype),v=new u6(b),N=n.runWebGLProgram(v,[i,x],c.dtype);return n.disposeIntermediateTensorInfo(x),N}const F7={kernelName:bd,backendName:"webgl",kernelFunc:k7};function _7(e,t,n,s){let i=new mu(n,"max",!1);const o=s.runWebGLProgram(i,[e],"float32");i=new mu(n,"max",!0,!0,t);const a=s.runWebGLProgram(i,[e],"float32");return[o,a]}const W7={kernelName:wd,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{filterSize:i,strides:o,pad:a,includeBatchInIndex:c}=t,h=n;A(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);const d=[1,1];A(cn(o,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${d}'`);const m=Un(s.shape,i,o,d,a),[f,b]=_7(s,c,m,h);return[f,b]}};function $7(e,t,n,s){const i=P(t),o=P(e.shape),a=o/i,c=dr({inputs:{x:e},attrs:{shape:[a,i]},backend:s}),h=GC(c,"float32","mean",s),d=dr({inputs:{x:h},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(c),s.disposeIntermediateTensorInfo(h),d}const U7={kernelName:hy,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{keepDims:i,axis:o}=t,a=n,c=s.shape.length,h=qe(o,s.shape);let d=h;const m=Xn(d,c),f=m!=null,b=a.shouldExecuteOnCPU([s]),w=[];let L=s;if(f){if(b){const E=a.texData.get(L.dataId),k=E.values,F=new Array(c);for(let Y=0;Y<F.length;Y++)F[Y]=s.shape[m[Y]];const U=SS(k,s.shape,s.dtype,m,F);L=a.makeTensorInfo(F,s.dtype);const $=a.texData.get(L.dataId);$.values=U}else L=CS(s,m,a);w.push(L),d=as(d.length,c)}Kn("sum",d,c);const[x,v]=An(L.shape,d);let N=x;i&&(N=vn(x,h));const O=$7(L,v,N,a);for(const E of w)a.disposeIntermediateTensorInfo(E);return O}};class B7{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((d,m)=>d[0]+e[m]+d[1]);const s=e.length,i=Rt(s),o=t.map(d=>d[0]).join(","),a=t.map((d,m)=>d[0]+e[m]).join(","),c=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),h=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${o};
|
|
int end = ${a};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${h};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${h};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${i} start = ${i}(${o});
|
|
${i} end = ${i}(${a});
|
|
|
|
void main() {
|
|
${i} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${h};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${h};
|
|
}
|
|
}
|
|
${i} coords = outC - start;
|
|
setOutput(getX(${c}));
|
|
}
|
|
`}}class M7{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((w,L)=>w[0]+e[L]+w[1]);const s=e.length,i=Rt(s),o=t.map(w=>w[0]).join(","),a=t.map((w,L)=>w[0]+e[L]).join(","),c=Mn("rc",s),h=Mn("source",s),d=`${c[s-1]} < ${this.outputShape[s-1]}`,m=s===1?"source":`vec2(${h.slice(-2).join()})`,f=n==="reflect"?0:1;let b="";if(s===1){const w=`
|
|
${i} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${f};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${f};
|
|
}
|
|
source -= start;
|
|
`;b=`
|
|
${i} rc = outputLoc;
|
|
${w}
|
|
result[0] = getChannel(getX(${h.join()}), ${m});
|
|
${c[s-1]} += 1;
|
|
if(${d}) {
|
|
${w}
|
|
result[1] = getChannel(getX(${h.join()}), ${m});
|
|
}
|
|
`}else{const w=`
|
|
${i} source = rc;
|
|
${i} lt = ${i}(lessThan(source, start));
|
|
${i} gte = ${i}(greaterThanEqual(source, end));
|
|
${i} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${f}) +
|
|
gte * ((end - 1) * 2 - source + ${f});
|
|
source -= start;
|
|
`;b=`
|
|
${i} rc = outputLoc;
|
|
${w}
|
|
result[0] = getChannel(getX(${h.join()}), ${m});
|
|
${c[s-1]} += 1;
|
|
if(${d}) {
|
|
${w}
|
|
result[1] = getChannel(getX(${h.join()}), ${m});
|
|
}
|
|
rc = outputLoc;
|
|
${c[s-2]} += 1;
|
|
if(${c[s-2]} < ${this.outputShape[s-2]}) {
|
|
${w}
|
|
result[2] = getChannel(getX(${h.join()}), ${m});
|
|
${c[s-1]} += 1;
|
|
if(${d}) {
|
|
${w}
|
|
result[3] = getChannel(getX(${h.join()}), ${m});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${i} start = ${i}(${o});
|
|
const ${i} end = ${i}(${a});
|
|
|
|
void main() {
|
|
${i} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}}const P7=({inputs:e,backend:t,attrs:n})=>{const{x:s}=e,{paddings:i,mode:o}=n,a=oe().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new M7(s.shape,i,o):new B7(s.shape,i,o),c=t.runWebGLProgram(a,[s],s.dtype);return c},z7={kernelName:El,backendName:"webgl",kernelFunc:P7};const YC={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"};class HC{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=nt(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}}const qC="return a * b;";function V7(e){const{inputs:t,backend:n}=e,{a:s,b:i}=t,o=$n(s.dtype,i.dtype);if(s.dtype==="complex64"){const c=n.texData.get(s.dataId),h=n.texData.get(i.dataId),d=new HC(YC.REAL,s.shape,i.shape),m=new HC(YC.IMAG,s.shape,i.shape),f=[{dataId:c.complexTensorInfos.real.dataId,dtype:c.complexTensorInfos.real.dtype,shape:s.shape},{dataId:c.complexTensorInfos.imag.dataId,dtype:c.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:h.complexTensorInfos.real.dataId,dtype:h.complexTensorInfos.real.dtype,shape:i.shape},{dataId:h.complexTensorInfos.imag.dataId,dtype:h.complexTensorInfos.imag.dtype,shape:i.shape}],b=n.runWebGLProgram(d,f,"float32"),w=n.runWebGLProgram(m,f,"float32"),L=Lc({inputs:{real:b,imag:w},backend:n});return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(w),L}if(n.shouldExecuteOnCPU([s,i])){const c=n.texData.get(s.dataId),h=n.texData.get(i.dataId),[d,m]=JK(s.shape,i.shape,c.values,h.values,o),f=n.makeTensorInfo(m,o),b=n.texData.get(f.dataId);return b.values=d,f}let a;return oe().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new lr(qC,s.shape,i.shape):a=new _n(qC,s.shape,i.shape),n.runWebGLProgram(a,[s,i],o)}const G7={kernelName:Ta,backendName:"webgl",kernelFunc:V7};const Y7={kernelName:fy,backendName:"webgl",kernelFunc:({inputs:e,backend:t,attrs:n})=>{Za("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes:s,scores:i}=e,{maxOutputSize:o,iouThreshold:a,scoreThreshold:c}=n,h=t,d=h.readSync(s.dataId),m=h.readSync(i.dataId),f=o,b=a,w=c;return Dp(d,m,f,b,w)}};const H7=kp,q7={kernelName:Ld,backendName:"webgl",kernelFunc:({inputs:e,backend:t,attrs:n})=>{Za("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes:s,scores:i}=e,{maxOutputSize:o,iouThreshold:a,scoreThreshold:c,padToMaxOutputSize:h}=n,d=t,m=d.readSync(s.dataId),f=d.readSync(i.dataId),{selectedIndices:b,validOutputs:w}=H7(m,f,o,a,c,h);return[b,w]}};const j7=Fp,K7={kernelName:Sd,backendName:"webgl",kernelFunc:({inputs:e,backend:t,attrs:n})=>{Za("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes:s,scores:i}=e,{maxOutputSize:o,iouThreshold:a,scoreThreshold:c,softNmsSigma:h}=n,d=t,m=d.readSync(s.dataId),f=d.readSync(i.dataId),b=o,w=a,L=c,x=h,{selectedIndices:v,selectedScores:N}=j7(m,f,b,w,L,x);return[v,N]}};class X7{constructor(e,t,n,s){this.variableNames=["Image"],this.outputShape=[];const i=e[1],o=e[2],a=Math.sin(t).toFixed(3),c=Math.cos(t).toFixed(3);this.outputShape=e;const[h,d]=Jb(s,i,o),m=h.toFixed(3),f=d.toFixed(3);let b="";typeof n=="number"?b=`float outputValue = ${n.toFixed(2)};`:b=`
|
|
vec3 fill = vec3(${n.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - ${m}) * ${c} - (float(y) - ${f}) * ${a};
|
|
float coordYFloat = (float(x) - ${m}) * ${a} + (float(y) - ${f}) * ${c};
|
|
int coordX = int(round(coordXFloat + ${m}));
|
|
int coordY = int(round(coordYFloat + ${f}));
|
|
${b}
|
|
if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${i}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}}const J7={kernelName:Od,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{image:s}=e,{radians:i,fillValue:o,center:a}=t,c=n,h=new X7(s.shape,i,o,a),d=c.runWebGLProgram(h,[s],s.dtype);return d}};const Z7=$C+`
|
|
return sin(x);
|
|
`,Q7=$m(Z7),eJ={kernelName:Aa,backendName:"webgl",kernelFunc:Q7};const tJ="return x * x;",nJ=$m(tJ),sJ={kernelName:Nd,backendName:"webgl",kernelFunc:nJ};const jC="return (a - b) * (a - b);",iJ=Sc({opSnippet:jC,packedOpSnippet:jC}),rJ={kernelName:va,backendName:"webgl",kernelFunc:iJ};const KC="return a - b;",oJ=Sc({opSnippet:KC,packedOpSnippet:KC,supportsComplex:!0,cpuKernelImpl:e5}),aJ={kernelName:Na,backendName:"webgl",kernelFunc:oJ};const cJ="return tan(x);",lJ=$m(cJ),hJ={kernelName:Ca,backendName:"webgl",kernelFunc:lJ};const uJ={kernelName:Hl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{perm:i}=t,o=n,a=s.shape.length,c=new Array(a);for(let d=0;d<c.length;d++)c[d]=s.shape[i[d]];let h;if(o.shouldExecuteOnCPU([s])){const d=o.texData.get(s.dataId),m=d.values,f=SS(m,s.shape,s.dtype,i,c);h=o.makeTensorInfo(c,s.dtype);const b=o.texData.get(h.dataId);b.values=f}else h=CS(s,i,o);return h}};function dJ(e){const{inputs:t,attrs:n,backend:s}=e,{axis:i}=n,{x:o}=t;du(o,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");const a=s.readSync(o.dataId),{outputValues:c,outputShape:h,indices:d}=t5(a,i,o.shape,o.dtype);return[s.makeTensorInfo(h,o.dtype,c),s.makeTensorInfo([d.length],"int32",d)]}const pJ={kernelName:Cd,backendName:"webgl",kernelFunc:dJ};const mJ=[WX,MX,zX,GX,jX,e7,DX,a7,h7,m7,g7,b7,S7,EX,T7,s7,O7,D7,F7,W7,U7,z7,G7,Y7,q7,K7,XX,JX,r7,J7,eJ,sJ,aJ,rJ,hJ,uJ,pJ];for(const e of mJ)_d(e);const fJ="2.7.0";const gJ={"tfjs-core":zT,"tfjs-backend-cpu":Dq,"tfjs-backend-webgl":RX,"tfjs-data":y0,"tfjs-layers":lm,"tfjs-converter":KN,tfjs:fJ};r.Abs=td,r.Acos=ol,r.Acosh=al,r.AdadeltaOptimizer=Th,r.AdagradOptimizer=Ah,r.AdamOptimizer=vh,r.AdamaxOptimizer=Nh,r.Add=wo,r.AddN=Gg,r.All=Rx,r.Any=Ox,r.ArgMax=Yg,r.ArgMin=Hg,r.Asin=cl,r.Asinh=ll,r.Atan=hl,r.Atan2=nd,r.Atanh=ul,r.AvgPool=dl,r.AvgPool3D=qg,r.AvgPool3DBackprop=Ex,r.AvgPoolBackprop=sd,r.BatchMatMul=id,r.BatchToSpaceND=jg,r.BroadcastTo=Kg,r.Callback=FN,r.CallbackList=Cv,r.Cast=Sa,r.Ceil=pl,r.ClipByValue=ml,r.Complex=rd,r.Concat=fl,r.Conv2D=od,r.Conv2DBackpropFilter=Xg,r.Conv2DBackpropInput=ad,r.Conv3D=cd,r.Conv3DBackpropFilterV2=Jg,r.Conv3DBackpropInputV2=Zg,r.Cos=Ia,r.Cosh=gl,r.CropAndResize=Dx,r.Cumsum=Qg,r.CustomCallback=Ov,r.DataStorage=p,r.DepthToSpace=kx,r.DepthwiseConv2dNative=ld,r.DepthwiseConv2dNativeBackpropFilter=ey,r.DepthwiseConv2dNativeBackpropInput=ty,r.Diag=Fx,r.Dilation2D=hd,r.Dilation2DBackpropFilter=dd,r.Dilation2DBackpropInput=ud,r.Div=xa,r.EarlyStopping=WN,r.Elu=yl,r.EluGrad=_x,r.Environment=vx,r.Equal=Wx,r.Erf=bl,r.Exp=wl,r.Expm1=Ll,r.FFT=pd,r.Fill=ny,r.FlipLeftRight=md,r.Floor=Sl,r.FloorDiv=sy,r.FromPixels=Rd,r.FusedBatchNorm=Il,r.FusedConv2D=Dd,r.FusedDepthwiseConv2D=kd,r.GatherNd=$x,r.GatherV2=iy,r.GraphModel=jN,r.Greater=Ux,r.GreaterEqual=ry,r.History=Rv,r.IFFT=fd,r.Identity=xl,r.Imag=gd,r.InputSpec=Ln,r.IsFinite=Tl,r.IsInf=Al,r.IsNan=vl,r.KernelBackend=y,r.LRN=ay,r.LRNBackprop=Gx,r.LayerVariable=si,r.LayersModel=rr,r.Less=Bx,r.LessEqual=Mx,r.LinSpace=Px,r.Log=Nl,r.Log1p=Cl,r.LogSoftmax=oy,r.LogicalAnd=zx,r.LogicalNot=yd,r.LogicalOr=Vx,r.Max=Rl,r.MaxPool=Ol,r.MaxPool3D=ly,r.MaxPool3DBackprop=Yx,r.MaxPoolBackprop=bd,r.MaxPoolWithArgmax=wd,r.Maximum=cy,r.Mean=hy,r.Min=uy,r.Minimum=dy,r.MirrorPad=El,r.Mod=py,r.MomentumOptimizer=Ch,r.Multiply=Ta,r.Negate=my,r.NonMaxSuppressionV3=fy,r.NonMaxSuppressionV4=Ld,r.NonMaxSuppressionV5=Sd,r.NotEqual=Dl,r.OP_SCOPE_SUFFIX=pT,r.OneHot=yy,r.OnesLike=gy,r.Optimizer=er,r.PadV2=Id,r.Pool=qD,r.Pow=by,r.Prelu=xd,r.Prod=Hx,r.RMSPropOptimizer=Rh,r.RNN=Ei,r.Range=qx,r.Real=Td,r.Reciprocal=kl,r.Relu=Fl,r.Relu6=Wl,r.Reshape=_l,r.ResizeBilinear=Ly,r.ResizeBilinearGrad=Kx,r.ResizeNearestNeighbor=wy,r.ResizeNearestNeighborGrad=jx,r.Reverse=Sy,r.RotateWithOffset=Od,r.Round=$l,r.Rsqrt=Ul,r.SGDOptimizer=Ja,r.ScatterNd=Xx,r.SelectV2=Iy,r.Selu=Bl,r.Sequential=rc,r.Sigmoid=zl,r.Sign=Pl,r.Sin=Aa,r.Sinh=Ml,r.Slice=Ad,r.Softmax=Ay,r.Softplus=Vl,r.SpaceToBatchND=vd,r.SparseToDense=Jx,r.SplitV=Ty,r.Sqrt=Gl,r.Square=Nd,r.SquaredDifference=va,r.Step=ql,r.StridedSlice=Zx,r.Sub=Na,r.Sum=xy,r.SymbolicTensor=ii,r.Tan=Ca,r.Tanh=Yl,r.Tensor=ee,r.TensorBuffer=an,r.Tile=vy,r.TopK=Qx,r.Transpose=Hl,r.Unique=Cd,r.Unpack=Ny,r.UnsortedSegmentSum=Cy,r.Variable=Ql,r.ZerosLike=Ry,r._FusedMatMul=Ed,r.abs=dn,r.acos=ob,r.acosh=ab,r.add=be,r.addN=YT,r.addStrict=SA,r.all=Qd,r.any=ih,r.argMax=rh,r.argMin=lb,r.asin=hb,r.asinh=ub,r.atan=db,r.atan2=pb,r.atanh=mb,r.avgPool=ah,r.avgPool3d=yb,r.backend=GT,r.backend_util=cw,r.basicLSTMCell=d_,r.batchNorm=No,r.batchNorm2d=qT,r.batchNorm3d=jT,r.batchNorm4d=KT,r.batchToSpaceND=ch,r.booleanMaskAsync=TU,r.broadcastTo=lh,r.browser=fF,r.buffer=wt,r.callbacks=jG,r.cast=Ae,r.ceil=bb,r.clipByValue=Jn,r.clone=kr,r.complex=ji,r.concat=Yt,r.concat1d=XT,r.concat2d=JT,r.concat3d=ZT,r.concat4d=QT,r.constraints=wz,r.conv1d=ip,r.conv2d=Ji,r.conv2dTranspose=rp,r.conv3d=Lb,r.conv3dTranspose=k_,r.copyRegisteredKernels=XD,r.cos=hh,r.cosh=op,r.cosineWindow=qb,r.cumsum=ap,r.customGrad=Ai,r.data=KH,r.deprecationWarn=un,r.depthToSpace=Sb,r.depthwiseConv2d=Co,r.deregisterOp=XG,r.device_util=fk,r.diag=M_,r.dilation2d=Ib,r.disableDeprecationWarnings=CF,r.dispose=He,r.disposeVariables=RF,r.div=We,r.divNoNan=xb,r.divStrict=IA,r.dot=tA,r.dropout=kA,r.elu=Ua,r.enableDebugMode=NF,r.enableProdMode=vF,r.enclosingPowerOfTwo=FA,r.engine=Ki,r.env=oe,r.equal=Xs,r.equalStrict=fA,r.erf=Tb,r.exp=Is,r.expandDims=Zn,r.expm1=Ab,r.eye=cp,r.fft=Lh,r.fill=Ba,r.findBackend=_F,r.findBackendFactory=WF,r.floor=Ma,r.floorDiv=Zd,r.fused=sB,r.gather=Pa,r.gatherND=DA,r.gather_util=gF,r.getBackend=kF,r.getGradient=Ey,r.getKernel=Oy,r.getKernelsForBackend=Fd,r.grad=bW,r.grads=wW,r.greater=xs,r.greaterEqual=Zi,r.greaterEqualStrict=gA,r.greaterStrict=yA,r.ifft=qa,r.imag=dh,r.image=zr,r.inTopKAsync=XU,r.initializers=t3,r.input=eN,r.io=rF,r.irfft=xp,r.isFinite=sA,r.isInf=iA,r.isNaN=rA,r.keep=bn,r.kernel_impls=pM,r.layers=AG,r.leakyRelu=lp,r.less=ph,r.lessEqual=Ur,r.lessEqualStrict=bA,r.lessStrict=wA,r.linalg=GA,r.linspace=oA,r.loadGraphModel=pH,r.loadLayersModel=sV,r.localResponseNormalization=Nb,r.log=cs,r.log1p=hp,r.logSigmoid=aA,r.logSoftmax=dp,r.logSumExp=Rb,r.logicalAnd=Us,r.logicalNot=mh,r.logicalOr=pp,r.logicalXor=cA,r.losses=lM,r.matMul=ct,r.math=dF,r.max=Qn,r.maxPool=fh,r.maxPool3d=Ob,r.maxPoolWithArgmax=lA,r.maximum=$s,r.maximumStrict=xA,r.mean=qt,r.memory=Jd,r.metrics=PG,r.min=Va,r.minimum=Oo,r.minimumStrict=TA,r.mirrorPad=Eb,r.mod=mp,r.modStrict=AA,r.model=tV,r.models=zG,r.moments=fp,r.movingAverage=zU,r.mul=X,r.mulStrict=vA,r.multiRNNCell=YW,r.multinomial=hA,r.neg=Ht,r.nextFrame=_p,r.norm=vp,r.notEqual=Br,r.notEqualStrict=LA,r.oneHot=To,r.ones=Js,r.onesLike=Fn,r.op=z,r.outerProduct=JW,r.pad=vi,r.pad1d=e$,r.pad2d=n$,r.pad3d=i$,r.pad4d=o$,r.pool=uA,r.pow=Zs,r.powStrict=NA,r.prelu=yh,r.print=IT,r.prod=gp,r.profile=OF,r.rand=f$,r.randomGamma=R$,r.randomNormal=Fb,r.randomUniform=ko,r.range=bh,r.ready=DF,r.real=Ga,r.reciprocal=_b,r.registerBackend=rb,r.registerCallbackConstructor=iV,r.registerGradient=eT,r.registerKernel=_d,r.registerOp=KG,r.regularizers=HG,r.relu=Ni,r.relu6=Wb,r.removeBackend=FF,r.reshape=K,r.reverse=Ts,r.reverse1d=$$,r.reverse2d=B$,r.reverse3d=P$,r.reverse4d=V$,r.rfft=Sh,r.round=$b,r.rsqrt=yp,r.scalar=Ce,r.scatterND=EA,r.scatter_util=yF,r.selu=bp,r.separableConv2d=Ub,r.sequential=nV,r.serialization=bF,r.setBackend=VT,r.setPlatform=$F,r.setdiff1dAsync=dA,r.sigmoid=Ti,r.sign=Bb,r.signal=cM,r.sin=wp,r.sinh=Lp,r.slice=tt,r.slice1d=Sp,r.slice2d=Mb,r.slice3d=Ip,r.slice4d=wh,r.slice_util=MT,r.softmax=Fo,r.softplus=za,r.spaceToBatchND=gh,r.sparseToDense=Hb,r.spectral=aM,r.split=hs,r.sqrt=Nn,r.square=At,r.squaredDifference=Ih,r.squaredDifferenceStrict=CA,r.squeeze=Mr,r.stack=es,r.step=ja,r.stridedSlice=Pb,r.sub=Re,r.subStrict=RA,r.sum=$e,r.sumOutType=Ud,r.tan=zb,r.tanh=$a,r.tensor=sn,r.tensor1d=ls,r.tensor2d=Pr,r.tensor3d=RT,r.tensor4d=Ka,r.tensor5d=fU,r.tensor6d=gU,r.tensor_util=uk,r.test_util=AF,r.tidy=Q,r.tile=$r,r.time=EF,r.topk=Vb,r.train=Wo,r.transpose=Ye,r.truncatedNormal=xh,r.unique=Tp,r.unregisterGradient=KD,r.unregisterKernel=jD,r.unsortedSegmentSum=Gb,r.unstack=Qs,r.upcastType=$n,r.util=ZD,r.valueAndGrad=LW,r.valueAndGrads=SW,r.variable=mA,r.variableGrads=Cb,r.version=gJ,r.version_converter=KN,r.version_core=zT,r.version_layers=lm,r.where=Bn,r.whereAsync=Yb,r.zeros=dt,r.zerosLike=et,Object.defineProperty(r,"__esModule",{value:!0})})});var t2=ES((xJ,e2)=>{Pm(xJ,{isNodejs:()=>TJ});function TJ(){return typeof global=="object"&&!0&&typeof e2!="undefined"&&typeof process!="undefined"&&!!process.version}});function fr(r,l,u=!1){if(r.beginPath(),l.slice(1).forEach(({x:p,y},g)=>{const I=l[g];r.moveTo(I.x,I.y),r.lineTo(p,y)}),u){const p=l[l.length-1],y=l[0];if(!p||!y)return;r.moveTo(p.x,p.y),r.lineTo(y.x,y.y)}r.stroke()}class ms{constructor(r,l){if(!ui(r)||!ui(l))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:r,height:l})}`);this._width=r,this._height=l}get width(){return this._width}get height(){return this._height}reverse(){return new ms(1/this.width,1/this.height)}}const DS={};Pm(DS,{computeReshapedDimensions:()=>_S,getCenterPoint:()=>Xo,isDimensions:()=>Gm,isEven:()=>Vm,isFloat:()=>FS,isTensor:()=>jo,isTensor1D:()=>AJ,isTensor2D:()=>kS,isTensor3D:()=>gr,isTensor4D:()=>Rs,isValidNumber:()=>ui,isValidProbablitiy:()=>vc,range:()=>_i,round:()=>Ko});const n2=Je(Ze());function jo(r,l){return r instanceof n2.Tensor&&r.shape.length===l}function AJ(r){return jo(r,1)}function kS(r){return jo(r,2)}function gr(r){return jo(r,3)}function Rs(r){return jo(r,4)}function FS(r){return r%1!==0}function Vm(r){return r%2===0}function Ko(r,l=2){const u=Math.pow(10,l);return Math.floor(r*u)/u}function Gm(r){return r&&r.width&&r.height}function _S({width:r,height:l},u){const p=u/Math.max(l,r);return new ms(Math.round(r*p),Math.round(l*p))}function Xo(r){return r.reduce((l,u)=>l.add(u),new Qe(0,0)).div(new Qe(r.length,r.length))}function _i(r,l,u){return Array(r).fill(0).map((p,y)=>l+y*u)}function ui(r){return!!r&&r!==Infinity&&r!==-Infinity&&!isNaN(r)||r===0}function vc(r){return ui(r)&&0<=r&&r<=1}class Qe{constructor(r,l){this._x=r,this._y=l}get x(){return this._x}get y(){return this._y}add(r){return new Qe(this.x+r.x,this.y+r.y)}sub(r){return new Qe(this.x-r.x,this.y-r.y)}mul(r){return new Qe(this.x*r.x,this.y*r.y)}div(r){return new Qe(this.x/r.x,this.y/r.y)}abs(){return new Qe(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(Math.pow(this.x,2)+Math.pow(this.y,2))}floor(){return new Qe(Math.floor(this.x),Math.floor(this.y))}}class _t{static isRect(r){return!!r&&[r.x,r.y,r.width,r.height].every(ui)}static assertIsValidBox(r,l,u=!1){if(!_t.isRect(r))throw new Error(`${l} - invalid box: ${JSON.stringify(r)}, expected object with properties x, y, width, height`);if(!u&&(r.width<0||r.height<0))throw new Error(`${l} - width (${r.width}) and height (${r.height}) must be positive numbers`)}constructor(r,l=!0){const u=r||{},p=[u.left,u.top,u.right,u.bottom].every(ui),y=[u.x,u.y,u.width,u.height].every(ui);if(!y&&!p)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(u)}`);const[g,I,S,T]=y?[u.x,u.y,u.width,u.height]:[u.left,u.top,u.right-u.left,u.bottom-u.top];_t.assertIsValidBox({x:g,y:I,width:S,height:T},"Box.constructor",l),this._x=g,this._y=I,this._width=S,this._height=T}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Qe(this.left,this.top)}get topRight(){return new Qe(this.right,this.top)}get bottomLeft(){return new Qe(this.left,this.bottom)}get bottomRight(){return new Qe(this.right,this.bottom)}round(){const[r,l,u,p]=[this.x,this.y,this.width,this.height].map(y=>Math.round(y));return new _t({x:r,y:l,width:u,height:p})}floor(){const[r,l,u,p]=[this.x,this.y,this.width,this.height].map(y=>Math.floor(y));return new _t({x:r,y:l,width:u,height:p})}toSquare(){let{x:r,y:l,width:u,height:p}=this;const y=Math.abs(u-p);return u<p&&(r-=y/2,u+=y),p<u&&(l-=y/2,p+=y),new _t({x:r,y:l,width:u,height:p})}rescale(r){const l=Gm(r)?r.width:r,u=Gm(r)?r.height:r;return new _t({x:this.x*l,y:this.y*u,width:this.width*l,height:this.height*u})}pad(r,l){let[u,p,y,g]=[this.x-r/2,this.y-l/2,this.width+r,this.height+l];return new _t({x:u,y:p,width:y,height:g})}clipAtImageBorders(r,l){const{x:u,y:p,right:y,bottom:g}=this,I=Math.max(u,0),S=Math.max(p,0),T=y-I,C=g-S,D=Math.min(T,r-I),_=Math.min(C,l-S);return new _t({x:I,y:S,width:D,height:_}).floor()}shift(r,l){const{width:u,height:p}=this,y=this.x+r,g=this.y+l;return new _t({x:y,y:g,width:u,height:p})}padAtBorders(r,l){const u=this.width+1,p=this.height+1;let y=1,g=1,I=u,S=p,T=this.left,C=this.top,D=this.right,_=this.bottom;return D>l&&(I=-D+l+u,D=l),_>r&&(S=-_+r+p,_=r),T<1&&(S=2-T,T=1),C<1&&(S=2-C,C=1),{dy:g,edy:S,dx:y,edx:I,y:C,ey:_,x:T,ex:D,w:u,h:p}}calibrate(r){return new _t({left:this.left+r.left*this.width,top:this.top+r.top*this.height,right:this.right+r.right*this.width,bottom:this.bottom+r.bottom*this.height}).toSquare().round()}}class gu extends _t{constructor(r,l,u,p,y=!1){super({left:r,top:l,right:u,bottom:p},y)}}class Nc{constructor(r,l,u,p,y){this._imageDims=new ms(y.width,y.height),this._score=r,this._classScore=l,this._className=u,this._box=new _t(p).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new _t(this._box).rescale(this.imageDims.reverse())}forSize(r,l){return new Nc(this.score,this.classScore,this.className,this.relativeBox,{width:r,height:l})}}class Jt extends Nc{constructor(r,l,u){super(r,r,"",l,u)}forSize(r,l){const{score:u,relativeBox:p,imageDims:y}=super.forSize(r,l);return new Jt(u,p,y)}}function WS(r,l,u=!0){const p=Math.max(0,Math.min(r.right,l.right)-Math.max(r.left,l.left)),y=Math.max(0,Math.min(r.bottom,l.bottom)-Math.max(r.top,l.top)),g=p*y;return u?g/(r.area+l.area-g):g/Math.min(r.area,l.area)}function $S(r){const l=r.map(S=>S.x),u=r.map(S=>S.y),p=l.reduce((S,T)=>T<S?T:S,Infinity),y=u.reduce((S,T)=>T<S?T:S,Infinity),g=l.reduce((S,T)=>S<T?T:S,0),I=u.reduce((S,T)=>S<T?T:S,0);return new gu(p,y,g,I)}function US(r,l,u,p=!0){let y=l.map((I,S)=>({score:I,boxIndex:S})).sort((I,S)=>I.score-S.score).map(I=>I.boxIndex);const g=[];for(;y.length>0;){const I=y.pop();g.push(I);const S=y,T=[];for(let C=0;C<S.length;C++){const D=S[C],_=r[I],A=r[D];T.push(WS(_,A,p))}y=y.filter((C,D)=>T[D]<=u)}return g}const Wi=Je(Ze());function di(r,l){return Wi.tidy(()=>{const[u,p,y]=l,g=Wi.fill([...r.shape.slice(0,3),1],u,"float32"),I=Wi.fill([...r.shape.slice(0,3),1],p,"float32"),S=Wi.fill([...r.shape.slice(0,3),1],y,"float32"),T=Wi.concat([g,I,S],3);return Wi.sub(r,T)})}const so=Je(Ze());function BS(r,l=!1){return so.tidy(()=>{const[u,p]=r.shape.slice(1);if(u===p)return r;const y=Math.abs(u-p),g=Math.round(y*(l?.5:1)),I=u>p?2:1,S=A=>{const B=r.shape.slice();return B[I]=A,so.fill(B,0,"float32")},T=S(g),C=y-T.shape[I],D=l&&C?S(C):null,_=[D,r,T].filter(A=>!!A).map(A=>so.cast(A,"float32"));return so.concat(_,I)})}function vJ(r){const l=r.slice();for(let u=l.length-1;u>0;u--){const p=Math.floor(Math.random()*(u+1)),y=l[u];l[u]=l[p],l[p]=y}return l}function yu(r){return 1/(1+Math.exp(-r))}function NJ(r){return Math.log(r/(1-r))}class bu extends _t{constructor(r,l,u,p,y=!1){super({x:r,y:l,width:u,height:p},y)}}const CJ=.5,RJ=.43,OJ=.45;class Gs{constructor(r,l,u=new Qe(0,0)){const{width:p,height:y}=l;this._imgDims=new ms(p,y),this._shift=u,this._positions=r.map(g=>g.mul(new Qe(p,y)).add(u))}get shift(){return new Qe(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(r=>r.sub(this._shift).div(new Qe(this.imageWidth,this.imageHeight)))}forSize(r,l){return new this.constructor(this.relativePositions,{width:r,height:l})}shiftBy(r,l){return new this.constructor(this.relativePositions,this._imgDims,new Qe(r,l))}shiftByPoint(r){return this.shiftBy(r.x,r.y)}align(r,l={}){if(r){const y=r instanceof Jt?r.box.floor():new _t(r);return this.shiftBy(y.x,y.y).align(null,l)}const{useDlibAlignment:u,minBoxPadding:p}=Object.assign({},{useDlibAlignment:!1,minBoxPadding:.2},l);return u?this.alignDlib():this.alignMinBbox(p)}alignDlib(){const r=this.getRefPointsForAlignment(),[l,u,p]=r,y=D=>p.sub(D).magnitude(),g=(y(l)+y(u))/2,I=Math.floor(g/OJ),S=Xo(r),T=Math.floor(Math.max(0,S.x-CJ*I)),C=Math.floor(Math.max(0,S.y-RJ*I));return new bu(T,C,Math.min(I,this.imageWidth+T),Math.min(I,this.imageHeight+C))}alignMinBbox(r){const l=$S(this.positions);return l.pad(l.width*r,l.height*r)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}}class EJ extends Gs{getRefPointsForAlignment(){const r=this.positions;return[r[0],r[1],Xo([r[3],r[4]])]}}class wu extends Gs{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Xo)}}class Ym{constructor(r,l){this._label=r,this._distance=l}get label(){return this._label}get distance(){return this._distance}toString(r=!0){return`${this.label}${r?` (${Ko(this.distance)})`:""}`}}class Hm extends _t{static assertIsValidLabeledBox(r,l){if(_t.assertIsValidBox(r,l),!ui(r.label))throw new Error(`${l} - expected property label (${r.label}) to be a number`)}constructor(r,l){super(r);this._label=l}get label(){return this._label}}class Jo{constructor(r,l){if(!(typeof r=="string"))throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(l)||l.some(u=>!(u instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=r,this._descriptors=l}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(r=>Array.from(r))}}static fromJSON(r){const l=r.descriptors.map(u=>new Float32Array(u));return new Jo(r.label,l)}}class DJ extends Hm{static assertIsValidPredictedBox(r,l){if(Hm.assertIsValidLabeledBox(r,l),!vc(r.score)||!vc(r.classScore))throw new Error(`${l} - expected properties score (${r.score}) and (${r.classScore}) to be a number between [0, 1]`)}constructor(r,l,u,p){super(r,l);this._score=u,this._classScore=p}get score(){return this._score}get classScore(){return this._classScore}}function $i(r){return r.detection instanceof Jt}function Zo(r,l){const u={detection:l};return Object.assign({},r,u)}function MS(){const r=window.fetch||function(){throw new Error("fetch - missing fetch implementation for browser environment")},l=function(){throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:r,readFile:l}}function qm(r){let l="";if(!r)try{r=require("fs")}catch(p){l=p.toString()}const u=r?function(p){return new Promise((y,g)=>{r.readFile(p,function(I,S){return I?g(I):y(S)})})}:function(){throw new Error(`readFile - failed to require fs in nodejs environment with error: ${l}`)};return{readFile:u}}function PS(){const r=global.Canvas||global.HTMLCanvasElement,l=global.Image||global.HTMLImageElement,u=function(){if(r)return new r;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},p=function(){if(l)return new l;throw new Error("createImageElement - missing Image implementation for nodejs environment")},y=global.fetch||function(){throw new Error("fetch - missing fetch implementation for nodejs environment")},g=qm();return{Canvas:r||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:l||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:u,createImageElement:p,fetch:y,...g}}function zS(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}const VS=Je(t2());let In;function kJ(){if(!In)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return In}function GS(r){In=r}function YS(){if(zS())return GS(MS());if(VS.isNodejs())return GS(PS())}function FJ(r){if(In||YS(),!In)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");const{Canvas:l=In.Canvas,Image:u=In.Image}=r;In.Canvas=l,In.Image=u,In.createCanvasElement=r.createCanvasElement||(()=>new l),In.createImageElement=r.createImageElement||(()=>new u),In.ImageData=r.ImageData||In.ImageData,In.Video=r.Video||In.Video,In.fetch=r.fetch||In.fetch,In.readFile=r.readFile||In.readFile}const St={getEnv:kJ,setEnv:GS,initialize:YS,createBrowserEnv:MS,createFileSystem:qm,createNodejsEnv:PS,monkeyPatch:FJ,isBrowser:zS,isNodejs:VS.isNodejs};YS();function Qo(r){return!St.isNodejs()&&typeof r=="string"?document.getElementById(r):r}function is(r){const{Canvas:l,CanvasRenderingContext2D:u}=St.getEnv();if(r instanceof u)return r;const p=Qo(r);if(!(p instanceof l))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");const y=p.getContext("2d");if(!y)throw new Error("resolveContext2d - canvas 2d context is null");return y}var Ui;(function(r){r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT"})(Ui||(Ui={}));class jm{constructor(r={}){const{anchorPosition:l,backgroundColor:u,fontColor:p,fontSize:y,fontStyle:g,padding:I}=r;this.anchorPosition=l||Ui.TOP_LEFT,this.backgroundColor=u||"rgba(0, 0, 0, 0.5)",this.fontColor=p||"rgba(255, 255, 255, 1)",this.fontSize=y||14,this.fontStyle=g||"Georgia",this.padding=I||4}}class Cc{constructor(r,l,u={}){this.text=typeof r=="string"?[r]:r instanceof Cc?r.text:r,this.anchor=l,this.options=new jm(u)}measureWidth(r){const{padding:l}=this.options;return this.text.map(u=>r.measureText(u).width).reduce((u,p)=>u<p?p:u,0)+2*l}measureHeight(){const{fontSize:r,padding:l}=this.options;return this.text.length*r+2*l}getUpperLeft(r,l){const{anchorPosition:u}=this.options,p=u===Ui.BOTTOM_RIGHT||u===Ui.TOP_RIGHT,y=u===Ui.BOTTOM_LEFT||u===Ui.BOTTOM_RIGHT,g=this.measureWidth(r),I=this.measureHeight(),S=p?this.anchor.x-g:this.anchor.x,T=y?this.anchor.y-I:this.anchor.y;if(l){const{width:C,height:D}=l,_=Math.max(Math.min(S,C-g),0),A=Math.max(Math.min(T,D-I),0);return{x:_,y:A}}return{x:S,y:T}}draw(r){const l=Qo(r),u=is(l),{backgroundColor:p,fontColor:y,fontSize:g,fontStyle:I,padding:S}=this.options;u.font=`${g}px ${I}`;const T=this.measureWidth(u),C=this.measureHeight();u.fillStyle=p;const D=this.getUpperLeft(u,l);u.fillRect(D.x,D.y,T,C),u.fillStyle=y,this.text.forEach((_,A)=>{const B=S+D.x,ne=S+D.y+(A+1)*g;u.fillText(_,B,ne)})}}class s2{constructor(r={}){const{boxColor:l,lineWidth:u,label:p,drawLabelOptions:y}=r;this.boxColor=l||"rgba(0, 0, 255, 1)",this.lineWidth=u||2,this.label=p;const g={anchorPosition:Ui.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new jm(Object.assign({},g,y))}}class HS{constructor(r,l={}){this.box=new _t(r),this.options=new s2(l)}draw(r){const l=is(r),{boxColor:u,lineWidth:p}=this.options,{x:y,y:g,width:I,height:S}=this.box;l.strokeStyle=u,l.lineWidth=p,l.strokeRect(y,g,I,S);const{label:T}=this.options;T&&new Cc([T],{x:y-p/2,y:g},this.options.drawLabelOptions).draw(r)}}function _J(r,l){const u=Array.isArray(l)?l:[l];u.forEach(p=>{const y=p instanceof Jt?p.score:$i(p)?p.detection.score:void 0,g=p instanceof Jt?p.box:$i(p)?p.detection.box:new _t(p),I=y?`${Ko(y)}`:void 0;new HS(g,{label:I}).draw(r)})}function Lu(r){const{Image:l,Video:u}=St.getEnv();return r instanceof l&&r.complete||r instanceof u&&r.readyState>=3}function qS(r){return new Promise((l,u)=>{if(r instanceof St.getEnv().Canvas||Lu(r))return l(null);function p(g){if(!g.currentTarget)return;g.currentTarget.removeEventListener("load",p),g.currentTarget.removeEventListener("error",y),l(g)}function y(g){if(!g.currentTarget)return;g.currentTarget.removeEventListener("load",p),g.currentTarget.removeEventListener("error",y),u(g)}r.addEventListener("load",p),r.addEventListener("error",y)})}function jS(r){return new Promise((l,u)=>{if(!(r instanceof Blob))return u("bufferToImage - expected buf to be of type: Blob");const p=new FileReader;p.onload=()=>{if(typeof p.result!="string")return u("bufferToImage - expected reader.result to be a string, in onload");const y=St.getEnv().createImageElement();y.onload=()=>l(y),y.onerror=u,y.src=p.result},p.onerror=u,p.readAsDataURL(r)})}function ea(r){const{Image:l,Video:u}=St.getEnv();return r instanceof l?new ms(r.naturalWidth,r.naturalHeight):r instanceof u?new ms(r.videoWidth,r.videoHeight):new ms(r.width,r.height)}function Rc({width:r,height:l}){const{createCanvasElement:u}=St.getEnv(),p=u();return p.width=r,p.height=l,p}function Su(r,l){const{ImageData:u}=St.getEnv();if(!(r instanceof u)&&!Lu(r))throw new Error("createCanvasFromMedia - media has not finished loading yet");const{width:p,height:y}=l||ea(r),g=Rc({width:p,height:y});return r instanceof u?is(g).putImageData(r,0,0):is(g).drawImage(r,0,0,p,y),g}const Km=Je(Ze());async function KS(r,l){const u=l||St.getEnv().createCanvasElement(),[p,y,g]=r.shape.slice(Rs(r)?1:0),I=Km.tidy(()=>r.as3D(p,y,g).toInt());return await Km.browser.toPixels(I,u),I.dispose(),u}function Xm(r){const{Image:l,Canvas:u,Video:p}=St.getEnv();return r instanceof l||r instanceof u||r instanceof p}const WJ=1e-7,$J=1e-4;class i2{time(r){return se("time")}read(r){return se("read")}readSync(r){return se("readSync")}numDataIds(){return se("numDataIds")}disposeData(r){return se("disposeData")}write(r,l,u){return se("write")}move(r,l,u,p){return se("move")}memory(){return se("memory")}floatPrecision(){return se("floatPrecision")}epsilon(){return this.floatPrecision()===32?WJ:$J}batchMatMul(r,l,u,p){return se("batchMatMul")}fusedBatchMatMul({a:r,b:l,transposeA:u,transposeB:p,bias:y,activation:g,preluActivationWeights:I}){return se("fusedBatchMatMul")}slice(r,l,u){return se("slice")}stridedSlice(r,l,u,p){return se("stridedSlice")}unstack(r,l){return se("unstack")}reverse(r,l){return se("reverse")}concat(r,l){return se("concat")}neg(r){return se("neg")}add(r,l){return se("add")}addN(r){return se("addN")}subtract(r,l){return se("subtract")}multiply(r,l){return se("multiply")}realDivide(r,l){return se("realDivide")}floorDiv(r,l){return se("floorDiv")}sum(r,l){return se("sum")}prod(r,l){return se("prod")}unsortedSegmentSum(r,l,u){return se("unsortedSegmentSum")}argMin(r,l){return se("argMin")}argMax(r,l){return se("argMax")}equal(r,l){return se("equal")}notEqual(r,l){return se("notEqual")}less(r,l){return se("less")}lessEqual(r,l){return se("lessEqual")}greater(r,l){return se("greater")}greaterEqual(r,l){return se("greaterEqual")}logicalNot(r){return se("logicalNot")}logicalAnd(r,l){return se("logicalAnd")}logicalOr(r,l){return se("logicalOr")}where(r){return se("where")}select(r,l,u){return se("select")}topk(r,l,u){return se("topk")}min(r,l){return se("min")}minimum(r,l){return se("minimum")}mod(r,l){return se("mod")}max(r,l){return se("max")}maximum(r,l){return se("maximum")}all(r,l){return se("all")}any(r,l){return se("any")}squaredDifference(r,l){return se("squaredDifference")}ceil(r){return se("ceil")}floor(r){return se("floor")}round(r){return se("round")}sign(r){return se("sign")}isNaN(r){return se("isNaN")}isInf(r){return se("isInf")}isFinite(r){return se("isFinite")}pow(r,l){return se("pow")}exp(r){return se("exp")}expm1(r){return se("expm1")}softmax(r,l){return se("softmax")}log(r){return se("log")}log1p(r){return se("log1p")}sqrt(r){return se("sqrt")}rsqrt(r){return se("rsqrt")}square(r){return se("square")}reciprocal(r){return se("reciprocal")}relu(r){return se("relu")}relu6(r){return se("relu6")}prelu(r,l){return se("prelu")}elu(r){return se("elu")}eluDer(r,l){return se("eluDer")}selu(r){return se("selu")}int(r){return se("int")}clip(r,l,u){return se("clip")}abs(r){return se("abs")}complexAbs(r){return se("complexAbs")}sigmoid(r){return se("sigmoid")}softplus(r){return se("softplus")}sin(r){return se("sin")}cos(r){return se("cos")}tan(r){return se("tan")}asin(r){return se("asin")}acos(r){return se("acos")}atan(r){return se("atan")}atan2(r,l){return se("atan2")}sinh(r){return se("sinh")}cosh(r){return se("cosh")}tanh(r){return se("tanh")}asinh(r){return se("asinh")}acosh(r){return se("acosh")}atanh(r){return se("atanh")}erf(r){return se("erf")}step(r,l){return se("step")}fusedConv2d({input:r,filter:l,convInfo:u,bias:p,activation:y,preluActivationWeights:g}){return se("fusedConv2d")}conv2d(r,l,u){return se("conv2d")}conv2dDerInput(r,l,u){return se("conv2dDerInput")}conv2dDerFilter(r,l,u){return se("conv2dDerFilter")}fusedDepthwiseConv2D({input:r,filter:l,convInfo:u,bias:p,activation:y,preluActivationWeights:g}){return se("fusedDepthwiseConv2D")}depthwiseConv2D(r,l,u){return se("depthwiseConv2D")}depthwiseConv2DDerInput(r,l,u){return se("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(r,l,u){return se("depthwiseConv2DDerFilter")}conv3d(r,l,u){return se("conv3d")}conv3dDerInput(r,l,u){return se("conv3dDerInput")}conv3dDerFilter(r,l,u){return se("conv3dDerFilter")}maxPool(r,l){return se("maxPool")}maxPoolBackprop(r,l,u,p){return se("maxPoolBackprop")}avgPool(r,l){return se("avgPool")}avgPoolBackprop(r,l,u){return se("avgPoolBackprop")}avgPool3d(r,l){return se("avgPool3d")}avgPool3dBackprop(r,l,u){return se("avgPool3dBackprop")}maxPool3d(r,l){return se("maxPool3d")}maxPool3dBackprop(r,l,u,p){return se("maxPool3dBackprop")}reshape(r,l){return se("reshape")}cast(r,l){return se("cast")}tile(r,l){return se("tile")}pad(r,l,u){return se("pad")}transpose(r,l){return se("transpose")}gather(r,l,u){return se("gather")}gatherND(r,l){return se("gatherND")}scatterND(r,l,u){return se("scatterND")}batchToSpaceND(r,l,u){return se("batchToSpaceND")}spaceToBatchND(r,l,u){return se("spaceToBatchND")}resizeBilinear(r,l,u,p){return se("resizeBilinear")}resizeBilinearBackprop(r,l,u){return se("resizeBilinearBackprop")}resizeNearestNeighbor(r,l,u,p){return se("resizeNearestNeighbor")}resizeNearestNeighborBackprop(r,l,u){return se("resizeNearestNeighborBackprop")}batchNorm(r,l,u,p,y,g){return se("batchNorm")}localResponseNormalization4D(r,l,u,p,y){return se("localResponseNormalization4D")}LRNGrad(r,l,u,p,y,g,I){return se("LRNGrad")}multinomial(r,l,u,p){return se("multinomial")}oneHot(r,l,u,p){return se("oneHot")}cumsum(r,l,u,p){return se("cumsum")}nonMaxSuppression(r,l,u,p,y){return se("nonMaxSuppression")}fft(r){return se("fft")}ifft(r){return se("ifft")}complex(r,l){return se("complex")}real(r){return se("real")}imag(r){return se("imag")}cropAndResize(r,l,u,p,y,g){return se("cropAndResize")}depthToSpace(r,l,u){return se("depthToSpace")}split(r,l,u){return se("split")}sparseToDense(r,l,u,p){return se("sparseToDense")}diag(r){return se("diag")}fill(r,l,u){return se("fill")}onesLike(r){return se("onesLike")}zerosLike(r){return se("zerosLike")}linspace(r,l,u){return se("linspace")}dispose(){return se("dispose")}}function se(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function J(r,l){if(!r)throw new Error(typeof l=="string"?l:l())}function tn(r,l,u=""){J(Iu(r,l),()=>u+` Shapes ${r} and ${l} must match`)}function Oc(r){J(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ta(r,l=[],u=!1){if(l==null&&(l=[]),Array.isArray(r)||Os(r)&&!u)for(let p=0;p<r.length;++p)ta(r[p],l,u);else l.push(r);return l}function Zt(r){if(r.length===0)return 1;let l=r[0];for(let u=1;u<r.length;u++)l*=r[u];return l}function Iu(r,l){if(r===l)return!0;if(r==null||l==null)return!1;if(r.length!==l.length)return!1;for(let u=0;u<r.length;u++)if(r[u]!==l[u])return!1;return!0}function nn(r){return r%1===0}function Ec(r,l){return l<=r.length?r:r+" ".repeat(l-r.length)}function r2(r,l){let u=1,p=-1;for(let g=0;g<r.length;++g)if(r[g]>=0)u*=r[g];else if(r[g]===-1){if(p!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${p} and dim ${g}`);p=g}else if(r[g]<0)throw Error(`Shapes can not be < 0. Found ${r[g]} at dim ${g}`);if(p===-1){if(l>0&&l!==u)throw Error(`Size(${l}) must match the product of shape ${r}`);return r}if(u===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(l%u!==0)throw Error(`The implicit shape can't be a fractional number. Got ${l} / ${u}`);const y=r.slice();return y[p]=l/u,y}function ft(r,l){const u=l.length;return r=r==null?l.map((p,y)=>y):[].concat(r),J(r.every(p=>p>=-u&&p<u),()=>`All values in axis param must be in range [-${u}, ${u}) but got axis ${r}`),J(r.every(p=>nn(p)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(p=>p<0?u+p:p)}function o2(r,l){const u=[],p=[],y=l!=null&&Array.isArray(l)&&l.length===0,g=l==null||y?null:ft(l,r).sort();let I=0;for(let S=0;S<r.length;++S){if(g!=null){if(g[I]===S&&r[S]!==1)throw new Error(`Can't squeeze axis ${S} since its dim '${r[S]}' is not 1`);(g[I]==null||g[I]>S)&&r[S]===1&&(u.push(r[S]),p.push(S)),g[I]<=S&&I++}r[S]!==1&&(u.push(r[S]),p.push(S))}return{newShape:u,keptDims:p}}function a2(r,l){let u=null;if(r==null||r==="float32")u=new Float32Array(l);else if(r==="int32")u=new Int32Array(l);else if(r==="bool")u=new Uint8Array(l);else if(r==="string")u=new Array(l);else throw new Error(`Unknown data type ${r}`);return u}function c2(r,l){for(let u=0;u<r.length;u++){const p=r[u];if(isNaN(p)||!isFinite(p))throw Error(`A tensor of type ${l} being uploaded contains ${p}.`)}}function l2(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function Os(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function h2(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function u2(r){if(r==null)return 0;let l=0;return r.forEach(u=>l+=u.length),l}function xu(r){return typeof r=="string"||r instanceof String}function UJ(r){return typeof r=="boolean"}function BJ(r){return typeof r=="number"}function Tu(r){return Array.isArray(r)?Tu(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":BJ(r)?"float32":xu(r)?"string":UJ(r)?"bool":"float32"}function XS(r){return!!(r&&r.constructor&&r.call&&r.apply)}function Au(r){const l=r.length;if(l<2)return[];const u=new Array(l-1);u[l-2]=r[l-1];for(let p=l-3;p>=0;--p)u[p]=u[p+1]*r[p+1];return u}function d2(r,l,u){const p=new Array;if(l.length===1){const y=l[0];for(let g=0;g<y;g++)p[g]=u[r+g]}else{const y=l[0],g=l.slice(1),I=g.reduce((S,T)=>S*T);for(let S=0;S<y;S++)p[S]=d2(r+S*I,g,u)}return p}function JS(r,l){if(r.length===0)return l[0];const u=r.reduce((p,y)=>p*y);if(u===0)return[];if(u!==l.length)throw new Error(`[${r}] does not match the input size ${l.length}.`);return d2(0,r,l)}function Jm(r,l){const u=na(r,l);for(let p=0;p<u.length;p++)u[p]=1;return u}function na(r,l){if(l==null||l==="float32"||l==="complex64")return new Float32Array(r);if(l==="int32")return new Int32Array(r);if(l==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${l}`)}function Zm(r){r.forEach(l=>{J(Number.isInteger(l)&&l>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function Qm(r){return r&&r.then&&typeof r.then=="function"}const p2="tfjsflags";class m2{constructor(r){this.global=r,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(r,l){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${l}.`),this.platformName=r,this.platform=l}registerFlag(r,l,u){if(this.flagRegistry[r]={evaluationFn:l,setHook:u},this.urlFlags[r]!=null){const p=this.urlFlags[r];console.warn(`Setting feature override from URL ${r}: ${p}.`),this.set(r,p)}}async getAsync(r){return r in this.flags?this.flags[r]:(this.flags[r]=await this.evaluateFlag(r),this.flags[r])}get(r){if(r in this.flags)return this.flags[r];const l=this.evaluateFlag(r);if(Qm(l))throw new Error(`Flag ${r} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[r]=l,this.flags[r]}getNumber(r){return this.get(r)}getBool(r){return this.get(r)}getFlags(){return this.flags}get features(){return this.flags}set(r,l){if(this.flagRegistry[r]==null)throw new Error(`Cannot set flag ${r} as it has not been registered.`);this.flags[r]=l,this.flagRegistry[r].setHook!=null&&this.flagRegistry[r].setHook(l)}evaluateFlag(r){if(this.flagRegistry[r]==null)throw new Error(`Cannot evaluate flag '${r}': no evaluation function found.`);return this.flagRegistry[r].evaluationFn()}setFlags(r){this.flags=Object.assign({},r)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;const r=MJ(this.global.location.search);if(p2 in r){const l=r[p2].split(",");l.forEach(u=>{const[p,y]=u.split(":");this.urlFlags[p]=PJ(p,y)})}}}function MJ(r){const l={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(u,...p)=>(zJ(l,p[0],p[1]),p.join("="))),l}function zJ(r,l,u){r[decodeURIComponent(l)]=decodeURIComponent(u||"")}function PJ(r,l){if(l=l.toLowerCase(),l==="true"||l==="false")return l==="true";if(`${+l}`===l)return+l;throw new Error(`Could not parse value flag value ${l} for flag ${r}.`)}function Es(){return f2}let f2=null;function g2(r){f2=r}let ZS;function QS(){if(ZS==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");ZS=r}return ZS}function VJ(){const r=QS();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function eI(r,l){const u=VJ();if(u.has(r))return u.get(r);{const p=l();return u.set(r,p),u.get(r)}}const ef="Abs",y2="Acos",b2="Acosh",Dc="Add",w2="AddN",L2="ArgMax",S2="ArgMin",I2="Asin",x2="Asinh",T2="Atan",A2="Atanh",v2="Atan2",N2="AvgPool",C2="AvgPoolBackprop",R2="AvgPool3D",O2="AvgPool3DBackprop",tf="BatchMatMul",nf="BatchToSpaceND",sf="BroadcastTo",kc="Cast",E2="Ceil",D2="ClipByValue",k2="Complex",rf="Concat",of="Conv2D",F2="Conv2DBackpropFilter",af="Conv2DBackpropInput",_2="Conv3D",W2="Conv3DBackpropFilterV2",$2="Conv3DBackpropInputV2",cf="Cos",lf="Cosh",hf="Cumsum",U2="CropAndResize",B2="DepthwiseConv2dNative",M2="DepthwiseConv2dNativeBackpropFilter",P2="DepthwiseConv2dNativeBackpropInput",z2="Dilation2D",V2="Dilation2DBackpropInput",G2="Dilation2DBackpropFilter",uf="Div",Y2="Elu",H2="EluGrad",q2="Erf",j2="Equal",df="Exp",K2="Expm1",X2="FFT",J2="Fill",Z2="FlipLeftRight",pf="Floor",mf="FloorDiv",Q2="FusedBatchNorm",ff="GatherV2",eR="Greater",gf="GreaterEqual",yf="Identity",tR="IFFT",nR="Imag",sR="IsFinite",iR="IsInf",rR="IsNan",oR="Less",aR="LessEqual",bf="Log",wf="Log1p",cR="LogicalAnd",lR="LogicalNot",hR="LogSoftmax",uR="LRN",dR="LRNBackprop",Lf="Max",Sf="Maximum",pR="MaxPool",mR="MaxPoolBackprop",fR="MaxPool3D",gR="MaxPool3DBackprop",yR="Mean",If="Min",xf="Minimum",bR="MirrorPad",wR="Mod",Tf="Multiply",Af="Negate",LR="NotEqual",SR="NonMaxSuppressionV3",IR="NonMaxSuppressionV4",xR="NonMaxSuppressionV5",TR="OnesLike",AR="OneHot",vf="PadV2",Nf="Pow",vR="Prelu",NR="Range",CR="Real",RR="Reciprocal",Cf="Relu",Rf="Reshape",Of="ResizeNearestNeighbor",OR="ResizeNearestNeighborGrad",Ef="ResizeBilinear",ER="ResizeBilinearGrad",DR="Relu6",Df="Reverse",kR="Round",kf="Rsqrt",Ff="SelectV2",FR="Selu",_f="Slice",Wf="Sin",$f="Sinh",_R="Sign",Uf="Sigmoid",WR="Softplus",Bf="Sqrt",Mf="Sum",Pf="SpaceToBatchND",zf="SplitV",$R="Softmax",Vf="SquaredDifference",UR="Square",Gf="Sub",BR="Tan",MR="Tanh",Yf="Tile",Hf="Transpose",qf="Unpack",jf="UnsortedSegmentSum",Kf="ZerosLike",Xf="Step",tI="FromPixels",PR="RotateWithOffset";const zR=eI("kernelRegistry",()=>new Map),nI=eI("gradRegistry",()=>new Map);function Jf(r,l){const u=GJ(r,l);return zR.get(u)}function sI(r){return nI.get(r)}function iI(r){const l=zR.entries(),u=[];for(;;){const{done:p,value:y}=l.next();if(p)break;const[g,I]=y,[S]=g.split("_");S===r&&u.push(I)}return u}function VR(r){const{kernelName:l}=r;nI.has(l)&&(Es().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${l}'`)),nI.set(l,r)}function GJ(r,l){return`${l}_${r}`}function YJ(r,l){return r instanceof Float32Array&&l==="float32"||r instanceof Int32Array&&l==="int32"||r instanceof Uint8Array&&l==="bool"}function Zf(r,l){if(l==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=ta(r)),Es().getBool("DEBUG")&&c2(r,l),YJ(r,l))return r;if(l==null||l==="float32"||l==="complex64")return new Float32Array(r);if(l==="int32")return new Int32Array(r);if(l==="bool"){const u=new Uint8Array(r.length);for(let p=0;p<u.length;++p)Math.round(r[p])!==0&&(u[p]=1);return u}else throw new Error(`Unknown data type ${l}`)}function rI(){return Es().platform.now()}function GR(r,l="utf-8"){return l=l||"utf-8",Es().platform.encode(r,l)}function oI(r,l="utf-8"){return l=l||"utf-8",Es().platform.decode(r,l)}class YR{constructor(r,l){this.backendTimer=r,this.logger=l,l==null&&(this.logger=new qJ)}profileKernel(r,l,u){let p;const y=()=>{p=u()},g=this.backendTimer.time(y);for(let S=0;S<p.length;S++){const T=p[S];T.data().then(C=>{HJ(C,T.dtype,r)})}const I={kernelName:r,outputs:p,inputs:l,timeMs:g.then(S=>S.kernelMs),extraInfo:g.then(S=>S.getExtraProfileInfo!=null?S.getExtraProfileInfo():"")};return I}logKernelProfile(r){const{kernelName:l,outputs:u,timeMs:p,inputs:y,extraInfo:g}=r;u.forEach(I=>{Promise.all([I.data(),p,g]).then(S=>{this.logger.logKernelProfile(l,I,S[0],S[1],y,S[2])})})}}function HJ(r,l,u){if(l!=="float32")return!1;for(let p=0;p<r.length;p++){const y=r[p];if(isNaN(y)||!isFinite(y))return console.warn(`Found ${y} in the result of '${u}'`),!0}return!1}class qJ{logKernelProfile(r,l,u,p,y,g){const I=typeof p=="number"?Ec(`${p}ms`,9):p.error,S=Ec(r,25),T=l.rank,C=l.size,D=Ec(l.shape.toString(),14);let _="";for(const A in y){const B=y[A];if(B!=null){const ne=B.shape||l.shape,te=ne.length;_+=`${A}: ${te}D ${te>0?ne:""} `}}console.log(`%c${S} %c${I} %c${T}D ${D} %c${C} %c${_} %c${g}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}}function HR(r,l,u){const p={},y={};for(let T=0;T<l.length;T++)p[l[T].id]=!0;for(let T=0;T<r.length;T++){const C=r[T],D=C.inputs;for(const _ in D){const A=D[_];let B=!1;for(let ne=0;ne<l.length;ne++)if(p[A.id]){C.outputs.forEach(te=>p[te.id]=!0),B=!0,y[C.id]=!0;break}if(B)break}}const g={};g[u.id]=!0;const I={};for(let T=r.length-1;T>=0;T--){const C=r[T],D=C.inputs;for(let _=0;_<C.outputs.length;_++)if(g[C.outputs[_].id]){for(const A in D)g[D[A].id]=!0,I[C.id]=!0;break}}const S=[];for(let T=0;T<r.length;T++){const C=r[T];if(y[C.id]&&I[C.id]){const D={};for(const A in C.inputs){const B=C.inputs[A];p[B.id]&&(D[A]=B)}const _=Object.assign({},C);_.inputs=D,_.outputs=C.outputs,S.push(_)}}return S}function qR(r,l,u,p){for(let y=l.length-1;y>=0;y--){const g=l[y],I=[];if(g.outputs.forEach(T=>{const C=r[T.id];C!=null?I.push(C):I.push(null)}),g.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${g.kernelName}.`);const S=g.gradient(I);for(const T in g.inputs){if(!(T in S))throw new Error(`Cannot backprop through input ${T}. Available gradients found: ${Object.keys(S)}.`);const C=u(()=>S[T]());if(C.dtype!=="float32")throw new Error(`Error in gradient for op ${g.kernelName}. The gradient of input ${T} must have 'float32' dtype, but has '${C.dtype}'`);const D=g.inputs[T];if(!Iu(C.shape,D.shape))throw new Error(`Error in gradient for op ${g.kernelName}. The gradient of input '${T}' has shape '${C.shape}', which does not match the shape of the input '${D.shape}'`);if(r[D.id]==null)r[D.id]=C;else{const _=r[D.id];r[D.id]=p(_,C),_.dispose()}}}}const jR=20,vu=3,aI=7;function KR(r,l,u,p){const y=Au(l),g=jJ(r,l,u,y),I=l.length,S=Qf(r,l,u,y,g),T=["Tensor"];return p&&(T.push(` dtype: ${u}`),T.push(` rank: ${I}`),T.push(` shape: [${l}]`),T.push(" values:")),T.push(S.map(C=>" "+C).join(`
|
|
`)),T.join(`
|
|
`)}function jJ(r,l,u,p){const y=Zt(l),g=p[p.length-1],I=new Array(g).fill(0),S=l.length,T=u==="complex64"?Cu(r):r;if(S>1)for(let C=0;C<y/g;C++){const D=C*g;for(let _=0;_<g;_++)I[_]=Math.max(I[_],Nu(T[D+_],0,u).length)}return I}function Nu(r,l,u){let p;return Array.isArray(r)?p=`${parseFloat(r[0].toFixed(aI))} + ${parseFloat(r[1].toFixed(aI))}j`:xu(r)?p=`'${r}'`:u==="bool"?p=XR(r):p=parseFloat(r.toFixed(aI)).toString(),Ec(p,l)}function XR(r){return r===0?"false":"true"}function Qf(r,l,u,p,y,g=!0){const I=u==="complex64"?2:1,S=l[0],T=l.length;if(T===0){if(u==="complex64"){const te=Cu(r);return[Nu(te[0],0,u)]}return u==="bool"?[XR(r[0])]:[r[0].toString()]}if(T===1){if(S>jR){const P=vu*I;let ge=Array.from(r.slice(0,P)),ae=Array.from(r.slice((S-vu)*I,S*I));return u==="complex64"&&(ge=Cu(ge),ae=Cu(ae)),["["+ge.map((Le,ve)=>Nu(Le,y[ve],u)).join(", ")+", ..., "+ae.map((Le,ve)=>Nu(Le,y[S-vu+ve],u)).join(", ")+"]"]}const te=u==="complex64"?Cu(r):Array.from(r);return["["+te.map((P,ge)=>Nu(P,y[ge],u)).join(", ")+"]"]}const C=l.slice(1),D=p.slice(1),_=p[0]*I,A=[];if(S>jR){for(let te=0;te<vu;te++){const P=te*_,ge=P+_;A.push(...Qf(r.slice(P,ge),C,u,D,y,!1))}A.push("...");for(let te=S-vu;te<S;te++){const P=te*_,ge=P+_;A.push(...Qf(r.slice(P,ge),C,u,D,y,te===S-1))}}else for(let te=0;te<S;te++){const P=te*_,ge=P+_;A.push(...Qf(r.slice(P,ge),C,u,D,y,te===S-1))}const B=T===2?",":"";A[0]="["+A[0]+B;for(let te=1;te<A.length-1;te++)A[te]=" "+A[te]+B;let ne=`,
|
|
`;for(let te=2;te<T;te++)ne+=`
|
|
`;return A[A.length-1]=" "+A[A.length-1]+"]"+(g?"":ne),A}function Cu(r){const l=[];for(let u=0;u<r.length;u+=2)l.push([r[u],r[u+1]]);return l}class JR{constructor(r,l,u){if(this.dtype=l,this.shape=r.slice(),this.size=Zt(r),u!=null){const p=u.length;J(p===this.size,()=>`Length of values '${p}' does not match the size inferred by the shape '${this.size}'.`)}if(l==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=u||a2(l,this.size),this.strides=Au(r)}set(r,...l){l.length===0&&(l=[0]),J(l.length===this.rank,()=>`The number of provided coordinates (${l.length}) must match the rank (${this.rank})`);const u=this.locToIndex(l);this.values[u]=r}get(...r){r.length===0&&(r=[0]);let l=0;for(const p of r){if(p<0||p>=this.shape[l]){const y=`Requested out of range element at ${r}. Buffer shape=${this.shape}`;throw new Error(y)}l++}let u=r[r.length-1];for(let p=0;p<r.length-1;++p)u+=this.strides[p]*r[p];return this.values[u]}locToIndex(r){if(this.rank===0)return 0;if(this.rank===1)return r[0];let l=r[r.length-1];for(let u=0;u<r.length-1;++u)l+=this.strides[u]*r[u];return l}indexToLoc(r){if(this.rank===0)return[];if(this.rank===1)return[r];const l=new Array(this.shape.length);for(let u=0;u<l.length-1;++u)l[u]=Math.floor(r/this.strides[u]),r-=l[u]*this.strides[u];return l[l.length-1]=r,l}get rank(){return this.shape.length}toTensor(){return Bi().makeTensor(this.values,this.shape,this.dtype)}}let Bi=null,Fc=null,KJ=null;function ZR(r){Bi=r}function QR(r){Fc=r}function eO(r){KJ=r}class En{constructor(r,l,u,p){this.kept=!1,this.isDisposedInternal=!1,this.shape=r.slice(),this.dtype=l||"float32",this.size=Zt(r),this.strides=Au(r),this.dataId=u,this.id=p,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){const r=await this.data();return Fc.buffer(this.shape,this.dtype,r)}bufferSync(){return Fc.buffer(this.shape,this.dtype,this.dataSync())}async array(){const r=await this.data();return JS(this.shape,r)}arraySync(){return JS(this.shape,this.dataSync())}async data(){this.throwIfDisposed();const r=Bi().read(this.dataId);if(this.dtype==="string"){const l=await r;try{return l.map(u=>oI(u))}catch(u){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return r}dataSync(){this.throwIfDisposed();const r=Bi().readSync(this.dataId);if(this.dtype==="string")try{return r.map(l=>oI(l))}catch(l){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return r}async bytes(){this.throwIfDisposed();const r=await Bi().read(this.dataId);return this.dtype==="string"?r:new Uint8Array(r.buffer)}dispose(){if(this.isDisposed)return;Bi().disposeTensor(this),this.isDisposedInternal=!0}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(r=!1){return Fc.print(this,r)}clone(){return this.throwIfDisposed(),Fc.clone(this)}toString(r=!1){const l=this.dataSync();return KR(l,this.shape,this.dtype,r)}cast(r){return this.throwIfDisposed(),Fc.cast(this,r)}variable(r=!0,l,u){return this.throwIfDisposed(),Bi().makeVariable(this,r,l,u)}}Object.defineProperty(En,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});class eg extends En{constructor(r,l,u,p){super(r.shape,r.dtype,r.dataId,p);this.trainable=l,this.name=u}assign(r){if(r.dtype!==this.dtype)throw new Error(`dtype of the new value (${r.dtype}) and previous value (${this.dtype}) must match`);if(!Iu(r.shape,this.shape))throw new Error(`shape of the new value (${r.shape}) and previous value (${this.shape}) must match`);Bi().disposeTensor(this),this.dataId=r.dataId,Bi().incRef(this,null)}dispose(){Bi().disposeVariable(this),this.isDisposedInternal=!0}}Object.defineProperty(eg,Symbol.hasInstance,{value:r=>r instanceof En&&r.assign!=null&&r.assign instanceof Function});var tO;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(tO||(tO={}));var cI;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(cI||(cI={}));var lI;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(lI||(lI={}));var hI;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(hI||(hI={}));var uI;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(uI||(uI={}));const XJ={float32:hI,int32:cI,bool:lI,complex64:uI};function nO(r,l){if(r==="string"||l==="string"){if(r==="string"&&l==="string")return"string";throw new Error(`Can not upcast ${r} with ${l}`)}return XJ[r][l]}function Lt(r,l){if(r.dtype===l.dtype)return[r,l];const u=nO(r.dtype,l.dtype);return[r.cast(u),l.cast(u)]}function tg(r){const l=[],u=new Set;return sO(r,l,u),l}function sO(r,l,u){if(r==null)return;if(r instanceof En){l.push(r);return}if(!JJ(r))return;const p=r;for(const y in p){const g=p[y];u.has(g)||(u.add(g),sO(g,l,u))}}function JJ(r){return Array.isArray(r)||typeof r=="object"}class iO{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null}}dispose(){for(const r in this.registeredVariables)this.registeredVariables[r].dispose()}}class Ru{constructor(r){this.ENV=r,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new iO}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;const r=this.getSortedBackends();for(let l=0;l<r.length;l++){const u=r[l],p=await this.initializeBackend(u).success;if(p){await this.setBackend(u);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){const{name:r,asyncInit:l}=this.initializeBackendsAndReturnBest();if(l)throw new Error(`The highest priority backend '${r}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(r)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(r){if(!(r in this.registry))if(r in this.registryFactory){const{asyncInit:l}=this.initializeBackend(r);if(l)return null}else return null;return this.registry[r]}findBackendFactory(r){return r in this.registryFactory?this.registryFactory[r].factory:null}registerBackend(r,l,u=1){return r in this.registryFactory?(console.warn(`${r} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[r]={factory:l,priority:u},!0)}async setBackend(r){if(this.registryFactory[r]==null)throw new Error(`Backend name '${r}' not found in registry`);if(this.backendName=r,this.registry[r]==null){this.backendInstance=null;const{success:l,asyncInit:u}=this.initializeBackend(r),p=u?await l:l;if(!p)return!1}return this.backendInstance=this.registry[r],this.setupRegisteredKernels(),this.profiler=new YR(this.backendInstance),!0}setupRegisteredKernels(){const r=iI(this.backendName);r.forEach(l=>{l.setupFunc!=null&&l.setupFunc(this.backendInstance)})}disposeRegisteredKernels(r){const l=iI(r);l.forEach(u=>{u.disposeFunc!=null&&u.disposeFunc(this.registry[r])})}initializeBackend(r){const l=this.registryFactory[r];if(l==null)throw new Error(`Cannot initialize backend ${r}, no registration found.`);try{const u=l.factory();if(u&&!(u instanceof i2)&&typeof u.then=="function"){const p=++this.pendingBackendInitId,y=u.then(g=>p<this.pendingBackendInitId?!1:(this.registry[r]=g,this.pendingBackendInit=null,!0)).catch(g=>(p<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${r} failed`),console.warn(g.stack||g.message)),!1));return this.pendingBackendInit=y,{success:y,asyncInit:!0}}else return this.registry[r]=u,{success:!0,asyncInit:!1}}catch(u){return console.warn(`Initialization of backend ${r} failed`),console.warn(u.stack||u.message),{success:!1,asyncInit:!1}}}removeBackend(r){if(!(r in this.registryFactory))throw new Error(`${r} backend not found in registry`);this.backendName===r&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,r in this.registry&&(this.disposeRegisteredKernels(r),this.registry[r].dispose(),delete this.registry[r]),delete this.registryFactory[r],this.backendName===r&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((r,l)=>this.registryFactory[l].priority-this.registryFactory[r].priority)}initializeBackendsAndReturnBest(){const r=this.getSortedBackends();for(let l=0;l<r.length;l++){const u=r[l],{success:p,asyncInit:y}=this.initializeBackend(u);if(y||p)return{name:u,asyncInit:y}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(r,l){const u=this.state.tensorInfo.get(l),p=u.backend,y=this.readSync(l);p.disposeData(l),u.backend=r,r.move(l,y,u.shape,u.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(r,l){let u=null;if(l==null){if(typeof r!="function")throw new Error("Please provide a function to tidy()");l=r}else{if(typeof r!="string"&&!(r instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof l!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");u=r}let p;return this.scopedRun(()=>this.startScope(u),()=>this.endScope(p),()=>(p=l(),p instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),p))}scopedRun(r,l,u){r();try{const p=u();return l(),p}catch(p){throw l(),p}}nextTensorId(){return Ru.nextTensorId++}nextVariableId(){return Ru.nextVariableId++}clone(r){const l=this.makeTensorFromDataId(r.dataId,r.shape,r.dtype),u={x:r},p=g=>({x:()=>{const I="float32",S={x:g},T={dtype:I};return H.runKernelFunc(C=>C.cast(g,I),S,null,kc,T)}}),y=[];return this.addTapeNode(this.state.activeScope.name,u,[l],p,y,{}),l}runKernel(r,l,u,p,y){const g=null,I=null;return this.runKernelFunc(g,l,I,r,u,p,y)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(r,l,u){const p=this.backend.numDataIds();let y=0;u.forEach(S=>{y+=S.dtype==="complex64"?3:1});const g=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],I=p-l-y-g;if(I>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${I} data ids) after running '${r}'`)}runKernelFunc(r,l,u,p,y,g,I){let S,T=[];const C=this.isTapeOn();p==null&&(p=this.state.activeScope!=null?this.state.activeScope.name:"");const D=this.state.numBytes,_=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let A;const B=Jf(p,this.backendName);let ne;if(B!=null)A=()=>{const P=this.backend.numDataIds();ne=B.kernelFunc({inputs:l,attrs:y,backend:this.backend});const ge=Array.isArray(ne)?ne:[ne];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,P,ge);const ae=ge.map(({dataId:Le,shape:ve,dtype:Ve})=>this.makeTensorFromDataId(Le,ve,Ve));if(C){let Le=this.getTensorsForGradient(p,l,ae);if(Le==null){I==null&&(I=[]);const ve=ae.filter((Ve,at)=>I[at]);Le=(g||[]).slice().concat(ve)}T=this.saveTensorsForBackwardMode(Le)}return ae};else{const P=ge=>{if(!C)return;T=ge.map(ae=>this.keep(this.clone(ae)))};A=()=>{const ge=this.backend.numDataIds();ne=this.tidy(()=>r(this.backend,P));const ae=Array.isArray(ne)?ne:[ne];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,ge,ae),ae}}let te;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?S=A():(te=this.profiler.profileKernel(p,l,()=>A()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(te),S=te.outputs)}),C&&this.addTapeNode(p,l,S,u,T,y),this.state.profiling&&this.state.activeProfile.kernels.push({name:p,bytesAdded:this.state.numBytes-D,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-_,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(l).map(P=>l[P]!=null?l[P].shape:null),outputShapes:S.map(P=>P.shape),kernelTimeMs:te.timeMs,extraInfo:te.extraInfo}),Array.isArray(ne)?S:S[0]}saveTensorsForBackwardMode(r){const l=r.map(u=>this.keep(this.clone(u)));return l}getTensorsForGradient(r,l,u){const p=sI(r);if(p!=null){const y=p.inputsToSave||[],g=p.outputsToSave||[];let I;p.saveAllInputs?(J(Array.isArray(l),()=>"saveAllInputs is true, expected inputs to be an array."),I=Object.keys(l).map(T=>l[T])):I=y.map(T=>l[T]);const S=u.filter((T,C)=>g[C]);return I.concat(S)}return null}makeTensor(r,l,u,p){if(r==null)throw new Error("Values passed to engine.makeTensor() are null");u=u||"float32",p=p||this.backend;let y=r;u==="string"&&xu(r[0])&&(y=r.map(S=>GR(S)));const g=p.write(y,l,u),I=new En(l,u,g,this.nextTensorId());if(this.incRef(I,p),u==="string"){const S=this.state.tensorInfo.get(g),T=u2(y);this.state.numBytes+=T-S.bytes,S.bytes=T}return I}makeTensorFromDataId(r,l,u,p){u=u||"float32";const y=new En(l,u,r,this.nextTensorId());return this.incRef(y,p),y}makeVariable(r,l=!0,u,p){u=u||this.nextVariableId().toString(),p!=null&&p!==r.dtype&&(r=r.cast(p));const y=new eg(r,l,u,this.nextTensorId());if(this.state.registeredVariables[y.name]!=null)throw new Error(`Variable with name ${y.name} was already registered`);return this.state.registeredVariables[y.name]=y,this.incRef(y,this.backend),y}incRef(r,l){const u=this.state.tensorInfo.has(r.dataId)?this.state.tensorInfo.get(r.dataId).refCount:0;if(this.state.numTensors++,r.dtype==="string"&&this.state.numStringTensors++,u===0){this.state.numDataBuffers++;let p=0;r.dtype!=="complex64"&&r.dtype!=="string"&&(p=r.size*h2(r.dtype)),this.state.tensorInfo.set(r.dataId,{backend:l||this.backend,dtype:r.dtype,shape:r.shape,bytes:p,refCount:0}),this.state.numBytes+=p}this.state.tensorInfo.get(r.dataId).refCount++,r instanceof eg||this.track(r)}disposeTensor(r){if(!this.state.tensorInfo.has(r.dataId))return;this.state.numTensors--,r.dtype==="string"&&this.state.numStringTensors--;const l=this.state.tensorInfo.get(r.dataId),u=l.refCount;u<=1?(r.dtype!=="complex64"&&(this.state.numBytes-=l.bytes),this.state.numDataBuffers--,l.backend.disposeData(r.dataId),this.state.tensorInfo.delete(r.dataId)):this.state.tensorInfo.get(r.dataId).refCount--}disposeVariables(){for(const r in this.state.registeredVariables){const l=this.state.registeredVariables[r];this.disposeVariable(l)}}disposeVariable(r){this.disposeTensor(r),this.state.registeredVariables[r.name]!=null&&delete this.state.registeredVariables[r.name]}memory(){const r=this.backend.memory();return r.numTensors=this.state.numTensors,r.numDataBuffers=this.state.numDataBuffers,r.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(r.unreliable=!0,r.reasons==null&&(r.reasons=[]),r.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),r}async profile(r){this.state.profiling=!0;const l=this.state.numBytes,u=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await r(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(p=>p.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-l,this.state.activeProfile.newTensors=this.state.numTensors-u;for(const p of this.state.activeProfile.kernels)p.kernelTimeMs=await p.kernelTimeMs,p.extraInfo=await p.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(r,l,u,p,y,g){const I={id:this.state.nextTapeNodeId++,kernelName:r,inputs:l,outputs:u,saved:y},S=sI(r);S!=null&&(p=S.gradFunc),p!=null&&(I.gradient=T=>(T=T.map((C,D)=>{if(C==null){const _=u[D],A=na(_.size,_.dtype);return this.makeTensor(A,_.shape,_.dtype)}return C}),p(T.length>1?T:T[0],y,g))),this.state.activeTape.push(I)}keep(r){return r.kept=!0,r}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(r){const l={track:[],name:"unnamed scope",id:this.state.nextScopeId++};r&&(l.name=r),this.state.scopeStack.push(l),this.state.activeScope=l}endScope(r){const l=tg(r),u=new Set(l.map(y=>y.id));for(let y=0;y<this.state.activeScope.track.length;y++){const g=this.state.activeScope.track[y];!g.kept&&!u.has(g.id)&&g.dispose()}const p=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],l.forEach(y=>{!y.kept&&y.scopeId===p.id&&this.track(y)})}gradients(r,l,u,p=!1){if(J(l.length>0,()=>"gradients() received an empty list of xs."),u!=null&&u.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${u.dtype}'`);const y=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",r));J(y instanceof En,()=>"The result y returned by f() must be a tensor.");const g=HR(this.state.activeTape,l,y);if(!p&&g.length===0&&l.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{const I={};I[y.id]=u==null?ZJ(y.shape):u,qR(I,g,T=>this.tidy(T),QJ);const S=l.map(T=>I[T.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(T=>{for(const C of T.saved)C.dispose()}),this.state.activeTape=null),{value:y,grads:S}})}customGrad(r){return J(XS(r),()=>"The f passed in customGrad(f) must be a function."),(...l)=>{J(l.every(y=>y instanceof En),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let u;const p={};return l.forEach((y,g)=>{p[g]=y}),this.runKernelFunc((y,g)=>(u=r(...l,g),J(u.value instanceof En,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),J(XS(u.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),u.value),p,(y,g)=>{const I=u.gradFunc(y,g),S=Array.isArray(I)?I:[I];J(S.length===l.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),J(S.every(C=>C instanceof En),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");const T={};return S.forEach((C,D)=>{T[D]=()=>C}),T})}}readSync(r){const l=this.state.tensorInfo.get(r);return l.backend.readSync(r)}read(r){const l=this.state.tensorInfo.get(r);return l.backend.read(r)}async time(r){const l=rI(),u=await this.backend.time(r);return u.wallMs=rI()-l,u}track(r){return this.state.activeScope!=null&&(r.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(r)),r}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new iO;for(const r in this.registry)this.disposeRegisteredKernels(r),this.registry[r].dispose(),delete this.registry[r];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}}Ru.nextTensorId=0;Ru.nextVariableId=0;function ZJ(r){const l=Jm(Zt(r),"float32");return H.makeTensor(l,r,"float32")}function dI(){const r=QS();if(r._tfengine==null){const l=new m2(r);r._tfengine=new Ru(l)}return g2(r._tfengine.ENV),ZR(()=>r._tfengine),r._tfengine}const H=dI();function QJ(r,l){const u={a:r,b:l};return H.runKernelFunc((p,y)=>{const g=p.add(r,l);return y([r,l]),g},u,null,Dc)}function rO(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}const yr=Es();yr.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});yr.registerFlag("IS_BROWSER",()=>rO());yr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");yr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));yr.registerFlag("PROD",()=>!1);yr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>yr.getBool("DEBUG"));yr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);yr.registerFlag("IS_TEST",()=>!1);function br(r,l){let u=r;if(Os(r))return l==="string"?[]:[r.length];if(!Array.isArray(r))return[];const p=[];for(;Array.isArray(u)||Os(u)&&l!=="string";)p.push(u.length),u=u[0];return Array.isArray(r)&&Es().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&oO(r,p,[]),p}function oO(r,l,u){if(u=u||[],!Array.isArray(r)&&!Os(r)){J(l.length===0,()=>`Element arr[${u.join("][")}] is a primitive, but should be an array/TypedArray of ${l[0]} elements`);return}J(l.length>0,()=>`Element arr[${u.join("][")}] should be a primitive, but is an array of ${r.length} elements`),J(r.length===l[0],()=>`Element arr[${u.join("][")}] should have ${l[0]} elements, but has ${r.length} elements`);const p=l.slice(1);for(let y=0;y<r.length;++y)oO(r[y],p,u.concat(y))}function aO(r,l,u,p){if(r==null)return;if(r!=="numeric"&&r!==l||r==="numeric"&&l==="string")throw new Error(`Argument '${u}' passed to '${p}' must be ${r} tensor, but got ${l} tensor`)}function M(r,l,u,p="numeric"){if(r instanceof En)return aO(p,r.dtype,l,u),r;let y=Tu(r);if(y!=="string"&&["bool","int32","float32"].indexOf(p)>=0&&(y=p),aO(p,y,l,u),r==null||!Os(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){const T=r==null?"null":r.constructor.name;throw new Error(`Argument '${l}' passed to '${u}' must be a Tensor or TensorLike, but got '${T}'`)}const g=br(r,y);!Os(r)&&!Array.isArray(r)&&(r=[r]);const I=!0,S=y!=="string"?Zf(r,y):ta(r,[],I);return H.makeTensor(S,g,y)}function ng(r,l,u,p="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${l} passed to ${u} must be a \`Tensor[]\` or \`TensorLike[]\``);const y=r;return y.map((g,I)=>M(g,`${l}[${I}]`,u),p)}const cO="__op";function V(r){const l=Object.keys(r);if(l.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${l.length} keys.`);let u=l[0];const p=r[u];u.endsWith("_")&&(u=u.substring(0,u.length-1)),u=u+cO;const y=(...g)=>{H.startScope(u);try{const I=p(...g);return Qm(I)&&console.error("Cannot return a Promise inside of tidy."),H.endScope(I),I}catch(I){throw H.endScope(null),I}};return Object.defineProperty(y,"name",{value:u,configurable:!0}),y}function e9(r,l){const u=M(r,"real","complex"),p=M(l,"imag","complex");tn(u.shape,p.shape,`real and imag shapes, ${u.shape} and ${p.shape}, must match in call to tf.complex().`);const y=I=>I.complex(u,p),g={real:u,imag:p};return H.runKernelFunc(y,g,null,k2)}const Mi=V({complex_:e9});function Pi(r,l,u,p){if(p==null&&(p=Tu(r)),p==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Os(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(l!=null){Zm(l);const y=Zt(l),g=Zt(u);J(y===g,()=>`Based on the provided shape, [${l}], the tensor should have ${y} values but has ${g}`);for(let I=0;I<u.length;++I){const S=u[I],T=I===u.length-1?S!==Zt(l.slice(I)):!0;J(u[I]===l[I]||!T,()=>`Error creating a new Tensor. Inferred shape (${u}) does not match the provided shape (${l}). `)}}return!Os(r)&&!Array.isArray(r)&&(r=[r]),l=l||u,r=p!=="string"?Zf(r,p):ta(r,[],!0),H.makeTensor(r,l,p)}function pI(r,l,u){const p=br(r,u);return Pi(r,l,p,u)}function Ou(r,l="float32",u){return l=l||"float32",Zm(r),new JR(r,l,u)}function t9(r,l){const u=M(r,"x","cast");if(!l2(l))throw new Error(`Failed to cast to unknown dtype ${l}`);if(l==="string"&&u.dtype!=="string"||l!=="string"&&u.dtype==="string")throw new Error("Only strings can be casted to strings");const p={x:u},y={dtype:l};return H.runKernelFunc(g=>g.cast(u,l),p,null,kc,y)}const Ie=V({cast_:t9});function n9(r){const l=M(r,"x","clone",null),u=()=>H.makeTensorFromDataId(l.dataId,l.shape,l.dtype),p={x:l};return H.runKernelFunc(u,p,null,yf)}const pi=V({clone_:n9});function mI(r,l=!1){console.log(r.toString(l))}dI();const s9={buffer:Ou,cast:Ie,clone:pi,print:mI};QR(s9);function i9(r,l){const u=M(r,"x","reshape",null),p={x:u},y={shape:l},g=(I,S)=>(l=r2(l,u.size),J(u.size===Zt(l),()=>"new shape and old shape must have the same number of elements."),S([u]),I.reshape(u,l));return H.runKernelFunc(g,p,null,Rf,y)}const re=V({reshape_:i9});function r9(r,l,u=!1,p=!1){let y=M(r,"a","matMul"),g=M(l,"b","matMul");[y,g]=Lt(y,g);const I=(C,D)=>{D([y,g]);const _=u?y.shape[y.rank-2]:y.shape[y.rank-1],A=p?g.shape[g.rank-1]:g.shape[g.rank-2],B=u?y.shape[y.rank-1]:y.shape[y.rank-2],ne=p?g.shape[g.rank-2]:g.shape[g.rank-1],te=y.shape.slice(0,-2),P=g.shape.slice(0,-2),ge=Zt(te),ae=Zt(P),Le=ge===ae||ge===1||ae===1;J(y.rank>=2&&g.rank>=2&&Le,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${te}) and (${P}).`),J(_===A,()=>`Error in matMul: inner shapes (${_}) and (${A}) of Tensors with shapes ${y.shape} and ${g.shape} and transposeA=${u} and transposeB=${p} must match.`);const ve=ge>ae?te:P,Ve=ve.concat([B,ne]),at=u?re(y,[ge,_,B]):re(y,[ge,B,_]),pt=p?re(g,[ae,ne,A]):re(g,[ae,A,ne]),$t=C.batchMatMul(at,pt,u,p);return re($t,Ve)},S={a:y,b:g},T={transposeA:u,transposeB:p};return H.runKernelFunc(I,S,null,tf,T)}const yn=V({matMul_:r9});function o9(r,l){const u=M(r,"x","transpose");if(l==null&&(l=u.shape.map((g,I)=>I).reverse()),J(u.rank===l.length,()=>`Error in transpose: rank of input ${u.rank} must match length of perm ${l}.`),l.forEach(g=>{J(g>=0&&g<u.rank,()=>`All entries in 'perm' must be between 0 and ${u.rank-1} but got ${l}`)}),u.rank<=1)return u.clone();const p={x:u},y={perm:l};return H.runKernelFunc(g=>g.transpose(u,l),p,null,Hf,y)}const xn=V({transpose_:o9});function fI(r,l,u){if(Oc(r),l!=null&&l.length!==3)throw new Error("tensor3d() requires shape to have three numbers");const p=br(r,u);if(p.length!==3&&p.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(p.length===1&&l==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Pi(r,l,p,u)}const gI={};Pm(gI,{fromPixels:()=>l9,toPixels:()=>c9});let _c;function a9(r,l=3){if(l>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let u=!1,p=!1,y=!1,g=!1,I=!1;if(r.data instanceof Uint8Array)u=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)p=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)y=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)g=!0;else if(r.getContext!=null)I=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(y){const B=2;if(y&&r.readyState<B)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}const S=Jf(tI,H.backendName);if(S!=null){const B={pixels:r},ne={numChannels:l};return H.runKernel(tI,B,ne)}const[T,C]=y?[r.videoWidth,r.videoHeight]:[r.width,r.height];let D;I?D=r.getContext("2d").getImageData(0,0,T,C).data:p||u?D=r.data:(g||y)&&(_c==null&&(_c=document.createElement("canvas").getContext("2d")),_c.canvas.width=T,_c.canvas.height=C,_c.drawImage(r,0,0,T,C),D=_c.getImageData(0,0,T,C).data);let _;if(l===4)_=new Int32Array(D);else{const B=T*C;_=new Int32Array(B*l);for(let ne=0;ne<B;ne++)for(let te=0;te<l;++te)_[ne*l+te]=D[ne*4+te]}const A=[C,T,l];return fI(_,A,"int32")}async function c9(r,l){let u=M(r,"img","toPixels");if(!(r instanceof En)){const C=u;u=Ie(C,"int32"),C.dispose()}if(u.rank!==2&&u.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${u.rank}.`);const[p,y]=u.shape.slice(0,2),g=u.rank===2?1:u.shape[2];if(g>4||g===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${g}`);if(u.dtype!=="float32"&&u.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${u.dtype}. Please use float32 or int32 tensors.`);const I=await u.data(),S=u.dtype==="float32"?255:1,T=new Uint8ClampedArray(y*p*4);for(let C=0;C<p*y;++C){const D=[0,0,0,255];for(let A=0;A<g;A++){const B=I[C*g+A];if(u.dtype==="float32"){if(B<0||B>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${B}.`)}else if(u.dtype==="int32"&&(B<0||B>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${B}.`);g===1?(D[0]=B*S,D[1]=B*S,D[2]=B*S):D[A]=B*S}const _=C*4;T[_+0]=Math.round(D[0]),T[_+1]=Math.round(D[1]),T[_+2]=Math.round(D[2]),T[_+3]=Math.round(D[3])}if(l!=null){l.width=y,l.height=p;const C=l.getContext("2d"),D=new ImageData(T,y,p);C.putImageData(D,0,0)}return u!==r&&u.dispose(),T}const l9=V({fromPixels_:a9});function lO(r,l,u){const p=r.shape.length;J(p===l.length,()=>`Error in slice${p}D: Length of begin ${l} must match the rank of the array (${p}).`),J(p===u.length,()=>`Error in slice${p}D: Length of size ${u} must match the rank of the array (${p}).`);for(let y=0;y<p;++y)J(l[y]+u[y]<=r.shape[y],()=>`Error in slice${p}D: begin[${y}] + size[${y}] (${l[y]+u[y]}) would overflow input.shape[${y}] (${r.shape[y]})`)}function sg(r,l,u){let p;const y=r.shape.length;typeof l=="number"?p=[l,...new Array(y-1).fill(0)]:l.length<y?p=l.concat(new Array(y-l.length).fill(0)):p=l.slice(),p.forEach(I=>{J(I!==-1,()=>"slice() does not support negative begin indexing.")});let g;return u==null?g=new Array(y).fill(-1):typeof u=="number"?g=[u,...new Array(y-1).fill(-1)]:u.length<y?g=u.concat(new Array(y-u.length).fill(-1)):g=u,g=g.map((I,S)=>I>=0?I:(J(I===-1,()=>`Negative size values should be exactly -1 but got ${I} for the slice() size at index ${S}.`),r.shape[S]-p[S])),[p,g]}function h9(r){Es().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}eO(h9);function hO(r,l){return H.tidy(r,l)}function uO(r){const l=tg(r);l.forEach(u=>u.dispose())}function u9(r,l){let u=M(r,"a","add"),p=M(l,"b","add");[u,p]=Lt(u,p);const y=(I,S)=>{const T=I.add(u,p);return S([u,p]),T},g={a:u,b:p};return H.runKernelFunc(y,g,null,Dc)}const vt=V({add_:u9});function d9(r,l){let u=M(r,"a","floorDiv"),p=M(l,"b","floorDiv");[u,p]=Lt(u,p);const y=(I,S)=>{const T=I.floorDiv(u,p);return S([u,p]),T},g={a:u,b:p};return H.runKernelFunc(y,g,null,mf)}const yI=V({floorDiv_:d9});function p9(r,l){let u=M(r,"a","div"),p=M(l,"b","div");if([u,p]=Lt(u,p),u.dtype==="int32"&&p.dtype==="int32")return yI(u,p);const y=(S,T)=>{const C=S.realDivide(u,p);return T([u,p]),C},g={a:u,b:p},I={};return H.runKernelFunc(y,g,null,uf,I)}const Me=V({div_:p9});function m9(r,l){let u=M(r,"a","mul"),p=M(l,"b","mul");[u,p]=Lt(u,p);const y=(I,S)=>{const T=I.multiply(u,p);return S([u,p]),T},g={a:u,b:p};return H.runKernelFunc(y,g,null,Tf)}const le=V({mul_:m9});function f9(r){const l=M(r,"x","abs"),u={x:l};return H.runKernelFunc((p,y)=>(y([l]),l.dtype==="complex64"?p.complexAbs(l):p.abs(l)),u,null,ef)}const zn=V({abs_:f9});function g9(r,l){for(let u=0;u<r.length;++u)if(r[r.length-u-1]!==l-1-u)return!1;return!0}function y9(r,l,u){const p=r.length+l.length,y=[];let g=0,I=0;for(let S=0;S<p;S++)u.indexOf(S)===-1?y.push(r[g++]):y.push(l[I++]);return y}function dO(r,l){const u=[],p=r.length;for(let g=0;g<p;g++)l.indexOf(g)===-1&&u.push(r[g]);const y=l.map(g=>r[g]);return[u,y]}function rs(r,l){const u=l.map(p=>1);return y9(r,u,l)}function zi(r,l){if(g9(r,l))return null;const u=[];for(let p=0;p<l;++p)r.indexOf(p)===-1&&u.push(p);return r.forEach(p=>u.push(p)),u}function Wc(r){return r.map((l,u)=>[u,l]).sort((l,u)=>l[1]-u[1]).map(l=>l[0])}function io(r,l){const u=[];for(let p=l-r;p<l;++p)u.push(p);return u}function rg(r,l,u,p,y,g,I="channelsLast"){const[S,T]=ig(l);let C;if(I==="channelsLast")C=[S,T,r[3],r[3]];else if(I==="channelsFirst")C=[S,T,r[1],r[1]];else throw new Error(`Unknown dataFormat ${I}`);return mi(r,C,u,p,y,g,!1,I)}function og(r,l,u,p,y,g,I="NDHWC"){const[S,T,C]=bI(l);let D,_;if(I==="NDHWC")_="channelsLast",D=[S,T,C,r[4],r[4]];else if(I==="NCDHW")_="channelsFirst",D=[S,T,C,r[1],r[1]];else throw new Error(`Unknown dataFormat ${I}`);return Eu(r,D,u,p,y,!1,_,g)}function mi(r,l,u,p,y,g,I=!1,S="channelsLast"){let[T,C,D,_]=[-1,-1,-1,-1];if(S==="channelsLast")[T,C,D,_]=r;else if(S==="channelsFirst")[T,_,C,D]=r;else throw new Error(`Unknown dataFormat ${S}`);const[A,B,,ne]=l,[te,P]=ig(u),[ge,ae]=ig(p),Le=$c(A,ge),ve=$c(B,ae),{padInfo:Ve,outHeight:at,outWidth:pt}=b9(y,C,D,te,P,Le,ve,g,S),$t=I?ne*_:ne;let Vt;return S==="channelsFirst"?Vt=[T,$t,at,pt]:S==="channelsLast"&&(Vt=[T,at,pt,$t]),{batchSize:T,dataFormat:S,inHeight:C,inWidth:D,inChannels:_,outHeight:at,outWidth:pt,outChannels:$t,padInfo:Ve,strideHeight:te,strideWidth:P,filterHeight:A,filterWidth:B,effectiveFilterHeight:Le,effectiveFilterWidth:ve,dilationHeight:ge,dilationWidth:ae,inShape:r,outShape:Vt,filterShape:l}}function Eu(r,l,u,p,y,g=!1,I="channelsLast",S){let[T,C,D,_,A]=[-1,-1,-1,-1,-1];if(I==="channelsLast")[T,C,D,_,A]=r;else if(I==="channelsFirst")[T,A,C,D,_]=r;else throw new Error(`Unknown dataFormat ${I}`);const[B,ne,te,,P]=l,[ge,ae,Le]=bI(u),[ve,Ve,at]=bI(p),pt=$c(B,ve),$t=$c(ne,Ve),Vt=$c(te,at),{padInfo:qe,outDepth:ln,outHeight:bt,outWidth:ws}=w9(y,C,D,_,ge,ae,Le,pt,$t,Vt,S),Nr=g?P*A:P;let Cr;return I==="channelsFirst"?Cr=[T,Nr,ln,bt,ws]:I==="channelsLast"&&(Cr=[T,ln,bt,ws,Nr]),{batchSize:T,dataFormat:I,inDepth:C,inHeight:D,inWidth:_,inChannels:A,outDepth:ln,outHeight:bt,outWidth:ws,outChannels:Nr,padInfo:qe,strideDepth:ge,strideHeight:ae,strideWidth:Le,filterDepth:B,filterHeight:ne,filterWidth:te,effectiveFilterDepth:pt,effectiveFilterHeight:$t,effectiveFilterWidth:Vt,dilationDepth:ve,dilationHeight:Ve,dilationWidth:at,inShape:r,outShape:Cr,filterShape:l}}function L9(r,l,u,p,y){p==null&&(p=pO(r,l,u));const g=r[0],I=r[1],S=sa((g-l+2*p)/u+1,y);J(nn(S),()=>`The output # of rows (${S}) must be an integer. Change the stride and/or zero pad parameters`);const T=sa((I-l+2*p)/u+1,y);return J(nn(T),()=>`The output # of columns (${T}) must be an integer. Change the stride and/or zero pad parameters`),[S,T]}function S9(r,l,u,p,y,g){y==null&&(y=pO(r,l,p));const I=r[0],S=r[1],T=r[2],C=sa((I-l+2*y)/p+1,g);J(nn(C),()=>`The output # of depths (${C}) must be an integer. Change the stride and/or zero pad parameters`);const D=sa((S-l+2*y)/p+1,g);J(nn(D),()=>`The output # of rows (${D}) must be an integer. Change the stride and/or zero pad parameters`);const _=sa((T-l+2*y)/p+1,g);return J(nn(_),()=>`The output # of columns (${_}) must be an integer. Change the stride and/or zero pad parameters`),[C,D,_,u]}function pO(r,l,u,p=1){const y=$c(l,p);return Math.floor((r[0]*(u-1)-u+y)/2)}function ig(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function bI(r){return typeof r=="number"?[r,r,r]:r}function $c(r,l){return l<=1?r:r+(r-1)*(l-1)}function b9(r,l,u,p,y,g,I,S,T){let C,D,_;if(typeof r=="number"){const A=r===0?"VALID":"NUMBER";C={top:r,bottom:r,left:r,right:r,type:A};const B=L9([l,u],g,p,r,S);D=B[0],_=B[1]}else if(r==="same"){D=Math.ceil(l/p),_=Math.ceil(u/y);const A=Math.max(0,(D-1)*p+g-l),B=Math.max(0,(_-1)*y+I-u),ne=Math.floor(A/2),te=A-ne,P=Math.floor(B/2),ge=B-P;C={top:ne,bottom:te,left:P,right:ge,type:"SAME"}}else if(r==="valid")C={top:0,bottom:0,left:0,right:0,type:"VALID"},D=Math.ceil((l-g+1)/p),_=Math.ceil((u-I+1)/y);else if(typeof r=="object"){const A=T==="channelsLast"?r[1][0]:r[2][0],B=T==="channelsLast"?r[1][1]:r[2][1],ne=T==="channelsLast"?r[2][0]:r[3][0],te=T==="channelsLast"?r[2][1]:r[3][1],P=A===0&&B===0&&ne===0&&te===0?"VALID":"EXPLICIT";C={top:A,bottom:B,left:ne,right:te,type:P},D=sa((l-g+A+B)/p+1,S),_=sa((u-I+ne+te)/y+1,S)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:C,outHeight:D,outWidth:_}}function w9(r,l,u,p,y,g,I,S,T,C,D){let _,A,B,ne;if(typeof r=="number"){const te=r===0?"VALID":"NUMBER";_={top:r,bottom:r,left:r,right:r,front:r,back:r,type:te};const P=S9([l,u,p,1],S,1,y,r,D);A=P[0],B=P[1],ne=P[2]}else if(r==="same"){A=Math.ceil(l/y),B=Math.ceil(u/g),ne=Math.ceil(p/I);const te=(A-1)*y+S-l,P=(B-1)*g+T-u,ge=(ne-1)*I+C-p,ae=Math.floor(te/2),Le=te-ae,ve=Math.floor(P/2),Ve=P-ve,at=Math.floor(ge/2),pt=ge-at;_={top:ve,bottom:Ve,left:at,right:pt,front:ae,back:Le,type:"SAME"}}else if(r==="valid")_={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},A=Math.ceil((l-S+1)/y),B=Math.ceil((u-T+1)/g),ne=Math.ceil((p-C+1)/I);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:_,outDepth:A,outHeight:B,outWidth:ne}}function sa(r,l){if(!l)return r;switch(l){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${l}`)}}function ro(r){const[l,u,p]=ig(r);return l===1&&u===1&&p===1}function oo(r,l){return ro(r)||ro(l)}function Uc(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function mO(r,l){const u=r[0].length;r.forEach((y,g)=>{J(y.length===u,()=>`Error in concat${u}D: rank of tensors[${g}] must be the same as the rank of the rest (${u})`)}),J(l>=0&&l<u,()=>`Error in concat${u}D: axis must be between 0 and ${u-1}.`);const p=r[0];r.forEach((y,g)=>{for(let I=0;I<u;I++)J(I===l||y[I]===p[I],()=>`Error in concat${u}D: Shape of tensors[${g}] (${y}) does not match the shape of the rest (${p}) along the non-concatenated axis ${g}.`)})}function fO(r,l){const u=r[0].slice();for(let p=1;p<r.length;p++)u[l]+=r[p][l];return u}function I9(r,l=0){J(r.length>=1,()=>"Pass at least one tensor to concat");let u=ng(r,"tensors","concat");u[0].dtype==="complex64"&&u.forEach(I=>{if(I.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${I.dtype}. `)});const p=(I,S)=>{const T=ft(l,u[0].shape)[0],C=fO(u.map(A=>A.shape),T);if(Zt(C)===0)return pI([],C);if(u=u.filter(A=>A.size>0),u.length===1)return u[0];const D=u.map(A=>A.shape);mO(D,T);const _=I.concat(u,T);return S(u),_},y=u,g={axis:l};return H.runKernelFunc(p,y,null,rf,g)}const Tn=V({concat_:I9});function x9(r){const l=M(r,"x","sigmoid"),u={x:l};return H.runKernelFunc((p,y)=>{const g=p.sigmoid(l);return y([g]),g},u,null,Uf)}const wI=V({sigmoid_:x9});function T9(r,l,u){const p=M(r,"x","slice");if(p.rank===0)throw new Error("Slicing scalar is not possible");const y=(S,T)=>{const[C,D]=sg(p,l,u);return lO(p,C,D),T([p]),S.slice(p,C,D)},g={x:p},I={begin:l,size:u};return H.runKernelFunc(y,g,null,_f,I)}const Tt=V({slice_:T9});function A9(r,l,u){const p=M(r,"x","batchToSpaceND"),y=l.reduce((T,C)=>T*C);J(p.rank>=1+l.length,()=>`input rank is ${p.rank} but should be > than blockShape.length ${l.length}`),J(u.length===l.length,()=>`crops.length is ${u.length} but should be equal to blockShape.length ${l.length}`),J(p.shape[0]%y===0,()=>`input tensor batch is ${p.shape[0]} but is not divisible by the product of the elements of blockShape ${l.join(" * ")} === ${y}`);const g=T=>T.batchToSpaceND(p,l,u),I={x:p},S={blockShape:l,crops:u};return H.runKernelFunc(g,I,null,nf,S)}const LI=V({batchToSpaceND_:A9});function v9(r,l){let u=M(r,"broadcastTo","x");const p=u.shape;if(l.some(D=>!(D>0)||D%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${l}].`);if(l.length<u.rank)throw new Error(`broadcastTo(): shape.length=${l.length} < input.rank=${u.rank}.`);if(l.length>u.rank){const D=u.shape.slice();for(;D.length<l.length;)D.unshift(1);u=re(u,D)}const y=u.shape,g=Array.from(l);for(let D=l.length-1;D>=0;D--)if(y[D]===l[D])g[D]=1;else if(u.shape[D]!==1)throw new Error(`broadcastTo(): [${p}] cannot be broadcast to [${l}].`);const I=g.map((D,_)=>D>1?_:-1).filter(D=>D>=0);if(I.length===0)return pi(u);const S=D=>D.tile(u,g),T={x:u},C={shape:l,inputShape:y};return H.runKernelFunc(S,T,null,sf,C)}const ag=V({broadcastTo_:v9});function N9(r,l,u,p,y="NHWC",g=[1,1],I){const S=M(r,"x","conv2d"),T=M(l,"filter","conv2d");let C=S,D=!1;S.rank===3&&(D=!0,C=re(S,[1,S.shape[0],S.shape[1],S.shape[2]])),J(C.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${C.rank}.`),J(T.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${T.rank}.`),I!=null&&J(nn(p),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${I} but got pad ${p}.`);const _=y==="NHWC"?C.shape[3]:C.shape[1];J(_===T.shape[2],()=>`Error in conv2d: depth of input (${_}) must match input depth for filter ${T.shape[2]}.`),J(oo(u,g),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${u} and dilations '${g}'`);const A=(P,ge)=>{const ae=Uc(y),Le=mi(C.shape,T.shape,u,g,p,I,!1,ae),ve=P.conv2d(C,T,Le);return ge([C,T]),ve},B={x:C,filter:T},ne={strides:u,pad:p,dataFormat:y,dilations:g,dimRoundingMode:I},te=H.runKernelFunc(A,B,null,of,ne);return D?re(te,[te.shape[1],te.shape[2],te.shape[3]]):te}const SI=V({conv2d_:N9});function C9(r,l,u,p,y,g="NHWC",I){J(r.length===l.rank,()=>`Length of inShape (${r.length}) and rank of dy (${l.rank}) must match`);let S=r,T=l,C=!1;l.rank===3&&(C=!0,T=re(l,[1,l.shape[0],l.shape[1],l.shape[2]]),S=[1,r[0],r[1],r[2]]),J(S.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${S.length}.`),J(T.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${T.rank}`),J(u.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${u.rank}`);const D=g==="NHWC"?S[3]:S[1],_=g==="NHWC"?T.shape[3]:T.shape[1];J(D===u.shape[2],()=>`Error in conv2dDerInput: depth of input (${D}) must match input depth for filter ${u.shape[2]}.`),J(_===u.shape[3],()=>`Error in conv2dDerInput: depth of output (${_}) must match output depth for filter ${u.shape[3]}.`),I!=null&&J(nn(y),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${I} but got pad ${y}.`);const A=(P,ge)=>{const ae=1,Le=Uc(g),ve=mi(S,u.shape,p,ae,y,I,!1,Le),Ve=P.conv2dDerInput(T,u,ve);return ge([T,u]),Ve},B={dy:T,filter:u},ne={strides:p,pad:y,dataFormat:g,dimRoundingMode:I,inputShape:S},te=H.runKernelFunc(A,B,null,af,ne);return C?re(te,[te.shape[1],te.shape[2],te.shape[3]]):te}const gO=V({conv2DBackpropInput_:C9});function R9(r,l,u,p,y){J(r.length===l.rank,()=>`Length of inShape (${r.length}) and rank of dy (${l.rank}) must match`);let g=r,I=l,S=!1;l.rank===4&&(S=!0,I=re(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),g=[1,r[0],r[1],r[2],r[3]]);const T=g[4],C=I.shape[4];J(g.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${g.length}.`),J(I.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${I.rank}`),J(u.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${u.rank}`),J(T===u.shape[3],()=>`Error in conv3dDerInput: depth of input (${T}) must match input depth for filter ${u.shape[3]}.`),J(C===u.shape[4],()=>`Error in conv3dDerInput: depth of output (${C}) must match output depth for filter ${u.shape[4]}.`);const D=ne=>{const te=1,P=Eu(g,u.shape,p,te,y);return ne.conv3dDerInput(I,u,P)},_={dy:I,filter:u},A={pad:y,strides:p,inputShape:g},B=H.runKernelFunc(D,_,null,$2,A);return S?re(B,[B.shape[1],B.shape[2],B.shape[3],B.shape[4]]):B}const yO=V({conv3DBackpropInput_:R9});function O9(r){const l=M(r,"x","cos"),u={x:l};return H.runKernelFunc((p,y)=>{const g=p.cos(l);return y([l]),g},u,null,cf)}const Du=V({cos_:O9});function E9(r){const l=M(r,"x","cosh"),u={x:l};return H.runKernelFunc((p,y)=>{const g=p.cosh(l);return y([l]),g},u,null,lf)}const II=V({cosh_:E9});function D9(r,l=0,u=!1,p=!1){const y=M(r,"x","cumsum"),g=(T,C)=>{const D=zi([l],y.rank);let _=y;D!=null&&(_=xn(y,D));const A=io(1,y.rank)[0];let B=T.cumsum(_,A,u,p);if(C([y]),D!=null){const ne=Wc(D);B=xn(B,ne)}return B},I={x:y},S={axis:l,exclusive:u,reverse:p};return H.runKernelFunc(g,I,null,hf,S)}const xI=V({cumsum_:D9});function Ot(r,l){const u=[];for(let p=0;p<l.length;p++){const y=r[r.length-p-1],g=l.length-p-1,I=l[g];(y==null||y===1&&I>1)&&u.unshift(g)}return u}function ot(r,l){const u=[],p=Math.max(r.length,l.length);for(let y=0;y<p;y++){let g=r[r.length-y-1];g==null&&(g=1);let I=l[l.length-y-1];if(I==null&&(I=1),g===1)u.unshift(I);else if(I===1)u.unshift(g);else if(g!==I){const S=`Operands could not be broadcast together with shapes ${r} and ${l}.`;throw Error(S)}else u.unshift(g)}return u}function k9(r,l){let u=M(r,"a","equal"),p=M(l,"b","equal");[u,p]=Lt(u,p),ot(u.shape,p.shape);const y=I=>I.equal(u,p),g={a:u,b:p};return H.runKernelFunc(y,g,null,j2)}const TI=V({equal_:k9});function F9(r,l,u){const p=M(l,"a","where"),y=M(u,"b","where"),g=M(r,"condition","where","bool"),I=ot(p.shape,y.shape),S=ag(p,I),T=ag(y,I);g.rank===1&&J(g.shape[0]===p.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),g.rank!==1&&tn(g.shape,T.shape,"Error in where: ");const C=(_,A)=>{const B=_.select(g,S,T);return A([g]),B},D={condition:g,t:S,e:T};return H.runKernelFunc(C,D,null,Ff)}const Vn=V({where_:F9});function _9(r){const l=M(r,"x","zerosLike"),u={x:l};return H.runKernelFunc(p=>p.zerosLike(l),u,null,Kf)}const Ke=V({zerosLike_:_9});function W9(r){const l=M(r,"x","exp"),u={x:l};return H.runKernelFunc((p,y)=>{const g=p.exp(l);return y([g]),g},u,null,df)}const Gn=V({exp_:W9});function $9(r,l=0){const u=null,p=M(r,"x","expandDims",u);J(l<=p.rank,()=>"Axis must be <= rank of the tensor");const y=p.shape.slice();return l<0&&(J(-(p.rank+1)<=l,()=>`Axis must be in the interval [${-(p.rank+1)}, ${p.rank}]`),l=p.rank+l+1),y.splice(l,0,1),re(p,y)}const Ds=V({expandDims_:$9});function U9(r,l){const u=null,p=M(r,"x","tile",u);J(p.rank===l.length,()=>`Error in transpose: rank of input ${p.rank} must match length of reps ${l}.`);const y=(T,C)=>{const D=T.tile(p,l);return C([p]),D},g=[p],I={x:p},S={reps:l};return H.runKernelFunc(y,I,null,Yf,S,g)}const ia=V({tile_:U9});function B9(r,l,u,p="float32"){l==null&&(l=r);const y=Ou([r,l],p),g=r<=l?r:l;for(let S=0;S<g;++S)y.set(1,S,S);const I=re(y.toTensor(),[r,l]);if(u==null)return I;if(u.length===1)return ia(Ds(I,0),[u[0],1,1]);if(u.length===2)return ia(Ds(Ds(I,0),0),[u[0],u[1],1,1]);if(u.length===3)return ia(Ds(Ds(Ds(I,0),0),0),[u[0],u[1],u[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${u.length}D.`)}const AI=V({eye_:B9});function vI(r,l,u){const p={shape:r,value:l,dtype:u};return H.runKernelFunc(y=>y.fill(r,l,u),{},null,J2,p)}function M9(r){const l=M(r,"x","floor"),u={x:l};return H.runKernelFunc(p=>p.floor(l),u,null,pf)}const NI=V({floor_:M9});function bO(r,l,u){const p=r.shape[u],y=[];let g=1,I=1;for(let S=0;S<u;S++)y.push(r.shape[S]),g*=r.shape[S];for(let S=0;S<l.rank;S++)y.push(l.shape[S]);for(let S=u+1;S<r.rank;S++)y.push(r.shape[S]),I*=r.shape[S];return{batchSize:g,sliceSize:I,dimSize:p,outputShape:y}}function P9(r,l,u=0){const p=M(r,"x","gather"),y=M(l,"indices","gather","int32"),g={x:p,indices:y},I={axis:u},S=(T,C)=>{const D=ft(u,p.shape)[0],_=bO(p,y,D),A=T.gather(p,re(y,[y.size]),D);return C([p,y]),re(A,_.outputShape)};return H.runKernelFunc(S,g,null,ff,I)}const CI=V({gather_:P9});function z9(r,l){let u=M(r,"a","greater"),p=M(l,"b","greater");[u,p]=Lt(u,p),ot(u.shape,p.shape);const y=I=>I.greater(u,p),g={a:u,b:p};return H.runKernelFunc(y,g,null,eR)}const fi=V({greater_:z9});function V9(r,l){let u=M(r,"a","greaterEqual"),p=M(l,"b","greaterEqual");[u,p]=Lt(u,p),ot(u.shape,p.shape);const y=(I,S)=>{const T=I.greaterEqual(u,p);return S([u,p]),T},g={a:u,b:p};return H.runKernelFunc(y,g,null,gf)}const wr=V({greaterEqual_:V9});function G9(r){const l=M(r,"input","imag"),u=y=>y.imag(l),p={input:l};return H.runKernelFunc(u,p,null,nR)}const ku=V({imag_:G9});function Y9(r,l){let u=M(r,"a","maximum"),p=M(l,"b","maximum");[u,p]=Lt(u,p),u.dtype==="bool"&&(u=Ie(u,"int32"),p=Ie(p,"int32")),ot(u.shape,p.shape);const y=(I,S)=>{const T=I.maximum(u,p);return S([u,p]),T},g={a:u,b:p};return H.runKernelFunc(y,g,null,Sf)}const RI=V({maximum_:Y9});function Fe(r,l){if((Os(r)&&l!=="string"||Array.isArray(r))&&l!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(l==="string"&&Os(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");const u=[],p=[];return Pi(r,u,p,l)}function H9(r,l){let u=M(r,"a","less"),p=M(l,"b","less");[u,p]=Lt(u,p),ot(u.shape,p.shape);const y=I=>I.less(u,p),g={a:u,b:p};return H.runKernelFunc(y,g,null,oR)}const OI=V({less_:H9});function q9(r,l){let u=M(r,"a","lessEqual"),p=M(l,"b","lessEqual");[u,p]=Lt(u,p),ot(u.shape,p.shape);const y=(I,S)=>{const T=I.lessEqual(u,p);return S([u,p]),T},g={a:u,b:p};return H.runKernelFunc(y,g,null,aR)}const Lr=V({lessEqual_:q9});function j9(r){const l=M(r,"x","log"),u={x:l};return H.runKernelFunc((p,y)=>{const g=p.log(l);return y([l]),g},u,null,bf)}const ao=V({log_:j9});function K9(r){const l=M(r,"x","log1p"),u={x:l};return H.runKernelFunc((p,y)=>{const g=p.log1p(l);return y([l]),g},u,null,wf)}const EI=V({log1p_:K9});function cg(r){return H.customGrad(r)}function X9(r){const l=M(r,"x","neg"),u={x:l};return H.runKernelFunc(p=>p.neg(l),u,null,Af)}const It=V({neg_:X9});function J9(r,l=null,u=!1){const p=M(r,"x","max"),y=(S,T)=>{const C=ft(l,p.shape);let D=C;const _=zi(D,p.rank);let A=p;_!=null&&(A=xn(p,_),D=io(D.length,A.rank));const B=S.max(A,D);_!=null&&A.dispose();let ne=B;if(u){const te=rs(ne.shape,ft(l,p.shape));ne=re(ne,te),B.dispose()}return T([p,ne]),ne},g={x:p},I={reductionIndices:l,keepDims:u};return H.runKernelFunc(y,g,null,Lf,I)}const ra=V({max_:J9});function Z9(r,l){let u=M(r,"a","sub"),p=M(l,"b","sub");[u,p]=Lt(u,p);const y=(I,S)=>{const T=I.subtract(u,p);return S([u,p]),T},g={a:u,b:p};return H.runKernelFunc(y,g,null,Gf)}const Be=V({sub_:Z9});function Q9(r,l=null,u=!1){let p=M(r,"x","sum");p.dtype==="bool"&&(p=Ie(p,"int32"));const y=(S,T)=>{T([p]);const C=ft(l,p.shape),D=zi(C,p.rank);let _=C,A=p;D!=null&&(A=xn(p,D),_=io(_.length,p.rank));let B=S.sum(A,_);if(u){const ne=rs(B.shape,C);B=re(B,ne)}return B},g={x:p},I={axis:l,keepDims:u};return H.runKernelFunc(y,g,null,Mf,I)}const _e=V({sum_:Q9});function eZ(r,l=null,u=!1){const p=M(r,"x","logSumExp"),y=ft(l,p.shape),g=ra(p,y,!0),I=Be(p,g),S=Gn(I),T=_e(S,y),C=ao(T),D=vt(re(g,C.shape),C);if(u){const _=rs(D.shape,y);return re(D,_)}return D}const DI=V({logSumExp_:eZ});function tZ(r,l){const u=M(r,"a","logicalAnd","bool"),p=M(l,"b","logicalAnd","bool");ot(u.shape,p.shape);const y={a:u,b:p};return H.runKernelFunc(g=>g.logicalAnd(u,p),y,null,cR)}const oa=V({logicalAnd_:tZ});function nZ(r){const l=M(r,"x","logicalNot","bool"),u={x:l};return H.runKernelFunc(p=>p.logicalNot(l),u,null,lR)}const kI=V({logicalNot_:nZ});function ks(r,l="float32"){if(l==="complex64"){const p=ks(r,"float32"),y=ks(r,"float32");return Mi(p,y)}const u=na(Zt(r),l);return H.makeTensor(u,r,l)}function Vi(r,l="float32"){if(l==="complex64"){const p=Vi(r,"float32"),y=ks(r,"float32");return Mi(p,y)}const u=Jm(Zt(r),l);return H.makeTensor(u,r,l)}function sZ(r,l=null,u=!1){const p=M(r,"x","mean"),y=ft(l,p.shape),g=dO(p.shape,y),I=g[1],S=Zt(I),T={x:p},C={axis:l,keepDims:u},D=()=>{const A=Fe(S),B=A.dtype===p.dtype?p:Ie(p,A.dtype),ne=Me(B,A);return _e(ne,l,u)},_=cg(A=>{const B=H.runKernelFunc(D,T,null,yR,C),ne=te=>{const P=A.shape.slice();y.forEach(Le=>{P[Le]=1});const ge=re(te,P),ae=Me(le(ge,Vi(A.shape,"float32")),S);return ae};return{value:B,gradFunc:ne}});return _(p)}const FI=V({mean_:sZ});function iZ(r,l=null,u=!1){const p=M(r,"x","min"),y=(S,T)=>{const C=ft(l,p.shape);let D=C;const _=zi(D,p.rank);let A=p;_!=null&&(A=xn(p,_),D=io(D.length,p.rank));const B=S.min(A,D);_!=null&&A.dispose();let ne=B;if(u){const te=rs(ne.shape,C);ne=re(B,te),B.dispose()}return T([p,ne]),ne},g={x:p},I={axis:l,keepDims:u};return H.runKernelFunc(y,g,null,If,I)}const lg=V({min_:iZ});function rZ(r,l){let u=M(r,"a","minimum"),p=M(l,"b","minimum");[u,p]=Lt(u,p),u.dtype==="bool"&&(u=Ie(u,"int32"),p=Ie(p,"int32")),ot(u.shape,p.shape);const y=(I,S)=>{const T=I.minimum(u,p);return S([u,p]),T},g={a:u,b:p};return H.runKernelFunc(y,g,null,xf)}const _I=V({minimum_:rZ});function oZ(r){const l=M(r,"x","square"),u={},p=[l],y=[];return H.runKernelFunc((g,I)=>(I([l]),g.square(l)),{x:l},null,"Square",u,p,y)}const gt=V({square_:oZ});function aZ(r,l){let u=M(r,"a","notEqual"),p=M(l,"b","notEqual");[u,p]=Lt(u,p),ot(u.shape,p.shape);const y=I=>I.notEqual(u,p),g={a:u,b:p};return H.runKernelFunc(y,g,null,LR)}const WI=V({notEqual_:aZ});function cZ(r){const l=M(r,"input","real"),u=y=>y.real(l),p={input:l};return H.runKernelFunc(u,p,null,CR)}const Bc=V({real_:cZ});function lZ(r,l,u=0){const p=M(r,"x","pad");if(p.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");const y=(S,T)=>(T([p]),S.pad(p,l,u)),g={paddings:l,constantValue:u},I={x:p};return H.runKernelFunc(y,I,null,vf,g)}const $I=V({pad_:lZ});function hZ(r,l,u){const p=M(r,"x","spaceToBatchND");J(p.rank>=1+l.length,()=>`input rank ${p.rank} should be > than [blockShape] ${l.length}`),J(u.length===l.length,()=>`paddings.shape[0] ${u.length} must be equal to [blockShape] ${l.length}`),J(p.shape.reduce((S,T,C)=>C>0&&C<=l.length?S&&(T+u[C-1][0]+u[C-1][1])%l[C-1]===0:S,!0),()=>`input spatial dimensions ${p.shape.slice(1)} with paddings ${u.toString()} must be divisible by blockShapes ${l.toString()}`);const y=S=>S.spaceToBatchND(p,l,u),g={x:p},I={blockShape:l,paddings:u};return H.runKernelFunc(y,g,null,Pf,I)}const UI=V({spaceToBatchND_:hZ});function uZ(r,l){let u=M(r,"base","pow"),p=M(l,"exp","pow");[u,p]=Lt(u,p);const y={a:u,b:p},g=(I,S)=>{const T=I.pow(u,p);return S([u,p,T]),T};return H.runKernelFunc(g,y,null,Nf)}const aa=V({pow_:uZ});function co(r,l){Oc(r);const u=br(r,l);if(u.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");const p=null;return Pi(r,p,u,l)}function hg(r,l,u=1,p="float32"){if(u===0)throw new Error("Cannot have a step of zero");const y=()=>{const I=r===l,S=r<l&&u<0,T=l<r&&u>1;if(I||S||T)return ks([0],p);const C=Math.abs(Math.ceil((l-r)/u)),D=na(C,p);l<r&&u===1&&(u=-1),D[0]=r;for(let _=1;_<D.length;_++)D[_]=D[_-1]+u;return co(D,p)},g={start:r,stop:l,step:u,dtype:p};return H.runKernelFunc(y,{},null,NR,g)}function dZ(r){const l=M(r,"x","relu"),u=(y,g)=>(g([l]),l.dtype==="bool"?Ie(l,"int32"):y.relu(l)),p={x:l};return H.runKernelFunc(u,p,null,Cf)}const Fu=V({relu_:dZ});function pZ(r,l){const u=M(r,"x","reverse"),p=I=>{const S=ft(l,u.shape);if(u.rank===0)return pi(u);const T=I.reverse(u,S);return re(T,u.shape)},y={x:u},g={dims:l};return H.runKernelFunc(p,y,null,Df,g)}const Mc=V({reverse_:pZ});function mZ(r){const l=M(r,"x","rsqrt"),u={x:l};return H.runKernelFunc((p,y)=>{const g=p.rsqrt(l);return y([l]),g},u,null,kf)}const BI=V({rsqrt_:mZ});function fZ(r){const l=M(r,"x","sin"),u={x:l};return H.runKernelFunc((p,y)=>{const g=p.sin(l);return y([l]),g},u,null,Wf)}const MI=V({sin_:fZ});function gZ(r){const l=M(r,"x","sinh"),u={x:l};return H.runKernelFunc((p,y)=>{const g=p.sinh(l);return y([l]),g},u,null,$f)}const PI=V({sinh_:gZ});function yZ(r){J(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);const l={input:r};return H.runKernelFunc(u=>{const p=r.shape[r.shape.length-1],y=r.size/p,g=r.as2D(y,p),I=u.fft(g);return I.reshape(r.shape)},l,null,X2)}const _u=V({fft_:yZ});function bZ(r){J(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);const l={input:r};return H.runKernelFunc(u=>{const p=r.shape[r.shape.length-1],y=r.size/p,g=re(r,[y,p]),I=u.ifft(g);return re(I,r.shape)},l,null,tR)}const Pc=V({ifft_:bZ});function wZ(r){const l=r.shape[r.shape.length-1],u=r.size/l;let p;if(l<=2){const y=re(r,[u,l]);p=Pc(y)}else{const y=[u,2*(l-1)],g=re(Bc(r),[u,l]),I=re(ku(r),[u,l]),S=Mc(Tt(g,[0,1],[u,l-2]),1),T=le(Mc(Tt(I,[0,1],[u,l-2]),1),Fe(-1)),C=Tn([g,S],1),D=Tn([I,T],1),_=re(Mi(C,D),[y[0],y[1]]);p=Pc(_)}if(p=Bc(p),r.rank===3&&r.shape[0]!==0){const y=p,g=r.shape[0];p=re(p,[g,p.shape[0]/g,p.shape[1]]),y.dispose()}return p}const zI=V({irfft_:wZ});function wO(r,l,u=0){let p=[];if(typeof l=="number")J(r.shape[u]%l===0,()=>"Number of splits must evenly divide the axis."),p=new Array(l).fill(r.shape[u]/l);else{const y=l.reduce((I,S)=>(S===-1&&(I+=1),I),0);J(y<=1,()=>"There should be only one negative value in split array.");const g=l.indexOf(-1);if(g!==-1){const I=l.reduce((S,T)=>T>0?S+T:S);l[g]=r.shape[u]-I}J(r.shape[u]===l.reduce((I,S)=>I+S),()=>"The sum of sizes must match the size of the axis dimension."),p=l}return p}function LZ(r,l,u=0){const p=M(r,"x","split"),y=(S,T)=>{const C=ft(u,p.shape)[0],D=wO(p,l,C);return S.split(p,D,C)},g={x:p},I={numOrSizeSplits:l,axis:u};return H.runKernelFunc(y,g,null,zf,I)}const lo=V({split_:LZ});function SZ(r,l){J(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let u=r.shape[r.shape.length-1];const p=r.size/u;let y;if(l!=null&&l<u){const ne=r.shape.map(P=>0),te=r.shape.map(P=>P);te[r.shape.length-1]=l,y=Tt(r,ne,te),u=l}else if(l!=null&&l>u){const ne=r.shape.map(te=>te);ne[r.shape.length-1]=l-u,y=Tn([r,ks(ne)],r.shape.length-1),u=l}else y=r;const g=Ke(y),I=re(Mi(y,g),[p,u]),S=_u(I),T=Math.floor(u/2)+1,C=Bc(S),D=ku(S),_=lo(C,[T,u-T],C.shape.length-1),A=lo(D,[T,u-T],D.shape.length-1),B=y.shape.slice();return B[y.shape.length-1]=T,re(Mi(_[0],A[0]),B)}const Wu=V({rfft_:SZ});function IZ(r){const l=M(r,"x","sqrt"),u={x:l};return H.runKernelFunc((p,y)=>{const g=p.sqrt(l);return y([l]),g},u,null,Bf)}const fs=V({sqrt_:IZ});function xZ(r,l){let u=M(r,"a","squaredDifference"),p=M(l,"b","squaredDifference");[u,p]=Lt(u,p),ot(u.shape,p.shape);const y=(S,T)=>{const C=S.squaredDifference(u,p);return T([u,p]),C},g={a:u,b:p},I={};return H.runKernelFunc(y,g,null,Vf,I)}const VI=V({squaredDifference_:xZ});function TZ(r,l){const u=M(r,"x","squeeze");return re(u,o2(u.shape,l).newShape)}const GI=V({squeeze_:TZ});function AZ(r,l=0){const u=ng(r,"tensors","stack");if(J(u.length>=1,()=>"Pass at least one tensor to tf.stack"),u.length===1)return Ds(u[0],l);const p=u[0].rank,y=u[0].shape,g=u[0].dtype;J(l<=p,()=>"Axis must be <= rank of the tensor"),u.forEach(S=>{tn(y,S.shape,"All tensors passed to stack must have matching shapes"),J(g===S.dtype,()=>"All tensors passed to stack must have matching dtypes")});const I=u.map(S=>Ds(S,l));return Tn(I,l)}const Ys=V({stack_:AZ});function vZ(r,l=0){const u=M(r,"x","step"),p={x:u},y={alpha:l};return H.runKernelFunc(g=>g.step(u,l),p,null,Xf,y)}const ca=V({step_:vZ});function la(r,l,u){if(Oc(r),l!=null&&l.length!==2)throw new Error("tensor2d() requires shape to have two numbers");const p=br(r,u);if(p.length!==2&&p.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(p.length===1&&l==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Pi(r,l,p,u)}function NZ(r,l,u){const p=M(r,"x","unsortedSegmentSum"),y=M(l,"segmentIds","unsortedSegmentSum","int32");J(nn(u),()=>"numSegments must be of dtype int");const g={x:p,segmentIds:y},I={numSegments:u},S=(T,C)=>{const D=T.unsortedSegmentSum(p,y,u);return C([y]),D};return H.runKernelFunc(S,g,null,jf,I)}const YI=V({unsortedSegmentSum_:NZ});function CZ(r,l=0){const u=M(r,"x","unstack");J(l>=-u.shape.length&&l<u.shape.length,()=>`Axis = ${l} is not in [-${u.shape.length}, ${u.shape.length})`),l<0&&(l+=u.shape.length);const p={value:u},y={axis:l},g=I=>I.unstack(u,l);return H.runKernelFunc(g,p,null,qf,y)}const $u=V({unstack_:CZ});function RZ(r,l="euclidean",u=null,p=!1){r=M(r,"x","norm");const y=LO(r,l,u);let g=y.shape;if(p){const I=ft(u,r.shape);g=rs(y.shape,I)}return re(y,g)}function LO(r,l,u=null){if(r.rank===0)return zn(r);if(r.rank!==1&&u===null)return LO(re(r,[-1]),l,u);if(r.rank===1||typeof u=="number"||Array.isArray(u)&&u.length===1){if(l===1)return _e(zn(r),u);if(l===Infinity)return ra(zn(r),u);if(l===-Infinity)return lg(zn(r),u);if(l==="euclidean"||l===2)return fs(_e(aa(zn(r),Fe(2,"int32")),u));throw new Error(`Error in norm: invalid ord value: ${l}`)}if(Array.isArray(u)&&u.length===2){if(l===1)return ra(_e(zn(r),u[0]),u[1]-1);if(l===Infinity)return ra(_e(zn(r),u[1]),u[0]);if(l===-Infinity)return lg(_e(zn(r),u[1]),u[0]);if(l==="fro"||l==="euclidean")return fs(_e(gt(r),u));throw new Error(`Error in norm: invalid ord value: ${l}`)}throw new Error(`Error in norm: invalid axis: ${u}`)}const ug=V({norm_:RZ});function SO(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function dg(r,l,u){const p=1-r%2,y=new Float32Array(r);for(let g=0;g<r;++g){const I=2*Math.PI*g/(r+p-1);y[g]=l-u*Math.cos(I)}return co(y,"float32")}function OZ(r,l,u,p,y,g="NHWC",I){let S=r;r.rank===3&&(S=re(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let T=l;T.rank===3&&(T=re(l,[1,l.shape[0],l.shape[1],l.shape[2]])),J(S.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${S.shape}.`),J(T.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${T.shape}.`),J(u.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${u}.`);const C=g==="NHWC"?S.shape[3]:S.shape[1],D=g==="NHWC"?T.shape[3]:T.shape[1];J(C===u[2],()=>`Error in conv2dDerFilter: depth of input ${C}) must match input depth in filter (${u[2]}.`),J(D===u[3],()=>`Error in conv2dDerFilter: depth of dy (${D}) must match output depth for filter (${u[3]}).`),I!=null&&J(nn(y),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${I} but got pad ${y}.`);const _=ne=>{const te=1,P=Uc(g),ge=mi(S.shape,u,p,te,y,I,!1,P);return ne.conv2dDerFilter(S,T,ge)},A={x:S,dy:T},B={strides:p,pad:y,dataFormat:g,dimRoundingMode:I,filterShape:u};return H.runKernelFunc(_,A,null,F2,B)}const pg=V({conv2DBackpropFilter_:OZ});function EZ(r,l,u,p,y,g=[1,1],I){let S=r;r.rank===3&&(S=re(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let T=l;T.rank===3&&(T=re(l,[1,l.shape[0],l.shape[1],l.shape[2]]));const C=A=>{const B=mi(r.shape,u,p,g,y,I,!0);return A.depthwiseConv2DDerFilter(S,T,B)},D={x:S,dy:T},_={strides:p,pad:y,dimRoundingMode:I,dilations:g,filterShape:u};return H.runKernelFunc(C,D,null,M2,_)}const IO=V({depthwiseConv2dNativeBackpropFilter_:EZ});function DZ(r,l,u,p,y,g=[1,1],I){let S=l,T=!1;l.rank===3&&(T=!0,S=re(l,[1,l.shape[0],l.shape[1],l.shape[2]]));const C=B=>{const ne=mi(r,u.shape,p,g,y,I,!0);return B.depthwiseConv2DDerInput(S,u,ne)},D={dy:S,filter:u},_={strides:p,pad:y,dimRoundingMode:I,dilations:g,inputShape:r},A=H.runKernelFunc(C,D,null,P2,_);return T?re(A,[A.shape[1],A.shape[2],A.shape[3]]):A}const xO=V({depthwiseConv2dNativeBackpropInput_:DZ});function kZ(r){return dg(r,.54,.46)}const TO=V({hammingWindow_:kZ});function FZ(r){return dg(r,.5,.5)}const mg=V({hannWindow_:FZ});function _Z(r,l,u,p=!1,y=0){let g=0;const I=[];for(;g+l<=r.size;)I.push(Tt(r,g,l)),g+=u;if(p)for(;g<r.size;){const S=g+l-r.size,T=Tn([Tt(r,g,l-S),vI([S],y)]);I.push(T),g+=u}return I.length===0?la([],[0,l]):re(Tn(I),[I.length,l])}const fg=V({frame_:_Z});function WZ(r,l,u,p,y=mg){p==null&&(p=SO(l));const g=fg(r,l,u),I=le(g,y(l)),S=[];for(let T=0;T<g.shape[0];T++)S.push(Wu(Tt(I,[T,0],[1,l]),p));return Tn(S)}const AO=V({stft_:WZ});function $Z(r,l,u,p,y,g){const I=M(r,"image","cropAndResize"),S=M(l,"boxes","cropAndResize","float32"),T=M(u,"boxInd","cropAndResize","int32");y=y||"bilinear",g=g||0;const C=S.shape[0];J(I.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${I.rank}.`),J(S.rank===2&&S.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${C},4] but had shape ${S.shape}.`),J(T.rank===1&&T.shape[0]===C,()=>`Error in cropAndResize: boxInd must be have size [${C}] but had shape ${S.shape}.`),J(p.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${p.length}.`),J(p[0]>=1&&p[1]>=1,()=>`cropSize must be atleast [1,1], but was ${p}`),J(y==="bilinear"||y==="nearest",()=>`method must be bilinear or nearest, but was ${y}`);const D=ne=>ne.cropAndResize(I,S,T,p,y,g),_={image:I,boxes:S,boxInd:T},A={method:y,extrapolationValue:g,cropSize:p},B=H.runKernelFunc(D,_,null,U2,A);return B}const vO=V({cropAndResize_:$Z});function UZ(r){const l=M(r,"image","flipLeftRight","float32");J(l.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${l.rank}.`);const u={image:l},p=H.runKernel(Z2,u,{});return p}const NO=V({flipLeftRight_:UZ});function BZ(r,l,u=0,p=.5){const y=M(r,"image","rotateWithOffset","float32");J(y.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${y.rank}.`);const g={image:y},I={radians:l,fillValue:u,center:p},S=H.runKernel(PR,g,I);return S}const CO=V({rotateWithOffset_:BZ});function Hs(r,l,u,p,y,g){p==null&&(p=.5),y==null&&(y=Number.NEGATIVE_INFINITY),g==null&&(g=0);const I=r.shape[0];return u=Math.min(u,I),J(0<=p&&p<=1,()=>`iouThreshold must be in [0, 1], but was '${p}'`),J(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),J(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),J(l.rank===1,()=>"scores must be a 1D tensor"),J(l.shape[0]===I,()=>`scores has incompatible shape with boxes. Expected ${I}, but was ${l.shape[0]}`),J(0<=g&&g<=1,()=>`softNmsSigma must be in [0, 1], but was '${g}'`),{maxOutputSize:u,iouThreshold:p,scoreThreshold:y,softNmsSigma:g}}function MZ(r,l,u,p=.5,y=Number.NEGATIVE_INFINITY){const g=M(r,"boxes","nonMaxSuppression"),I=M(l,"scores","nonMaxSuppression"),S=Hs(g,I,u,p,y);u=S.maxOutputSize,p=S.iouThreshold,y=S.scoreThreshold;const T={maxOutputSize:u,iouThreshold:p,scoreThreshold:y};return H.runKernelFunc(C=>C.nonMaxSuppression(g,I,u,p,y),{boxes:g,scores:I},null,SR,T)}const RO=V({nonMaxSuppression_:MZ});function OO(r,l,u){const p=PZ(r,l,u),y=p<0?-(p+1):p;r.splice(y,0,l)}function PZ(r,l,u){return VZ(r,l,u||zZ)}function zZ(r,l){return r>l?1:r<l?-1:0}function VZ(r,l,u){let p=0,y=r.length,g=0,I=!1;for(;p<y;){g=p+(y-p>>>1);const S=u(l,r[g]);S>0?p=g+1:(y=g,I=!S)}return I?p:-p-1}function EO(r,l,u,p,y){return HI(r,l,u,p,y,0).selectedIndices}function DO(r,l,u,p,y,g){return HI(r,l,u,p,y,0,!1,g,!0)}function kO(r,l,u,p,y,g){return HI(r,l,u,p,y,g,!0)}function HI(r,l,u,p,y,g,I=!1,S=!1,T=!1){const C=[];for(let P=0;P<l.length;P++)l[P]>y&&C.push({score:l[P],boxIndex:P,suppressBeginIndex:0});C.sort(FO);const D=g>0?-.5/g:0,_=[],A=[];for(;_.length<u&&C.length>0;){const P=C.pop(),{score:ge,boxIndex:ae,suppressBeginIndex:Le}=P;if(ge<y)break;let ve=!1;for(let Ve=_.length-1;Ve>=Le;--Ve){const at=GZ(r,ae,_[Ve]);if(at>=p){ve=!0;break}if(P.score=P.score*YZ(p,D,at),P.score<=y)break}P.suppressBeginIndex=_.length,ve||(P.score===ge?(_.push(ae),A.push(P.score)):P.score>y&&OO(C,P,FO))}const B=_.length,ne=u-B;S&&ne>0&&(_.push(...new Array(ne).fill(0)),A.push(...new Array(ne).fill(0)));const te={selectedIndices:co(_,"int32")};return I&&(te.selectedScores=co(A,"float32")),T&&(te.validOutputs=Fe(B,"int32")),te}function GZ(r,l,u){const p=r.subarray(l*4,l*4+4),y=r.subarray(u*4,u*4+4),g=Math.min(p[0],p[2]),I=Math.min(p[1],p[3]),S=Math.max(p[0],p[2]),T=Math.max(p[1],p[3]),C=Math.min(y[0],y[2]),D=Math.min(y[1],y[3]),_=Math.max(y[0],y[2]),A=Math.max(y[1],y[3]),B=(S-g)*(T-I),ne=(_-C)*(A-D);if(B<=0||ne<=0)return 0;const te=Math.max(g,C),P=Math.max(I,D),ge=Math.min(S,_),ae=Math.min(T,A),Le=Math.max(ge-te,0)*Math.max(ae-P,0);return Le/(B+ne-Le)}function YZ(r,l,u){const p=Math.exp(l*u*u);return u<=r?p:0}function FO(r,l){return r.score-l.score||r.score===l.score&&l.boxIndex-r.boxIndex}async function HZ(r,l,u,p=.5,y=Number.NEGATIVE_INFINITY){const g=M(r,"boxes","nonMaxSuppressionAsync"),I=M(l,"scores","nonMaxSuppressionAsync"),S=Hs(g,I,u,p,y);u=S.maxOutputSize,p=S.iouThreshold,y=S.scoreThreshold;const T=await Promise.all([g.data(),I.data()]),C=T[0],D=T[1],_=EO(C,D,u,p,y);return g!==r&&g.dispose(),I!==l&&I.dispose(),_}const _O=HZ;function qZ(r,l,u,p=.5,y=Number.NEGATIVE_INFINITY,g=0){const I=M(r,"boxes","nonMaxSuppression"),S=M(l,"scores","nonMaxSuppression"),T=Hs(I,S,u,p,y,g);u=T.maxOutputSize,p=T.iouThreshold,y=T.scoreThreshold,g=T.softNmsSigma;const C={boxes:I,scores:S},D={maxOutputSize:u,iouThreshold:p,scoreThreshold:y,softNmsSigma:g},_=H.runKernel(xR,C,D);return{selectedIndices:_[0],selectedScores:_[1]}}const WO=V({nonMaxSuppressionWithScore_:qZ});async function jZ(r,l,u,p=.5,y=Number.NEGATIVE_INFINITY,g=0){const I=M(r,"boxes","nonMaxSuppressionAsync"),S=M(l,"scores","nonMaxSuppressionAsync"),T=Hs(I,S,u,p,y,g);u=T.maxOutputSize,p=T.iouThreshold,y=T.scoreThreshold,g=T.softNmsSigma;const C=await Promise.all([I.data(),S.data()]),D=C[0],_=C[1],A=kO(D,_,u,p,y,g);return I!==r&&I.dispose(),S!==l&&S.dispose(),A}const $O=jZ;function KZ(r,l,u,p=.5,y=Number.NEGATIVE_INFINITY,g=!1){const I=M(r,"boxes","nonMaxSuppression"),S=M(l,"scores","nonMaxSuppression"),T=Hs(I,S,u,p,y,null),C=T.maxOutputSize,D=T.iouThreshold,_=T.scoreThreshold,A={boxes:I,scores:S},B={maxOutputSize:C,iouThreshold:D,scoreThreshold:_,padToMaxOutputSize:g},ne=H.runKernel(IR,A,B);return{selectedIndices:ne[0],validOutputs:ne[1]}}const UO=V({nonMaxSuppressionPadded_:KZ});async function XZ(r,l,u,p=.5,y=Number.NEGATIVE_INFINITY,g=!1){const I=M(r,"boxes","nonMaxSuppressionAsync"),S=M(l,"scores","nonMaxSuppressionAsync"),T=Hs(I,S,u,p,y,null),C=T.maxOutputSize,D=T.iouThreshold,_=T.scoreThreshold,[A,B]=await Promise.all([I.data(),S.data()]),ne=DO(A,B,C,D,_,g);return I!==r&&I.dispose(),S!==l&&S.dispose(),ne}const BO=XZ;function JZ(r,l,u=!1){const p=M(r,"images","resizeBilinear");J(p.rank===3||p.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${p.rank}.`),J(l.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${l}.`);let y=p,g=!1;p.rank===3&&(g=!0,y=re(p,[1,p.shape[0],p.shape[1],p.shape[2]]));const[I,S]=l,T=(A,B)=>(B([y]),A.resizeBilinear(y,I,S,u)),C={images:y},D={alignCorners:u,size:l},_=H.runKernelFunc(T,C,null,Ef,D);return g?re(_,[_.shape[1],_.shape[2],_.shape[3]]):_}const MO=V({resizeBilinear_:JZ});function ZZ(r,l,u=!1){const p=M(r,"images","resizeNearestNeighbor");J(p.rank===3||p.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${p.rank}.`),J(l.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${l}.`),J(p.dtype==="float32"||p.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype");let y=p,g=!1;p.rank===3&&(g=!0,y=re(p,[1,p.shape[0],p.shape[1],p.shape[2]]));const[I,S]=l,T={images:y},C={alignCorners:u,size:l},D=(A,B)=>(B([y]),A.resizeNearestNeighbor(y,I,S,u)),_=H.runKernelFunc(D,T,null,Of,C);return g?re(_,[_.shape[1],_.shape[2],_.shape[3]]):_}const PO=V({resizeNearestNeighbor_:ZZ});function QZ(r,l,u){J(l%1===0,()=>`bandPart(): numLower must be an integer, got ${l}.`),J(u%1===0,()=>`bandPart(): numUpper must be an integer, got ${u}.`);const p=M(r,"a","bandPart");J(p.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${p.rank}.`);const y=p.shape,[g,I]=p.shape.slice(-2);if(!(l<=g))throw new Error(`bandPart(): numLower (${l}) must not be greater than the number of rows (${g}).`);if(!(u<=I))throw new Error(`bandPart(): numUpper (${u}) must not be greater than the number of columns (${I}).`);l<0&&(l=g),u<0&&(u=I);const S=re(hg(0,g,1,"int32"),[-1,1]),T=hg(0,I,1,"int32"),C=Be(S,T),D=oa(Lr(C,Fe(+l,"int32")),wr(C,Fe(-u,"int32"))),_=ks([g,I],p.dtype);return re(Ys($u(re(p,[-1,g,I])).map(A=>Vn(D,A,_))),y)}const zO=V({bandPart_:QZ});function eQ(r){let l;if(Array.isArray(r)){l=!1,J(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");const y=r[0].shape[0];for(let g=1;g<r.length;++g)J(r[g].shape[0]===y,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[g].shape[0]} vs. ${y})`)}else l=!0,r=lo(r,r.shape[0],0).map(y=>GI(y,[0]));J(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);const u=[],p=r;for(let y=0;y<r.length;++y)u.push(H.tidy(()=>{let g=p[y];if(y>0)for(let I=0;I<y;++I){const S=le(_e(le(u[I],g)),u[I]);g=Be(g,S)}return Me(g,ug(g,"euclidean"))}));return l?Ys(u,0):u}const VO=V({gramSchmidt_:eQ});function tQ(r,l=!1){if(J(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return GO(r,l);{const u=r.shape.slice(0,r.shape.length-2).reduce((T,C)=>T*C),p=$u(re(r,[u,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),y=[],g=[];p.forEach(T=>{const[C,D]=GO(T,l);y.push(C),g.push(D)});const I=re(Ys(y,0),r.shape),S=re(Ys(g,0),r.shape);return[I,S]}}function GO(r,l=!1){return H.tidy(()=>{J(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);const u=r.shape[0],p=r.shape[1];let y=AI(u),g=pi(r);const I=la([[1]],[1,1]);let S=pi(I);const T=u>=p?p:u;for(let C=0;C<T;++C){const D=g,_=S,A=y;[S,g,y]=H.tidy(()=>{const B=Tt(g,[C,C],[u-C,1]),ne=ug(B),te=Tt(g,[C,C],[1,1]),P=Vn(fi(te,0),la([[-1]]),la([[1]])),ge=Be(te,le(P,ne)),ae=Me(B,ge);ae.shape[0]===1?S=pi(I):S=Tn([I,Tt(ae,[1,0],[ae.shape[0]-1,ae.shape[1]])],0);const Le=It(Me(yn(P,ge),ne)),ve=Tt(g,[C,0],[u-C,p]),Ve=le(Le,S),at=xn(S);if(C===0)g=Be(ve,yn(Ve,yn(at,ve)));else{const Vt=Be(ve,yn(Ve,yn(at,ve)));g=Tn([Tt(g,[0,0],[C,p]),Vt],0)}const pt=xn(Ve),$t=Tt(y,[0,C],[u,y.shape[1]-C]);if(C===0)y=Be($t,yn(yn($t,S),pt));else{const Vt=Be($t,yn(yn($t,S),pt));y=Tn([Tt(y,[0,0],[u,C]),Vt],1)}return[S,g,y]}),uO([D,_,A])}return!l&&u>p&&(y=Tt(y,[0,0],[u,p]),g=Tt(g,[0,0],[p,p])),[y,g]})}const YO=V({qr_:tQ});var Qt;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Qt||(Qt={}));function nQ(r,l,u=Qt.SUM_BY_NONZERO_WEIGHTS){const p=M(r,"losses","computeWeightedLoss");let y=null;l!=null&&(y=M(l,"weights","computeWeightedLoss"));const g=y==null?p:le(p,y);if(u===Qt.NONE)return g;if(u===Qt.SUM)return _e(g);if(u===Qt.MEAN){if(y==null)return FI(g);{const I=p.size/y.size,S=Me(_e(g),_e(y));return I>1?Me(S,Fe(I)):S}}if(u===Qt.SUM_BY_NONZERO_WEIGHTS){if(y==null)return Me(_e(g),Fe(p.size));{const I=le(y,Vi(p.shape)),S=Ie(_e(WI(I,Fe(0))),"float32");return Me(_e(g),S)}}throw Error(`Unknown reduction: ${u}`)}const Dn=V({computeWeightedLoss_:nQ});function sQ(r,l,u,p=Qt.SUM_BY_NONZERO_WEIGHTS){const y=M(r,"labels","absoluteDifference"),g=M(l,"predictions","absoluteDifference");let I=null;u!=null&&(I=M(u,"weights","absoluteDifference")),tn(y.shape,g.shape,"Error in absoluteDifference: ");const S=zn(Be(y,g));return Dn(S,I,p)}const HO=V({absoluteDifference_:sQ});function iQ(r,l,u,p,y=Qt.SUM_BY_NONZERO_WEIGHTS){const g=M(r,"labels","cosineDistance"),I=M(l,"predictions","cosineDistance");let S=null;p!=null&&(S=M(p,"weights","cosineDistance")),tn(g.shape,I.shape,"Error in cosineDistance: ");const T=Fe(1),C=Be(T,_e(le(g,I),u,!0));return Dn(C,S,y)}const qO=V({cosineDistance_:iQ});function rQ(r,l,u,p=Qt.SUM_BY_NONZERO_WEIGHTS){let y=M(r,"labels","hingeLoss");const g=M(l,"predictions","hingeLoss");let I=null;u!=null&&(I=M(u,"weights","hingeLoss")),tn(y.shape,g.shape,"Error in hingeLoss: ");const S=Fe(1);y=Be(le(Fe(2),y),S);const T=Fu(Be(S,le(y,g)));return Dn(T,I,p)}const jO=V({hingeLoss_:rQ});function oQ(r,l,u,p=1,y=Qt.SUM_BY_NONZERO_WEIGHTS){const g=M(r,"labels","huberLoss"),I=M(l,"predictions","huberLoss");let S=null;u!=null&&(S=M(u,"weights","huberLoss")),tn(g.shape,I.shape,"Error in huberLoss: ");const T=Fe(p),C=zn(Be(I,g)),D=_I(C,T),_=Be(C,D),A=vt(le(Fe(.5),gt(D)),le(T,_));return Dn(A,S,y)}const KO=V({huberLoss_:oQ});function aQ(r,l,u,p=1e-7,y=Qt.SUM_BY_NONZERO_WEIGHTS){const g=M(r,"labels","logLoss"),I=M(l,"predictions","logLoss");let S=null;u!=null&&(S=M(u,"weights","logLoss")),tn(g.shape,I.shape,"Error in logLoss: ");const T=Fe(1),C=Fe(p),D=It(le(g,ao(vt(I,C)))),_=le(Be(T,g),ao(vt(Be(T,I),C))),A=Be(D,_);return Dn(A,S,y)}const XO=V({logLoss_:aQ});function cQ(r,l,u,p=Qt.SUM_BY_NONZERO_WEIGHTS){const y=M(r,"labels","meanSquaredError"),g=M(l,"predictions","meanSquaredError");let I=null;u!=null&&(I=M(u,"weights","meanSquaredError")),tn(y.shape,g.shape,"Error in meanSquaredError: ");const S=VI(y,g);return Dn(S,I,p)}const JO=V({meanSquaredError_:cQ});function lQ(r,l){const u=M(r,"labels","sigmoidCrossEntropyWithLogits"),p=M(l,"logits","sigmoidCrossEntropyWithLogits");tn(u.shape,p.shape,"Error in sigmoidCrossEntropyWithLogits: ");const y=Fu(p),g=le(p,u),I=EI(Gn(It(zn(p))));return vt(Be(y,g),I)}function hQ(r,l,u,p=0,y=Qt.SUM_BY_NONZERO_WEIGHTS){let g=M(r,"multiClassLabels","sigmoidCrossEntropy");const I=M(l,"logits","sigmoidCrossEntropy");let S=null;if(u!=null&&(S=M(u,"weights","sigmoidCrossEntropy")),tn(g.shape,I.shape,"Error in sigmoidCrossEntropy: "),p>0){const C=Fe(p),D=Fe(1),_=Fe(.5);g=vt(le(g,Be(D,C)),le(_,C))}const T=lQ(g,I);return Dn(T,S,y)}const ZO=V({sigmoidCrossEntropy_:hQ});function uQ(r,l,u=-1){if(u===-1&&(u=l.rank-1),u!==l.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${l.rank} and dim was ${u}`);const p=cg((y,g,I)=>{const S=!0,T=DI(g,[u],S),C=Be(Ie(g,"float32"),T);I([y,C]);const D=It(le(C,y)),_=_e(D,[u]),A=(B,ne)=>{const[te,P]=ne,ge=rs(B.shape,[u]);return[le(re(B,ge),Be(Ie(te,"float32"),Gn(P))),le(re(B,ge),Be(Gn(P),Ie(te,"float32")))]};return{value:_,gradFunc:A}});return p(r,l)}function dQ(r,l,u,p=0,y=Qt.SUM_BY_NONZERO_WEIGHTS){let g=M(r,"onehotLabels","softmaxCrossEntropy");const I=M(l,"logits","softmaxCrossEntropy");let S=null;if(u!=null&&(S=M(u,"weights","softmaxCrossEntropy")),tn(g.shape,I.shape,"Error in softmaxCrossEntropy: "),p>0){const C=Fe(p),D=Fe(1),_=Fe(g.shape[1]);g=vt(le(g,Be(D,C)),Me(C,_))}const T=uQ(g,I);return Dn(T,S,y)}const QO=V({softmaxCrossEntropy_:dQ});const xve={fft:_u,ifft:Pc,rfft:Wu,irfft:zI},Cve={hammingWindow:TO,hannWindow:mg,frame:fg,stft:AO},e1={flipLeftRight:NO,resizeNearestNeighbor:PO,resizeBilinear:MO,rotateWithOffset:CO,cropAndResize:vO,nonMaxSuppression:RO,nonMaxSuppressionAsync:_O,nonMaxSuppressionWithScore:WO,nonMaxSuppressionWithScoreAsync:$O,nonMaxSuppressionPadded:UO,nonMaxSuppressionPaddedAsync:BO},Vve={bandPart:zO,gramSchmidt:VO,qr:YO},Qve={absoluteDifference:HO,computeWeightedLoss:Dn,cosineDistance:qO,hingeLoss:jO,huberLoss:KO,logLoss:XO,meanSquaredError:JO,sigmoidCrossEntropy:ZO,softmaxCrossEntropy:QO};const t1=1.7580993408473768,n1=1.0507009873554805;const s1={kernelName:ef,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(r,ca(Ie(u,"float32"),-1))}}};const i1={kernelName:y2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>{const p=gt(Ie(u,"float32")),y=fs(Be(Fe(1),p));return It(Me(r,y))}}}};const r1={kernelName:b2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>{const p=fs(Be(gt(Ie(u,"float32")),1));return Me(r,p)}}}};const o1={kernelName:Dc,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,y=ot(u.shape,p.shape),g=()=>{let S=r;const T=Ot(u.shape,y);return T.length>0&&(S=_e(S,T)),re(S,u.shape)},I=()=>{let S=r;const T=Ot(p.shape,y);return T.length>0&&(S=_e(S,T)),re(S,p.shape)};return{a:g,b:I}}};const a1={kernelName:w2,saveAllInputs:!0,gradFunc:(r,l)=>{const u={};return l.forEach((p,y)=>{u[y]=()=>r.clone()}),u}};const c1={kernelName:L2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Ke(u)}}};const l1={kernelName:S2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Ke(u)}}};const h1={kernelName:I2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Me(r,fs(Be(Fe(1),gt(Ie(u,"float32")))))}}};const u1={kernelName:x2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>{const p=fs(vt(Fe(1),gt(Ie(u,"float32"))));return Me(r,p)}}}};const d1={kernelName:v2,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,y=ot(u.shape,p.shape),g=()=>{const S=vt(gt(u),gt(p));let T=le(r,Me(p,S));const C=Ot(u.shape,y);return C.length>0&&(T=_e(T,C)),re(T,u.shape)},I=()=>{const S=vt(gt(u),gt(p));let T=It(le(r,Me(u,S)));const C=Ot(p.shape,y);return C.length>0&&(T=_e(T,C)),re(T,p.shape)};return{a:g,b:I}}};const p1={kernelName:T2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Me(r,vt(gt(Ie(u,"float32")),1))}}};const m1={kernelName:A2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Me(r,Be(Fe(1),gt(Ie(u,"float32"))))}}};function pQ(r,l,u,p,y=[1,1,1],g,I){const S=M(r,"dy","avgPool3dBackprop"),T=M(l,"input","avgPool3dBackprop");let C=S,D=T,_=!1;T.rank===4&&(_=!0,C=re(S,[1,S.shape[0],S.shape[1],S.shape[2],S.shape[3]]),D=re(T,[1,T.shape[0],T.shape[1],T.shape[2],T.shape[3]])),J(C.rank===5,()=>`Error in avgPool3dBackprop: dy must be rank 5 but got rank ${C.rank}.`),J(D.rank===5,()=>`Error in avgPool3dBackprop: input must be rank 5 but got rank ${D.rank}.`),J(oo(p,y),()=>`Error in avgPool3dBackprop: Either strides or dilations must be 1. Got strides ${p} and dilations '${y}'`),I!=null&&J(nn(g),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${I} but got pad ${g}.`);const A=P=>{const ge=og(D.shape,u,p,y,g,I);return P.avgPool3dBackprop(C,D,ge)},B={dy:C,input:D},ne={filterSize:u,strides:p,dilations:y,pad:g,dimRoundingMode:I},te=H.runKernelFunc(A,B,null,O2,ne);return _?re(te,[te.shape[1],te.shape[2],te.shape[3],te.shape[4]]):te}const f1=V({avgPool3dBackprop_:pQ});const g1={kernelName:R2,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{filterSize:y,strides:g,dilations:I,pad:S,dimRoundingMode:T}=u,C=I==null?[1,1,1]:I;return{x:()=>f1(r,p,y,g,C,S,T)}}};function mQ(r,l,u,p,y){const g=M(r,"dy","avgPoolBackprop"),I=M(l,"input","avgPoolBackprop");J(I.rank===g.rank,()=>`Rank of input (${I.rank}) does not match rank of dy (${g.rank})`);let S=I,T=g,C=!1;I.rank===3&&(C=!0,S=re(I,[1,I.shape[0],I.shape[1],I.shape[2]]),T=re(g,[1,g.shape[0],g.shape[1],g.shape[2]])),J(T.rank===4,()=>`Error in avgPoolBackprop: dy must be rank 4 but got rank ${T.rank}.`),J(S.rank===4,()=>`Error in avgPoolBackprop: input must be rank 4 but got rank ${S.rank}.`);const D=ne=>{const te=rg(S.shape,u,p,1,y);return ne.avgPoolBackprop(T,S,te)},_={dy:T,input:S},A={filterSize:u,strides:p,pad:y},B=H.runKernelFunc(D,_,null,C2,A);return C?re(B,[B.shape[1],B.shape[2],B.shape[3]]):B}const y1=V({avgPoolBackprop_:mQ});const b1={kernelName:N2,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{filterSize:y,strides:g,pad:I}=u;return{x:()=>y1(r,p,y,g,I)}}};const w1={kernelName:tf,inputsToSave:["a","b"],gradFunc:(r,l,u)=>{const[p,y]=l,{transposeA:g,transposeB:I}=u;return!g&&!I?{a:()=>yn(r,y,!1,!0),b:()=>yn(p,r,!0,!1)}:!g&&I?{a:()=>yn(r,y,!1,!1),b:()=>yn(r,p,!0,!1)}:g&&!I?{a:()=>yn(y,r,!1,!0),b:()=>yn(p,r,!1,!1)}:{a:()=>yn(y,r,!0,!0),b:()=>yn(r,p,!0,!0)}}};const L1={kernelName:nf,gradFunc:(r,l,u)=>{const{blockShape:p,crops:y}=u;return{x:()=>UI(r,p,y)}}};const S1={kernelName:sf,gradFunc:(r,l,u)=>{const p=u,y=p.inputShape,g=p.shape,I=Array.from(g);for(let T=y.length-1;T>=0;T--)if(y[T]===g[T])I[T]=1;else if(y[T]!==1)throw new Error(`broadcastTo(): [${y}] cannot be broadcast to [${g}].`);const S=[];for(let T=0;T<I.length;T++)I[T]>1&&S.push(T);return{x:()=>_e(r,S,!0)}}};const I1={kernelName:kc,gradFunc:r=>({x:()=>r.clone()})};const x1={kernelName:E2,gradFunc:r=>({x:()=>Ke(r)})};const T1={kernelName:D2,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{clipValueMin:y,clipValueMax:g}=u;return{x:()=>Vn(oa(wr(p,y),Lr(p,g)),r,Ke(r))}}};const A1={kernelName:rf,saveAllInputs:!0,gradFunc:(r,l,u)=>{const p=l.map(T=>T.shape),{axis:y}=u,g=ft(y,l[0].shape)[0],I=p.map(T=>T[g]),S=lo(r,I,g);return S.map(T=>()=>T)}};const v1={kernelName:of,inputsToSave:["x","filter"],gradFunc:(r,l,u)=>{const[p,y]=l,{dilations:g,strides:I,pad:S,dataFormat:T}=u;return J(ro(g),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${g}'`),{x:()=>gO(p.shape,r,y,I,S,T),filter:()=>pg(p,r,y.shape,I,S,T)}}};const N1={kernelName:af,inputsToSave:["dy","filter"],gradFunc:(r,l,u)=>{const[p,y]=l,{strides:g,pad:I,dataFormat:S,dimRoundingMode:T}=u;return{dy:()=>SI(r,y,g,I,S,1,T),filter:()=>pg(r,p,y.shape,g,I,S,T)}}};function fQ(r,l,u,p,y){let g=r;r.rank===4&&(g=re(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let I=l;I.rank===4&&(I=re(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),J(g.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${g.shape}.`),J(I.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${I.shape}.`),J(u.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${u}.`),J(g.shape[4]===u[3],()=>`Error in conv3dDerFilter: depth of input ${g.shape[4]}) must match input depth in filter (${u[3]}.`),J(I.shape[4]===u[4],()=>`Error in conv3dDerFilter: depth of dy (${I.shape[4]}) must match output depth for filter (${u[4]}).`);const S=D=>{const _=1,A=Eu(g.shape,u,p,_,y);return D.conv3dDerFilter(g,I,A)},T={x:g,dy:I},C={strides:p,pad:y,filterShape:u};return H.runKernelFunc(S,T,null,W2,C)}const C1=V({conv3DBackpropFilter_:fQ});const R1={kernelName:_2,inputsToSave:["x","filter"],gradFunc:(r,l,u)=>{const{dilations:p,strides:y,pad:g}=u;J(ro(p),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${p}'`);const[I,S]=l;return{x:()=>yO(I.shape,r,S,y,g),filter:()=>C1(I,r,S.shape,y,g)}}};const O1={kernelName:cf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(It(MI(Ie(u,"float32"))),r)}}};const E1={kernelName:lf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(PI(Ie(u,"float32")),r)}}};const D1={kernelName:hf,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{axis:y,exclusive:g,reverse:I}=u;return{x:()=>{const S=zi([y],p.rank);let T=xI(r,y,g,!I);return S!=null&&(T=xn(T,S)),T}}}};const k1={kernelName:B2,inputsToSave:["x","filter"],gradFunc:(r,l,u)=>{const{dilations:p,strides:y,pad:g,dimRoundingMode:I}=u,S=p==null?[1,1]:p;J(ro(S),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${S}'`);const[T,C]=l;return J(T.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${T.rank}.`),J(C.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${C.rank}.`),J(T.shape[3]===C.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${T.shape[3]}) must match the inChannels dimension in filter ${C.shape[2]}.`),J(oo(y,S),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${y} and dilations '${S}'.`),I!=null&&J(nn(g),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${I} but got pad ${g}.`),{x:()=>xO(T.shape,r,C,y,g,p,I),filter:()=>IO(T,r,C.shape,y,g,p,I)}}};const F1={kernelName:z2,inputsToSave:["x","filter"],gradFunc:(r,l,u)=>{const[p,y]=l,g={x:p,filter:y,dy:r},I={x:p,filter:y,dy:r};return{x:()=>H.runKernel(V2,g,u),filter:()=>H.runKernel(G2,I,u)}}};const _1={kernelName:uf,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,y=ot(u.shape,p.shape),g=()=>{const S=Me(r,Ie(p,"float32")),T=Ot(u.shape,y);return T.length>0?re(_e(S,T),u.shape):S},I=()=>{let S=le(r,Ie(u,"float32"));const T=Ot(p.shape,y);T.length>0&&(S=re(_e(S,T),p.shape));const C=gt(p);return It(Me(S,Ie(C,"float32")))};return{a:g,b:I}}};const W1={kernelName:Y2,outputsToSave:[!0],gradFunc:(r,l)=>{const[u]=l,p=g=>g.eluDer(r,u),y={dy:r,y:u};return{x:()=>H.runKernelFunc(p,y,null,H2)}}};const $1={kernelName:q2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l,p=le(Gn(It(gt(u))),2/Math.sqrt(Math.PI));return{x:()=>le(r,p)}}};const U1={kernelName:df,outputsToSave:[!0],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(r,u)}}};const B1={kernelName:K2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(r,Gn(u))}}};const M1={kernelName:pf,gradFunc:r=>({x:()=>Ke(r)})};const P1={kernelName:mf,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,y=ot(u.shape,p.shape),g=()=>{const S=Me(r,Ie(p,"float32")),T=Ot(u.shape,y);return T.length>0?re(_e(S,T),u.shape):S},I=()=>{let S=le(r,Ie(u,"float32"));const T=Ot(p.shape,y);T.length>0&&(S=re(_e(S,T),p.shape));const C=gt(p);return It(Me(S,Ie(C,"float32")))};return{a:g,b:I}}};const z1={kernelName:Q2,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,l,u)=>{const{varianceEpsilon:p}=u,[y,g,I,S]=l,T=S==null?Fe(1):S,C=Ot(g.shape,y.shape),D=[];if(g.rank===1){for(let ve=0;ve<y.shape.length-1;++ve)D.push(y.shape[ve]);D.push(1)}const _=Be(y,g),A=le(r,T),B=BI(vt(I,Fe(p))),ne=le(le(le(B,B),B),Fe(-.5)),te=()=>g.rank===1?re(le(le(r,ia(re(B,[1,1,1,g.shape[0]]),D)),T),y.shape):re(le(le(r,B),T),y.shape),P=()=>{let ve=le(le(B,Fe(-1)),A);return g.rank===1&&(ve=_e(ve,C)),re(ve,g.shape)},ge=()=>{let ve=le(le(ne,_),A);return g.rank===1&&(ve=_e(ve,C)),re(ve,g.shape)},ae=()=>{const ve=le(_,B);let Ve=le(r,ve);return g.rank===1&&(Ve=_e(Ve,C)),re(Ve,g.shape)},Le=()=>{let ve=r;return g.rank===1&&(ve=_e(ve,C)),re(ve,g.shape)};return{x:te,mean:P,variance:ge,scale:ae,offset:Le}}};const Y1={kernelName:ff,inputsToSave:["x","indices"],gradFunc:(r,l,u)=>{const[p,y]=l,{axis:g}=u,I=ft(g,p.shape)[0],S=()=>{const T=p.shape,C=y.size,D=T.slice(0,I),_=D.length,A=T.slice(g,T.length).slice(1),B=A.length,ne=V1(0,_),te=V1(_+1,_+1+B),P=G1([D,[C],A]),ge=re(r,P),ae=re(y,[C]),Le=G1([[_],ne,te]),ve=xn(ge,Le);let Ve=YI(ve,ae,p.shape[I]);const at=Wc(Le);return Ve=xn(Ve,at),Ve};return{x:S,indices:()=>y}}};function V1(r,l){const u=[];for(let p=r;p<l;++p)u.push(p);return u}function G1(r){const l=[];for(let u=0;u<r.length;++u)for(let p=0;p<r[u].length;++p)l.push(r[u][p]);return l}const H1={kernelName:gf,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l;return{a:()=>Ke(u),b:()=>Ke(p)}}};const q1={kernelName:yf,gradFunc:r=>({x:()=>Ie(r,"float32")})};const j1={kernelName:sR,gradFunc:r=>({x:()=>Ke(r)})};const K1={kernelName:iR,gradFunc:r=>({x:()=>Ke(r)})};const X1={kernelName:rR,gradFunc:r=>({x:()=>Ke(r)})};const J1={kernelName:wf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Me(r,vt(u,1))}}};const Z1={kernelName:bf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Me(r,Ie(u,"float32"))}}};const Q1={kernelName:hR,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,l,u)=>{const[p]=l,{axis:y}=u;return{logits:()=>{const g=!0,I=Gn(p);return Be(r,le(_e(r,y,g),I))}}}};function gQ(r,l,u,p=5,y=1,g=1,I=.5){const S=D=>D.LRNGrad(u,r,l,p,y,g,I),T={x:r,y:l,dy:u},C={depthRadius:p,bias:y,alpha:g,beta:I};return H.runKernelFunc(S,T,null,dR,C)}const eE=V({localResponseNormalizationBackprop_:gQ});const tE={kernelName:uR,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,l,u)=>{const[p,y]=l,{depthRadius:g,bias:I,alpha:S,beta:T}=u;return{x:()=>eE(p,y,r,g,I,S,T)}}};function gg(r,l,u,p){return l.rank<u.rank&&(l=re(l,rs(l.shape,p))),r.rank<u.rank&&(r=re(r,rs(r.shape,p))),{x:()=>{const y=le(r,Ie(TI(u,l),r.dtype));return y}}}const qI={kernelName:Lf,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,l,u)=>{const p=u,{reductionIndices:y}=p,g=l[0],I=l[1],S=ft(y,g.shape),T=gg(r,I,g,S);return{x:()=>T.x()}}};const nE={kernelName:Sf,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,y=()=>le(r,Ie(wr(u,p),"float32")),g=()=>le(r,Ie(OI(u,p),"float32"));return{a:y,b:g}}};function yQ(r,l,u,p,y,g=[1,1,1],I,S){const T=M(r,"dy","maxPool3dBackprop"),C=M(l,"input","maxPool3dBackprop"),D=M(u,"output","maxPool3dBackprop");let _=T,A=C,B=D,ne=!1;C.rank===4&&(ne=!0,_=re(T,[1,T.shape[0],T.shape[1],T.shape[2],T.shape[3]]),A=re(C,[1,C.shape[0],C.shape[1],C.shape[2],C.shape[3]]),B=re(D,[1,D.shape[0],D.shape[1],D.shape[2],D.shape[3]])),J(_.rank===5,()=>`Error in maxPool3dBackprop: dy must be rank 5 but got rank ${_.rank}.`),J(A.rank===5,()=>`Error in maxPool3dBackprop: input must be rank 5 but got rank ${A.rank}.`),J(B.rank===5,()=>`Error in maxPool3dBackprop: output must be rank 5 but got rank ${B.rank}.`),J(oo(y,g),()=>`Error in maxPool3dBackprop: Either strides or dilations must be 1. Got strides ${y} and dilations '${g}'`),S!=null&&J(nn(I),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${S} but got pad ${I}.`);const te=Le=>{const ve=og(A.shape,p,y,g,I,S);return Le.maxPool3dBackprop(_,A,B,ve)},P={dy:_,input:A,output:B},ge={filterSize:p,strides:y,dilations:g,pad:I,dimRoundingMode:S},ae=H.runKernelFunc(te,P,null,gR,ge);return ne?re(ae,[ae.shape[1],ae.shape[2],ae.shape[3],ae.shape[4]]):ae}const sE=V({maxPool3dBackprop_:yQ});const iE={kernelName:fR,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,l,u)=>{const[p,y]=l,{filterSize:g,strides:I,dilations:S,pad:T,dimRoundingMode:C}=u,D=S==null?[1,1,1]:S;return{x:()=>sE(r,p,y,g,I,D,T,C)}}};function bQ(r,l,u,p,y,g,I){const S=M(r,"dy","maxPoolBackprop"),T=M(l,"input","maxPoolBackprop"),C=M(u,"output","maxPoolBackprop");J(T.rank===S.rank,()=>`Rank of input (${T.rank}) does not match rank of dy (${S.rank})`),J(S.rank===4,()=>`Error in maxPoolBackprop: dy must be rank 4 but got rank ${S.rank}.`),J(T.rank===4,()=>`Error in maxPoolBackprop: input must be rank 4 but got rank ${T.rank}.`),I!=null&&J(nn(g),()=>`Error in maxPoolBackprop: pad must be an integer when using, dimRoundingMode ${I} but got pad ${g}.`);const D=B=>{const ne=rg(T.shape,p,y,1,g,I);return B.maxPoolBackprop(S,T,C,ne)},_={dy:S,input:T,output:C},A={filterSize:p,strides:y,pad:g,dimRoundingMode:I};return H.runKernelFunc(D,_,null,mR,A)}const rE=V({maxPoolBackprop_:bQ});const oE={kernelName:pR,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,l,u)=>{const[p,y]=l,{filterSize:g,strides:I,pad:S}=u;return{x:()=>rE(r,p,y,g,I,S)}}};const aE={kernelName:If,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,l,u)=>{const p=u,{axis:y}=p,[g,I]=l,S=ft(y,g.shape),T=gg(r,I,g,S);return{x:()=>T.x()}}};const cE={kernelName:xf,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,y=()=>le(r,Ie(Lr(u,p),"float32")),g=()=>le(r,Ie(fi(u,p),"float32"));return{a:y,b:g}}};const lE={kernelName:bR,inputsToSave:["x"],gradFunc:(r,l,u)=>{const p=l[0],{paddings:y}=u,g=y.map(I=>I[0]);return{x:()=>Tt(r,g,p.shape)}}};const hE={kernelName:wR,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,y=ot(u.shape,p.shape),g=()=>{const S=Ot(u.shape,y);return S.length>0?re(_e(r,S),u.shape):r},I=()=>{const S=le(r,It(NI(Me(u,p)))),T=Ot(p.shape,y);return T.length>0?re(_e(S,T),p.shape):S};return{a:g,b:I}}};const uE={kernelName:Tf,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,y=ot(u.shape,p.shape),g=()=>{const S=le(r,Ie(p,"float32")),T=Ot(u.shape,y);return T.length>0?re(_e(S,T),u.shape):S},I=()=>{const S=le(r,Ie(u,"float32")),T=Ot(p.shape,y);return T.length>0?re(_e(S,T),p.shape):S};return{a:g,b:I}}};const dE={kernelName:Af,gradFunc:r=>({x:()=>It(r)})};const pE={kernelName:AR,inputsToSave:["indices"],gradFunc:(r,l)=>{const u=l[0];return{indices:()=>ks(u.shape,"float32")}}};const mE={kernelName:TR,gradFunc:r=>({x:()=>Ke(r)})};const jI={kernelName:vf,inputsToSave:["x"],gradFunc:(r,l,u)=>{const p=l[0],{paddings:y}=u,g=y.map(I=>I[0]);return{x:()=>Tt(r,g,p.shape)}}};const fE={kernelName:Nf,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,l)=>{const[u,p,y]=l,g=u,I=p,S=ot(g.shape,I.shape),T=()=>{const D=Ie(I,"float32");let _=le(r,le(D,aa(g,Be(D,Fe(1)))));const A=Ot(g.shape,S);return A.length>0&&(_=_e(_,A)),re(_,g.shape)},C=()=>{const D=fi(g,0),_=Vn(D,ao(g),Ke(g));let A=le(r,le(y,_));const B=Ot(I.shape,S);return B.length>0&&(A=_e(A,B)),re(A,I.shape)};return{a:T,b:C}}};const gE={kernelName:vR,inputsToSave:["x","alpha"],gradFunc:(r,l)=>{const[u,p]=l,y=fi(u,0);return{x:()=>Vn(y,r,le(r,p)),alpha:()=>{let g=Vn(y,Ke(r),le(r,u));const I=Ot(p.shape,r.shape);return I.length>0&&(g=_e(g,I)),re(g,p.shape)}}}};const yE={kernelName:RR,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Me(r,It(gt(u)))}}};const bE={kernelName:DR,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l,p=le(Lr(u,6),ca(u));return{x:()=>le(r,Ie(p,"float32"))}}};const wE={kernelName:Cf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(r,Ie(ca(u),"float32"))}}};const LE={kernelName:Rf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>re(r,u.shape)}}};const SE={kernelName:Ef,inputsToSave:["images"],gradFunc:(r,l,u)=>{const[p]=l,y=S=>{const{alignCorners:T}=u;return S.resizeBilinearBackprop(r,p,T)},g={images:p},I=()=>H.runKernelFunc(y,g,null,ER,u);return{images:I}}};const IE={kernelName:Of,inputsToSave:["images"],gradFunc:(r,l,u)=>{const[p]=l,y=S=>{const{alignCorners:T}=u;return S.resizeNearestNeighborBackprop(r,p,T)},g={images:p},I=()=>H.runKernelFunc(y,g,null,OR,u);return{images:I}}};const xE={kernelName:Df,gradFunc:(r,l,u)=>{const{dims:p}=u,y=ft(p,r.shape);return{x:()=>Mc(r,y)}}};const TE={kernelName:kR,gradFunc:r=>({x:()=>Ke(r)})};const AE={kernelName:kf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>It(Me(r,le(aa(u,1.5),2)))}}};const vE={kernelName:Ff,inputsToSave:["condition"],gradFunc:(r,l)=>{const[u]=l;return{condition:()=>Ie(Ke(u),"float32"),t:()=>le(r,Ie(u,r.dtype)),e:()=>le(r,Ie(kI(u),r.dtype))}}};const NE={kernelName:FR,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>{const p=fi(u,Fe(0)),y=Fe(t1),g=Fe(n1),I=le(r,g),S=le(le(r,y),Gn(Ie(u,"float32")));return Vn(p,I,S)}}}};const CE={kernelName:Uf,outputsToSave:[!0],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(r,le(u,Be(Fe(1),u)))}}};const RE={kernelName:_R,gradFunc:r=>({x:()=>Ke(r)})};const OE={kernelName:Wf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(Du(Ie(u,"float32")),r)}}};const EE={kernelName:$f,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(II(Ie(u,"float32")),r)}}};const DE={kernelName:_f,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{begin:y,size:g}=u,I=p.shape,[S,T]=sg(p,y,g),C=[];for(let D=0;D<r.rank;D++)C.push([S[D],I[D]-S[D]-T[D]]);return{x:()=>$I(r,C)}}};const kE={kernelName:$R,outputsToSave:[!0],gradFunc:(r,l,u)=>{const[p]=l,{dim:y}=u,g=!0,I=le(r,p);return{logits:()=>Be(I,le(_e(I,[y],g),p))}}};const FE={kernelName:WR,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(r,wI(u))}}};const KI={kernelName:Pf,gradFunc:(r,l,u)=>{const{blockShape:p,paddings:y}=u;return{x:()=>LI(r,p,y)}}};const XI={kernelName:zf,gradFunc:(r,l,u)=>{const{axis:p}=u;return{x:()=>Tn(r,p)}}};const _E={kernelName:Bf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Me(r,le(fs(Ie(u,"float32")),2))}}};const WE={kernelName:UR,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(r,le(Ie(u,"float32"),2))}}};const $E={kernelName:Vf,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,y=Fe(2),g=()=>le(r,le(y,Be(u,p))),I=()=>le(r,le(y,Be(p,u)));return{a:g,b:I}}};const UE={kernelName:Xf,gradFunc:r=>({x:()=>Ke(r)})};const BE={kernelName:Gf,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,y=ot(u.shape,p.shape),g=()=>{let S=r;const T=Ot(u.shape,y);return T.length>0&&(S=_e(S,T)),re(S,u.shape)},I=()=>{let S=r;const T=Ot(p.shape,y);return T.length>0&&(S=_e(S,T)),re(It(S),p.shape)};return{a:g,b:I}}};const ME={kernelName:Mf,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,y=p.shape.slice(),{axis:g}=u,I=ft(g,p.shape);I.forEach(C=>{y[C]=1});const S=re(r,y),T=le(S,Vi(p.shape,"float32"));return{x:()=>T}}};const PE={kernelName:BR,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Me(r,gt(Du(u)))}}};const zE={kernelName:MR,outputsToSave:[!0],gradFunc:(r,l)=>{const[u]=l;return{x:()=>le(Be(Fe(1),gt(u)),r)}}};const VE={kernelName:Yf,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{reps:y}=u,g=()=>{let I=Ke(p);if(p.rank===1)for(let S=0;S<y[0];++S)I=vt(I,Tt(r,[S*p.shape[0]],[p.shape[0]]));else if(p.rank===2)for(let S=0;S<y[0];++S)for(let T=0;T<y[1];++T)I=vt(I,Tt(r,[S*p.shape[0],T*p.shape[1]],[p.shape[0],p.shape[1]]));else if(p.rank===3)for(let S=0;S<y[0];++S)for(let T=0;T<y[1];++T)for(let C=0;C<y[2];++C)I=vt(I,Tt(r,[S*p.shape[0],T*p.shape[1],C*p.shape[2]],[p.shape[0],p.shape[1],p.shape[2]]));else if(p.rank===4)for(let S=0;S<y[0];++S)for(let T=0;T<y[1];++T)for(let C=0;C<y[2];++C)for(let D=0;D<y[3];++D)I=vt(I,Tt(r,[S*p.shape[0],T*p.shape[1],C*p.shape[2],D*p.shape[3]],[p.shape[0],p.shape[1],p.shape[2],p.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${p.rank} tensors yet.`);return I};return{x:g}}};const GE={kernelName:Hf,gradFunc:(r,l,u)=>{const p=u,{perm:y}=p,g=Wc(y);return{x:()=>xn(r,g)}}};const YE={kernelName:qf,gradFunc:(r,l,u)=>{const p=u,{axis:y}=p;return{value:()=>Ys(r,y)}}};const HE={kernelName:jf,inputsToSave:["segmentIds"],gradFunc:(r,l)=>{const[u]=l,p=()=>wQ(r,u);return{x:p}}};function wQ(r,l){const u=RI(l,Ke(l)),p=CI(r,u);let y=wr(l,Fe(0,"int32"));const g=p.rank-y.rank;for(let S=0;S<g;++S)y=Ds(y,S+1);y=oa(y,Vi(p.shape,"bool"));const I=Ke(p);return Vn(y,p,I)}const qE={kernelName:Kf,gradFunc:r=>({x:()=>Ke(r)})};const LQ=[s1,i1,r1,o1,a1,c1,l1,h1,u1,d1,p1,m1,g1,b1,w1,L1,S1,I1,x1,T1,A1,N1,v1,R1,O1,E1,D1,k1,F1,_1,W1,$1,U1,B1,P1,M1,z1,Y1,H1,q1,j1,K1,X1,J1,Z1,Q1,tE,qI,qI,nE,iE,oE,aE,cE,lE,hE,uE,dE,pE,mE,jI,jI,fE,gE,yE,bE,wE,LE,SE,IE,xE,TE,AE,vE,NE,CE,RE,OE,EE,DE,kE,FE,KI,KI,XI,XI,_E,$E,WE,UE,BE,ME,PE,zE,VE,GE,YE,HE,qE];for(const r of LQ)VR(r);function JI(r,l,u=!1){const{Image:p,Canvas:y}=St.getEnv();if(!(r instanceof p||r instanceof y))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");const g=ea(r),I=l/Math.max(g.height,g.width),S=I*g.width,T=I*g.height,C=Rc({width:l,height:l}),D=r instanceof y?r:Su(r),_=Math.abs(S-T)/2,A=u&&S<T?_:0,B=u&&T<S?_:0;return is(C).drawImage(D,A,B,S,T),C}class ho{constructor(r,l=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];if(!Array.isArray(r))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${r}`);this._treatAsBatchInput=l,this._batchSize=r.length,r.forEach((u,p)=>{if(gr(u)){this._imageTensors[p]=u,this._inputDimensions[p]=u.shape;return}if(Rs(u)){const g=u.shape[0];if(g!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${g} passed, but not supported in input array`);this._imageTensors[p]=u,this._inputDimensions[p]=u.shape.slice(1);return}const y=u instanceof St.getEnv().Canvas?u:Su(u);this._canvases[p]=y,this._inputDimensions[p]=[y.height,y.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return _i(this.batchSize,0,1).map((r,l)=>this.getReshapedInputDimensions(l))}getInput(r){return this.canvases[r]||this.imageTensors[r]}getInputDimensions(r){return this._inputDimensions[r]}getInputHeight(r){return this._inputDimensions[r][0]}getInputWidth(r){return this._inputDimensions[r][1]}getReshapedInputDimensions(r){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");const l=this.getInputWidth(r),u=this.getInputHeight(r);return _S({width:l,height:u},this.inputSize)}toBatchTensor(r,l=!0){return this._inputSize=r,hO(()=>{const u=_i(this.batchSize,0,1).map(y=>{const g=this.getInput(y);if(g instanceof En){let I=Rs(g)?g:g.expandDims();return I=BS(I,l),(I.shape[1]!==r||I.shape[2]!==r)&&(I=e1.resizeBilinear(I,[r,r])),I.as3D(r,r,3)}if(g instanceof St.getEnv().Canvas)return gI.fromPixels(JI(g,r,l));throw new Error(`toBatchTensor - at batchIdx ${y}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${g}`)}),p=Ys(u.map(y=>Ie(y,"float32"))).as4D(this.batchSize,r,r,3);return p})}}async function Wt(r){if(r instanceof ho)return r;let l=Array.isArray(r)?r:[r];if(!l.length)throw new Error("toNetInput - empty array passed as input");const u=y=>Array.isArray(r)?` at input index ${y}:`:"",p=l.map(Qo);return p.forEach((y,g)=>{if(!Xm(y)&&!gr(y)&&!Rs(y))throw typeof l[g]=="string"?new Error(`toNetInput -${u(g)} string passed, but could not resolve HTMLElement for element id ${l[g]}`):new Error(`toNetInput -${u(g)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(Rs(y)){const I=y.shape[0];if(I!==1)throw new Error(`toNetInput -${u(g)} tf.Tensor4D with batchSize ${I} passed, but not supported in input array`)}}),await Promise.all(p.map(y=>Xm(y)&&qS(y))),new ho(p,Array.isArray(r))}async function zc(r,l){const{Canvas:u}=St.getEnv();let p=r;if(!(r instanceof u)){const I=await Wt(r);if(I.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");const S=I.getInput(0);p=S instanceof u?S:await KS(S)}const y=is(p),g=l.map(I=>I instanceof Jt?I.forSize(p.width,p.height).box.floor():I).map(I=>I.clipAtImageBorders(p.width,p.height));return g.map(({x:I,y:S,width:T,height:C})=>{const D=Rc({width:T,height:C});return is(D).putImageData(y.getImageData(I,S,T,C),0,0),D})}const yg=Je(Ze());async function Vc(r,l){if(!gr(r)&&!Rs(r))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(Rs(r)&&r.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return yg.tidy(()=>{const[u,p,y]=r.shape.slice(Rs(r)?1:0),g=l.map(S=>S instanceof Jt?S.forSize(p,u).box:S).map(S=>S.clipAtImageBorders(p,u)),I=g.map(({x:S,y:T,width:C,height:D})=>yg.slice3d(r.as3D(u,p,y),[T,S,0],[D,C,y]));return I})}async function ha(r,l){const u=St.getEnv().fetch,p=await u(r,l);if(!(p.status<400))throw new Error(`failed to fetch: (${p.status}) ${p.statusText}, from url: ${p.url}`);return p}async function SQ(r){const l=await ha(r),u=await l.blob();if(!u.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${u.type}, for url: ${l.url}`);return jS(u)}async function ZI(r){return(await ha(r)).json()}async function IQ(r){return new Float32Array(await(await ha(r)).arrayBuffer())}function bg(r,l){const u=`${l}-weights_manifest.json`;if(!r)return{modelBaseUri:"",manifestUri:u};if(r==="/")return{modelBaseUri:"/",manifestUri:`/${u}`};const p=r.startsWith("http://")?"http://":r.startsWith("https://")?"https://":"";r=r.replace(p,"");const y=r.split("/").filter(S=>S),g=r.endsWith(".json")?y[y.length-1]:u;let I=p+(r.endsWith(".json")?y.slice(0,y.length-1):y).join("/");return I=r.startsWith("/")?`/${I}`:I,{modelBaseUri:I,manifestUri:I==="/"?`/${g}`:`${I}/${g}`}}const jE=Je(Ze());async function QI(r,l){const{manifestUri:u,modelBaseUri:p}=bg(r,l);let y=await ZI(u);return jE.io.loadWeights(y,p)}function xQ(r,l,u=!1){const{width:p,height:y}=u?ea(l):l;return r.width=p,r.height=y,{width:p,height:y}}const Sr=Je(Ze());class Wn{constructor(r){this._name=r;this._params=void 0;this._paramMappings=[]}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(r){const{obj:l,objProp:u}=this.traversePropertyPath(r);return l[u]}reassignParamFromPath(r,l){const{obj:u,objProp:p}=this.traversePropertyPath(r);u[p].dispose(),u[p]=l}getParamList(){return this._paramMappings.map(({paramPath:r})=>({path:r,tensor:this.getParamFromPath(r)}))}getTrainableParams(){return this.getParamList().filter(r=>r.tensor instanceof Sr.Variable)}getFrozenParams(){return this.getParamList().filter(r=>!(r.tensor instanceof Sr.Variable))}variable(){this.getFrozenParams().forEach(({path:r,tensor:l})=>{this.reassignParamFromPath(r,l.variable())})}freeze(){this.getTrainableParams().forEach(({path:r,tensor:l})=>{const u=Sr.tensor(l.dataSync());l.dispose(),this.reassignParamFromPath(r,u)})}dispose(r=!0){this.getParamList().forEach(l=>{if(r&&l.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${l.path}`);l.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:r})=>Array.from(r.dataSync())).reduce((r,l)=>r.concat(l)))}async load(r){if(r instanceof Float32Array){this.extractWeights(r);return}await this.loadFromUri(r)}async loadFromUri(r){if(r&&typeof r!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);const l=await QI(r,this.getDefaultModelName());this.loadFromWeightMap(l)}async loadFromDisk(r){if(r&&typeof r!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);const{readFile:l}=St.getEnv(),{manifestUri:u,modelBaseUri:p}=bg(r,this.getDefaultModelName()),y=T=>Promise.all(T.map(C=>l(C).then(D=>D.buffer))),g=Sr.io.weightsLoaderFactory(y),I=JSON.parse((await l(u)).toString()),S=await g(I,p);this.loadFromWeightMap(S)}loadFromWeightMap(r){const{paramMappings:l,params:u}=this.extractParamsFromWeigthMap(r);this._paramMappings=l,this._params=u}extractWeights(r){const{paramMappings:l,params:u}=this.extractParams(r);this._paramMappings=l,this._params=u}traversePropertyPath(r){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");const l=r.split("/").reduce((y,g)=>{if(!y.nextObj.hasOwnProperty(g))throw new Error(`traversePropertyPath - object does not have property ${g}, for path ${r}`);return{obj:y.nextObj,objProp:g,nextObj:y.nextObj[g]}},{nextObj:this.params}),{obj:u,objProp:p}=l;if(!u||!p||!(u[p]instanceof Sr.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${r}`);return{obj:u,objProp:p}}}const Gc=Je(Ze());function os(r,l,u){return Gc.tidy(()=>{let p=Gc.separableConv2d(r,l.depthwise_filter,l.pointwise_filter,u,"same");return p=Gc.add(p,l.bias),p})}const Bt=Je(Ze());function wg(r,l,u=!1){return Bt.tidy(()=>{const p=Bt.relu(u?Bt.add(Bt.conv2d(r,l.conv0.filters,[2,2],"same"),l.conv0.bias):os(r,l.conv0,[2,2])),y=os(p,l.conv1,[1,1]),g=Bt.relu(Bt.add(p,y)),I=os(g,l.conv2,[1,1]);return Bt.relu(Bt.add(p,Bt.add(y,I)))})}function Uu(r,l,u=!1,p=!0){return Bt.tidy(()=>{const y=Bt.relu(u?Bt.add(Bt.conv2d(r,l.conv0.filters,p?[2,2]:[1,1],"same"),l.conv0.bias):os(r,l.conv0,p?[2,2]:[1,1])),g=os(y,l.conv1,[1,1]),I=Bt.relu(Bt.add(y,g)),S=os(I,l.conv2,[1,1]),T=Bt.relu(Bt.add(y,Bt.add(g,S))),C=os(T,l.conv3,[1,1]);return Bt.relu(Bt.add(y,Bt.add(g,Bt.add(S,C))))})}const uo=Je(Ze());function ua(r,l,u="same",p=!1){return uo.tidy(()=>{const y=uo.add(uo.conv2d(r,l.filters,[1,1],u),l.bias);return p?uo.relu(y):y})}function Yn(r,l){Object.keys(r).forEach(u=>{l.some(p=>p.originalPath===u)||r[u].dispose()})}const Lg=Je(Ze());function Yc(r,l){return function(u,p,y,g){const I=Lg.tensor4d(r(u*p*y*y),[y,y,u,p]),S=Lg.tensor1d(r(p));return l.push({paramPath:`${g}/filters`},{paramPath:`${g}/bias`}),{filters:I,bias:S}}}const Sg=Je(Ze());function Ig(r,l){return function(u,p,y){const g=Sg.tensor2d(r(u*p),[u,p]),I=Sg.tensor1d(r(p));return l.push({paramPath:`${y}/weights`},{paramPath:`${y}/bias`}),{weights:g,bias:I}}}class ex{constructor(r,l,u){this.depthwise_filter=r;this.pointwise_filter=l;this.bias=u}}const Bu=Je(Ze());function Hc(r,l){return function(u,p,y){const g=Bu.tensor4d(r(3*3*u),[3,3,u,1]),I=Bu.tensor4d(r(u*p),[1,1,u,p]),S=Bu.tensor1d(r(p));return l.push({paramPath:`${y}/depthwise_filter`},{paramPath:`${y}/pointwise_filter`},{paramPath:`${y}/bias`}),new ex(g,I,S)}}function qc(r){return function(l){const u=r(`${l}/depthwise_filter`,4),p=r(`${l}/pointwise_filter`,4),y=r(`${l}/bias`,1);return new ex(u,p,y)}}function gs(r,l){return function(u,p,y){const g=r[u];if(!jo(g,p))throw new Error(`expected weightMap[${u}] to be a Tensor${p}D, instead have ${g}`);return l.push({originalPath:u,paramPath:y||u}),g}}function Hn(r){let l=r;function u(y){const g=l.slice(0,y);return l=l.slice(y),g}function p(){return l}return{extractWeights:u,getRemainingWeights:p}}function xg(r,l){const u=Yc(r,l),p=Hc(r,l);function y(I,S,T,C=!1){const D=C?u(I,S,3,`${T}/conv0`):p(I,S,`${T}/conv0`),_=p(S,S,`${T}/conv1`),A=p(S,S,`${T}/conv2`);return{conv0:D,conv1:_,conv2:A}}function g(I,S,T,C=!1){const{conv0:D,conv1:_,conv2:A}=y(I,S,T,C),B=p(S,S,`${T}/conv3`);return{conv0:D,conv1:_,conv2:A,conv3:B}}return{extractDenseBlock3Params:y,extractDenseBlock4Params:g}}function KE(r){const l=[],{extractWeights:u,getRemainingWeights:p}=Hn(r),{extractDenseBlock4Params:y}=xg(u,l),g=y(3,32,"dense0",!0),I=y(32,64,"dense1"),S=y(64,128,"dense2"),T=y(128,256,"dense3");if(p().length!==0)throw new Error(`weights remaing after extract: ${p().length}`);return{paramMappings:l,params:{dense0:g,dense1:I,dense2:S,dense3:T}}}function Tg(r){return function(l){const u=r(`${l}/filters`,4),p=r(`${l}/bias`,1);return{filters:u,bias:p}}}function Ag(r,l){const u=gs(r,l),p=Tg(u),y=qc(u);function g(S,T=!1){const C=T?p(`${S}/conv0`):y(`${S}/conv0`),D=y(`${S}/conv1`),_=y(`${S}/conv2`);return{conv0:C,conv1:D,conv2:_}}function I(S,T=!1){const C=T?p(`${S}/conv0`):y(`${S}/conv0`),D=y(`${S}/conv1`),_=y(`${S}/conv2`),A=y(`${S}/conv3`);return{conv0:C,conv1:D,conv2:_,conv3:A}}return{extractDenseBlock3Params:g,extractDenseBlock4Params:I}}function XE(r){const l=[],{extractDenseBlock4Params:u}=Ag(r,l),p={dense0:u("dense0",!0),dense1:u("dense1"),dense2:u("dense2"),dense3:u("dense3")};return Yn(r,l),{params:p,paramMappings:l}}const po=Je(Ze());class vg extends Wn{constructor(){super("FaceFeatureExtractor")}forwardInput(r){const{params:l}=this;if(!l)throw new Error("FaceFeatureExtractor - load model before inference");return po.tidy(()=>{const u=po.cast(r.toBatchTensor(112,!0),"float32"),p=[122.782,117.001,104.298],y=di(u,p).div(po.scalar(255));let g=Uu(y,l.dense0,!0);return g=Uu(g,l.dense1),g=Uu(g,l.dense2),g=Uu(g,l.dense3),g=po.avgPool(g,[7,7],[2,2],"valid"),g})}async forward(r){return this.forwardInput(await Wt(r))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeigthMap(r){return XE(r)}extractParams(r){return KE(r)}}const jc=Je(Ze());function Mu(r,l){return jc.tidy(()=>jc.add(jc.matMul(r,l.weights),l.bias))}function JE(r,l,u){const p=[],{extractWeights:y,getRemainingWeights:g}=Hn(r),I=Ig(y,p),S=I(l,u,"fc");if(g().length!==0)throw new Error(`weights remaing after extract: ${g().length}`);return{paramMappings:p,params:{fc:S}}}function ZE(r){const l=[],u=gs(r,l);function p(g){const I=u(`${g}/weights`,2),S=u(`${g}/bias`,1);return{weights:I,bias:S}}const y={fc:p("fc")};return Yn(r,l),{params:y,paramMappings:l}}function Ng(r){const l={},u={};return Object.keys(r).forEach(p=>{const y=p.startsWith("fc")?u:l;y[p]=r[p]}),{featureExtractorMap:l,classifierMap:u}}const QE=Je(Ze());class Cg extends Wn{constructor(r,l){super(r);this._faceFeatureExtractor=l}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(r){const{params:l}=this;if(!l)throw new Error(`${this._name} - load model before inference`);return QE.tidy(()=>{const u=r instanceof ho?this.faceFeatureExtractor.forwardInput(r):r;return Mu(u.as2D(u.shape[0],-1),l.fc)})}dispose(r=!0){this.faceFeatureExtractor.dispose(r),super.dispose(r)}loadClassifierParams(r){const{params:l,paramMappings:u}=this.extractClassifierParams(r);this._params=l,this._paramMappings=u}extractClassifierParams(r){return JE(r,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeigthMap(r){const{featureExtractorMap:l,classifierMap:u}=Ng(r);return this.faceFeatureExtractor.loadFromWeightMap(l),ZE(u)}extractParams(r){const l=this.getClassifierChannelsIn(),u=this.getClassifierChannelsOut(),p=u*l+u,y=r.slice(0,r.length-p),g=r.slice(r.length-p);return this.faceFeatureExtractor.extractWeights(y),this.extractClassifierParams(g)}}const tx=["neutral","happy","sad","angry","fearful","disgusted","surprised"];class da{constructor(r){if(r.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${r.length}`);tx.forEach((l,u)=>{this[l]=r[u]})}asSortedArray(){return tx.map(r=>({expression:r,probability:this[r]})).sort((r,l)=>l.probability-r.probability)}}const Kc=Je(Ze());class nx extends Cg{constructor(r=new vg){super("FaceExpressionNet",r)}forwardInput(r){return Kc.tidy(()=>Kc.softmax(this.runNet(r)))}async forward(r){return this.forwardInput(await Wt(r))}async predictExpressions(r){const l=await Wt(r),u=await this.forwardInput(l),p=await Promise.all(Kc.unstack(u).map(async g=>{const I=await g.data();return g.dispose(),I}));u.dispose();const y=p.map(g=>new da(g));return l.isBatchInput?y:y[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}}function sx(r){return r.expressions instanceof da}function Rg(r,l){const u={expressions:l};return Object.assign({},r,u)}function TQ(r,l,u=.1,p){const y=Array.isArray(l)?l:[l];y.forEach(g=>{const I=g instanceof da?g:sx(g)?g.expressions:void 0;if(!I)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");const S=I.asSortedArray(),T=S.filter(_=>_.probability>u),C=$i(g)?g.detection.box.bottomLeft:p||new Qe(0,0),D=new Cc(T.map(_=>`${_.expression} (${Ko(_.probability)})`),C);D.draw(r)})}function pa(r){return $i(r)&&r.landmarks instanceof Gs&&r.unshiftedLandmarks instanceof Gs&&r.alignedRect instanceof Jt}function Xc(r,l){const{box:u}=r.detection,p=l.shiftBy(u.x,u.y),y=p.align(),{imageDims:g}=r.detection,I=new Jt(r.detection.score,y.rescale(g.reverse()),g),S={landmarks:p,unshiftedLandmarks:l,alignedRect:I};return Object.assign({},r,S)}class eD{constructor(r={}){const{drawLines:l=!0,drawPoints:u=!0,lineWidth:p,lineColor:y,pointSize:g,pointColor:I}=r;this.drawLines=l,this.drawPoints=u,this.lineWidth=p||1,this.pointSize=g||2,this.lineColor=y||"rgba(0, 255, 255, 1)",this.pointColor=I||"rgba(255, 0, 255, 1)"}}class tD{constructor(r,l={}){this.faceLandmarks=r,this.options=new eD(l)}draw(r){const l=is(r),{drawLines:u,drawPoints:p,lineWidth:y,lineColor:g,pointSize:I,pointColor:S}=this.options;if(u&&this.faceLandmarks instanceof wu&&(l.strokeStyle=g,l.lineWidth=y,fr(l,this.faceLandmarks.getJawOutline()),fr(l,this.faceLandmarks.getLeftEyeBrow()),fr(l,this.faceLandmarks.getRightEyeBrow()),fr(l,this.faceLandmarks.getNose()),fr(l,this.faceLandmarks.getLeftEye(),!0),fr(l,this.faceLandmarks.getRightEye(),!0),fr(l,this.faceLandmarks.getMouth(),!0)),p){l.strokeStyle=S,l.fillStyle=S;const T=C=>{l.beginPath(),l.arc(C.x,C.y,I,0,2*Math.PI),l.fill()};this.faceLandmarks.positions.forEach(T)}}}function AQ(r,l){const u=Array.isArray(l)?l:[l];u.forEach(p=>{const y=p instanceof Gs?p:pa(p)?p.landmarks:void 0;if(!y)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new tD(y).draw(r)})}const ix={};Pm(ix,{AnchorPosition:()=>Ui,DrawBox:()=>HS,DrawBoxOptions:()=>s2,DrawFaceLandmarks:()=>tD,DrawFaceLandmarksOptions:()=>eD,DrawTextField:()=>Cc,DrawTextFieldOptions:()=>jm,drawContour:()=>fr,drawDetections:()=>_J,drawFaceExpressions:()=>TQ,drawFaceLandmarks:()=>AQ});function vQ(r,l){const u=Yc(r,l),p=Hc(r,l);function y(I,S,T){const C=p(I,S,`${T}/separable_conv0`),D=p(S,S,`${T}/separable_conv1`),_=u(I,S,1,`${T}/expansion_conv`);return{separable_conv0:C,separable_conv1:D,expansion_conv:_}}function g(I,S){const T=p(I,I,`${S}/separable_conv0`),C=p(I,I,`${S}/separable_conv1`),D=p(I,I,`${S}/separable_conv2`);return{separable_conv0:T,separable_conv1:C,separable_conv2:D}}return{extractConvParams:u,extractSeparableConvParams:p,extractReductionBlockParams:y,extractMainBlockParams:g}}function nD(r,l){const u=[],{extractWeights:p,getRemainingWeights:y}=Hn(r),{extractConvParams:g,extractSeparableConvParams:I,extractReductionBlockParams:S,extractMainBlockParams:T}=vQ(p,u),C=g(3,32,3,"entry_flow/conv_in"),D=S(32,64,"entry_flow/reduction_block_0"),_=S(64,128,"entry_flow/reduction_block_1"),A={conv_in:C,reduction_block_0:D,reduction_block_1:_},B={};_i(l,0,1).forEach(ge=>{B[`main_block_${ge}`]=T(128,`middle_flow/main_block_${ge}`)});const ne=S(128,256,"exit_flow/reduction_block"),te=I(256,512,"exit_flow/separable_conv"),P={reduction_block:ne,separable_conv:te};if(y().length!==0)throw new Error(`weights remaing after extract: ${y().length}`);return{paramMappings:u,params:{entry_flow:A,middle_flow:B,exit_flow:P}}}function NQ(r,l){const u=gs(r,l),p=Tg(u),y=qc(u);function g(S){const T=y(`${S}/separable_conv0`),C=y(`${S}/separable_conv1`),D=p(`${S}/expansion_conv`);return{separable_conv0:T,separable_conv1:C,expansion_conv:D}}function I(S){const T=y(`${S}/separable_conv0`),C=y(`${S}/separable_conv1`),D=y(`${S}/separable_conv2`);return{separable_conv0:T,separable_conv1:C,separable_conv2:D}}return{extractConvParams:p,extractSeparableConvParams:y,extractReductionBlockParams:g,extractMainBlockParams:I}}function sD(r,l){const u=[],{extractConvParams:p,extractSeparableConvParams:y,extractReductionBlockParams:g,extractMainBlockParams:I}=NQ(r,u),S=p("entry_flow/conv_in"),T=g("entry_flow/reduction_block_0"),C=g("entry_flow/reduction_block_1"),D={conv_in:S,reduction_block_0:T,reduction_block_1:C},_={};_i(l,0,1).forEach(te=>{_[`main_block_${te}`]=I(`middle_flow/main_block_${te}`)});const A=g("exit_flow/reduction_block"),B=y("exit_flow/separable_conv"),ne={reduction_block:A,separable_conv:B};return Yn(r,u),{params:{entry_flow:D,middle_flow:_,exit_flow:ne},paramMappings:u}}const on=Je(Ze());function iD(r,l,u){return on.add(on.conv2d(r,l.filters,u,"same"),l.bias)}function rx(r,l,u=!0){let p=u?on.relu(r):r;return p=os(p,l.separable_conv0,[1,1]),p=os(on.relu(p),l.separable_conv1,[1,1]),p=on.maxPool(p,[3,3],[2,2],"same"),p=on.add(p,iD(r,l.expansion_conv,[2,2])),p}function CQ(r,l){let u=os(on.relu(r),l.separable_conv0,[1,1]);return u=os(on.relu(u),l.separable_conv1,[1,1]),u=os(on.relu(u),l.separable_conv2,[1,1]),u=on.add(u,r),u}class rD extends Wn{constructor(r){super("TinyXception");this._numMainBlocks=r}forwardInput(r){const{params:l}=this;if(!l)throw new Error("TinyXception - load model before inference");return on.tidy(()=>{const u=on.cast(r.toBatchTensor(112,!0),"float32"),p=[122.782,117.001,104.298],y=di(u,p).div(on.scalar(256));let g=on.relu(iD(y,l.entry_flow.conv_in,[2,2]));return g=rx(g,l.entry_flow.reduction_block_0,!1),g=rx(g,l.entry_flow.reduction_block_1),_i(this._numMainBlocks,0,1).forEach(I=>{g=CQ(g,l.middle_flow[`main_block_${I}`])}),g=rx(g,l.exit_flow.reduction_block),g=on.relu(os(g,l.exit_flow.separable_conv,[1,1])),g})}async forward(r){return this.forwardInput(await Wt(r))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeigthMap(r){return sD(r,this._numMainBlocks)}extractParams(r){return nD(r,this._numMainBlocks)}}function oD(r){const l=[],{extractWeights:u,getRemainingWeights:p}=Hn(r),y=Ig(u,l),g=y(512,1,"fc/age"),I=y(512,2,"fc/gender");if(p().length!==0)throw new Error(`weights remaing after extract: ${p().length}`);return{paramMappings:l,params:{fc:{age:g,gender:I}}}}function aD(r){const l=[],u=gs(r,l);function p(g){const I=u(`${g}/weights`,2),S=u(`${g}/bias`,1);return{weights:I,bias:S}}const y={fc:{age:p("fc/age"),gender:p("fc/gender")}};return Yn(r,l),{params:y,paramMappings:l}}var Ir;(function(r){r.FEMALE="female",r.MALE="male"})(Ir||(Ir={}));const Gi=Je(Ze());class ox extends Wn{constructor(r=new rD(2)){super("AgeGenderNet");this._faceFeatureExtractor=r}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(r){const{params:l}=this;if(!l)throw new Error(`${this._name} - load model before inference`);return Gi.tidy(()=>{const u=r instanceof ho?this.faceFeatureExtractor.forwardInput(r):r,p=Gi.avgPool(u,[7,7],[2,2],"valid").as2D(u.shape[0],-1),y=Mu(p,l.fc.age).as1D(),g=Mu(p,l.fc.gender);return{age:y,gender:g}})}forwardInput(r){return Gi.tidy(()=>{const{age:l,gender:u}=this.runNet(r);return{age:l,gender:Gi.softmax(u)}})}async forward(r){return this.forwardInput(await Wt(r))}async predictAgeAndGender(r){const l=await Wt(r),u=await this.forwardInput(l),p=Gi.unstack(u.age),y=Gi.unstack(u.gender),g=p.map((S,T)=>({ageTensor:S,genderTensor:y[T]})),I=await Promise.all(g.map(async({ageTensor:S,genderTensor:T})=>{const C=(await S.data())[0],D=(await T.data())[0],_=D>.5,A=_?Ir.MALE:Ir.FEMALE,B=_?D:1-D;return S.dispose(),T.dispose(),{age:C,gender:A,genderProbability:B}}));return u.age.dispose(),u.gender.dispose(),l.isBatchInput?I:I[0]}getDefaultModelName(){return"age_gender_model"}dispose(r=!0){this.faceFeatureExtractor.dispose(r),super.dispose(r)}loadClassifierParams(r){const{params:l,paramMappings:u}=this.extractClassifierParams(r);this._params=l,this._paramMappings=u}extractClassifierParams(r){return oD(r)}extractParamsFromWeigthMap(r){const{featureExtractorMap:l,classifierMap:u}=Ng(r);return this.faceFeatureExtractor.loadFromWeightMap(l),aD(u)}extractParams(r){const l=512*1+1+(512*2+2),u=r.slice(0,r.length-l),p=r.slice(r.length-l);return this.faceFeatureExtractor.extractWeights(u),this.extractClassifierParams(p)}}const ys=Je(Ze());class Og extends Cg{postProcess(r,l,u){const p=u.map(({width:g,height:I})=>{const S=l/Math.max(I,g);return{width:g*S,height:I*S}}),y=p.length;return ys.tidy(()=>{const g=(D,_)=>ys.stack([ys.fill([68],D,"float32"),ys.fill([68],_,"float32")],1).as2D(1,136).as1D(),I=(D,_)=>{const{width:A,height:B}=p[D];return _(A,B)?Math.abs(A-B)/2:0},S=D=>I(D,(_,A)=>_<A),T=D=>I(D,(_,A)=>A<_),C=r.mul(ys.fill([y,136],l,"float32")).sub(ys.stack(Array.from(Array(y),(D,_)=>g(S(_),T(_))))).div(ys.stack(Array.from(Array(y),(D,_)=>g(p[_].width,p[_].height))));return C})}forwardInput(r){return ys.tidy(()=>{const l=this.runNet(r);return this.postProcess(l,r.inputSize,r.inputDimensions.map(([u,p])=>({height:u,width:p})))})}async forward(r){return this.forwardInput(await Wt(r))}async detectLandmarks(r){const l=await Wt(r),u=ys.tidy(()=>ys.unstack(this.forwardInput(l))),p=await Promise.all(u.map(async(y,g)=>{const I=Array.from(await y.data()),S=I.filter((C,D)=>Vm(D)),T=I.filter((C,D)=>!Vm(D));return new wu(Array(68).fill(0).map((C,D)=>new Qe(S[D],T[D])),{height:l.getInputHeight(g),width:l.getInputWidth(g)})}));return u.forEach(y=>y.dispose()),l.isBatchInput?p:p[0]}getClassifierChannelsOut(){return 136}}class Pu extends Og{constructor(r=new vg){super("FaceLandmark68Net",r)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}}function cD(r){const l=[],{extractDenseBlock3Params:u}=Ag(r,l),p={dense0:u("dense0",!0),dense1:u("dense1"),dense2:u("dense2")};return Yn(r,l),{params:p,paramMappings:l}}function lD(r){const l=[],{extractWeights:u,getRemainingWeights:p}=Hn(r),{extractDenseBlock3Params:y}=xg(u,l),g=y(3,32,"dense0",!0),I=y(32,64,"dense1"),S=y(64,128,"dense2");if(p().length!==0)throw new Error(`weights remaing after extract: ${p().length}`);return{paramMappings:l,params:{dense0:g,dense1:I,dense2:S}}}const mo=Je(Ze());class hD extends Wn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(r){const{params:l}=this;if(!l)throw new Error("TinyFaceFeatureExtractor - load model before inference");return mo.tidy(()=>{const u=mo.cast(r.toBatchTensor(112,!0),"float32"),p=[122.782,117.001,104.298],y=di(u,p).div(mo.scalar(255));let g=wg(y,l.dense0,!0);return g=wg(g,l.dense1),g=wg(g,l.dense2),g=mo.avgPool(g,[14,14],[2,2],"valid"),g})}async forward(r){return this.forwardInput(await Wt(r))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeigthMap(r){return cD(r)}extractParams(r){return lD(r)}}class ax extends Og{constructor(r=new hD){super("FaceLandmark68TinyNet",r)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}}class RQ extends Pu{}const Eg=Je(Ze());function uD(r,l){return Eg.add(Eg.mul(r,l.weights),l.biases)}const Jc=Je(Ze());function cx(r,l,u,p,y="same"){const{filters:g,bias:I}=l.conv;let S=Jc.conv2d(r,g,u,y);return S=Jc.add(S,I),S=uD(S,l.scale),p?Jc.relu(S):S}function dD(r,l){return cx(r,l,[1,1],!0)}function lx(r,l){return cx(r,l,[1,1],!1)}function Dg(r,l){return cx(r,l,[2,2],!0,"valid")}const bs=Je(Ze());function OQ(r,l){function u(S,T,C){const D=r(S),_=D.length/(T*C*C);if(FS(_))throw new Error(`depth has to be an integer: ${_}, weights.length: ${D.length}, numFilters: ${T}, filterSize: ${C}`);return bs.tidy(()=>bs.transpose(bs.tensor4d(D,[T,_,C,C]),[2,3,1,0]))}function p(S,T,C,D){const _=u(S,T,C),A=bs.tensor1d(r(T));return l.push({paramPath:`${D}/filters`},{paramPath:`${D}/bias`}),{filters:_,bias:A}}function y(S,T){const C=bs.tensor1d(r(S)),D=bs.tensor1d(r(S));return l.push({paramPath:`${T}/weights`},{paramPath:`${T}/biases`}),{weights:C,biases:D}}function g(S,T,C,D){const _=p(S,T,C,`${D}/conv`),A=y(T,`${D}/scale`);return{conv:_,scale:A}}function I(S,T,C,D,_=!1){const A=g((_?.5:1)*S,T,C,`${D}/conv1`),B=g(S,T,C,`${D}/conv2`);return{conv1:A,conv2:B}}return{extractConvLayerParams:g,extractResidualLayerParams:I}}function pD(r){const{extractWeights:l,getRemainingWeights:u}=Hn(r),p=[],{extractConvLayerParams:y,extractResidualLayerParams:g}=OQ(l,p),I=y(4704,32,7,"conv32_down"),S=g(9216,32,3,"conv32_1"),T=g(9216,32,3,"conv32_2"),C=g(9216,32,3,"conv32_3"),D=g(36864,64,3,"conv64_down",!0),_=g(36864,64,3,"conv64_1"),A=g(36864,64,3,"conv64_2"),B=g(36864,64,3,"conv64_3"),ne=g(147456,128,3,"conv128_down",!0),te=g(147456,128,3,"conv128_1"),P=g(147456,128,3,"conv128_2"),ge=g(589824,256,3,"conv256_down",!0),ae=g(589824,256,3,"conv256_1"),Le=g(589824,256,3,"conv256_2"),ve=g(589824,256,3,"conv256_down_out"),Ve=bs.tidy(()=>bs.transpose(bs.tensor2d(l(256*128),[128,256]),[1,0]));if(p.push({paramPath:"fc"}),u().length!==0)throw new Error(`weights remaing after extract: ${u().length}`);const at={conv32_down:I,conv32_1:S,conv32_2:T,conv32_3:C,conv64_down:D,conv64_1:_,conv64_2:A,conv64_3:B,conv128_down:ne,conv128_1:te,conv128_2:P,conv256_down:ge,conv256_1:ae,conv256_2:Le,conv256_down_out:ve,fc:Ve};return{params:at,paramMappings:p}}function EQ(r,l){const u=gs(r,l);function p(I){const S=u(`${I}/scale/weights`,1),T=u(`${I}/scale/biases`,1);return{weights:S,biases:T}}function y(I){const S=u(`${I}/conv/filters`,4),T=u(`${I}/conv/bias`,1),C=p(I);return{conv:{filters:S,bias:T},scale:C}}function g(I){return{conv1:y(`${I}/conv1`),conv2:y(`${I}/conv2`)}}return{extractConvLayerParams:y,extractResidualLayerParams:g}}function mD(r){const l=[],{extractConvLayerParams:u,extractResidualLayerParams:p}=EQ(r,l),y=u("conv32_down"),g=p("conv32_1"),I=p("conv32_2"),S=p("conv32_3"),T=p("conv64_down"),C=p("conv64_1"),D=p("conv64_2"),_=p("conv64_3"),A=p("conv128_down"),B=p("conv128_1"),ne=p("conv128_2"),te=p("conv256_down"),P=p("conv256_1"),ge=p("conv256_2"),ae=p("conv256_down_out"),Le=r.fc;if(l.push({originalPath:"fc",paramPath:"fc"}),!kS(Le))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${Le}`);const ve={conv32_down:y,conv32_1:g,conv32_2:I,conv32_3:S,conv64_down:T,conv64_1:C,conv64_2:D,conv64_3:_,conv128_down:A,conv128_1:B,conv128_2:ne,conv256_down:te,conv256_1:P,conv256_2:ge,conv256_down_out:ae,fc:Le};return Yn(r,l),{params:ve,paramMappings:l}}const qn=Je(Ze());function gi(r,l){let u=dD(r,l.conv1);return u=lx(u,l.conv2),u=qn.add(u,r),u=qn.relu(u),u}function zu(r,l){let u=Dg(r,l.conv1);u=lx(u,l.conv2);let p=qn.avgPool(r,2,2,"valid");const y=qn.zeros(p.shape),g=p.shape[3]!==u.shape[3],I=p.shape[1]!==u.shape[1]||p.shape[2]!==u.shape[2];if(I){const S=[...u.shape];S[1]=1;const T=qn.zeros(S);u=qn.concat([u,T],1);const C=[...u.shape];C[2]=1;const D=qn.zeros(C);u=qn.concat([u,D],2)}return p=g?qn.concat([p,y],3):p,u=qn.add(p,u),u=qn.relu(u),u}const Fs=Je(Ze());class Vu extends Wn{constructor(){super("FaceRecognitionNet")}forwardInput(r){const{params:l}=this;if(!l)throw new Error("FaceRecognitionNet - load model before inference");return Fs.tidy(()=>{const u=Fs.cast(r.toBatchTensor(150,!0),"float32"),p=[122.782,117.001,104.298],y=di(u,p).div(Fs.scalar(256));let g=Dg(y,l.conv32_down);g=Fs.maxPool(g,3,2,"valid"),g=gi(g,l.conv32_1),g=gi(g,l.conv32_2),g=gi(g,l.conv32_3),g=zu(g,l.conv64_down),g=gi(g,l.conv64_1),g=gi(g,l.conv64_2),g=gi(g,l.conv64_3),g=zu(g,l.conv128_down),g=gi(g,l.conv128_1),g=gi(g,l.conv128_2),g=zu(g,l.conv256_down),g=gi(g,l.conv256_1),g=gi(g,l.conv256_2),g=zu(g,l.conv256_down_out);const I=g.mean([1,2]),S=Fs.matMul(I,l.fc);return S})}async forward(r){return this.forwardInput(await Wt(r))}async computeFaceDescriptor(r){const l=await Wt(r),u=Fs.tidy(()=>Fs.unstack(this.forwardInput(l))),p=await Promise.all(u.map(y=>y.data()));return u.forEach(y=>y.dispose()),l.isBatchInput?p:p[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeigthMap(r){return mD(r)}extractParams(r){return pD(r)}}function DQ(r){const l=new Vu;return l.extractWeights(r),l}function kg(r,l){const u={descriptor:l};return Object.assign({},r,u)}function kQ(r){return typeof r.age=="number"}function Fg(r,l){const u={age:l};return Object.assign({},r,u)}function FQ(r){return(r.gender===Ir.MALE||r.gender===Ir.FEMALE)&&vc(r.genderProbability)}function _g(r,l,u){const p={gender:l,genderProbability:u};return Object.assign({},r,p)}const yi=Je(Ze());function _Q(r,l){function u(T,C){const D=yi.tensor4d(r(3*3*T),[3,3,T,1]),_=yi.tensor1d(r(T)),A=yi.tensor1d(r(T)),B=yi.tensor1d(r(T)),ne=yi.tensor1d(r(T));return l.push({paramPath:`${C}/filters`},{paramPath:`${C}/batch_norm_scale`},{paramPath:`${C}/batch_norm_offset`},{paramPath:`${C}/batch_norm_mean`},{paramPath:`${C}/batch_norm_variance`}),{filters:D,batch_norm_scale:_,batch_norm_offset:A,batch_norm_mean:B,batch_norm_variance:ne}}function p(T,C,D,_,A){const B=yi.tensor4d(r(T*C*D*D),[D,D,T,C]),ne=yi.tensor1d(r(C));return l.push({paramPath:`${_}/filters`},{paramPath:`${_}/${A?"batch_norm_offset":"bias"}`}),{filters:B,bias:ne}}function y(T,C,D,_){const{filters:A,bias:B}=p(T,C,D,_,!0);return{filters:A,batch_norm_offset:B}}function g(T,C,D){const _=u(T,`${D}/depthwise_conv`),A=y(T,C,1,`${D}/pointwise_conv`);return{depthwise_conv:_,pointwise_conv:A}}function I(){const T=y(3,32,3,"mobilenetv1/conv_0"),C=g(32,64,"mobilenetv1/conv_1"),D=g(64,128,"mobilenetv1/conv_2"),_=g(128,128,"mobilenetv1/conv_3"),A=g(128,256,"mobilenetv1/conv_4"),B=g(256,256,"mobilenetv1/conv_5"),ne=g(256,512,"mobilenetv1/conv_6"),te=g(512,512,"mobilenetv1/conv_7"),P=g(512,512,"mobilenetv1/conv_8"),ge=g(512,512,"mobilenetv1/conv_9"),ae=g(512,512,"mobilenetv1/conv_10"),Le=g(512,512,"mobilenetv1/conv_11"),ve=g(512,1024,"mobilenetv1/conv_12"),Ve=g(1024,1024,"mobilenetv1/conv_13");return{conv_0:T,conv_1:C,conv_2:D,conv_3:_,conv_4:A,conv_5:B,conv_6:ne,conv_7:te,conv_8:P,conv_9:ge,conv_10:ae,conv_11:Le,conv_12:ve,conv_13:Ve}}function S(){const T=y(1024,256,1,"prediction_layer/conv_0"),C=y(256,512,3,"prediction_layer/conv_1"),D=y(512,128,1,"prediction_layer/conv_2"),_=y(128,256,3,"prediction_layer/conv_3"),A=y(256,128,1,"prediction_layer/conv_4"),B=y(128,256,3,"prediction_layer/conv_5"),ne=y(256,64,1,"prediction_layer/conv_6"),te=y(64,128,3,"prediction_layer/conv_7"),P=p(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),ge=p(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),ae=p(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),Le=p(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),ve=p(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),Ve=p(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),at=p(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),pt=p(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),$t=p(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Vt=p(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),qe=p(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),ln=p(128,18,1,"prediction_layer/box_predictor_5/class_predictor"),bt={box_encoding_predictor:P,class_predictor:ge},ws={box_encoding_predictor:ae,class_predictor:Le},Nr={box_encoding_predictor:ve,class_predictor:Ve},Cr={box_encoding_predictor:at,class_predictor:pt},ba={box_encoding_predictor:$t,class_predictor:Vt},hn={box_encoding_predictor:qe,class_predictor:ln};return{conv_0:T,conv_1:C,conv_2:D,conv_3:_,conv_4:A,conv_5:B,conv_6:ne,conv_7:te,box_predictor_0:bt,box_predictor_1:ws,box_predictor_2:Nr,box_predictor_3:Cr,box_predictor_4:ba,box_predictor_5:hn}}return{extractMobilenetV1Params:I,extractPredictionLayerParams:S}}function fD(r){const l=[],{extractWeights:u,getRemainingWeights:p}=Hn(r),{extractMobilenetV1Params:y,extractPredictionLayerParams:g}=_Q(u,l),I=y(),S=g(),T=yi.tensor3d(u(5118*4),[1,5118,4]),C={extra_dim:T};if(l.push({paramPath:"output_layer/extra_dim"}),p().length!==0)throw new Error(`weights remaing after extract: ${p().length}`);return{params:{mobilenetv1:I,prediction_layer:S,output_layer:C},paramMappings:l}}function WQ(r,l){const u=gs(r,l);function p(C,D,_){const A=u(`${C}/Conv2d_${D}_pointwise/weights`,4,`${_}/filters`),B=u(`${C}/Conv2d_${D}_pointwise/convolution_bn_offset`,1,`${_}/batch_norm_offset`);return{filters:A,batch_norm_offset:B}}function y(C){const D=`mobilenetv1/conv_${C}`,_=`MobilenetV1/Conv2d_${C}_depthwise`,A=`${D}/depthwise_conv`,B=`${D}/pointwise_conv`,ne=u(`${_}/depthwise_weights`,4,`${A}/filters`),te=u(`${_}/BatchNorm/gamma`,1,`${A}/batch_norm_scale`),P=u(`${_}/BatchNorm/beta`,1,`${A}/batch_norm_offset`),ge=u(`${_}/BatchNorm/moving_mean`,1,`${A}/batch_norm_mean`),ae=u(`${_}/BatchNorm/moving_variance`,1,`${A}/batch_norm_variance`);return{depthwise_conv:{filters:ne,batch_norm_scale:te,batch_norm_offset:P,batch_norm_mean:ge,batch_norm_variance:ae},pointwise_conv:p("MobilenetV1",C,B)}}function g(){return{conv_0:p("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:y(1),conv_2:y(2),conv_3:y(3),conv_4:y(4),conv_5:y(5),conv_6:y(6),conv_7:y(7),conv_8:y(8),conv_9:y(9),conv_10:y(10),conv_11:y(11),conv_12:y(12),conv_13:y(13)}}function I(C,D){const _=u(`${C}/weights`,4,`${D}/filters`),A=u(`${C}/biases`,1,`${D}/bias`);return{filters:_,bias:A}}function S(C){const D=I(`Prediction/BoxPredictor_${C}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${C}/box_encoding_predictor`),_=I(`Prediction/BoxPredictor_${C}/ClassPredictor`,`prediction_layer/box_predictor_${C}/class_predictor`);return{box_encoding_predictor:D,class_predictor:_}}function T(){return{conv_0:p("Prediction",0,"prediction_layer/conv_0"),conv_1:p("Prediction",1,"prediction_layer/conv_1"),conv_2:p("Prediction",2,"prediction_layer/conv_2"),conv_3:p("Prediction",3,"prediction_layer/conv_3"),conv_4:p("Prediction",4,"prediction_layer/conv_4"),conv_5:p("Prediction",5,"prediction_layer/conv_5"),conv_6:p("Prediction",6,"prediction_layer/conv_6"),conv_7:p("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:S(0),box_predictor_1:S(1),box_predictor_2:S(2),box_predictor_3:S(3),box_predictor_4:S(4),box_predictor_5:S(5)}}return{extractMobilenetV1Params:g,extractPredictionLayerParams:T}}function gD(r){const l=[],{extractMobilenetV1Params:u,extractPredictionLayerParams:p}=WQ(r,l),y=r["Output/extra_dim"];if(l.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!gr(y))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${y}`);const g={mobilenetv1:u(),prediction_layer:p(),output_layer:{extra_dim:y}};return Yn(r,l),{params:g,paramMappings:l}}const fo=Je(Ze());function qs(r,l,u){return fo.tidy(()=>{let p=fo.conv2d(r,l.filters,u,"same");return p=fo.add(p,l.batch_norm_offset),fo.clipByValue(p,0,6)})}const xr=Je(Ze()),$Q=.0010000000474974513;function UQ(r,l,u){return xr.tidy(()=>{let p=xr.depthwiseConv2d(r,l.filters,u,"same");return p=xr.batchNorm(p,l.batch_norm_mean,l.batch_norm_variance,l.batch_norm_offset,l.batch_norm_scale,$Q),xr.clipByValue(p,0,6)})}function BQ(r){return[2,4,6,12].some(l=>l===r)?[2,2]:[1,1]}function yD(r,l){return xr.tidy(()=>{let u,p=qs(r,l.conv_0,[2,2]);const y=[l.conv_1,l.conv_2,l.conv_3,l.conv_4,l.conv_5,l.conv_6,l.conv_7,l.conv_8,l.conv_9,l.conv_10,l.conv_11,l.conv_12,l.conv_13];if(y.forEach((g,I)=>{const S=I+1,T=BQ(S);p=UQ(p,g.depthwise_conv,T),p=qs(p,g.pointwise_conv,[1,1]),S===11&&(u=p)}),u===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:p,conv11:u}})}function bD(r,l,u,p,y){const g=r.shape[0],I=Math.min(u,g),S=l.map((D,_)=>({score:D,boxIndex:_})).filter(D=>D.score>y).sort((D,_)=>_.score-D.score),T=D=>D<=p?1:0,C=[];return S.forEach(D=>{if(C.length>=I)return;const _=D.score;for(let A=C.length-1;A>=0;--A){const B=MQ(r,D.boxIndex,C[A]);if(B===0)continue;if(D.score*=T(B),D.score<=y)break}_===D.score&&C.push(D.boxIndex)}),C}function MQ(r,l,u){const p=r.arraySync(),y=Math.min(p[l][0],p[l][2]),g=Math.min(p[l][1],p[l][3]),I=Math.max(p[l][0],p[l][2]),S=Math.max(p[l][1],p[l][3]),T=Math.min(p[u][0],p[u][2]),C=Math.min(p[u][1],p[u][3]),D=Math.max(p[u][0],p[u][2]),_=Math.max(p[u][1],p[u][3]),A=(I-y)*(S-g),B=(D-T)*(_-C);if(A<=0||B<=0)return 0;const ne=Math.max(y,T),te=Math.max(g,C),P=Math.min(I,D),ge=Math.min(S,_),ae=Math.max(P-ne,0)*Math.max(ge-te,0);return ae/(A+B-ae)}const ke=Je(Ze());function PQ(r){const l=ke.unstack(ke.transpose(r,[1,0])),u=[ke.sub(l[2],l[0]),ke.sub(l[3],l[1])],p=[ke.add(l[0],ke.div(u[0],ke.scalar(2))),ke.add(l[1],ke.div(u[1],ke.scalar(2)))];return{sizes:u,centers:p}}function zQ(r,l){const{sizes:u,centers:p}=PQ(r),y=ke.unstack(ke.transpose(l,[1,0])),g=ke.div(ke.mul(ke.exp(ke.div(y[2],ke.scalar(5))),u[0]),ke.scalar(2)),I=ke.add(ke.mul(ke.div(y[0],ke.scalar(10)),u[0]),p[0]),S=ke.div(ke.mul(ke.exp(ke.div(y[3],ke.scalar(5))),u[1]),ke.scalar(2)),T=ke.add(ke.mul(ke.div(y[1],ke.scalar(10)),u[1]),p[1]);return ke.transpose(ke.stack([ke.sub(I,g),ke.sub(T,S),ke.add(I,g),ke.add(T,S)]),[1,0])}function wD(r,l,u){return ke.tidy(()=>{const p=r.shape[0];let y=zQ(ke.reshape(ke.tile(u.extra_dim,[p,1,1]),[-1,4]),ke.reshape(r,[-1,4]));y=ke.reshape(y,[p,y.shape[0]/p,4]);const g=ke.sigmoid(ke.slice(l,[0,0,1],[-1,-1,-1]));let I=ke.slice(g,[0,0,0],[-1,-1,1]);I=ke.reshape(I,[p,I.shape[1]]);const S=ke.unstack(y),T=ke.unstack(I);return{boxes:S,scores:T}})}const Gu=Je(Ze());function ma(r,l){return Gu.tidy(()=>{const u=r.shape[0],p=Gu.reshape(ua(r,l.box_encoding_predictor),[u,-1,1,4]),y=Gu.reshape(ua(r,l.class_predictor),[u,-1,3]);return{boxPredictionEncoding:p,classPrediction:y}})}const Yu=Je(Ze());function LD(r,l,u){return Yu.tidy(()=>{const p=qs(r,u.conv_0,[1,1]),y=qs(p,u.conv_1,[2,2]),g=qs(y,u.conv_2,[1,1]),I=qs(g,u.conv_3,[2,2]),S=qs(I,u.conv_4,[1,1]),T=qs(S,u.conv_5,[2,2]),C=qs(T,u.conv_6,[1,1]),D=qs(C,u.conv_7,[2,2]),_=ma(l,u.box_predictor_0),A=ma(r,u.box_predictor_1),B=ma(y,u.box_predictor_2),ne=ma(I,u.box_predictor_3),te=ma(T,u.box_predictor_4),P=ma(D,u.box_predictor_5),ge=Yu.concat([_.boxPredictionEncoding,A.boxPredictionEncoding,B.boxPredictionEncoding,ne.boxPredictionEncoding,te.boxPredictionEncoding,P.boxPredictionEncoding],1),ae=Yu.concat([_.classPrediction,A.classPrediction,B.classPrediction,ne.classPrediction,te.classPrediction,P.classPrediction],1);return{boxPredictions:ge,classPredictions:ae}})}class bi{constructor({minConfidence:r,maxResults:l}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=r||.5,this._maxResults=l||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}}const wi=Je(Ze());class Zc extends Wn{constructor(){super("SsdMobilenetv1")}forwardInput(r){const{params:l}=this;if(!l)throw new Error("SsdMobilenetv1 - load model before inference");return wi.tidy(()=>{const u=wi.cast(r.toBatchTensor(512,!1),"float32"),p=wi.sub(wi.mul(u,wi.scalar(.007843137718737125)),wi.scalar(1)),y=yD(p,l.mobilenetv1),{boxPredictions:g,classPredictions:I}=LD(y.out,y.conv11,l.prediction_layer);return wD(g,I,l.output_layer)})}async forward(r){return this.forwardInput(await Wt(r))}async locateFaces(r,l={}){const{maxResults:u,minConfidence:p}=new bi(l),y=await Wt(r),{boxes:g,scores:I}=this.forwardInput(y),S=g[0],T=I[0];for(let ae=1;ae<g.length;ae++)g[ae].dispose(),I[ae].dispose();const C=Array.from(await T.data()),D=.5,_=bD(S,C,u,D,p),A=y.getReshapedInputDimensions(0),B=y.inputSize,ne=B/A.width,te=B/A.height,P=S.arraySync(),ge=_.map(ae=>{const[Le,ve]=[Math.max(0,P[ae][0]),Math.min(1,P[ae][2])].map(pt=>pt*te),[Ve,at]=[Math.max(0,P[ae][1]),Math.min(1,P[ae][3])].map(pt=>pt*ne);return new Jt(C[ae],new bu(Ve,Le,at-Ve,ve-Le),{height:y.getInputHeight(0),width:y.getInputWidth(0)})});return S.dispose(),T.dispose(),ge}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeigthMap(r){return gD(r)}extractParams(r){return fD(r)}}function SD(r){const l=new Zc;return l.extractWeights(r),l}function VQ(r){return SD(r)}class GQ extends Zc{}const ID=.4,xD=[new Qe(.738768,.874946),new Qe(2.42204,2.65704),new Qe(4.30971,7.04493),new Qe(10.246,4.59428),new Qe(12.6868,11.8741)],TD=[new Qe(1.603231,2.094468),new Qe(6.041143,7.080126),new Qe(2.882459,3.518061),new Qe(4.266906,5.178857),new Qe(9.041765,10.66308)],AD=[117.001,114.697,97.404],vD="tiny_yolov2_model",ND="tiny_yolov2_separable_conv_model";const Wg=r=>typeof r=="number";function hx(r){if(!r)throw new Error(`invalid config: ${r}`);if(typeof r.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${r.withSeparableConvs}`);if(!Wg(r.iouThreshold)||r.iouThreshold<0||r.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${r.iouThreshold}`);if(!Array.isArray(r.classes)||!r.classes.length||!r.classes.every(l=>typeof l=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(r.classes)}`);if(!Array.isArray(r.anchors)||!r.anchors.length||!r.anchors.map(l=>l||{}).every(l=>Wg(l.x)&&Wg(l.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(r.anchors)}`);if(r.meanRgb&&(!Array.isArray(r.meanRgb)||r.meanRgb.length!==3||!r.meanRgb.every(Wg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(r.meanRgb)}`)}const js=Je(Ze());function Qc(r){return js.tidy(()=>{const l=js.mul(r,js.scalar(.10000000149011612));return js.add(js.relu(js.sub(r,l)),l)})}const Ks=Je(Ze());function Tr(r,l){return Ks.tidy(()=>{let u=Ks.pad(r,[[0,0],[1,1],[1,1],[0,0]]);return u=Ks.conv2d(u,l.conv.filters,[1,1],"valid"),u=Ks.sub(u,l.bn.sub),u=Ks.mul(u,l.bn.truediv),u=Ks.add(u,l.conv.bias),Qc(u)})}const go=Je(Ze());function Ar(r,l){return go.tidy(()=>{let u=go.pad(r,[[0,0],[1,1],[1,1],[0,0]]);return u=go.separableConv2d(u,l.depthwise_filter,l.pointwise_filter,[1,1],"valid"),u=go.add(u,l.bias),Qc(u)})}const ux=Je(Ze());function YQ(r,l){const u=Yc(r,l);function p(I,S){const T=ux.tensor1d(r(I)),C=ux.tensor1d(r(I));return l.push({paramPath:`${S}/sub`},{paramPath:`${S}/truediv`}),{sub:T,truediv:C}}function y(I,S,T){const C=u(I,S,3,`${T}/conv`),D=p(S,`${T}/bn`);return{conv:C,bn:D}}const g=Hc(r,l);return{extractConvParams:u,extractConvWithBatchNormParams:y,extractSeparableConvParams:g}}function CD(r,l,u,p){const{extractWeights:y,getRemainingWeights:g}=Hn(r),I=[],{extractConvParams:S,extractConvWithBatchNormParams:T,extractSeparableConvParams:C}=YQ(y,I);let D;if(l.withSeparableConvs){const[_,A,B,ne,te,P,ge,ae,Le]=p,ve=l.isFirstLayerConv2d?S(_,A,3,"conv0"):C(_,A,"conv0"),Ve=C(A,B,"conv1"),at=C(B,ne,"conv2"),pt=C(ne,te,"conv3"),$t=C(te,P,"conv4"),Vt=C(P,ge,"conv5"),qe=ae?C(ge,ae,"conv6"):void 0,ln=Le?C(ae,Le,"conv7"):void 0,bt=S(Le||ae||ge,5*u,1,"conv8");D={conv0:ve,conv1:Ve,conv2:at,conv3:pt,conv4:$t,conv5:Vt,conv6:qe,conv7:ln,conv8:bt}}else{const[_,A,B,ne,te,P,ge,ae,Le]=p,ve=T(_,A,"conv0"),Ve=T(A,B,"conv1"),at=T(B,ne,"conv2"),pt=T(ne,te,"conv3"),$t=T(te,P,"conv4"),Vt=T(P,ge,"conv5"),qe=T(ge,ae,"conv6"),ln=T(ae,Le,"conv7"),bt=S(Le,5*u,1,"conv8");D={conv0:ve,conv1:Ve,conv2:at,conv3:pt,conv4:$t,conv5:Vt,conv6:qe,conv7:ln,conv8:bt}}if(g().length!==0)throw new Error(`weights remaing after extract: ${g().length}`);return{params:D,paramMappings:I}}function HQ(r,l){const u=gs(r,l);function p(S){const T=u(`${S}/sub`,1),C=u(`${S}/truediv`,1);return{sub:T,truediv:C}}function y(S){const T=u(`${S}/filters`,4),C=u(`${S}/bias`,1);return{filters:T,bias:C}}function g(S){const T=y(`${S}/conv`),C=p(`${S}/bn`);return{conv:T,bn:C}}const I=qc(u);return{extractConvParams:y,extractConvWithBatchNormParams:g,extractSeparableConvParams:I}}function RD(r,l){const u=[],{extractConvParams:p,extractConvWithBatchNormParams:y,extractSeparableConvParams:g}=HQ(r,u);let I;if(l.withSeparableConvs){const S=l.filterSizes&&l.filterSizes.length||9;I={conv0:l.isFirstLayerConv2d?p("conv0"):g("conv0"),conv1:g("conv1"),conv2:g("conv2"),conv3:g("conv3"),conv4:g("conv4"),conv5:g("conv5"),conv6:S>7?g("conv6"):void 0,conv7:S>8?g("conv7"):void 0,conv8:p("conv8")}}else I={conv0:y("conv0"),conv1:y("conv1"),conv2:y("conv2"),conv3:y("conv3"),conv4:y("conv4"),conv5:y("conv5"),conv6:y("conv6"),conv7:y("conv7"),conv8:p("conv8")};return Yn(r,u),{params:I,paramMappings:u}}var dx;(function(r){r[r.XS=224]="XS",r[r.SM=320]="SM",r[r.MD=416]="MD",r[r.LG=608]="LG"})(dx||(dx={}));class vr{constructor({inputSize:r,scoreThreshold:l}={}){this._name="TinyYolov2Options";if(this._inputSize=r||416,this._scoreThreshold=l||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}}const Mt=Je(Ze());class el extends Wn{constructor(r){super("TinyYolov2");hx(r),this._config=r}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(r,l){let u=Tr(r,l.conv0);return u=Mt.maxPool(u,[2,2],[2,2],"same"),u=Tr(u,l.conv1),u=Mt.maxPool(u,[2,2],[2,2],"same"),u=Tr(u,l.conv2),u=Mt.maxPool(u,[2,2],[2,2],"same"),u=Tr(u,l.conv3),u=Mt.maxPool(u,[2,2],[2,2],"same"),u=Tr(u,l.conv4),u=Mt.maxPool(u,[2,2],[2,2],"same"),u=Tr(u,l.conv5),u=Mt.maxPool(u,[2,2],[1,1],"same"),u=Tr(u,l.conv6),u=Tr(u,l.conv7),ua(u,l.conv8,"valid",!1)}runMobilenet(r,l){let u=this.config.isFirstLayerConv2d?Qc(ua(r,l.conv0,"valid",!1)):Ar(r,l.conv0);return u=Mt.maxPool(u,[2,2],[2,2],"same"),u=Ar(u,l.conv1),u=Mt.maxPool(u,[2,2],[2,2],"same"),u=Ar(u,l.conv2),u=Mt.maxPool(u,[2,2],[2,2],"same"),u=Ar(u,l.conv3),u=Mt.maxPool(u,[2,2],[2,2],"same"),u=Ar(u,l.conv4),u=Mt.maxPool(u,[2,2],[2,2],"same"),u=Ar(u,l.conv5),u=Mt.maxPool(u,[2,2],[1,1],"same"),u=l.conv6?Ar(u,l.conv6):u,u=l.conv7?Ar(u,l.conv7):u,ua(u,l.conv8,"valid",!1)}forwardInput(r,l){const{params:u}=this;if(!u)throw new Error("TinyYolov2 - load model before inference");return Mt.tidy(()=>{let p=Mt.cast(r.toBatchTensor(l,!1),"float32");return p=this.config.meanRgb?di(p,this.config.meanRgb):p,p=p.div(Mt.scalar(256)),this.config.withSeparableConvs?this.runMobilenet(p,u):this.runTinyYolov2(p,u)})}async forward(r,l){return await this.forwardInput(await Wt(r),l)}async detect(r,l={}){const{inputSize:u,scoreThreshold:p}=new vr(l),y=await Wt(r),g=await this.forwardInput(y,u),I=Mt.tidy(()=>Mt.unstack(g)[0].expandDims()),S={width:y.getInputWidth(0),height:y.getInputHeight(0)},T=await this.extractBoxes(I,y.getReshapedInputDimensions(0),p);g.dispose(),I.dispose();const C=T.map(te=>te.box),D=T.map(te=>te.score),_=T.map(te=>te.classScore),A=T.map(te=>this.config.classes[te.label]),B=US(C.map(te=>te.rescale(u)),D,this.config.iouThreshold,!0),ne=B.map(te=>new Nc(D[te],_[te],A[te],C[te],S));return ne}getDefaultModelName(){return""}extractParamsFromWeigthMap(r){return RD(r,this.config)}extractParams(r){const l=this.config.filterSizes||el.DEFAULT_FILTER_SIZES,u=l?l.length:void 0;if(u!==7&&u!==8&&u!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${u} filterSizes in config`);return CD(r,this.config,this.boxEncodingSize,l)}async extractBoxes(r,l,u){const{width:p,height:y}=l,g=Math.max(p,y),I=g/p,S=g/y,T=r.shape[1],C=this.config.anchors.length,[D,_,A]=Mt.tidy(()=>{const P=r.reshape([T,T,C,this.boxEncodingSize]),ge=P.slice([0,0,0,0],[T,T,C,4]),ae=P.slice([0,0,0,4],[T,T,C,1]),Le=this.withClassScores?Mt.softmax(P.slice([0,0,0,5],[T,T,C,this.config.classes.length]),3):Mt.scalar(0);return[ge,ae,Le]}),B=[],ne=await _.array(),te=await D.array();for(let P=0;P<T;P++)for(let ge=0;ge<T;ge++)for(let ae=0;ae<C;ae++){const Le=yu(ne[P][ge][ae][0]);if(!u||Le>u){const ve=(ge+yu(te[P][ge][ae][0]))/T*I,Ve=(P+yu(te[P][ge][ae][1]))/T*S,at=Math.exp(te[P][ge][ae][2])*this.config.anchors[ae].x/T*I,pt=Math.exp(te[P][ge][ae][3])*this.config.anchors[ae].y/T*S,$t=ve-at/2,Vt=Ve-pt/2,qe={row:P,col:ge,anchor:ae},{classScore:ln,label:bt}=this.withClassScores?await this.extractPredictedClass(A,qe):{classScore:1,label:0};B.push({box:new gu($t,Vt,$t+at,Vt+pt),score:Le,classScore:Le*ln,label:bt,...qe})}}return D.dispose(),_.dispose(),A.dispose(),B}async extractPredictedClass(r,l){const{row:u,col:p,anchor:y}=l,g=await r.array();return Array(this.config.classes.length).fill(0).map((I,S)=>g[u][p][y][S]).map((I,S)=>({classScore:I,label:S})).reduce((I,S)=>I.classScore>S.classScore?I:S)}}el.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];class Hu extends el{constructor(r=!0){const l=Object.assign({},{withSeparableConvs:r,iouThreshold:ID,classes:["face"]},r?{anchors:TD,meanRgb:AD}:{anchors:xD,withClassScores:!0});super(l)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(r,l){const u=await this.detect(r,l);return u.map(p=>new Jt(p.score,p.relativeBox,{width:p.imageWidth,height:p.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?ND:vD}extractParamsFromWeigthMap(r){return super.extractParamsFromWeigthMap(r)}}function qQ(r,l=!0){const u=new Hu(l);return u.extractWeights(r),u}class px extends vr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}}class Li{async then(r){return r(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}}const mx=Je(Ze());async function fa(r,l,u,p,y=({alignedRect:g})=>g){const g=r.map(T=>pa(T)?y(T):T.detection),I=p||(l instanceof mx.Tensor?await Vc(l,g):await zc(l,g)),S=await u(I);return I.forEach(T=>T instanceof mx.Tensor&&T.dispose()),S}async function tl(r,l,u,p,y){return fa([r],l,async g=>u(g[0]),p,y)}const OD=.4,ED=[new Qe(1.603231,2.094468),new Qe(6.041143,7.080126),new Qe(2.882459,3.518061),new Qe(4.266906,5.178857),new Qe(9.041765,10.66308)],DD=[117.001,114.697,97.404];class qu extends el{constructor(){const r={withSeparableConvs:!0,iouThreshold:OD,classes:["face"],anchors:ED,meanRgb:DD,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(r)}get anchors(){return this.config.anchors}async locateFaces(r,l){const u=await this.detect(r,l);return u.map(p=>new Jt(p.score,p.relativeBox,{width:p.imageWidth,height:p.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeigthMap(r){return super.extractParamsFromWeigthMap(r)}}const yt={ssdMobilenetv1:new Zc,tinyFaceDetector:new qu,tinyYolov2:new Hu,faceLandmark68Net:new Pu,faceLandmark68TinyNet:new ax,faceRecognitionNet:new Vu,faceExpressionNet:new nx,ageGenderNet:new ox},kD=(r,l)=>yt.ssdMobilenetv1.locateFaces(r,l),jQ=(r,l)=>yt.tinyFaceDetector.locateFaces(r,l),KQ=(r,l)=>yt.tinyYolov2.locateFaces(r,l),FD=r=>yt.faceLandmark68Net.detectLandmarks(r),XQ=r=>yt.faceLandmark68TinyNet.detectLandmarks(r),JQ=r=>yt.faceRecognitionNet.computeFaceDescriptor(r),ZQ=r=>yt.faceExpressionNet.predictExpressions(r),QQ=r=>yt.ageGenderNet.predictAgeAndGender(r),_D=r=>yt.ssdMobilenetv1.load(r),eee=r=>yt.tinyFaceDetector.load(r),tee=r=>yt.tinyYolov2.load(r),nee=r=>yt.faceLandmark68Net.load(r),see=r=>yt.faceLandmark68TinyNet.load(r),iee=r=>yt.faceRecognitionNet.load(r),ree=r=>yt.faceExpressionNet.load(r),oee=r=>yt.ageGenderNet.load(r),aee=_D,cee=kD,lee=FD;class WD extends Li{constructor(r,l,u){super();this.parentTask=r;this.input=l;this.extractedFaces=u}}class Xu extends WD{async run(){const r=await this.parentTask,l=await fa(r,this.input,async u=>await Promise.all(u.map(p=>yt.faceExpressionNet.predictExpressions(p))),this.extractedFaces);return r.map((u,p)=>Rg(u,l[p]))}withAgeAndGender(){return new ju(this,this.input)}}class Ju extends WD{async run(){const r=await this.parentTask;if(!r)return;const l=await tl(r,this.input,u=>yt.faceExpressionNet.predictExpressions(u),this.extractedFaces);return Rg(r,l)}withAgeAndGender(){return new Ku(this,this.input)}}class il extends Xu{withAgeAndGender(){return new nl(this,this.input)}withFaceDescriptors(){return new ga(this,this.input)}}class rl extends Ju{withAgeAndGender(){return new sl(this,this.input)}withFaceDescriptor(){return new ya(this,this.input)}}class $D extends Li{constructor(r,l,u){super();this.parentTask=r;this.input=l;this.extractedFaces=u}}class ju extends $D{async run(){const r=await this.parentTask,l=await fa(r,this.input,async u=>await Promise.all(u.map(p=>yt.ageGenderNet.predictAgeAndGender(p))),this.extractedFaces);return r.map((u,p)=>{const{age:y,gender:g,genderProbability:I}=l[p];return Fg(_g(u,g,I),y)})}withFaceExpressions(){return new Xu(this,this.input)}}class Ku extends $D{async run(){const r=await this.parentTask;if(!r)return;const{age:l,gender:u,genderProbability:p}=await tl(r,this.input,y=>yt.ageGenderNet.predictAgeAndGender(y),this.extractedFaces);return Fg(_g(r,u,p),l)}withFaceExpressions(){return new Ju(this,this.input)}}class nl extends ju{withFaceExpressions(){return new il(this,this.input)}withFaceDescriptors(){return new ga(this,this.input)}}class sl extends Ku{withFaceExpressions(){return new rl(this,this.input)}withFaceDescriptor(){return new ya(this,this.input)}}class fx extends Li{constructor(r,l){super();this.parentTask=r;this.input=l}}class ga extends fx{async run(){const r=await this.parentTask,l=await fa(r,this.input,u=>Promise.all(u.map(p=>yt.faceRecognitionNet.computeFaceDescriptor(p))),null,u=>u.landmarks.align(null,{useDlibAlignment:!0}));return l.map((u,p)=>kg(r[p],u))}withFaceExpressions(){return new il(this,this.input)}withAgeAndGender(){return new nl(this,this.input)}}class ya extends fx{async run(){const r=await this.parentTask;if(!r)return;const l=await tl(r,this.input,u=>yt.faceRecognitionNet.computeFaceDescriptor(u),null,u=>u.landmarks.align(null,{useDlibAlignment:!0}));return kg(r,l)}withFaceExpressions(){return new rl(this,this.input)}withAgeAndGender(){return new sl(this,this.input)}}const Zu=Je(Ze());class gx extends Li{constructor(r,l,u){super();this.parentTask=r;this.input=l;this.useTinyLandmarkNet=u}get landmarkNet(){return this.useTinyLandmarkNet?yt.faceLandmark68TinyNet:yt.faceLandmark68Net}}class yx extends gx{async run(){const r=await this.parentTask,l=r.map(y=>y.detection),u=this.input instanceof Zu.Tensor?await Vc(this.input,l):await zc(this.input,l),p=await Promise.all(u.map(y=>this.landmarkNet.detectLandmarks(y)));return u.forEach(y=>y instanceof Zu.Tensor&&y.dispose()),r.map((y,g)=>Xc(y,p[g]))}withFaceExpressions(){return new il(this,this.input)}withAgeAndGender(){return new nl(this,this.input)}withFaceDescriptors(){return new ga(this,this.input)}}class bx extends gx{async run(){const r=await this.parentTask;if(!r)return;const{detection:l}=r,u=this.input instanceof Zu.Tensor?await Vc(this.input,[l]):await zc(this.input,[l]),p=await this.landmarkNet.detectLandmarks(u[0]);return u.forEach(y=>y instanceof Zu.Tensor&&y.dispose()),Xc(r,p)}withFaceExpressions(){return new rl(this,this.input)}withAgeAndGender(){return new sl(this,this.input)}withFaceDescriptor(){return new ya(this,this.input)}}class wx extends Li{constructor(r,l=new bi){super();this.input=r;this.options=l}}class $g extends wx{async run(){const{input:r,options:l}=this,u=l instanceof px?p=>yt.tinyFaceDetector.locateFaces(p,l):l instanceof bi?p=>yt.ssdMobilenetv1.locateFaces(p,l):l instanceof vr?p=>yt.tinyYolov2.locateFaces(p,l):null;if(!u)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return u(r)}runAndExtendWithFaceDetections(){return new Promise(async r=>{const l=await this.run();return r(l.map(u=>Zo({},u)))})}withFaceLandmarks(r=!1){return new yx(this.runAndExtendWithFaceDetections(),this.input,r)}withFaceExpressions(){return new Xu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ju(this.runAndExtendWithFaceDetections(),this.input)}}class Lx extends wx{async run(){const r=await new $g(this.input,this.options);let l=r[0];return r.forEach(u=>{u.score>l.score&&(l=u)}),l}runAndExtendWithFaceDetection(){return new Promise(async r=>{const l=await this.run();return r(l?Zo({},l):void 0)})}withFaceLandmarks(r=!1){return new bx(this.runAndExtendWithFaceDetection(),this.input,r)}withFaceExpressions(){return new Ju(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Ku(this.runAndExtendWithFaceDetection(),this.input)}}function hee(r,l=new bi){return new Lx(r,l)}function Ug(r,l=new bi){return new $g(r,l)}async function UD(r,l){return console.warn("allFacesSsdMobilenetv1 is deprecated and will be removed soon, use the high level api instead"),await Ug(r,new bi(l?{minConfidence:l}:{})).withFaceLandmarks().withFaceDescriptors()}async function uee(r,l={}){return console.warn("allFacesTinyYolov2 is deprecated and will be removed soon, use the high level api instead"),await Ug(r,new vr(l)).withFaceLandmarks().withFaceDescriptors()}const dee=UD;function Sx(r,l){if(r.length!==l.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");const u=Array.from(r),p=Array.from(l);return Math.sqrt(u.map((y,g)=>y-p[g]).reduce((y,g)=>y+Math.pow(g,2),0))}class BD{constructor(r,l=.6){this._distanceThreshold=l;const u=Array.isArray(r)?r:[r];if(!u.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let p=1;const y=()=>`person ${p++}`;this._labeledDescriptors=u.map(g=>{if(g instanceof Jo)return g;if(g instanceof Float32Array)return new Jo(y(),[g]);if(g.descriptor&&g.descriptor instanceof Float32Array)return new Jo(y(),[g.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(r,l){return l.map(u=>Sx(u,r)).reduce((u,p)=>u+p,0)/(l.length||1)}matchDescriptor(r){return this.labeledDescriptors.map(({descriptors:l,label:u})=>new Ym(u,this.computeMeanDistance(r,l))).reduce((l,u)=>l.distance<u.distance?l:u)}findBestMatch(r){const l=this.matchDescriptor(r);return l.distance<this.distanceThreshold?l:new Ym("unknown",l.distance)}toJSON(){return{distanceThreshold:this.distanceThreshold,labeledDescriptors:this.labeledDescriptors.map(r=>r.toJSON())}}static fromJSON(r){const l=r.labeledDescriptors.map(u=>Jo.fromJSON(u));return new BD(l,r.distanceThreshold)}}function pee(r){const l=new qu;return l.extractWeights(r),l}function MD(r,l){const{width:u,height:p}=new ms(l.width,l.height);if(u<=0||p<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:u,height:p})}`);if(Array.isArray(r))return r.map(y=>MD(y,{width:u,height:p}));if(pa(r)){const y=r.detection.forSize(u,p),g=r.unshiftedLandmarks.forSize(y.box.width,y.box.height);return Xc(Zo(r,y),g)}return $i(r)?Zo(r,r.detection.forSize(u,p)):r instanceof Gs||r instanceof Jt?r.forSize(u,p):r}var PD="0.8.6";const mee=Je(Ze()),fee=typeof process!="undefined",gee=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",yee={faceapi:PD,node:fee,browser:gee};export{ox as AgeGenderNet,gu as BoundingBox,_t as Box,Li as ComposableTask,ga as ComputeAllFaceDescriptorsTask,fx as ComputeFaceDescriptorsTaskBase,ya as ComputeSingleFaceDescriptorTask,yx as DetectAllFaceLandmarksTask,$g as DetectAllFacesTask,gx as DetectFaceLandmarksTaskBase,wx as DetectFacesTaskBase,bx as DetectSingleFaceLandmarksTask,Lx as DetectSingleFaceTask,ms as Dimensions,tx as FACE_EXPRESSION_LABELS,Jt as FaceDetection,GQ as FaceDetectionNet,nx as FaceExpressionNet,da as FaceExpressions,Pu as FaceLandmark68Net,ax as FaceLandmark68TinyNet,RQ as FaceLandmarkNet,Gs as FaceLandmarks,EJ as FaceLandmarks5,wu as FaceLandmarks68,Ym as FaceMatch,BD as FaceMatcher,Vu as FaceRecognitionNet,Ir as Gender,Hm as LabeledBox,Jo as LabeledFaceDescriptors,ho as NetInput,Wn as NeuralNetwork,Nc as ObjectDetection,Qe as Point,DJ as PredictedBox,bu as Rect,Zc as SsdMobilenetv1,bi as SsdMobilenetv1Options,qu as TinyFaceDetector,px as TinyFaceDetectorOptions,Hu as TinyYolov2,vr as TinyYolov2Options,dx as TinyYolov2SizeType,dee as allFaces,UD as allFacesSsdMobilenetv1,uee as allFacesTinyYolov2,qS as awaitMediaLoaded,jS as bufferToImage,JQ as computeFaceDescriptor,Rc as createCanvas,Su as createCanvasFromMedia,VQ as createFaceDetectionNet,DQ as createFaceRecognitionNet,SD as createSsdMobilenetv1,pee as createTinyFaceDetector,qQ as createTinyYolov2,Ug as detectAllFaces,FD as detectFaceLandmarks,XQ as detectFaceLandmarksTiny,lee as detectLandmarks,hee as detectSingleFace,ix as draw,St as env,Sx as euclideanDistance,Fg as extendWithAge,kg as extendWithFaceDescriptor,Zo as extendWithFaceDetection,Rg as extendWithFaceExpressions,Xc as extendWithFaceLandmarks,_g as extendWithGender,Vc as extractFaceTensors,zc as extractFaces,SQ as fetchImage,ZI as fetchJson,IQ as fetchNetWeights,ha as fetchOrThrow,is as getContext2dOrThrow,ea as getMediaDimensions,KS as imageTensorToCanvas,JI as imageToSquare,NJ as inverseSigmoid,WS as iou,Xm as isMediaElement,Lu as isMediaLoaded,kQ as isWithAge,$i as isWithFaceDetection,sx as isWithFaceExpressions,pa as isWithFaceLandmarks,FQ as isWithGender,oee as loadAgeGenderModel,aee as loadFaceDetectionModel,ree as loadFaceExpressionModel,nee as loadFaceLandmarkModel,see as loadFaceLandmarkTinyModel,iee as loadFaceRecognitionModel,_D as loadSsdMobilenetv1Model,eee as loadTinyFaceDetectorModel,tee as loadTinyYolov2Model,QI as loadWeightMap,cee as locateFaces,xQ as matchDimensions,$S as minBbox,yt as nets,US as nonMaxSuppression,di as normalize,BS as padToSquare,QQ as predictAgeAndGender,ZQ as recognizeFaceExpressions,MD as resizeResults,Qo as resolveInput,vJ as shuffleArray,yu as sigmoid,kD as ssdMobilenetv1,mee as tf,jQ as tinyFaceDetector,KQ as tinyYolov2,Wt as toNetInput,DS as utils,hx as validateConfig,yee as version};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=face-api.esm.js.map
|