face-api/dist/face-api.js

3977 lines
935 KiB
JavaScript

var faceapi=(()=>{var Ku=Object.defineProperty,ZE=Object.prototype.hasOwnProperty,qs=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),yL=e=>Ku(e,"__esModule",{value:!0}),Ee=(e,t)=>{yL(e);for(var s in t)Ku(e,s,{get:t[s],enumerable:!0})},QE=(e,t)=>{if(yL(e),typeof t=="object"||typeof t=="function")for(let s in t)!ZE.call(e,s)&&s!=="default"&&Ku(e,s,{get:()=>t[s],enumerable:!0});return e},vc=e=>e&&e.__esModule?e:QE(Ku({},"default",{value:e,enumerable:!0}),e);var wL=qs((bL,Ug)=>{(function(e,t,s){function n(a){var l=this,c=o();l.next=function(){var p=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=p-(l.c=p|0)},l.c=1,l.s0=c(" "),l.s1=c(" "),l.s2=c(" "),l.s0-=c(a),l.s0<0&&(l.s0+=1),l.s1-=c(a),l.s1<0&&(l.s1+=1),l.s2-=c(a),l.s2<0&&(l.s2+=1),c=null}function i(a,l){return l.c=a.c,l.s0=a.s0,l.s1=a.s1,l.s2=a.s2,l}function r(a,l){var c=new n(a),p=l&&l.state,u=c.next;return u.int32=function(){return c.next()*4294967296|0},u.double=function(){return u()+(u()*2097152|0)*11102230246251565e-32},u.quick=u,p&&(typeof p=="object"&&i(p,c),u.state=function(){return i(c,{})}),u}function o(){var a=4022871197,l=function(c){c=c.toString();for(var p=0;p<c.length;p++){a+=c.charCodeAt(p);var u=.02519603282416938*a;a=u>>>0,u-=a,u*=a,a=u>>>0,u-=a,a+=u*4294967296}return(a>>>0)*23283064365386963e-26};return l}t&&t.exports?t.exports=r:s&&s.amd?s(function(){return r}):this.alea=r})(bL,typeof Ug=="object"&&Ug,typeof define=="function"&&define)});var LL=qs((xL,$g)=>{(function(e,t,s){function n(o){var a=this,l="";a.x=0,a.y=0,a.z=0,a.w=0,a.next=function(){var p=a.x^a.x<<11;return a.x=a.y,a.y=a.z,a.z=a.w,a.w^=a.w>>>19^p^p>>>8},o===(o|0)?a.x=o:l+=o;for(var c=0;c<l.length+64;c++)a.x^=l.charCodeAt(c)|0,a.next()}function i(o,a){return a.x=o.x,a.y=o.y,a.z=o.z,a.w=o.w,a}function r(o,a){var l=new n(o),c=a&&a.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var u=l.next()>>>11,h=(l.next()>>>0)/4294967296,d=(u+h)/(1<<21);while(d===0);return d},p.int32=l.next,p.quick=p,c&&(typeof c=="object"&&i(c,l),p.state=function(){return i(l,{})}),p}t&&t.exports?t.exports=r:s&&s.amd?s(function(){return r}):this.xor128=r})(xL,typeof $g=="object"&&$g,typeof define=="function"&&define)});var IL=qs((SL,Wg)=>{(function(e,t,s){function n(o){var a=this,l="";a.next=function(){var p=a.x^a.x>>>2;return a.x=a.y,a.y=a.z,a.z=a.w,a.w=a.v,(a.d=a.d+362437|0)+(a.v=a.v^a.v<<4^(p^p<<1))|0},a.x=0,a.y=0,a.z=0,a.w=0,a.v=0,o===(o|0)?a.x=o:l+=o;for(var c=0;c<l.length+64;c++)a.x^=l.charCodeAt(c)|0,c==l.length&&(a.d=a.x<<10^a.x>>>4),a.next()}function i(o,a){return a.x=o.x,a.y=o.y,a.z=o.z,a.w=o.w,a.v=o.v,a.d=o.d,a}function r(o,a){var l=new n(o),c=a&&a.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var u=l.next()>>>11,h=(l.next()>>>0)/4294967296,d=(u+h)/(1<<21);while(d===0);return d},p.int32=l.next,p.quick=p,c&&(typeof c=="object"&&i(c,l),p.state=function(){return i(l,{})}),p}t&&t.exports?t.exports=r:s&&s.amd?s(function(){return r}):this.xorwow=r})(SL,typeof Wg=="object"&&Wg,typeof define=="function"&&define)});var TL=qs((vL,zg)=>{(function(e,t,s){function n(o){var a=this;a.next=function(){var c=a.x,p=a.i,u,h,d;return u=c[p],u^=u>>>7,h=u^u<<24,u=c[p+1&7],h^=u^u>>>10,u=c[p+3&7],h^=u^u>>>3,u=c[p+4&7],h^=u^u<<7,u=c[p+7&7],u=u^u<<13,h^=u^u<<9,c[p]=h,a.i=p+1&7,h};function l(c,p){var u,h,d=[];if(p===(p|0))h=d[0]=p;else for(p=""+p,u=0;u<p.length;++u)d[u&7]=d[u&7]<<15^p.charCodeAt(u)+d[u+1&7]<<13;for(;d.length<8;)d.push(0);for(u=0;u<8&&d[u]===0;++u);for(u==8?h=d[7]=-1:h=d[u],c.x=d,c.i=0,u=256;u>0;--u)c.next()}l(a,o)}function i(o,a){return a.x=o.x.slice(),a.i=o.i,a}function r(o,a){o==null&&(o=+new Date);var l=new n(o),c=a&&a.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var u=l.next()>>>11,h=(l.next()>>>0)/4294967296,d=(u+h)/(1<<21);while(d===0);return d},p.int32=l.next,p.quick=p,c&&(c.x&&i(c,l),p.state=function(){return i(l,{})}),p}t&&t.exports?t.exports=r:s&&s.amd?s(function(){return r}):this.xorshift7=r})(vL,typeof zg=="object"&&zg,typeof define=="function"&&define)});var NL=qs((AL,Pg)=>{(function(e,t,s){function n(o){var a=this;a.next=function(){var c=a.w,p=a.X,u=a.i,h,d;return a.w=c=c+1640531527|0,d=p[u+34&127],h=p[u=u+1&127],d^=d<<13,h^=h<<17,d^=d>>>15,h^=h>>>12,d=p[u]=d^h,a.i=u,d+(c^c>>>16)|0};function l(c,p){var u,h,d,m,f,g=[],y=128;for(p===(p|0)?(h=p,p=null):(p=p+"\0",h=0,y=Math.max(y,p.length)),d=0,m=-32;m<y;++m)p&&(h^=p.charCodeAt((m+32)%p.length)),m===0&&(f=h),h^=h<<10,h^=h>>>15,h^=h<<4,h^=h>>>13,m>=0&&(f=f+1640531527|0,u=g[m&127]^=h+f,d=u==0?d+1:0);for(d>=128&&(g[(p&&p.length||0)&127]=-1),d=127,m=4*128;m>0;--m)h=g[d+34&127],u=g[d=d+1&127],h^=h<<13,u^=u<<17,h^=h>>>15,u^=u>>>12,g[d]=h^u;c.w=f,c.X=g,c.i=d}l(a,o)}function i(o,a){return a.i=o.i,a.w=o.w,a.X=o.X.slice(),a}function r(o,a){o==null&&(o=+new Date);var l=new n(o),c=a&&a.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var u=l.next()>>>11,h=(l.next()>>>0)/4294967296,d=(u+h)/(1<<21);while(d===0);return d},p.int32=l.next,p.quick=p,c&&(c.X&&i(c,l),p.state=function(){return i(l,{})}),p}t&&t.exports?t.exports=r:s&&s.amd?s(function(){return r}):this.xor4096=r})(AL,typeof Pg=="object"&&Pg,typeof define=="function"&&define)});var RL=qs((CL,Bg)=>{(function(e,t,s){function n(o){var a=this,l="";a.next=function(){var p=a.b,u=a.c,h=a.d,d=a.a;return p=p<<25^p>>>7^u,u=u-h|0,h=h<<24^h>>>8^d,d=d-p|0,a.b=p=p<<20^p>>>12^u,a.c=u=u-h|0,a.d=h<<16^u>>>16^d,a.a=d-p|0},a.a=0,a.b=0,a.c=2654435769|0,a.d=1367130551,o===Math.floor(o)?(a.a=o/4294967296|0,a.b=o|0):l+=o;for(var c=0;c<l.length+20;c++)a.b^=l.charCodeAt(c)|0,a.next()}function i(o,a){return a.a=o.a,a.b=o.b,a.c=o.c,a.d=o.d,a}function r(o,a){var l=new n(o),c=a&&a.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var u=l.next()>>>11,h=(l.next()>>>0)/4294967296,d=(u+h)/(1<<21);while(d===0);return d},p.int32=l.next,p.quick=p,c&&(typeof c=="object"&&i(c,l),p.state=function(){return i(l,{})}),p}t&&t.exports?t.exports=r:s&&s.amd?s(function(){return r}):this.tychei=r})(CL,typeof Bg=="object"&&Bg,typeof define=="function"&&define)});var OL=qs(()=>{});var EL=qs((eq,Xu)=>{(function(e,t){var s=this,n=256,i=6,r=52,o="random",a=t.pow(n,i),l=t.pow(2,r),c=l*2,p=n-1,u;function h(x,T,A){var _=[];T=T==!0?{entropy:!0}:T||{};var E=g(f(T.entropy?[x,w(e)]:x??y(),3),_),F=new d(_),D=function(){for(var M=F.g(i),P=a,B=0;M<l;)M=(M+B)*n,P*=n,B=F.g(1);for(;M>=c;)M/=2,P/=2,B>>>=1;return(M+B)/P};return D.int32=function(){return F.g(4)|0},D.quick=function(){return F.g(4)/4294967296},D.double=D,g(w(F.S),e),(T.pass||A||function(M,P,B,Y){return Y&&(Y.S&&m(Y,F),M.state=function(){return m(F,{})}),B?(t[o]=M,P):M})(D,E,"global"in T?T.global:this==t,T.state)}t["seed"+o]=h;function d(x){var T,A=x.length,_=this,E=0,F=_.i=_.j=0,D=_.S=[];for(A||(x=[A++]);E<n;)D[E]=E++;for(E=0;E<n;E++)D[E]=D[F=p&F+x[E%A]+(T=D[E])],D[F]=T;(_.g=function(M){for(var P,B=0,Y=_.i,q=_.j,K=_.S;M--;)P=K[Y=p&Y+1],B=B*n+K[p&(K[Y]=K[q=p&q+P])+(K[q]=P)];return _.i=Y,_.j=q,B})(n)}function m(x,T){return T.i=x.i,T.j=x.j,T.S=x.S.slice(),T}function f(x,T){var A=[],_=typeof x,E;if(T&&_=="object")for(E in x)try{A.push(f(x[E],T-1))}catch(F){}return A.length?A:_=="string"?x:x+"\0"}function g(x,T){for(var A=x+"",_,E=0;E<A.length;)T[p&E]=p&(_^=T[p&E]*19)+A.charCodeAt(E++);return w(T)}function y(){try{var x;return u&&(x=u.randomBytes)?x=x(n):(x=new Uint8Array(n),(s.crypto||s.msCrypto).getRandomValues(x)),w(x)}catch(_){var T=s.navigator,A=T&&T.plugins;return[+new Date,s,A,s.screen,w(e)]}}function w(x){return String.fromCharCode.apply(0,x)}if(g(t.random(),e),typeof Xu=="object"&&Xu.exports){Xu.exports=h;try{u=OL()}catch(x){}}else typeof define=="function"&&define.amd&&define(function(){return h})})([],Math)});var Tc=qs((tq,_L)=>{var e_=wL(),t_=LL(),s_=IL(),n_=TL(),i_=NL(),r_=RL(),vo=EL();vo.alea=e_;vo.xor128=t_;vo.xorwow=s_;vo.xorshift7=n_;vo.xor4096=i_;vo.tychei=r_;_L.exports=vo});var kL=qs(()=>{});var DL=qs(()=>{});var ML=qs((o_,FL)=>{Ee(o_,{isNodejs:()=>a_});function a_(){return typeof global=="object"&&!0&&typeof FL!="undefined"&&typeof process!="undefined"&&!!process.version}});var xS=qs(l_=>{Ee(l_,{AgeGenderNet:()=>vh,BoundingBox:()=>Ga,Box:()=>it,ComposableTask:()=>hn,ComputeAllFaceDescriptorsTask:()=>ir,ComputeFaceDescriptorsTaskBase:()=>hh,ComputeSingleFaceDescriptorTask:()=>rr,DetectAllFaceLandmarksTask:()=>ph,DetectAllFacesTask:()=>Nc,DetectFaceLandmarksTaskBase:()=>ch,DetectFacesTaskBase:()=>ah,DetectSingleFaceLandmarksTask:()=>uh,DetectSingleFaceTask:()=>lh,Dimensions:()=>Ts,FACE_EXPRESSION_LABELS:()=>fh,FaceDetection:()=>ht,FaceDetectionNet:()=>jL,FaceExpressionNet:()=>gh,FaceExpressions:()=>lr,FaceLandmark68Net:()=>za,FaceLandmark68TinyNet:()=>mh,FaceLandmarkNet:()=>mS,FaceLandmarks:()=>Hs,FaceLandmarks5:()=>wS,FaceLandmarks68:()=>Va,FaceMatch:()=>Dc,FaceMatcher:()=>Kg,FaceRecognitionNet:()=>Wa,Gender:()=>Jn,LabeledBox:()=>kc,LabeledFaceDescriptors:()=>hr,NetInput:()=>vi,NeuralNetwork:()=>Zt,ObjectDetection:()=>Oo,Point:()=>_e,PredictedBox:()=>bS,Rect:()=>ja,SsdMobilenetv1:()=>To,SsdMobilenetv1Options:()=>pn,TinyFaceDetector:()=>Ua,TinyFaceDetectorOptions:()=>sh,TinyYolov2:()=>Ma,TinyYolov2Options:()=>Xn,TinyYolov2SizeType:()=>th,allFaces:()=>pS,allFacesSsdMobilenetv1:()=>Yg,allFacesTinyYolov2:()=>cS,awaitMediaLoaded:()=>Ih,bufferToImage:()=>Sh,computeFaceDescriptor:()=>KL,createCanvas:()=>Ro,createCanvasFromMedia:()=>Ba,createFaceDetectionNet:()=>BL,createFaceRecognitionNet:()=>dS,createSsdMobilenetv1:()=>jg,createTinyFaceDetector:()=>PL,createTinyYolov2:()=>zL,detectAllFaces:()=>Ac,detectFaceLandmarks:()=>qg,detectFaceLandmarksTiny:()=>YL,detectLandmarks:()=>aS,detectSingleFace:()=>lS,draw:()=>Zu,env:()=>Ve,euclideanDistance:()=>yh,extendWithAge:()=>Ec,extendWithFaceDescriptor:()=>Oc,extendWithFaceDetection:()=>ar,extendWithFaceExpressions:()=>Rc,extendWithFaceLandmarks:()=>Ao,extendWithGender:()=>Cc,extractFaceTensors:()=>Co,extractFaces:()=>No,fetchImage:()=>yS,fetchJson:()=>Lh,fetchNetWeights:()=>gS,fetchOrThrow:()=>ur,getContext2dOrThrow:()=>us,getMediaDimensions:()=>pr,imageTensorToCanvas:()=>xh,imageToSquare:()=>wh,inverseSigmoid:()=>GL,iou:()=>oh,isMediaElement:()=>_c,isMediaLoaded:()=>Pa,isWithAge:()=>hS,isWithFaceDetection:()=>Mn,isWithFaceExpressions:()=>dh,isWithFaceLandmarks:()=>or,isWithGender:()=>uS,loadAgeGenderModel:()=>iS,loadFaceDetectionModel:()=>rS,loadFaceExpressionModel:()=>nS,loadFaceLandmarkModel:()=>eS,loadFaceLandmarkTinyModel:()=>tS,loadFaceRecognitionModel:()=>sS,loadSsdMobilenetv1Model:()=>Hg,loadTinyFaceDetectorModel:()=>ZL,loadTinyYolov2Model:()=>QL,loadWeightMap:()=>bh,locateFaces:()=>oS,matchDimensions:()=>fS,minBbox:()=>rh,nets:()=>Be,nonMaxSuppression:()=>ih,normalize:()=>un,padToSquare:()=>nh,predictAgeAndGender:()=>JL,recognizeFaceExpressions:()=>XL,resizeResults:()=>Vg,resolveInput:()=>cr,shuffleArray:()=>VL,sigmoid:()=>$a,ssdMobilenetv1:()=>Gg,tf:()=>Ju,tinyFaceDetector:()=>qL,tinyYolov2:()=>HL,toNetInput:()=>nt,utils:()=>Qu,validateConfig:()=>eh,version:()=>$L});const c_=typeof process!="undefined",p_=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",$L={faceapi:UL,node:c_,browser:p_};!W().platform&&W().get("IS_BROWSER")&&W().setPlatform("browser",new WL)});const u_=1e-7,h_=1e-4;class Fc{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}}class Eo{time(e){return z("time")}read(e){return z("read")}readSync(e){return z("readSync")}numDataIds(){return z("numDataIds")}disposeData(e){return z("disposeData")}write(e,t,s){return z("write")}move(e,t,s,n){return z("move")}memory(){return z("memory")}floatPrecision(){return z("floatPrecision")}epsilon(){return this.floatPrecision()===32?u_:h_}batchMatMul(e,t,s,n){return z("batchMatMul")}fusedBatchMatMul({a:e,b:t,transposeA:s,transposeB:n,bias:i,activation:r,preluActivationWeights:o}){return z("fusedBatchMatMul")}slice(e,t,s){return z("slice")}stridedSlice(e,t,s,n){return z("stridedSlice")}unstack(e,t){return z("unstack")}reverse(e,t){return z("reverse")}concat(e,t){return z("concat")}neg(e){return z("neg")}add(e,t){return z("add")}addN(e){return z("addN")}subtract(e,t){return z("subtract")}multiply(e,t){return z("multiply")}realDivide(e,t){return z("realDivide")}floorDiv(e,t){return z("floorDiv")}sum(e,t){return z("sum")}prod(e,t){return z("prod")}unsortedSegmentSum(e,t,s){return z("unsortedSegmentSum")}argMin(e,t){return z("argMin")}argMax(e,t){return z("argMax")}equal(e,t){return z("equal")}notEqual(e,t){return z("notEqual")}less(e,t){return z("less")}lessEqual(e,t){return z("lessEqual")}greater(e,t){return z("greater")}greaterEqual(e,t){return z("greaterEqual")}logicalNot(e){return z("logicalNot")}logicalAnd(e,t){return z("logicalAnd")}logicalOr(e,t){return z("logicalOr")}where(e){return z("where")}select(e,t,s){return z("select")}topk(e,t,s){return z("topk")}min(e,t){return z("min")}minimum(e,t){return z("minimum")}mod(e,t){return z("mod")}max(e,t){return z("max")}maximum(e,t){return z("maximum")}all(e,t){return z("all")}any(e,t){return z("any")}squaredDifference(e,t){return z("squaredDifference")}ceil(e){return z("ceil")}floor(e){return z("floor")}round(e){return z("round")}sign(e){return z("sign")}isNaN(e){return z("isNaN")}isInf(e){return z("isInf")}isFinite(e){return z("isFinite")}pow(e,t){return z("pow")}exp(e){return z("exp")}expm1(e){return z("expm1")}softmax(e,t){return z("softmax")}log(e){return z("log")}log1p(e){return z("log1p")}sqrt(e){return z("sqrt")}rsqrt(e){return z("rsqrt")}square(e){return z("square")}reciprocal(e){return z("reciprocal")}relu(e){return z("relu")}relu6(e){return z("relu6")}prelu(e,t){return z("prelu")}elu(e){return z("elu")}eluDer(e,t){return z("eluDer")}selu(e){return z("selu")}int(e){return z("int")}clip(e,t,s){return z("clip")}abs(e){return z("abs")}complexAbs(e){return z("complexAbs")}sigmoid(e){return z("sigmoid")}softplus(e){return z("softplus")}sin(e){return z("sin")}cos(e){return z("cos")}tan(e){return z("tan")}asin(e){return z("asin")}acos(e){return z("acos")}atan(e){return z("atan")}atan2(e,t){return z("atan2")}sinh(e){return z("sinh")}cosh(e){return z("cosh")}tanh(e){return z("tanh")}asinh(e){return z("asinh")}acosh(e){return z("acosh")}atanh(e){return z("atanh")}erf(e){return z("erf")}step(e,t){return z("step")}fusedConv2d({input:e,filter:t,convInfo:s,bias:n,activation:i,preluActivationWeights:r}){return z("fusedConv2d")}conv2d(e,t,s){return z("conv2d")}conv2dDerInput(e,t,s){return z("conv2dDerInput")}conv2dDerFilter(e,t,s){return z("conv2dDerFilter")}fusedDepthwiseConv2D({input:e,filter:t,convInfo:s,bias:n,activation:i,preluActivationWeights:r}){return z("fusedDepthwiseConv2D")}depthwiseConv2D(e,t,s){return z("depthwiseConv2D")}depthwiseConv2DDerInput(e,t,s){return z("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(e,t,s){return z("depthwiseConv2DDerFilter")}conv3d(e,t,s){return z("conv3d")}conv3dDerInput(e,t,s){return z("conv3dDerInput")}conv3dDerFilter(e,t,s){return z("conv3dDerFilter")}maxPool(e,t){return z("maxPool")}maxPoolBackprop(e,t,s,n){return z("maxPoolBackprop")}avgPool(e,t){return z("avgPool")}avgPoolBackprop(e,t,s){return z("avgPoolBackprop")}avgPool3d(e,t){return z("avgPool3d")}avgPool3dBackprop(e,t,s){return z("avgPool3dBackprop")}maxPool3d(e,t){return z("maxPool3d")}maxPool3dBackprop(e,t,s,n){return z("maxPool3dBackprop")}reshape(e,t){return z("reshape")}cast(e,t){return z("cast")}tile(e,t){return z("tile")}pad(e,t,s){return z("pad")}transpose(e,t){return z("transpose")}gather(e,t,s){return z("gather")}gatherND(e,t){return z("gatherND")}scatterND(e,t,s){return z("scatterND")}batchToSpaceND(e,t,s){return z("batchToSpaceND")}spaceToBatchND(e,t,s){return z("spaceToBatchND")}resizeBilinear(e,t,s,n){return z("resizeBilinear")}resizeBilinearBackprop(e,t,s){return z("resizeBilinearBackprop")}resizeNearestNeighbor(e,t,s,n){return z("resizeNearestNeighbor")}resizeNearestNeighborBackprop(e,t,s){return z("resizeNearestNeighborBackprop")}batchNorm(e,t,s,n,i,r){return z("batchNorm")}localResponseNormalization4D(e,t,s,n,i){return z("localResponseNormalization4D")}LRNGrad(e,t,s,n,i,r,o){return z("LRNGrad")}multinomial(e,t,s,n){return z("multinomial")}oneHot(e,t,s,n){return z("oneHot")}cumsum(e,t,s,n){return z("cumsum")}nonMaxSuppression(e,t,s,n,i){return z("nonMaxSuppression")}fft(e){return z("fft")}ifft(e){return z("ifft")}complex(e,t){return z("complex")}real(e){return z("real")}imag(e){return z("imag")}cropAndResize(e,t,s,n,i,r){return z("cropAndResize")}depthToSpace(e,t,s){return z("depthToSpace")}split(e,t,s){return z("split")}sparseToDense(e,t,s,n){return z("sparseToDense")}diag(e){return z("diag")}fill(e,t,s){return z("fill")}onesLike(e){return z("onesLike")}zerosLike(e){return z("zerosLike")}linspace(e,t,s){return z("linspace")}dispose(){return z("dispose")}}function z(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}const LS="tfjsflags";class Xg{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,s){if(this.flagRegistry[e]={evaluationFn:t,setHook:s},this.urlFlags[e]!=null){const n=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];const t=this.evaluateFlag(e);if(t instanceof Promise)throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;const e=d_(this.global.location.search);if(LS in e){const t=e[LS].split(",");t.forEach(s=>{const[n,i]=s.split(":");this.urlFlags[n]=m_(n,i)})}}}function d_(e){const t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(s,...n)=>(f_(t,n[0],n[1]),n.join("="))),t}function f_(e,t,s){e[decodeURIComponent(t)]=decodeURIComponent(s||"")}function m_(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function W(){return Jg}let Jg=null;function SS(e){Jg=e}let Zg;function Qg(){if(Zg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Zg=e}return Zg}function g_(){const e=Qg();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function ey(e,t){const s=g_();if(s.has(e))return s.get(e);{const n=t();return s.set(e,n),s.get(e)}}const _o="Abs",dr="Acos",mr="Acosh",Zn="Add",Mc="AddN",ty="All",sy="Any",Uc="ArgMax",$c="ArgMin",fr="Asin",gr="Asinh",yr="Atan",br="Atanh",ko="Atan2",Ti="AvgPool",Do="AvgPoolBackprop",Wc="AvgPool3D",ny="AvgPool3DBackprop",zc="BatchMatMul",Pc="BatchToSpaceND",Bc="BroadcastTo",Ai="Cast",wr="Ceil",xr="ClipByValue",jc="Complex",Fo="Concat",Vc="Conv2D",iy="Conv2DBackpropFilter",Gc="Conv2DBackpropInput",qc="Conv3D",ry="Conv3DBackpropFilterV2",oy="Conv3DBackpropInputV2",Qn="Cos",Lr="Cosh",Hc="Cumsum",ay="CropAndResize",ly="DepthToSpace",Yc="DepthwiseConv2dNative",cy="DepthwiseConv2dNativeBackpropFilter",py="DepthwiseConv2dNativeBackpropInput",uy="Diag",Mo="Dilation2D",qa="Dilation2DBackpropInput",Ha="Dilation2DBackpropFilter",ei="Div",Sr="Elu",hy="EluGrad",Ir="Erf",dy="Equal",vr="Exp",Tr="Expm1",Kc="FFT",my="Fill",Uo="FlipLeftRight",Ar="Floor",Xc="FloorDiv",Ni="FusedBatchNorm",Jc="GatherV2",fy="GatherNd",gy="Greater",Zc="GreaterEqual",Ci="Identity",Qc="IFFT",ep="Imag",Nr="IsFinite",Cr="IsInf",Rr="IsNan",yy="Less",by="LessEqual",wy="LinSpace",Or="Log",Er="Log1p",xy="LogicalAnd",Ya="LogicalNot",Ly="LogicalOr",tp="LogSoftmax",sp="LRN",Sy="LRNBackprop",Ri="Max",np="Maximum",Oi="MaxPool",$o="MaxPoolBackprop",ip="MaxPool3D",Iy="MaxPool3DBackprop",Wo="MaxPoolWithArgmax",y_="Mean",rp="Min",op="Minimum",ap="Mod",_r="Multiply",lp="Negate",Ka="NotEqual",cp="NonMaxSuppressionV3",zo="NonMaxSuppressionV4",Po="NonMaxSuppressionV5",pp="OnesLike",up="OneHot",Bo="PadV2",b_="Pool",hp="Pow",dp="Prelu",vy="Prod",Ty="Range",mp="Real",kr="Reciprocal",fp="Relu",Ei="Reshape",gp="ResizeNearestNeighbor",Ay="ResizeNearestNeighborGrad",yp="ResizeBilinear",Ny="ResizeBilinearGrad",bp="Relu6",wp="Reverse",Dr="Round",Fr="Rsqrt",Cy="ScatterNd",xp="SelectV2",Mr="Selu",jo="Slice",ti="Sin",Ur="Sinh",$r="Sign",Wr="Sigmoid",zr="Softplus",Pr="Sqrt",Lp="Sum",Vo="SpaceToBatchND",Sp="SplitV",Ip="Softmax",si="SquaredDifference",Go="Square",Br="Sub",Ry="SparseToDense",Oy="StridedSlice",ni="Tan",jr="Tanh",vp="Tile",Ey="TopK",_i="Transpose",qo="Unique",Tp="Unpack",Ap="UnsortedSegmentSum",Np="ZerosLike",Vr="Step",Xa="FromPixels",Ho="RotateWithOffset",Th="_FusedMatMul",Ah="FusedConv2D",Nh="FusedDepthwiseConv2D";const Ja=ey("kernelRegistry",()=>new Map),Cp=ey("gradRegistry",()=>new Map);function Rp(e,t){const s=_y(e,t);return Ja.get(s)}function Ch(e){return Cp.get(e)}function Op(e){const t=Ja.entries(),s=[];for(;;){const{done:n,value:i}=t.next();if(n)break;const[r,o]=i,[a]=r.split("_");a===e&&s.push(o)}return s}function Za(e){const{kernelName:t,backendName:s}=e,n=_y(t,s);Ja.has(n)&&console.warn(`The kernel '${t}' for backend '${s}' is already registered`),Ja.set(n,e)}function ky(e){const{kernelName:t}=e;Cp.has(t)&&(W().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`)),Cp.set(t,e)}function w_(e,t){const s=_y(e,t);if(!Ja.has(s))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Ja.delete(s)}function x_(e){if(!Cp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Cp.delete(e)}function L_(e,t){const s=Op(e);s.forEach(n=>{const i=Object.assign({},n,{backendName:t});Za(i)})}function _y(e,t){return`${t}_${e}`}const N={};Ee(N,{arraysEqual:()=>Nt,assert:()=>I,assertNonNegativeIntegerDimensions:()=>_p,assertNonNull:()=>Ys,assertShapesMatch:()=>Se,bytesFromStringArray:()=>zy,bytesPerElement:()=>Wy,checkConversionForErrors:()=>vS,clamp:()=>Qa,computeStrides:()=>oi,createScalarValue:()=>E_,createShuffledIndices:()=>R_,decodeString:()=>Eh,distSquared:()=>T_,encodeString:()=>Rh,fetch:()=>D_,flatten:()=>ii,getArrayFromDType:()=>My,getTypedArrayFromDType:()=>el,hasEncodingLoss:()=>$y,indexToLoc:()=>M_,inferDtype:()=>tl,inferFromImplicitShape:()=>Dy,isBoolean:()=>TS,isFunction:()=>ri,isInt:()=>De,isNumber:()=>AS,isScalarShape:()=>A_,isString:()=>Un,isTypedArray:()=>Dt,isValidDtype:()=>Uy,locToIndex:()=>F_,makeOnesTypedArray:()=>Ep,makeZerosNestedTypedArray:()=>k_,makeZerosTypedArray:()=>ai,nearestDivisor:()=>sl,nearestLargerEven:()=>S_,now:()=>Oh,parseAxisParam:()=>Ne,randUniform:()=>v_,repeatedTry:()=>O_,rightPad:()=>Yo,shuffle:()=>IS,sizeFromShape:()=>We,sizeToSquarishShape:()=>C_,squeezeShape:()=>Fy,sum:()=>I_,tanh:()=>N_,toNestedArray:()=>Ko,toTypedArray:()=>nl});function IS(e){let t=e.length,s=0,n=0;for(;t>0;)n=Math.random()*t|0,t--,s=e[t],e[t]=e[n],e[n]=s}function Qa(e,t,s){return Math.max(e,Math.min(t,s))}function S_(e){return e%2===0?e:e+1}function I_(e){let t=0;for(let s=0;s<e.length;s++)t+=e[s];return t}function v_(e,t){const s=Math.random();return t*s+(1-s)*e}function T_(e,t){let s=0;for(let n=0;n<e.length;n++){const i=Number(e[n])-Number(t[n]);s+=i*i}return s}function I(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Se(e,t,s=""){I(Nt(e,t),()=>s+` Shapes ${e} and ${t} must match`)}function Ys(e){I(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ii(e,t=[],s=!1){if(t==null&&(t=[]),Array.isArray(e)||Dt(e)&&!s)for(let n=0;n<e.length;++n)ii(e[n],t,s);else t.push(e);return t}function We(e){if(e.length===0)return 1;let t=e[0];for(let s=1;s<e.length;s++)t*=e[s];return t}function A_(e){return e.length===0}function Nt(e,t){if(e===t)return!0;if(e==null||t==null)return!1;if(e.length!==t.length)return!1;for(let s=0;s<e.length;s++)if(e[s]!==t[s])return!1;return!0}function De(e){return e%1===0}function N_(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{const t=Math.exp(2*e);return(t-1)/(t+1)}}function C_(e){const t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function R_(e){const t=new Uint32Array(e);for(let s=0;s<e;++s)t[s]=s;return IS(t),t}function Yo(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function O_(e,t=n=>0,s){return new Promise((n,i)=>{let r=0;const o=()=>{if(e()){n();return}r++;const a=t(r);if(s!=null&&r>=s){i();return}setTimeout(o,a)};o()})}function Dy(e,t){let s=1,n=-1;for(let r=0;r<e.length;++r)if(e[r]>=0)s*=e[r];else if(e[r]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${r}`);n=r}else if(e[r]<0)throw Error(`Shapes can not be < 0. Found ${e[r]} at dim ${r}`);if(n===-1){if(t>0&&t!==s)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(s===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%s!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${s}`);const i=e.slice();return i[n]=t/s,i}function Ne(e,t){const s=t.length;return e=e==null?t.map((n,i)=>i):[].concat(e),I(e.every(n=>n>=-s&&n<s),()=>`All values in axis param must be in range [-${s}, ${s}) but got axis ${e}`),I(e.every(n=>De(n)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(n=>n<0?s+n:n)}function Fy(e,t){const s=[],n=[],i=t!=null&&Array.isArray(t)&&t.length===0,r=t==null||i?null:Ne(t,e).sort();let o=0;for(let a=0;a<e.length;++a){if(r!=null){if(r[o]===a&&e[a]!==1)throw new Error(`Can't squeeze axis ${a} since its dim '${e[a]}' is not 1`);(r[o]==null||r[o]>a)&&e[a]===1&&(s.push(e[a]),n.push(a)),r[o]<=a&&o++}e[a]!==1&&(s.push(e[a]),n.push(a))}return{newShape:s,keptDims:n}}function el(e,t){let s=null;if(e==null||e==="float32")s=new Float32Array(t);else if(e==="int32")s=new Int32Array(t);else if(e==="bool")s=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return s}function My(e,t){let s=null;if(e==null||e==="float32")s=new Float32Array(t);else if(e==="int32")s=new Int32Array(t);else if(e==="bool")s=new Uint8Array(t);else if(e==="string")s=new Array(t);else throw new Error(`Unknown data type ${e}`);return s}function vS(e,t){for(let s=0;s<e.length;s++){const n=e[s];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function Uy(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function $y(e,t){return t==="complex64"||(t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64")?!1:!(t==="bool"&&e==="bool")}function Dt(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Wy(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function zy(e){if(e==null)return 0;let t=0;return e.forEach(s=>t+=s.length),t}function Un(e){return typeof e=="string"||e instanceof String}function TS(e){return typeof e=="boolean"}function AS(e){return typeof e=="number"}function tl(e){return Array.isArray(e)?tl(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":AS(e)?"float32":Un(e)?"string":TS(e)?"bool":"float32"}function ri(e){return!!(e&&e.constructor&&e.call&&e.apply)}function sl(e,t){for(let s=t;s<e;++s)if(e%s===0)return s;return e}function oi(e){const t=e.length;if(t<2)return[];const s=new Array(t-1);s[t-2]=e[t-1];for(let n=t-3;n>=0;--n)s[n]=s[n+1]*e[n+1];return s}function E_(e,t){return t==="string"?Rh(e):nl([e],t)}function nl(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ii(e)),W().getBool("DEBUG")&&vS(e,t),__(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){const s=new Uint8Array(e.length);for(let n=0;n<s.length;++n)Math.round(e[n])!==0&&(s[n]=1);return s}else throw new Error(`Unknown data type ${t}`)}function NS(e,t,s){const n=new Array;if(t.length===1){const i=t[0];for(let r=0;r<i;r++)n[r]=s[e+r]}else{const i=t[0],r=t.slice(1),o=r.reduce((a,l)=>a*l);for(let a=0;a<i;a++)n[a]=NS(e+a*o,r,s)}return n}function Ko(e,t){if(e.length===0)return t[0];const s=e.reduce((n,i)=>n*i);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return NS(0,e,t)}function __(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ep(e,t){const s=ai(e,t);for(let n=0;n<s.length;n++)s[n]=1;return s}function ai(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function k_(e,t){const s=e.reduce((n,i)=>n*i,1);if(t==null||t==="float32")return Ko(e,new Float32Array(s));if(t==="int32")return Ko(e,new Int32Array(s));if(t==="bool")return Ko(e,new Uint8Array(s));throw new Error(`Unknown data type ${t}`)}function Oh(){return W().platform.now()}function _p(e){e.forEach(t=>{I(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function D_(e,t){return W().platform.fetch(e,t)}function Rh(e,t="utf-8"){return t=t||"utf-8",W().platform.encode(e,t)}function Eh(e,t="utf-8"){return t=t||"utf-8",W().platform.decode(e,t)}function F_(e,t,s){if(t===0)return 0;if(t===1)return e[0];let n=e[e.length-1];for(let i=0;i<e.length-1;++i)n+=s[i]*e[i];return n}function M_(e,t,s){if(t===0)return[];if(t===1)return[e];const n=new Array(t);for(let i=0;i<n.length-1;++i)n[i]=Math.floor(e/s[i]),e-=n[i]*s[i];return n[n.length-1]=e,n}class CS{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new $_)}profileKernel(e,t,s){let n;const i=()=>{n=s()},r=this.backendTimer.time(i);for(let a=0;a<n.length;a++){const l=n[a];l.data().then(c=>{U_(c,l.dtype,e)})}const o={kernelName:e,outputs:n,inputs:t,timeMs:r.then(a=>a.kernelMs),extraInfo:r.then(a=>a.getExtraProfileInfo!=null?a.getExtraProfileInfo():"")};return o}logKernelProfile(e){const{kernelName:t,outputs:s,timeMs:n,inputs:i,extraInfo:r}=e;s.forEach(o=>{Promise.all([o.data(),n,r]).then(a=>{this.logger.logKernelProfile(t,o,a[0],a[1],i,a[2])})})}}function U_(e,t,s){if(t!=="float32")return!1;for(let n=0;n<e.length;n++){const i=e[n];if(isNaN(i)||!isFinite(i))return console.warn(`Found ${i} in the result of '${s}'`),!0}return!1}class $_{logKernelProfile(e,t,s,n,i,r){const o=typeof n=="number"?Yo(`${n}ms`,9):n.error,a=Yo(e,25),l=t.rank,c=t.size,p=Yo(t.shape.toString(),14);let u="";for(const h in i){const d=i[h];if(d!=null){const m=d.shape||t.shape,f=m.length;u+=`${h}: ${f}D ${f>0?m:""} `}}console.log(`%c${a} %c${o} %c${l}D ${p} %c${c} %c${u} %c${r}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}}function RS(e,t,s){const n={},i={};for(let l=0;l<t.length;l++)n[t[l].id]=!0;for(let l=0;l<e.length;l++){const c=e[l],p=c.inputs;for(const u in p){const h=p[u];let d=!1;for(let m=0;m<t.length;m++)if(n[h.id]){c.outputs.forEach(f=>n[f.id]=!0),d=!0,i[c.id]=!0;break}if(d)break}}const r={};r[s.id]=!0;const o={};for(let l=e.length-1;l>=0;l--){const c=e[l],p=c.inputs;for(let u=0;u<c.outputs.length;u++)if(r[c.outputs[u].id]){for(const h in p)r[p[h].id]=!0,o[c.id]=!0;break}}const a=[];for(let l=0;l<e.length;l++){const c=e[l];if(i[c.id]&&o[c.id]){const p={};for(const h in c.inputs){const d=c.inputs[h];n[d.id]&&(p[h]=d)}const u=Object.assign({},c);u.inputs=p,u.outputs=c.outputs,a.push(u)}}return a}function OS(e,t,s,n){for(let i=t.length-1;i>=0;i--){const r=t[i],o=[];if(r.outputs.forEach(l=>{const c=e[l.id];c!=null?o.push(c):o.push(null)}),r.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${r.kernelName}.`);const a=r.gradient(o);for(const l in r.inputs){if(!(l in a))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(a)}.`);const c=s(()=>a[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${r.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);const p=r.inputs[l];if(!Nt(c.shape,p.shape))throw new Error(`Error in gradient for op ${r.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=c;else{const u=e[p.id];e[p.id]=n(u,c),u.dispose()}}}}const ES=20,kp=3,Py=7;function _S(e,t,s,n){const i=oi(t),r=W_(e,t,s,i),o=t.length,a=_h(e,t,s,i,r),l=["Tensor"];return n&&(l.push(` dtype: ${s}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(a.map(c=>" "+c).join(`
`)),l.join(`
`)}function W_(e,t,s,n){const i=We(t),r=n[n.length-1],o=new Array(r).fill(0),a=t.length,l=s==="complex64"?Fp(e):e;if(a>1)for(let c=0;c<i/r;c++){const p=c*r;for(let u=0;u<r;u++)o[u]=Math.max(o[u],Dp(l[p+u],0,s).length)}return o}function Dp(e,t,s){let n;return Array.isArray(e)?n=`${parseFloat(e[0].toFixed(Py))} + ${parseFloat(e[1].toFixed(Py))}j`:Un(e)?n=`'${e}'`:s==="bool"?n=kS(e):n=parseFloat(e.toFixed(Py)).toString(),Yo(n,t)}function kS(e){return e===0?"false":"true"}function _h(e,t,s,n,i,r=!0){const o=s==="complex64"?2:1,a=t[0],l=t.length;if(l===0){if(s==="complex64"){const f=Fp(e);return[Dp(f[0],0,s)]}return s==="bool"?[kS(e[0])]:[e[0].toString()]}if(l===1){if(a>ES){const g=kp*o;let y=Array.from(e.slice(0,g)),w=Array.from(e.slice((a-kp)*o,a*o));return s==="complex64"&&(y=Fp(y),w=Fp(w)),["["+y.map((x,T)=>Dp(x,i[T],s)).join(", ")+", ..., "+w.map((x,T)=>Dp(x,i[a-kp+T],s)).join(", ")+"]"]}const f=s==="complex64"?Fp(e):Array.from(e);return["["+f.map((g,y)=>Dp(g,i[y],s)).join(", ")+"]"]}const c=t.slice(1),p=n.slice(1),u=n[0]*o,h=[];if(a>ES){for(let f=0;f<kp;f++){const g=f*u,y=g+u;h.push(..._h(e.slice(g,y),c,s,p,i,!1))}h.push("...");for(let f=a-kp;f<a;f++){const g=f*u,y=g+u;h.push(..._h(e.slice(g,y),c,s,p,i,f===a-1))}}else for(let f=0;f<a;f++){const g=f*u,y=g+u;h.push(..._h(e.slice(g,y),c,s,p,i,f===a-1))}const d=l===2?",":"";h[0]="["+h[0]+d;for(let f=1;f<h.length-1;f++)h[f]=" "+h[f]+d;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return h[h.length-1]=" "+h[h.length-1]+"]"+(r?"":m),h}function Fp(e){const t=[];for(let s=0;s<e.length;s+=2)t.push([e[s],e[s+1]]);return t}class dn{constructor(e,t,s){if(this.dtype=t,this.shape=e.slice(),this.size=We(e),s!=null){const n=s.length;I(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=s||My(t,this.size),this.strides=oi(e)}set(e,...t){t.length===0&&(t=[0]),I(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);const s=this.locToIndex(t);this.values[s]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(const n of e){if(n<0||n>=this.shape[t]){const i=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(i)}t++}let s=e[e.length-1];for(let n=0;n<e.length-1;++n)s+=this.strides[n]*e[n];return this.values[s]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let s=0;s<e.length-1;++s)t+=this.strides[s]*e[s];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];const t=new Array(this.shape.length);for(let s=0;s<t.length-1;++s)t[s]=Math.floor(e/this.strides[s]),e-=t[s]*this.strides[s];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return li().makeTensor(this.values,this.shape,this.dtype)}}let li=null,il=null,z_=null;function DS(e){li=e}function FS(e){il=e}function MS(e){z_=e}class me{constructor(e,t,s,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=We(e),this.strides=oi(e),this.dataId=s,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){const e=await this.data();return il.buffer(this.shape,this.dtype,e)}bufferSync(){return il.buffer(this.shape,this.dtype,this.dataSync())}async array(){const e=await this.data();return Ko(this.shape,e)}arraySync(){return Ko(this.shape,this.dataSync())}async data(){this.throwIfDisposed();const e=li().read(this.dataId);if(this.dtype==="string"){const t=await e;try{return t.map(s=>Eh(s))}catch(s){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();const e=li().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Eh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();const e=await li().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){if(this.isDisposed)return;li().disposeTensor(this),this.isDisposedInternal=!0}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return il.print(this,e)}clone(){return this.throwIfDisposed(),il.clone(this)}toString(e=!1){const t=this.dataSync();return _S(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),il.cast(this,e)}variable(e=!0,t,s){return this.throwIfDisposed(),li().makeVariable(this,e,t,s)}}Object.defineProperty(me,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});class ci extends me{constructor(e,t,s,n){super(e.shape,e.dtype,e.dataId,n);this.trainable=t,this.name=s}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Nt(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);li().disposeTensor(this),this.dataId=e.dataId,li().incRef(this,null)}dispose(){li().disposeVariable(this),this.isDisposedInternal=!0}}Object.defineProperty(ci,Symbol.hasInstance,{value:e=>e instanceof me&&e.assign!=null&&e.assign instanceof Function});var By;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(By||(By={}));var jy;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(jy||(jy={}));var Vy;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Vy||(Vy={}));var Gy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Gy||(Gy={}));var qy;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(qy||(qy={}));const P_={float32:Gy,int32:jy,bool:Vy,complex64:qy};function Ft(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return P_[e][t]}function Mp(e){return Ft(e,"int32")}const mn={};Ee(mn,{assertTypesMatch:()=>Hy,getTensorsInContainer:()=>Up,isTensorInList:()=>B_,makeTypesMatch:()=>Ce});function Ce(e,t){if(e.dtype===t.dtype)return[e,t];const s=Ft(e.dtype,t.dtype);return[e.cast(s),t.cast(s)]}function Hy(e,t){I(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function B_(e,t){return t.some(s=>s.id===e.id)}function Up(e){const t=[],s=new Set;return US(e,t,s),t}function US(e,t,s){if(e==null)return;if(e instanceof me){t.push(e);return}if(!j_(e))return;const n=e;for(const i in n){const r=n[i];s.has(r)||(s.add(r),US(r,t,s))}}function j_(e){return Array.isArray(e)||typeof e=="object"}class $S{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null}}dispose(){for(const e in this.registeredVariables)this.registeredVariables[e].dispose()}}class $p{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new $S}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;const e=this.getSortedBackends();for(let t=0;t<e.length;t++){const s=e[t],n=await this.initializeBackend(s).success;if(n){await this.setBackend(s);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){const{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){const{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,s=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:s},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;const{success:t,asyncInit:s}=this.initializeBackend(e),n=s?await t:t;if(!n)return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new CS(this.backendInstance),!0}setupRegisteredKernels(){const e=Op(this.backendName);e.forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){const t=Op(e);t.forEach(s=>{s.disposeFunc!=null&&s.disposeFunc(this.registry[e])})}initializeBackend(e){const t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{const s=t.factory();if(s&&!(s instanceof Eo)&&typeof s.then=="function"){const n=++this.pendingBackendInitId,i=s.then(r=>n<this.pendingBackendInitId?!1:(this.registry[e]=r,this.pendingBackendInit=null,!0)).catch(r=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(r.stack||r.message)),!1));return this.pendingBackendInit=i,{success:i,asyncInit:!0}}else return this.registry[e]=s,{success:!0,asyncInit:!1}}catch(s){return console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){const e=this.getSortedBackends();for(let t=0;t<e.length;t++){const s=e[t],{success:n,asyncInit:i}=this.initializeBackend(s);if(i||n)return{name:s,asyncInit:i}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){const s=this.state.tensorInfo.get(t),n=s.backend,i=this.readSync(t);n.disposeData(t),s.backend=e,e.move(t,i,s.shape,s.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let s=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");s=e}let n;return this.scopedRun(()=>this.startScope(s),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,s){e();try{const n=s();return t(),n}catch(n){throw t(),n}}nextTensorId(){return $p.nextTensorId++}nextVariableId(){return $p.nextVariableId++}clone(e){const t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),s={x:e},n=r=>({x:()=>{const o="float32",a={x:r},l={dtype:o};return v.runKernelFunc(c=>c.cast(r,o),a,null,Ai,l)}}),i=[];return this.addTapeNode(this.state.activeScope.name,s,[t],n,i,{}),t}runKernel(e,t,s,n,i){const r=null,o=null;return this.runKernelFunc(r,t,o,e,s,n,i)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,s){const n=this.backend.numDataIds();let i=0;s.forEach(a=>{i+=a.dtype==="complex64"?3:1});const r=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=n-t-i-r;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e,t,s,n,i,r,o){let a,l=[];const c=this.isTapeOn();n==null&&(n=this.state.activeScope!=null?this.state.activeScope.name:"");const p=this.state.numBytes,u=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let h;const d=Rp(n,this.backendName);let m;if(d!=null)h=()=>{const g=this.backend.numDataIds();m=d.kernelFunc({inputs:t,attrs:i,backend:this.backend});const y=Array.isArray(m)?m:[m];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(n,g,y);const w=y.map(({dataId:x,shape:T,dtype:A})=>this.makeTensorFromDataId(x,T,A));if(c){let x=this.getTensorsForGradient(n,t,w);if(x==null){o==null&&(o=[]);const T=w.filter((A,_)=>o[_]);x=(r||[]).slice().concat(T)}l=this.saveTensorsForBackwardMode(x)}return w};else{const g=y=>{if(!c)return;l=y.map(w=>this.keep(this.clone(w)))};h=()=>{const y=this.backend.numDataIds();m=this.tidy(()=>e(this.backend,g));const w=Array.isArray(m)?m:[m];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(n,y,w),w}}let f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?a=h():(f=this.profiler.profileKernel(n,t,()=>h()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),a=f.outputs)}),c&&this.addTapeNode(n,t,a,s,l,i),this.state.profiling&&this.state.activeProfile.kernels.push({name:n,bytesAdded:this.state.numBytes-p,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-u,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(t).map(g=>t[g]!=null?t[g].shape:null),outputShapes:a.map(g=>g.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(m)?a:a[0]}saveTensorsForBackwardMode(e){const t=e.map(s=>this.keep(this.clone(s)));return t}getTensorsForGradient(e,t,s){const n=Ch(e);if(n!=null){const i=n.inputsToSave||[],r=n.outputsToSave||[];let o;n.saveAllInputs?(I(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=i.map(l=>t[l]);const a=s.filter((l,c)=>r[c]);return o.concat(a)}return null}makeTensor(e,t,s,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");s=s||"float32",n=n||this.backend;let i=e;s==="string"&&Un(e[0])&&(i=e.map(a=>Rh(a)));const r=n.write(i,t,s),o=new me(t,s,r,this.nextTensorId());if(this.incRef(o,n),s==="string"){const a=this.state.tensorInfo.get(r),l=zy(i);this.state.numBytes+=l-a.bytes,a.bytes=l}return o}makeTensorFromDataId(e,t,s,n){s=s||"float32";const i=new me(t,s,e,this.nextTensorId());return this.incRef(i,n),i}makeVariable(e,t=!0,s,n){s=s||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));const i=new ci(e,t,s,this.nextTensorId());if(this.state.registeredVariables[i.name]!=null)throw new Error(`Variable with name ${i.name} was already registered`);return this.state.registeredVariables[i.name]=i,this.incRef(i,this.backend),i}incRef(e,t){const s=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,s===0){this.state.numDataBuffers++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Wy(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n,refCount:0}),this.state.numBytes+=n}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof ci||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;const t=this.state.tensorInfo.get(e.dataId),s=t.refCount;s<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):this.state.tensorInfo.get(e.dataId).refCount--}disposeVariables(){for(const e in this.state.registeredVariables){const t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){const e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;const t=this.state.numBytes,s=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-s;for(const n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,s,n,i,r){const o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:s,saved:i},a=Ch(e);a!=null&&(n=a.gradFunc),n!=null&&(o.gradient=l=>(l=l.map((c,p)=>{if(c==null){const u=s[p],h=ai(u.size,u.dtype);return this.makeTensor(h,u.shape,u.dtype)}return c}),n(l.length>1?l:l[0],i,r))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){const t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){const t=Up(e),s=new Set(t.map(i=>i.id));for(let i=0;i<this.state.activeScope.track.length;i++){const r=this.state.activeScope.track[i];!r.kept&&!s.has(r.id)&&r.dispose()}const n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(i=>{!i.kept&&i.scopeId===n.id&&this.track(i)})}gradients(e,t,s,n=!1){if(I(t.length>0,()=>"gradients() received an empty list of xs."),s!=null&&s.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${s.dtype}'`);const i=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));I(i instanceof me,()=>"The result y returned by f() must be a tensor.");const r=RS(this.state.activeTape,t,i);if(!n&&r.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{const o={};o[i.id]=s??V_(i.shape),OS(o,r,l=>this.tidy(l),G_);const a=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(const c of l.saved)c.dispose()}),this.state.activeTape=null),{value:i,grads:a}})}customGrad(e){return I(ri(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{I(t.every(i=>i instanceof me),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let s;const n={};return t.forEach((i,r)=>{n[r]=i}),this.runKernelFunc((i,r)=>(s=e(...t,r),I(s.value instanceof me,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),I(ri(s.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),s.value),n,(i,r)=>{const o=s.gradFunc(i,r),a=Array.isArray(o)?o:[o];I(a.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),I(a.every(c=>c instanceof me),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");const l={};return a.forEach((c,p)=>{l[p]=()=>c}),l})}}readSync(e){const t=this.state.tensorInfo.get(e);return t.backend.readSync(e)}read(e){const t=this.state.tensorInfo.get(e);return t.backend.read(e)}async time(e){const t=Oh(),s=await this.backend.time(e);return s.wallMs=Oh()-t,s}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new $S;for(const e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}}$p.nextTensorId=0;$p.nextVariableId=0;function V_(e){const t=Ep(We(e),"float32");return v.makeTensor(t,e,"float32")}function Yy(){const e=Qg();if(e._tfengine==null){const t=new Xg(e);e._tfengine=new $p(t)}return SS(e._tfengine.ENV),DS(()=>e._tfengine),e._tfengine}const v=Yy();function G_(e,t){const s={a:e,b:t};return v.runKernelFunc((n,i)=>{const r=n.add(e,t);return i([e,t]),r},s,null,Zn)}const rl={};Ee(rl,{isBrowser:()=>Ky,isMobile:()=>H_});function q_(){return typeof navigator!="undefined"&&navigator!=null}function H_(){if(q_()){const e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function Ky(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}const ki=W();ki.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ki.registerFlag("IS_BROWSER",()=>Ky());ki.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ki.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ki.registerFlag("PROD",()=>!1);ki.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ki.getBool("DEBUG"));ki.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ki.registerFlag("IS_TEST",()=>!1);function Qt(e,t){let s=e;if(Dt(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];const n=[];for(;Array.isArray(s)||Dt(s)&&t!=="string";)n.push(s.length),s=s[0];return Array.isArray(e)&&W().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&WS(e,n,[]),n}function WS(e,t,s){if(s=s||[],!Array.isArray(e)&&!Dt(e)){I(t.length===0,()=>`Element arr[${s.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}I(t.length>0,()=>`Element arr[${s.join("][")}] should be a primitive, but is an array of ${e.length} elements`),I(e.length===t[0],()=>`Element arr[${s.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);const n=t.slice(1);for(let i=0;i<e.length;++i)WS(e[i],n,s.concat(i))}function zS(e,t,s,n){if(e==null)return;if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${s}' passed to '${n}' must be ${e} tensor, but got ${t} tensor`)}function b(e,t,s,n="numeric"){if(e instanceof me)return zS(n,e.dtype,t,s),e;let i=tl(e);if(i!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(i=n),zS(n,i,t,s),e==null||!Dt(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){const l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${s}' must be a Tensor or TensorLike, but got '${l}'`)}const r=Qt(e,i);!Dt(e)&&!Array.isArray(e)&&(e=[e]);const o=!0,a=i!=="string"?nl(e,i):ii(e,[],o);return v.makeTensor(a,r,i)}function Di(e,t,s,n="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${s} must be a \`Tensor[]\` or \`TensorLike[]\``);const i=e;return i.map((r,o)=>b(r,`${t}[${o}]`,s),n)}const Xy="__op";function S(e){const t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let s=t[0];const n=e[s];s.endsWith("_")&&(s=s.substring(0,s.length-1)),s=s+Xy;const i=(...r)=>{v.startScope(s);try{const o=n(...r);return o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),v.endScope(o),o}catch(o){throw v.endScope(null),o}};return Object.defineProperty(i,"name",{value:s,configurable:!0}),i}function Y_(e,t){const s=b(e,"real","complex"),n=b(t,"imag","complex");Se(s.shape,n.shape,`real and imag shapes, ${s.shape} and ${n.shape}, must match in call to tf.complex().`);const i=o=>o.complex(s,n),r={real:s,imag:n};return v.runKernelFunc(i,r,null,jc)}const Gt=S({complex_:Y_});function hs(e,t,s,n){if(n==null&&(n=tl(e)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Dt(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){_p(t);const i=We(t),r=We(s);I(i===r,()=>`Based on the provided shape, [${t}], the tensor should have ${i} values but has ${r}`);for(let o=0;o<s.length;++o){const a=s[o],l=o===s.length-1?a!==We(t.slice(o)):!0;I(s[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${s}) does not match the provided shape (${t}). `)}}return!Dt(e)&&!Array.isArray(e)&&(e=[e]),t=t||s,e=n!=="string"?nl(e,n):ii(e,[],!0),v.makeTensor(e,t,n)}function ze(e,t,s){const n=Qt(e,s);return hs(e,t,n,s)}const Wp={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};const kh=4;async function X_(e,t){const s=[],n=[],i=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<i.length;++o){const a=i[o],l=Array.isArray(e)?e[o].tensor:e[a];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${a}': ${l.dtype}`);const c={name:a,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){const p=new Promise(async u=>{const h=await l.bytes(),d=h.reduce((g,y)=>g+y.length,0)+kh*h.length,m=new Uint8Array(d);let f=0;for(let g=0;g<h.length;g++){const y=h[g],w=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(w,f),f+=kh,m.set(y,f),f+=y.length}u(m)});n.push(p)}else n.push(l.data());t!=null&&(c.group=t),s.push(c)}const r=await Promise.all(n);return{data:K_(r),specs:s}}function Jy(e,t){const s={};let n,i=0;for(const r of t){const o=r.name,a=r.dtype,l=r.shape,c=We(l);let p;if("quantization"in r){const u=r.quantization;if(u.dtype==="uint8"||u.dtype==="uint16"){if(!("min"in u&&"scale"in u))throw new Error(`Weight ${r.name} with quantization ${u.dtype} doesn't have corresponding metadata min and scale.`)}else if(u.dtype==="float16"){if(a!=="float32")throw new Error(`Weight ${r.name} is quantized with ${u.dtype} which only supports weights of type float32 not ${a}.`)}else throw new Error(`Weight ${r.name} has unknown quantization dtype ${u.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);const h=Wp[u.dtype],d=e.slice(i,i+c*h),m=u.dtype==="uint8"?new Uint8Array(d):new Uint16Array(d);if(a==="float32")if(u.dtype==="uint8"||u.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){const g=m[f];p[f]=g*u.scale+u.min}}else if(u.dtype==="float16")n===void 0&&(n=J_()),p=n(m);else throw new Error(`Unsupported quantization type ${u.dtype} for weight type float32.`);else if(a==="int32"){if(u.dtype!=="uint8"&&u.dtype!=="uint16")throw new Error(`Unsupported quantization type ${u.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){const g=m[f];p[f]=Math.round(g*u.scale+u.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${a}`);i+=c*h}else if(a==="string"){const u=We(r.shape);p=[];for(let h=0;h<u;h++){const d=new Uint32Array(e.slice(i,i+kh))[0];i+=kh;const m=new Uint8Array(e.slice(i,i+d));p.push(m),i+=d}}else{const u=Wp[a],h=e.slice(i,i+c*u);if(a==="float32")p=new Float32Array(h);else if(a==="int32")p=new Int32Array(h);else if(a==="bool")p=new Uint8Array(h);else if(a==="complex64"){p=new Float32Array(h);const d=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let y=0;y<d.length;y++)d[y]=p[y*2],m[y]=p[y*2+1];const f=ze(d,l,"float32"),g=ze(m,l,"float32");s[o]=Gt(f,g)}else throw new Error(`Unsupported dtype in weight '${o}': ${a}`);i+=c*u}a!=="complex64"&&(s[o]=ze(p,l,a))}return s}function K_(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0;const s=[];e.forEach(r=>{if(t+=r.byteLength,s.push(r.byteLength===r.buffer.byteLength?r:new r.constructor(r)),!(r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${r.constructor.name}`)});const n=new Uint8Array(t);let i=0;return s.forEach(r=>{n.set(new Uint8Array(r.buffer),i),i+=r.byteLength}),n.buffer}const Z_=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function PS(e){return Z_?Buffer.byteLength(e):new Blob([e]).size}function zp(e){if(e.length===1)return e[0];let t=0;e.forEach(i=>{t+=i.byteLength});const s=new Uint8Array(t);let n=0;return e.forEach(i=>{s.set(new Uint8Array(i),n),n+=i.byteLength}),s.buffer}function Zy(e){const t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);const s=e.split(t);return s[s.length-1]}function Pp(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:PS(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:PS(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function Q_(){const e=s=>{let n=s<<13,i=0;for(;(n&8388608)===0;)i-=8388608,n<<=1;return n&=~8388608,i+=947912704,n|i},t=new Uint32Array(2048);t[0]=0;for(let s=1;s<1024;s++)t[s]=e(s);for(let s=1024;s<2048;s++)t[s]=939524096+(s-1024<<13);return t}function ek(){const e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function tk(){const e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function J_(){const e=Q_(),t=ek(),s=tk();return n=>{const i=new ArrayBuffer(4*n.length),r=new Uint32Array(i);for(let o=0;o<n.length;o++){const a=n[o],l=e[s[a>>10]+(a&1023)]+t[a>>10];r[o]=l}return new Float32Array(i)}}class Ct{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ct.instance==null&&(Ct.instance=new Ct),Ct.instance}static registerSaveRouter(e){Ct.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ct.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ct.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ct.getHandlers(e,"load",t)}static getHandlers(e,t,s){const n=[],i=t==="load"?Ct.getInstance().loadRouters:Ct.getInstance().saveRouters;return i.forEach(r=>{const o=r(e,s);o!==null&&n.push(o)}),n}}const sk=e=>Ct.registerSaveRouter(e),nk=e=>Ct.registerLoadRouter(e),ik=e=>Ct.getSaveHandlers(e),rk=(e,t)=>Ct.getLoadHandlers(e,t);const ol="://";class $n{constructor(){this.managers={}}static getInstance(){return $n.instance==null&&($n.instance=new $n),$n.instance}static registerManager(e,t){I(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(ol)&&(e=e.slice(0,e.indexOf(ol))),I(e.length>0,()=>"scheme must not be an empty string.");const s=$n.getInstance();I(s.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),s.managers[e]=t}static getManager(e){const t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}}function Dh(e){if(e.indexOf(ol)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${$n.getSchemes().join(",")}`);return{scheme:e.split(ol)[0],path:e.split(ol)[1]}}async function BS(e,t,s=!1){I(e!==t,()=>`Old path and new path are the same: '${e}'`);const n=Ct.getLoadHandlers(e);I(n.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),I(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${e}.`);const i=n[0],r=Ct.getSaveHandlers(t);I(r.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),I(r.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);const o=r[0],a=Dh(e).scheme,l=Dh(e).path,c=a===Dh(e).scheme,p=await i.load();s&&c&&await $n.getManager(a).removeModel(l);const u=await o.save(p);return s&&!c&&await $n.getManager(a).removeModel(l),u.modelArtifactsInfo}async function jS(){const e=$n.getSchemes(),t={};for(const s of e){const n=await $n.getManager(s).listModels();for(const i in n){const r=s+ol+i;t[r]=n[i]}}return t}async function VS(e){const t=Dh(e),s=$n.getManager(t.scheme);return s.removeModel(t.path)}async function GS(e,t){const s=!1;return BS(e,t,s)}async function qS(e,t){const s=!0;return BS(e,t,s)}function ge(e,t="float32",s){return t=t||"float32",_p(e),new dn(e,t,s)}function ok(e,t){const s=b(e,"x","cast");if(!Uy(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&s.dtype!=="string"||t!=="string"&&s.dtype==="string")throw new Error("Only strings can be casted to strings");const n={x:s},i={dtype:t};return v.runKernelFunc(r=>r.cast(s,t),n,null,Ai,i)}const G=S({cast_:ok});function ak(e){const t=b(e,"x","clone",null),s=()=>v.makeTensorFromDataId(t.dataId,t.shape,t.dtype),n={x:t};return v.runKernelFunc(s,n,null,Ci)}const Fs=S({clone_:ak});function Fh(e,t=!1){console.log(e.toString(t))}Yy();const lk={buffer:ge,cast:G,clone:Fs,print:Fh};FS(lk);const ck="model",pk=".json",uk=".weights.bin";function HS(e){return new Promise(t=>setTimeout(t)).then(e)}class al{constructor(e){if(!W().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(al.URL_SCHEME)&&(e=e.slice(al.URL_SCHEME.length)),(e==null||e.length===0)&&(e=ck),this.modelTopologyFileName=e+pk,this.weightDataFileName=e+uk}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");const t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{const s=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:s},i=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),r=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(r.download=this.modelTopologyFileName,r.href=i,await HS(()=>r.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){const o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await HS(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Pp(e)}}}}al.URL_SCHEME="downloads://";class hk{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){const e=this.files[0],t=this.files.slice(1);return new Promise((s,n)=>{const i=new FileReader;i.onload=r=>{const o=JSON.parse(r.target.result),a=o.modelTopology;if(a==null){n(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&s({modelTopology:a});const l=o.weightsManifest;if(l==null){n(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(d){n(d);return}const p=[],u=[],h=[];l.forEach(d=>{d.paths.forEach(m=>{u.push(m),h.push(null)}),p.push(...d.weights)}),l.forEach(d=>{d.paths.forEach(m=>{const f=new FileReader;f.onload=g=>{const y=g.target.result,w=u.indexOf(m);h[w]=y,h.indexOf(null)===-1&&s({modelTopology:a,weightSpecs:p,weightData:zp(h),format:o.format,generatedBy:o.generatedBy,convertedBy:o.convertedBy,userDefinedMetadata:o.userDefinedMetadata})},f.onerror=g=>n(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},i.onerror=r=>n(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),i.readAsText(e)})}checkManifestAndWeightFiles(e,t){const s=[],n=t.map(r=>Zy(r.name)),i={};for(const r of e)r.paths.forEach(o=>{const a=Zy(o);if(s.indexOf(a)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${a}'`);if(s.push(a),n.indexOf(a)===-1)throw new Error(`Weight file with basename '${a}' is not provided.`);i[o]=t[n.indexOf(a)]});if(s.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${s.length}) and the number of weight files provided (${t.length}).`);return i}}const mk=e=>W().getBool("IS_BROWSER")&&(!Array.isArray(e)&&e.startsWith(al.URL_SCHEME))?dk(e.slice(al.URL_SCHEME.length)):null;Ct.registerSaveRouter(mk);function dk(e="model"){return new al(e)}function fk(e){return new hk(e)}function Qy(e,t,s,n){o(e),s=s??0,n=n??1,a(s,n);let i=0;const r=l=>(l.then(c=>{const p=s+ ++i/e.length*(n-s);return t(p),c}),l);function o(l){I(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function a(l,c){I(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),I(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),I(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(r))}async function eb(e,t){t==null&&(t={});const s=t.fetchFunc==null?W().platform.fetch:t.fetchFunc,n=e.map(u=>s(u,t.requestInit,{isBinary:!0})),i=0,r=.5,o=t.onProgress==null?await Promise.all(n):await Qy(n,t.onProgress,i,r),a=o.map(u=>u.arrayBuffer()),l=.5,c=1,p=t.onProgress==null?await Promise.all(a):await Qy(a,t.onProgress,l,c);return p}async function gk(e,t="",s,n){const i=o=>eb(o,{requestInit:n}),r=YS(i);return r(e,t,s)}function YS(e){return async(t,s="",n)=>{const i=t.map(()=>!1),r={},o=n!=null?n.map(()=>!1):[],a=[];if(t.forEach((d,m)=>{let f=0;d.weights.forEach(g=>{const y="quantization"in g?g.quantization.dtype:g.dtype,w=Wp[y]*We(g.shape),x=()=>{i[m]=!0,r[m]==null&&(r[m]=[]),r[m].push({manifestEntry:g,groupOffset:f,sizeBytes:w})};n!=null?n.forEach((T,A)=>{T===g.name&&(x(),o[A]=!0)}):x(),a.push(g.name),f+=w})}),!o.every(d=>d)){const d=n.filter((m,f)=>!o[f]);throw new Error(`Could not find weights in manifest with names: ${d.join(", ")}.
Manifest JSON has weights with names: ${a.join(", ")}.`)}const l=i.reduce((d,m,f)=>(m&&d.push(f),d),[]),c=[];l.forEach(d=>{t[d].paths.forEach(m=>{const f=s+(s.endsWith("/")?"":"/")+m;c.push(f)})});const p=await e(c),u={};let h=0;return l.forEach(d=>{const m=t[d].paths.length;let f=0;for(let T=0;T<m;T++)f+=p[h+T].byteLength;const g=new ArrayBuffer(f),y=new Uint8Array(g);let w=0;for(let T=0;T<m;T++){const A=new Uint8Array(p[h+T]);y.set(A,w),w+=A.byteLength}const x=r[d];x.forEach(T=>{const A=g.slice(T.groupOffset,T.groupOffset+T.sizeBytes),_=Jy(A,[T.manifestEntry]);for(const E in _)u[E]=_[E]}),h+=m}),u}}const yk="application/octet-stream",bk="application/json";class tb{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(I(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=W().platform.fetch,I(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&I(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");const t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;const s=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,userDefinedMetadata:e.userDefinedMetadata,weightsManifest:s};t.body.append("model.json",new Blob([JSON.stringify(n)],{type:bk}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:yk}),"model.weights.bin");const i=await this.fetch(this.path,t);if(i.ok)return{modelArtifactsInfo:Pp(e),responses:[i]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${i.status}.`)}async load(){const e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let d=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?d+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":d+=" Please make sure the server is serving valid JSON for this request.",new Error(d)}const s=t.modelTopology,n=t.weightsManifest,i=t.generatedBy,r=t.convertedBy,o=t.format,a=t.userDefinedMetadata;if(s==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let l,c;if(n!=null){const h=await this.loadWeights(n);[l,c]=h}const p={modelTopology:s,weightSpecs:l,weightData:c,userDefinedMetadata:a,generatedBy:i,convertedBy:r,format:o},u=t.modelInitializer;return u&&(p.modelInitializer=u),p}async loadWeights(e){const t=Array.isArray(this.path)?this.path[1]:this.path,[s,n]=wk(t),i=this.weightPathPrefix||s,r=[];for(const c of e)r.push(...c.weights);const o=[],a=[];for(const c of e)for(const p of c.paths)this.weightUrlConverter!=null?a.push(this.weightUrlConverter(p)):o.push(i+p+n);this.weightUrlConverter&&o.push(...await Promise.all(a));const l=await eb(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[r,zp(l)]}}tb.URL_SCHEME_REGEX=/^https?:\/\//;function wk(e){const t=e.lastIndexOf("/"),s=e.lastIndexOf("?"),n=e.substring(0,t),i=s>t?e.substring(s):"";return[n+"/",i]}function sb(e){return e.match(tb.URL_SCHEME_REGEX)!=null}const KS=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let s=!0;if(Array.isArray(e)?s=e.every(n=>sb(n)):s=sb(e),s)return nb(e,t)}return null};Ct.registerSaveRouter(KS);Ct.registerLoadRouter(KS);function nb(e,t){return new tb(e,t)}function xk(e,t){return nb(e,t)}class ib{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}}class Lk{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}}function Sk(e,t,s,n){if(arguments.length===1){const i=e.modelTopology!=null||e.weightSpecs!=null;return i?new ib(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ib({modelTopology:e}))}else return console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ib({modelTopology:e,weightSpecs:t,weightData:s,trainingConfig:n})}function Ik(e){return new Lk(e)}const Rt={};Ee(Rt,{browserFiles:()=>fk,browserHTTPRequest:()=>xk,concatenateArrayBuffers:()=>zp,copyModel:()=>GS,decodeWeights:()=>Jy,encodeWeights:()=>X_,fromMemory:()=>Sk,getLoadHandlers:()=>rk,getModelArtifactsInfoForJSON:()=>Pp,getSaveHandlers:()=>ik,http:()=>nb,isHTTPScheme:()=>sb,listModels:()=>jS,loadWeights:()=>gk,moveModel:()=>qS,registerLoadRouter:()=>nk,registerSaveRouter:()=>sk,removeModel:()=>VS,weightsLoaderFactory:()=>YS,withSaveHandler:()=>Ik});function vk(e,t){const s=b(e,"x","reshape",null),n={x:s},i={shape:t},r=(o,a)=>(t=Dy(t,s.size),I(s.size===We(t),()=>"new shape and old shape must have the same number of elements."),a([s]),o.reshape(s,t));return v.runKernelFunc(r,n,null,Ei,i)}const O=S({reshape_:vk});function Tk(e,t,s=!1,n=!1){let i=b(e,"a","matMul"),r=b(t,"b","matMul");[i,r]=Ce(i,r),I(i.rank>=2&&r.rank>=2&&i.rank===r.rank,()=>`Error in matMul: inputs must have the same rank of at least 2, got ranks ${i.rank} and ${r.rank}.`);const o=s?i.shape[i.rank-2]:i.shape[i.rank-1],a=n?r.shape[r.rank-1]:r.shape[r.rank-2],l=s?i.shape[i.rank-1]:i.shape[i.rank-2],c=n?r.shape[r.rank-2]:r.shape[r.rank-1],p=i.shape.slice(0,-2),u=r.shape.slice(0,-2),h=We(p),d=We(u);I(Nt(p,u),()=>`Error in matMul: outer dimensions (${p}) and (${u}) of Tensors with shapes ${i.shape} and ${r.shape} must match.`),I(o===a,()=>`Error in matMul: inner shapes (${o}) and (${a}) of Tensors with shapes ${i.shape} and ${r.shape} and transposeA=${s} and transposeB=${n} must match.`);const m=i.shape.slice(0,-2).concat([l,c]),f=s?O(i,[h,o,l]):O(i,[h,l,o]),g=n?O(r,[d,c,a]):O(r,[d,a,c]),y=(A,_)=>(_([f,g]),A.batchMatMul(f,g,s,n)),w={a:f,b:g},x={transposeA:s,transposeB:n},T=v.runKernelFunc(y,w,null,zc,x);return O(T,m)}const Te=S({matMul_:Tk});function Ak(e,t,s=1,n=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);const i=b(e,"indices","oneHot","int32"),r=[...i.shape,t],o=(c,p)=>(p([i]),O(c.oneHot(O(i,[i.size]),t,s,n),r)),a={indices:i},l={depth:t,onValue:s,offValue:n};return v.runKernelFunc(o,a,null,up,l)}const pi=S({oneHot_:Ak});function Nk(e,t){const s=b(e,"x","transpose");if(t==null&&(t=s.shape.map((r,o)=>o).reverse()),I(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of perm ${t}.`),t.forEach(r=>{I(r>=0&&r<s.rank,()=>`All entries in 'perm' must be between 0 and ${s.rank-1} but got ${t}`)}),s.rank<=1)return s.clone();const n={x:s},i={perm:t};return v.runKernelFunc(r=>r.transpose(s,t),n,null,_i,i)}const se=S({transpose_:Nk});function Ck(e,t,s){const n=b(e,"labels","confusionMatrix"),i=b(t,"predictions","confusionMatrix");I(s==null||s>0&&Number.isInteger(s),()=>`If provided, numClasses must be a positive integer, but got ${s}`),I(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),I(i.rank===1,()=>`Expected the rank of predictions to be 1, but got ${i.rank}`),I(n.shape[0]===i.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${i.shape[0]}. Labels and predictions should have the same number of elements.`),I(s>0&&Number.isInteger(s),()=>`numClasses is required to be a positive integer, but got ${s}`);const r=pi(G(n,"int32"),s),o=pi(G(i,"int32"),s),a=se(r);return G(Te(a,o),"int32")}const Rk=S({confusionMatrix_:Ck});const XS={};Ee(XS,{confusionMatrix:()=>Rk});function ll(e,t,s){if(Ys(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");const n=Qt(e,s);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return hs(e,t,n,s)}const Gr={};Ee(Gr,{fromPixels:()=>_k,toPixels:()=>Ek});let cl;function Ok(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let s=!1,n=!1,i=!1,r=!1,o=!1;if(e.data instanceof Uint8Array)s=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)i=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)r=!0;else if(e.getContext!=null)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(i){const d=2;if(i&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}const a=Rp(Xa,v.backendName);if(a!=null){const d={pixels:e},m={numChannels:t};return v.runKernel(Xa,d,m)}const[l,c]=i?[e.videoWidth,e.videoHeight]:[e.width,e.height];let p;o?p=e.getContext("2d").getImageData(0,0,l,c).data:n||s?p=e.data:(r||i)&&(cl==null&&(cl=document.createElement("canvas").getContext("2d")),cl.canvas.width=l,cl.canvas.height=c,cl.drawImage(e,0,0,l,c),p=cl.getImageData(0,0,l,c).data);let u;if(t===4)u=new Int32Array(p);else{const d=l*c;u=new Int32Array(d*t);for(let m=0;m<d;m++)for(let f=0;f<t;++f)u[m*t+f]=p[m*4+f]}const h=[c,l,t];return ll(u,h,"int32")}async function Ek(e,t){let s=b(e,"img","toPixels");if(!(e instanceof me)){const c=s;s=G(c,"int32"),c.dispose()}if(s.rank!==2&&s.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${s.rank}.`);const[n,i]=s.shape.slice(0,2),r=s.rank===2?1:s.shape[2];if(r>4||r===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${r}`);if(s.dtype!=="float32"&&s.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${s.dtype}. Please use float32 or int32 tensors.`);const o=await s.data(),a=s.dtype==="float32"?255:1,l=new Uint8ClampedArray(i*n*4);for(let c=0;c<n*i;++c){const p=[0,0,0,255];for(let h=0;h<r;h++){const d=o[c*r+h];if(s.dtype==="float32"){if(d<0||d>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${d}.`)}else if(s.dtype==="int32"&&(d<0||d>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${d}.`);r===1?(p[0]=d*a,p[1]=d*a,p[2]=d*a):p[h]=d*a}const u=c*4;l[u+0]=Math.round(p[0]),l[u+1]=Math.round(p[1]),l[u+2]=Math.round(p[2]),l[u+3]=Math.round(p[3])}if(t!=null){t.width=i,t.height=n;const c=t.getContext("2d"),p=new ImageData(l,i,n);c.putImageData(p,0,0)}return s!==e&&s.dispose(),l}const _k=S({fromPixels_:Ok});const JS={};Ee(JS,{prepareAndValidate:()=>ZS});function ZS(e,t){if(e.rank<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.rank<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[t.rank-1]>e.rank)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[t.rank-1]} vs. ${e.rank}`);if(e.size===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);const s=t.shape,n=s[s.length-1];let i=1;for(let c=0;c<s.length-1;++c)i*=s[c];const r=e.shape,o=s.slice();o.pop();let a=1;for(let c=n;c<e.rank;++c)a*=r[c],o.push(r[c]);const l=[...oi(e.shape).map(c=>c/a),1].slice(0,n);return[o,i,a,l]}const QS={};Ee(QS,{calculateShapes:()=>eI,validateInput:()=>Mh,validateUpdateShape:()=>rb});function rb(e,t,s){const n=t.rank>1?t.shape[t.rank-1]:1,i=t.rank>1?t.rank-1:1,r=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${s.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${n}, and batchDim: ${i}.`;if(s.rank<i)throw new Error(r+` update.rank < ${i}. `);if(e.length<n+(s.rank-i))throw new Error(r+` Output shape length < ${n+(s.rank-i)}`);if(s.rank!==i+e.length-n)throw new Error(r+` update.rank != ${i+e.length-n}`);for(let o=0;o<i;++o)if(s.shape[o]!==t.shape[o])throw new Error(r+` updates.shape[${o}] (${s.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<s.rank-i;++o)if(s.shape[o+i]!==e[o+n])throw new Error(r+` updates.shape[${o+i}] (${s.shape[o+i]}) != shape[${o+i}] (${e[o+i]})`)}function Mh(e,t,s){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(s.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${s}`);if(s.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}rb(s,t,e)}function eI(e,t,s){const n=t.shape.length,i=n>1?t.shape[n-1]:1,r=s.length;let o=1;for(let u=i;u<r;++u)o*=s[u];const a=i<1?1:i,l=We(t.shape)/a,c=[...oi(s.slice(0,i)),1],p=We(s);return{sliceRank:i,numUpdates:l,sliceSize:o,strides:c,outputSize:p}}const Ms={};Ee(Ms,{assertParamsValid:()=>ob,computeFlatOffset:()=>Dk,computeOutShape:()=>ab,getNormalizedAxes:()=>lb,isSliceContinous:()=>kk,maskToAxes:()=>Bp,parseSliceParams:()=>jp,startForAxis:()=>aI,startIndicesWithElidedDims:()=>iI,stopForAxis:()=>lI,stopIndicesWithElidedDims:()=>rI,stridesForAxis:()=>oI,stridesWithElidedDims:()=>tI});function ob(e,t,s){const n=e.shape.length;I(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),I(n===s.length,()=>`Error in slice${n}D: Length of size ${s} must match the rank of the array (${n}).`);for(let i=0;i<n;++i)I(t[i]+s[i]<=e.shape[i],()=>`Error in slice${n}D: begin[${i}] + size[${i}] (${t[i]+s[i]}) would overflow input.shape[${i}] (${e.shape[i]})`)}function Bp(e){const t=[];let s=0;for(;e>0;)e&1&&t.push(s),e/=2,s++;return t}function ab(e,t,s){const n=[];for(let i=0;i<e.length;i++)n[i]=Math.ceil((t[i]-e[i])/s[i]);return n}function tI(e,t,s,n){const i=[...e];for(let r=i.length;r<n.length;r++)i.push(1);for(let r=0;r<s;r++)r===0?i[t]=1:(i.splice(t,0,1),i.pop());return i}function sI(e,t,s){return s<=e?s:s-(t-1)}function nI(e,t){const s=[];for(let n=0;n<e;n++)s.push(t+n);return s}function lb(e,t,s,n,i,r,o,a,l){const c=e.length;let p=new Array(c),u=new Array(c),h=new Array(c);if(t.length&&s>0){const d=t[0],m=s+1;p=iI(o,d,m,n,e),u=rI(a,d,m,i,e),h=tI(r,d,m,e)}else for(let d=0;d<c;d++)p[d]=aI(o,n,r,e,d,l),u[d]=lI(a,i,r,e,d,l),h[d]=oI(r,d,l);return{begin:p,end:u,strides:h}}function iI(e,t,s,n,i){const r=[...i],o=nI(s,t);for(let a=0;a<r.length;a++)if(o.indexOf(a)>-1)r[a]=0;else{const l=sI(t,s,a);let c=n[l];e&1<<l&&(c=0),r[a]=c}return r}function rI(e,t,s,n,i){const r=[...i],o=nI(s,t);for(let a=0;a<r.length;a++)if(o.indexOf(a)>-1)r[a]=Number.MAX_SAFE_INTEGER;else{const l=sI(t,s,a);let c=n[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),r[a]=c}for(let a=0;a<r.length;a++){const l=i[a];r[a]<0&&(r[a]+=l),r[a]=Qa(0,r[a],i[a])}return r}function oI(e,t,s){let n=e[t];return(s&1<<t||n==null)&&(n=1),n}function aI(e,t,s,n,i,r){let o=t[i];const a=s[i]||1;(e&1<<i||r&1<<i||o==null)&&(a>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);const l=n[i];return o<0&&(o+=l),o=Qa(0,o,l-1),o}function lI(e,t,s,n,i,r){let o=t[i];const a=s[i]||1;(e&1<<i||r&1<<i||o==null)&&(a>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);const l=n[i];return o<0&&(o+=l),a>0?o=Qa(0,o,l):o=Qa(-1,o,l-1),o}function kk(e,t,s){let n=s.length;for(let i=0;i<s.length;i++)if(s[i]>1){n=i;break}for(let i=n+1;i<s.length;i++)if(t[i]>0||s[i]!==e[i])return!1;return!0}function Dk(e,t){let s=e.length>0?e[e.length-1]:1;for(let n=0;n<e.length-1;n++)s+=e[n]*t[n];return s}function jp(e,t,s){let n;const i=e.shape.length;typeof t=="number"?n=[t,...new Array(i-1).fill(0)]:t.length<i?n=t.concat(new Array(i-t.length).fill(0)):n=t.slice(),n.forEach(o=>{I(o!==-1,()=>"slice() does not support negative begin indexing.")});let r;return s==null?r=new Array(i).fill(-1):typeof s=="number"?r=[s,...new Array(i-1).fill(-1)]:s.length<i?r=s.concat(new Array(i-s.length).fill(-1)):r=s,r=r.map((o,a)=>o>=0?o:(I(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${a}.`),e.shape[a]-n[a])),[n,r]}const V={};Ee(V,{Serializable:()=>cb,SerializationMap:()=>Xo,registerClass:()=>As});class cb{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}}class Xo{constructor(){this.classNameMap={}}static getMap(){return Xo.instance==null&&(Xo.instance=new Xo),Xo.instance}static register(e){Xo.getMap().classNameMap[e.className]=[e,e.fromConfig]}}function As(e){I(e.className!=null,()=>"Class being registered does not have the static className property defined."),I(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),I(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Xo.register(e)}const cI={};Ee(cI,{TEST_EPSILON_FLOAT16:()=>pI,expectArrayBuffersEqual:()=>Pk,expectArraysClose:()=>Mk,expectArraysEqual:()=>$k,expectNumbersClose:()=>Wk,expectPromiseToFail:()=>Uk,expectValuesInRange:()=>zk,testEpsilon:()=>pb});const Fk=.001,pI=.1;function Mk(e,t,s){return s==null&&(s=pb()),ub(e,t,(n,i)=>hb(n,i,s))}function pb(){return v.backend.floatPrecision()===32?Fk:pI}function ub(e,t,s){let n=!0;if((Dt(e)||Dt(t))&&(n=!1),Dt(e)&&Dt(t)&&(n=!0),n){const o=e.constructor.name,a=t.constructor.name;if(o!==a)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${a}`)}if(Array.isArray(e)&&Array.isArray(t)){const o=Qt(e),a=Qt(t);if(!Nt(o,a))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${a}]`)}const i=Dt(e)?e:ii(e),r=Dt(t)?t:ii(t);if(i.length!==r.length)throw new Error(`Arrays have different lengths actual: ${i.length} vs expected: ${r.length}.
Actual: ${i}.
Expected: ${r}.`);for(let o=0;o<r.length;++o){const a=i[o],l=r[o];if(!s(a,l))throw new Error(`Arrays differ: actual[${o}] = ${a}, expected[${o}] = ${l}.
Actual: ${i}.
Expected: ${r}.`)}}function Uk(e,t){e().then(()=>t.fail(),()=>t())}function $k(e,t){const s=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Un(e)||Un(e[0])||Un(t)||Un(t[0])?ub(e,s,(n,i)=>n==i):ub(e,t,(n,i)=>hb(n,i,0))}function Wk(e,t,s){if(s==null&&(s=pb()),!hb(e,t,s))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function hb(e,t,s){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>s)}function zk(e,t,s){for(let n=0;n<e.length;n++)if(e[n]<t||e[n]>s)throw new Error(`Value out of range:${e[n]} low: ${t}, high: ${s}`)}function Pk(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}const db="2.6.0";function Bk(){W().set("PROD",!0)}function jk(){W().set("DEBUG",!0)}function Vk(){W().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function It(e){W().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}MS(It);function Gk(){v.disposeVariables()}function Us(){return v}function pl(){return v.memory()}function qk(e){return v.profile(e)}function C(e,t){return v.tidy(e,t)}function ce(e){const t=Up(e);t.forEach(s=>s.dispose())}function pt(e){return v.keep(e)}function Hk(e){return v.time(e)}function uI(e){return v.setBackend(e)}function Yk(){return v.ready()}function Kk(){return v.backendName}function Xk(e){v.removeBackend(e)}function Jk(e){return v.findBackend(e)}function Zk(e){return v.findBackendFactory(e)}function Vp(e,t,s=1){return v.registerBackend(e,t,s)}function mb(){return v.backend}function Qk(e,t){W().setPlatform(e,t)}function eD(e,t){let s=b(e,"a","add"),n=b(t,"b","add");[s,n]=Ce(s,n);const i=(o,a)=>{const l=o.add(s,n);return a([s,n]),l},r={a:s,b:n};return v.runKernelFunc(i,r,null,Zn)}const $=S({add_:eD});function tD(e,t){let s=b(e,"a","floorDiv"),n=b(t,"b","floorDiv");[s,n]=Ce(s,n);const i=(o,a)=>{const l=o.floorDiv(s,n);return a([s,n]),l},r={a:s,b:n};return v.runKernelFunc(i,r,null,Xc)}const ul=S({floorDiv_:tD});function sD(e,t){let s=b(e,"a","div"),n=b(t,"b","div");if([s,n]=Ce(s,n),s.dtype==="int32"&&n.dtype==="int32")return ul(s,n);const i=(a,l)=>{const c=a.realDivide(s,n);return l([s,n]),c},r={a:s,b:n},o={};return v.runKernelFunc(i,r,null,ei,o)}const Z=S({div_:sD});function nD(e,t){let s=b(e,"a","mul"),n=b(t,"b","mul");[s,n]=Ce(s,n);const i=(o,a)=>{const l=o.multiply(s,n);return a([s,n]),l},r={a:s,b:n};return v.runKernelFunc(i,r,null,_r)}const R=S({mul_:nD});function iD(e){const t=b(e,"x","abs"),s={x:t};return v.runKernelFunc((n,i)=>(i([t]),t.dtype==="complex64"?n.complexAbs(t):n.abs(t)),s,null,_o)}const et=S({abs_:iD});function rD(e){const t=b(e,"x","acos"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.acos(t);return i([t]),r},s,null,dr)}const Uh=S({acos_:rD});function oD(e){const t=b(e,"x","acosh"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.acosh(t);return i([t]),r},s,null,mr)}const $h=S({acosh_:oD});function aD(e){I(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),I(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);const t=e.map((r,o)=>b(r,`tensors${o}`,"addN")),s=t[0];t.forEach(r=>{if(r.dtype!==s.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Nt(r.shape,s.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});const n=(r,o)=>{const a=r.addN(t);return o(t),a},i=t;return v.runKernelFunc(n,i,null,Mc)}const Wh=S({addN_:aD});function fb(e,t){for(let s=0;s<e.length;++s)if(e[e.length-s-1]!==t-1-s)return!1;return!0}function hI(e,t,s){const n=e.length+t.length,i=[];let r=0,o=0;for(let a=0;a<n;a++)s.indexOf(a)===-1?i.push(e[r++]):i.push(t[o++]);return i}function gb(e,t){const s=[],n=e.length;for(let r=0;r<n;r++)t.indexOf(r)===-1&&s.push(e[r]);const i=t.map(r=>e[r]);return[s,i]}function wt(e,t){const s=t.map(n=>1);return hI(e,s,t)}function lD(e,t,s){I(fb(t,s),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${s} input.`)}function dt(e,t){if(fb(e,t))return null;const s=[];for(let n=0;n<t;++n)e.indexOf(n)===-1&&s.push(n);return e.forEach(n=>s.push(n)),s}function Jo(e){return e.map((t,s)=>[s,t]).sort((t,s)=>t[1]-s[1]).map(t=>t[0])}function qt(e,t){const s=[];for(let n=t-e;n<t;++n)s.push(n);return s}function cD(e,t=null,s=!1){let n=b(e,"x","all","bool");const i=a=>{const l=Ne(t,n.shape);let c=l;const p=dt(c,n.rank);p!=null&&(n=se(n,p),c=qt(c.length,n.rank));const u=a.all(n,c);if(s){const h=wt(u.shape,l);return O(u,h)}return u},r={x:n},o={axis:t,keepDims:s};return v.runKernelFunc(i,r,null,ty,o)}const hl=S({all_:cD});function pD(e,t=null,s=!1){let n=b(e,"x","any","bool");const i=a=>{const l=Ne(t,n.shape);let c=l;const p=dt(c,n.rank);p!=null&&(n=se(n,p),c=qt(c.length,n.rank));const u=a.any(n,c);if(s){const h=wt(u.shape,l);return O(u,h)}return u},r={x:n},o={axis:t,keepDims:s};return v.runKernelFunc(i,r,null,sy,o)}const Zo=S({any_:pD});function uD(e,t=0){let s=b(e,"x","argMax");const n=(o,a)=>{a([s]);let l=Ne(t,s.shape);const c=dt(l,s.rank);return c!=null&&(s=se(s,c),l=qt(l.length,s.rank)),o.argMax(s,l[0])},i={x:s},r={axis:t};return v.runKernelFunc(n,i,null,Uc,r)}const Qo=S({argMax_:uD});function hD(e,t=0){let s=b(e,"x","argMin");const n=(o,a)=>{a([s]),t==null&&(t=0);let l=Ne(t,s.shape);const c=dt(l,s.rank);return c!=null&&(s=se(s,c),l=qt(l.length,s.rank)),o.argMin(s,l[0])},i={x:s},r={axis:t};return v.runKernelFunc(n,i,null,$c,r)}const zh=S({argMin_:hD});function dD(e){const t=b(e,"x","asin"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.asin(t);return i([t]),r},s,null,fr)}const Ph=S({asin_:dD});function mD(e){const t=b(e,"x","asinh"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.asinh(t);return i([t]),r},s,null,gr)}const Bh=S({asinh_:mD});function fD(e){const t=b(e,"x","atan"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.atan(t);return i([t]),r},s,null,yr)}const jh=S({atan_:fD});function gD(e,t){let s=b(e,"a","atan2"),n=b(t,"b","atan2");[s,n]=Ce(s,n);const i=(o,a)=>{const l=o.atan2(s,n);return a([s,n]),l},r={a:s,b:n};return v.runKernelFunc(i,r,null,ko)}const Vh=S({atan2_:gD});function yD(e){const t=b(e,"x","atanh"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.atanh(t);return i([t]),r},s,null,br)}const Gh=S({atanh_:yD});function bD(e,t,s,n,i="NHWC",r){const o=e[3],a=[...t,o],l=qr(i);return rs(e,a,s,r,n,null,null,l)}function Wn(e,t,s,n,i,r,o="channelsLast"){const[a,l]=qh(t);let c;if(o==="channelsLast")c=[a,l,e[3],e[3]];else if(o==="channelsFirst")c=[a,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return rs(e,c,s,n,i,r,!1,o)}function Fi(e,t,s,n,i,r,o="NDHWC"){const[a,l,c]=yb(t);let p,u;if(o==="NDHWC")u="channelsLast",p=[a,l,c,e[4],e[4]];else if(o==="NCDHW")u="channelsFirst",p=[a,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Hr(e,p,s,n,i,!1,u,r)}function rs(e,t,s,n,i,r,o=!1,a="channelsLast"){let[l,c,p,u]=[-1,-1,-1,-1];if(a==="channelsLast")[l,c,p,u]=e;else if(a==="channelsFirst")[l,u,c,p]=e;else throw new Error(`Unknown dataFormat ${a}`);const[h,d,,m]=t,[f,g]=qh(s),[y,w]=qh(n),x=dl(h,y),T=dl(d,w),{padInfo:A,outHeight:_,outWidth:E}=wD(i,c,p,f,g,x,T,r,a),F=o?m*u:m;let D;return a==="channelsFirst"?D=[l,F,_,E]:a==="channelsLast"&&(D=[l,_,E,F]),{batchSize:l,dataFormat:a,inHeight:c,inWidth:p,inChannels:u,outHeight:_,outWidth:E,outChannels:F,padInfo:A,strideHeight:f,strideWidth:g,filterHeight:h,filterWidth:d,effectiveFilterHeight:x,effectiveFilterWidth:T,dilationHeight:y,dilationWidth:w,inShape:e,outShape:D,filterShape:t}}function Hr(e,t,s,n,i,r=!1,o="channelsLast",a){let[l,c,p,u,h]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,p,u,h]=e;else if(o==="channelsFirst")[l,h,c,p,u]=e;else throw new Error(`Unknown dataFormat ${o}`);const[d,m,f,,g]=t,[y,w,x]=yb(s),[T,A,_]=yb(n),E=dl(d,T),F=dl(m,A),D=dl(f,_),{padInfo:M,outDepth:P,outHeight:B,outWidth:Y}=xD(i,c,p,u,y,w,x,E,F,D,a),q=r?g*h:g;let K;return o==="channelsFirst"?K=[l,q,P,B,Y]:o==="channelsLast"&&(K=[l,P,B,Y,q]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:p,inWidth:u,inChannels:h,outDepth:P,outHeight:B,outWidth:Y,outChannels:q,padInfo:M,strideDepth:y,strideHeight:w,strideWidth:x,filterDepth:d,filterHeight:m,filterWidth:f,effectiveFilterDepth:E,effectiveFilterHeight:F,effectiveFilterWidth:D,dilationDepth:T,dilationHeight:A,dilationWidth:_,inShape:e,outShape:K,filterShape:t}}function LD(e,t,s,n,i){n==null&&(n=bb(e,t,s));const r=e[0],o=e[1],a=ea((r-t+2*n)/s+1,i);I(De(a),()=>`The output # of rows (${a}) must be an integer. Change the stride and/or zero pad parameters`);const l=ea((o-t+2*n)/s+1,i);return I(De(l),()=>`The output # of columns (${l}) must be an integer. Change the stride and/or zero pad parameters`),[a,l]}function SD(e,t,s,n,i,r){i==null&&(i=bb(e,t,n));const o=e[0],a=e[1],l=e[2],c=ea((o-t+2*i)/n+1,r);I(De(c),()=>`The output # of depths (${c}) must be an integer. Change the stride and/or zero pad parameters`);const p=ea((a-t+2*i)/n+1,r);I(De(p),()=>`The output # of rows (${p}) must be an integer. Change the stride and/or zero pad parameters`);const u=ea((l-t+2*i)/n+1,r);return I(De(u),()=>`The output # of columns (${u}) must be an integer. Change the stride and/or zero pad parameters`),[c,p,u,s]}function bb(e,t,s,n=1){const i=dl(t,n);return Math.floor((e[0]*(s-1)-s+i)/2)}function qh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function yb(e){return typeof e=="number"?[e,e,e]:e}function dl(e,t){return t<=1?e:e+(e-1)*(t-1)}function wD(e,t,s,n,i,r,o,a,l){let c,p,u;if(typeof e=="number"){const h=e===0?"VALID":"NUMBER";c={top:e,bottom:e,left:e,right:e,type:h};const d=LD([t,s],r,n,e,a);p=d[0],u=d[1]}else if(e==="same"){p=Math.ceil(t/n),u=Math.ceil(s/i);const h=Math.max(0,(p-1)*n+r-t),d=Math.max(0,(u-1)*i+o-s),m=Math.floor(h/2),f=h-m,g=Math.floor(d/2),y=d-g;c={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-r+1)/n),u=Math.ceil((s-o+1)/i);else if(typeof e=="object"){const h=l==="channelsLast"?e[1][0]:e[2][0],d=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1],g=h===0&&d===0&&m===0&&f===0?"VALID":"EXPLICIT";c={top:h,bottom:d,left:m,right:f,type:g},p=ea((t-r+h+d)/n+1,a),u=ea((s-o+m+f)/i+1,a)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:p,outWidth:u}}function xD(e,t,s,n,i,r,o,a,l,c,p){let u,h,d,m;if(typeof e=="number"){const f=e===0?"VALID":"NUMBER";u={top:e,bottom:e,left:e,right:e,front:e,back:e,type:f};const g=SD([t,s,n,1],a,1,i,e,p);h=g[0],d=g[1],m=g[2]}else if(e==="same"){h=Math.ceil(t/i),d=Math.ceil(s/r),m=Math.ceil(n/o);const f=(h-1)*i+a-t,g=(d-1)*r+l-s,y=(m-1)*o+c-n,w=Math.floor(f/2),x=f-w,T=Math.floor(g/2),A=g-T,_=Math.floor(y/2),E=y-_;u={top:T,bottom:A,left:_,right:E,front:w,back:x,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},h=Math.ceil((t-a+1)/i),d=Math.ceil((s-l+1)/r),m=Math.ceil((n-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outDepth:h,outHeight:d,outWidth:m}}function ea(e,t){if(!t)return e;switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ks(e){const[t,s,n]=qh(e);return t===1&&s===1&&n===1}function tt(e,t){return Ks(e)||Ks(t)}function qr(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function ID(e,t,s,n,i){const r=b(e,"x","avgPool","float32"),o=1;I(tt(s,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let a=r,l=!1;r.rank===3&&(l=!0,a=O(r,[1,r.shape[0],r.shape[1],r.shape[2]])),I(a.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${a.rank}.`),i!=null&&I(De(n),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${i} but got pad ${n}.`);const c=(d,m)=>{const f=Wn(a.shape,t,s,1,n,i);return m([a]),f.filterWidth===1&&f.filterHeight===1&&Nt(f.inShape,f.outShape)?a.clone():d.avgPool(a,f)},p={x:a},u={filterSize:t,strides:s,pad:n,dimRoundingMode:i};let h=v.runKernelFunc(c,p,null,Ti,u);return h=G(h,r.dtype),l?O(h,[h.shape[1],h.shape[2],h.shape[3]]):h}const ds=S({avgPool_:ID});function vD(e,t,s,n,i,r="NDHWC",o){o==null?o=[1,1,1]:It("dilations is deprecated, this field will be gone in v3.0.0.");const a=b(e,"x","avgPool3d","float32");let l=a,c=!1;a.rank===4&&(c=!0,l=O(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),I(l.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${l.rank}.`),I(r==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${r}`),I(tt(s,o),()=>`Error in avgPool3d: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`),i!=null&&I(De(n),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${n}.`);const p=(m,f)=>{o==null&&(o=[1,1,1]);const g=Fi(l.shape,t,s,o,n,i,r);return f([l]),m.avgPool3d(l,g)},u={x:l},h={filterSize:t,strides:s,pad:n,dimRoundingMode:i,dataFormat:r,dilations:o};let d=v.runKernelFunc(p,u,null,Wc,h);return d=G(d,l.dtype),c?O(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}const ml=S({avgPool3d_:vD});function wb(e,t){const s=e[0].length;e.forEach((i,r)=>{I(i.length===s,()=>`Error in concat${s}D: rank of tensors[${r}] must be the same as the rank of the rest (${s})`)}),I(t>=0&&t<s,()=>`Error in concat${s}D: axis must be between 0 and ${s-1}.`);const n=e[0];e.forEach((i,r)=>{for(let o=0;o<s;o++)I(o===t||i[o]===n[o],()=>`Error in concat${s}D: Shape of tensors[${r}] (${i}) does not match the shape of the rest (${n}) along the non-concatenated axis ${r}.`)})}function xb(e,t){const s=e[0].slice();for(let n=1;n<e.length;n++)s[t]+=e[n][t];return s}function TD(e,t=0){I(e.length>=1,()=>"Pass at least one tensor to concat");let s=Di(e,"tensors","concat");s[0].dtype==="complex64"&&s.forEach(o=>{if(o.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${o.dtype}. `)});const n=(o,a)=>{const l=Ne(t,s[0].shape)[0],c=xb(s.map(h=>h.shape),l);if(We(c)===0)return ze([],c);if(s=s.filter(h=>h.size>0),s.length===1)return s[0];const p=s.map(h=>h.shape);wb(p,l);const u=o.concat(s,l);return a(s),u},i=s,r={axis:t};return v.runKernelFunc(n,i,null,Fo,r)}const be=S({concat_:TD});function AD(e){const t=b(e,"x","sigmoid"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.sigmoid(t);return i([r]),r},s,null,Wr)}const os=S({sigmoid_:AD});function ND(e,t,s){const n=b(e,"x","slice");if(n.rank===0)throw new Error("Slicing scalar is not possible");const i=(a,l)=>{const[c,p]=jp(n,t,s);return ob(n,c,p),l([n]),a.slice(n,c,p)},r={x:n},o={begin:t,size:s};return v.runKernelFunc(i,r,null,jo,o)}const he=S({slice_:ND});function CD(e){const t=b(e,"x","tanh"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.tanh(t);return i([r]),r},s,null,jr)}const Mi=S({tanh_:CD});function RD(e,t,s,n,i,r){const o=b(e,"forgetBias","basicLSTMCell"),a=b(t,"lstmKernel","basicLSTMCell"),l=b(s,"lstmBias","basicLSTMCell"),c=b(n,"data","basicLSTMCell"),p=b(i,"c","basicLSTMCell"),u=b(r,"h","basicLSTMCell"),h=be([c,u],1),d=Te(h,a),m=$(d,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],w=he(m,[0,0],y),x=he(m,[0,g],y),T=he(m,[0,g*2],y),A=he(m,[0,g*3],y),_=$(R(os(w),Mi(x)),R(p,os($(o,T)))),E=R(Mi(_),os(A));return[_,E]}const dI=S({basicLSTMCell_:RD});function OD(e,t,s){const n=b(e,"x","batchToSpaceND"),i=t.reduce((l,c)=>l*c);I(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),I(s.length===t.length,()=>`crops.length is ${s.length} but should be equal to blockShape.length ${t.length}`),I(n.shape[0]%i===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${i}`);const r=l=>l.batchToSpaceND(n,t,s),o={x:n},a={blockShape:t,crops:s};return v.runKernelFunc(r,o,null,Pc,a)}const Yr=S({batchToSpaceND_:OD});function mI(e){let t;return e.rank===0||e.rank===1?t=O(e,[1,1,1,e.size]):e.rank===2?t=O(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=O(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function ED(e,t,s,n,i,r){r==null&&(r=.001);const o=b(e,"x","batchNorm"),a=b(t,"mean","batchNorm"),l=b(s,"variance","batchNorm");let c;i!=null&&(c=b(i,"scale","batchNorm"));let p;n!=null&&(p=b(n,"offset","batchNorm")),I(a.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I(p==null||a.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I(c==null||a.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");const u=mI(o),h=(g,y)=>(y([u,a,l,c]),g.batchNorm(u,Hh(a),Hh(l),Hh(p),Hh(c),r)),d={x:u,scale:c,offset:p,mean:a,variance:l},m={varianceEpsilon:r},f=v.runKernelFunc(h,d,null,Ni,m);return O(f,o.shape)}function Hh(e){return e==null?null:e.rank===0?O(e,[e.size]):e.rank===1?e:e.rank===2?O(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?O(e,[1,e.shape[0],e.shape[1],e.shape[2]]):e}const Xs=S({batchNorm_:ED});function _D(e,t,s,n,i,r){const o=b(e,"x","batchNorm"),a=b(t,"mean","batchNorm"),l=b(s,"variance","batchNorm");let c;i!=null&&(c=b(i,"scale","batchNorm"));let p;return n!=null&&(p=b(n,"offset","batchNorm")),I(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),I(a.rank===2||a.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${a.rank}.`),I(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&I(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),p!=null&&I(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),Xs(o,a,l,p,c,r)}const Yh=S({batchNorm2d_:_D});function kD(e,t,s,n,i,r){const o=b(e,"x","batchNorm"),a=b(t,"mean","batchNorm"),l=b(s,"variance","batchNorm");let c;i!=null&&(c=b(i,"scale","batchNorm"));let p;return n!=null&&(p=b(n,"offset","batchNorm")),I(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),I(a.rank===3||a.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${a.rank}.`),I(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&I(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),p!=null&&I(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),Xs(o,a,l,p,c,r)}const Kh=S({batchNorm3d_:kD});function DD(e,t,s,n,i,r){const o=b(e,"x","batchNorm"),a=b(t,"mean","batchNorm"),l=b(s,"variance","batchNorm");let c;i!=null&&(c=b(i,"scale","batchNorm"));let p;return n!=null&&(p=b(n,"offset","batchNorm")),I(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),I(a.rank===4||a.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${a.rank}.`),I(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&I(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),p!=null&&I(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),Xs(o,a,l,p,c,r)}const Xh=S({batchNorm4d_:DD});function FD(e,t){let s=b(e,"broadcastTo","x");const n=s.shape;if(t.some(p=>!(p>0)||p%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<s.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${s.rank}.`);if(t.length>s.rank){const p=s.shape.slice();for(;p.length<t.length;)p.unshift(1);s=O(s,p)}const i=s.shape,r=Array.from(t);for(let p=t.length-1;p>=0;p--)if(i[p]===t[p])r[p]=1;else if(s.shape[p]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);const o=r.map((p,u)=>p>1?u:-1).filter(p=>p>=0);if(o.length===0)return Fs(s);const a=p=>p.tile(s,r),l={x:s},c={shape:t,inputShape:i};return v.runKernelFunc(a,l,null,Bc,c)}const ta=S({broadcastTo_:FD});function MD(e){const t=b(e,"x","ceil"),s={x:t};return v.runKernelFunc(n=>n.ceil(t),s,null,wr)}const Jh=S({ceil_:MD});function UD(e,t,s){const n=b(e,"x","clipByValue");I(t<=s,()=>`Error in clip: min (${t}) must be less than or equal to max (${s}).`);const i={x:n},r={clipValueMin:t,clipValueMax:s};return v.runKernelFunc((o,a)=>{const l=o.clip(n,t,s);return a([n]),l},i,null,xr,r)}const xt=S({clipByValue_:UD});function $D(e){return be(e,0)}const Zh=S({concat1d_:$D});function WD(e,t){return be(e,t)}const Qh=S({concat2d_:WD});function zD(e,t){return be(e,t)}const ed=S({concat3d_:zD});function PD(e,t){return be(e,t)}const td=S({concat4d_:PD});function BD(e,t,s,n,i="NHWC",r=[1,1],o){const a=b(e,"x","conv2d"),l=b(t,"filter","conv2d");let c=a,p=!1;a.rank===3&&(p=!0,c=O(a,[1,a.shape[0],a.shape[1],a.shape[2]])),I(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),I(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&I(De(n),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);const u=i==="NHWC"?c.shape[3]:c.shape[1];I(u===l.shape[2],()=>`Error in conv2d: depth of input (${u}) must match input depth for filter ${l.shape[2]}.`),I(tt(s,r),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);const h=(g,y)=>{const w=qr(i),x=rs(c.shape,l.shape,s,r,n,o,!1,w),T=g.conv2d(c,l,x);return y([c,l]),T},d={x:c,filter:l},m={strides:s,pad:n,dataFormat:i,dilations:r,dimRoundingMode:o},f=v.runKernelFunc(h,d,null,Vc,m);return p?O(f,[f.shape[1],f.shape[2],f.shape[3]]):f}const rt=S({conv2d_:BD});function jD(e,t,s,n,i="NWC",r=1,o){const a=b(e,"x","conv1d"),l=b(t,"filter","conv1d");let c=a,p=!1;a.rank===2&&(p=!0,c=O(a,[1,a.shape[0],a.shape[1]])),I(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),I(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&I(De(n),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`),I(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),I(tt(s,r),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${s} and dilation '${r}'`),I(i==="NWC",()=>`Error in conv1d: got dataFormat of ${i} but only NWC is currently supported.`);const u=O(l,[1,l.shape[0],l.shape[1],l.shape[2]]),h=O(c,[c.shape[0],1,c.shape[1],c.shape[2]]),d=[1,s],m=[1,r],f="NHWC",g=rt(h,u,d,n,f,m,o);return p?O(g,[g.shape[2],g.shape[3]]):O(g,[g.shape[0],g.shape[2],g.shape[3]])}const fl=S({conv1d_:jD});function VD(e,t,s,n,i,r="NHWC",o){I(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,l=t,c=!1;t.rank===3&&(c=!0,l=O(t,[1,t.shape[0],t.shape[1],t.shape[2]]),a=[1,e[0],e[1],e[2]]),I(a.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${a.length}.`),I(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),I(s.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${s.rank}`);const p=r==="NHWC"?a[3]:a[1],u=r==="NHWC"?l.shape[3]:l.shape[1];I(p===s.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${s.shape[2]}.`),I(u===s.shape[3],()=>`Error in conv2dDerInput: depth of output (${u}) must match output depth for filter ${s.shape[3]}.`),o!=null&&I(De(i),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${i}.`);const h=(g,y)=>{const w=1,x=qr(r),T=rs(a,s.shape,n,w,i,o,!1,x),A=g.conv2dDerInput(l,s,T);return y([l,s]),A},d={dy:l,filter:s},m={strides:n,pad:i,dataFormat:r,dimRoundingMode:o,inputShape:a},f=v.runKernelFunc(h,d,null,Gc,m);return c?O(f,[f.shape[1],f.shape[2],f.shape[3]]):f}const gl=S({conv2DBackpropInput_:VD});function GD(e,t,s,n,i,r){const o=b(e,"x","conv2dTranspose"),a=b(t,"filter","conv2dTranspose");return gl(s,o,a,n,i,"NHWC",r)}const yl=S({conv2dTranspose_:GD});function qD(e,t,s,n,i="NDHWC",r=[1,1,1]){const o=b(e,"x","conv3d"),a=b(t,"filter","conv3d");let l=o,c=!1;o.rank===4&&(c=!0,l=O(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),I(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),I(a.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${a.rank}.`),I(l.shape[4]===a.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${a.shape[3]}.`),I(tt(s,r),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`),I(i==="NDHWC",()=>`Error in conv3d: got dataFormat of ${i} but only NDHWC is currently supported.`);const p=(m,f)=>{const g=Hr(l.shape,a.shape,s,r,n),y=m.conv3d(l,a,g);return f([l,a]),y},u={x:l,filter:a},h={strides:s,pad:n,dataFormat:i,dilations:r},d=v.runKernelFunc(p,u,null,qc,h);return c?O(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}const bl=S({conv3d_:qD});function HD(e,t,s,n,i){I(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let r=e,o=t,a=!1;t.rank===4&&(a=!0,o=O(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),r=[1,e[0],e[1],e[2],e[3]]);const l=r[4],c=o.shape[4];I(r.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${r.length}.`),I(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),I(s.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${s.rank}`),I(l===s.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${s.shape[3]}.`),I(c===s.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${s.shape[4]}.`);const p=m=>{const f=1,g=Hr(r,s.shape,n,f,i);return m.conv3dDerInput(o,s,g)},u={dy:o},h={pad:i},d=v.runKernelFunc(p,u,null,oy,h);return a?O(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}const sd=S({conv3DBackpropInput_:HD});function YD(e,t,s,n,i){const r=b(e,"x","conv3dTranspose"),o=b(t,"filter","conv3dTranspose");return sd(s,r,o,n,i)}const fI=S({conv3dTranspose_:YD});function KD(e){const t=b(e,"x","cos"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.cos(t);return i([t]),r},s,null,Qn)}const Kr=S({cos_:KD});function XD(e){const t=b(e,"x","cosh"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.cosh(t);return i([t]),r},s,null,Lr)}const wl=S({cosh_:XD});function JD(e,t=0,s=!1,n=!1){const i=b(e,"x","cumsum"),r=(l,c)=>{const p=dt([t],i.rank);let u=i;p!=null&&(u=se(i,p));const h=qt(1,i.rank)[0];let d=l.cumsum(u,h,s,n);if(c([i]),p!=null){const m=Jo(p);d=se(d,m)}return d},o={x:i},a={axis:t,exclusive:s,reverse:n};return v.runKernelFunc(r,o,null,Hc,a)}const xl=S({cumsum_:JD});function ZD(e,t,s="NHWC"){const n=b(e,"x","depthToSpace"),i=s==="NHWC"?n.shape[1]:n.shape[2],r=s==="NHWC"?n.shape[2]:n.shape[3],o=s==="NHWC"?n.shape[3]:n.shape[1];I(i*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${i} and ${t} for depthToSpace with input shape
${n.shape}`),I(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${n.shape}`),I(o%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${n.shape}`);const a=p=>p.depthToSpace(n,t,s),l={x:n},c={blockSize:t,dataFormat:s};return v.runKernelFunc(a,l,null,ly,c)}const nd=S({depthToSpace_:ZD});function QD(e,t,s,n,i="NHWC",r=[1,1],o){const a=b(e,"x","depthwiseConv2d"),l=b(t,"filter","depthwiseConv2d");let c=a,p=!1;a.rank===3&&(p=!0,c=O(a,[1,a.shape[0],a.shape[1],a.shape[2]])),I(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),I(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),I(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&I(De(n),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);const u=(f,g)=>{r==null&&(r=[1,1]),I(tt(s,r),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);const y=rs(c.shape,l.shape,s,r,n,o,!0),w=f.depthwiseConv2D(c,l,y);return g([c,l]),w},h={x:c,filter:l},d={strides:s,pad:n,dataFormat:i,dilations:r,dimRoundingMode:o},m=v.runKernelFunc(u,h,null,Yc,d);return p?O(m,[m.shape[1],m.shape[2],m.shape[3]]):m}const fn=S({depthwiseConv2d_:QD});function eF(e){const t=b(e,"x","diag"),s=i=>{const r=O(t,[t.size]),o=i.diag(r),a=[...e.shape,...e.shape];return O(o,a)},n={x:t};return v.runKernelFunc(s,n,null,uy)}const gI=S({diag_:eF});function tF(e,t,s,n,i=[1,1],r="NHWC"){const o=b(e,"x","dilation2d"),a=b(t,"filter","dilation2d");I(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),I(a.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${a.rank}.`),I(r==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${r}`);let l=o,c=!1;o.rank===3&&(l=O(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);const p={x:l,filter:a},u={strides:s,pad:n,dilations:i},h=v.runKernel(Mo,p,u);return c?O(h,[h.shape[1],h.shape[2],h.shape[3]]):h}const id=S({dilation2d_:tF});function sF(e,t){const s=e.length,n=[];for(let i=0;i<s;i++){const r=s-1-i,o=e[r]||1,a=t[t.length-1-i]||1;a>1&&o===1&&n.unshift(r)}return n}function Ke(e,t){const s=[];for(let n=0;n<t.length;n++){const i=e[e.length-n-1],r=t.length-n-1,o=t[r];(i==null||i===1&&o>1)&&s.unshift(r)}return s}function Ie(e,t){const s=[],n=Math.max(e.length,t.length);for(let i=0;i<n;i++){let r=e[e.length-i-1];r==null&&(r=1);let o=t[t.length-i-1];if(o==null&&(o=1),r===1)s.unshift(o);else if(o===1)s.unshift(r);else if(r!==o){const a=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(a)}else s.unshift(r)}return s}function nF(e,t){let s=b(e,"a","equal"),n=b(t,"b","equal");[s,n]=Ce(s,n),Ie(s.shape,n.shape);const i=o=>o.equal(s,n),r={a:s,b:n};return v.runKernelFunc(i,r,null,dy)}const as=S({equal_:nF});function iF(e,t,s){const n=b(t,"a","where"),i=b(s,"b","where"),r=b(e,"condition","where","bool"),o=Ie(n.shape,i.shape),a=ta(n,o),l=ta(i,o);r.rank===1&&I(r.shape[0]===n.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),r.rank!==1&&Se(r.shape,l.shape,"Error in where: ");const c=(u,h)=>{const d=u.select(r,a,l);return h([r]),d},p={condition:r,t:a,e:l};return v.runKernelFunc(c,p,null,xp)}const mt=S({where_:iF});function rF(e){const t=b(e,"x","zerosLike"),s={x:t};return v.runKernelFunc(n=>n.zerosLike(t),s,null,Np)}const re=S({zerosLike_:rF});function oF(e,t){let s=b(e,"a","div"),n=b(t,"b","div");[s,n]=Ce(s,n);const i=Z(s,n),r=re(i),o=as(n,r);return mt(o,r,i)}const rd=S({divNoNan_:oF});function aF(e,t){const s=b(e,"t1","dot"),n=b(t,"t2","dot");I((s.rank===1||s.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${s.rank} and ${n.rank}.`);const i=s.rank===1?s.size:s.shape[1],r=n.rank===1?n.size:n.shape[0];if(I(i===r,()=>`Error in dot: inner dimensions of inputs must match, but got ${i} and ${r}.`),s.rank===1&&n.rank===1){const o=O(s,[1,-1]),a=O(n,[-1,1]),l=Te(o,a);return O(l,[])}else if(s.rank===1&&n.rank===2){const o=O(s,[1,-1]),a=O(n,[n.shape[0],n.shape[1]]),l=Te(o,a);return O(l,[l.size])}else if(s.rank===2&&n.rank===1){const o=O(n,[-1,1]),a=Te(s,o);return O(a,[a.size])}else{const o=O(n,[n.shape[0],n.shape[1]]),a=Te(s,o);return a}}const yI=S({dot_:aF});function lF(e){const t=b(e,"x","elu"),s=(i,r)=>{const o=i.elu(t);return r([o]),o},n={x:t};return v.runKernelFunc(s,n,null,Sr)}const gn=S({elu_:lF});function cF(e){let t=b(e,"x","erf");I(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=G(t,"float32"));const s={x:t};return v.runKernelFunc((n,i)=>{const r=n.erf(t);return i([t]),r},s,null,Ir)}const od=S({erf_:cF});function pF(e){const t=b(e,"x","exp"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.exp(t);return i([r]),r},s,null,vr)}const ut=S({exp_:pF});function uF(e,t=0){const s=null,n=b(e,"x","expandDims",s);I(t<=n.rank,()=>"Axis must be <= rank of the tensor");const i=n.shape.slice();return t<0&&(I(-(n.rank+1)<=t,()=>`Axis must be in the interval [${-(n.rank+1)}, ${n.rank}]`),t=n.rank+t+1),i.splice(t,0,1),O(n,i)}const Mt=S({expandDims_:uF});function hF(e){const t=b(e,"x","expm1"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.expm1(t);return i([t]),r},s,null,Tr)}const ad=S({expm1_:hF});function dF(e,t){const s=null,n=b(e,"x","tile",s);I(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);const i=(l,c)=>{const p=l.tile(n,t);return c([n]),p},r=[n],o={x:n},a={reps:t};return v.runKernelFunc(i,o,null,vp,a,r)}const $s=S({tile_:dF});function mF(e,t,s,n="float32"){t==null&&(t=e);const i=ge([e,t],n),r=e<=t?e:t;for(let a=0;a<r;++a)i.set(1,a,a);const o=O(i.toTensor(),[e,t]);if(s==null)return o;if(s.length===1)return $s(Mt(o,0),[s[0],1,1]);if(s.length===2)return $s(Mt(Mt(o,0),0),[s[0],s[1],1,1]);if(s.length===3)return $s(Mt(Mt(Mt(o,0),0),0),[s[0],s[1],s[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${s.length}D.`)}const sa=S({eye_:mF});function Wt(e,t,s){const n={shape:e,value:t,dtype:s};return v.runKernelFunc(i=>i.fill(e,t,s),{},null,my,n)}function fF(e){const t=b(e,"x","floor"),s={x:t};return v.runKernelFunc(n=>n.floor(t),s,null,Ar)}const ui=S({floor_:fF});const ld=30;function gF(e){return e<=ld?e:sl(e,Math.floor(Math.sqrt(e)))}const bI={};Ee(bI,{collectGatherOpShapeInfo:()=>Lb,computeOutShape:()=>bF,segOpComputeOptimalWindowSize:()=>yF});function yF(e,t){let s=!1,n;for(e<=ld?(n=e,s=!0):n=sl(e,Math.floor(Math.sqrt(e)));!s;)n>t||n===e?s=!0:n=sl(e,n+1);return n}function bF(e,t,s){const n=[],i=e.length;for(let r=0;r<i;r++)r!==t?n.push(e[r]):n.push(s);return n}function Lb(e,t,s){const n=e.shape[s],i=[];let r=1,o=1;for(let a=0;a<s;a++)i.push(e.shape[a]),r*=e.shape[a];for(let a=0;a<t.rank;a++)i.push(t.shape[a]);for(let a=s+1;a<e.rank;a++)i.push(e.shape[a]),o*=e.shape[a];return{batchSize:r,sliceSize:o,dimSize:n,outputShape:i}}function wF(e,t,s=0){const n=b(e,"x","gather"),i=b(t,"indices","gather","int32"),r={x:n,indices:i},o={axis:s},a=(l,c)=>{const p=Ne(s,n.shape)[0],u=Lb(n,i,p),h=l.gather(n,O(i,[i.size]),p);return c([n,i]),O(h,u.outputShape)};return v.runKernelFunc(a,r,null,Jc,o)}const hi=S({gather_:wF});function xF(e,t){let s=b(e,"a","greater"),n=b(t,"b","greater");[s,n]=Ce(s,n),Ie(s.shape,n.shape);const i=o=>o.greater(s,n),r={a:s,b:n};return v.runKernelFunc(i,r,null,gy)}const Ut=S({greater_:xF});function LF(e,t){let s=b(e,"a","greaterEqual"),n=b(t,"b","greaterEqual");[s,n]=Ce(s,n),Ie(s.shape,n.shape);const i=(o,a)=>{const l=o.greaterEqual(s,n);return a([s,n]),l},r={a:s,b:n};return v.runKernelFunc(i,r,null,Zc)}const ms=S({greaterEqual_:LF});function SF(e){const t=b(e,"input","imag"),s=i=>i.imag(t),n={input:t};return v.runKernelFunc(s,n,null,ep)}const yn=S({imag_:SF});function IF(e){const t=b(e,"x","isFinite"),s={x:t};return v.runKernelFunc(n=>n.isFinite(t),s,null,Nr)}const wI=S({isFinite_:IF});function vF(e){const t=b(e,"x","isInf"),s={x:t};return v.runKernelFunc(n=>n.isInf(t),s,null,Cr)}const xI=S({isInf_:vF});function TF(e){const t=b(e,"x","isNaN"),s={x:t};return v.runKernelFunc(n=>n.isNaN(t),s,null,Rr)}const LI=S({isNaN_:TF});function AF(e,t){let s=b(e,"a","maximum"),n=b(t,"b","maximum");[s,n]=Ce(s,n),s.dtype==="bool"&&(s=G(s,"int32"),n=G(n,"int32")),Ie(s.shape,n.shape);const i=(o,a)=>{const l=o.maximum(s,n);return a([s,n]),l},r={a:s,b:n};return v.runKernelFunc(i,r,null,np)}const Ht=S({maximum_:AF});function j(e,t){if((Dt(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Dt(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");const s=[],n=[];return hs(e,s,n,t)}function NF(e,t=.2){const s=b(e,"x","leakyRelu");return Ht(R(j(t),s),s)}const Ll=S({leakyRelu_:NF});function CF(e,t){let s=b(e,"a","less"),n=b(t,"b","less");[s,n]=Ce(s,n),Ie(s.shape,n.shape);const i=o=>o.less(s,n),r={a:s,b:n};return v.runKernelFunc(i,r,null,yy)}const Xr=S({less_:CF});function RF(e,t){let s=b(e,"a","lessEqual"),n=b(t,"b","lessEqual");[s,n]=Ce(s,n),Ie(s.shape,n.shape);const i=(o,a)=>{const l=o.lessEqual(s,n);return a([s,n]),l},r={a:s,b:n};return v.runKernelFunc(i,r,null,by)}const Ws=S({lessEqual_:RF});function cd(e,t,s){if(s<=0)throw new Error("The number of values should be positive.");const n={start:e,stop:t,num:s};return v.runKernelFunc(i=>i.linspace(e,t,s),{},null,wy,n)}function OF(e,t=5,s=1,n=1,i=.5){const r=b(e,"x","localResponseNormalization");I(r.rank===4||r.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${r.rank}.`),I(De(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=r,a=!1;r.rank===3&&(a=!0,o=O(r,[1,r.shape[0],r.shape[1],r.shape[2]]));const l=(h,d)=>{const m=h.localResponseNormalization4D(o,t,s,n,i);return d([o,m]),m},c={x:o},p={depthRadius:t,bias:s,alpha:n,beta:i},u=v.runKernelFunc(l,c,null,sp,p);return a?O(u,[u.shape[1],u.shape[2],u.shape[3]]):u}const pd=S({localResponseNormalization_:OF});function EF(e){const t=b(e,"x","log"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.log(t);return i([t]),r},s,null,Or)}const zt=S({log_:EF});function _F(e){const t=b(e,"x","log1p"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.log1p(t);return i([t]),r},s,null,Er)}const Sl=S({log1p_:_F});function kF(e){return I(ri(e),()=>"The f passed in grad(f) must be a function"),(t,s)=>{const n=b(t,"x","tf.grad",null),i=s!=null?b(s,"dy","tf.grad"):null;return v.tidy(()=>{const{value:r,grads:o}=v.gradients(()=>e(n),[n],i);return i!=null&&Se(r.shape,i.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),ud(o),o[0]})}}function DF(e){return I(ri(e),()=>"The f passed in grads(f) must be a function"),(t,s)=>{I(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");const n=Di(t,"args","tf.grads",null),i=s!=null?b(s,"dy","tf.grads"):null;return v.tidy(()=>{const{value:r,grads:o}=v.gradients(()=>e(...n),n,i);return i!=null&&Se(r.shape,i.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ud(o),o})}}function FF(e){return I(ri(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,s)=>{I(t instanceof me,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),I(s==null||s instanceof me,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");const{grads:n,value:i}=v.gradients(()=>e(t),[t],s);return ud(n),{grad:n[0],value:i}}}function MF(e){return I(ri(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,s)=>{I(Array.isArray(t)&&t.every(i=>i instanceof me),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),I(s==null||s instanceof me,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");const n=v.gradients(()=>e(...t),t,s);return s!=null&&Se(n.value.shape,s.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ud(n.grads),n}}function hd(e,t){I(ri(e),()=>"The f passed in variableGrads(f) must be a function"),I(t==null||Array.isArray(t)&&t.every(c=>c instanceof ci),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");const s=t!=null;if(!s){t=[];for(const c in v.registeredVariables)t.push(v.registeredVariables[c])}const n=s?t.filter(c=>!c.trainable):null,i=t.length;t=t.filter(c=>c.trainable),I(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${i} variables is trainable.`);const r=!0,{value:o,grads:a}=v.gradients(e,t,null,r);I(a.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),I(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);const l={};return t.forEach((c,p)=>{a[p]!=null&&(l[c.name]=a[p])}),n!=null&&n.forEach(c=>l[c.name]=null),{value:o,grads:l}}function fs(e){return v.customGrad(e)}function ud(e){const t=e.filter(s=>s==null).length;if(t>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function UF(e){const t=b(e,"x","neg"),s={x:t};return v.runKernelFunc(n=>n.neg(t),s,null,lp)}const ke=S({neg_:UF});function $F(e){const t=b(e,"x","softplus"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.softplus(t);return i([t]),r},s,null,zr)}const di=S({softplus_:$F});function WF(e){const t=b(e,"x","logSigmoid"),s=fs(n=>{const i=ke(di(ke(n))),r=o=>{const a=R(o,os(ke(n)));return a};return{value:i,gradFunc:r}});return s(t)}const SI=S({logSigmoid_:WF});function zF(e,t=null,s=!1){const n=b(e,"x","max"),i=(a,l)=>{const c=Ne(t,n.shape);let p=c;const u=dt(p,n.rank);let h=n;u!=null&&(h=se(n,u),p=qt(p.length,h.rank));const d=a.max(h,p);u!=null&&h.dispose();let m=d;if(s){const f=wt(m.shape,Ne(t,n.shape));m=O(m,f),d.dispose()}return l([n,m]),m},r={x:n},o={reductionIndices:t,keepDims:s};return v.runKernelFunc(i,r,null,Ri,o)}const Lt=S({max_:zF});function PF(e,t){let s=b(e,"a","sub"),n=b(t,"b","sub");[s,n]=Ce(s,n);const i=(o,a)=>{const l=o.subtract(s,n);return a([s,n]),l},r={a:s,b:n};return v.runKernelFunc(i,r,null,Br)}const X=S({sub_:PF});function BF(e,t=null,s=!1){let n=b(e,"x","sum");n.dtype==="bool"&&(n=G(n,"int32"));const i=(a,l)=>{l([n]);const c=Ne(t,n.shape),p=dt(c,n.rank);let u=c,h=n;p!=null&&(h=se(n,p),u=qt(u.length,n.rank));let d=a.sum(h,u);if(s){const m=wt(d.shape,c);d=O(d,m)}return d},r={x:n},o={axis:t,keepDims:s};return v.runKernelFunc(i,r,null,Lp,o)}const te=S({sum_:BF});function jF(e,t=-1){const s=b(e,"logits","logSoftmax");if(t===-1&&(t=s.rank-1),t!==s.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${s.rank} and axis was ${t}`);const n=(o,a)=>{const l=!0,c=Lt(e,t,!0),p=X(e,c),u=X(G(p,"float32"),zt(te(ut(p),t,l)));return a([u]),u},i={logits:s},r={axis:t};return v.runKernelFunc(n,i,null,tp,r)}const Il=S({logSoftmax_:jF});function VF(e,t=null,s=!1){const n=b(e,"x","logSumExp"),i=Ne(t,n.shape),r=Lt(n,i,!0),o=X(n,r),a=ut(o),l=te(a,i),c=zt(l),p=$(O(r,c.shape),c);if(s){const u=wt(p.shape,i);return O(p,u)}return p}const dd=S({logSumExp_:VF});function GF(e,t){const s=b(e,"a","logicalAnd","bool"),n=b(t,"b","logicalAnd","bool");Ie(s.shape,n.shape);const i={a:s,b:n};return v.runKernelFunc(r=>r.logicalAnd(s,n),i,null,xy)}const Yt=S({logicalAnd_:GF});function qF(e){const t=b(e,"x","logicalNot","bool"),s={x:t};return v.runKernelFunc(n=>n.logicalNot(t),s,null,Ya)}const Jr=S({logicalNot_:qF});function HF(e,t){const s=b(e,"a","logicalOr","bool"),n=b(t,"b","logicalOr","bool");Ie(s.shape,n.shape);const i={a:s,b:n};return v.runKernelFunc(r=>r.logicalOr(s,n),i,null,Ly)}const vl=S({logicalOr_:HF});function YF(e,t){const s=b(e,"a","logicalXor","bool"),n=b(t,"b","logicalXor","bool");return Ie(s.shape,n.shape),Yt(vl(e,t),Jr(Yt(e,t)))}const II=S({logicalXor_:YF});function KF(e,t,s,n,i){const r=b(e,"x","maxPool"),o=1;let a=r,l=!1;r.rank===3&&(l=!0,a=O(r,[1,r.shape[0],r.shape[1],r.shape[2]])),I(a.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.rank}.`),I(tt(s,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`),i!=null&&I(De(n),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${i} but got pad ${n}.`);const c=(d,m)=>{const f=Wn(a.shape,t,s,1,n,i);let g;return f.filterWidth===1&&f.filterHeight===1&&Nt(f.inShape,f.outShape)?g=a.clone():g=d.maxPool(a,f),m([a,g]),g},p={x:a},u={filterSize:t,strides:s,pad:n,dimRoundingMode:i},h=v.runKernelFunc(c,p,null,Oi,u);return l?O(h,[h.shape[1],h.shape[2],h.shape[3]]):h}const ft=S({maxPool_:KF});function XF(e,t=[1,1,1],s,n,i,r="NDHWC",o){o==null?o=[1,1,1]:It("dilations is deprecated, this field will be gone in v3.0.0.");const a=b(e,"x","maxPool3d");let l=a,c=!1;a.rank===4&&(c=!0,l=O(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),I(l.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${l.rank}.`),I(r==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${r}`),I(tt(s,o),()=>`Error in maxPool3d: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`),i!=null&&I(De(n),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${n}.`);const p=(m,f)=>{o==null&&(o=[1,1,1]);const g=Fi(l.shape,t,s,o,n,i,r),y=m.maxPool3d(l,g);return f([l,y]),y},u={x:l},h={filterSize:t,strides:s,pad:n,dimRoundingMode:i,dataFormat:r,dilations:o},d=v.runKernelFunc(p,u,null,ip,h);return c?O(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}const Tl=S({maxPool3d_:XF});function JF(e,t,s,n,i=!1){const r=b(e,"x","maxPoolWithArgmax"),o={x:r},a={filterSize:t,strides:s,pad:n,includeBatchInIndex:i},l=v.runKernel(Wo,o,a);return{result:l[0],indexes:l[1]}}const md=S({maxPoolWithArgmax_:JF});function ye(e,t="float32"){if(t==="complex64"){const n=ye(e,"float32"),i=ye(e,"float32");return Gt(n,i)}const s=ai(We(e),t);return v.makeTensor(s,e,t)}function Kt(e,t="float32"){if(t==="complex64"){const n=Kt(e,"float32"),i=ye(e,"float32");return Gt(n,i)}const s=Ep(We(e),t);return v.makeTensor(s,e,t)}function ZF(e,t=null,s=!1){const n=b(e,"x","mean"),i=Ne(t,n.shape),r=gb(n.shape,i),o=r[1],a=We(o),l=fs(c=>{const p=j(a),u=p.dtype===c.dtype?c:G(c,p.dtype),h=Z(u,p),d=te(h,t,s),m=f=>{const g=c.shape.slice();i.forEach(x=>{g[x]=1});const y=O(f,g),w=Z(R(y,Kt(c.shape,"float32")),a);return w};return{value:d,gradFunc:m}});return l(n)}const Xe=S({mean_:ZF});function QF(e,t=null,s=!1){const n=b(e,"x","min"),i=(a,l)=>{const c=Ne(t,n.shape);let p=c;const u=dt(p,n.rank);let h=n;u!=null&&(h=se(n,u),p=qt(p.length,n.rank));const d=a.min(h,p);u!=null&&h.dispose();let m=d;if(s){const f=wt(m.shape,c);m=O(d,f),d.dispose()}return l([n,m]),m},r={x:n},o={axis:t,keepDims:s};return v.runKernelFunc(i,r,null,rp,o)}const Ui=S({min_:QF});function eM(e,t){let s=b(e,"a","minimum"),n=b(t,"b","minimum");[s,n]=Ce(s,n),s.dtype==="bool"&&(s=G(s,"int32"),n=G(n,"int32")),Ie(s.shape,n.shape);const i=(o,a)=>{const l=o.minimum(s,n);return a([s,n]),l},r={a:s,b:n};return v.runKernelFunc(i,r,null,op)}const bn=S({minimum_:eM});function tM(e,t){let s=b(e,"a","mod"),n=b(t,"b","mod");[s,n]=Ce(s,n);const i=(o,a)=>{const l=o.mod(s,n);return a([s,n]),l},r={a:s,b:n};return v.runKernelFunc(i,r,null,ap)}const Al=S({mod_:tM});function sM(e){const t=b(e,"x","square"),s={},n=[t],i=[];return v.runKernelFunc((r,o)=>(o([t]),r.square(t)),{x:t},null,"Square",s,n,i)}const xe=S({square_:sM});function nM(e,t=null,s=!1){e=b(e,"x","moments");const n=Ne(t,e.shape),i=Xe(e,n,s);let r=i.shape;s||(r=wt(i.shape,n));const o=xe(X(G(e,"float32"),O(i,r))),a=Xe(o,n,s);return{mean:i,variance:a}}const na=S({moments_:nM});function iM(e,t,s,n){const i=b(t,"data","multiRNNCell"),r=Di(s,"c","multiRNNCell"),o=Di(n,"h","multiRNNCell");let a=i;const l=[];for(let u=0;u<e.length;u++){const h=e[u](a,r[u],o[u]);l.push(h[0]),l.push(h[1]),a=h[1]}const c=[],p=[];for(let u=0;u<l.length;u+=2)c.push(l[u]),p.push(l[u+1]);return[c,p]}const vI=S({multiRNNCell_:iM});function rM(e,t,s,n=!1){const i=b(e,"logits","multinomial"),r=i.size,o=i.rank;if(r<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${r}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);s=s||Math.random();const a=o===1?O(i,[1,-1]):i,l=v.runKernelFunc(c=>c.multinomial(a,n,t,s),{logits2D:a});return o===1?O(l,[l.size]):l}const fd=S({multinomial_:rM});function oM(e,t){let s=b(e,"a","notEqual"),n=b(t,"b","notEqual");[s,n]=Ce(s,n),Ie(s.shape,n.shape);const i=o=>o.notEqual(s,n),r={a:s,b:n};return v.runKernelFunc(i,r,null,Ka)}const Js=S({notEqual_:oM});function aM(e){const t=b(e,"input","real"),s=i=>i.real(t),n={input:t};return v.runKernelFunc(s,n,null,mp)}const Zs=S({real_:aM});function lM(e){const t=b(e,"x","onesLike"),s=(i,r)=>{if(t.dtype==="complex64"){const o=Ot(Zs(t)),a=re(yn(t));return Gt(o,a)}return i.onesLike(t)},n={x:t};return v.runKernelFunc(s,n,null,pp)}const Ot=S({onesLike_:lM});function cM(e,t){const s=b(e,"v1","outerProduct"),n=b(t,"v2","outerProduct");I(s.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${s.rank} and ${n.rank}.`);const i=O(s,[-1,1]),r=O(n,[1,-1]);return Te(i,r)}const TI=S({outerProduct_:cM});function pM(e,t,s=0){const n=b(e,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");const i=(a,l)=>(l([n]),a.pad(n,t,s)),r={paddings:t,constantValue:s},o={x:n};return v.runKernelFunc(i,o,null,Bo,r)}const Pt=S({pad_:pM});function uM(e,t,s=0){return I(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Pt(e,[t],s)}const AI=S({pad1d_:uM});function hM(e,t,s=0){return I(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Pt(e,t,s)}const NI=S({pad2d_:hM});function dM(e,t,s=0){return I(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Pt(e,t,s)}const CI=S({pad3d_:dM});function mM(e,t,s=0){return I(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Pt(e,t,s)}const RI=S({pad4d_:mM});function fM(e,t,s){const n=b(e,"x","spaceToBatchND");I(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),I(s.length===t.length,()=>`paddings.shape[0] ${s.length} must be equal to [blockShape] ${t.length}`),I(n.shape.reduce((a,l,c)=>c>0&&c<=t.length?a&&(l+s[c-1][0]+s[c-1][1])%t[c-1]===0:a,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${s.toString()} must be divisible by blockShapes ${t.toString()}`);const i=a=>a.spaceToBatchND(n,t,s),r={x:n},o={blockShape:t,paddings:s};return v.runKernelFunc(i,r,null,Vo,o)}const Zr=S({spaceToBatchND_:fM});function bM(e,t,s,n,i,r){i==null&&(i=[1,1]),r==null&&(r=1),n===0&&(n="valid");const o=b(e,"x","maxPool");let a=o,l=!1;o.rank===3&&(l=!0,a=O(o,[1,o.shape[0],o.shape[1],o.shape[2]])),I(tt(r,i),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`);const c=Wn(a.shape,t,r,i,n),p=[c.dilationHeight,c.dilationWidth];let u;n==="same"?u=yM([c.filterHeight,c.filterWidth],p):u=[[0,0],[0,0]];const h=p[0]===1&&p[1]===1,[d,m]=gM([c.inHeight,c.inWidth],p,u),f=h?n:"valid",g=h?a:Zr(a,p,d),y=s==="avg"?()=>ds(g,t,r,f):()=>ft(g,t,r,f),w=y(),x=h?w:Yr(w,p,m);return l?O(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function gM(e,t,s){const n=s.map(p=>p[0]),i=s.map(p=>p[1]),r=e.concat(n,i),o=t.map((p,u)=>(p-r[u]%p)%p),a=i.map((p,u)=>p+o[u]),l=t.map((p,u)=>[n[u],a[u]]),c=t.map((p,u)=>[0,o[u]]);return[l,c]}function yM(e,t){const s=e.map((o,a)=>o+(o-1)*(t[a]-1)),n=s.map(o=>o-1),i=n.map(o=>Math.floor(o/2)),r=n.map((o,a)=>o-i[a]);return n.map((o,a)=>[i[a],r[a]])}const OI=S({pool_:bM});function wM(e,t){let s=b(e,"base","pow"),n=b(t,"exp","pow");[s,n]=Ce(s,n);const i={a:s,b:n},r=(o,a)=>{const l=o.pow(s,n);return a([s,n,l]),l};return v.runKernelFunc(r,i,null,hp)}const es=S({pow_:wM});function xM(e,t){const s=b(e,"x","prelu"),n=b(t,"alpha","prelu"),i=(o,a)=>{const l=o.prelu(s,n);return a([s,n]),l},r={x:s,alpha:n};return v.runKernelFunc(i,r,null,dp)}const Qr=S({prelu_:xM});function LM(e,t=null,s=!1){let n=b(e,"x","prod");const i=a=>{n.dtype==="bool"&&(n=G(n,"int32"));const l=Ne(t,n.shape),c=dt(l,n.rank);let p=l,u=n;c!=null&&(u=se(n,c),p=qt(p.length,n.rank));let h=a.prod(u,p);if(s){const d=wt(h.shape,l);h=O(h,d)}return h},r={x:n},o={axis:t,keepDims:s};return v.runKernelFunc(i,r,null,vy,o)}const Nl=S({prod_:LM});function SM(e,t,s){const n=We(e);let i=null;if(s==null||s==="float32")i=new Float32Array(n);else if(s==="int32")i=new Int32Array(n);else if(s==="bool")i=new Uint8Array(n);else throw new Error(`Unknown data type ${s}`);for(let r=0;r<n;r++)i[r]=t();return v.makeTensor(i,e,s)}const EI=S({rand_:SM});const gd=vc(Tc());class Gp{constructor(e,t,s,n,i){this.mean=e,this.stdDev=t,this.dtype=s,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);const r=i||Math.random();this.random=gd.alea(r.toString())}nextValue(){if(!isNaN(this.nextVal)){const n=this.nextVal;return this.nextVal=NaN,n}let e,t,s=!1;for(;!s;){let n,i,r;do n=2*this.random()-1,i=2*this.random()-1,r=n*n+i*i;while(r>=1||r===0);const o=Math.sqrt(-2*Math.log(r)/r);e=this.mean+this.stdDev*n*o,t=this.mean+this.stdDev*i*o,(!this.truncated||this.isValidTruncated(e))&&(s=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}}class _I{constructor(e,t,s,n){this.alpha=e,this.beta=1/t,this.dtype=s;const i=n||Math.random();this.randu=gd.alea(i.toString()),this.randn=new Gp(0,1,s,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,s,n,i,r;for(;;){do n=this.randn.nextValue(),r=1+this.c*n;while(r<=0);if(r*=r*r,e=n*n,t=1-.331*e*e,s=.5*e+this.d*(1-r+Math.log(r)),i=this.randu(),i<t||Math.log(i)<s)break}return r=1/this.beta*this.d*r,this.alpha<1&&(r*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(r)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}}class kI{constructor(e=0,t=1,s,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=s,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=gd.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}}function IM(e,t,s=1,n="float32",i){if(s==null&&(s=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);const r=new _I(t,s,n,i),o=ge(e,n);for(let a=0;a<o.values.length;a++)o.values[a]=r.nextValue();return o.toTensor()}const DI=S({randomGamma_:IM});function vM(e,t=0,s=1,n,i){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);const r=new Gp(t,s,n,!1,i),o=ge(e,n);for(let a=0;a<o.values.length;a++)o.values[a]=r.nextValue();return o.toTensor()}const qp=S({randomNormal_:vM});function TM(e,t=0,s=1,n="float32",i){const r=ge(e,n),o=new kI(t,s,null,i);for(let a=0;a<r.values.length;a++)r.values[a]=o.nextValue();return r.toTensor()}const wn=S({randomUniform_:TM});function Oe(e,t){Ys(e);const s=Qt(e,t);if(s.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");const n=null;return hs(e,n,s,t)}function $i(e,t,s=1,n="float32"){if(s===0)throw new Error("Cannot have a step of zero");const i=()=>{const o=e===t,a=e<t&&s<0,l=t<e&&s>1;if(o||a||l)return ye([0],n);const c=Math.abs(Math.ceil((t-e)/s)),p=ai(c,n);t<e&&s===1&&(s=-1),p[0]=e;for(let u=1;u<p.length;u++)p[u]=p[u-1]+s;return Oe(p,n)},r={start:e,stop:t,step:s,dtype:n};return v.runKernelFunc(i,{},null,Ty,r)}function AM(e){const t=b(e,"x","reciprocal"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.reciprocal(t);return i([t]),r},s,null,kr)}const yd=S({reciprocal_:AM});function NM(e){const t=b(e,"x","relu"),s=(i,r)=>(r([t]),t.dtype==="bool"?G(t,"int32"):i.relu(t)),n={x:t};return v.runKernelFunc(s,n,null,fp)}const Fe=S({relu_:NM});function CM(e){const t=b(e,"x","relu6"),s=(i,r)=>(r([t]),t.dtype==="bool"?G(t,"int32"):i.relu6(t)),n={x:t};return v.runKernelFunc(s,n,null,bp)}const bd=S({relu6_:CM});function RM(e,t){const s=b(e,"x","reverse"),n=o=>{const a=Ne(t,s.shape);if(s.rank===0)return Fs(s);const l=o.reverse(s,a);return O(l,s.shape)},i={x:s},r={dims:t};return v.runKernelFunc(n,i,null,wp,r)}const Et=S({reverse_:RM});function OM(e){const t=b(e,"x","reverse");return I(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Et(t,0)}const FI=S({reverse1d_:OM});function EM(e,t){const s=b(e,"x","reverse");return I(s.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${s.rank}.`),Et(s,t)}const MI=S({reverse2d_:EM});function _M(e,t){const s=b(e,"x","reverse");return I(s.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${s.rank}.`),Et(s,t)}const UI=S({reverse3d_:_M});function kM(e,t){const s=b(e,"x","reverse");return I(s.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${s.rank}.`),Et(s,t)}const $I=S({reverse4d_:kM});function DM(e){const t=b(e,"x","round"),s={x:t};return v.runKernelFunc(n=>n.round(t),s,null,Dr)}const wd=S({round_:DM});function FM(e){const t=b(e,"x","rsqrt"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.rsqrt(t);return i([t]),r},s,null,Fr)}const Cl=S({rsqrt_:FM});function MM(e){const t=b(e,"x","selu"),s=(i,r)=>{const o=i.selu(t);return r([t]),o},n={x:t};return v.runKernelFunc(s,n,null,Mr)}const Rl=S({selu_:MM});function UM(e,t,s,n,i,r=[1,1],o="NHWC"){const a=b(e,"x","separableConv2d"),l=b(t,"depthwiseFilter","separableConv2d"),c=b(s,"pointwiseFilter","separableConv2d");let p=a,u=!1;if(a.rank===3&&(u=!0,p=O(a,[1,a.shape[0],a.shape[1],a.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");I(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),I(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),I(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),I(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),I(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);const h=l.shape[2],d=l.shape[3];I(c.shape[2]===h*d,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${h*d}, but got ${c.shape[2]}.`);const m=fn(p,l,n,i,o,r),f=1,g=rt(m,c,f,"valid",o);return u?O(g,[g.shape[1],g.shape[2],g.shape[3]]):g}const eo=S({separableConv2d_:UM});async function $M(e,t){const s=b(e,"x","setdiff1d"),n=b(t,"y","setdiff1d");I(s.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${s.dtype}) and y (${n.dtype}).`),I(s.rank===1,()=>`x should be 1D tensor, but got x (${s.shape}).`),I(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);const i=await s.data(),r=await n.data(),o=new Set(r);let a=0;for(let p=0;p<i.length;p++)o.has(i[p])||a++;const l=new dn([a],s.dtype),c=new dn([a],"int32");for(let p=0,u=0;p<i.length;p++)o.has(i[p])||(l.values[u]=i[p],c.values[u]=p,u++);return[l.toTensor(),c.toTensor()]}const xd=$M;function WM(e){const t=b(e,"x","sign"),s={x:t};return v.runKernelFunc(n=>n.sign(t),s,null,$r)}const Ld=S({sign_:WM});function zM(e){const t=b(e,"x","sin"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.sin(t);return i([t]),r},s,null,ti)}const Ol=S({sin_:zM});function PM(e){const t=b(e,"x","sinh"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.sinh(t);return i([t]),r},s,null,Ur)}const El=S({sinh_:PM});function BM(e,t,s){const n=b(e,"x","slice1d");return I(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),he(n,[t],[s])}const _l=S({slice1d_:BM});function jM(e,t,s){const n=b(e,"x","slice2d");return I(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),he(n,t,s)}const Hp=S({slice2d_:jM});function VM(e,t,s){const n=b(e,"x","slice3d");return I(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),he(n,t,s)}const to=S({slice3d_:VM});function GM(e,t,s){const n=b(e,"x","slice4d");return I(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),he(n,t,s)}const ia=S({slice4d_:GM});function qM(e,t=-1){const s=b(e,"logits","softmax","float32");if(t===-1&&(t=s.rank-1),t!==s.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${s.rank} and dim was ${t}`);const n={logits:s},i={dim:t};return v.runKernelFunc((r,o)=>{const a=r.softmax(s,t);return o([a]),a},n,null,Ip,i)}const ts=S({softmax_:qM});function HM(e){I(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);const t={input:e};return v.runKernelFunc(s=>{const n=e.shape[e.shape.length-1],i=e.size/n,r=e.as2D(i,n),o=s.fft(r);return o.reshape(e.shape)},t,null,Kc)}const so=S({fft_:HM});function YM(e){I(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);const t={input:e};return v.runKernelFunc(s=>{const n=e.shape[e.shape.length-1],i=e.size/n,r=O(e,[i,n]),o=s.ifft(r);return O(o,e.shape)},t,null,Qc)}const Wi=S({ifft_:YM});function KM(e){const t=e.shape[e.shape.length-1],s=e.size/t;let n;if(t<=2){const i=O(e,[s,t]);n=Wi(i)}else{const i=[s,2*(t-1)],r=O(Zs(e),[s,t]),o=O(yn(e),[s,t]),a=Et(he(r,[0,1],[s,t-2]),1),l=R(Et(he(o,[0,1],[s,t-2]),1),j(-1)),c=be([r,a],1),p=be([o,l],1),u=O(Gt(c,p),[i[0],i[1]]);n=Wi(u)}if(n=Zs(n),e.rank===3&&e.shape[0]!==0){const i=n,r=e.shape[0];n=O(n,[r,n.shape[0]/r,n.shape[1]]),i.dispose()}return n}const kl=S({irfft_:KM});function Sb(e,t,s=0){let n=[];if(typeof t=="number")I(e.shape[s]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(e.shape[s]/t);else{const i=t.reduce((o,a)=>(a===-1&&(o+=1),o),0);I(i<=1,()=>"There should be only one negative value in split array.");const r=t.indexOf(-1);if(r!==-1){const o=t.reduce((a,l)=>l>0?a+l:a);t[r]=e.shape[s]-o}I(e.shape[s]===t.reduce((o,a)=>o+a),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function XM(e,t,s=0){const n=b(e,"x","split"),i=(a,l)=>{const c=Ne(s,n.shape)[0],p=Sb(n,t,c);return a.split(n,p,c)},r={x:n},o={numOrSizeSplits:t,axis:s};return v.runKernelFunc(i,r,null,Sp,o)}const Bt=S({split_:XM});function JM(e,t){I(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let s=e.shape[e.shape.length-1];const n=e.size/s;let i;if(t!=null&&t<s){const m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,i=he(e,m,f),s=t}else if(t!=null&&t>s){const m=e.shape.map(f=>f);m[e.shape.length-1]=t-s,i=be([e,ye(m)],e.shape.length-1),s=t}else i=e;const r=re(i),o=O(Gt(i,r),[n,s]),a=so(o),l=Math.floor(s/2)+1,c=Zs(a),p=yn(a),u=Bt(c,[l,s-l],c.shape.length-1),h=Bt(p,[l,s-l],p.shape.length-1),d=i.shape.slice();return d[i.shape.length-1]=l,O(Gt(u[0],h[0]),d)}const no=S({rfft_:JM});function ZM(e){const t=b(e,"x","sqrt"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.sqrt(t);return i([t]),r},s,null,Pr)}const Je=S({sqrt_:ZM});function QM(e,t){let s=b(e,"a","squaredDifference"),n=b(t,"b","squaredDifference");[s,n]=Ce(s,n),Ie(s.shape,n.shape);const i=(a,l)=>{const c=a.squaredDifference(s,n);return l([s,n]),c},r={a:s,b:n},o={};return v.runKernelFunc(i,r,null,si,o)}const io=S({squaredDifference_:QM});function eU(e,t){const s=b(e,"x","squeeze");return O(s,Fy(s.shape,t).newShape)}const Qs=S({squeeze_:eU});function tU(e,t=0){const s=Di(e,"tensors","stack");if(I(s.length>=1,()=>"Pass at least one tensor to tf.stack"),s.length===1)return Mt(s[0],t);const n=s[0].rank,i=s[0].shape,r=s[0].dtype;I(t<=n,()=>"Axis must be <= rank of the tensor"),s.forEach(a=>{Se(i,a.shape,"All tensors passed to stack must have matching shapes"),I(r===a.dtype,()=>"All tensors passed to stack must have matching dtypes")});const o=s.map(a=>Mt(a,t));return be(o,t)}const Ge=S({stack_:tU});function sU(e,t=0){const s=b(e,"x","step"),n={x:s},i={alpha:t};return v.runKernelFunc(r=>r.step(s,t),n,null,Vr,i)}const mi=S({step_:sU});function nU(e,t,s,n,i=0,r=0,o=0,a=0,l=0){let c=b(e,"x","stridedSlice");const p=d=>{n==null&&(n=new Array(t.length));const m=Bp(o);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&a!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");const f=c.rank-t.length,g=Bp(a),y=c.shape.slice();g.forEach(M=>{t[M]=0,s[M]=1,y.splice(M,0,1)}),c=O(c,y);const{begin:w,end:x,strides:T}=lb(c.shape,m,f,t,s,n,i,r,o);t=w,s=x,n=T;const A=Bp(l);A.forEach(M=>{s[M]=t[M]+1,n[M]=1});const _=ab(t,s,n),E=_.filter((M,P)=>A.indexOf(P)===-1),F=n.every(M=>M===1);if(F)return O(he(c,t,_),E);const D=d.stridedSlice(c,t,s,n);return O(D,E)},u={x:c},h={begin:t,end:s,strides:n,beginMask:i,endMask:r,ellipsisMask:o,newAxisMask:a,shrinkAxisMask:l};return v.runKernelFunc(p,u,null,Oy,h)}const Sd=S({stridedSlice_:nU});function iU(e){const t=b(e,"x","tan"),s={x:t};return v.runKernelFunc((n,i)=>{const r=n.tan(t);return i([t]),r},s,null,ni)}const Id=S({tan_:iU});function ls(e,t,s){if(Ys(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");const n=Qt(e,s);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return hs(e,t,n,s)}function ss(e,t,s){if(Ys(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");const n=Qt(e,s);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return hs(e,t,n,s)}function WI(e,t,s){if(Ys(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");const n=Qt(e,s);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return hs(e,t,n,s)}function zI(e,t,s){if(Ys(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");const n=Qt(e,s);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,hs(e,t,n,s)}function rU(e,t=1,s=!0){const n=b(e,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");const i=n.shape[n.shape.length-1];if(t>i)throw new Error(`'k' passed to topk() must be <= the last dimension (${i}) but got ${t}`);const r={x:n},o={k:t,sorted:s},[a,l]=v.runKernelFunc(c=>c.topk(n,t,s),r,null,Ey,o);return{values:a,indices:l}}const vd=S({topk_:rU});function oU(e,t=0,s=1,n,i){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");const r=new Gp(t,s,n,!0,i),o=ge(e,n);for(let a=0;a<o.values.length;a++)o.values[a]=r.nextValue();return o.toTensor()}const ro=S({truncatedNormal_:oU});function aU(e,t=0){const s=b(e,"x","unique",null);I(s.rank>0,()=>"The input tensor must be at least 1D");const n={x:s},i={axis:t},[r,o]=v.runKernel(qo,n,i);return{values:r,indices:o}}const Yp=S({unique_:aU});function lU(e,t,s){const n=b(e,"x","unsortedSegmentSum"),i=b(t,"segmentIds","unsortedSegmentSum","int32");I(De(s),()=>"numSegments must be of dtype int");const r={x:n,segmentIds:i},o={numSegments:s},a=(l,c)=>{const p=l.unsortedSegmentSum(n,i,s);return c([i]),p};return v.runKernelFunc(a,r,null,Ap,o)}const Td=S({unsortedSegmentSum_:lU});function cU(e,t=0){const s=b(e,"x","unstack");I(t>=-s.shape.length&&t<s.shape.length,()=>`Axis = ${t} is not in [-${s.shape.length}, ${s.shape.length})`),t<0&&(t+=s.shape.length);const n={value:s},i={axis:t},r=o=>o.unstack(s,t);return v.runKernelFunc(r,n,null,Tp,i)}const qe=S({unstack_:cU});function Ad(e,t=!0,s,n){return v.makeVariable(e,t,s,n)}function Nd(e,t){const s=[];for(let r=0;r<t.length;r++)t[r]&&s.push(r);const n=ge(e,"int32"),i=ge([s.length,e.length],"int32");for(let r=0;r<s.length;r++){const o=n.indexToLoc(s[r]),a=r*e.length;i.values.set(o,a)}return i.toTensor()}async function pU(e){const t=b(e,"condition","whereAsync","bool"),s=await t.data(),n=Nd(t.shape,s);return e!==t&&t.dispose(),n}const Dl=pU;async function uU(e,t,s){const n=b(e,"tensor","boolMask"),i=b(t,"mask","boolMask","bool"),r=s??0,o=i.rank,a=n.shape;I(o>0,()=>"mask cannot be scalar"),Se(a.slice(r,r+o),i.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=r;f<r+o;f++)l*=a[f];const c=a.slice(0,r).concat([l],a.slice(r+o)),p=O(n,c),u=O(i,[-1]),h=await Dl(u),d=Qs(h,[1]),m=hi(p,d,r);return e!==n&&n.dispose(),t!==i&&i.dispose(),d.dispose(),p.dispose(),u.dispose(),h.dispose(),m}const hU=uU;function dU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","notEqualStrict"),n=b(t,"b","notEqualStrict");return Se(s.shape,n.shape,"Error in notEqualStrict: "),Js(s,n)}function mU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","lessStrict"),n=b(t,"b","lessStrict");return Se(s.shape,n.shape,"Error in lessStrict: "),Xr(s,n)}function fU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","equalStrict"),n=b(t,"b","equalStrict");return Se(s.shape,n.shape,"Error in equalStrict: "),as(s,n)}function gU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","lessEqualStrict"),n=b(t,"b","lessEqualStrict");return Se(s.shape,n.shape,"Error in lessEqualStrict: "),Ws(s,n)}function yU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","greaterStrict"),n=b(t,"b","greaterStrict");return Se(s.shape,n.shape,"Error in greaterStrict: "),Ut(s,n)}function bU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","greaterEqualStrict"),n=b(t,"b","greaterEqualStrict");return Se(s.shape,n.shape,"Error in greaterEqualStrict: "),ms(s,n)}const wU=S({equalStrict_:fU}),xU=S({greaterEqualStrict_:bU}),LU=S({greaterStrict_:yU}),SU=S({lessEqualStrict_:gU}),IU=S({lessStrict_:mU}),vU=S({notEqualStrict_:dU});function TU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","addStrict"),n=b(t,"b","addStrict");return Se(s.shape,n.shape,"Error in addStrict: "),$(s,n)}function AU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","subStrict"),n=b(t,"b","subStrict");return Se(s.shape,n.shape,"Error in subStrict: "),X(s,n)}function NU(e,t){return It("strict variants of ops have been deprecated and will be removed in future"),Se(e.shape,t.shape,"Error in powStrict: "),es(e,t)}function CU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","mul"),n=b(t,"b","mul");return Se(s.shape,n.shape,"Error in multiplyStrict: "),R(s,n)}function RU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","div"),n=b(t,"b","div");return Se(s.shape,n.shape,"Error in divideStrict: "),Z(s,n)}function OU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","modStrict"),n=b(t,"b","modStrict");return Se(s.shape,n.shape,"Error in modStrict: "),Al(s,n)}function EU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","minimumStrict"),n=b(t,"b","minimumStrict");return Se(s.shape,n.shape,"Error in minimumStrict: "),bn(s,n)}function _U(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","maximumStrict"),n=b(t,"b","maximumStrict");return Se(s.shape,n.shape,"Error in maximumStrict: "),Ht(s,n)}function kU(e,t){It("strict variants of ops have been deprecated and will be removed in future");const s=b(e,"a","squaredDifferenceStrict"),n=b(t,"b","squaredDifferenceStrict");return Se(s.shape,n.shape,"Error in squaredDifferenceStrict: "),io(s,n)}const DU=S({addStrict_:TU}),FU=S({divStrict_:RU}),MU=S({maximumStrict_:_U}),UU=S({minimumStrict_:EU}),$U=S({modStrict_:OU}),WU=S({mulStrict_:CU}),zU=S({powStrict_:NU}),PU=S({squaredDifferenceStrict_:kU}),BU=S({subStrict_:AU});function jU(e,t="euclidean",s=null,n=!1){e=b(e,"x","norm");const i=PI(e,t,s);let r=i.shape;if(n){const o=Ne(s,e.shape);r=wt(i.shape,o)}return O(i,r)}function PI(e,t,s=null){if(e.rank===0)return et(e);if(e.rank!==1&&s===null)return PI(O(e,[-1]),t,s);if(e.rank===1||typeof s=="number"||Array.isArray(s)&&s.length===1){if(t===1)return te(et(e),s);if(t===Infinity)return Lt(et(e),s);if(t===-Infinity)return Ui(et(e),s);if(t==="euclidean"||t===2)return Je(te(es(et(e),j(2,"int32")),s));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(s)&&s.length===2){if(t===1)return Lt(te(et(e),s[0]),s[1]-1);if(t===Infinity)return Lt(te(et(e),s[1]),s[0]);if(t===-Infinity)return Ui(te(et(e),s[1]),s[0]);if(t==="fro"||t==="euclidean")return Je(te(xe(e),s));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${s}`)}const Kp=S({norm_:jU});function VU(e,t,s,n,i=!0){const r=b(e,"v","movingAverage"),o=b(t,"x","movingAverage"),a=b(s,"decay","movingAverage");Hy(r,o),I(Nt(r.shape,o.shape),()=>"Shape mismatch in v and x");const l=j(1),c=X(l,a);let p=R(X(o,r),c);if(i){I(n!=null,()=>"When using zeroDebias: true, step is required.");const u=b(n,"step","movingAverage");p=Z(p,X(l,es(a,u)))}return $(r,p)}const GU=S({movingAverage_:VU});function qU(e,t,s){const n=b(e,"indices","scatterND","int32"),i=b(t,"updates","scatterND");Mh(i,n,s);const r=l=>l.scatterND(n,i,s),o={indices:n,updates:i},a={shape:s};return v.runKernelFunc(r,o,null,Cy,a)}const Ib=S({scatterND_:qU});function BI(e,t,s,n){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);const i=e.rank>0?e.shape[0]:1,r=e.rank>1?e.shape[1]:1;if(s.length!==r)throw new Error(`outputShape has incorrect number of elements:, ${s.length}, should be: ${r}.`);const o=t.size;if(!(t.rank===0||t.rank===1&&o===i))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${i}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function HU(e,t,s,n=0){const i=b(e,"sparseIndices","sparseToDense","int32"),r=b(t,"sparseValues","sparseToDense"),o=b(n,"defaultValue","sparseToDense",r.dtype);BI(i,r,s,o);const a={sparseIndices:i,sparseValues:r,defaultValue:o},l={outputShape:s};return v.runKernelFunc(c=>c.sparseToDense(i,r,s,o),a,null,Ry,l)}const Xp=S({sparseToDense_:HU});function YU(e,t){const s=b(t,"indices","gatherND","int32"),n=b(e,"x","gatherND"),i=o=>o.gatherND(n,s),r={params:n,indices:s};return v.runKernelFunc(i,r,null,fy)}const vb=S({gatherND_:YU});function jI(e,t){if(t==null)return e.shape.slice();if(Nt(e.shape,t))return t;if(e.shape.length===t.length){const s=[];for(let n=0;n<e.shape.length;n++)t[n]==null&&e.shape[n]!=null?s.push(e.shape[n]):s.push(t[n]);return s}return t}function KU(e,t,s,n){const i=b(e,"x","dropout");if(I(i.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${i.dtype} tensor instead.`),I(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof me?i.clone():i;const r=jI(i,s),o=1-t,a=Z(ui($(wn(r,0,1,"float32",n),o)),o);return R(i,a)}const Tb=S({dropout_:KU});function Ab(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Jp(e,t,s){const n=1-e%2,i=new Float32Array(e);for(let r=0;r<e;++r){const o=2*Math.PI*r/(e+n-1);i[r]=t-s*Math.cos(o)}return Oe(i,"float32")}async function XU(e,t,s=1){const n=b(e,"predictions","inTopK"),i=b(t,"targets","inTopK");I(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),I(n.rank-1===i.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${i.rank}`),Se(n.shape.slice(0,n.shape.length-1),i.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");const r=n.shape[n.shape.length-1];I(s>0&&s<=r,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${r}), but got ${s}`);const o=await n.data(),a=await i.data(),[l,c]=[o.length/r,r],p=el("bool",l);for(let u=0;u<l;u++){const h=u*c,d=o.subarray(h,h+c),m=[];for(let f=0;f<d.length;f++)m.push({value:d[f],index:f});m.sort((f,g)=>g.value-f.value),p[u]=0;for(let f=0;f<s;f++)if(m[f].index===a[u]){p[u]=1;break}}return e!==n&&n.dispose(),t!==i&&i.dispose(),ze(p,i.shape,"bool")}const JU=XU;function ZU(e,t,s,n,i,r="NHWC",o){let a=e;e.rank===3&&(a=O(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=O(t,[1,t.shape[0],t.shape[1],t.shape[2]])),I(a.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${a.shape}.`),I(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),I(s.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${s}.`);const c=r==="NHWC"?a.shape[3]:a.shape[1],p=r==="NHWC"?l.shape[3]:l.shape[1];I(c===s[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${s[2]}.`),I(p===s[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${s[3]}).`),o!=null&&I(De(i),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${i}.`);const u=m=>{const f=1,g=qr(r),y=rs(a.shape,s,n,f,i,o,!1,g);return m.conv2dDerFilter(a,l,y)},h={x:a,dy:l},d={strides:n,pad:i,dataFormat:r,dimRoundingMode:o};return v.runKernelFunc(u,h,null,iy,d)}const Fl=S({conv2DBackpropFilter_:ZU});function ra(e,t,s){if(s==null||s==="linear")return e;if(s==="relu")return R(e,mi(t));throw new Error(`Cannot compute gradient for fused activation ${s}.`)}function oa(e,t){let s=t;const n=Ke(e.shape,t.shape);return n.length>0&&(s=te(s,n)),O(s,e.shape)}function aa(e,t,s){if(t==="linear")return e;if(t==="relu")return Fe(e);if(t==="elu")return gn(e);if(t==="relu6")return bd(e);if(t==="prelu")return Qr(e,s);throw new Error(`Unknown fused activation ${t}.`)}const la=(e,t)=>{const s=e>0;return!s||t==="linear"};function QU({x:e,filter:t,strides:s,pad:n,dataFormat:i="NHWC",dilations:r=[1,1],dimRoundingMode:o,bias:a,activation:l="linear",preluActivationWeights:c}){if(l=l||"linear",la(v.state.gradientDepth,l)===!1){let A=rt(e,t,s,n,i,r,o);return a!=null&&(A=$(A,a)),aa(A,l,c)}const p=b(e,"x","conv2d"),u=b(t,"filter","conv2d");let h=p,d=!1;p.rank===3&&(d=!0,h=O(p,[1,p.shape[0],p.shape[1],p.shape[2]])),I(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),I(u.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${u.rank}.`),o!=null&&I(De(n),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`),I(h.shape[3]===u.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${u.shape[2]}.`),I(tt(s,r),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`),I(i==="NHWC",()=>`Error in conv2d: got dataFormat of ${i} but only NHWC is currently supported.`);const m=rs(h.shape,u.shape,s,r,n,o);let f;a!=null&&(f=b(a,"bias","fused conv2d"),[f]=Ce(f,p),Ie(m.outShape,f.shape));let g;c!=null&&(g=b(c,"prelu weights","fused conv2d"));const y=(A,_)=>{const[E,F,D,M]=_,P=ra(A,D,l);I(Ks(r),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);const B=gl(F.shape,P,E,s,n),Y=Fl(F,P,E.shape,s,n),q=[B,Y];if(M!=null){const K=oa(M,P);q.push(K)}return q},w=A=>{const _=A.fusedConv2d({input:h,filter:u,convInfo:m,bias:f,activation:l,preluActivationWeights:g});return _},x={x:h,filter:u,bias:f,preluActivationWeights:g},T={strides:s,pad:n,dataFormat:i,dilations:r,dimRoundingMode:o,activation:l};if(a==null){const A=fs((_,E,F)=>{let D=v.runKernelFunc(w,x,null,Ah,T);return F([E,_,D]),d&&(D=O(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}});return A(h,u)}else{const A=fs((_,E,F,D)=>{let M=v.runKernelFunc(w,x,null,Ah,T);return D([E,_,M,F]),d&&(M=O(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:y}});return A(h,u,f)}}const e$=S({fusedConv2d_:QU});function t$(e,t,s,n){let i=e;e.rank===3&&(i=O(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let r=t;r.rank===3&&(r=O(t,[1,t.shape[0],t.shape[1],t.shape[2]]));const o=l=>l.depthwiseConv2DDerFilter(i,r,n),a={x:i,dy:r};return v.runKernelFunc(o,a,null,cy)}const Cd=S({depthwiseConv2dNativeBackpropFilter_:t$});function s$(e,t,s,n){let i=t,r=!1;t.rank===3&&(r=!0,i=O(t,[1,t.shape[0],t.shape[1],t.shape[2]]));const o=c=>c.depthwiseConv2DDerInput(i,s,n),a={dy:i},l=v.runKernelFunc(o,a,null,py);return r?O(l,[l.shape[1],l.shape[2],l.shape[3]]):l}const Rd=S({depthwiseConv2dNativeBackpropInput_:s$});function n$({x:e,filter:t,strides:s,pad:n,dataFormat:i="NHWC",dilations:r=[1,1],dimRoundingMode:o,bias:a,activation:l="linear",preluActivationWeights:c}){if(la(v.state.gradientDepth,l)===!1){let A=fn(e,t,s,n,i,r,o);return a!=null&&(A=$(A,a)),aa(A,l,c)}const p=b(e,"x","depthwiseConv2d"),u=b(t,"filter","depthwiseConv2d");let h=p,d=!1;p.rank===3&&(d=!0,h=O(p,[1,p.shape[0],p.shape[1],p.shape[2]])),I(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),I(u.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`),I(h.shape[3]===u.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),r==null&&(r=[1,1]),I(tt(s,r),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`),o!=null&&I(De(n),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${n}.`);const m=rs(h.shape,u.shape,s,r,n,o,!0);let f;a!=null&&(f=b(a,"bias","fused conv2d"),[f]=Ce(f,p),Ie(m.outShape,f.shape));let g;c!=null&&(g=b(c,"prelu weights","fused depthwiseConv2d"));const y=(A,_)=>{I(Ks(r),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${r}'`);const[E,F,D,M]=_,P=ra(A,D,l),B=Rd(F.shape,P,E,m),Y=Cd(F,P,E.shape,m);if(M!=null){const q=oa(f,P);return[B,Y,q]}return[B,Y]},w=A=>{const _=A.fusedDepthwiseConv2D({input:h,filter:u,convInfo:m,bias:f,activation:l,preluActivationWeights:g});return _},x={x:h,filter:u,bias:f,preluActivationWeights:g},T={strides:s,pad:n,dataFormat:i,dilations:r,dimRoundingMode:o,activation:l};if(a==null){const A=fs((_,E,F)=>{let D=v.runKernelFunc(w,x,null,Nh,T);return F([E,_,D]),d&&(D=O(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}});return A(h,u)}else{const A=fs((_,E,F,D)=>{let M=v.runKernelFunc(w,x,null,Nh,T);return D([E,_,M,F]),d&&(M=O(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:y}});return A(h,u,f)}}const i$=S({fusedDepthwiseConv2d_:n$});function r$({a:e,b:t,transposeA:s=!1,transposeB:n=!1,bias:i,activation:r="linear",preluActivationWeights:o}){if(la(v.state.gradientDepth,r)===!1){let M=Te(e,t,s,n);return i!=null&&(M=$(M,i)),aa(M,r,o)}let a=b(e,"a","fused matMul"),l=b(t,"b","fused matMul");[a,l]=Ce(a,l);const c=s?a.shape[a.rank-2]:a.shape[a.rank-1],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],u=s?a.shape[a.rank-1]:a.shape[a.rank-2],h=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a.shape.slice(0,-2),m=l.shape.slice(0,-2),f=We(d),g=We(m);I(a.rank>=2&&l.rank>=2&&a.rank===l.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${a.rank} and ${l.rank}.`),I(Nt(d,m),()=>`Error in fused matMul: outer dimensions (${d}) and (${m}) of Tensors with shapes ${a.shape} and ${l.shape} must match.`),I(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${a.shape} and ${l.shape} and transposeA=${s} and transposeB=${n} must match.`);const y=a.shape.slice(0,-2).concat([u,h]),w=s?O(a,[f,c,u]):O(a,[f,u,c]),x=n?O(l,[g,h,p]):O(l,[g,p,h]);let T;i!=null&&(T=b(i,"bias","fused matMul"),[T]=Ce(T,a),Ie(y,T.shape));let A;o!=null&&(A=b(o,"prelu weights","fused matMul"));const _=(M,P)=>{const[B,Y,q,K]=P,H=ra(O(M,q.shape),q,r);let Q,J;if(!s&&!n?(Q=Te(H,Y,!1,!0),J=Te(B,H,!0,!1)):!s&&n?(Q=Te(H,Y,!1,!1),J=Te(H,B,!0,!1)):s&&!n?(Q=Te(Y,H,!1,!0),J=Te(B,H,!1,!1)):(Q=Te(Y,H,!0,!0),J=Te(H,B,!0,!0)),i!=null){const ie=oa(K,H);return[Q,J,ie]}else return[Q,J]},E=M=>{const P=M.fusedBatchMatMul({a:w,b:x,transposeA:s,transposeB:n,bias:T,activation:r,preluActivationWeights:A});return P},F={a:w,b:x,bias:T,preluActivationWeights:A},D={transposeA:s,transposeB:n,activation:r};if(i==null){const M=fs((P,B,Y)=>{const q=v.runKernelFunc(E,F,null,Th,D);return Y([P,B,q]),{value:O(q,y),gradFunc:_}});return M(w,x)}else{const M=fs((P,B,Y,q)=>{const K=v.runKernelFunc(E,F,null,Th,D);return q([P,B,K,Y]),{value:O(K,y),gradFunc:_}});return M(w,x,T)}}const o$=S({fusedMatMul_:r$});const xn={};Ee(xn,{conv2d:()=>e$,depthwiseConv2d:()=>i$,matMul:()=>o$});function a$(e){return Jp(e,.54,.46)}const VI=S({hammingWindow_:a$});function l$(e){return Jp(e,.5,.5)}const Od=S({hannWindow_:l$});function c$(e,t,s,n=!1,i=0){let r=0;const o=[];for(;r+t<=e.size;)o.push(he(e,r,t)),r+=s;if(n)for(;r<e.size;){const a=r+t-e.size,l=be([he(e,r,t-a),Wt([a],i)]);o.push(l),r+=s}return o.length===0?ls([],[0,t]):O(be(o),[o.length,t])}const Ed=S({frame_:c$});function p$(e,t,s,n,i=Od){n==null&&(n=Ab(t));const r=Ed(e,t,s),o=R(r,i(t)),a=[];for(let l=0;l<r.shape[0];l++)a.push(no(he(o,[l,0],[1,t]),n));return be(a)}const GI=S({stft_:p$});function u$(e,t,s,n,i,r){const o=b(e,"image","cropAndResize"),a=b(t,"boxes","cropAndResize","float32"),l=b(s,"boxInd","cropAndResize","int32");i=i||"bilinear",r=r||0;const c=a.shape[0];I(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),I(a.rank===2&&a.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${a.shape}.`),I(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${a.shape}.`),I(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),I(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),I(i==="bilinear"||i==="nearest",()=>`method must be bilinear or nearest, but was ${i}`);const p=m=>m.cropAndResize(o,a,l,n,i,r),u={image:o,boxes:a,boxInd:l},h={method:i,extrapolationValue:r,cropSize:n},d=v.runKernelFunc(p,u,null,ay,h);return d}const qI=S({cropAndResize_:u$});function h$(e){const t=b(e,"image","flipLeftRight","float32");I(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);const s={image:t},n=v.runKernel(Uo,s,{});return n}const HI=S({flipLeftRight_:h$});function d$(e,t,s=0,n=.5){const i=b(e,"image","rotateWithOffset","float32");I(i.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${i.rank}.`);const r={image:i},o={radians:t,fillValue:s,center:n},a=v.runKernel(Ho,r,o);return a}const YI=S({rotateWithOffset_:d$});function Ln(e,t,s,n,i,r){n==null&&(n=.5),i==null&&(i=Number.NEGATIVE_INFINITY),r==null&&(r=0);const o=e.shape[0];return s=Math.min(s,o),I(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),I(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),I(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),I(t.rank===1,()=>"scores must be a 1D tensor"),I(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),I(0<=r&&r<=1,()=>`softNmsSigma must be in [0, 1], but was '${r}'`),{maxOutputSize:s,iouThreshold:n,scoreThreshold:i,softNmsSigma:r}}function m$(e,t,s,n=.5,i=Number.NEGATIVE_INFINITY){const r=b(e,"boxes","nonMaxSuppression"),o=b(t,"scores","nonMaxSuppression"),a=Ln(r,o,s,n,i);s=a.maxOutputSize,n=a.iouThreshold,i=a.scoreThreshold;const l={maxOutputSize:s,iouThreshold:n,scoreThreshold:i};return v.runKernelFunc(c=>c.nonMaxSuppression(r,o,s,n,i),{boxes:r,scores:o},null,cp,l)}const KI=S({nonMaxSuppression_:m$});function XI(e,t,s){const n=f$(e,t,s),i=n<0?-(n+1):n;e.splice(i,0,t)}function f$(e,t,s){return y$(e,t,s||g$)}function g$(e,t){return e>t?1:e<t?-1:0}function y$(e,t,s){let n=0,i=e.length,r=0,o=!1;for(;n<i;){r=n+(i-n>>>1);const a=s(t,e[r]);a>0?n=r+1:(i=r,o=!a)}return o?n:-n-1}function _d(e,t,s,n,i){return Nb(e,t,s,n,i,0).selectedIndices}function kd(e,t,s,n,i,r){return Nb(e,t,s,n,i,0,!1,r,!0)}function Dd(e,t,s,n,i,r){return Nb(e,t,s,n,i,r,!0)}function Nb(e,t,s,n,i,r,o=!1,a=!1,l=!1){const c=[];for(let g=0;g<t.length;g++)t[g]>i&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(JI);const p=r>0?-.5/r:0,u=[],h=[];for(;u.length<s&&c.length>0;){const g=c.pop(),{score:y,boxIndex:w,suppressBeginIndex:x}=g;if(y<i)break;let T=!1;for(let A=u.length-1;A>=x;--A){const _=b$(e,w,u[A]);if(_>=n){T=!0;break}if(g.score=g.score*w$(n,p,_),g.score<=i)break}g.suppressBeginIndex=u.length,T||(g.score===y?(u.push(w),h.push(g.score)):g.score>i&&XI(c,g,JI))}const d=u.length,m=s-d;a&&m>0&&(u.push(...new Array(m).fill(0)),h.push(...new Array(m).fill(0)));const f={selectedIndices:Oe(u,"int32")};return o&&(f.selectedScores=Oe(h,"float32")),l&&(f.validOutputs=j(d,"int32")),f}function b$(e,t,s){const n=e.subarray(t*4,t*4+4),i=e.subarray(s*4,s*4+4),r=Math.min(n[0],n[2]),o=Math.min(n[1],n[3]),a=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),c=Math.min(i[0],i[2]),p=Math.min(i[1],i[3]),u=Math.max(i[0],i[2]),h=Math.max(i[1],i[3]),d=(a-r)*(l-o),m=(u-c)*(h-p);if(d<=0||m<=0)return 0;const f=Math.max(r,c),g=Math.max(o,p),y=Math.min(a,u),w=Math.min(l,h),x=Math.max(y-f,0)*Math.max(w-g,0);return x/(d+m-x)}function w$(e,t,s){const n=Math.exp(t*s*s);return s<=e?n:0}function JI(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function x$(e,t,s,n=.5,i=Number.NEGATIVE_INFINITY){const r=b(e,"boxes","nonMaxSuppressionAsync"),o=b(t,"scores","nonMaxSuppressionAsync"),a=Ln(r,o,s,n,i);s=a.maxOutputSize,n=a.iouThreshold,i=a.scoreThreshold;const l=await Promise.all([r.data(),o.data()]),c=l[0],p=l[1],u=_d(c,p,s,n,i);return r!==e&&r.dispose(),o!==t&&o.dispose(),u}const ZI=x$;function L$(e,t,s,n=.5,i=Number.NEGATIVE_INFINITY,r=0){const o=b(e,"boxes","nonMaxSuppression"),a=b(t,"scores","nonMaxSuppression"),l=Ln(o,a,s,n,i,r);s=l.maxOutputSize,n=l.iouThreshold,i=l.scoreThreshold,r=l.softNmsSigma;const c={boxes:o,scores:a},p={maxOutputSize:s,iouThreshold:n,scoreThreshold:i,softNmsSigma:r},u=v.runKernel(Po,c,p);return{selectedIndices:u[0],selectedScores:u[1]}}const QI=S({nonMaxSuppressionWithScore_:L$});async function S$(e,t,s,n=.5,i=Number.NEGATIVE_INFINITY,r=0){const o=b(e,"boxes","nonMaxSuppressionAsync"),a=b(t,"scores","nonMaxSuppressionAsync"),l=Ln(o,a,s,n,i,r);s=l.maxOutputSize,n=l.iouThreshold,i=l.scoreThreshold,r=l.softNmsSigma;const c=await Promise.all([o.data(),a.data()]),p=c[0],u=c[1],h=Dd(p,u,s,n,i,r);return o!==e&&o.dispose(),a!==t&&a.dispose(),h}const ev=S$;function I$(e,t,s,n=.5,i=Number.NEGATIVE_INFINITY,r=!1){const o=b(e,"boxes","nonMaxSuppression"),a=b(t,"scores","nonMaxSuppression"),l=Ln(o,a,s,n,i,null),c=l.maxOutputSize,p=l.iouThreshold,u=l.scoreThreshold,h={boxes:o,scores:a},d={maxOutputSize:c,iouThreshold:p,scoreThreshold:u,padToMaxOutputSize:r},m=v.runKernel(zo,h,d);return{selectedIndices:m[0],validOutputs:m[1]}}const tv=S({nonMaxSuppressionPadded_:I$});async function v$(e,t,s,n=.5,i=Number.NEGATIVE_INFINITY,r=!1){const o=b(e,"boxes","nonMaxSuppressionAsync"),a=b(t,"scores","nonMaxSuppressionAsync"),l=Ln(o,a,s,n,i,null),c=l.maxOutputSize,p=l.iouThreshold,u=l.scoreThreshold,[h,d]=await Promise.all([o.data(),a.data()]),m=kd(h,d,c,p,u,r);return o!==e&&o.dispose(),a!==t&&a.dispose(),m}const sv=v$;function T$(e,t,s=!1){const n=b(e,"images","resizeBilinear");I(n.rank===3||n.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${n.rank}.`),I(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`);let i=n,r=!1;n.rank===3&&(r=!0,i=O(n,[1,n.shape[0],n.shape[1],n.shape[2]]));const[o,a]=t,l=(h,d)=>(d([i]),h.resizeBilinear(i,o,a,s)),c={images:i},p={alignCorners:s,size:t},u=v.runKernelFunc(l,c,null,yp,p);return r?O(u,[u.shape[1],u.shape[2],u.shape[3]]):u}const nv=S({resizeBilinear_:T$});function A$(e,t,s=!1){const n=b(e,"images","resizeNearestNeighbor");I(n.rank===3||n.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${n.rank}.`),I(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),I(n.dtype==="float32"||n.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype");let i=n,r=!1;n.rank===3&&(r=!0,i=O(n,[1,n.shape[0],n.shape[1],n.shape[2]]));const[o,a]=t,l={images:i},c={alignCorners:s,size:t},p=(h,d)=>(d([i]),h.resizeNearestNeighbor(i,o,a,s)),u=v.runKernelFunc(p,l,null,gp,c);return r?O(u,[u.shape[1],u.shape[2],u.shape[3]]):u}const iv=S({resizeNearestNeighbor_:A$});function N$(e,t,s){I(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),I(s%1===0,()=>`bandPart(): numUpper must be an integer, got ${s}.`);const n=b(e,"a","bandPart");I(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);const i=n.shape,[r,o]=n.shape.slice(-2);if(!(t<=r))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${r}).`);if(!(s<=o))throw new Error(`bandPart(): numUpper (${s}) must not be greater than the number of columns (${o}).`);t<0&&(t=r),s<0&&(s=o);const a=O($i(0,r,1,"int32"),[-1,1]),l=$i(0,o,1,"int32"),c=X(a,l),p=Yt(Ws(c,j(+t,"int32")),ms(c,j(-s,"int32"))),u=ye([r,o],n.dtype);return O(Ge(qe(O(n,[-1,r,o])).map(h=>mt(p,h,u))),i)}const rv=S({bandPart_:N$});function C$(e){let t;if(Array.isArray(e)){t=!1,I(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");const i=e[0].shape[0];for(let r=1;r<e.length;++r)I(e[r].shape[0]===i,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[r].shape[0]} vs. ${i})`)}else t=!0,e=Bt(e,e.shape[0],0).map(i=>Qs(i,[0]));I(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);const s=[],n=e;for(let i=0;i<e.length;++i)s.push(v.tidy(()=>{let r=n[i];if(i>0)for(let o=0;o<i;++o){const a=R(te(R(s[o],r)),s[o]);r=X(r,a)}return Z(r,Kp(r,"euclidean"))}));return t?Ge(s,0):s}const ov=S({gramSchmidt_:C$});function R$(e,t=!1){if(I(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return av(e,t);{const s=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),n=qe(O(e,[s,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),i=[],r=[];n.forEach(l=>{const[c,p]=av(l,t);i.push(c),r.push(p)});const o=O(Ge(i,0),e.shape),a=O(Ge(r,0),e.shape);return[o,a]}}function av(e,t=!1){return v.tidy(()=>{I(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);const s=e.shape[0],n=e.shape[1];let i=sa(s),r=Fs(e);const o=ls([[1]],[1,1]);let a=Fs(o);const l=s>=n?n:s;for(let c=0;c<l;++c){const p=r,u=a,h=i;[a,r,i]=v.tidy(()=>{const d=he(r,[c,c],[s-c,1]),m=Kp(d),f=he(r,[c,c],[1,1]),g=mt(Ut(f,0),ls([[-1]]),ls([[1]])),y=X(f,R(g,m)),w=Z(d,y);w.shape[0]===1?a=Fs(o):a=be([o,he(w,[1,0],[w.shape[0]-1,w.shape[1]])],0);const x=ke(Z(Te(g,y),m)),T=he(r,[c,0],[s-c,n]),A=R(x,a),_=se(a);if(c===0)r=X(T,Te(A,Te(_,T)));else{const D=X(T,Te(A,Te(_,T)));r=be([he(r,[0,0],[c,n]),D],0)}const E=se(A),F=he(i,[0,c],[s,i.shape[1]-c]);if(c===0)i=X(F,Te(Te(F,a),E));else{const D=X(F,Te(Te(F,a),E));i=be([he(i,[0,0],[s,c]),D],1)}return[a,r,i]}),ce([p,u,h])}return!t&&s>n&&(i=he(i,[0,0],[s,n]),r=he(r,[0,0],[n,n])),[i,r]})}const lv=S({qr_:R$});var gt;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(gt||(gt={}));function O$(e,t,s=gt.SUM_BY_NONZERO_WEIGHTS){const n=b(e,"losses","computeWeightedLoss");let i=null;t!=null&&(i=b(t,"weights","computeWeightedLoss"));const r=i==null?n:R(n,i);if(s===gt.NONE)return r;if(s===gt.SUM)return te(r);if(s===gt.MEAN){if(i==null)return Xe(r);{const o=n.size/i.size,a=Z(te(r),te(i));return o>1?Z(a,j(o)):a}}if(s===gt.SUM_BY_NONZERO_WEIGHTS){if(i==null)return Z(te(r),j(n.size));{const o=R(i,Kt(n.shape)),a=G(te(Js(o,j(0))),"float32");return Z(te(r),a)}}throw Error(`Unknown reduction: ${s}`)}const ns=S({computeWeightedLoss_:O$});function E$(e,t,s,n=gt.SUM_BY_NONZERO_WEIGHTS){const i=b(e,"labels","absoluteDifference"),r=b(t,"predictions","absoluteDifference");let o=null;s!=null&&(o=b(s,"weights","absoluteDifference")),Se(i.shape,r.shape,"Error in absoluteDifference: ");const a=et(X(i,r));return ns(a,o,n)}const cv=S({absoluteDifference_:E$});function _$(e,t,s,n,i=gt.SUM_BY_NONZERO_WEIGHTS){const r=b(e,"labels","cosineDistance"),o=b(t,"predictions","cosineDistance");let a=null;n!=null&&(a=b(n,"weights","cosineDistance")),Se(r.shape,o.shape,"Error in cosineDistance: ");const l=j(1),c=X(l,te(R(r,o),s,!0));return ns(c,a,i)}const pv=S({cosineDistance_:_$});function k$(e,t,s,n=gt.SUM_BY_NONZERO_WEIGHTS){let i=b(e,"labels","hingeLoss");const r=b(t,"predictions","hingeLoss");let o=null;s!=null&&(o=b(s,"weights","hingeLoss")),Se(i.shape,r.shape,"Error in hingeLoss: ");const a=j(1);i=X(R(j(2),i),a);const l=Fe(X(a,R(i,r)));return ns(l,o,n)}const uv=S({hingeLoss_:k$});function D$(e,t,s,n=1,i=gt.SUM_BY_NONZERO_WEIGHTS){const r=b(e,"labels","huberLoss"),o=b(t,"predictions","huberLoss");let a=null;s!=null&&(a=b(s,"weights","huberLoss")),Se(r.shape,o.shape,"Error in huberLoss: ");const l=j(n),c=et(X(o,r)),p=bn(c,l),u=X(c,p),h=$(R(j(.5),xe(p)),R(l,u));return ns(h,a,i)}const hv=S({huberLoss_:D$});function F$(e,t,s,n=1e-7,i=gt.SUM_BY_NONZERO_WEIGHTS){const r=b(e,"labels","logLoss"),o=b(t,"predictions","logLoss");let a=null;s!=null&&(a=b(s,"weights","logLoss")),Se(r.shape,o.shape,"Error in logLoss: ");const l=j(1),c=j(n),p=ke(R(r,zt($(o,c)))),u=R(X(l,r),zt($(X(l,o),c))),h=X(p,u);return ns(h,a,i)}const dv=S({logLoss_:F$});function M$(e,t,s,n=gt.SUM_BY_NONZERO_WEIGHTS){const i=b(e,"labels","meanSquaredError"),r=b(t,"predictions","meanSquaredError");let o=null;s!=null&&(o=b(s,"weights","meanSquaredError")),Se(i.shape,r.shape,"Error in meanSquaredError: ");const a=io(i,r);return ns(a,o,n)}const mv=S({meanSquaredError_:M$});function U$(e,t){const s=b(e,"labels","sigmoidCrossEntropyWithLogits"),n=b(t,"logits","sigmoidCrossEntropyWithLogits");Se(s.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");const i=Fe(n),r=R(n,s),o=Sl(ut(ke(et(n))));return $(X(i,r),o)}function $$(e,t,s,n=0,i=gt.SUM_BY_NONZERO_WEIGHTS){let r=b(e,"multiClassLabels","sigmoidCrossEntropy");const o=b(t,"logits","sigmoidCrossEntropy");let a=null;if(s!=null&&(a=b(s,"weights","sigmoidCrossEntropy")),Se(r.shape,o.shape,"Error in sigmoidCrossEntropy: "),n>0){const c=j(n),p=j(1),u=j(.5);r=$(R(r,X(p,c)),R(u,c))}const l=U$(r,o);return ns(l,a,i)}const fv=S({sigmoidCrossEntropy_:$$});function W$(e,t,s=-1){if(s===-1&&(s=t.rank-1),s!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${s}`);const n=fs((i,r,o)=>{const a=!0,l=dd(r,[s],a),c=X(G(r,"float32"),l);o([i,c]);const p=ke(R(c,i)),u=te(p,[s]),h=(d,m)=>{const[f,g]=m,y=wt(d.shape,[s]);return[R(O(d,y),X(G(f,"float32"),ut(g))),R(O(d,y),X(ut(g),G(f,"float32")))]};return{value:u,gradFunc:h}});return n(e,t)}function z$(e,t,s,n=0,i=gt.SUM_BY_NONZERO_WEIGHTS){let r=b(e,"onehotLabels","softmaxCrossEntropy");const o=b(t,"logits","softmaxCrossEntropy");let a=null;if(s!=null&&(a=b(s,"weights","softmaxCrossEntropy")),Se(r.shape,o.shape,"Error in softmaxCrossEntropy: "),n>0){const c=j(n),p=j(1),u=j(r.shape[1]);r=$(R(r,X(p,c)),Z(c,u))}const l=W$(r,o);return ns(l,a,i)}const gv=S({softmaxCrossEntropy_:z$});const P$={fft:so,ifft:Wi,rfft:no,irfft:kl},B$={hammingWindow:VI,hannWindow:Od,frame:Ed,stft:GI},en={flipLeftRight:HI,resizeNearestNeighbor:iv,resizeBilinear:nv,rotateWithOffset:YI,cropAndResize:qI,nonMaxSuppression:KI,nonMaxSuppressionAsync:ZI,nonMaxSuppressionWithScore:QI,nonMaxSuppressionWithScoreAsync:ev,nonMaxSuppressionPadded:tv,nonMaxSuppressionPaddedAsync:sv},Cb={bandPart:rv,gramSchmidt:ov,qr:lv},j$={absoluteDifference:cv,computeWeightedLoss:ns,cosineDistance:pv,hingeLoss:uv,huberLoss:hv,logLoss:dv,meanSquaredError:mv,sigmoidCrossEntropy:fv,softmaxCrossEntropy:gv};class gs extends cb{minimize(e,t=!1,s){const{value:n,grads:i}=this.computeGradients(e,s);if(s!=null){const r=s.map(o=>({name:o.name,tensor:i[o.name]}));this.applyGradients(r)}else this.applyGradients(i);return ce(i),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return hd(e,t)}dispose(){this.iterations_!=null&&ce(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:j(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}}Object.defineProperty(gs,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});class ca extends gs{constructor(e,t,s=null){super();this.learningRate=e,this.rho=t,this.epsilon=s,this.accumulatedGrads=[],this.accumulatedUpdates=[],s==null&&(this.epsilon=v.backend.epsilon())}applyGradients(e){const t=Array.isArray(e)?e.map(s=>s.name):Object.keys(e);t.forEach((s,n)=>{const i=v.registeredVariables[s],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${s}/accum_grad`,variable:C(()=>re(i).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${s}/accum_var`,variable:C(()=>re(i).variable(r))});const o=Array.isArray(e)?e[n].tensor:e[s];if(o==null)return;const a=this.accumulatedGrads[n].variable,l=this.accumulatedUpdates[n].variable;C(()=>{const c=$(R(a,this.rho),R(xe(o),1-this.rho)),p=R(Z(Je($(l,this.epsilon)),Je($(a,this.epsilon))),o),u=$(R(l,this.rho),R(xe(p),1-this.rho));a.assign(c),l.assign(u);const h=$(R(p,-this.learningRate),i);i.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(ce(this.accumulatedGrads.map(e=>e.variable)),ce(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){const e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=e.length/2,s=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(s)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(s)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}}ca.className="Adadelta";As(ca);class pa extends gs{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){const t=Array.isArray(e)?e.map(s=>s.name):Object.keys(e);t.forEach((s,n)=>{const i=v.registeredVariables[s];if(this.accumulatedGrads[n]==null){const a=!1;this.accumulatedGrads[n]={originalName:`${s}/accumulator`,variable:C(()=>Wt(i.shape,this.initialAccumulatorValue).variable(a))}}const r=Array.isArray(e)?e[n].tensor:e[s];if(r==null)return;const o=this.accumulatedGrads[n].variable;C(()=>{const a=$(o,xe(r));o.assign(a);const l=$(R(Z(r,Je($(a,v.backend.epsilon()))),-this.learningRate),i);i.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&ce(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=!1;this.accumulatedGrads=e.map(s=>({originalName:s.name,variable:s.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}}pa.className="Adagrad";As(pa);class ua extends gs{constructor(e,t,s,n=null){super();this.learningRate=e,this.beta1=t,this.beta2=s,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],C(()=>{this.accBeta1=j(t).variable(),this.accBeta2=j(s).variable()}),n==null&&(this.epsilon=v.backend.epsilon())}applyGradients(e){const t=Array.isArray(e)?e.map(s=>s.name):Object.keys(e);C(()=>{const s=X(1,this.accBeta1),n=X(1,this.accBeta2);t.forEach((i,r)=>{const o=v.registeredVariables[i],a=!1;this.accumulatedFirstMoment[r]==null&&(this.accumulatedFirstMoment[r]={originalName:`${i}/m`,variable:C(()=>re(o).variable(a))}),this.accumulatedSecondMoment[r]==null&&(this.accumulatedSecondMoment[r]={originalName:`${i}/v`,variable:C(()=>re(o).variable(a))});const l=Array.isArray(e)?e[r].tensor:e[i];if(l==null)return;const c=this.accumulatedFirstMoment[r].variable,p=this.accumulatedSecondMoment[r].variable,u=$(R(c,this.beta1),R(l,1-this.beta1)),h=$(R(p,this.beta2),R(xe(l),1-this.beta2)),d=Z(u,s),m=Z(h,n);c.assign(u),p.assign(h);const f=$(R(Z(d,$(Je(m),this.epsilon)),-this.learningRate),o);o.assign(f)}),this.accBeta1.assign(R(this.accBeta1,this.beta1)),this.accBeta2.assign(R(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&ce(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&ce(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){const e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),C(()=>{this.accBeta1.assign(es(this.beta1,this.iterations_+1)),this.accBeta2.assign(es(this.beta2,this.iterations_+1))});const t=e.length/2,s=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(s)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(s)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}}ua.className="Adam";As(ua);class ha extends gs{constructor(e,t,s,n=null,i=0){super();this.learningRate=e,this.beta1=t,this.beta2=s,this.epsilon=n,this.decay=i,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],C(()=>{this.iteration=j(0).variable(),this.accBeta1=j(t).variable()}),n==null&&(this.epsilon=v.backend.epsilon())}applyGradients(e){const t=Array.isArray(e)?e.map(s=>s.name):Object.keys(e);C(()=>{const s=X(1,this.accBeta1),n=Z(-this.learningRate,$(R(this.iteration,this.decay),1));t.forEach((i,r)=>{const o=v.registeredVariables[i],a=!1;this.accumulatedFirstMoment[r]==null&&(this.accumulatedFirstMoment[r]={originalName:`${i}/m`,variable:re(o).variable(a)}),this.accumulatedWeightedInfNorm[r]==null&&(this.accumulatedWeightedInfNorm[r]={originalName:`${i}/v`,variable:re(o).variable(a)});const l=Array.isArray(e)?e[r].tensor:e[i];if(l==null)return;const c=this.accumulatedFirstMoment[r].variable,p=this.accumulatedWeightedInfNorm[r].variable,u=$(R(c,this.beta1),R(l,1-this.beta1)),h=R(p,this.beta2),d=et(l),m=Ht(h,d);c.assign(u),p.assign(m);const f=$(R(Z(n,s),Z(u,$(m,this.epsilon))),o);o.assign(f)}),this.iteration.assign($(this.iteration,1)),this.accBeta1.assign(R(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&ce(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&ce(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}}ha.className="Adamax";As(ha);class zi extends gs{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){const t=Array.isArray(e)?e.map(s=>s.name):Object.keys(e);t.forEach((s,n)=>{const i=Array.isArray(e)?e[n].tensor:e[s];if(i==null)return;const r=v.registeredVariables[s];C(()=>{const o=$(R(this.c,i),r);r.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=pt(j(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}}zi.className="SGD";As(zi);class da extends zi{constructor(e,t,s=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=s,this.accumulations=[],this.m=j(this.momentum)}applyGradients(e){const t=Array.isArray(e)?e.map(s=>s.name):Object.keys(e);t.forEach((s,n)=>{const i=v.registeredVariables[s];if(this.accumulations[n]==null){const a=!1;this.accumulations[n]={originalName:`${s}/momentum`,variable:C(()=>re(i).variable(a))}}const r=this.accumulations[n].variable,o=Array.isArray(e)?e[n].tensor:e[s];if(o==null)return;C(()=>{let a;const l=$(R(this.m,r),o);this.useNesterov?a=$(R(this.c,$(o,R(l,this.m))),i):a=$(R(this.c,l),i),r.assign(l),i.assign(a)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&ce(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=!1;this.accumulations=e.map(s=>({originalName:s.name,variable:s.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}}da.className="Momentum";As(da);class ma extends gs{constructor(e,t=.9,s=0,n=null,i=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=s,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=i,n==null&&(this.epsilon=v.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){const t=Array.isArray(e)?e.map(s=>s.name):Object.keys(e);t.forEach((s,n)=>{const i=v.registeredVariables[s],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${s}/rms`,variable:C(()=>re(i).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${s}/momentum`,variable:C(()=>re(i).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${s}/mg`,variable:C(()=>re(i).variable(r))});const o=Array.isArray(e)?e[n].tensor:e[s];if(o==null)return;const a=this.accumulatedMeanSquares[n].variable,l=this.accumulatedMoments[n].variable;C(()=>{const c=$(R(a,this.decay),R(xe(o),1-this.decay));if(this.centered){const p=this.accumulatedMeanGrads[n].variable,u=$(R(p,this.decay),R(o,1-this.decay)),h=Z(R(o,this.learningRate),Je(X(c,$(xe(u),this.epsilon)))),d=$(R(l,this.momentum),h);a.assign(c),p.assign(u),l.assign(d);const m=X(i,d);i.assign(m)}else{const p=$(R(a,this.decay),R(xe(o),1-this.decay)),u=$(R(l,this.momentum),Z(R(o,this.learningRate),Je($(p,this.epsilon))));a.assign(p),l.assign(u);const h=X(i,u);i.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&ce(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&ce(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&ce(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){const e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=this.centered?e.length/3:e.length/2,s=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(s)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(s)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(s)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}}ma.className="RMSProp";As(ma);class oo{static sgd(e){return new zi(e)}static momentum(e,t,s=!1){return new da(e,t,s)}static rmsprop(e,t=.9,s=0,n=null,i=!1){return new ma(e,t,s,n,i)}static adam(e=.001,t=.9,s=.999,n=null){return new ua(e,t,s,n)}static adadelta(e=.001,t=.95,s=null){return new ca(e,t,s)}static adamax(e=.002,t=.9,s=.999,n=null,i=0){return new ha(e,t,s,n,i)}static adagrad(e,t=.1){return new pa(e,t)}}da,zi,ca,pa,ma,ha,ua;const ao={sgd:oo.sgd,momentum:oo.momentum,adadelta:oo.adadelta,adagrad:oo.adagrad,rmsprop:oo.rmsprop,adamax:oo.adamax,adam:oo.adam};const V$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Zp(){return new Promise(e=>V$(()=>e()))}function G$(e,t,s){const n=s*(typeof e=="number"?e:e[0]),i=t*(typeof e=="number"?e:e[1]);return[n,i]}function q$(e,t,s,n=!0){let i=[];if(n)i=i.concat(t.slice(0)),i.push(e[0]/s),i=i.concat(e.slice(1));else{i=i.concat(e[0]);const r=t.length;for(let o=0;o<r;++o)i=i.concat([e[o+1]/t[o],t[o]]);i=i.concat(e.slice(r+1))}return i}function H$(e,t,s=!0){const n=[];if(s){n.push(t);for(let i=t+1;i<e;++i)i<=2*t?(n.push(i),n.push(i-(t+1))):n.push(i)}else{const i=[],r=[];for(let o=1;o<e;++o)o>=t*2+1||o%2===1?r.push(o):i.push(o);n.push(...i),n.push(0),n.push(...r)}return n}function Y$(e,t,s,n=!0){const i=[];n?i.push(e[0]/s):i.push(e[0]*s);for(let r=1;r<e.length;++r)r<=t.length?n?i.push(t[r-1]*e[r]):i.push(e[r]/t[r-1]):i.push(e[r]);return i}function K$(e,t){const s=[0];for(let n=0;n<t;++n)s.push(e[n][0]);return s}function X$(e,t,s){const n=e.slice(0,1);for(let i=0;i<s;++i)n.push(e[i+1]-t[i][0]-t[i][1]);return n}const Rb=1.7580993408473768,Ob=1.0507009873554805;const J$=.3275911,Z$=.254829592,Q$=-.284496736,eW=1.421413741,tW=-1.453152027,sW=1.061405429;function nW(...e){W().getBool("IS_TEST")||console.warn(...e)}function iW(...e){W().getBool("IS_TEST")||console.log(...e)}function rW(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);const s=new Float32Array(e.length*2);for(let n=0;n<s.length;n+=2)s[n]=e[n/2],s[n+1]=t[n/2];return s}function oW(e){const t=new Float32Array(e.length/2),s=new Float32Array(e.length/2);for(let n=0;n<e.length;n+=2)t[n/2]=e[n],s[n/2]=e[n+1];return{real:t,imag:s}}function aW(e){const t=Math.ceil(e.length/4),s=new Float32Array(t),n=new Float32Array(t);for(let i=0;i<e.length;i+=4)s[Math.floor(i/4)]=e[i],n[Math.floor(i/4)]=e[i+1];return{real:s,imag:n}}function lW(e){const t=Math.floor(e.length/4),s=new Float32Array(t),n=new Float32Array(t);for(let i=2;i<e.length;i+=4)s[Math.floor(i/4)]=e[i],n[Math.floor(i/4)]=e[i+1];return{real:s,imag:n}}function cW(e,t){const s=e[t*2],n=e[t*2+1];return{real:s,imag:n}}function pW(e,t,s,n){e[n*2]=t,e[n*2+1]=s}function uW(e,t){const s=new Float32Array(e/2),n=new Float32Array(e/2);for(let i=0;i<Math.ceil(e/2);i++){const r=(t?2:-2)*Math.PI*(i/e);s[i]=Math.cos(r),n[i]=Math.sin(r)}return{real:s,imag:n}}function hW(e,t,s){const n=(s?2:-2)*Math.PI*(e/t),i=Math.cos(n),r=Math.sin(n);return{real:i,imag:r}}const U={};Ee(U,{ERF_A1:()=>Z$,ERF_A2:()=>Q$,ERF_A3:()=>eW,ERF_A4:()=>tW,ERF_A5:()=>sW,ERF_P:()=>J$,PARALLELIZE_THRESHOLD:()=>ld,SELU_SCALE:()=>Ob,SELU_SCALEALPHA:()=>Rb,applyActivation:()=>aa,assertAndGetBroadcastShape:()=>Ie,assertAxesAreInnerMostDims:()=>lD,assertParamsConsistent:()=>wb,assignToTypedArray:()=>pW,axesAreInnerMostDims:()=>fb,calculateShapes:()=>eI,castTensor:()=>dW,combineLocations:()=>hI,complexWithEvenIndex:()=>aW,complexWithOddIndex:()=>lW,computeConv2DInfo:()=>rs,computeConv3DInfo:()=>Hr,computeDefaultPad:()=>bb,computeDilation2DInfo:()=>bD,computeOptimalWindowSize:()=>gF,computeOutAndReduceShapes:()=>gb,computeOutShape:()=>xb,computePool2DInfo:()=>Wn,computePool3DInfo:()=>Fi,convertConv2DDataFormat:()=>qr,eitherStridesOrDilationsAreOne:()=>tt,expandShapeToKeepDim:()=>wt,exponent:()=>hW,exponents:()=>uW,getAxesPermutation:()=>dt,getBroadcastDims:()=>sF,getComplexWithIndex:()=>cW,getFusedBiasGradient:()=>oa,getFusedDyActivation:()=>ra,getImageCenter:()=>G$,getInnerMostAxes:()=>qt,getPermuted:()=>H$,getReductionAxes:()=>Ke,getReshaped:()=>q$,getReshapedPermuted:()=>Y$,getSliceBeginCoords:()=>K$,getSliceSize:()=>X$,getUndoAxesPermutation:()=>Jo,linspaceImpl:()=>fW,log:()=>iW,mergeRealAndImagArrays:()=>rW,prepareAndValidate:()=>ZS,prepareSplitSize:()=>Sb,reshapeTensor:()=>mW,segment_util:()=>bI,shouldFuse:()=>la,slice_util:()=>Ms,splitRealAndImagArrays:()=>oW,tupleValuesAreOne:()=>Ks,upcastType:()=>Ft,validateInput:()=>Mh,validateUpdateShape:()=>rb,warn:()=>nW});function dW(e,t,s){if(t==="complex64"){if(e.dtype==="complex64")return e.clone();const n=ye(e.shape),i=G(e,"float32"),r=s.complex(i,n);return n.dispose(),i.dispose(),r}if(!$y(e.dtype,t))return v.makeTensorFromDataId(e.dataId,e.shape,t);if(e.dtype==="complex64"){const n=s.real(e),i=G(n,t);return n.dispose(),i}if(t==="int32")return s.int(e);if(t==="bool"){const n=j(0,e.dtype),i=s.notEqual(e,n);return n.dispose(),i}else throw new Error(`Error in Cast: failed to cast ${e.dtype} to ${t}`)}function mW(e,t){return v.makeTensorFromDataId(e.dataId,t,e.dtype)}function fW(e,t,s){const n=(t-e)/(s-1),i=ai(s,"float32");i[0]=e;for(let r=1;r<i.length;r++)i[r]=i[r-1]+n;return Oe(i,"float32")}function yv(e,t,s){const n=new Array(e.rank).fill(0),i=e.shape.slice();return t.map(r=>{const o=[...i];o[s]=r;const a=he(e,n,o);return n[s]+=r,a})}function bv(e,t){const s=new Array(e.rank);for(let i=0;i<s.length;i++)s[i]=e.shape[i]*t[i];const n=ge(s,e.dtype);for(let i=0;i<n.values.length;++i){const r=n.indexToLoc(i),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=r[l]%e.shape[l];const a=e.locToIndex(o);n.values[i]=e.values[a]}return n.toTensor()}function wv(e,t,s,n,i){const r=t[t.length-1],[o,a]=[e.length/r,r],l=el(s,o*n),c=el("int32",o*n);for(let u=0;u<o;u++){const h=u*a,d=e.subarray(h,h+a),m=[];for(let w=0;w<d.length;w++)m.push({value:d[w],index:w});m.sort((w,x)=>x.value-w.value);const f=u*n,g=l.subarray(f,f+n),y=c.subarray(f,f+n);for(let w=0;w<n;w++)g[w]=m[w].value,y[w]=m[w].index}const p=t.slice();return p[p.length-1]=n,[ze(l,p,s),ze(c,p,"int32")]}const vt={};Ee(vt,{nonMaxSuppressionV3Impl:()=>_d,nonMaxSuppressionV4Impl:()=>kd,nonMaxSuppressionV5Impl:()=>Dd,split:()=>yv,tile:()=>bv,topkImpl:()=>wv,whereImpl:()=>Nd});const xv={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(e,mi(G(s,"float32"),-1))}}};const Lv={kernelName:dr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>{const n=xe(G(s,"float32")),i=Je(X(j(1),n));return ke(Z(e,i))}}}};const Sv={kernelName:mr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>{const n=Je(X(xe(G(s,"float32")),1));return Z(e,n)}}}};const Iv={kernelName:Zn,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t,i=Ie(s.shape,n.shape),r=()=>{let a=e;const l=Ke(s.shape,i);return l.length>0&&(a=te(a,l)),O(a,s.shape)},o=()=>{let a=e;const l=Ke(n.shape,i);return l.length>0&&(a=te(a,l)),O(a,n.shape)};return{a:r,b:o}}};const vv={kernelName:Mc,saveAllInputs:!0,gradFunc:(e,t)=>{const s={};return t.forEach((n,i)=>{s[i]=()=>e.clone()}),s}};const Tv={kernelName:Uc,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>re(s)}}};const Av={kernelName:$c,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>re(s)}}};const Nv={kernelName:fr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>Z(e,Je(X(j(1),xe(G(s,"float32")))))}}};const Cv={kernelName:gr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>{const n=Je($(j(1),xe(G(s,"float32"))));return Z(e,n)}}}};const Rv={kernelName:ko,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t,i=Ie(s.shape,n.shape),r=()=>{const a=$(xe(s),xe(n));let l=R(e,Z(n,a));const c=Ke(s.shape,i);return c.length>0&&(l=te(l,c)),O(l,s.shape)},o=()=>{const a=$(xe(s),xe(n));let l=ke(R(e,Z(s,a)));const c=Ke(n.shape,i);return c.length>0&&(l=te(l,c)),O(l,n.shape)};return{a:r,b:o}}};const Ov={kernelName:yr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>Z(e,$(xe(G(s,"float32")),1))}}};const Ev={kernelName:br,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>Z(e,X(j(1),xe(G(s,"float32"))))}}};function gW(e,t,s,n,i=[1,1,1],r,o){const a=b(e,"dy","avgPool3dBackprop"),l=b(t,"input","avgPool3dBackprop");let c=a,p=l,u=!1;l.rank===4&&(u=!0,c=O(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),p=O(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),I(c.rank===5,()=>`Error in avgPool3dBackprop: dy must be rank 5 but got rank ${c.rank}.`),I(p.rank===5,()=>`Error in avgPool3dBackprop: input must be rank 5 but got rank ${p.rank}.`),I(tt(n,i),()=>`Error in avgPool3dBackprop: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),o!=null&&I(De(r),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);const h=g=>{const y=Fi(p.shape,s,n,i,r,o);return g.avgPool3dBackprop(c,p,y)},d={dy:c,input:p},m={filterSize:s,strides:n,dilations:i,pad:r,dimRoundingMode:o},f=v.runKernelFunc(h,d,null,ny,m);return u?O(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}const _v=S({avgPool3dBackprop_:gW});const kv={kernelName:Wc,inputsToSave:["x"],gradFunc:(e,t,s)=>{const[n]=t,{filterSize:i,strides:r,dilations:o,pad:a,dimRoundingMode:l}=s,c=o??[1,1,1];return{x:()=>_v(e,n,i,r,c,a,l)}}};function yW(e,t,s,n,i){const r=b(e,"dy","avgPoolBackprop"),o=b(t,"input","avgPoolBackprop");I(o.rank===r.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${r.rank})`);let a=o,l=r,c=!1;o.rank===3&&(c=!0,a=O(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=O(r,[1,r.shape[0],r.shape[1],r.shape[2]])),I(l.rank===4,()=>`Error in avgPoolBackprop: dy must be rank 4 but got rank ${l.rank}.`),I(a.rank===4,()=>`Error in avgPoolBackprop: input must be rank 4 but got rank ${a.rank}.`);const p=m=>{const f=Wn(a.shape,s,n,1,i);return m.avgPoolBackprop(l,a,f)},u={dy:l,input:a},h={filterSize:s,strides:n,pad:i},d=v.runKernelFunc(p,u,null,Do,h);return c?O(d,[d.shape[1],d.shape[2],d.shape[3]]):d}const Dv=S({avgPoolBackprop_:yW});const Fv={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t,s)=>{const[n]=t,{filterSize:i,strides:r,pad:o}=s;return{x:()=>Dv(e,n,i,r,o)}}};const Mv={kernelName:zc,inputsToSave:["a","b"],gradFunc:(e,t,s)=>{const[n,i]=t,{transposeA:r,transposeB:o}=s;return!r&&!o?{a:()=>Te(e,i,!1,!0),b:()=>Te(n,e,!0,!1)}:!r&&o?{a:()=>Te(e,i,!1,!1),b:()=>Te(e,n,!0,!1)}:r&&!o?{a:()=>Te(i,e,!1,!0),b:()=>Te(n,e,!1,!1)}:{a:()=>Te(i,e,!0,!0),b:()=>Te(e,n,!0,!0)}}};const Uv={kernelName:Pc,gradFunc:(e,t,s)=>{const{blockShape:n,crops:i}=s;return{x:()=>Zr(e,n,i)}}};const $v={kernelName:Bc,gradFunc:(e,t,s)=>{const n=s,i=n.inputShape,r=n.shape,o=Array.from(r);for(let l=i.length-1;l>=0;l--)if(i[l]===r[l])o[l]=1;else if(i[l]!==1)throw new Error(`broadcastTo(): [${i}] cannot be broadcast to [${r}].`);const a=[];for(let l=0;l<o.length;l++)o[l]>1&&a.push(l);return{x:()=>te(e,a,!0)}}};const Wv={kernelName:Ai,gradFunc:e=>({x:()=>e.clone()})};const zv={kernelName:wr,gradFunc:e=>({x:()=>re(e)})};const Pv={kernelName:xr,inputsToSave:["x"],gradFunc:(e,t,s)=>{const[n]=t,{clipValueMin:i,clipValueMax:r}=s;return{x:()=>mt(Yt(ms(n,i),Ws(n,r)),e,re(e))}}};const Bv={kernelName:Fo,saveAllInputs:!0,gradFunc:(e,t,s)=>{const n=t.map(l=>l.shape),{axis:i}=s,r=Ne(i,t[0].shape)[0],o=n.map(l=>l[r]),a=Bt(e,o,r);return a.map(l=>()=>l)}};const jv={kernelName:Vc,inputsToSave:["x","filter"],gradFunc:(e,t,s)=>{const[n,i]=t,{dilations:r,strides:o,pad:a,dataFormat:l}=s;return I(Ks(r),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`),{x:()=>gl(n.shape,e,i,o,a,l),filter:()=>Fl(n,e,i.shape,o,a,l)}}};const Vv={kernelName:Gc,inputsToSave:["dy","filter"],gradFunc:(e,t,s)=>{const[n,i]=t,{strides:r,pad:o,dataFormat:a,dimRoundingMode:l}=s;return{dy:()=>rt(e,i,r,o,a,1,l),filter:()=>Fl(e,n,i.shape,r,o,a,l)}}};function bW(e,t,s,n,i){let r=e;e.rank===4&&(r=O(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=O(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),I(r.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${r.shape}.`),I(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),I(s.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${s}.`),I(r.shape[4]===s[3],()=>`Error in conv3dDerFilter: depth of input ${r.shape[4]}) must match input depth in filter (${s[3]}.`),I(o.shape[4]===s[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${s[4]}).`);const a=p=>{const u=1,h=Hr(r.shape,s,n,u,i);return p.conv3dDerFilter(r,o,h)},l={x:r,y:o},c={strides:n,pad:i};return v.runKernelFunc(a,l,null,ry,c)}const Gv=S({conv3DBackpropFilter_:bW});const qv={kernelName:qc,inputsToSave:["x","filter"],gradFunc:(e,t,s)=>{const{dilations:n,strides:i,pad:r}=s;I(Ks(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);const[o,a]=t;return{x:()=>sd(o.shape,e,a,i,r),filter:()=>Gv(o,e,a.shape,i,r)}}};const Hv={kernelName:Qn,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(ke(Ol(G(s,"float32"))),e)}}};const Yv={kernelName:Lr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(El(G(s,"float32")),e)}}};const Kv={kernelName:Hc,inputsToSave:["x"],gradFunc:(e,t,s)=>{const[n]=t,{axis:i,exclusive:r,reverse:o}=s;return{x:()=>{const a=dt([i],n.rank);let l=xl(e,i,r,!o);return a!=null&&(l=se(l,a)),l}}}};const Xv={kernelName:Yc,inputsToSave:["x","filter"],gradFunc:(e,t,s)=>{const{dilations:n,strides:i,pad:r,dimRoundingMode:o}=s,a=n??[1,1];I(Ks(a),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);const[l,c]=t;I(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),I(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),I(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),I(tt(i,a),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${a}'.`),o!=null&&I(De(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);const p=rs(l.shape,c.shape,i,a,r,o,!0);return{x:()=>Rd(l.shape,e,c,p),filter:()=>Cd(l,e,c.shape,p)}}};const Jv={kernelName:Mo,inputsToSave:["x","filter"],gradFunc:(e,t,s)=>{const[n,i]=t,r={x:n,filter:i,dy:e},o={x:n,filter:i,dy:e};return{x:()=>v.runKernel(qa,r,s),filter:()=>v.runKernel(Ha,o,s)}}};const Zv={kernelName:ei,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t,i=Ie(s.shape,n.shape),r=()=>{const a=Z(e,G(n,"float32")),l=Ke(s.shape,i);return l.length>0?O(te(a,l),s.shape):a},o=()=>{let a=R(e,G(s,"float32"));const l=Ke(n.shape,i);l.length>0&&(a=O(te(a,l),n.shape));const c=xe(n);return ke(Z(a,G(c,"float32")))};return{a:r,b:o}}};const Qv={kernelName:Sr,outputsToSave:[!0],gradFunc:(e,t)=>{const[s]=t,n=r=>r.eluDer(e,s),i={dy:e,y:s};return{x:()=>v.runKernelFunc(n,i,null,hy)}}};const eT={kernelName:Ir,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t,n=R(ut(ke(xe(s))),2/Math.sqrt(Math.PI));return{x:()=>R(e,n)}}};const tT={kernelName:vr,outputsToSave:[!0],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(e,s)}}};const sT={kernelName:Tr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(e,ut(s))}}};const nT={kernelName:Ar,gradFunc:e=>({x:()=>re(e)})};const iT={kernelName:Xc,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t,i=Ie(s.shape,n.shape),r=()=>{const a=Z(e,G(n,"float32")),l=Ke(s.shape,i);return l.length>0?O(te(a,l),s.shape):a},o=()=>{let a=R(e,G(s,"float32"));const l=Ke(n.shape,i);l.length>0&&(a=O(te(a,l),n.shape));const c=xe(n);return ke(Z(a,G(c,"float32")))};return{a:r,b:o}}};const rT={kernelName:Ni,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,s)=>{const{varianceEpsilon:n}=s,[i,r,o,a]=t,l=a??j(1),c=Ke(r.shape,i.shape),p=[];if(r.rank===1){for(let T=0;T<i.shape.length-1;++T)p.push(i.shape[T]);p.push(1)}const u=X(i,r),h=R(e,l),d=Cl($(o,j(n))),m=R(R(R(d,d),d),j(-.5)),f=()=>r.rank===1?O(R(R(e,$s(O(d,[1,1,1,r.shape[0]]),p)),l),i.shape):O(R(R(e,d),l),i.shape),g=()=>{let T=R(R(d,j(-1)),h);return r.rank===1&&(T=te(T,c)),O(T,r.shape)},y=()=>{let T=R(R(m,u),h);return r.rank===1&&(T=te(T,c)),O(T,r.shape)},w=()=>{const T=R(u,d);let A=R(e,T);return r.rank===1&&(A=te(A,c)),O(A,r.shape)},x=()=>{let T=e;return r.rank===1&&(T=te(T,c)),O(T,r.shape)};return{x:f,mean:g,variance:y,scale:w,offset:x}}};const lT={kernelName:Jc,inputsToSave:["x","indices"],gradFunc:(e,t,s)=>{const[n,i]=t,{axis:r}=s,o=Ne(r,n.shape)[0],a=()=>{const l=n.shape,c=i.size,p=l.slice(0,o),u=p.length,h=l.slice(r,l.length).slice(1),d=h.length,m=oT(0,u),f=oT(u+1,u+1+d),g=aT([p,[c],h]),y=O(e,g),w=O(i,[c]),x=aT([[u],m,f]),T=se(y,x);let A=Td(T,w,n.shape[o]);const _=Jo(x);return A=se(A,_),A};return{x:a,indices:()=>i}}};function oT(e,t){const s=[];for(let n=e;n<t;++n)s.push(n);return s}function aT(e){const t=[];for(let s=0;s<e.length;++s)for(let n=0;n<e[s].length;++n)t.push(e[s][n]);return t}const cT={kernelName:Zc,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t;return{a:()=>re(s),b:()=>re(n)}}};const pT={kernelName:Ci,gradFunc:e=>({x:()=>G(e,"float32")})};const uT={kernelName:Nr,gradFunc:e=>({x:()=>re(e)})};const hT={kernelName:Cr,gradFunc:e=>({x:()=>re(e)})};const dT={kernelName:Rr,gradFunc:e=>({x:()=>re(e)})};const mT={kernelName:Er,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>Z(e,$(s,1))}}};const fT={kernelName:Or,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>Z(e,G(s,"float32"))}}};const gT={kernelName:tp,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,s)=>{const[n]=t,{axis:i}=s;return{logits:()=>{const r=!0,o=ut(n);return X(e,R(te(e,i,r),o))}}}};function wW(e,t,s,n=5,i=1,r=1,o=.5){const a=p=>p.LRNGrad(s,e,t,n,i,r,o),l={x:e,y:t,dy:s},c={depthRadius:n,bias:i,alpha:r,beta:o};return v.runKernelFunc(a,l,null,Sy,c)}const yT=S({localResponseNormalizationBackprop_:wW});const bT={kernelName:sp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,s)=>{const[n,i]=t,{depthRadius:r,bias:o,alpha:a,beta:l}=s;return{x:()=>yT(n,i,e,r,o,a,l)}}};function Fd(e,t,s,n,i){return t.rank<s.rank&&(t=O(t,wt(t.shape,n))),e.rank<s.rank&&(e=O(e,wt(e.shape,n))),{x:()=>{const r=R(e,G(as(s,t),e.dtype));return i==null?r:se(r,i)}}}const Eb={kernelName:Ri,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,s)=>{const n=s,{reductionIndices:i}=n,[r,o]=t,a=Ne(i,r.shape),l=dt(a,r.rank),c=Fd(e,o,r,a,l);return{x:()=>{let p=c.x();return l!=null&&(p=se(p)),p}}}};const wT={kernelName:np,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t,i=()=>R(e,G(ms(s,n),"float32")),r=()=>R(e,G(Xr(s,n),"float32"));return{a:i,b:r}}};function xW(e,t,s,n,i,r=[1,1,1],o,a){const l=b(e,"dy","maxPool3dBackprop"),c=b(t,"input","maxPool3dBackprop"),p=b(s,"output","maxPool3dBackprop");let u=l,h=c,d=p,m=!1;c.rank===4&&(m=!0,u=O(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),h=O(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]]),d=O(p,[1,p.shape[0],p.shape[1],p.shape[2],p.shape[3]])),I(u.rank===5,()=>`Error in maxPool3dBackprop: dy must be rank 5 but got rank ${u.rank}.`),I(h.rank===5,()=>`Error in maxPool3dBackprop: input must be rank 5 but got rank ${h.rank}.`),I(d.rank===5,()=>`Error in maxPool3dBackprop: output must be rank 5 but got rank ${d.rank}.`),I(tt(i,r),()=>`Error in maxPool3dBackprop: Either strides or dilations must be 1. Got strides ${i} and dilations '${r}'`),a!=null&&I(De(o),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);const f=x=>{const T=Fi(h.shape,n,i,r,o,a);return x.maxPool3dBackprop(u,h,d,T)},g={dy:u,input:h,output:d},y={filterSize:n,strides:i,dilations:r,pad:o,dimRoundingMode:a},w=v.runKernelFunc(f,g,null,Iy,y);return m?O(w,[w.shape[1],w.shape[2],w.shape[3],w.shape[4]]):w}const xT=S({maxPool3dBackprop_:xW});const LT={kernelName:ip,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,s)=>{const[n,i]=t,{filterSize:r,strides:o,dilations:a,pad:l,dimRoundingMode:c}=s,p=a??[1,1,1];return{x:()=>xT(e,n,i,r,o,p,l,c)}}};function LW(e,t,s,n,i,r,o){const a=b(e,"dy","maxPoolBackprop"),l=b(t,"input","maxPoolBackprop"),c=b(s,"output","maxPoolBackprop");I(l.rank===a.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${a.rank})`),I(a.rank===4,()=>`Error in maxPoolBackprop: dy must be rank 4 but got rank ${a.rank}.`),I(l.rank===4,()=>`Error in maxPoolBackprop: input must be rank 4 but got rank ${l.rank}.`),o!=null&&I(De(r),()=>`Error in maxPoolBackprop: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);const p=d=>{const m=Wn(l.shape,n,i,1,r,o);return d.maxPoolBackprop(a,l,c,m)},u={dy:a,input:l,output:c},h={filterSize:n,strides:i,pad:r,dimRoundingMode:o};return v.runKernelFunc(p,u,null,$o,h)}const ST=S({maxPoolBackprop_:LW});const IT={kernelName:Oi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,s)=>{const[n,i]=t,{filterSize:r,strides:o,pad:a}=s;return{x:()=>ST(e,n,i,r,o,a)}}};const vT={kernelName:rp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,s)=>{const n=s,{axis:i}=n,[r,o]=t,a=Ne(i,r.shape),l=dt(a,r.rank),c=Fd(e,o,r,a,l);return{x:()=>{let p=c.x();return l!=null&&(p=se(p)),p}}}};const TT={kernelName:op,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t,i=()=>R(e,G(Ws(s,n),"float32")),r=()=>R(e,G(Ut(s,n),"float32"));return{a:i,b:r}}};const AT={kernelName:ap,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t,i=Ie(s.shape,n.shape),r=()=>{const a=Ke(s.shape,i);return a.length>0?O(te(e,a),s.shape):e},o=()=>{const a=R(e,ke(ui(Z(s,n)))),l=Ke(n.shape,i);return l.length>0?O(te(a,l),n.shape):a};return{a:r,b:o}}};const NT={kernelName:_r,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t,i=Ie(s.shape,n.shape),r=()=>{const a=R(e,G(n,"float32")),l=Ke(s.shape,i);return l.length>0?O(te(a,l),s.shape):a},o=()=>{const a=R(e,G(s,"float32")),l=Ke(n.shape,i);return l.length>0?O(te(a,l),n.shape):a};return{a:r,b:o}}};const CT={kernelName:lp,gradFunc:e=>({x:()=>ke(e)})};const RT={kernelName:up,inputsToSave:["indices"],gradFunc:(e,t)=>{const s=t[0];return{indices:()=>ye(s.shape,"float32")}}};const OT={kernelName:pp,gradFunc:e=>({x:()=>re(e)})};const _b={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t,s)=>{const n=t[0],{paddings:i}=s,r=i.map(o=>o[0]);return{x:()=>he(e,r,n.shape)}}};const ET={kernelName:hp,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{const[s,n,i]=t,r=s,o=n,a=Ie(r.shape,o.shape),l=()=>{const p=G(o,"float32");let u=R(e,R(p,es(r,X(p,j(1)))));const h=Ke(r.shape,a);return h.length>0&&(u=te(u,h)),O(u,r.shape)},c=()=>{const p=Ut(r,0),u=mt(p,zt(r),re(r));let h=R(e,R(i,u));const d=Ke(o.shape,a);return d.length>0&&(h=te(h,d)),O(h,o.shape)};return{a:l,b:c}}};const _T={kernelName:dp,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{const[s,n]=t,i=Ut(s,0);return{x:()=>mt(i,e,R(e,n)),alpha:()=>{let r=mt(i,re(e),R(e,s));const o=Ke(n.shape,e.shape);return o.length>0&&(r=te(r,o)),O(r,n.shape)}}}};const kT={kernelName:kr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>Z(e,ke(xe(s)))}}};const DT={kernelName:bp,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t,n=R(Ws(s,6),mi(s));return{x:()=>R(e,G(n,"float32"))}}};const FT={kernelName:fp,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(e,G(mi(s),"float32"))}}};const MT={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>O(e,s.shape)}}};const UT={kernelName:yp,inputsToSave:["images"],gradFunc:(e,t,s)=>{const[n]=t,i=a=>{const{alignCorners:l}=s;return a.resizeBilinearBackprop(e,n,l)},r={images:n},o=()=>v.runKernelFunc(i,r,null,Ny,s);return{images:o}}};const $T={kernelName:gp,inputsToSave:["images"],gradFunc:(e,t,s)=>{const[n]=t,i=a=>{const{alignCorners:l}=s;return a.resizeNearestNeighborBackprop(e,n,l)},r={images:n},o=()=>v.runKernelFunc(i,r,null,Ay,s);return{images:o}}};const WT={kernelName:wp,gradFunc:(e,t,s)=>{const{dims:n}=s,i=Ne(n,e.shape);return{x:()=>Et(e,i)}}};const zT={kernelName:Dr,gradFunc:e=>({x:()=>re(e)})};const PT={kernelName:Fr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>ke(Z(e,R(es(s,1.5),2)))}}};const BT={kernelName:xp,inputsToSave:["condition"],gradFunc:(e,t)=>{const[s]=t;return{condition:()=>G(re(s),"float32"),t:()=>R(e,G(s,e.dtype)),e:()=>R(e,G(Jr(s),e.dtype))}}};const jT={kernelName:Mr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>{const n=Ut(s,j(0)),i=j(Rb),r=j(Ob),o=R(e,r),a=R(R(e,i),ut(G(s,"float32")));return mt(n,o,a)}}}};const VT={kernelName:Wr,outputsToSave:[!0],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(e,R(s,X(j(1),s)))}}};const GT={kernelName:$r,gradFunc:e=>({x:()=>re(e)})};const qT={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(Kr(G(s,"float32")),e)}}};const HT={kernelName:Ur,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(wl(G(s,"float32")),e)}}};const YT={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t,s)=>{const[n]=t,{begin:i,size:r}=s,o=n.shape,[a,l]=jp(n,i,r),c=[];for(let p=0;p<e.rank;p++)c.push([a[p],o[p]-a[p]-l[p]]);return{x:()=>Pt(e,c)}}};const KT={kernelName:Ip,outputsToSave:[!0],gradFunc:(e,t,s)=>{const[n]=t,{dim:i}=s,r=!0,o=R(e,n);return{logits:()=>X(o,R(te(o,[i],r),n))}}};const XT={kernelName:zr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(e,os(s))}}};const kb={kernelName:Vo,gradFunc:(e,t,s)=>{const{blockShape:n,paddings:i}=s;return{x:()=>Yr(e,n,i)}}};const Db={kernelName:Sp,gradFunc:(e,t,s)=>{const{axis:n}=s;return{x:()=>be(e,n)}}};const JT={kernelName:Pr,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>Z(e,R(Je(G(s,"float32")),2))}}};const ZT={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(e,R(G(s,"float32"),2))}}};const QT={kernelName:si,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t,i=j(2),r=()=>R(e,R(i,X(s,n))),o=()=>R(e,R(i,X(n,s)));return{a:r,b:o}}};const eA={kernelName:Vr,gradFunc:e=>({x:()=>re(e)})};const tA={kernelName:Br,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[s,n]=t,i=Ie(s.shape,n.shape),r=()=>{let a=e;const l=Ke(s.shape,i);return l.length>0&&(a=te(a,l)),O(a,s.shape)},o=()=>{let a=e;const l=Ke(n.shape,i);return l.length>0&&(a=te(a,l)),O(ke(a),n.shape)};return{a:r,b:o}}};const sA={kernelName:Lp,inputsToSave:["x"],gradFunc:(e,t,s)=>{const[n]=t,i=n.shape.slice(),{axis:r}=s,o=Ne(r,n.shape);o.forEach(c=>{i[c]=1});const a=O(e,i),l=R(a,Kt(n.shape,"float32"));return{x:()=>l}}};const nA={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t)=>{const[s]=t;return{x:()=>Z(e,xe(Kr(s)))}}};const iA={kernelName:jr,outputsToSave:[!0],gradFunc:(e,t)=>{const[s]=t;return{x:()=>R(X(j(1),xe(s)),e)}}};const rA={kernelName:vp,inputsToSave:["x"],gradFunc:(e,t,s)=>{const[n]=t,{reps:i}=s,r=()=>{let o=re(n);if(n.rank===1)for(let a=0;a<i[0];++a)o=$(o,he(e,[a*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let a=0;a<i[0];++a)for(let l=0;l<i[1];++l)o=$(o,he(e,[a*n.shape[0],l*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let a=0;a<i[0];++a)for(let l=0;l<i[1];++l)for(let c=0;c<i[2];++c)o=$(o,he(e,[a*n.shape[0],l*n.shape[1],c*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let a=0;a<i[0];++a)for(let l=0;l<i[1];++l)for(let c=0;c<i[2];++c)for(let p=0;p<i[3];++p)o=$(o,he(e,[a*n.shape[0],l*n.shape[1],c*n.shape[2],p*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return o};return{x:r}}};const oA={kernelName:_i,gradFunc:(e,t,s)=>{const n=s,{perm:i}=n,r=Jo(i);return{x:()=>se(e,r)}}};const aA={kernelName:Tp,gradFunc:(e,t,s)=>{const n=s,{axis:i}=n;return{value:()=>Ge(e,i)}}};const lA={kernelName:Ap,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{const[s]=t,n=()=>SW(e,s);return{x:n}}};function SW(e,t){const s=Ht(t,re(t)),n=hi(e,s);let i=ms(t,j(0,"int32"));const r=n.rank-i.rank;for(let a=0;a<r;++a)i=Mt(i,a+1);i=Yt(i,Kt(n.shape,"bool"));const o=re(n);return mt(i,n,o)}const cA={kernelName:Np,gradFunc:e=>({x:()=>re(e)})};const IW=[xv,Lv,Sv,Iv,vv,Tv,Av,Nv,Cv,Rv,Ov,Ev,kv,Fv,Mv,Uv,$v,Wv,zv,Pv,Bv,Vv,jv,qv,Hv,Yv,Kv,Xv,Jv,Zv,Qv,eT,tT,sT,iT,nT,rT,lT,cT,pT,uT,hT,dT,mT,fT,gT,bT,Eb,Eb,wT,LT,IT,vT,TT,AT,NT,CT,RT,OT,_b,_b,ET,_T,kT,DT,FT,MT,UT,$T,WT,zT,PT,BT,jT,VT,GT,qT,HT,YT,KT,XT,kb,kb,Db,Db,JT,QT,ZT,eA,tA,sA,nA,iA,rA,oA,aA,lA,cA];for(const e of IW)ky(e);let Fb;function Tt(){return Fb==null&&(Fb=mb().epsilon()),Fb}function ys(){return"channelsLast"}class Sn extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Sn.prototype)}}class Ns extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ns.prototype)}}class k extends Error{constructor(e){super(e);Object.setPrototypeOf(this,k.prototype)}}class ae extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ae.prototype)}}class Mb extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Mb.prototype)}}class vW extends Error{constructor(e){super(e);Object.setPrototypeOf(this,vW.prototype)}}function In(e,t){if(Array.isArray(e)){let s=[];for(let n=0;n<t;n++)s=s.concat(e);return s}else{const s=new Array(t);return s.fill(e),s}}function tn(e,t){if(!e)throw new Mb(t)}function Ub(e,t){let s=0;for(const n of e)n===t&&s++;return s}function jt(e){return e.length===1?e[0]:e}function He(e){return Array.isArray(e)?e:[e]}function vn(e){const t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2"),s=t.replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return s[0]!=="_"?s:"private"+s}function Pi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,s)=>s.toUpperCase())}let Tn={};function Ml(e){if(e==null)return null;const t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function $b(e){if(e==null||typeof e!="object")return;if(Array.isArray(e))e.forEach(t=>$b(t));else{const t=Object.keys(e);for(const s of t){const n=e[s];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?e[s]=n.value:$b(n))}}}function fi(e,t={},s={},n="object",i=!1){if(typeof e=="string"){const r=e;let o;if(r in s)o=s[r];else if(r in Tn)o=Tn[r];else if(o=t[r],o==null)throw new k(`Unknown ${n}: ${e}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{const r=e;if(r.className==null||r.config==null)throw new k(`${n}: Improper config format: ${JSON.stringify(r)}.
'className' and 'config' must set.`);const o=r.className;let a,l;if(o in s?[a,l]=s[o]:o in Tn?[a,l]=Tn.className:o in t&&([a,l]=t[o]),a==null)throw new k(`Unknown ${n}: ${o}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){const c={};for(const d of Object.keys(Tn))c[d]=Tn[d];for(const d of Object.keys(s))c[d]=s[d];const p=r.config;p.customObjects=c;const u=Object.assign({},Tn);for(const d of Object.keys(s))Tn[d]=s[d];$b(r.config);const h=l(a,r.config,s,i);return Tn=Object.assign({},u),h}else{const c=Object.assign({},Tn);for(const u of Object.keys(s))Tn[u]=s[u];const p=new a(r.config);return Tn=Object.assign({},c),p}}}function TW(e,t){return e<t?-1:e>t?1:0}function Qp(e,t){return-1*TW(e,t)}function An(e){if(e==null)return e;const t=[];for(const s of e)t.indexOf(s)===-1&&t.push(s);return t}function pA(e){if(e==null)throw new k(`Invalid value in obj: ${JSON.stringify(e)}`);for(const t in e)if(e.hasOwnProperty(t))return!1;return!0}function Bi(e,t,s){if(s==null)return;if(e.indexOf(s)<0)throw new k(`${s} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Md(e,t,s=0,n=Infinity){return tn(s>=0),tn(n>=s),Array.isArray(e)&&e.length>=s&&e.length<=n&&e.every(i=>typeof i===t)}function yt(e,t){Array.isArray(e)?(N.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((s,n)=>yt(s,`element ${n+1} of ${t}`))):N.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${uA(e)}.`)}function uA(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>uA(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function hA(e,t){let s=N.now(),n;const i=(...r)=>{const o=N.now();return o-s<t||(s=o,n=e(...r)),n};return i}function Ud(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function Wb(e,t){return C(()=>Je(te(R(e,e),t,!0)))}class eu extends V.Serializable{getConfig(){return{}}}class $d extends eu{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return C(()=>{const t=Wb(e,this.axis),s=xt(t,0,this.maxValue);return R(e,Z(s,$(Tt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}}$d.className="MaxNorm";V.registerClass($d);class Wd extends eu{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return C(()=>Z(e,$(Tt(),Wb(e,this.axis))))}getConfig(){return{axis:this.axis}}}Wd.className="UnitNorm";V.registerClass(Wd);class zd extends eu{apply(e){return Fe(e)}}zd.className="NonNeg";V.registerClass(zd);class Pd extends eu{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return C(()=>{const t=Wb(e,this.axis),s=$(R(this.rate,xt(t,this.minValue,this.maxValue)),R(1-this.rate,t));return R(e,Z(s,$(Tt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}}Pd.className="MinMaxNorm";V.registerClass(Pd);const dA={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function ot(e){return Ml(e)}function mA(e,t={}){return fi(e,V.SerializationMap.getMap().classNameMap,t,"constraint")}function at(e){if(e==null)return null;if(typeof e=="string"){const t=e in dA?dA[e]:e,s={className:t,config:{}};return mA(s)}else return e instanceof eu?e:mA(e)}const zb={};Ee(zb,{maxNorm:()=>AW,minMaxNorm:()=>RW,nonNeg:()=>CW,unitNorm:()=>NW});function AW(e){return new $d(e)}function NW(e){return new Wd(e)}function CW(){return new zd}function RW(e){return new Pd(e)}const fA=["channelsFirst","channelsLast"],gA=["valid","same","causal"],yA=["max","avg"],bA=["sum","mul","concat","ave"];const Ul=new Map;function lt(e){Bi(fA,"DataFormat",e)}function bs(e){Bi(gA,"PaddingMode",e)}function Pb(e){Bi(yA,"PoolMode",e)}const tu=[],wA="/";function zn(e,t){tu.push(e);try{const s=t();return tu.pop(),s}catch(s){throw tu.pop(),s}}function OW(){return tu.length===0?"":tu.join(wA)+wA}function Bd(e){if(!xA(e))throw new Error("Not a valid tensor name: '"+e+"'");return OW()+e}function jd(e){if(!xA(e))throw new Error("Not a valid tensor name: '"+e+"'");Ul.has(e)||Ul.set(e,0);const t=Ul.get(e);if(Ul.set(e,Ul.get(e)+1),t>0){const s=`${e}_${t}`;return Ul.set(s,1),s}else return e}const EW=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function xA(e){return!!e.match(EW)}function LA(e){return e===parseInt(e.toString(),10)}function Nn(e,t,s){t==null&&(t=0),s==null&&(s=e.length);let n=1;for(let i=t;i<s;++i)n*=e[i];return n}function SA(e){return e=Array.isArray(e)?new Float32Array(e):e,Oe(e)}function fa(e){return Ui(SA(e)).dataSync()[0]}function Pn(e){return Lt(SA(e)).dataSync()[0]}function cs(e,t){if(t<e)throw new k(`end (${t}) < begin (${e}) is forbidden.`);const s=[];for(let n=e;n<t;++n)s.push(n);return s}function ji(e,t){return e.asType(t)}function Vi(e,t=-1){const s=e.shape.slice();return t<0&&(t=s.length+t+1),s.splice(t,0,1),e.reshape(s)}function IA(e,t){return C(()=>{if(e.shape.length!==2)throw new k(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);const s=Vi(e,1);return Vd(s,[1,t,1])})}function vA(e){const t=[Nn(e.shape)];return e.reshape(t)}function TA(e){if(e.rank<=1)throw new k(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);const t=[e.shape[0],Nn(e.shape,1)];return e.reshape(t)}function Gi(e,t,s){return C(()=>{switch(e.rank){case 1:return _l(e,t,s);case 2:return Hp(e,[t,0],[s,e.shape[1]]);case 3:return to(e,[t,0,0],[s,e.shape[1],e.shape[2]]);case 4:return ia(e,[t,0,0,0],[s,e.shape[1],e.shape[2],e.shape[3]]);case 5:return he(e,[t,0,0,0,0],[s,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return he(e,[t,0,0,0,0,0],[s,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new k(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Bb(e,t,s){return C(()=>{switch(e.rank){case 1:return _l(e,t,s);case 2:return Hp(e,[0,t],[e.shape[0],s]);case 3:return to(e,[0,0,t],[e.shape[0],e.shape[1],s]);case 4:return ia(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],s]);default:throw new k(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function su(e,t,s,n){return C(()=>{switch(e.rank){case 1:return _l(e,t,s);case 2:switch(n){case 1:return Gi(e,t,s);case 2:return Bb(e,t,s);default:throw new k(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return Gi(e,t,s);case 2:return to(e,[0,t,0],[e.shape[0],s,e.shape[2]]);case 3:return Bb(e,t,s);default:throw new k(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return Gi(e,t,s);case 2:return ia(e,[0,t,0,0],[e.shape[0],s,e.shape[2],e.shape[3]]);case 3:return ia(e,[0,0,t,0],[e.shape[0],e.shape[1],s,e.shape[3]]);case 4:return Bb(e,t,s);default:throw new k(`The axis is not within the rank of the tensor ${n}`)}default:throw new k(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function $l(e,t=-1){let s;return t<0&&(s=e[0].rank,s!==0?t=s:t=0),t===e[0].rank&&(t=-1),be(e,t)}function jb(e,t){switch(e.rank){case 1:return Zh([e,t]);case 2:return Qh([e,t],0);case 3:return ed([e,t],0);case 4:return td([e,t],0);default:throw new k(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Vd(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new k(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return $s(e,t)}function Wl(e,t=0,s=1,n,i){return qp(e,t,s,n,i)}function Cn(e,t,s,n){if(e.rank<2||t.rank<2)throw new ae(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){const i=e.shape.slice(-1)[0],r=t.shape.slice(-2)[0];if(i!==r)throw new ae(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){const i=!1,r=!1;return xn.matMul({a:e,b:t,transposeA:i,transposeB:r,bias:n?Vb(e.rank,n,ys()):null,activation:s})}else{const i=e.shape.slice(),r=i.pop();e=e.reshape([-1,r]);const o=t.shape.slice(),a=o.pop(),l=o.pop(),c=[...o,a],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(p).reshape([l,-1]);const u=[...i,...c],h=!1,d=!1;return xn.matMul({a:e,b:t,transposeA:h,transposeB:d,bias:n?Vb(e.rank,n,ys()):null,activation:s}).reshape(u)}}function Gd(e,t,s){return C(()=>(Array.isArray(t)?t=Oe(t,"int32"):t=t.toInt(),hi(e,t,s)))}function ga(e){return R(e,e)}function Vb(e,t,s){const n=t.shape;if(t.rank!==1&&t.rank!==e)throw new k(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(s==="channelsFirst")return n.length===1?t.reshape([1,n[0],1,1,1]):t.reshape([1,n[3],n[0],n[1],n[2]]);if(s==="channelsLast")return n.length===1?t.reshape([1,1,1,1,n[0]]):t.reshape([1].concat(n))}else if(e===4){if(s==="channelsFirst")return n.length===1?t.reshape([1,n[0],1,1]):t.reshape([1,n[2],n[0],n[1]]);if(s==="channelsLast")return n.length===1?t.reshape([1,1,1,n[0]]):t.reshape([1].concat(n))}else if(e===3){if(s==="channelsFirst")return n.length===1?t.reshape([1,n[0],1]):t.reshape([1,n[1],n[0]]);if(s==="channelsLast")return n.length===1?t.reshape([1,1,n[0]]):t.reshape([1].concat(n))}else if(e<3)return t;throw new k(`Unsupported input rank by biasAdd: ${t.rank}`)}function Cs(e,t,s){return C(()=>(s==null&&(s=ys()),lt(s),e.add(Vb(e.rank,t,s))))}function AA(e,t=1){if(t!==1)throw new ae(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return gn(e)}function NA(e){return C(()=>Z(e,et(e).add(1)))}function qd(e,t,s,n){return C(()=>Tb(e,t,s,n))}function CA(e){return C(()=>{const t=$(.5,R(.2,e));return xt(t,0,1)})}function lo(e,t,s=!1){return s?e():t()}const RA=["fanIn","fanOut","fanAvg"],OA=["normal","uniform","truncatedNormal"];function _W(e){Bi(RA,"FanMode",e)}function kW(e){Bi(OA,"Distribution",e)}class zs extends V.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}}class Hd extends zs{apply(e,t){return ye(e,t)}}Hd.className="Zeros";V.registerClass(Hd);class zl extends zs{apply(e,t){return Kt(e,t)}}zl.className="Ones";V.registerClass(zl);class Yd extends zs{constructor(e){super();if(typeof e!="object")throw new k(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new k(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return C(()=>R(j(this.value),Kt(e,t)))}getConfig(){return{value:this.value}}}Yd.className="Constant";V.registerClass(Yd);class Kd extends zs{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return wn(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}}Kd.className="RandomUniform";V.registerClass(Kd);class Xd extends zs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ae(`randomNormal does not support dType ${t}.`);return Wl(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}}Xd.className="RandomNormal";V.registerClass(Xd);class Jd extends zs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ae(`truncatedNormal does not support dType ${t}.`);return ro(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}}Jd.className="TruncatedNormal";V.registerClass(Jd);class Zd extends zs{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return C(()=>{if(e.length!==2||e[0]!==e[1])throw new k("Identity matrix initializer can only be used for 2D square matrices.");return R(this.gain,sa(e[0]))})}getConfig(){return{gain:this.gain}}}Zd.className="Identity";V.registerClass(Zd);function DW(e,t="channelsLast"){let s,n;if(lt(t),e.length===2)s=e[0],n=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){const i=Nn(e,2);s=e[1]*i,n=e[0]*i}else if(t==="channelsLast"){const i=Nn(e,0,e.length-2);s=e[e.length-2]*i,n=e[e.length-1]*i}}else{const i=Nn(e);s=Math.sqrt(i),n=Math.sqrt(i)}return[s,n]}class ws extends zs{constructor(e){super();if(e.scale<0)throw new k(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,_W(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,kW(this.distribution),this.seed=e.seed}apply(e,t){const s=DW(e),n=s[0],i=s[1];let r=this.scale;if(this.mode==="fanIn"?r/=Math.max(1,n):this.mode==="fanOut"?r/=Math.max(1,i):r/=Math.max(1,(n+i)/2),this.distribution==="normal"){const o=Math.sqrt(r);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ae(`${this.getClassName()} does not support dType ${t}.`);return ro(e,0,o,t,this.seed)}else{const o=Math.sqrt(3*r);return wn(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}}ws.className="VarianceScaling";V.registerClass(ws);class nu extends ws{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ws.className}}nu.className="GlorotUniform";V.registerClass(nu);class iu extends ws{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ws.className}}iu.className="GlorotNormal";V.registerClass(iu);class ru extends ws{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ws.className}}ru.className="HeNormal";V.registerClass(ru);class ou extends ws{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ws.className}}ou.className="HeUniform";V.registerClass(ou);class au extends ws{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ws.className}}au.className="LeCunNormal";V.registerClass(au);class lu extends ws{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ws.className}}lu.className="LeCunNormal";V.registerClass(lu);class Qd extends zs{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new ae("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return C(()=>{if(e.length<2)throw new ae("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);const s=e[0]>e[1]?[e[1],e[0]]:e,n=Wl(s,0,1,"float32");let i=Cb.gramSchmidt(n);return e[0]>e[1]&&(i=i.transpose()),R(this.gain,i)})}getConfig(){return{gain:this.gain,seed:this.seed}}}Qd.className="Orthogonal";V.registerClass(Qd);const EA={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function _A(e,t={}){return fi(e,V.SerializationMap.getMap().classNameMap,t,"initializer")}function Ze(e){return Ml(e)}function je(e){if(typeof e=="string"){const t=e in EA?EA[e]:e;if(t==="GlorotNormal")return new iu;if(t==="GlorotUniform")return new nu;if(t==="HeNormal")return new ru;if(t==="HeUniform")return new ou;if(t==="LeCunNormal")return new au;if(t==="LeCunUniform")return new lu;{const s={};return s.className=t,s.config={},_A(s)}}else return e instanceof zs?e:_A(e)}const Gb={};Ee(Gb,{constant:()=>UW,glorotNormal:()=>VW,glorotUniform:()=>jW,heNormal:()=>GW,heUniform:()=>qW,identity:()=>PW,leCunNormal:()=>HW,leCunUniform:()=>YW,ones:()=>MW,orthogonal:()=>KW,randomNormal:()=>WW,randomUniform:()=>$W,truncatedNormal:()=>zW,varianceScaling:()=>BW,zeros:()=>FW});function FW(){return new Hd}function MW(){return new zl}function UW(e){return new Yd(e)}function $W(e){return new Kd(e)}function WW(e){return new Xd(e)}function zW(e){return new Jd(e)}function PW(e){return new Zd(e)}function BW(e){return new ws(e)}function jW(e){return new nu(e)}function VW(e){return new iu(e)}function GW(e){return new ru(e)}function qW(e){return new ou(e)}function HW(e){return new au(e)}function YW(e){return new lu(e)}function KW(e){return new Qd(e)}let XW=0;function em(){return XW++}const tm={};function co(e=""){return e in tm||(tm[e]=0),tm[e]+=1,e+tm[e].toString()}function sm(e){return Array.isArray(e)&&Array.isArray(e[0])}function Pl(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function we(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new k(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function Ue(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new k(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Bl(e){let t=0;for(const s of e)s.shape.length===0?t+=1:t+=s.shape.reduce((n,i)=>n*i);return t}const kA="Variable";class nm{constructor(e,t="float32",s=kA,n=!0,i=null){this.dtype=t??"float32",this.shape=e.shape,this.id=em(),s=s??kA,this.originalName=Bd(s),this.name=jd(this.originalName),this.trainable_=n,this.constraint=i,this.val=Ad(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),JW(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}}function JW(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function cu(e){return e.map(t=>t.read())}function jl(e){e.forEach(t=>{const s=t[0];s.write(t[1])})}class st{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}}class xs{constructor(e,t,s,n,i,r,o){this.dtype=e,this.shape=t,this.sourceLayer=s,this.inputs=n,this.callArgs=i,this.outputTensorIndex=o,this.id=em(),r!=null&&(this.originalName=Bd(r),this.name=jd(this.originalName)),this.rank=t.length}}let ZW=0;class ya{constructor(e,t){this.callArgs=t,this.id=ZW++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(const s of e.inboundLayers)s!=null&&s.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){const e=[];for(const t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}}let QW=0;class Le extends V.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=QW++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){const s=this.getClassName();t=vn(s)+"_"+co(s)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let s;if(e.batchInputShape!=null)s=e.batchInputShape;else if(e.inputShape!=null){let i=null;e.batchSize!=null&&(i=e.batchSize),s=[i].concat(e.inputShape)}this.batchInputShape=s;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ns(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new k(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return jt(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return jt(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Sn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Sn(`Layer ${this.name} is not connected, no input to return.`);return jt(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Sn(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Sn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return jt(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=He(e),this.inputSpec==null||this.inputSpec.length===0)return;const t=He(this.inputSpec);if(e.length!==t.length)throw new k(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let s=0;s<e.length;s++){const n=e[s],i=t[s];if(i==null)continue;const r=n.rank;if(i.ndim!=null&&r!==i.ndim)throw new k(`Input ${s} is incompatible with layer ${this.name}: expected ndim=${i.ndim}, found ndim=${r}`);if(i.maxNDim!=null&&r>i.maxNDim)throw new k(`Input ${s} is incompatible with layer ${this.name}: expected max_ndim=${i.maxNDim}, found ndim=${r}`);if(i.minNDim!=null&&r<i.minNDim)throw new k(`Input ${s} is incompatible with layer ${this.name}: expected min_ndim=${i.minNDim}, found ndim=${r}.`);if(i.dtype!=null&&n.dtype!==i.dtype)throw new k(`Input ${s} is incompatible with layer ${this.name} : expected dtype=${i.dtype}, found dtype=${n.dtype}.`);if(i.axes){const o=n.shape;for(const a in i.axes){const l=Number(a),c=i.axes[a],p=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(p)===-1)throw new k(`Input ${s} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(i.shape!=null)for(let o=0;o<i.shape.length;++o){const a=i.shape[o],l=n.shape[o];if(a!=null&&l!=null&&a!==l)throw new k(`Input ${s} is incompatible with layer ${this.name}: expected shape=${i.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();const s=He(e);let n=!0;for(const r of s)if(!(r instanceof xs)){n=!1;break}let i=!0;for(const r of s)if(r instanceof xs){i=!1;break}if(n===i)throw new k("Arguments to apply() must be all SymbolicTensors or all Tensors");return zn(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);const r=[];for(const o of He(e))r.push(o.shape);this.build(jt(r)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&i&&(this._refCount=1)}if(this.assertInputCompatibility(e),i){let r=this.call(e,t);const o=He(r),a=[];for(let l of o)s.indexOf(l)!==-1&&(l=l.clone()),a.push(l);if(r=jt(a),this.activityRegularizer!=null)throw new ae("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return r}else{const r=ez(e),o=this.computeOutputShape(r);let a;const l=tz(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?r[0]:r),o!=null&&o.length>0&&Array.isArray(o[0])?a=o.map((c,p)=>new xs(l,c,this,He(e),t,this.name,p)):a=new xs(l,o,this,He(e),t,this.name),this.addInboundNode(e,a,null,null,r,o,t),this._refCount++,this.activityRegularizer!=null)throw new ae("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape==null)return;if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((s,n)=>{s!=null&&e[n]!=null&&e[n]!==s&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Sn(`The layer ${this.name} has never been called and thus has no defined output shape.`);const e=[];for(const t of this.inboundNodes){const s=JSON.stringify(t.outputShapes);e.indexOf(s)===-1&&e.push(s)}if(e.length===1){const t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Sn(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ns(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Bl(this.weights)}build(e){this.built=!0}getWeights(e=!1){return cu(e?this.trainableWeights:this.weights)}setWeights(e){C(()=>{const t=this.weights;if(t.length!==e.length)throw new k(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;const s=[],n=cu(t);for(let i=0;i<n.length;++i){const r=n[i],o=t[i],a=e[i];if(!N.arraysEqual(r.shape,a.shape))throw new k(`Layer weight shape ${r.shape} not compatible with provided weight shape ${a.shape}`);s.push([o,a])}jl(s)})}addWeight(e,t,s,n,i,r,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new k(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),s==null&&(s="float32"),this.fastWeightInitDuringBuild&&(n=je("zeros"));const a=n.apply(t,s),l=new nm(a,s,e,r,o);return a.dispose(),i!=null&&this.addLoss(()=>i.apply(l.read())),r==null&&(r=!0),r?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){if(e==null||Array.isArray(e)&&e.length===0)return;e=He(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e)}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(s=>{if(s!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,s,n,i,r,o=null){const a=He(e);t=He(t),s=He(s),n=He(n),i=Pl(i),r=Pl(r);const l=[],c=[],p=[];for(const u of a)l.push(u.sourceLayer),c.push(u.nodeIndex),p.push(u.tensorIndex);new ya({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:p,inputTensors:a,outputTensors:t,inputMasks:s,outputMasks:n,inputShapes:i,outputShapes:r},o);for(let u=0;u<t.length;u++)t[u].sourceLayer=this,t[u].nodeIndex=this.inboundNodes.length-1,t[u].tensorIndex=u}getConfig(){const e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}}function ez(e){e=He(e);const t=[];for(const s of e)t.push(s.shape);return jt(t)}function tz(e){return"float32"}function qb(e,t,s){if((t==null||s!=null&&s>0)&&(t=e.sourceLayer,s=e.nodeIndex),t.inboundNodes.length===0)return[e];{const n=t.inboundNodes[s];if(n.inboundLayers.length===0)return n.inputTensors;{const i=[];for(let r=0;r<n.inboundLayers.length;r++){const o=n.inputTensors[r],a=n.inboundLayers[r],l=n.nodeIndices[r],c=qb(o,a,l);for(const p of c)i.indexOf(p)===-1&&i.push(p)}return i}}}class qi extends Le{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:co("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new k("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new k("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new k("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");const s=e.dtype||"float32";this.batchInputShape=t,this.dtype=s,this.inputSpec=[{shape:t}];const n=new xs(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new ya({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new k(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}}qi.className="InputLayer";V.registerClass(qi);function im(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new k("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let s=e.dtype;s==null&&(s="float32");const n=new qi({batchInputShape:t,name:e.name,dtype:s,sparse:e.sparse}),i=n.inboundNodes[0].outputTensors;return i[0]}async function gi(e){if(e==null)return;const t=[],s=[],n=[];for(const i in e){const r=e[i];if(typeof r!="number"){const o=r;t.push(o.data()),s.push(i),n.push(o)}}if(t.length>0){const i=await Promise.all(t);for(let r=0;r<i.length;++r)e[s[r]]=i[r][0];ce(n)}}function rm(e){if(e==null)return;for(const t in e){const s=e[t];typeof s!="number"&&s.dispose()}}var DA;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(DA||(DA={}));const sz=125;class ba{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}}class Hb{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(const t of this.callbacks)t.setParams(e)}setModel(e){for(const t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(const s of this.callbacks)await s.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(const s of this.callbacks)await s.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(const s of this.callbacks)await s.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(const s of this.callbacks)await s.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(const t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(const t of this.callbacks)await t.onTrainEnd(e)}}class nz extends ba{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});const s=t.size==null?0:t.size;this.seen+=s;for(const n in t){const i=t[n];if(typeof i=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+i*s;else{let r;n in this.totals?r=this.totals[n]:this.totals[n]=0;const o=C(()=>$(this.totals[n],R(i,s)));this.totals[n]=o,r!=null&&r.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(const s of this.params.metrics){if(this.totals[s]==null)continue;typeof this.totals[s]=="number"?t[s]=this.totals[s]/this.seen:C(()=>{const n=R(Z(1,this.seen),this.totals[s]);t[s]=n,this.totals[s].dispose(),pt(t[s])})}}}class Yb extends ba{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(const s in t)this.history[s]==null&&(this.history[s]=[]),this.history[s].push(t[s])}async syncData(){const e=[],t=[],s=[];for(const i in this.history){const r=this.history[i];for(let o=0;o<r.length;++o)if(typeof r[o]!="number"){const a=r[o];e.push(a.data()),t.push(i),s.push(o)}}const n=await Promise.all(e);for(let i=0;i<n.length;++i){const r=this.history[t[i]][s[i]];r.dispose(),this.history[t[i]][s[i]]=n[i][0]}}}class Kb extends ba{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=sz),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");N.isNumber(this.yieldEvery)&&(this.maybeWait=hA(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,s){const n=[];this.yield!=null&&(await gi(s),n.push(this.yield(e,t,s))),n.push(Zp()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await gi(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){const s=[];this.epochEnd!=null&&(await gi(t),s.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&s.push(Zp()),await Promise.all(s)}async onBatchBegin(e,t){this.batchBegin!=null&&(await gi(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){const s=[];this.batchEnd!=null&&(await gi(t),s.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?s.push(Zp()):N.isNumber(this.yieldEvery)&&s.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(s)}async onTrainBegin(e){this.trainBegin!=null&&(await gi(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await gi(e),await this.trainEnd(e))}}function om(e,t){if(e==null&&(e={}),e instanceof ba)return[e];if(Array.isArray(e)&&e[0]instanceof ba)return e;const s=He(e);return s.map(n=>new Kb(n,t))}class sn{constructor(){}static registerCallbackConstructor(e,t){N.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),sn.checkForDuplicate(t),sn.constructors[e]==null&&(sn.constructors[e]=[]),sn.constructors[e].push(t)}static checkForDuplicate(e){for(const t in sn.constructors){const s=sn.constructors[+t];s.forEach(n=>{if(n===e)throw new k("Duplicate callback constructor.")})}}static clear(){sn.constructors={}}static createCallbacks(e){const t=[];for(const s in sn.constructors){const n=+s;e>=n&&t.push(...sn.constructors[n])}return t.map(s=>new s)}}sn.constructors={};function am(e,t,s,n,i,r,o,a,l){const c=new Yb,p=[new nz,...sn.createCallbacks(t)];e!=null&&p.push(...e),p.push(c);const u=new Hb(p);return u.setParams({epochs:s,initialEpoch:n,samples:i,steps:r,batchSize:o,verbose:t,doValidation:a,metrics:l}),{callbackList:u,history:c}}function Ls(e,t={},s=!1){return fi(e,V.SerializationMap.getMap().classNameMap,t,"layer",s)}function pu(e,t){return C(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));const s=te(ga(e),t,!0),n=Wt(s.shape,Tt()),i=Je(Ht(s,n));return Z(e,i)})}function yi(e,t){return C(()=>Xe(ga(X(t,e)),-1))}function Vl(e,t){return C(()=>Xe(et(X(t,e)),-1))}function po(e,t){return C(()=>{const s=X(e,t),n=xt(et(e),Tt(),Number.MAX_VALUE),i=et(Z(s,n));return R(100,Xe(i,-1))})}function iz(e,t){return C(()=>{const s=xt(t,Tt(),Number.MAX_VALUE),n=zt($(1,s)),i=xt(e,Tt(),Number.MAX_VALUE),r=zt($(1,i));return Xe(ga(X(n,r)),-1)})}function rz(e,t){return C(()=>{const s=Ht(0,X(1,R(e,t)));return Xe(ga(s),-1)})}function oz(e,t){return C(()=>{const s=Ht(0,X(1,R(e,t)));return Xe(s,-1)})}function az(e,t){return C(()=>{const s=te(R(e,t),-1),n=Lt(R(X(1,e),t),-1);return Ht(0,$(1,X(n,s)))})}function lz(e,t){return C(()=>{const s=Math.log(2),n=X(t,e),i=X($(n,di(R(-2,n))),s);return Xe(i,-1)})}function wa(e,t,s=!1){return C(()=>{if(s)t=ts(t);else{const n=te(t,t.shape.length-1,!0);t=Z(t,n)}return t=xt(t,Tt(),1-Tt()),ke(te(R(e.toFloat(),zt(t)),t.shape.length-1))})}function Gl(e,t,s=!1){return C(()=>{const n=ui(vA(e)).toInt();t=xt(t,Tt(),1-Tt());const i=t.shape,r=pi(n,i[i.length-1]).reshape(i);return wa(r,t,s)})}function cz(e,t){if(!N.arraysEqual(e.shape,t.shape))throw new k(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return C(()=>{const s=t.relu(),n=t.abs().neg();return s.sub(t.mul(e)).add(n.exp().log1p())})}function ql(e,t){return C(()=>{let s;return s=xt(t,Tt(),1-Tt()),s=zt(Z(s,X(1,s))),Xe(cz(e,s),-1)})}function pz(e,t){return C(()=>{const s=xt(e,Tt(),1),n=xt(t,Tt(),1);return te(R(e,zt(Z(s,n))),-1)})}function uz(e,t){return C(()=>{const s=zt($(Tt(),t));return Xe(X(t,R(e,s)),-1)})}function uu(e,t){return C(()=>{const s=pu(e,-1),n=pu(t,-1),i=R(s,n);return ke(te(i,-1))})}const hu={meanSquaredError:yi,meanAbsoluteError:Vl,meanAbsolutePercentageError:po,meanSquaredLogarithmicError:iz,squaredHinge:rz,hinge:oz,categoricalHinge:az,logcosh:lz,categoricalCrossentropy:wa,sparseCategoricalCrossentropy:Gl,binaryCrossentropy:ql,kullbackLeiblerDivergence:pz,poisson:uz,cosineProximity:uu};function lm(e){if(typeof e=="string"){if(e in hu)return hu[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new k(t)}else return e}function du(e,t){return C(()=>{const s=R(.5,Ot(t)),n=ji(Ut(t,s),e.dtype);return Xe(as(e,n),-1)})}function mu(e,t){return C(()=>ji(as(Qo(e,-1),Qo(t,-1)),"float32"))}function FA(e,t){return C(()=>Yt(e.equal(1),t.equal(1)).sum().cast("float32"))}function hz(e,t){return C(()=>Yt(e.equal(1),t.equal(0)).sum().cast("float32"))}function dz(e,t){return C(()=>Yt(e.equal(0),t.equal(1)).sum().cast("float32"))}function Xb(e,t){return C(()=>{const s=FA(e,t),n=dz(e,t),i=s.add(n);return mt(Ut(i,0),s.div(i),0).cast("float32")})}function MA(e,t){return C(()=>{const s=FA(e,t),n=hz(e,t),i=s.add(n);return mt(Ut(i,0),s.div(i),0).cast("float32")})}function cm(e,t){return ql(e,t)}function pm(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),as(e,t).asType("float32")}const mz=yi,fz=yi,gz=Vl,yz=Vl,bz=po,wz=po,fu=wa,xz=uu,Jb=Gl,um={binaryAccuracy:du,categoricalAccuracy:mu,precision:Xb,categoricalCrossentropy:fu,sparseCategoricalCrossentropy:Jb,mse:mz,MSE:fz,mae:gz,MAE:yz,mape:bz,MAPE:wz,cosine:xz};function UA(e){if(typeof e=="string"&&e in um)return um[e];if(typeof e!="string"&&e!=null)return e;throw new k(`Unknown metric ${e}`)}function gu(e){if(tn(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(const s of Object.keys(hu))if(hu[s]===e){t=s;break}if(t!==void 0)return t;for(const s of Object.keys(um))if(um[s]===e){t=s;break}return t!==void 0?t:e.name}}function $A(e){const t={Adagrad:()=>ao.adagrad(.01),Adadelta:()=>ao.adadelta(1,.95,Tt()),Adam:()=>ao.adam(.001,.9,.999,Tt()),Adamax:()=>ao.adamax(.002,.9,.999,Tt(),0),RMSProp:()=>ao.rmsprop(.001,.9,0,Tt()),SGD:()=>ao.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new k(`Unknown Optimizer ${e}`)}const WA=1*1024*1024;function Qb(e,t,s=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Zb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(s){const n=JSON.stringify(e);n.length>WA&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${WA}.`)}}function Zb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){const t=Object.keys(e);for(const s of t){if(typeof s!="string")return!1;if(!Zb(e[s]))return!1}return!0}else if(Array.isArray(e)){for(const t of e)if(!Zb(t))return!1;return!0}else return!1;else{const t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function zA(e,t,s,n=console.log){const i=Sz(e),r=["Layer (type)","Output shape","Param #"];i?(t=t||65,s=s||[.45,.85,1]):(t=t||98,s=s||[.33,.55,.67,1]),s[s.length-1]<=1&&(s=s.map(p=>Math.floor(t*p)));let o;if(!i){r.push("Receives inputs"),o=[];for(const p in e.nodesByDepth)o.push(...e.nodesByDepth[p])}n("_".repeat(t)),hm(r,s,n),n("=".repeat(t));const a=e.layers;for(let p=0;p<a.length;++p)i?Iz(a[p],s,n):vz(a[p],s,o,n),n((p===a.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();const l=Lz(e),c=Bl(e.nonTrainableWeights);n(`Total params: ${l+c}`),n(`Trainable params: ${l}`),n(`Non-trainable params: ${c}`),n("_".repeat(t))}function Lz(e){let t;return e.collectedTrainableWeights!=null?t=Bl(e.collectedTrainableWeights):t=Bl(e.trainableWeights),t}function Sz(e){let t=!0;const s=[],n=[];for(const i in e.nodesByDepth)s.push(e.nodesByDepth[i]);for(const i of s){if(i.length>1||i.length===1&&i[0].inboundLayers.length>1){t=!1;break}n.push(...i)}if(t)for(const i of e.layers){let r=!1;for(const o of i.inboundNodes)if(n.indexOf(o)!==-1)if(r){t=!1;break}else r=!0;if(!t)break}return t}function hm(e,t,s=console.log){let n="";for(let i=0;i<e.length;++i)i>0&&(n=n.slice(0,n.length-1)+" "),n+=e[i],n=n.slice(0,t[i]),n+=" ".repeat(t[i]-n.length);s(n)}function Iz(e,t,s){let n;try{n=JSON.stringify(e.outputShape)}catch(a){n="multiple"}const i=e.name,r=e.getClassName(),o=[`${i} (${r})`,n,e.countParams().toString()];hm(o,t,s)}function vz(e,t,s,n){let i;try{i=JSON.stringify(e.outputShape)}catch(p){i="multiple"}const r=[];for(const p of e.inboundNodes){if(s!=null&&s.length>0&&s.indexOf(p)===-1)continue;for(let u=0;u<p.inboundLayers.length;++u){const h=p.inboundLayers[u].name,d=p.nodeIndices[u],m=p.tensorIndices[u];r.push(`${h}[${d}][${m}]`)}}const o=e.name,a=e.getClassName(),l=r.length===0?"":r[0],c=[`${o} (${a})`,i,e.countParams().toString(),l];hm(c,t,n);for(let p=1;p<r.length;++p)hm(["","","",r[p]],t,n)}function PA(e,t,s){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof s=="string"}function xa(e,t){if(e===null)return null;if(typeof e=="string")return Pi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){const s=[],n=e.length;for(let i=0;i<n;++i){const r=e[i];PA(t,i,r)?s.push(r):s.push(xa(r,t))}return s}else{const s={};for(const n of Object.keys(e)){const i=e[n];if(n==="name"&&typeof i=="string")s[n]=i;else{const r=Pi(n);s[r]=xa(i,r)}}return s}}function dm(e,t){if(e==null)return null;if(typeof e=="string")return vn(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){const s=[],n=e.length;for(let i=0;i<n;++i){const r=e[i];PA(t,i,r)?s.push(r):s.push(dm(r,t))}return s}else{const s={};for(const n of Object.keys(e)){const i=e[n],r=vn(n);(n==="name"||n==="className")&&typeof i=="string"?s[r]=i:s[r]=dm(i,n)}return s}}const uo="2.6.0";function Tz(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return G(t,e.dtype)}catch(s){throw new k(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}class Hi{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Hi)for(const t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(const t of e)this.add(t.key,t.value)}}add(e,t,s){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Tz(e,t),this.name2Id[e.name]=e.id,s!=null&&(this.id2Mask[e.id]=s);else throw new k(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof xs){if(this.id2Value[e.id]==null)throw new k(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{const t=this.name2Id[e];if(t==null)throw new k(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof xs){if(this.id2Value[e.id]==null)throw new k(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{const t=this.name2Id[e];if(t==null)throw new k(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&ce(this.id2Mask)}}const ew={},BA={};function La(e,t,s,n){const i=s==null?!1:s.training,r=Array.isArray(e),o=r?e:[e],a=o.map(m=>m.name),l=[],c=t.names();for(const m of a)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);n!=null&&(n.maxNumTensors=-Infinity,n.minNumTensors=Infinity);const p=a.join(",")+"|"+t.names().join(",");let u,h;if(ew[p]==null){const m=Az(o,t);u=m.sorted,h=m.recipientCounts,ew[p]=u,BA[p]=h}u=ew[p],h={},i||Object.assign(h,BA[p]);const d=new Hi(t);for(let m=0;m<u.length;++m){if(n!=null){const D=pl().numTensors;D>n.maxNumTensors&&(n.maxNumTensors=D),D<n.minNumTensors&&(n.minNumTensors=D)}const f=u[m],g=f.sourceLayer;if(g instanceof qi)continue;const y=[],w=[],x=[];let T=!1;for(const D of f.inputs){const M=d.getValue(D),P=d.getMask(D);y.push(M),w.push(P),P!=null&&(T=!0),i||(h[D.name]--,h[D.name]===0&&!t.hasKey(D)&&a.indexOf(D.name)===-1&&!M.isDisposed&&D.sourceLayer.stateful!==!0&&x.push(M))}T&&(s=s||{},s.mask=w[0]);const A=He(g.apply(y,s));let _=null;g.supportsMasking&&(_=g.computeMask(y,w));const E=Nz(f),F=Array.isArray(E)?E:[E];for(let D=0;D<F.length;++D){d.hasKey(F[D])||d.add(F[D],A[D],Array.isArray(_)?_[0]:_);const M=a.indexOf(F[D].name);M!==-1&&(l[M]=A[D])}i||ce(x)}return d.disposeMasks(),r?l:l[0]}function Az(e,t){N.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let s=[],n={};if(e.length===1){const i=jA(e[0],t);s=i.sorted,n=i.recipientMap}else{const i=new Set;for(const r of e){const{sorted:o,recipientMap:a}=jA(r,t);for(const l of o)i.has(l.name)||(s.push(l),i.add(l.name));for(const l in a)n[l]==null&&(n[l]=new Set),a[l].forEach(c=>n[l].add(c))}}return{sorted:s,recipientCounts:Cz(n)}}function Cz(e){const t={};for(const s in e)t[s]=e[s].size;return t}function jA(e,t){const s=new Set,n=[],i={};for(const a of t.names())s.add(a);const r=[],o=[];for(r.push(e);r.length>0;){const a=r[r.length-1];if(s.has(a.name)){r.pop();continue}const l=o[o.length-1]===r.length-1;if(a.inputs.length===0||l)r.pop(),n.push(a),s.add(a.name),l&&o.pop();else{o.push(r.length-1);for(const c of a.inputs){if(i[c.name]==null&&(i[c.name]=new Set),i[c.name].add(a.name),s.has(c.name))continue;r.push(c)}}}return{sorted:n,recipientMap:i}}function Nz(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let s=null;for(let n=0;n<e.sourceLayer.inboundNodes.length;++n)for(const i of e.sourceLayer.inboundNodes[n].outputTensors)if(i.id===e.id){s=n;break}t=e.sourceLayer.getOutputAt(s)}return t}class Bn extends Le{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){const y=this.getClassName().toLowerCase();this.name=co(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],An(this.inputs).length!==this.inputs.length)throw new k(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);An(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(const y of this.outputs){const w=y.sourceLayer,x=y.nodeIndex,T=y.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(T)}for(const y of this.inputs){const w=y.sourceLayer,x=y.nodeIndex,T=y.tensorIndex;tn(x===0,"input layer has >1 nodes"),tn(T===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(T)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){const w=this.inputLayers[y];if(!(w instanceof qi))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(const y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);const t={},s={},n={},i={},r={},o=[],a=(y,w,x,T,A,_)=>{(T==null||A==null||_==null)&&(T=y.sourceLayer,A=y.nodeIndex,_=y.tensorIndex);const E=T.inboundNodes[A];if(x.indexOf(E)!==-1)throw new Ns(`The tensor ${y.name} at layer "${T.name}" is part of a cycle.`);if(w.indexOf(E)!==-1)return;this.containerNodes.add(Bn.nodeKey(T,A)),T.id in r||(r[T.id]=Object.keys(r).length),x.indexOf(E)===-1&&x.push(E);const F=E.inboundLayers.length;for(let D=0;D<F;D++){const M=E.inputTensors[D],P=E.inboundLayers[D],B=E.nodeIndices[D],Y=E.tensorIndices[D];a(M,w,x,P,B,Y)}for(w.push(E);x.indexOf(E)>=0;)x.splice(x.indexOf(E),1);o.push(E)},l=[],c=[];for(const y of this.outputs)a(y,l,c);const p=o.slice().reverse();for(const y of p){s[y.id]=y,y.id in t||(t[y.id]=0);let w=t[y.id];const x=n[y.outboundLayer.id]==null?0:n[y.outboundLayer.id];w=Math.max(w,x),n[y.outboundLayer.id]=w,i[y.outboundLayer.id]=y.outboundLayer,t[y.id]=w;for(let T=0;T<y.inboundLayers.length;T++){const A=y.inboundLayers[T],_=y.nodeIndices[T],E=A.inboundNodes[_],F=t[E.id]==null?0:t[E.id];t[E.id]=Math.max(w+1,F),s[E.id]=E}}const u={};for(const y in t){const w=t[y];w in u||(u[w]=[]),u[w].push(s[y])}const h={};for(const y in n){const w=n[y];w in h||(h[w]=[]),h[w].push(i[y])}let d=Object.keys(h).map(y=>parseInt(y,10)).sort(Qp);this.layers=[];for(const y of d){const w=h[y];w.sort((x,T)=>{const A=r[x.id],_=r[T.id];return A<_?-1:A>_?1:0});for(const x of w)x instanceof Bn&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=h,d=Object.keys(u).map(y=>parseInt(y,10)).sort(Qp);const m=this.inputs.slice(),f=[];for(const y of d)for(const w of u[y]){const x=w.outboundLayer;if(x!=null){for(const T of w.inputTensors)if(m.indexOf(T)===-1)throw new Ns(`Graph disconnected: cannot obtain value for tensor ${T} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(const T of w.outputTensors)m.push(T);f.push(x.name)}}this.nodesByDepth=u;const g=this.layers.map(y=>y.name);for(const y of g){const w=g.filter(x=>x===y).length;if(w!==1)throw new Ns(`The name "${y}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new ya({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();const e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(const t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(const t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(s=>s.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new k("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(const t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){const e=[];for(const t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){const t=[];for(const s of this.layers)t.push(...s.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){const s={};let n=0;for(const r of this.layers)for(const o of r.weights){if(s[o.originalName]!=null)throw new k(`Duplicate weight name: ${o.originalName}`);s[o.originalName]=o,n++}const i=[];for(const r in e){let o=r;if(s[r]==null){const a=r.split("/"),l=a.slice(0,-2).concat([a[a.length-1]]);o=l.join("/")}if(s[o]!=null)i.push([s[o],e[r]]);else if(t)throw new k(`Provided weight data has no target variable: ${r}`);delete s[o]}if(t){const r=[];for(const o in s)r.push(o);if(r.length>0)throw new k(`${r.length} of ${n} weights are not set: ${r}`)}jl(i)}updatedConfig(){const e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${uo}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){const s=dm(this.updatedConfig());return t?JSON.stringify(s):s}call(e,t){return C(()=>{e=He(e);const s=new Hi;for(let n=0;n<this.inputs.length;++n)s.add(this.inputs[n],e[n]);return La(this.outputs,s,t)})}computeMask(e,t){return C(()=>{e=He(e);let s;return t==null?s=In(null,e.length):s=He(t),this.runInternalGraph(e,s)[1]})}computeOutputShape(e){const t=Pl(e);if(t.length!==this.inputLayers.length)throw new k(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);const s={};for(let o=0;o<t.length;o++){const a=this.inputLayers[o],l=t[o],c=a.name+"_0_0";s[c]=l}const n=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Qp);if(n.length>1)for(const o of n){const a=this.nodesByDepth[o];for(const l of a){const c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;const p=[];for(let m=0;m<l.inboundLayers.length;m++){const f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],w=`${f.name}_${g}_${y}`,x=s[w];p.push(x)}const u=c.computeOutputShape(jt(p)),h=Pl(u),d=c.inboundNodes.indexOf(l);for(let m=0;m<h.length;m++){const f=`${c.name}_${d}_${m}`;s[f]=h[m]}}}const i=[],r=[];for(let o=0;o<this.outputLayers.length;o++){const a=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],p=`${a.name}_${l}_${c}`;r.push(p)}for(let o=0;o<r.length;o++){const a=r[o];tn(a in s),i.push(s[a])}return jt(i)}runInternalGraph(e,t){t==null&&(t=In(null,e.length));const s={};for(let a=0;a<this.inputs.length;++a){const l=this.inputs[a],c=e[a],p=t[a];s[l.id]=[c,p]}const n=Object.keys(this.nodesByDepth).map(a=>parseInt(a,10)).sort(Qp);for(const a of n){const l=this.nodesByDepth[a];for(const c of l){const p=c.outboundLayer,u=c.inputTensors,h=c.outputTensors,d=new Array;for(const m of u)m.id in s&&d.push(s[m.id]);if(d.length===u.length){let m={},f,g,y,w;if(c.callArgs!=null&&(m=c.callArgs),d.length===1){const[x,T]=d[0];m.mask==null&&(m.mask=T),y=He(p.call(x,m)),w=He(p.computeMask(x,T)),f=[x],g=[T]}else f=d.map(x=>x[0]),g=d.map(x=>x[1]),m.mask==null&&(m.mask=g),y=He(p.call(f,m)),w=He(p.computeMask(f,g));if(p.activityRegularizer)throw new ae("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<h.length;++x){const T=h[x],A=y[x],_=w[x];s[T.id]=[A,_]}}}}const i=[],r=[],o=[];for(const a of this.outputs){tn(a.id in s,`Could not compute output ${a.name} : ${a.id}`);const[l,c]=s[a.id];o.push(l.shape),i.push(l),r.push(c)}return[i,r,o]}buildNodeConversionMap(e){const t={};let s;for(const n of this.layers){s=n instanceof Bn?1:0;for(let i=0;i<n.inboundNodes.length;i++){const r=Bn.nodeKey(n,i);this.containerNodes.has(r)&&(t[r]=s,s+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new k(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new k("Provide either a layer name or layer index");for(const s of this.layers)if(s.name===e)return s;throw new k(`No such layer: ${e}`)}calculateLosses(){return C(()=>{const e=[];for(const t of this.layers)for(let s=0;s<t.inboundNodes.length;++s){const n=Bn.nodeKey(t,s);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){const e={name:this.name},t=this.buildNodeConversionMap(this.layers),s=[];for(const r of this.layers){const o=r.getClassName(),a=r.getConfig(),l=[];for(let p=0;p<r.inboundNodes.length;p++){const u=r.inboundNodes[p],h=Bn.nodeKey(r,p);let d={};if(this.containerNodes.has(h)){if(u.callArgs)try{JSON.stringify(u.callArgs),d=u.callArgs}catch(m){console.warn(`Layer ${r.name} was passed non-serializable keyword arguments: ${u.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(u.inboundLayers.length>0){const m=[];for(let f=0;f<u.inboundLayers.length;f++){const g=u.inboundLayers[f],y=u.nodeIndices[f],w=u.tensorIndices[f],x=Bn.nodeKey(g,y);let T=t[x];T==null&&(T=0),m.push([g.name,T,w,d])}l.push(m)}}}const c={};c.name=r.name,c.className=o,c.config=a,c.inboundNodes=l,s.push(c)}e.layers=s;const n=[];for(let r=0;r<this.inputLayers.length;r++){const o=this.inputLayers[r],a=this.inputLayersNodeIndices[r],l=Bn.nodeKey(o,a);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);const p=this.inputLayersTensorIndices[r];n.push([o.name,c,p])}e.inputLayers=n;const i=[];for(let r=0;r<this.outputLayers.length;r++){const o=this.outputLayers[r],a=this.outputLayersNodeIndices[r],l=Bn.nodeKey(o,a);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);const p=this.outputLayersTensorIndices[r];i.push([o.name,c,p])}return e.outputLayers=i,e}static fromConfig(e,t,s={},n=!1){const i={},r={};function o(f,g){f.name in r?r[f.name].push(g):r[f.name]=[g]}function a(f,g){const y=[];let w;for(const x of g){const T=x[0],A=x[1],_=x[2];if(w=x[3]==null?{}:x[3],!(T in i)){o(f,g);return}const E=i[T];if(E.inboundNodes.length<=A){o(f,g);return}const F=E.inboundNodes[A];y.push(F.outputTensors[_])}y.length>0&&f.apply(jt(y),w)}function l(f){const g=f.name,y=Ls(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(n),i[g]=y;const w=f.inboundNodes;w.forEach(x=>{if(!(x instanceof Array))throw new k(`Corrupted configuration, expected array for nodeData: ${x}`);o(y,x)})}const c=t.name,p=t.layers;for(const f of p)l(f);for(;!pA(r);)for(const f of p){const g=i[f.name];if(g.name in r){const y=r[g.name];delete r[g.name];for(const w of y)a(g,w)}}const u=[],h=[],d=t.inputLayers;for(const f of d){const g=f[0],y=f[1],w=f[2];tn(g in i);const x=i[g],T=x.inboundNodes[y].outputTensors;u.push(T[w])}const m=t.outputLayers;for(const f of m){const g=f[0],y=f[1],w=f[2];tn(g in i);const x=i[g],T=x.inboundNodes[y].outputTensors;h.push(T[w])}return new e({inputs:u,outputs:h,name:c})}get stateful(){if(this._stateful)throw new k("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(const e of this.layers)if(e.stateful)return!0;return!1}resetStates(){C(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}}function Rz(e,t,s){const n=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(i=>null);if(n===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==n)throw new Error(`Provided ${s} is an array of ${e.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){const i=[];return t.forEach(r=>{r in e?i.push(e[r]):i.push(null)}),i}else throw new Error(`The model has multiple (${n}) outputs, so ${s} must be either an array with ${n} elements or an object with ${t} keys. Provided ${s} not understood: ${JSON.stringify(e)}`)}function mm(e,t){return Rz(e,t,"classWeight")}async function fm(e,t,s,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(s!=null){const i=C(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){const a=1;return e.argMax(a)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),r=Array.from(await i.data());ce(i);const o=[];return r.forEach(a=>{if(s[a]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${a} exists in the data but not in classWeight`);o.push(s[a])}),Oe(o,"float32")}else return null}function VA(e,t){return R(e,t)}const Oz=32;function qA(e,t){let s,n;const i=t;s=i.xs,n=i.ys,N.assert(s!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);const r=GA("input",e.inputNames,s),o=GA("output",e.outputNames,n),a=r[0].shape[0];N.assert(r.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${r.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),N.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<r.length;l++)N.assert(r[l].shape[0]===a,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${r[l].shape[0]}; expected ${a} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)N.assert(o[l].shape[0]===a,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${a} based on input ${e.inputNames[0]}.`);return{xs:r,ys:o}}function GA(e,t,s){if(s instanceof me)return[s];if(Array.isArray(s))return N.assert(s.length===t.length,()=>`Received an array of ${s.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),s;{const n=[];for(const i of t){if(s[i]==null)throw new k(`The feature data generated by the dataset lacks the required ${e} key '${i}'.`);n.push(s[i])}return n}}function Ez(e){if(e.length===3)throw new ae("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function YA(e,t,s){const n=s.batchesPerEpoch!=null;if(N.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),N.assert(s!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),N.assert(s.epochs!=null&&s.epochs>0&&Number.isInteger(s.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${s.epochs}`),N.assert(!n||s.batchesPerEpoch>0&&Number.isInteger(s.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${s.batchesPerEpoch}`),N.assert(s.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{const i=s.validationData!=null;let r,o;if(i)if(HA(s.validationData))N.assert(s.validationBatches==null||s.validationBatches>0&&Number.isInteger(s.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${s.validationBatches}`);else{const g=Ez(s.validationData);r=g.xs,o=g.ys}const a=e.makeTrainFunction(),l=e.getDedupedMetricsNames();let c;i?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();const p=om(s.callbacks,s.yieldEvery),u=s.verbose==null?1:s.verbose,{callbackList:h,history:d}=am(p,u,s.epochs,null,null,_z(t,s),null,i,c);h.setModel(e),e.history=d,await h.onTrainBegin(),e.stopTraining_=!1;let m=s.initialEpoch==null?0:s.initialEpoch,f=await t.iterator();for(;m<s.epochs;){const g={};await h.onEpochBegin(m);let y=0,w=0;for(n||(f=await t.iterator());n?y<s.batchesPerEpoch:!0;){const x=await f.next();if(n&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${s.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${s.batchesPerEpoch*s.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){const{xs:T,ys:A}=qA(e,x.value),_={};_.batch=w,_.size=T[0].shape[0],await h.onBatchBegin(w,_);const E=[];if(s.classWeight!=null){const M=mm(s.classWeight,e.outputNames);for(let P=0;P<M.length;++P)E.push(await fm(A[P],null,M[P]))}const F=T.concat(A).concat(E),D=a(F);ce(F);for(let M=0;M<l.length;++M){const P=l[M],B=D[M];_[P]=B,pt(B)}await h.onBatchEnd(w,_),rm(_),w++,y++}if(n?y>=s.batchesPerEpoch:x.done){if(i){let T;HA(s.validationData)?T=He(await e.evaluateDataset(s.validationData,{batches:s.validationBatches})):T=He(e.evaluate(r,o,{batchSize:s.validationBatchSize==null?Oz:s.validationBatchSize,verbose:0}));for(let A=0;A<e.metricsNames.length;++A)g[`val_${e.metricsNames[A]}`]=T[A]}break}if(e.stopTraining_)break}if(await h.onEpochEnd(m,g),m++,e.stopTraining_)break}return await h.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function _z(e,t){let s=null;return t.batchesPerEpoch!=null?s=t.batchesPerEpoch:Number.isFinite(e.size)&&(s=e.size),s}function HA(e){return typeof e.iterator=="function"}function kz(e){return typeof e.next=="function"}async function KA(e,t,s){s=s||{};const n=s.batches!=null,i=e.testFunction;let r=[];if(s.verbose>0)throw new ae("Verbose mode is not implemented yet.");N.assert(!n||s.batches>0&&Number.isInteger(s.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(s.batches)}`);const o=kz(t)?t:await t.iterator();let a=0,l=0;for(;n?l<s.batches:!0;){const c=await o.next();if(r=C(()=>{if(c.value){const{xs:p,ys:u}=qA(e,c.value),h=p.concat(u),d=C(()=>i(h));if(ce(h),l===0)for(let f=0;f<d.length;++f)r.push(j(0));const m=h[0].shape[0];for(let f=0;f<d.length;++f){const g=d[f],y=r[f];r[f]=C(()=>$(r[f],R(m,g))),l>0&&ce(y)}ce(d),a+=m,++l}return r}),c.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${s.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<r.length;++c){const p=r[c];r[c]=Z(r[c],a),ce(p)}return jt(r)}function gm(e){N.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Hl(e,t,s){return e==null?[null]:Array.isArray(e)?e.map(n=>Gi(n,t,s-t)):Gi(e,t,s-t)}function ym(e,t){return C(()=>e==null?null:Array.isArray(e)?e.map(s=>ym(s,t)):Gd(e,t.dtype==="int32"?t:t.toInt()))}function bm(e,t){const s=[];let n=0,i=null;for(;n<e;)i=n+t,i>=e&&(i=e),s.push([n,i]),n=i;return s}async function Dz(e,t,s,n,i,r,o,a,l,c,p,u,h,d,m){i==null&&(i=32),r==null&&(r=1),p==null&&(p=!0),h==null&&(h=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,d==null))throw new k("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");const g=e.checkNumSamples(s,i,d,"steps_per_epoch");let y;g!=null&&(y=cs(0,g)),o==null&&(o=1);const{callbackList:w,history:x}=am(a,o,r,h,g,d,i,f,u);w.setModel(e),e.history=x,await w.onTrainBegin(),e.stopTraining_=!1;for(let T=h;T<r;++T){await w.onEpochBegin(T);const A={};if(d!=null)throw new ae("stepsPerEpoch mode is not implemented yet.");{if(p==="batch")throw new ae("batch shuffling is not implemneted yet");p&&N.shuffle(y);const _=Oe(y),E=bm(g,i);for(let F=0;F<E.length;++F){const D={};if(await w.onBatchBegin(F,D),C(()=>{const M=E[F][0],P=E[F][1],B=Gi(_,M,P-M);D.batch=F,D.size=P-M;const Y=ym(s,B),q=t(Y);for(let K=0;K<n.length;++K){const H=n[K],Q=q[K];D[H]=Q,pt(Q)}if(F===E.length-1&&f){const K=e.testLoop(l,c,i);for(let H=0;H<n.length;++H){const Q=n[H],J=K[H];pt(J),A["val_"+Q]=J}}}),await w.onBatchEnd(F,D),rm(D),e.stopTraining_)break}_.dispose()}if(await w.onEpochEnd(T,A),e.stopTraining_)break}return await w.onTrainEnd(),await e.history.syncData(),e.history}async function XA(e,t,s,n={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let i,r,o,a,l,c,p;try{const u=n.batchSize==null?32:n.batchSize;gm(u);const h=!1,d=await e.standardizeUserData(t,s,n.sampleWeight,n.classWeight,h,u);i=d[0],r=d[1],p=d[2];let m=!1,f;if(n.validationData!=null&&n.validationData.length>0){if(m=!0,n.validationData.length===2)o=n.validationData[0],a=n.validationData[1];else throw n.validationData.length===3?new ae("validationData including sample weights is not supported yet."):new k(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);const E=!0,F=await e.standardizeUserData(o,a,null,null,E,u);l=F[0],c=F[1],f=l.concat(c)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){m=!0;const E=Math.floor(i[0].shape[0]*(1-n.validationSplit)),F=i[0].shape[0];l=Hl(i,E,F),i=Hl(i,0,E),c=Hl(r,E,F),r=Hl(r,0,E),f=l.concat(c)}else n.validationSteps!=null&&(m=!0);const g=i.concat(r).concat(p);e.checkTrainableWeightsConsistency();const y=e.makeTrainFunction(),w=e.getDedupedMetricsNames();let x,T;m?(e.makeTestFunction(),x=e.testFunction,T=w.slice().concat(w.map(E=>"val_"+E))):(x=null,f=[],T=w.slice());const A=om(n.callbacks,n.yieldEvery),_=await Dz(e,y,g,w,u,n.epochs,n.verbose,A,x,f,n.shuffle,T,n.initialEpoch,null,null);return _}finally{e.isTraining=!1,ho(i,t),ho(r,s),ho(l,o),ho(c,a),p!=null&&ce(p)}}function tw(e){const t=[];e instanceof me&&(e=[e]);for(let s=0;s<e.length;++s){const n=e[s];if(n.rank===1)t.push(Vi(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function ho(e,t){if(e==null)return;const s=[];if(t instanceof me)s.push(t.id);else if(Array.isArray(t))t.forEach(i=>s.push(i.id));else if(t!=null)for(const i in t){const r=t[i];s.push(r.id)}const n=[];if(e instanceof me)s.indexOf(e.id)===-1&&n.push(e);else if(Array.isArray(e))e.forEach(i=>{s.indexOf(i.id)===-1&&n.push(i)});else if(e!=null)for(const i in e){const r=e[i];s.indexOf(r.id)===-1&&n.push(r)}n.forEach(i=>{i.isDisposed||i.dispose()})}function Fz(e){return e instanceof me}function sw(e){return Array.isArray(e)}function JA(e){return!Fz(e)&&!sw(e)}function ZA(e,t,s,n=!0,i=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(sw(e)&&e.length>0)o=!0;else if(JA(e)){for(const a in e)if(e.hasOwnProperty(a)){o=!0;break}}else o=!0;if(o)throw new k(`Error when checking model ${i} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let r;if(JA(e)){e=e,r=[];for(const o of t){if(e[o]==null)throw new k(`No data provided for "${o}". Need data for each key in: ${t}`);r.push(e[o])}}else if(sw(e)){if(e=e,e.length!==t.length)throw new k(`Error when checking model ${i}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);r=e}else{if(e=e,t.length>1)throw new k(`The model ${i} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);r=[e]}if(r=tw(r),s!=null)for(let o=0;o<t.length;++o){if(s[o]==null)continue;const a=r[o];if(a.shape.length!==s[o].length)throw new k(`Error when checking ${i}: expected ${t[o]} to have ${s[o].length} dimension(s). but got array with shape ${a.shape}`);for(let l=0;l<s[o].length;++l){if(l===0&&!n)continue;const c=a.shape[l],p=s[o][l];if(p!=null&&p>=0&&c!==p)throw new k(`Error when checking ${i}: expected ${t[o]} to have shape [${s[o]}], but got array with shape [${a.shape}].`)}}return r}function Mz(e,t,s){const n=An(e.map(r=>r.shape[0]));n.sort();const i=An(t.map(r=>r.shape[0]));if(i.sort(),n.length>1)throw new k(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(r=>r.shape))}`);if(i.length>1)throw new k(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(r=>r.shape))}`);if(n.length>0&&i.length>0&&!N.arraysEqual(n,i))throw new k(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${i[0]} target sample(s).`)}function Uz(e,t,s){const n=[yi,ql,wa];for(let i=0;i<e.length;++i){const r=e[i],o=t[i],a=s[i];if(o==null)continue;if(o===wa&&r.shape[r.shape.length-1]===1)throw new k(`You are passing a target array of shape ${r.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(o)!==-1){const l=r.shape.slice(1),c=a.slice(1);for(let p=0;p<l.length;++p){const u=l[p],h=c[p];if(h!=null&&u!==h)throw new k(`A target Tensor with shape ${r.shape} was passed for an output of shape ${a}, while using a loss function that expects targets to have the same shape as the output.`)}}}}function QA(e,t,s,n=!0,i=""){let r;if(Array.isArray(e)){if(e.length!==t.length)throw new k(`Error when checking model ${i}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);r=e}else{if(t.length>1)throw new k(`The model expects ${t.length} ${i} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);r=[e]}if(s!=null)for(let o=0;o<t.length;++o){if(s[o]==null)continue;const a=r[o];if(a.shape.length!==s[o].length)throw new k(`Error when checking ${i}: expected ${t[o]} to have ${s[o].length} dimension(s), but got array with shape ${JSON.stringify(a.shape)}`);for(let l=0;l<s[o].length;++l){if(l===0&&!n)continue;const c=a.shape[l],p=s[o][l];if(p!=null&&p!==c)throw new k(`Error when checking ${i}: expected ${t[o]} to have shape ${JSON.stringify(s[o])} but got array with shape ${JSON.stringify(a.shape)}.`)}}}function $z(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(n=>[]);let s;if(typeof e=="string"||typeof e=="function")s=[e];else if(Array.isArray(e)||typeof e=="object")s=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(s))return t.map(n=>s);{const n=[];for(const i of t){let r=s.hasOwnProperty(i)?s[i]:[];Array.isArray(r)||(r=[r]),n.push(r)}return n}}const Wz="layers-model";class nn extends Bn{constructor(e){super(e);this.isTraining=!1}summary(e,t,s=console.log){if(!this.built)throw new k("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");zA(this,e,t,s)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=$A(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof gs))throw new k("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(const r in e.loss)if(this.outputNames.indexOf(r)===-1)throw new k(`Unknown entry in loss dictionary: "${r}". Only expected the following keys: ${this.outputNames}`);for(const r of this.outputNames)e.loss[r]==null&&console.warn(`Output "${r}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${r} during training`),t.push(lm(e.loss[r]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new k(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);const r=e.loss;t=r.map(o=>lm(o))}else{const r=lm(e.loss);this.outputs.forEach(o=>{t.push(r)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let r=0;r<this.outputs.length;++r){const o=this.internalOutputShapes[r],a=this.outputNames[r];this.feedOutputNames.push(a),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[r])}const s=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],zn("loss",()=>{for(let r=0;r<this.outputs.length;++r){if(s.indexOf(r)!==-1)continue;const o=this.lossFunctions[r];this.outputs.length>1&&(this.metricsTensors.push([o,r]),this.metricsNames.push(this.outputNames[r]+"_loss"))}});const n=$z(e.metrics,this.outputNames),i=(r,o,a)=>{this.outputNames.length>1&&(o=this.outputNames[r]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([a,r])};zn("metric",()=>{for(let r=0;r<this.outputs.length;++r){if(s.indexOf(r)!==-1)continue;const o=n[r],a=l=>{const c="";let p,u,h;for(const d of l){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){const f=this.internalOutputShapes[r];f[f.length-1]===1||this.lossFunctions[r]===ql?["accuracy","acc"].indexOf(d)!==-1?u=du:["crossentropy","ce"].indexOf(d)!==-1&&(u=cm):this.lossFunctions[r]===Gl?["accuracy","acc"].indexOf(d)!==-1?u=pm:["crossentropy","ce"].indexOf(d)!==-1&&(u=Jb):["accuracy","acc"].indexOf(d)!==-1?u=mu:["crossentropy","ce"].indexOf(d)!==-1&&(u=fu);let g;["accuracy","acc"].indexOf(d)!==-1?g="acc":["crossentropy","ce"].indexOf(d)!==-1&&(g="ce"),h=u,p=c+g}else{const f=UA(d);h=f,p=c+gu(d)}let m;zn(p,()=>{m=h}),i(r,p,m)}};a(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){if(this.collectedTrainableWeights==null)return;this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,s={}){const n=s.batchSize==null?32:s.batchSize;gm(n);const i=!0,r=this.standardizeUserDataXY(e,t,i,n);try{const o=r[0].concat(r[1]);this.makeTestFunction();const a=this.testFunction,l=this.testLoop(a,o,n,s.verbose,s.steps);return jt(l)}finally{ho(r[0],e),ho(r[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),KA(this,e,t)}checkNumSamples(e,t,s,n="steps"){let i;if(s!=null){if(i=null,t!=null)throw new k(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?i=e[0].shape[0]:i=e.shape[0];else throw new k(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return i}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new k("`outputs` is an empty Array, which is not allowed.");const s=Array.isArray(t),n=s?t:[t],i=this.retrieveSymbolicTensors(n),r=new Hi;if(e instanceof me&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new k(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let a=0;a<this.inputs.length;++a)r.add(this.inputs[a],e[a])}else for(const a of this.inputs){const l=e[a.name];if(l==null)throw new k(`No value is provided for the model's input ${a.name}`);r.add(a,l)}const o=La(i,r);return s?o:o[0]}retrieveSymbolicTensors(e){const t=In(null,e.length);let s=e.length;for(const n of this.layers){const i=Array.isArray(n.output)?n.output:[n.output],r=i.map(o=>o.name);for(let o=0;o<e.length;++o){const a=r.indexOf(e[o]);if(a!==-1&&(t[o]=i[a],s--),s===0)break}if(s===0)break}if(s>0){const n=[];throw t.forEach((i,r)=>{i==null&&n.push(e[r])}),new k(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,s=!1){return C(()=>{const n=this.checkNumSamples(e);if(s)throw new ae("Verbose predictLoop() is not implemented yet.");const i=bm(n,t),r=this.outputs.map(o=>[]);for(let o=0;o<i.length;++o){const a=C(()=>{const l=i[o][0],c=i[o][1],p=Hl(e,l,c),u=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)u.push({key:this.inputs[d],value:p[d]});else u.push({key:this.inputs[0],value:p});const h=new Hi(u);return La(this.outputs,h)});a.forEach((l,c)=>r[c].push(l))}return jt(r.map(o=>be(o,0)))})}predict(e,t={}){const s=tw(e);QA(s,this.inputNames,this.feedInputShapes,!1);try{const n=t.batchSize==null?32:t.batchSize;return gm(n),this.predictLoop(s,n)}finally{ho(s,e)}}predictOnBatch(e){QA(e,this.inputNames,this.feedInputShapes,!0);const t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,s=!0,n){if(this.optimizer_==null)throw new Ns("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");const i=[];for(let r=0;r<this.feedOutputShapes.length;++r){const o=this.feedOutputShapes[r],a=this.feedLossFns[r];a===Gl?i.push(o.slice(0,o.length-1).concat([1])):i.push(o)}if(e=ZA(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=ZA(t,this.feedOutputNames,i,!1,"target"),Mz(e,t,null),Uz(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!==0)throw new k(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,s,n,i=!0,r){const[o,a]=this.standardizeUserDataXY(e,t,i,r);if(s!=null)throw new Error("sample weight is not supported yet.");let l=null;if(n!=null){const c=mm(n,this.outputNames);l=[];for(let p=0;p<c.length;++p)l.push(await fm(a[p],null,c[p]))}return[o,a,l]}testLoop(e,t,s,n=0,i){return C(()=>{const r=this.checkNumSamples(t,s,i,"steps"),o=[];if(n>0)throw new ae("Verbose mode is not implemented yet.");if(i!=null)throw new ae("steps mode in testLoop() is not implemented yet");{const a=bm(r,s),l=Oe(cs(0,r));for(let c=0;c<a.length;++c){const p=a[c][0],u=a[c][1],h=Gi(l,p,u-p),d=ym(t,h),m=e(d);if(c===0)for(let f=0;f<m.length;++f)o.push(j(0));for(let f=0;f<m.length;++f){const g=m[f];o[f]=$(o[f],R(u-p,g))}}for(let c=0;c<o.length;++c)o[c]=Z(o[c],r)}return o})}getDedupedMetricsNames(){const e=this.metricsNames,t=[];for(let s=0;s<e.length;++s){const n=e[s];let i=n;if(Ub(e,n)>1){const r=Ub(e.slice(0,s),n);i+=`_${r}`}t.push(i)}return t}makeTrainFunction(){return e=>{const t=[],s=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),i=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),r=[],o=()=>{const p=[];for(let m=0;m<this.inputs.length;++m)p.push({key:this.inputs[m],value:s[m]});const u=new Hi(p),h=La(this.outputs,u,{training:!0});let d;for(let m=0;m<this.lossFunctions.length;++m){const f=this.lossFunctions[m];let g=f(n[m],h[m]);i[m]!=null&&(g=VA(g,i[m]));const y=Xe(g);t.push(y),m===0?d=g:d=$(d,g)}for(let m=0;m<this.metricsTensors.length;++m){let f;if(this.outputs.length>1&&m<this.outputs.length)f=t[m];else{const g=this.metricsTensors[m][0],y=this.metricsTensors[m][1];f=Xe(g(n[y],h[y]))}pt(f),r.push(f)}return d=Xe(d),this.calculateLosses().forEach(m=>{d=$(d,m)}),d},a=this.collectedTrainableWeights.map(p=>p.read()),l=!0,c=this.optimizer_.minimize(o,l,a);return[c].concat(r)}}makeTestFunction(){this.testFunction=e=>C(()=>{const t=[];let s;const n=e.slice(0,this.inputs.length),i=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=[];for(let l=0;l<this.inputs.length;++l)r.push({key:this.inputs[l],value:n[l]});const o=new Hi(r),a=La(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){const c=this.lossFunctions[l],p=Xe(c(i[l],a[l]));l===0?s=p:s=$(s,p),t.push(s)}for(let l=0;l<this.metricsTensors.length;++l){const c=this.metricsTensors[l][0],p=this.metricsTensors[l][1],u=Xe(c(i[p],a[p]));t.push(u)}return t})}async fit(e,t,s={}){return XA(this,e,t,s)}async fitDataset(e,t){return YA(this,e,t)}async trainOnBatch(e,t){const s=await this.standardizeUserData(e,t),n=s[0],i=s[1],r=this.makeTrainFunction(),o=r(n.concat(i)),a=[];for(const l of o){const c=await l.data();a.push(c[0])}return ce(o),jt(a)}getNamedWeights(e){const t=[],s=e!=null&&e.trainableOnly,n=s?this.trainableWeights:this.weights,i=this.getWeights(s);for(let r=0;r<n.length;++r){if(s&&!n[r].trainable)continue;t.push({name:n[r].originalName,tensor:i[r]})}return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){const e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){const t=pl().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-pl().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=vn(this.loss);else if(Array.isArray(this.loss)){for(const t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>vn(t))}else{const t=Object.keys(this.loss);e={};const s=this.loss;for(const n of t)if(typeof s[n]=="string")e[n]=vn(s[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[vn(gu(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>vn(gu(e)));{const e={};for(const t in this.metrics)e[t]=vn(gu(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");const t=xa(e.optimizer_config),s=Ls(t);let n;if(typeof e.loss=="string")n=Pi(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(r=>Pi(r));else if(e.loss!=null){n={};for(const r in e.loss)n[r]=Pi(e.loss[r])}let i;if(Array.isArray(e.metrics))i=e.metrics.map(r=>Pi(r));else if(e.metrics!=null){i={};for(const r in e.metrics)i[r]=Pi(e.metrics[r])}this.compile({loss:n,metrics:i,optimizer:s})}async save(e,t){if(typeof e=="string"){const l=Rt.getSaveHandlers(e);if(l.length===0)throw new k(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new k(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new k("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");const s=await Rt.encodeWeights(this.getNamedWeights(t)),n=!1,i=null,r=this.toJSON(i,n),o={modelTopology:r,format:Wz,generatedBy:`TensorFlow.js tfjs-layers v${uo}`,convertedBy:null},a=t==null?!1:t.includeOptimizer;if(a&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();const l="optimizer",{data:c,specs:p}=await Rt.encodeWeights(await this.optimizer.getWeights(),l);s.specs.push(...p),s.data=Rt.concatenateArrayBuffers([s.data,c])}if(this.userDefinedMetadata!=null){const l=!0;Qb(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=s.data,o.weightSpecs=s.specs,e.save(o)}setUserDefinedMetadata(e){Qb(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}}nn.className="Model";V.registerClass(nn);class eN extends nn{}eN.className="Functional";V.registerClass(eN);async function tN(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let s=e.modelTopology;s.model_config!=null&&(s=s.model_config);const n=xa(s),i=Ls(n,t);if(e.weightsManifest!=null){const r=await Rt.loadWeights(e.weightsManifest,e.pathPrefix,i.weights.map(a=>a.originalName)),o={};for(const a of i.weights)o[a.originalName]=r[a.originalName];i.loadWeights(o),ce(r)}return i}async function sN(e,t){if(t==null&&(t={}),typeof e=="string"){const s=Rt.getLoadHandlers(e,t);if(s.length===0)s.push(Rt.browserHTTPRequest(e,t));else if(s.length>1)throw new k(`Found more than one (${s.length}) load handlers for URL '${e}'`);e=s[0]}return zz(e,void 0,t)}async function zz(e,t,s){if(s==null&&(s={}),e.load==null)throw new k("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");const n=await e.load();let i=n.modelTopology;i.model_config!=null&&(i=i.model_config);const r=s.strict==null?!0:s.strict,o=n.weightData!=null&&n.weightSpecs!=null&&r,a=Ls(xa(i),t,o),l=n.trainingConfig;if(l!=null&&a.loadTrainingConfig(l),n.userDefinedMetadata!=null&&a.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new k("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");const{modelWeights:c,optimizerWeights:p}=Pz(n.weightData,n.weightSpecs);a.loadWeights(c,r),a.optimizer!=null&&p.length>0&&await a.optimizer.setWeights(p),ce(c),ce(p.map(u=>u.tensor))}return a}function Pz(e,t){const s=Rt.decodeWeights(e,t),n={},i=[];return t.forEach(r=>{r.group==="optimizer"?i.push({name:r.name,tensor:s[r.name]}):n[r.name]=s[r.name]}),{modelWeights:n,optimizerWeights:i}}class mo extends nn{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:co("sequential_"),e.layers!=null)for(const t of e.layers)this.add(t)}checkShape(e){const t=e.inboundNodes[0].outputTensors[0].shape;if(t.some(s=>s<0))throw new k(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){const t=e instanceof mo||e instanceof nn;let s;if(t){if(s=e,s.outputs.length!==1)throw new k("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(s.inputs.length!==1)throw new k("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new k("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");const n=im({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=s.outputs,this.inputs=s.inputs;else{if(e.inboundNodes.length!==1)throw new k(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new k("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=qb(this.outputs[0])}this.inboundNodes=[],new ya({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:In(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{const n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{const e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Ue(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new nn({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,s=console.log){this.built||this.build(),super.summary(e,t,s)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,s={}){if(!this.built)throw new Ns("The model needs to be compiled before being used.");return this.model.evaluate(e,t,s)}async evaluateDataset(e,t){if(!this.built)throw new Ns("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,s={}){if(!this.built)throw new Ns("The model needs to be compiled before being used.");return this.model.fit(e,t,s)}async fitDataset(e,t){if(!this.built)throw new Ns("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,s={},n=!1){let i,r={};if(t instanceof Array){if(!(t[0].className!=null)||t[0].className==="Merge")throw new k("Legacy serialization format not supported yet.");i=t}else N.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),i=t.layers,delete t.layers,r=t;const o=new e(r);if(!(o instanceof mo))throw new ae(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(const a of i){const l=void 0,c=Ls(a,l,n);n&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new k("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new k("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){const e=[];for(const t of this.layers){const s={};s.className=t.getClassName(),s.config=t.getConfig(),e.push(s)}return{name:this.name,layers:e}}}mo.className="Sequential";V.registerClass(mo);function nN(e){return new nn(e)}function iN(e){return new mo(e)}function rN(e,t){return t==null&&(t={}),sN(e,t)}function wm(e){return im(e)}function oN(e,t){sn.registerCallbackConstructor(e,t)}class Ps extends V.Serializable{getConfig(){return{}}}class aN extends Ps{apply(e,t=1){return AA(e,t)}}aN.className="elu";V.registerClass(aN);class lN extends Ps{apply(e){return Rl(e)}}lN.className="selu";V.registerClass(lN);class cN extends Ps{apply(e){return Fe(e)}}cN.className="relu";V.registerClass(cN);class pN extends Ps{apply(e){return C(()=>bn(6,Fe(e)))}}pN.className="relu6";V.registerClass(pN);class uN extends Ps{apply(e){return e}}uN.className="linear";V.registerClass(uN);class hN extends Ps{apply(e){return os(e)}}hN.className="sigmoid";V.registerClass(hN);class dN extends Ps{apply(e){return CA(e)}}dN.className="hardSigmoid";V.registerClass(dN);class mN extends Ps{apply(e){return di(e)}}mN.className="softplus";V.registerClass(mN);class fN extends Ps{apply(e){return NA(e)}}fN.className="softsign";V.registerClass(fN);class gN extends Ps{apply(e){return Mi(e)}}gN.className="tanh";V.registerClass(gN);class xm extends Ps{apply(e,t=-1){return ts(e,t)}}xm.className="softmax";V.registerClass(xm);class yN extends Ps{apply(e,t=-1){return Il(e,t)}}yN.className="logSoftmax";V.registerClass(yN);class bN extends Ps{apply(e,t=1){return C(()=>os(e.mul(t)).mul(e))}}bN.className="swish";V.registerClass(bN);function jn(e){return e.getClassName()}function nw(e,t={}){return fi(e,V.SerializationMap.getMap().classNameMap,t,"activation")}function Vn(e){if(e==null){const t={};return t.className="linear",t.config={},nw(t)}if(typeof e=="string"){const t={};return t.className=e,t.config={},nw(t)}else return e instanceof Ps?e:nw(e)}function iw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}class wN extends V.Serializable{}class Yl extends wN{constructor(e){super();iw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return C(()=>{let t=ye([1]);return this.hasL1&&(t=$(t,te(R(this.l1,et(e))))),this.hasL2&&(t=$(t,te(R(this.l2,ga(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}}Yl.className="L1L2";V.registerClass(Yl);function xN(e){return iw(e),new Yl({l1:e!=null?e.l1:null,l2:0})}function LN(e){return iw(e),new Yl({l2:e!=null?e.l2:null,l1:0})}const SN={l1l2:"L1L2"};function Pe(e){return Ml(e)}function IN(e,t={}){return fi(e,V.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ye(e){if(e==null)return null;if(typeof e=="string"){const t=e in SN?SN[e]:e,s={className:t,config:{}};return IN(s)}else return e instanceof wN?e:IN(e)}class Lm extends Le{constructor(e){super(e??{});this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=we(e);let s=Fe(e);return this.maxValue!=null&&(s=xt(s,0,this.maxValue)),s}computeOutputShape(e){return e}getConfig(){const e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}}Lm.className="ReLU";V.registerClass(Lm);class Sm extends Le{constructor(e){super(e??{});this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){const s=we(e);return Ll(s,this.alpha)}computeOutputShape(e){return e}getConfig(){const e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}}Sm.className="LeakyReLU";V.registerClass(Sm);class Im extends Le{constructor(e){super(e??{});if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=je(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ye(e.alphaRegularizer),this.alphaConstraint=at(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new k(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Ue(e);const t=e.slice(1);if(this.sharedAxes!=null)for(const n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);const s={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)s[n]=e[n];this.inputSpec=[new st({ndim:e.length,axes:s})],this.built=!0}call(e,t){return e=we(e),Qr(e,this.alpha.read())}getConfig(){const e={alphaInitializer:Ze(this.alphaInitializer),alphaRegularizer:Pe(this.alphaRegularizer),alphaConstraint:ot(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}}Im.className="PReLU";V.registerClass(Im);class vm extends Le{constructor(e){super(e??{});if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new ae(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){const s=we(e);return gn(s)}computeOutputShape(e){return e}getConfig(){const e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}}vm.className="ELU";V.registerClass(vm);class Tm extends Le{constructor(e){super(e??{});this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){const s=we(e);return s.mul(ji(s.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){const e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}}Tm.className="ThresholdedReLU";V.registerClass(Tm);class Am extends Le{constructor(e){super(e??{});this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new xm().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){const s=we(e);return this.softmax(s,this.axis)}computeOutputShape(e){return e}getConfig(){const e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}}Am.className="Softmax";V.registerClass(Am);function fo(e,t,s){if(typeof e=="number")return In(e,t);if(e.length!==t)throw new k(`The ${s} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let n=0;n<t;++n){const i=e[n];if(!LA(i))throw new k(`The ${s} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${i}`)}return e}function Rs(e,t,s,n,i=1){if(e==null)return e;const r=t+(t-1)*(i-1);let o;return s==="same"?o=e:o=e-r+1,Math.floor((o+n-1)/n)}function yu(e,t,s,n){if(e==null)return null;if(n==="valid")e=e*t+Pn([s-t,0]);else if(n==="same")e=e*t;else throw new k(`Unsupport padding mode: ${n}.`);return e}function bu(e,t){return C(()=>(lt(t),t==="channelsFirst"?se(e,[0,2,3,1]):e))}function rw(e,t){return C(()=>(lt(t),t==="channelsFirst"?se(e,[0,2,3,4,1]):e))}function Bz(e,t,s,n=1,i="valid",r,o=1){return C(()=>{if(r==null&&(r=ys()),lt(r),e.shape.length!==3)throw new k(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new k(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(s!=null&&s.shape.length!==1)throw new k(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(r==="channelsFirst"&&(e=se(e,[0,2,1])),i==="causal")throw new ae("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let a=fl(e,t,n,i==="same"?"same":"valid","NWC",o);return s!=null&&(a=Cs(a,s)),a})}function vN(e,t,s,n=[1,1],i="valid",r,o,a=null){return C(()=>{if(r==null&&(r=ys()),lt(r),e.rank!==3&&e.rank!==4)throw new k(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new k(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=bu(e,r);if(i==="causal")throw new ae("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=xn.conv2d({x:l,filter:t,strides:n,pad:i==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:s,activation:a}),r==="channelsFirst"&&(l=se(l,[0,3,1,2])),l})}function jz(e,t,s,n=[1,1,1],i="valid",r,o){return C(()=>{if(r==null&&(r=ys()),lt(r),e.rank!==4&&e.rank!==5)throw new k(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new k(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let a=rw(e,r);if(i==="causal")throw new ae("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return a=bl(a,t,n,i==="same"?"same":"valid","NDHWC",o),s!=null&&(a=Cs(a,s)),r==="channelsFirst"&&(a=se(a,[0,4,1,2,3])),a})}class Nm extends Le{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Nm.verifyArgs(t),this.rank=e,yt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new ae(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=fo(t.kernelSize,e,"kernelSize"),this.strides=fo(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,bs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,lt(this.dataFormat),this.activation=Vn(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=je(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=at(t.biasConstraint),this.biasRegularizer=Ye(t.biasRegularizer),this.activityRegularizer=Ye(t.activityRegularizer),this.dilationRate=fo(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new k(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new k(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new k(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(tn("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Md(e.kernelSize,"number",1,3))throw new k(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){const e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:jn(this.activation),useBias:this.useBias,biasInitializer:Ze(this.biasInitializer),biasRegularizer:Pe(this.biasRegularizer),activityRegularizer:Pe(this.activityRegularizer),biasConstraint:ot(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}}class wu extends Nm{constructor(e,t){super(e,t);this.kernel=null,wu.verifyArgs(t),this.filters=t.filters,yt(this.filters,"filters"),this.kernelInitializer=je(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=at(t.kernelConstraint),this.kernelRegularizer=Ye(t.kernelRegularizer)}build(e){e=Ue(e);const t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new k(`The channel dimension of the input should be defined. Found ${e[t]}`);const s=e[t],n=this.kernelSize.concat([s,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:s}}],this.built=!0}call(e,t){return C(()=>{e=we(e);let s;const n=this.bias==null?null:this.bias.read(),i=Ud(this.activation.getClassName());if(i!=null&&this.rank===2)s=vN(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,i);else{if(this.rank===1)s=Bz(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)s=vN(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)s=jz(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new ae("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(s=this.activation.apply(s))}return s})}computeOutputShape(e){e=Ue(e);const t=[],s=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let i=0;i<s.length;++i){const r=Rs(s[i],this.kernelSize[i],this.padding,this.strides[i],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[i]);t.push(r)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){const e={filters:this.filters,kernelInitializer:Ze(this.kernelInitializer),kernelRegularizer:Pe(this.kernelRegularizer),kernelConstraint:ot(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new k(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}}class Kl extends wu{constructor(e){super(2,e);Kl.verifyArgs(e)}getConfig(){const e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Md(e.kernelSize,"number",1,2))throw new k(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}}Kl.className="Conv2D";V.registerClass(Kl);class xu extends wu{constructor(e){super(3,e);xu.verifyArgs(e)}getConfig(){const e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new k(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}}xu.className="Conv3D";V.registerClass(xu);class Cm extends Kl{constructor(e){super(e);if(this.inputSpec=[new st({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new k(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Ue(e),e.length!==4)throw new k("Input should have rank 4; Received input shape: "+JSON.stringify(e));const t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new k("The channel dimension of the inputs should be defined. Found `None`.");const s=e[t],n=this.kernelSize.concat([this.filters,s]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new st({ndim:4,axes:{[t]:s}})],this.built=!0}call(e,t){return C(()=>{let s=we(e);if(s.shape.length!==4)throw new k(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${s.shape.length}`);const n=s.shape,i=n[0];let r,o;this.dataFormat==="channelsFirst"?(r=2,o=3):(r=1,o=2);const a=n[r],l=n[o],c=this.kernelSize[0],p=this.kernelSize[1],u=this.strides[0],h=this.strides[1],d=yu(a,u,c,this.padding),m=yu(l,h,p,this.padding),f=[i,d,m,this.filters];this.dataFormat!=="channelsLast"&&(s=se(s,[0,2,3,1]));let g=yl(s,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=se(g,[0,3,1,2])),this.bias!=null&&(g=Cs(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=Ue(e);const t=e.slice();let s,n,i;this.dataFormat==="channelsFirst"?(s=1,n=2,i=3):(s=3,n=1,i=2);const r=this.kernelSize[0],o=this.kernelSize[1],a=this.strides[0],l=this.strides[1];return t[s]=this.filters,t[n]=yu(t[n],a,r,this.padding),t[i]=yu(t[i],l,o,this.padding),t}getConfig(){const e=super.getConfig();return delete e.dilationRate,e}}Cm.className="Conv2DTranspose";V.registerClass(Cm);class TN extends wu{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new k("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new k("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new k(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=je(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ye(t.depthwiseRegularizer),this.depthwiseConstraint=at(t.depthwiseConstraint),this.pointwiseInitializer=je(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ye(t.pointwiseRegularizer),this.pointwiseConstraint=at(t.pointwiseConstraint)}build(e){if(e=Ue(e),e.length<this.rank+2)throw new k(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);const t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new k(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);const s=e[t],n=this.kernelSize.concat([s,this.depthMultiplier]),i=[];for(let o=0;o<this.rank;++o)i.push(1);i.push(s*this.depthMultiplier,this.filters);const r=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,r,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",i,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,r,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,r,this.biasConstraint):this.bias=null,this.inputSpec=[new st({ndim:this.rank+2,axes:{[t]:s}})],this.built=!0}call(e,t){return C(()=>{e=we(e);let s;if(this.rank===1)throw new ae("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=se(e,[0,2,3,1])),s=eo(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(s=Cs(s,this.bias.read(),this.dataFormat)),this.activation!=null&&(s=this.activation.apply(s)),this.dataFormat==="channelsFirst"&&(s=se(s,[0,3,1,2])),s})}getConfig(){const e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ze(this.depthwiseInitializer),e.pointwiseInitializer=Ze(this.pointwiseInitializer),e.depthwiseRegularizer=Pe(this.depthwiseRegularizer),e.pointwiseRegularizer=Pe(this.pointwiseRegularizer),e.depthwiseConstraint=ot(this.depthwiseConstraint),e.pointwiseConstraint=ot(this.pointwiseConstraint),e}}TN.className="SeparableConv";class Rm extends TN{constructor(e){super(2,e)}}Rm.className="SeparableConv2D";V.registerClass(Rm);class Lu extends wu{constructor(e){super(1,e);Lu.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){const e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Md(e.kernelSize,"number",1,1))throw new k(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}}Lu.className="Conv1D";V.registerClass(Lu);class Om extends Le{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return C(()=>{if(e=we(e),this.dataFormat==="channelsLast"){const s=su(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return su(s,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{const s=su(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return su(s,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){const e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}Om.className="Cropping2D";V.registerClass(Om);class Em extends Le{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){const t=e[2]==null?null:this.size[0]*e[2],s=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,s]}else{const t=e[1]==null?null:this.size[0]*e[1],s=e[2]==null?null:this.size[1]*e[2];return[e[0],t,s,e[3]]}}call(e,t){return C(()=>{let s=we(e);const n=s.shape;if(this.dataFormat==="channelsFirst"){s=se(s,[0,2,3,1]);const i=this.size[0]*n[2],r=this.size[1]*n[3],o=s.resizeNearestNeighbor([i,r]);return se(o,[0,3,1,2])}else{const i=this.size[0]*n[1],r=this.size[1]*n[2];return s.resizeNearestNeighbor([i,r])}})}getConfig(){const e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}Em.className="UpSampling2D";V.registerClass(Em);function Vz(e,t,s=[1,1],n="valid",i,r){return C(()=>{i==null&&(i=ys()),lt(i);let o=bu(e,i);if(e.rank!==4)throw new k(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new k(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=fn(o,t,s,n==="same"?"same":"valid","NHWC",r),i==="channelsFirst"&&(o=se(o,[0,3,1,2])),o})}class _m extends Nm{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=je(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=at(e.depthwiseConstraint),this.depthwiseRegularizer=Ye(e.depthwiseRegularizer)}build(e){if(e=Ue(e),e.length<4)throw new k(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);const t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new k(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);const s=e[t],n=[this.kernelSize[0],this.kernelSize[1],s,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[s*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return C(()=>{e=we(e);let s=Vz(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(s=Cs(s,this.bias.read(),this.dataFormat)),this.activation!=null&&(s=this.activation.apply(s)),s})}computeOutputShape(e){e=Ue(e);const t=this.dataFormat==="channelsFirst"?e[2]:e[1],s=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,i=Rs(t,this.kernelSize[0],this.padding,this.strides[0]),r=Rs(s,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,i,r]:[e[0],i,r,n]}getConfig(){const e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ze(this.depthwiseInitializer),e.depthwiseRegularizer=Pe(this.depthwiseRegularizer),e.depthwiseConstraint=ot(this.depthwiseRegularizer),e}}_m.className="DepthwiseConv2D";V.registerClass(_m);function ow(e,t,s,n){if(Array.isArray(e)){if(t!=null||s!=null)throw new k("When inputs is an array, neither initialState or constants should be provided");n!=null&&(s=e.slice(e.length-n,e.length),e=e.slice(0,e.length-n)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function i(r){return r==null||Array.isArray(r)?r:[r]}return t=i(t),s=i(s),{inputs:e,initialState:t,constants:s}}function aw(e,t,s,n=!1,i,r,o=!1,a=!1){return C(()=>{const l=t.shape.length;if(l<3)throw new k(`Input should be at least 3D, but is ${l}D.`);const c=[1,0].concat(cs(2,l));if(t=se(t,c),r!=null)throw new ae("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),i!=null&&(i=i.asType("bool").asType("float32"),i.rank===l-1&&(i=Mt(i,-1)),i=se(i,c)),n&&(t=Et(t,0),i!=null&&(i=Et(i,0)));const p=[];let u,h=s;const d=t.shape[0],m=qe(t);let f;i!=null&&(f=qe(i));for(let y=0;y<d;++y){const w=m[y],x=C(()=>e(w,h));if(i==null)u=x[0],h=x[1];else{const T=C(()=>{const A=f[y],_=Ot(A).sub(A),E=x[0].mul(A).add(h[0].mul(_)),F=h.map((D,M)=>x[1][M].mul(A).add(D.mul(_)));return{output:E,newStates:F}});u=T.output,h=T.newStates}a&&p.push(u)}let g;if(a){const y=1;g=Ge(p,y)}return[u,g,h]})}class rn extends Le{constructor(e){super(e);let t;if(e.cell==null)throw new k("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Su({cells:e.cell}):t=e.cell,t.stateSize==null)throw new k("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new st({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){const e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return cs(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){sm(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);const s=t[0];let n;if(this.returnSequences?n=[e[0],e[1],s]:n=[e[0],s],this.returnState){const i=[];for(const r of t)i.push([e[0],r]);return[n].concat(i)}else return n}computeMask(e,t){return C(()=>{Array.isArray(t)&&(t=t[0]);const s=this.returnSequences?t:null;if(this.returnState){const n=this.states.map(i=>null);return[s].concat(n)}else return s})}get states(){if(this.states_==null){const e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let s=0;s<e;++s)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){const t=null;if(this.numConstants!=null)throw new ae("Constants support is not implemented in RNN yet.");sm(e)&&(e=e[0]),e=e;const s=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new st({shape:[s,null,...n]});const i=[e[0]].concat(e.slice(2));if(t!=null)throw new ae("Constants support is not implemented in RNN yet.");this.cell.build(i);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!N.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),r))throw new k(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(o=>new st({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){C(()=>{if(!this.stateful)throw new Sn("Cannot call resetStates() on an RNN Layer that is not stateful.");const s=this.inputSpec[0].shape[0];if(s==null)throw new k("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>ye([s,n])):this.states_=[ye([s,this.cell.stateSize])];else if(e==null)ce(this.states_),this.keptStates!=null&&(ce(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>ye([s,n])):this.states_[0]=ye([s,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new k(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):ce(this.states_);for(let n=0;n<this.states_.length;++n){const i=e[n],r=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,o=[s,r];if(!N.arraysEqual(i.shape,o))throw new k(`State ${n} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[n]=i}}this.states_=this.states_.map(n=>pt(n.clone()))})}apply(e,t){let s=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});const i=ow(e,s,n,this.numConstants);e=i.inputs,s=i.initialState,n=i.constants;let r=[],o=[];if(s!=null){t.initialState=s,r=r.concat(s),this.stateSpec=[];for(const l of s)this.stateSpec.push(new st({shape:l.shape}));o=o.concat(this.stateSpec)}n!=null&&(t.constants=n,r=r.concat(n),this.numConstants=n.length);const a=r[0]instanceof xs;if(a){const l=[e].concat(r),c=this.inputSpec.concat(o),p=this.inputSpec;this.inputSpec=c;const u=super.apply(l,t);return this.inputSpec=p,u}else return super.apply(e,t)}call(e,t){return C(()=>{const s=t==null?null:t.mask,n=t==null?null:t.training;let i=t==null?null:t.initialState;e=we(e),i==null&&(this.stateful?i=this.states_:i=this.getInitialState(e));const r=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(i.length!==r)throw new k(`RNN Layer has ${r} state(s) but was passed ${i.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");const o={training:n},a=(d,m)=>{const f=this.cell.call([d].concat(m),o);return[f[0],f.slice(1)]},l=aw(a,e,i,this.goBackwards,s,null,this.unroll,this.returnSequences),c=l[0],p=l[1],u=l[2];this.stateful&&this.resetStates(u,n);const h=this.returnSequences?p:c;return this.returnState?[h].concat(u):h})}getInitialState(e){return C(()=>{let t=ye(e.shape);return t=te(t,[1,2]),t=Vi(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(s=>s>1?Vd(t,[1,s]):t):this.cell.stateSize>1?[Vd(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){const e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);const s=this.cell.getConfig();return this.getClassName()===rn.className&&(t.cell={className:this.cell.getClassName(),config:s}),Object.assign({},s,e,t)}static fromConfig(e,t,s={}){const n=t.cell,i=Ls(n,s);return new e(Object.assign(t,{cell:i}))}}rn.className="RNN";V.registerClass(rn);class go extends Le{}class Iu extends go{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,yt(this.units,"units"),this.activation=Vn(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=je(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=je(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=je(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ye(e.kernelRegularizer),this.recurrentRegularizer=Ye(e.recurrentRegularizer),this.biasRegularizer=Ye(e.biasRegularizer),this.kernelConstraint=at(e.kernelConstraint),this.recurrentConstraint=at(e.recurrentConstraint),this.biasConstraint=at(e.biasConstraint),this.dropout=fa([1,Pn([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=fa([1,Pn([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Ue(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return C(()=>{if(e=e,e.length!==2)throw new k(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let s=e[1];e=e[0];const n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Yi({ones:()=>Ot(e),rate:this.dropout,training:n})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Yi({ones:()=>Ot(s),rate:this.recurrentDropout,training:n}));let i;const r=this.dropoutMask,o=this.recurrentDropoutMask;r!=null?i=Cn(R(e,r),this.kernel.read()):i=Cn(e,this.kernel.read()),this.bias!=null&&(i=Cs(i,this.bias.read())),o!=null&&(s=R(s,o));let a=$(i,Cn(s,this.recurrentKernel.read()));return this.activation!=null&&(a=this.activation.apply(a)),[a,a]})}getConfig(){const e=super.getConfig(),t={units:this.units,activation:jn(this.activation),useBias:this.useBias,kernelInitializer:Ze(this.kernelInitializer),recurrentInitializer:Ze(this.recurrentInitializer),biasInitializer:Ze(this.biasInitializer),kernelRegularizer:Pe(this.kernelRegularizer),recurrentRegularizer:Pe(this.recurrentRegularizer),biasRegularizer:Pe(this.biasRegularizer),activityRegularizer:Pe(this.activityRegularizer),kernelConstraint:ot(this.kernelConstraint),recurrentConstraint:ot(this.recurrentConstraint),biasConstraint:ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}}Iu.className="SimpleRNNCell";V.registerClass(Iu);class km extends rn{constructor(e){e.cell=new Iu(e),super(e)}call(e,t){return C(()=>{this.cell.dropoutMask!=null&&(ce(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ce(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);const s=t==null?null:t.mask,n=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:s,training:n,initialState:i})})}static fromConfig(e,t){return new e(t)}}km.className="SimpleRNN";V.registerClass(km);class vu extends go{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new k("GRUCell does not support reset_after parameter set to true.");this.units=e.units,yt(this.units,"units"),this.activation=Vn(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Vn(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=je(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=je(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=je(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ye(e.kernelRegularizer),this.recurrentRegularizer=Ye(e.recurrentRegularizer),this.biasRegularizer=Ye(e.biasRegularizer),this.kernelConstraint=at(e.kernelConstraint),this.recurrentConstraint=at(e.recurrentConstraint),this.biasConstraint=at(e.biasConstraint),this.dropout=fa([1,Pn([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=fa([1,Pn([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Ue(e);const t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return C(()=>{if(e=e,e.length!==2)throw new k(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);const s=t.training==null?!1:t.training;let n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Yi({ones:()=>Ot(e),rate:this.dropout,training:s,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Yi({ones:()=>Ot(n),rate:this.recurrentDropout,training:s,count:3}));const i=this.dropoutMask,r=this.recurrentDropoutMask;let o,a,l;0<this.dropout&&this.dropout<1&&(e=R(e,i[0]));let c=Cn(e,this.kernel.read());this.useBias&&(c=Cs(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=R(n,r[0]));const p=this.recurrentKernel.read(),[u,h]=Bt(p,[2*this.units,this.units],p.rank-1),d=Cn(n,u),[m,f,g]=Bt(c,3,c.rank-1),[y,w]=Bt(d,2,d.rank-1);o=this.recurrentActivation.apply($(m,y)),a=this.recurrentActivation.apply($(f,w));const x=Cn(R(a,n),h);l=this.activation.apply($(g,x));const T=$(R(o,n),R($(1,ke(o)),l));return[T,T]})}getConfig(){const e=super.getConfig(),t={units:this.units,activation:jn(this.activation),recurrentActivation:jn(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ze(this.kernelInitializer),recurrentInitializer:Ze(this.recurrentInitializer),biasInitializer:Ze(this.biasInitializer),kernelRegularizer:Pe(this.kernelRegularizer),recurrentRegularizer:Pe(this.recurrentRegularizer),biasRegularizer:Pe(this.biasRegularizer),activityRegularizer:Pe(this.activityRegularizer),kernelConstraint:ot(this.kernelConstraint),recurrentConstraint:ot(this.recurrentConstraint),biasConstraint:ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}}vu.className="GRUCell";V.registerClass(vu);class Dm extends rn{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new vu(e),super(e)}call(e,t){return C(()=>{this.cell.dropoutMask!=null&&(ce(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ce(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);const s=t==null?null:t.mask,n=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:s,training:n,initialState:i})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}}Dm.className="GRU";V.registerClass(Dm);class Sa extends go{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,yt(this.units,"units"),this.activation=Vn(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Vn(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=je(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=je(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=je(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ye(e.kernelRegularizer),this.recurrentRegularizer=Ye(e.recurrentRegularizer),this.biasRegularizer=Ye(e.biasRegularizer),this.kernelConstraint=at(e.kernelConstraint),this.recurrentConstraint=at(e.recurrentConstraint),this.biasConstraint=at(e.biasConstraint),this.dropout=fa([1,Pn([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=fa([1,Pn([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Ue(e);const s=e[e.length-1];this.kernel=this.addWeight("kernel",[s,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){const i=this.biasInitializer,r=this.units;n=new(t=class extends zs{apply(a,l){const c=i.apply([r]),p=new zl().apply([r]),u=i.apply([r*2]);return jb(jb(c,p),u)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return C(()=>{const s=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new k(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1];const i=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Yi({ones:()=>Ot(e),rate:this.dropout,training:s,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Yi({ones:()=>Ot(n),rate:this.recurrentDropout,training:s,count:4}));const r=this.dropoutMask,o=this.recurrentDropoutMask;let a,l,c,p;0<this.dropout&&this.dropout<1&&(e=R(e,r[0]));let u=Cn(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=R(n,o[0])),u=$(u,Cn(n,this.recurrentKernel.read())),this.useBias&&(u=Cs(u,this.bias.read()));const[h,d,m,f]=Bt(u,4,u.rank-1);a=this.recurrentActivation.apply(h),l=this.recurrentActivation.apply(d),c=$(R(l,i),R(a,this.activation.apply(m))),p=this.recurrentActivation.apply(f);const g=R(p,this.activation.apply(c));return[g,g,c]})}getConfig(){const e=super.getConfig(),t={units:this.units,activation:jn(this.activation),recurrentActivation:jn(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ze(this.kernelInitializer),recurrentInitializer:Ze(this.recurrentInitializer),biasInitializer:Ze(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:Pe(this.kernelRegularizer),recurrentRegularizer:Pe(this.recurrentRegularizer),biasRegularizer:Pe(this.biasRegularizer),activityRegularizer:Pe(this.activityRegularizer),kernelConstraint:ot(this.kernelConstraint),recurrentConstraint:ot(this.recurrentConstraint),biasConstraint:ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}}Sa.className="LSTMCell";V.registerClass(Sa);class Fm extends rn{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Sa(e),super(e)}call(e,t){return C(()=>{this.cell.dropoutMask!=null&&(ce(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ce(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);const s=t==null?null:t.mask,n=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:s,training:n,initialState:i})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}}Fm.className="LSTM";V.registerClass(Fm);class Su extends go{constructor(e){super(e);this.cells=e.cells}get stateSize(){const e=[];for(const t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return C(()=>{e=e;let s=e.slice(1);const n=[];for(const o of this.cells.slice().reverse())Array.isArray(o.stateSize)?n.push(s.splice(0,o.stateSize.length)):n.push(s.splice(0,1));n.reverse();const i=[];let r;for(let o=0;o<this.cells.length;++o){const a=this.cells[o];s=n[o],o===0?r=[e[0]].concat(s):r=[r[0]].concat(s),r=a.call(r,t),i.push(r.slice(1))}s=[];for(const o of i.slice().reverse())s.push(...o);return[r[0]].concat(s)})}build(e){sm(e)&&(e=e[0]),e=e;let t;this.cells.forEach((s,n)=>{zn(`RNNCell_${n}`,()=>{s.build(e),Array.isArray(s.stateSize)?t=s.stateSize[0]:t=s.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){const e=super.getConfig(),t=i=>({className:i.getClassName(),config:i.getConfig()}),s=this.cells.map(t),n={cells:s};return Object.assign({},e,n)}static fromConfig(e,t,s={}){const n=[];for(const i of t.cells)n.push(Ls(i,s));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];const e=[];for(const t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){const e=[];for(const t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){const t=[];for(const s of this.cells)t.push(...s.trainableWeights);return t.concat(e)}return e}getWeights(){const e=[];for(const t of this.cells)e.push(...t.weights);return cu(e)}setWeights(e){const t=[];for(const s of this.cells){const n=s.weights.length,i=e.splice(n);for(let r=0;r<s.weights.length;++r)t.push([s.weights[r],i[r]])}jl(t)}}Su.className="StackedRNNCells";V.registerClass(Su);function Yi(e){const{ones:t,rate:s,training:n=!1,count:i=1}=e,r=()=>qd(t(),s),o=()=>lo(r,t,n);if(!i||i<=1)return pt(o().clone());const a=Array(i).fill(void 0).map(o);return a.map(l=>pt(l.clone()))}var Gz=function(e,t){var s={};for(var n in e)Object.prototype.hasOwnProperty.call(e,n)&&t.indexOf(n)<0&&(s[n]=e[n]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var i=0,n=Object.getOwnPropertySymbols(e);i<n.length;i++)t.indexOf(n[i])<0&&Object.prototype.propertyIsEnumerable.call(e,n[i])&&(s[n[i]]=e[n[i]]);return s};class bMe extends go{}class AN extends rn{constructor(e){if(e.unroll)throw new ae("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new ae("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new st({ndim:5})]}call(e,t){return C(()=>{if(this.cell.dropoutMask!=null&&(ce(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ce(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new k("ConvRNN2D cell does not support constants");const s=t==null?null:t.mask,n=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:s,training:n,initialState:i})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return C(()=>{const{stateSize:t}=this.cell,s=e.shape,n=this.computeSingleOutputShape(s),i=[n[0],...n.slice(2)],r=ye(i);return Array.isArray(t)?Array(t.length).fill(r):[r]})}resetStates(e,t=!1){C(()=>{if(!this.stateful)throw new Sn("Cannot call resetStates() on an RNN Layer that is not stateful.");const s=this.inputSpec[0].shape,n=this.computeSingleOutputShape(s),i=[n[0],...n.slice(2)],r=s[0];if(r==null)throw new k("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ye(i)):this.states_=[ye(i)];else if(e==null)ce(this.states_),this.keptStates!=null&&(ce(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ye(i)):this.states_[0]=ye(i);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new k(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):ce(this.states_);for(let o=0;o<this.states_.length;++o){const a=e[o],l=i;if(!N.arraysEqual(a.shape,l))throw new k(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${a.shape}`);this.states_[o]=a}}this.states_=this.states_.map(o=>pt(o.clone()))})}computeSingleOutputShape(e){const{dataFormat:t,filters:s,kernelSize:n,padding:i,strides:r,dilationRate:o}=this.cell,a=t==="channelsFirst",l=e[a?3:2],c=e[a?4:3],p=Rs(l,n[0],i,r[0],o[0]),u=Rs(c,n[1],i,r[1],o[1]),h=[...e.slice(0,2),...a?[s,p,u]:[p,u,s]];return h}}AN.className="ConvRNN2D";class Tu extends Sa{constructor(e){const{filters:t,kernelSize:s,strides:n,padding:i,dataFormat:r,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,yt(this.filters,"filters"),this.kernelSize=fo(s,2,"kernelSize"),this.kernelSize.forEach(a=>yt(a,"kernelSize")),this.strides=fo(n||1,2,"strides"),this.strides.forEach(a=>yt(a,"strides")),this.padding=i||"valid",bs(this.padding),this.dataFormat=r||"channelsLast",lt(this.dataFormat),this.dilationRate=fo(o||1,2,"dilationRate"),this.dilationRate.forEach(a=>yt(a,"dilationRate"))}build(e){var t;e=Ue(e);const s=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[s]==null)throw new k(`The channel dimension of the input should be defined. Found ${e[s]}`);const n=e[s],i=4,r=this.kernelSize.concat([n,this.filters*i]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);const o=this.kernelSize.concat([this.filters,this.filters*i]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let a;if(this.unitForgetBias){const l=this.biasInitializer,c=this.filters;a=new(t=class extends zs{apply(u,h){const d=l.apply([c]),m=Kt([c]),f=l.apply([c*2]);return $l([d,m,f])}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*i],null,a,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return C(()=>{if(e.length!==3)throw new k(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);const s=t.training||!1,n=e[0],i=e[1],r=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Yi({ones:()=>Ot(n),rate:this.dropout,training:s,count:o}));const a=this.dropoutMask,l=(ie,ne,le)=>!ne||!ne[le]?ie:R(ne[le],ie);let c=l(n,a,0),p=l(n,a,1),u=l(n,a,2),h=l(n,a,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Yi({ones:()=>Ot(i),rate:this.recurrentDropout,training:s,count:o}));const d=this.recurrentDropoutMask;let m=l(i,d,0),f=l(i,d,1),g=l(i,d,2),y=l(i,d,3);const w=3,[x,T,A,_]=Bt(this.kernel.read(),o,w),[E,F,D,M]=this.useBias?Bt(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,x,E,this.padding),p=this.inputConv(p,T,F,this.padding),u=this.inputConv(u,A,D,this.padding),h=this.inputConv(h,_,M,this.padding);const[P,B,Y,q]=Bt(this.recurrentKernel.read(),o,w);m=this.recurrentConv(m,P),f=this.recurrentConv(f,B),g=this.recurrentConv(g,Y),y=this.recurrentConv(y,q);const K=this.recurrentActivation.apply($(c,m)),H=this.recurrentActivation.apply($(p,f)),Q=$(R(H,r),R(K,this.activation.apply($(u,g)))),J=R(this.recurrentActivation.apply($(h,y)),this.activation.apply(Q));return[J,J,Q]})}getConfig(){const e=super.getConfig(),{units:t}=e,s=Gz(e,["units"]),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},s,n)}inputConv(e,t,s,n){const i=rt(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return s?Cs(i,s,this.dataFormat):i}recurrentConv(e,t){const s=1;return rt(e,t,s,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}}Tu.className="ConvLSTM2DCell";V.registerClass(Tu);class Mm extends AN{constructor(e){const t=new Tu(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}}Mm.className="ConvLSTM2D";V.registerClass(Mm);class Au extends Le{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;const t=e.shape,s=[];for(let n=0;n<this.noiseShape.length;++n)s.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return s}call(e,t){return C(()=>{this.invokeCallHook(e,t);const s=we(e);if(0<this.rate&&this.rate<1){const n=t.training==null?!1:t.training,i=this.getNoiseShape(s),r=lo(()=>qd(s,this.rate,i,this.seed),()=>s,n);return r}return e})}getConfig(){const e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}}Au.className="Dropout";V.registerClass(Au);class Um extends Au{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){const t=e.shape;return[t[0],1,t[2]]}}Um.className="SpatialDropout1D";V.registerClass(Um);class $m extends Le{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,yt(this.units,"units"),this.activation=Vn(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=je(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=je(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=at(e.kernelConstraint),this.biasConstraint=at(e.biasConstraint),this.kernelRegularizer=Ye(e.kernelRegularizer),this.biasRegularizer=Ye(e.biasRegularizer),this.activityRegularizer=Ye(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Ue(e);const t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Ue(e);const t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return C(()=>{this.invokeCallHook(e,t);const s=we(e),n=Ud(this.activation.getClassName());let i;return n!=null?i=Cn(s,this.kernel.read(),n,this.bias?this.bias.read():null):(i=Cn(s,this.kernel.read()),this.bias!=null&&(i=Cs(i,this.bias.read())),this.activation!=null&&(i=this.activation.apply(i))),i})}getConfig(){const e={units:this.units,activation:jn(this.activation),useBias:this.useBias,kernelInitializer:Ze(this.kernelInitializer),biasInitializer:Ze(this.biasInitializer),kernelRegularizer:Pe(this.kernelRegularizer),biasRegularizer:Pe(this.biasRegularizer),activityRegularizer:Pe(this.activityRegularizer),kernelConstraint:ot(this.kernelConstraint),biasConstraint:ot(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}}$m.className="Dense";V.registerClass($m);class Wm extends Le{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Ue(e);for(const t of e.slice(1))if(t==null)throw new k(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Nn(e,1)]}call(e,t){return C(()=>{this.invokeCallHook(e,t);let s=we(e);if(this.dataFormat==="channelsFirst"&&s.rank>1){const n=[0];for(let i=2;i<s.rank;++i)n.push(i);n.push(1),s=s.transpose(n)}return TA(s)})}getConfig(){const e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);const t=super.getConfig();return Object.assign(e,t),e}}Wm.className="Flatten";V.registerClass(Wm);class zm extends Le{constructor(e){super(e);this.supportsMasking=!0,this.activation=Vn(e.activation)}call(e,t){return C(()=>{this.invokeCallHook(e,t);const s=we(e);return this.activation.apply(s)})}getConfig(){const e={activation:jn(this.activation)},t=super.getConfig();return Object.assign(e,t),e}}zm.className="Activation";V.registerClass(zm);class Pm extends Le{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return C(()=>(e=we(e),IA(e,this.n)))}getConfig(){const e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}}Pm.className="RepeatVector";V.registerClass(Pm);class Bm extends Le{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){const s="Total size of new array must be unchanged.",n=t.slice();let i=1,r=null;for(let a=0;a<n.length;++a){const l=n[a];if(this.isUnknown(l))if(r===null)r=a;else throw new k("Can only specifiy one unknown dimension.");else i*=l}const o=Nn(e);if(r!==null){if(i===0||o%i!==0)throw new k(s);n[r]=o/i}else if(o!==i)throw new k(s);return n}computeOutputShape(e){let t=!1;for(let s=0;s<e.length;++s)if(this.isUnknown(e[s])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return C(()=>{this.invokeCallHook(e,t);const s=we(e),n=s.shape,i=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return s.reshape(i)})}getConfig(){const e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}}Bm.className="Reshape";V.registerClass(Bm);class jm extends Le{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);const t=cs(1,e.dims.length+1);if(!N.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new st({ndim:this.dims.length+1})]}computeOutputShape(e){e=Ue(e);const t=e.slice();return this.dims.forEach((s,n)=>{t[n+1]=e[s]}),t}call(e,t){return se(we(e),this.dimsIncludingBatch)}getConfig(){const e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}}jm.className="Permute";V.registerClass(jm);class Vm extends Le{constructor(e){super(e??{});this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){const s=we(e),n=-1;return Zo(Js(s,this.maskValue),n)}call(e,t){return C(()=>{this.invokeCallHook(e,t);const s=we(e),n=-1,i=!0,r=Zo(Js(s,this.maskValue),n,i),o=s.mul(r.asType(s.dtype));return o})}}Vm.className="Masking";V.registerClass(Vm);class Gm extends Le{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(He(e.inputLength))}this.inputDim=e.inputDim,yt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,yt(this.outputDim,"outputDim"),this.embeddingsInitializer=je(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ye(e.embeddingsRegularizer),this.activityRegularizer=Ye(e.activityRegularizer),this.embeddingsConstraint=at(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return C(()=>this.maskZero?(e=we(e),Js(e,re(e))):null)}computeOutputShape(e){if(e=Ue(e),this.inputLength==null)return[...e,this.outputDim];const t=He(this.inputLength);if(t.length!==e.length-1)throw new k(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let s=0;for(let n=0;n<t.length;++n){const i=t[n],r=e[n+1];if(i!=null&&r!=null&&i!==r)throw new k(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);i==null&&(t[s]=r),s++}}return[e[0],...t,this.outputDim]}call(e,t){return C(()=>{this.invokeCallHook(e,t);let s=we(e);s.dtype!=="int32"&&(s=ji(s,"int32"));const n=Gd(this.embeddings.read(),s.as1D());return n.reshape(Ue(this.computeOutputShape(s.shape)))})}getConfig(){const e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ze(this.embeddingsInitializer),embeddingsRegularizer:Pe(this.embeddingsRegularizer),activityRegularizer:Pe(this.activityRegularizer),embeddingsConstraint:ot(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}}Gm.className="Embedding";V.registerClass(Gm);class Ia extends Le{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new ae}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;const s=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){const i=e[e.length-t.length+n],r=t[n];if(i==null||r==null||i<0||r<0)s.push(null);else if(i===1)s.push(r);else if(r===1)s.push(i);else{if(i!==r)throw new k("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));s.push(i)}}return s}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Ue(e)]),e=e,e.length<2)throw new k(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(const i of e)i!=null&&i[0]!==null&&t.push(i[0]);if(t=An(t),t.length>1)throw new k(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let s=e[0]==null?null:e[0].slice(1);for(let i=1;i<e.length;++i){const r=e[i]==null?null:e[i].slice(1);s=this.computeElementwiseOpOutputShape(s,r)}const n=e.map(i=>i.length);e.indexOf(null)===-1&&An(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return C(()=>{if(e=e,this.reshapeRequired){const s=[],n=e.map(i=>i.rank);if(n.indexOf(null)===-1){const i=Pn(n);for(let r of e){const o=r.rank;for(let a=0;a<i-o;++a)r=Vi(r,1);s.push(r)}return this.mergeFunction(s)}else{let i=!1;for(const a of e){const l=a.rank;if(l==null){const c=a.shape,p=c[0],u=c.slice(1).concat([p]);let h=a.reshape([p].concat(Nn(c.slice(1))));h=se(h,[1,0]),h=h.reshape(u),s.push(h),i=!0}else if(l>1){const c=cs(1,l).concat([0]);s.push(se(a,c)),i=!0}else s.push(a)}let r=this.mergeFunction(s);const o=r.rank;if(i){if(o==null){const a=r.shape,l=a.length,c=a[l-1],p=[c].concat(a.slice(0,a.length-1));r=se(r.reshape([-1,c]),[1,0]).reshape(p)}else if(o>1){const a=[o-1].concat(cs(0,o-1));r=se(r,a)}}return r}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){const i=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,i)}let s=[];for(const n of e)n!=null&&n[0]!==null&&s.push(n[0]);return s=An(s),s.length===1?t=s.concat(t):t=[null].concat(t),t}computeMask(e,t){return C(()=>{if(t==null)return null;if(!Array.isArray(t))throw new k("`mask` should be an Array");if(!Array.isArray(e))throw new k("`inputs` should be an Array");if(t.length!==e.length)throw new k(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:Mt(n,0));let s=t[0];for(let n=1;n<t.length-1;++n)s=Yt(s,t[n]);return s})}}class qm extends Ia{constructor(e){super(e)}mergeFunction(e){return C(()=>{let t=e[0].clone();for(let s=1;s<e.length;++s)t=$(t,e[s]);return t})}}qm.className="Add";V.registerClass(qm);class Hm extends Ia{constructor(e){super(e)}mergeFunction(e){return C(()=>{let t=e[0].clone();for(let s=1;s<e.length;++s)t=R(t,e[s]);return t})}}Hm.className="Multiply";V.registerClass(Hm);class Ym extends Ia{constructor(e){super(e)}mergeFunction(e){return C(()=>{let t=e[0].clone();for(let s=1;s<e.length;++s)t=$(t,e[s]);return R(1/e.length,t)})}}Ym.className="Average";V.registerClass(Ym);class Km extends Ia{constructor(e){super(e)}mergeFunction(e){return C(()=>{let t=e[0];for(let s=1;s<e.length;++s)t=Ht(t,e[s]);return t})}}Km.className="Maximum";V.registerClass(Km);class Xm extends Ia{constructor(e){super(e)}mergeFunction(e){return C(()=>{let t=e[0];for(let s=1;s<e.length;++s)t=bn(t,e[s]);return t})}}Xm.className="Minimum";V.registerClass(Xm);class Jm extends Ia{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new k("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(const n of e)if(n!=null){t=!1;break}if(t)return;const s=[];for(let n=0;n<e.length;++n){const i=e[n].slice();i.splice(this.axis,1);let r=!1;for(const o of s)if(N.arraysEqual(o,i)){r=!0;break}r||s.push(i)}if(s.length>1)throw new k("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return C(()=>$l(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new k("A `Concatenate` layer should be called on a list of inputs.");const t=e,s=t[0].slice(),n=this.axis<0?s.length+this.axis:this.axis;for(const i of t.slice(1)){if(s[n]==null||i[n]==null){s[n]=null;break}s[n]+=i[n]}return s}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new k("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new k("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new k(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return C(()=>{let s=!0;if(t.forEach(r=>{if(r!=null){s=!1;return}}),s)return null;const n=[];for(let r=0;r<e.length;++r)t[r]==null?n.push(Ot(e[r]).asType("bool")):t[r].rank<e[r].rank?n.push(Mt(t[r],-1)):n.push(t[r]);const i=be(n,this.axis);return hl(i,-1,!1)})}getConfig(){const e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}}Jm.className="Concatenate";V.registerClass(Jm);function Nu(e,t){for(;e<0;)e+=t;return e}function qz(e,t,s){if(e.shape.length>3||t.shape.length>3)throw new ae("batchDot is not implemented for tensors of 4D or higher rank yet");if(N.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),N.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof s=="number"&&(s=[s,s]),e.dtype==="complex64"||t.dtype==="complex64")throw new ae("batchDot is not implemented for complex64-type Tensors yet.");const n=e.shape.length,i=t.shape.length;s==null&&(s=[n-1,i-2]);const r=s;return C(()=>{let o;if(n>i){o=n-i;const l=[];for(let c=0;c<o;++c)l.push(1);t=t.reshape(t.shape.concat(l))}else if(i>n){o=i-n;const l=[];for(let c=0;c<o;++c)l.push(1);e=e.reshape(e.shape.concat(l))}else o=0;let a;if(e.shape.length===2&&t.shape.length===2)r[0]===r[1]?a=e.mul(t).sum(r[0]):a=e.transpose([1,0]).mul(t).sum(r[1]);else{const l=r[0]!==e.shape.length-1,c=r[1]===t.shape.length-1;a=e.matMul(t,l,c)}if(o>0){let l;n>i?l=n+i-3:l=n-1;const c=[];for(let p=l;p<l+o;++p)c.push(p);a=a.squeeze(c)}return a.shape.length===1&&(a=a.expandDims(1)),a})}class Zm extends Ia{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){N.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");const t=e[0],s=e[1];if(t.length>3||s.length>3)throw new ae("Dot layer does not support tensors of 4D or higher rank yet.");const n=this.interpretAxes(t,s);if(t[n[0]]!==s[n[1]])throw new k(`Dimension incompatibility: ${t[n[0]]} !== ${s[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new k(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],s=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((i,r)=>Nu(i,e[r].shape.length)):n=[Nu(this.axes,t.shape.length),Nu(this.axes,s.shape.length)],this.normalize&&(t=pu(t,n[0]),s=pu(s,n[1])),qz(t,s,n)}interpretAxes(e,t){let s;return Array.isArray(this.axes)?s=this.axes:s=[Nu(this.axes,e.length),Nu(this.axes,t.length)],s}computeOutputShape(e){N.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");const t=e[0].slice(),s=e[1].slice();if(t.length>3||s.length>3)throw new ae("Dot layer does not support tensors of 4D or higher rank yet.");const n=this.interpretAxes(t,s);t.splice(n[0],1),s.splice(n[1],1),s.splice(0,1);const i=t.concat(s);return i.length===1&&i.push(1),i}computeMask(e,t){return null}getConfig(){const e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}}Zm.className="Dot";V.registerClass(Zm);class Qm extends Le{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return C(()=>{this.invokeCallHook(e,t);const s=we(e),n=()=>Wl(s.shape,0,this.stddev).add(s),i=lo(n,()=>s,t.training||!1);return i})}}Qm.className="GaussianNoise";V.registerClass(Qm);class ef extends Le{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return C(()=>{this.invokeCallHook(e,t);const s=we(e);if(this.rate>0&&this.rate<1){const n=()=>{const i=Math.sqrt(this.rate/(1-this.rate));return s.mul(Wl(s.shape,1,i))};return lo(n,()=>s,t.training||!1)}return s})}}ef.className="GaussianDropout";V.registerClass(ef);class tf extends Le{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||we(e).shape}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return C(()=>{if(this.rate<1&&this.rate>0){const s=this._getNoiseShape(e),n=()=>{const i=we(e),r=1.6732632423543772,o=1.0507009873554805,a=-r*o;let l=ms(wn(s),this.rate);l=ji(l,"float32");const c=((1-this.rate)*(1+this.rate*a**2))**-.5,p=-c*a*this.rate,u=i.mul(l).add(l.add(-1).mul(a));return u.mul(c).add(p)};return lo(n,()=>we(e),t.training||!1)}return e})}}tf.className="AlphaDropout";V.registerClass(tf);function Cu(e,t,s,n,i,r=.001){let o;if(e.rank===2)o=Yh(e,t,s,n,i,r);else if(e.rank===3)o=Kh(e,t,s,n,i,r);else if(e.rank===4)o=Xh(e,t,s,n,i,r);else throw new ae(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function Hz(e,t,s,n,i=.001){return C(()=>{const r=na(e,n),o=r.mean,a=r.variance,l=Cu(e,o,a,s,t,i);return[l,o,a]})}function Yz(e,t,s,n,i=.001){return C(()=>{const r=na(e,n),o=r.mean,a=r.variance,l=[];for(const m of cs(0,e.rank))n.indexOf(m)!==-1?l.push(1):l.push(e.shape[m]);const c=o.reshape(l),p=a.reshape(l),u=t==null?null:t.reshape(l),h=s==null?null:s.reshape(l),d=Cu(e,c,p,h,u,i);return[d,o,a]})}function Kz(e,t,s,n,i=.001){return N.arraysEqual(n.slice().sort(),cs(0,e.rank-1))?Hz(e,t,s,n,i):Yz(e,t,s,n,i)}class sf extends Le{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=je(e.betaInitializer||"zeros"),this.gammaInitializer=je(e.gammaInitializer||"ones"),this.movingMeanInitializer=je(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=je(e.movingVarianceInitializer||"ones"),this.betaConstraint=at(e.betaConstraint),this.gammaConstraint=at(e.gammaConstraint),this.betaRegularizer=Ye(e.betaRegularizer),this.gammaRegularizer=Ye(e.gammaRegularizer)}build(e){e=Ue(e);const t=this.axis>=0?this.axis:this.axis+e.length,s=e[t];if(s==null)throw new k(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new st({ndim:e.length,axes:{[t]:s}})];const n=[s];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return C(()=>{const s=t.training==null?!1:t.training,n=we(e),i=n.shape,r=i.length,o=cs(0,r),a=this.axis>=0?this.axis:this.axis+r;o.splice(a,1);const l=In(1,r);l[a]=i[a];const c=o.slice();c.sort();const p=!N.arraysEqual(c,cs(0,r).slice(0,r-1)),u=()=>{if(p){const y=this.movingMean.read().reshape(l),w=this.movingVariance.read().reshape(l),x=this.center?this.beta.read().reshape(l):null,T=this.scale?this.gamma.read().reshape(l):null;return Cu(n,y,w,x,T,this.epsilon)}else return Cu(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!s)return u();const[h,d,m]=Kz(n,this.gamma.read(),this.beta.read(),o,this.epsilon),f=(y,w,x)=>{C(()=>{const T=1-x,A=y.read(),_=A.sub(w).mul(T);y.write(A.sub(_))})},g=()=>{f(this.movingMean,d,this.momentum),f(this.movingVariance,m,this.momentum)};return g(),h})}getConfig(){const e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ze(this.betaInitializer),gammaInitializer:Ze(this.gammaInitializer),movingMeanInitializer:Ze(this.movingMeanInitializer),movingVarianceInitializer:Ze(this.movingVarianceInitializer),betaRegularizer:Pe(this.betaRegularizer),gammaRegularizer:Pe(this.gammaRegularizer),betaConstraint:ot(this.betaConstraint),gammaConstraint:ot(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}}sf.className="BatchNormalization";V.registerClass(sf);class nf extends Le{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(const t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=je(e.betaInitializer||"zeros"),this.gammaInitializer=je(e.gammaInitializer||"ones"),this.betaRegularizer=Ye(e.betaRegularizer),this.gammaRegularizer=Ye(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Ue(e);const t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let i=0;i<this.axis.length;++i)this.axis[i]<0&&(this.axis[i]+=t);for(const i of this.axis)if(i<0||i>=t)throw new Error(`Invalid axis: ${i}`);if(this.axis.length!==An(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);const s=this.axis.map(i=>e[i]),n=!0;this.scale?this.gamma=this.addWeight("gamma",s,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",s,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){const s=we(e),n=s.shape,i=n.length;return C(()=>{const r=!0;let{mean:o,variance:a}=na(s,this.axis,r);const l=In(1,i);for(const m of this.axis)l[m]=n[m];const c=m=>m!=null&&m.shape.length!==i&&this.axis!==[i-1]?m.reshape(l):m;let p=c(this.gamma.read()),u=c(this.beta.read());const h=[],d=[];for(let m=0;m<i;++m)this.axis.indexOf(m)!==-1?(h.push(n[m]),d.push(1)):(h.push(1),d.push(n[m]));return o=o.tile(h),a=a.tile(h),p=p.tile(d),u=u.tile(d),Cu(s,o,a,u,p,this.epsilon)})}getConfig(){const e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ze(this.betaInitializer),gammaInitializer:Ze(this.gammaInitializer),betaRegularizer:Pe(this.betaRegularizer),gammaRegularizer:Pe(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}}nf.className="LayerNormalization";V.registerClass(nf);function Xz(e,t,s){return C(()=>{if(e.rank!==4)throw new k(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new k("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(s==null&&(s=ys()),s!=="channelsLast"&&s!=="channelsFirst")throw new k(`Unknown data format: ${s}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return s==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],Pt(e,n)})}class rf extends Le{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ys():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new k(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,s;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],s=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new k(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new k(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);s=e.padding[1]}this.padding=[t,s]}this.inputSpec=[new st({ndim:4})]}computeOutputShape(e){e=Ue(e);let t,s;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?s=e[3]+this.padding[1][0]+this.padding[1][1]:s=null,[e[0],e[1],t,s]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?s=e[2]+this.padding[1][0]+this.padding[1][1]:s=null,[e[0],t,s,e[3]])}call(e,t){return C(()=>Xz(we(e),this.padding,this.dataFormat))}getConfig(){const e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}rf.className="ZeroPadding2D";V.registerClass(rf);function of(e,t,s,n,i,r){return C(()=>{lt(i),Pb(r),bs(n),s==null&&(s=[1,1]),n==null&&(n="valid"),i==null&&(i=ys()),r==null&&(r="max"),e=bu(e,i);let o;const a=n==="same"?"same":"valid";return r==="max"?o=ft(e,t,s,a):o=ds(e,t,s,a),i==="channelsFirst"&&(o=se(o,[0,3,1,2])),o})}function NN(e,t,s,n,i,r){return C(()=>{lt(i),Pb(r),bs(n),s==null&&(s=[1,1,1]),n==null&&(n="valid"),i==null&&(i=ys()),r==null&&(r="max"),e=rw(e,i);let o;const a=n==="same"?"same":"valid";return r==="max"?o=Tl(e,t,s,a):o=ml(e,t,s,a),i==="channelsFirst"&&(o=se(o,[0,4,1,2,3])),o})}class CN extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new k(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(yt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new k(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);yt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,bs(this.padding),this.inputSpec=[new st({ndim:3})]}computeOutputShape(e){e=Ue(e);const t=Rs(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return C(()=>{this.invokeCallHook(e,t),e=Vi(we(e),2);const s=this.poolingFunction(we(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Qs(s,[2])})}getConfig(){const e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}}class af extends CN{constructor(e){super(e)}poolingFunction(e,t,s,n,i){return lt(i),bs(n),of(e,t,s,n,i,"max")}}af.className="MaxPooling1D";V.registerClass(af);class lf extends CN{constructor(e){super(e)}poolingFunction(e,t,s,n,i){return lt(i),bs(n),of(e,t,s,n,i,"avg")}}lf.className="AveragePooling1D";V.registerClass(lf);class RN extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new k(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];yt(this.poolSize,"poolSize"),yt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,lt(this.dataFormat),bs(this.padding),this.inputSpec=[new st({ndim:4})]}computeOutputShape(e){e=Ue(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],s=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Rs(t,this.poolSize[0],this.padding,this.strides[0]),s=Rs(s,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,s]:[e[0],t,s,e[3]]}call(e,t){return C(()=>(this.invokeCallHook(e,t),this.poolingFunction(we(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){const e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}class cf extends RN{constructor(e){super(e)}poolingFunction(e,t,s,n,i){return lt(i),bs(n),of(e,t,s,n,i,"max")}}cf.className="MaxPooling2D";V.registerClass(cf);class pf extends RN{constructor(e){super(e)}poolingFunction(e,t,s,n,i){return lt(i),bs(n),of(e,t,s,n,i,"avg")}}pf.className="AveragePooling2D";V.registerClass(pf);class ON extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new k(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];yt(this.poolSize,"poolSize"),yt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,lt(this.dataFormat),bs(this.padding),this.inputSpec=[new st({ndim:5})]}computeOutputShape(e){e=Ue(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],s=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Rs(t,this.poolSize[0],this.padding,this.strides[0]),s=Rs(s,this.poolSize[1],this.padding,this.strides[1]),n=Rs(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,s,n]:[e[0],t,s,n,e[4]]}call(e,t){return C(()=>(this.invokeCallHook(e,t),this.poolingFunction(we(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){const e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}class uf extends ON{constructor(e){super(e)}poolingFunction(e,t,s,n,i){return lt(i),bs(n),NN(e,t,s,n,i,"max")}}uf.className="MaxPooling3D";V.registerClass(uf);class hf extends ON{constructor(e){super(e)}poolingFunction(e,t,s,n,i){return lt(i),bs(n),NN(e,t,s,n,i,"avg")}}hf.className="AveragePooling3D";V.registerClass(hf);class EN extends Le{constructor(e){super(e);this.inputSpec=[new st({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new ae}}class df extends EN{constructor(e){super(e||{})}call(e,t){return C(()=>{const s=we(e);return Xe(s,1)})}}df.className="GlobalAveragePooling1D";V.registerClass(df);class mf extends EN{constructor(e){super(e||{})}call(e,t){return C(()=>{const s=we(e);return Lt(s,1)})}}mf.className="GlobalMaxPooling1D";V.registerClass(mf);class _N extends Le{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,lt(this.dataFormat),this.inputSpec=[new st({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new ae}getConfig(){const e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}class ff extends _N{call(e,t){return C(()=>{const s=we(e);return this.dataFormat==="channelsLast"?Xe(s,[1,2]):Xe(s,[2,3])})}}ff.className="GlobalAveragePooling2D";V.registerClass(ff);class gf extends _N{call(e,t){return C(()=>{const s=we(e);return this.dataFormat==="channelsLast"?Lt(s,[1,2]):Lt(s,[2,3])})}}gf.className="GlobalMaxPooling2D";V.registerClass(gf);class kN extends Le{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){const e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,s={}){const n=t.layer,i=Ls(n,s);delete t.layer;const r={layer:i};return Object.assign(r,t),new e(r)}}class yf extends kN{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=Ue(e),e.length<3)throw new k(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];const t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Ue(e);const t=[e[0]].concat(e.slice(2)),s=this.layer.computeOutputShape(t),n=e[1];return[s[0],n].concat(s.slice(1))}call(e,t){return C(()=>{e=we(e);const s=(r,o)=>{const a=we(this.layer.call(r,t));return[a,[]]},n=aw(s,e,[],!1,null,null,!1,!0),i=n[1];return i})}}yf.className="TimeDistributed";V.registerClass(yf);function Jz(e){Bi(bA,"BidirectionalMergeMode",e)}const Zz="concat";class bf extends kN{constructor(e){super(e);const t=e.layer.getConfig(),s={};s.className=e.layer.getClassName(),s.config=t,this.forwardLayer=Ls(s),t.goBackwards=!(t.goBackwards===!0);const n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=Ls(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Zz:e.mergeMode,Jz(this.mergeMode),e.weights)throw new ae("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){const t=e.length,s=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,s)),this.backwardLayer.setWeights(e.slice(s))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let s,n,i;return this.returnState&&(i=t.slice(1)),s=t[0],s=s,this.mergeMode==="concat"?(s[s.length-1]*=2,n=[s]):this.mergeMode==null?n=[s,s.slice()]:n=[s],this.returnState?this.mergeMode==null?n.concat(i).concat(i.slice()):[s].concat(i).concat(i.slice()):jt(n)}apply(e,t){let s=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});const i=ow(e,s,n,this.numConstants);if(e=i.inputs,s=i.initialState,n=i.constants,Array.isArray(e)&&(s=e.slice(1),e=e[0]),(s==null||s.length===0)&&n==null)return super.apply(e,t);const r=[],o=[];if(s!=null){const l=s.length;if(l%2>0)throw new k("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=s,r.push(...s);const c=s.map(p=>new st({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(n!=null)throw new ae("Support for constants in Bidirectional layers is not implemented yet.");const a=r[0]instanceof xs;for(const l of r)if(l instanceof xs!==a)throw new k("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(a){const l=[e].concat(r),c=this.inputSpec.concat(o),p=this.inputSpec;this.inputSpec=c;const u=super.apply(l,t);return this.inputSpec=p,u}else return super.apply(e,t)}call(e,t){return C(()=>{const s=t.initialState;let n,i;if(s==null)n=this.forwardLayer.call(e,t),i=this.backwardLayer.call(e,t);else{const a=s.slice(0,s.length/2),l=s.slice(s.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:a})),i=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let r;this.returnState&&(Array.isArray(n)&&(r=n.slice(1).concat(i.slice(1))),n=n[0],i=i[0]),this.returnSequences&&(i=Et(i,1));let o;return this.mergeMode==="concat"?o=$l([n,i]):this.mergeMode==="sum"?o=$(n,i):this.mergeMode==="ave"?o=R(.5,$(n,i)):this.mergeMode==="mul"?o=R(n,i):this.mergeMode==null&&(o=[n,i]),this.returnState?this.mergeMode==null?o.concat(r):[o].concat(r):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){zn(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),zn(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let s;if(this.returnSequences?this.mergeMode==null?s=[t,t]:s=t:this.mergeMode==null?s=[null,null]:s=null,this.returnState){const n=this.forwardLayer.states,i=n.map(r=>null);return Array.isArray(s)?s.concat(i).concat(i):[s].concat(i).concat(i)}else return s}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){const e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){const s=Ls(t.layer);if(delete t.layer,t.numConstants!=null)throw new ae("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");const n=t;return n.layer=s,new e(n)}}bf.className="Bidirectional";V.registerClass(bf);const lw={};Ee(lw,{Layer:()=>Le,RNN:()=>rn,RNNCell:()=>go,activation:()=>mP,add:()=>IP,alphaDropout:()=>oB,average:()=>vP,averagePooling1d:()=>cw,averagePooling2d:()=>pw,averagePooling3d:()=>uw,avgPool1d:()=>kP,avgPool2d:()=>FP,avgPool3d:()=>UP,avgPooling1d:()=>DP,avgPooling2d:()=>MP,avgPooling3d:()=>$P,batchNormalization:()=>OP,bidirectional:()=>ZP,concatenate:()=>TP,conv1d:()=>oP,conv2d:()=>aP,conv2dTranspose:()=>lP,conv3d:()=>cP,convLstm2d:()=>YP,convLstm2dCell:()=>KP,cropping2D:()=>uP,dense:()=>fP,depthwiseConv2d:()=>dP,dot:()=>RP,dropout:()=>gP,elu:()=>eP,embedding:()=>SP,flatten:()=>bP,gaussianDropout:()=>rB,gaussianNoise:()=>iB,globalAveragePooling1d:()=>WP,globalAveragePooling2d:()=>zP,globalMaxPool1d:()=>eB,globalMaxPool2d:()=>tB,globalMaxPooling1d:()=>DN,globalMaxPooling2d:()=>FN,gru:()=>BP,gruCell:()=>jP,input:()=>wm,inputLayer:()=>Qz,layerNormalization:()=>EP,leakyReLU:()=>sP,lstm:()=>VP,lstmCell:()=>GP,masking:()=>aB,maxPool1d:()=>sB,maxPool2d:()=>nB,maxPooling1d:()=>MN,maxPooling2d:()=>UN,maxPooling3d:()=>PP,maximum:()=>AP,minimum:()=>NP,multiply:()=>CP,permute:()=>LP,prelu:()=>nP,reLU:()=>tP,repeatVector:()=>wP,reshape:()=>xP,rnn:()=>XP,separableConv2d:()=>pP,simpleRNN:()=>qP,simpleRNNCell:()=>HP,softmax:()=>iP,spatialDropout1d:()=>yP,stackedRNNCells:()=>JP,thresholdedReLU:()=>rP,timeDistributed:()=>QP,upSampling2d:()=>hP,zeroPadding2d:()=>_P});function Qz(e){return new qi(e)}function eP(e){return new vm(e)}function tP(e){return new Lm(e)}function sP(e){return new Sm(e)}function nP(e){return new Im(e)}function iP(e){return new Am(e)}function rP(e){return new Tm(e)}function oP(e){return new Lu(e)}function aP(e){return new Kl(e)}function lP(e){return new Cm(e)}function cP(e){return new xu(e)}function pP(e){return new Rm(e)}function uP(e){return new Om(e)}function hP(e){return new Em(e)}function dP(e){return new _m(e)}function mP(e){return new zm(e)}function fP(e){return new $m(e)}function gP(e){return new Au(e)}function yP(e){return new Um(e)}function bP(e){return new Wm(e)}function wP(e){return new Pm(e)}function xP(e){return new Bm(e)}function LP(e){return new jm(e)}function SP(e){return new Gm(e)}function IP(e){return new qm(e)}function vP(e){return new Ym(e)}function TP(e){return new Jm(e)}function AP(e){return new Km(e)}function NP(e){return new Xm(e)}function CP(e){return new Hm(e)}function RP(e){return new Zm(e)}function OP(e){return new sf(e)}function EP(e){return new nf(e)}function _P(e){return new rf(e)}function cw(e){return new lf(e)}function kP(e){return cw(e)}function DP(e){return cw(e)}function pw(e){return new pf(e)}function FP(e){return pw(e)}function MP(e){return pw(e)}function uw(e){return new hf(e)}function UP(e){return uw(e)}function $P(e){return uw(e)}function WP(e){return new df(e)}function zP(e){return new ff(e)}function DN(e){return new mf(e)}function FN(e){return new gf(e)}function MN(e){return new af(e)}function UN(e){return new cf(e)}function PP(e){return new uf(e)}function BP(e){return new Dm(e)}function jP(e){return new vu(e)}function VP(e){return new Fm(e)}function GP(e){return new Sa(e)}function qP(e){return new km(e)}function HP(e){return new Iu(e)}function YP(e){return new Mm(e)}function KP(e){return new Tu(e)}function XP(e){return new rn(e)}function JP(e){return new Su(e)}function ZP(e){return new bf(e)}function QP(e){return new yf(e)}const eB=DN,tB=FN,sB=MN,nB=UN;function iB(e){return new Qm(e)}function rB(e){return new ef(e)}function oB(e){return new tf(e)}function aB(e){return new Vm(e)}const hw={};Ee(hw,{MAPE:()=>bB,MSE:()=>LB,binaryAccuracy:()=>lB,binaryCrossentropy:()=>cB,categoricalAccuracy:()=>uB,categoricalCrossentropy:()=>hB,cosineProximity:()=>fB,mape:()=>wB,meanAbsoluteError:()=>gB,meanAbsolutePercentageError:()=>yB,meanSquaredError:()=>xB,mse:()=>SB,precision:()=>dB,recall:()=>mB,sparseCategoricalAccuracy:()=>pB});function lB(e,t){return du(e,t)}function cB(e,t){return cm(e,t)}function pB(e,t){return pm(e,t)}function uB(e,t){return mu(e,t)}function hB(e,t){return fu(e,t)}function dB(e,t){return Xb(e,t)}function mB(e,t){return MA(e,t)}function fB(e,t){return uu(e,t)}function gB(e,t){return Vl(e,t)}function yB(e,t){return po(e,t)}function bB(e,t){return po(e,t)}function wB(e,t){return po(e,t)}function xB(e,t){return yi(e,t)}function LB(e,t){return yi(e,t)}function SB(e,t){return yi(e,t)}const dw={};Ee(dw,{modelFromJSON:()=>tN});const mw={};Ee(mw,{l1:()=>vB,l1l2:()=>IB,l2:()=>TB});function IB(e){return new Yl(e)}function vB(e){return xN(e)}function TB(e){return LN(e)}class fw extends ba{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof nn))throw new Error("model must be a LayersModel, not some other Container");this.model=e}}function wf(e,t){return e<t}function $N(e,t){return e>t}class gw extends fw{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new ae("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=wf:this.mode==="max"?this.monitorFunc=$N:this.monitor.indexOf("acc")!==-1?this.monitorFunc=$N:this.monitorFunc=wf,this.monitorFunc===wf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===wf?Infinity:-Infinity}async onEpochEnd(e,t){await gi(t);const s=this.getMonitorValue(t);if(s==null)return;this.monitorFunc(s-this.minDelta,this.best)?(this.best=s,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});const t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}}function AB(e){return new gw(e)}const WN={earlyStopping:AB};var Rn;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Rn||(Rn={}));var zN;(function(e){let t;(function(s){s[s.LEGACY=0]="LEGACY",s[s.V1=1]="V1",s[s.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(zN||(zN={}));const yw={};function PN(e,t){const s={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};yw[e]=s}function xf(e){return yw[e]}function BN(e){delete yw[e]}function L(e,t,s,n){const i=t.inputParams[e];if(i&&i.inputIndexStart!==void 0){const o=i.inputIndexStart,a=i.inputIndexEnd===0?void 0:i.inputIndexEnd===void 0?o+1:i.inputIndexEnd;if(i.type==="tensor")return Vt(t.inputNames[i.inputIndexStart],s,n);if(i.type==="tensors"){const p=t.inputNames.slice(o,a);return p.map(u=>Vt(u,s,n))}const l=Vt(t.inputNames.slice(o)[0],s,n),c=l.dataSync();return i.type==="number"?c[0]:N.toNestedArray(l.shape,c)}const r=t.attrParams[e];return r&&r.value}function Vt(e,t,s){const[n,i]=Ss(e),r=s.currentContextIds.find(o=>!!t[Lf(n,o)]);return r!==void 0?t[Lf(n,r)][i]:void 0}function jN(e,t,s){return t[Lf(e,s.currentContextId)]}function Gn(e,t){const[s,n]=Ss(e);return[Lf(s,t&&t.currentContextId),n]}function Lf(e,t){return t?`${e}-${t}`:e}function Ss(e){const t=e.split(":");if(t.length===1)return[e,0];const s=t[0];return[s,Number(t[t.length-1])]}function Ru(e,t,s){let n=L("pad",e,t,s);if(n==="explicit"){n=L("explicitPaddings",e,t,s);const i=[[0,0],[0,0],[0,0],[0,0]];for(let r=0;r<4;r++)i[r][0]=n[r*2],i[r][1]=n[r*2+1];return i}return n}function qn(e){return e.kept?e:Fs(e)}const bw={};Ee(bw,{json:()=>NB});const NB=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];const ww={};Ee(ww,{json:()=>CB});const CB=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"clip_value_min",name:"clipValueMin",type:"number"},{tfName:"clip_value_max",name:"clipValueMax",type:"number"}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"clipValueMin",name:"clipValueMin",type:"number",defaultValue:0},{tfName:"clipValueMax",name:"clipValueMax",type:"number",defaultValue:6}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];const xw={};Ee(xw,{json:()=>RB});const RB=[{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];const Lw={};Ee(Lw,{json:()=>OB});const OB=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];const Sw={};Ee(Sw,{json:()=>EB});const EB=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];const Iw={};Ee(Iw,{json:()=>_B});const _B=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];const vw={};Ee(vw,{json:()=>kB});const kB=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];const Tw={};Ee(Tw,{json:()=>DB});const DB=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];const Aw={};Ee(Aw,{json:()=>FB});const FB=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];const Nw={};Ee(Nw,{json:()=>MB});const MB=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];const Cw={};Ee(Cw,{json:()=>UB});const UB=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];const Rw={};Ee(Rw,{json:()=>$B});const $B=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];const Ow={};Ee(Ow,{json:()=>WB});const WB=[{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];const Ew={};Ee(Ew,{json:()=>zB});const zB=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool",notSupported:!0}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];const _w={};Ee(_w,{json:()=>PB});const PB=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];const kw={};Ee(kw,{json:()=>BB});const BB=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];class Fw{static get Instance(){return this._instance||(this._instance=new this)}constructor(){const e=[bw,ww,xw,Lw,Sw,Iw,vw,Nw,Aw,Tw,Cw,Rw,Ow,Ew,_w,kw],t=[].concat(...e.map(s=>s.json));this.opMappers=t.reduce((s,n)=>(s[n.tfOpName]=n,s),{})}transformGraph(e,t={}){const s=e.node,n=[],i=[],r=[],o=s.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?n.push(m[f.name]):f.op==="Const"?i.push(m[f.name]):(f.input==null||f.input.length===0)&&r.push(m[f.name]),m),{});let a=[];const l=[];let c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));const u=Object.keys(o);u.forEach(m=>{const f=o[m];f.inputNames.forEach(g=>{const[y]=Gn(g);f.inputs.push(o[y]),o[y].children.push(f)})}),Object.keys(p).length===0?u.forEach(m=>{const f=o[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{const[f]=Gn(m),g=o[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{const[f]=Gn(m),g=o[f];g&&(g.signatureKey=c[m],a.push(g))}):a=n;let h={};e.library!=null&&e.library.function!=null&&(h=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));const d={nodes:o,inputs:a,outputs:l,weights:i,placeholders:n,signature:t,functions:h};return r.length>0&&(d.initNodes=r),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,s)=>(t[e[s].name]=s,t),{})}mapNode(e){const t=xf(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});const s={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.substr(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(s.inputParams=t.inputs.reduce((n,i)=>(n[i.name]={type:i.type,inputIndexStart:i.start,inputIndexEnd:i.end},n),{})),t.attrs!=null&&(s.attrParams=t.attrs.reduce((n,i)=>{const r=i.type;let o;switch(i.type){case"string":o=Sf(e.attr,i.tfName,i.defaultValue),o===void 0&&!!i.tfDeprecatedName&&(o=Sf(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"string[]":o=Rf(e.attr,i.tfName,i.defaultValue),o===void 0&&!!i.tfDeprecatedName&&(o=Rf(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"number":o=vf(e.attr,i.tfName,i.defaultValue||0),o===void 0&&!!i.tfDeprecatedName&&(o=vf(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"number[]":o=Cf(e.attr,i.tfName,i.defaultValue),o===void 0&&!!i.tfDeprecatedName&&(o=Cf(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"bool":o=If(e.attr,i.tfName,i.defaultValue),o===void 0&&!!i.tfDeprecatedName&&(o=If(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"bool[]":o=Ef(e.attr,i.tfName,i.defaultValue),o===void 0&&!!i.tfDeprecatedName&&(o=Ef(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"shape":o=Nf(e.attr,i.tfName,i.defaultValue),o===void 0&&!!i.tfDeprecatedName&&(o=Nf(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"shape[]":o=Of(e.attr,i.tfName,i.defaultValue),o===void 0&&!!i.tfDeprecatedName&&(o=Of(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"dtype":o=Tf(e.attr,i.tfName,i.defaultValue),o===void 0&&!!i.tfDeprecatedName&&(o=Tf(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"dtype[]":o=Af(e.attr,i.tfName,i.defaultValue),o===void 0&&!!i.tfDeprecatedName&&(o=Af(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"func":o=VN(e.attr,i.tfName,i.defaultValue),o===void 0&&!!i.tfDeprecatedName&&(o=VN(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${i.type} for op: ${e.op}`)}return n[i.name]={value:o,type:r},n},{})),s}mapFunction(e){const t=e.nodeDef,s=[],n=[];let i={};t!=null&&(i=t.reduce((p,u)=>(p[u.name]=this.mapNode(u),u.op==="Const"&&n.push(p[u.name]),p),{}));const r=[],o=[];e.signature.inputArg.forEach(p=>{const[u]=Gn(p.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Dw(p.type),type:"dtype"}},children:[]};h.signatureKey=p.name,r.push(h),i[u]=h});const a=Object.keys(i);a.forEach(p=>{const u=i[p];u.inputNames.forEach(h=>{const[d]=Gn(h);u.inputs.push(i[d]),i[d].children.push(u)})});const l=e.ret;e.signature.outputArg.forEach(p=>{const[u,h]=Gn(l[p.name]),d=i[u];d!=null&&(d.defaultOutput=h,o.push(d))});const c=this.mapArgsToSignature(e);return{nodes:i,inputs:r,outputs:o,weights:n,placeholders:s,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,s)=>(t[s.name]=this.mapArgToTensorInfo(s),t),{}),outputs:e.signature.outputArg.reduce((t,s)=>(t[s.name]=this.mapArgToTensorInfo(s,e.ret),t),{})}}mapArgToTensorInfo(e,t){let s=e.name;return t!=null&&(s=t[s]),{name:s,dtype:e.type}}}function jB(e){const t=W().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function GN(e,t){const s=Array.isArray(e)?String.fromCharCode.apply(null,e):jB(e);return t?s:s.toLowerCase()}function Sf(e,t,s,n=!1){const i=e[t];return i!=null?GN(i.s,n):s}function If(e,t,s){const n=e[t];return n?n.b:s}function vf(e,t,s){const n=e[t]||{},i=n.i!=null?n.i:n.f!=null?n.f:s;return typeof i=="number"?i:parseInt(i,10)}function Dw(e){typeof e=="string"&&(e=Rn[e]);switch(e){case Rn.DT_FLOAT:return"float32";case Rn.DT_INT32:case Rn.DT_INT64:case Rn.DT_INT8:case Rn.DT_UINT8:return"int32";case Rn.DT_BOOL:return"bool";case Rn.DT_DOUBLE:return"float32";case Rn.DT_STRING:return"string";default:return null}}function VN(e,t,s){const n=e[t];return n&&n.func?n.func.name:s}function Tf(e,t,s){const n=e[t];return n&&n.type?Dw(n.type):s}function Af(e,t,s){const n=e[t];return n&&n.list&&n.list.type?n.list.type.map(i=>Dw(i)):s}function qN(e){return e.unknownRank?void 0:e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Nf(e,t,s){const n=e[t];return n&&n.shape?qN(n.shape):s}function Cf(e,t,s){const n=e[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(i=>typeof i=="number"?i:parseInt(i,10)):s}function Rf(e,t,s,n=!1){const i=e[t];return i&&i.list&&i.list.s?i.list.s.map(r=>GN(r,n)):s}function Of(e,t,s){const n=e[t];return n&&n.list&&n.list.shape?n.list.shape.map(i=>qN(i)):s}function Ef(e,t,s){const n=e[t];return n&&n.list&&n.list.b?n.list.b:s}class HN{constructor(e,t,s){this.node=e,this.tensorMap=t,this.context=s,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,i)=>(n[i]=this.getAttr(i),n),{}))}getInput(e){return Vt(e,this.tensorMap,this.context)}getAttr(e,t){const s=this.node.rawAttrs[e];if(s.tensor!=null)return Vt(e,this.tensorMap,this.context);if(s.i!=null||s.f!=null)return vf(this.node.rawAttrs,e,t);if(s.s!=null)return Sf(this.node.rawAttrs,e,t);if(s.b!=null)return If(this.node.rawAttrs,e,t);if(s.shape!=null)return Nf(this.node.rawAttrs,e,t);if(s.type!=null)return Tf(this.node.rawAttrs,e,t);if(s.list!=null){if(s.list.i!=null||s.list.f!=null)return Cf(this.node.rawAttrs,e,t);if(s.list.s!=null)return Rf(this.node.rawAttrs,e,t);if(s.list.shape!=null)return Of(this.node.rawAttrs,e,t);if(s.list.b!=null)return Ef(this.node.rawAttrs,e,t);if(s.list.type!=null)return Af(this.node.rawAttrs,e,t)}return t}}const YN=(e,t,s)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[$(L("a",e,t,s),L("b",e,t,s))];case"AddN":return[Wh(L("tensors",e,t,s))];case"FloorMod":case"Mod":return[Al(L("a",e,t,s),L("b",e,t,s))];case"Mul":return[R(L("a",e,t,s),L("b",e,t,s))];case"RealDiv":case"Div":return[Z(L("a",e,t,s),L("b",e,t,s))];case"DivNoNan":return[rd(L("a",e,t,s),L("b",e,t,s))];case"FloorDiv":return[ul(L("a",e,t,s),L("b",e,t,s))];case"Sub":return[X(L("a",e,t,s),L("b",e,t,s))];case"Minimum":return[bn(L("a",e,t,s),L("b",e,t,s))];case"Maximum":return[Ht(L("a",e,t,s),L("b",e,t,s))];case"Pow":return[es(L("a",e,t,s),L("b",e,t,s))];case"SquaredDifference":return[io(L("a",e,t,s),L("b",e,t,s))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};const KN=(e,t,s)=>{switch(e.op){case"Abs":case"ComplexAbs":return[et(L("x",e,t,s))];case"Acos":return[Uh(L("x",e,t,s))];case"Acosh":return[$h(L("x",e,t,s))];case"Asin":return[Ph(L("x",e,t,s))];case"Asinh":return[Bh(L("x",e,t,s))];case"Atan":return[jh(L("x",e,t,s))];case"Atan2":return[Vh(L("x",e,t,s),L("y",e,t,s))];case"Atanh":return[Gh(L("x",e,t,s))];case"Ceil":return[Jh(L("x",e,t,s))];case"Complex":return[Gt(L("real",e,t,s),L("imag",e,t,s))];case"Cos":return[Kr(L("x",e,t,s))];case"Cosh":return[wl(L("x",e,t,s))];case"Elu":return[gn(L("x",e,t,s))];case"Erf":return[od(L("x",e,t,s))];case"Exp":return[ut(L("x",e,t,s))];case"Expm1":return[ad(L("x",e,t,s))];case"Floor":return[ui(L("x",e,t,s))];case"Log":return[zt(L("x",e,t,s))];case"Log1p":return[Sl(L("x",e,t,s))];case"Imag":return[yn(L("x",e,t,s))];case"Neg":return[ke(L("x",e,t,s))];case"Reciprocal":return[yd(L("x",e,t,s))];case"Real":return[Zs(L("x",e,t,s))];case"Relu":return[Fe(L("x",e,t,s))];case"Round":return[wd(L("x",e,t,s))];case"Selu":return[Rl(L("x",e,t,s))];case"Sigmoid":return[os(L("x",e,t,s))];case"Sin":return[Ol(L("x",e,t,s))];case"Sign":return[Ld(L("x",e,t,s))];case"Sinh":return[El(L("x",e,t,s))];case"Softplus":return[di(L("x",e,t,s))];case"Sqrt":return[Je(L("x",e,t,s))];case"Square":return[xe(L("x",e,t,s))];case"Tanh":return[Mi(L("x",e,t,s))];case"Tan":return[Id(L("x",e,t,s))];case"Relu6":case"ClipByValue":return[xt(L("x",e,t,s),L("clipValueMin",e,t,s),L("clipValueMax",e,t,s))];case"Rsqrt":return[Cl(Vt(e.inputNames[0],t,s))];case"Prod":return[Nl(L("x",e,t,s),L("axes",e,t,s))];case"LeakyRelu":return[Ll(L("x",e,t,s),L("alpha",e,t,s))];case"Prelu":return[Qr(L("x",e,t,s),L("alpha",e,t,s))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Bs(e,t,s=""){N.assert(VB(e,t),()=>s+` Shapes ${e} and ${t} must match`)}function VB(e,t){if(e.length!==t.length)return!1;for(let s=0;s<e.length;s++)if(e[s]!==-1&&t[s]!==-1&&e[s]!==t[s])return!1;return!0}class XN{constructor(e,t,s,n,i,r,o){this.name=e,this.dtype=t,this.maxSize=s,this.elementShape=n,this.identicalElementShapes=i,this.dynamicSize=r,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=j(0),pt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);const t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);const s=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Bs(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),s.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(s.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);s.tensor=t,pt(t),s.written=!0,this.tensors[e]=s}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((s,n)=>this.write(s,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return ze([],[0].concat(this.elementShape));const s=this.readMany(e);return Bs(this.elementShape,s[0].shape,"TensorArray shape mismatch: "),Ge(s,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ze([],[0].concat(this.elementShape));const t=[];for(let n=0;n<this.size();n++)t.push(n);const s=this.readMany(t);return Bs(this.elementShape,s[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${s[0].shape})`),be(s,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);const s=Math.max(...e);if(!this.dynamicSize&&s>=this.maxSize)throw new Error(`Max index must be < array size (${s} vs. ${this.maxSize})`);this.writeMany(e,qe(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let s=0;const n=e.map(a=>(s+=a,s));if(s!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${s}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);const i=s===0?0:t.size/s,r=[];C(()=>{t=O(t,[1,s,i]);for(let a=0;a<e.length;++a){const l=a===0?0:n[a-1],c=[0,l,0],p=[1,e[a],i];r[a]=O(he(t,c,p),this.elementShape)}return r});const o=[];for(let a=0;a<e.length;a++)o[a]=a;this.writeMany(o,r)}}class Ou{constructor(e,t,s,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=s,e!=null&&e.forEach(i=>{if(s!==i.dtype)throw new Error(`Invalid data types; op elements ${s}, but list elements ${i.dtype}`);Bs(t,i.shape,"TensorList shape mismatch: "),pt(i)}),this.idTensor=j(0),this.maxNumElements=n,pt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Ou([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,s=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(s!==-1&&this.tensors.length!==s)throw new Error(`Operation expected a list with ${s} elements but got a list with ${this.tensors.length} elements.`);return Bs(e,this.elementShape,"TensorList shape mismatch: "),C(()=>{const n=this.tensors.map(i=>O(i,e));return Ge(n,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");const s=this.tensors.pop();return Bs(s.shape,e,"TensorList shape mismatch: "),O(s,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Bs(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");pt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,s){if(s!==this.elementDtype)throw new Error(`Invalid data types; op elements ${s}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return Bs(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Bs(this.elementShape,t.shape,"TensorList shape mismatch: "),pt(t),this.tensors[e]=t}gather(e,t,s){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return Bs(this.elementShape,s,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?ze([],[0].concat(this.elementShape)):C(()=>{const n=e.map(i=>O(this.tensors[i],s));return Ge(n,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return Bs(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?ze([],[0].concat(this.elementShape)):C(()=>{const s=this.tensors.map(n=>O(n,t));return be(s,0)})}}function JN(e,t,s){const n=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==s)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${s}`);const i=e.shape.slice(1);Bs(i,t,"TensorList shape mismatch: ");const r=qe(e);return new Ou(r,t,n)}function ZN(e,t,s){return new Ou([],e,t,s)}function QN(e,t,s,n){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);const i=Math.max(...t);if(n!=null&&n!==-1&&i>=n)throw new Error(`Max index must be < array size (${i} vs. ${n})`);const r=new Ou([],s,e.dtype,n),o=qe(e,0);return t.forEach((a,l)=>{r.setItem(a,o[l])}),r}function eC(e,t,s){let n=0;const i=t.map(l=>(n+=l,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${e.shape}`);const r=n===0?0:e.size/n,o=C(()=>{const l=[];e=O(e,[1,n,r]);for(let c=0;c<t.length;++c){const p=c===0?0:i[c-1],u=[0,p,0],h=[1,t[c],r];l[c]=O(he(e,u,h),s)}return e.dispose(),l}),a=new Ou([],s,e.dtype,t.length);for(let l=0;l<o.length;l++)a.setItem(l,o[l]);return a}const tC=async(e,t,s)=>{switch(e.op){case"If":case"StatelessIf":{const n=L("thenBranch",e,t,s),i=L("elseBranch",e,t,s),r=L("cond",e,t,s),o=L("args",e,t,s),a=await r.data();return a[0]?s.functionMap[n].executeFunctionAsync(o,s.tensorArrayMap,s.tensorListMap):s.functionMap[i].executeFunctionAsync(o,s.tensorArrayMap,s.tensorListMap)}case"While":case"StatelessWhile":{const n=L("body",e,t,s),i=L("cond",e,t,s),r=L("args",e,t,s),o=await s.functionMap[i].executeFunctionAsync(r,s.tensorArrayMap,s.tensorListMap),a=r.map(p=>p.id);let l=await o[0].data();o.forEach(p=>{!p.kept&&a.indexOf(p.id)===-1&&p.dispose()});let c=r;for(;l[0];){const p=c;c=await s.functionMap[n].executeFunctionAsync(c,s.tensorArrayMap,s.tensorListMap);const u=c.map(d=>d.id);p.forEach(d=>{!d.kept&&a.indexOf(d.id)===-1&&u.indexOf(d.id)===-1&&d.dispose()});const h=await s.functionMap[i].executeFunctionAsync(c,s.tensorArrayMap,s.tensorListMap);l=await h[0].data(),h.forEach(d=>{!d.kept&&a.indexOf(d.id)===-1&&u.indexOf(d.id)===-1&&d.dispose()})}return c}case"LoopCond":{const n=L("pred",e,t,s);return[qn(n)]}case"Switch":{const n=L("pred",e,t,s);let i=L("data",e,t,s);return i.kept||(i=qn(i)),(await n.data())[0]?[void 0,i]:[i,void 0]}case"Merge":{const n=e.inputNames.find(i=>Vt(i,t,s)!==void 0);if(n){const i=Vt(n,t,s);return[qn(i)]}return}case"Enter":{const n=L("frameName",e,t,s),i=L("tensor",e,t,s);return s.enterFrame(n),[qn(i)]}case"Exit":{const n=L("tensor",e,t,s);return s.exitFrame(),[qn(n)]}case"NextIteration":{const n=L("tensor",e,t,s);return s.nextIteration(),[qn(n)]}case"TensorArrayV3":{const n=L("size",e,t,s),i=L("dtype",e,t,s),r=L("elementShape",e,t,s),o=L("dynamicSize",e,t,s),a=L("clearAfterRead",e,t,s),l=L("identicalElementShapes",e,t,s),c=L("name",e,t,s),p=new XN(c,i,n,r,l,o,a);return s.addTensorArray(p),[p.idTensor,j(1)]}case"TensorArrayWriteV3":{const n=L("tensorArrayId",e,t,s),i=L("index",e,t,s),r=L("tensor",e,t,s),o=s.getTensorArray(n.id);return o.write(i,r),[o.idTensor]}case"TensorArrayReadV3":{const n=L("tensorArrayId",e,t,s),i=L("index",e,t,s),r=s.getTensorArray(n.id);return[r.read(i)]}case"TensorArrayGatherV3":{const n=L("tensorArrayId",e,t,s),i=L("indices",e,t,s),r=L("dtype",e,t,s),o=s.getTensorArray(n.id);return[o.gather(i,r)]}case"TensorArrayScatterV3":{const n=L("tensorArrayId",e,t,s),i=L("indices",e,t,s),r=L("tensor",e,t,s),o=s.getTensorArray(n.id);return o.scatter(i,r),[o.idTensor]}case"TensorArrayConcatV3":{const n=L("tensorArrayId",e,t,s),i=s.getTensorArray(n.id),r=L("dtype",e,t,s);return[i.concat(r)]}case"TensorArraySplitV3":{const n=L("tensorArrayId",e,t,s),i=L("tensor",e,t,s),r=L("lengths",e,t,s),o=s.getTensorArray(n.id);return o.split(r,i),[o.idTensor]}case"TensorArraySizeV3":{const n=L("tensorArrayId",e,t,s),i=s.getTensorArray(n.id);return[j(i.size(),"int32")]}case"TensorArrayCloseV3":{const n=L("tensorArrayId",e,t,s),i=s.getTensorArray(n.id);return i.clearAndClose(),[i.idTensor]}case"TensorListSetItem":{const n=L("tensorListId",e,t,s),i=L("index",e,t,s),r=L("tensor",e,t,s),o=s.getTensorList(n.id);return o.setItem(i,r),[o.idTensor]}case"TensorListGetItem":{const n=L("tensorListId",e,t,s),i=L("index",e,t,s),r=L("elementShape",e,t,s),o=L("elementDType",e,t,s),a=s.getTensorList(n.id);return[a.getItem(i,r,o)]}case"TensorListScatterV2":case"TensorListScatter":{const n=L("indices",e,t,s),i=L("tensor",e,t,s),r=L("elementShape",e,t,s),o=L("numElements",e,t,s),a=QN(i,n,r,o);return s.addTensorList(a),[a.idTensor]}case"TensorListReserve":{const n=L("elementShape",e,t,s),i=L("elementDType",e,t,s),r=L("numElements",e,t,s),o=ZN(n,i,r);return s.addTensorList(o),[o.idTensor]}case"TensorListGather":{const n=L("tensorListId",e,t,s),i=L("indices",e,t,s),r=L("elementShape",e,t,s),o=L("elementDType",e,t,s),a=s.getTensorList(n.id);return[a.gather(i,o,r)]}case"TensorListStack":{const n=L("tensorListId",e,t,s),i=L("elementShape",e,t,s),r=L("elementDType",e,t,s),o=L("numElements",e,t,s),a=s.getTensorList(n.id);return[a.stack(i,r,o)]}case"TensorListFromTensor":{const n=L("tensor",e,t,s),i=L("elementShape",e,t,s),r=L("elementDType",e,t,s),o=JN(n,i,r);return s.addTensorList(o),[o.idTensor]}case"TensorListConcat":{const n=L("tensorListId",e,t,s),i=s.getTensorList(n.id),r=L("dtype",e,t,s),o=L("elementShape",e,t,s);return[i.concat(r,o)]}case"TensorListPushBack":{const n=L("tensorListId",e,t,s),i=L("tensor",e,t,s),r=s.getTensorList(n.id);return r.pushBack(i),[r.idTensor]}case"TensorListPopBack":{const n=L("tensorListId",e,t,s),i=L("elementShape",e,t,s),r=L("elementDType",e,t,s),o=s.getTensorList(n.id);return[o.popBack(i,r)]}case"TensorListSplit":{const n=L("tensor",e,t,s),i=L("elementShape",e,t,s),r=L("lengths",e,t,s),o=eC(n,r,i);return s.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function sC(e,t,s){const[n,i]=L("fusedOps",e,t,s),r=n==="biasadd",o=i==="prelu",a=n==="fusedbatchnorm",l=L("numArgs",e,t,s);if(r){if(o&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(a)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");const c=L("strides",e,t,s),p=Ru(e,t,s),u=L("dataFormat",e,t,s).toUpperCase(),h=L("dilations",e,t,s),[d,m]=L("args",e,t,s);return{stride:c,pad:p,dataFormat:u,dilations:h,biasArg:d,preluArg:m,activationFunc:i}}const nC=(e,t,s)=>{switch(e.op){case"Conv1D":{const n=L("stride",e,t,s),i=L("pad",e,t,s),r=L("dataFormat",e,t,s).toUpperCase(),o=L("dilation",e,t,s);return[fl(L("x",e,t,s),L("filter",e,t,s),n,i,r,o)]}case"Conv2D":{const n=L("strides",e,t,s),i=Ru(e,t,s),r=L("dataFormat",e,t,s).toUpperCase(),o=L("dilations",e,t,s);return[rt(L("x",e,t,s),L("filter",e,t,s),[n[1],n[2]],i,r,[o[1],o[2]])]}case"_FusedConv2D":{const{stride:n,pad:i,dataFormat:r,dilations:o,biasArg:a,preluArg:l,activationFunc:c}=sC(e,t,s);return[xn.conv2d({x:L("x",e,t,s),filter:L("filter",e,t,s),strides:[n[1],n[2]],pad:i,dataFormat:r,dilations:[o[1],o[2]],bias:a,activation:c,preluActivationWeights:l})]}case"FusedDepthwiseConv2dNative":{const{stride:n,pad:i,dataFormat:r,dilations:o,biasArg:a,preluArg:l,activationFunc:c}=sC(e,t,s);return[xn.depthwiseConv2d({x:L("x",e,t,s),filter:L("filter",e,t,s),strides:[n[1],n[2]],pad:i,dataFormat:r,dilations:[o[1],o[2]],bias:a,activation:c,preluActivationWeights:l})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{const n=L("outputShape",e,t,s),i=L("strides",e,t,s),r=Ru(e,t,s);return[yl(L("x",e,t,s),L("filter",e,t,s),n,[i[1],i[2]],r)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{const n=L("strides",e,t,s),i=Ru(e,t,s),r=L("dilations",e,t,s),o=L("dataFormat",e,t,s).toUpperCase();return[fn(L("input",e,t,s),L("filter",e,t,s),[n[1],n[2]],i,o,[r[1],r[2]])]}case"Conv3D":{const n=L("strides",e,t,s),i=L("pad",e,t,s),r=L("dataFormat",e,t,s).toUpperCase(),o=L("dilations",e,t,s);return[bl(L("x",e,t,s),L("filter",e,t,s),[n[1],n[2],n[3]],i,r,[o[1],o[2],o[3]])]}case"AvgPool":{const n=L("strides",e,t,s),i=L("pad",e,t,s),r=L("kernelSize",e,t,s);return[ds(L("x",e,t,s),[r[1],r[2]],[n[1],n[2]],i)]}case"MaxPool":{const n=L("strides",e,t,s),i=L("pad",e,t,s),r=L("kernelSize",e,t,s);return[ft(L("x",e,t,s),[r[1],r[2]],[n[1],n[2]],i)]}case"MaxPoolWithArgmax":{const n=L("strides",e,t,s),i=L("pad",e,t,s),r=L("kernelSize",e,t,s),o=L("includeBatchInIndex",e,t,s),{result:a,indexes:l}=md(L("x",e,t,s),[r[1],r[2]],[n[1],n[2]],i,o);return[a,l]}case"AvgPool3D":{const n=L("strides",e,t,s),i=L("pad",e,t,s),r=L("kernelSize",e,t,s);return[ml(L("x",e,t,s),[r[1],r[2],r[3]],[n[1],n[2],n[3]],i)]}case"MaxPool3D":{const n=L("strides",e,t,s),i=L("pad",e,t,s),r=L("kernelSize",e,t,s);return[Tl(L("x",e,t,s),[r[1],r[2],r[3]],[n[1],n[2],n[3]],i)]}case"Dilation2D":{const n=L("strides",e,t,s),i=L("pad",e,t,s),r=L("dilations",e,t,s),o=n[1],a=n[2],l=r[1],c=r[2];return[id(L("x",e,t,s),L("filter",e,t,s),[o,a],i,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};const iC=(e,t,s)=>{switch(e.op){case"Fill":{const n=L("shape",e,t,s),i=L("dtype",e,t,s),r=L("value",e,t,s);return[Wt(n,r,i)]}case"LinSpace":{const n=L("start",e,t,s),i=L("stop",e,t,s),r=L("num",e,t,s);return[cd(n,i,r)]}case"Multinomial":{const n=L("logits",e,t,s),i=L("numSamples",e,t,s),r=L("seed",e,t,s);return[fd(n,i,r)]}case"OneHot":{const n=L("indices",e,t,s),i=L("depth",e,t,s),r=L("onValue",e,t,s),o=L("offValue",e,t,s);return[pi(n,i,r,o)]}case"Ones":return[Kt(L("shape",e,t,s),L("dtype",e,t,s))];case"OnesLike":return[Ot(L("x",e,t,s))];case"RandomUniform":return[wn(L("shape",e,t,s),L("minval",e,t,s),L("maxval",e,t,s),L("dtype",e,t,s))];case"Range":{const n=L("start",e,t,s),i=L("stop",e,t,s),r=L("step",e,t,s);return[$i(n,i,r,L("dtype",e,t,s))]}case"TruncatedNormal":{const n=L("shape",e,t,s),i=L("mean",e,t,s),r=L("stdDev",e,t,s),o=L("seed",e,t,s);return[ro(n,i,r,L("dtype",e,t,s),o)]}case"Zeros":return[ye(L("shape",e,t,s),L("dtype",e,t,s))];case"ZerosLike":return[re(L("x",e,t,s))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Mw(e,t,s){const n=L("boxes",e,t,s),i=L("scores",e,t,s),r=L("maxOutputSize",e,t,s),o=L("iouThreshold",e,t,s),a=L("scoreThreshold",e,t,s),l=L("softNmsSigma",e,t,s);return{boxes:n,scores:i,maxOutputSize:r,iouThreshold:o,scoreThreshold:a,softNmsSigma:l}}const rC=async(e,t,s)=>{switch(e.op){case"NonMaxSuppressionV5":{const{boxes:n,scores:i,maxOutputSize:r,iouThreshold:o,scoreThreshold:a,softNmsSigma:l}=Mw(e,t,s),c=await en.nonMaxSuppressionWithScoreAsync(n,i,r,o,a,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{const{boxes:n,scores:i,maxOutputSize:r,iouThreshold:o,scoreThreshold:a}=Mw(e,t,s),l=L("padToMaxOutputSize",e,t,s),c=await en.nonMaxSuppressionPaddedAsync(n,i,r,o,a,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{const{boxes:n,scores:i,maxOutputSize:r,iouThreshold:o,scoreThreshold:a}=Mw(e,t,s);return[await en.nonMaxSuppressionAsync(n,i,r,o,a)]}case"Where":{const n=G(L("condition",e,t,s),"bool"),i=[await Dl(n)];return n.dispose(),i}case"ListDiff":return xd(L("x",e,t,s),L("y",e,t,s));default:throw TypeError(`Node type ${e.op} is not implemented`)}};const oC=(e,t,s)=>{switch(e.op){case"TopKV2":{const n=L("x",e,t,s),i=L("k",e,t,s),r=L("sorted",e,t,s),o=vd(n,i,r);return[o.values,o.indices]}case"Unique":{const n=L("x",e,t,s),i=Yp(n);return[i.values,i.indices]}case"UniqueV2":{const n=L("x",e,t,s),i=L("axis",e,t,s),r=Yp(n,i);return[r.values,r.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};const aC=(e,t,s)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":const n=L("default",e,t,s);return[Vt(e.name,t,s)||n];case"Placeholder":return[Vt(e.name,t,s)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{const c=L("x",e,t,s);return[qn(c)]}case"IdentityN":return L("x",e,t,s).map(c=>qn(c));case"Snapshot":const i=L("x",e,t,s);return[qn(i)];case"Shape":return[Oe(L("x",e,t,s).shape,"int32")];case"ShapeN":return L("x",e,t,s).map(c=>Oe(c.shape));case"Size":return[j(L("x",e,t,s).size,"int32")];case"Rank":return[j(L("x",e,t,s).rank,"int32")];case"NoOp":return[j(1)];case"Print":const r=L("x",e,t,s),o=L("data",e,t,s),a=L("message",e,t,s),l=L("summarize",e,t,s);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(a);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[r];default:throw TypeError(`Node type ${e.op} is not implemented`)}};const lC=(e,t,s)=>{switch(e.op){case"ResizeBilinear":{const n=L("images",e,t,s),i=L("size",e,t,s),r=L("alignCorners",e,t,s);return[en.resizeBilinear(n,[i[0],i[1]],r)]}case"ResizeNearestNeighbor":{const n=L("images",e,t,s),i=L("size",e,t,s),r=L("alignCorners",e,t,s);return[en.resizeNearestNeighbor(n,[i[0],i[1]],r)]}case"CropAndResize":{const n=L("image",e,t,s),i=L("boxes",e,t,s),r=L("boxInd",e,t,s),o=L("cropSize",e,t,s),a=L("method",e,t,s),l=L("extrapolationValue",e,t,s);return[en.cropAndResize(n,i,r,o,a,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};const cC=(e,t,s)=>{switch(e.op){case"Equal":return[as(L("a",e,t,s),L("b",e,t,s))];case"NotEqual":return[Js(L("a",e,t,s),L("b",e,t,s))];case"Greater":return[Ut(L("a",e,t,s),L("b",e,t,s))];case"GreaterEqual":return[ms(L("a",e,t,s),L("b",e,t,s))];case"Less":return[Xr(L("a",e,t,s),L("b",e,t,s))];case"LessEqual":return[Ws(L("a",e,t,s),L("b",e,t,s))];case"LogicalAnd":return[Yt(L("a",e,t,s),L("b",e,t,s))];case"LogicalNot":return[Jr(L("a",e,t,s))];case"LogicalOr":return[vl(L("a",e,t,s),L("b",e,t,s))];case"Select":case"SelectV2":return[mt(L("condition",e,t,s),L("a",e,t,s),L("b",e,t,s))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};const pC=(e,t,s)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Te(L("a",e,t,s),L("b",e,t,s),L("transposeA",e,t,s),L("transposeB",e,t,s))];case"Transpose":return[se(L("x",e,t,s),L("perm",e,t,s))];case"_FusedMatMul":const[n,i]=L("fusedOps",e,t,s),r=n==="biasadd",o=i==="prelu",a=L("numArgs",e,t,s);if(r){if(o&&a!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&a!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}const[l,c]=L("args",e,t,s);return[xn.matMul({a:L("a",e,t,s),b:L("b",e,t,s),transposeA:L("transposeA",e,t,s),transposeB:L("transposeB",e,t,s),bias:l,activation:i,preluActivationWeights:c})];default:throw TypeError(`Node type ${e.op} is not implemented`)}};const uC=(e,t,s)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Xs(L("x",e,t,s),L("mean",e,t,s),L("variance",e,t,s),L("offset",e,t,s),L("scale",e,t,s),L("epsilon",e,t,s))];case"FusedBatchNormV3":return[Xs(L("x",e,t,s),L("mean",e,t,s),L("variance",e,t,s),L("offset",e,t,s),L("scale",e,t,s),L("epsilon",e,t,s))];case"LRN":return[pd(L("x",e,t,s),L("radius",e,t,s),L("bias",e,t,s),L("alpha",e,t,s),L("beta",e,t,s))];case"Softmax":return[ts(L("x",e,t,s))];case"LogSoftmax":return[Il(L("x",e,t,s))];case"SparseToDense":return[Xp(L("sparseIndices",e,t,s),L("outputShape",e,t,s),L("sparseValues",e,t,s),L("defaultValue",e,t,s))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};const hC=(e,t,s)=>{switch(e.op){case"Max":{const n=L("axis",e,t,s),i=L("keepDims",e,t,s);return[Lt(L("x",e,t,s),n,i)]}case"Mean":{const n=L("axis",e,t,s),i=L("keepDims",e,t,s);return[Xe(L("x",e,t,s),n,i)]}case"Min":{const n=L("axis",e,t,s),i=L("keepDims",e,t,s);return[Ui(L("x",e,t,s),n,i)]}case"Sum":{const n=L("axis",e,t,s),i=L("keepDims",e,t,s);return[te(L("x",e,t,s),n,i)]}case"All":{const n=L("axis",e,t,s),i=L("keepDims",e,t,s);return[hl(L("x",e,t,s),n,i)]}case"Any":{const n=L("axis",e,t,s),i=L("keepDims",e,t,s);return[Zo(L("x",e,t,s),n,i)]}case"ArgMax":{const n=L("axis",e,t,s);return[Qo(L("x",e,t,s),n)]}case"ArgMin":{const n=L("axis",e,t,s);return[zh(L("x",e,t,s),n)]}case"Prod":{const n=L("axis",e,t,s),i=L("keepDims",e,t,s);return[Nl(L("x",e,t,s),n,i)]}case"Cumsum":{const n=L("axis",e,t,s),i=L("exclusive",e,t,s),r=L("reverse",e,t,s);return[xl(L("x",e,t,s),n,i,r)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};const dC=(e,t,s)=>{switch(e.op){case"ConcatV2":case"Concat":{const n=L("n",e,t,s),i=L("axis",e,t,s);let r=L("tensors",e,t,s);return r=r.slice(0,n),[be(r,i)]}case"GatherV2":case"Gather":{const n=L("axis",e,t,s),i=L("x",e,t,s),r=L("indices",e,t,s);return[hi(i,G(r,"int32"),n)]}case"ReverseV2":case"Reverse":{const n=L("axis",e,t,s),i=L("x",e,t,s);return[Et(i,n)]}case"Slice":{const n=L("begin",e,t,s),i=L("size",e,t,s);return[he(L("x",e,t,s),n,i)]}case"StridedSlice":{const n=L("begin",e,t,s),i=L("end",e,t,s),r=L("strides",e,t,s),o=L("beginMask",e,t,s),a=L("endMask",e,t,s),l=L("ellipsisMask",e,t,s),c=L("newAxisMask",e,t,s),p=L("shrinkAxisMask",e,t,s),u=L("x",e,t,s);return[Sd(u,n,i,r,o,a,l,c,p)]}case"Pack":return C(()=>{const n=L("axis",e,t,s),i=L("tensors",e,t,s),r=i[0].shape,o=Qs(i[0]).shape,a=i.map(l=>{const c=N.arraysEqual(l.shape,r);if(!c&&!N.arraysEqual(Qs(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:O(l,r)});return[Ge(a,n)]});case"Unpack":{const n=L("axis",e,t,s),i=L("tensor",e,t,s);return qe(i,n)}case"Tile":{const n=L("reps",e,t,s);return[$s(L("x",e,t,s),n)]}case"Split":case"SplitV":{const n=L("axis",e,t,s),i=L("numOrSizeSplits",e,t,s),r=L("x",e,t,s);return Bt(r,i,n)}case"ScatterNd":{const n=L("indices",e,t,s),i=L("values",e,t,s),r=L("shape",e,t,s);return[Ib(n,i,r)]}case"GatherNd":{const n=L("x",e,t,s),i=L("indices",e,t,s);return[vb(n,i)]}case"SparseToDense":{const n=L("sparseIndices",e,t,s),i=L("outputShape",e,t,s),r=L("sparseValues",e,t,s),o=L("defaultValue",e,t,s);return[Xp(n,r,i,r.dtype===o.dtype?o:G(o,r.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};const mC=(e,t,s)=>{switch(e.op){case"FFT":return[so(L("x",e,t,s))];case"IFFT":return[Wi(L("x",e,t,s))];case"RFFT":return[no(L("x",e,t,s))];case"IRFFT":return[kl(L("x",e,t,s))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};const fC=(e,t,s)=>{switch(e.op){case"Cast":return[G(L("x",e,t,s),L("dtype",e,t,s))];case"ExpandDims":{const n=L("axis",e,t,s);return[Mt(L("x",e,t,s),n)]}case"Squeeze":{const n=L("axis",e,t,s);return[Qs(L("x",e,t,s),n)]}case"Reshape":return[O(L("x",e,t,s),L("shape",e,t,s))];case"PadV2":case"Pad":return[Pt(L("x",e,t,s),L("padding",e,t,s),L("constantValue",e,t,s))];case"SpaceToBatchND":{const n=L("blockShape",e,t,s),i=L("paddings",e,t,s);return[Zr(L("x",e,t,s),n,i)]}case"BatchToSpaceND":{const n=L("blockShape",e,t,s),i=L("crops",e,t,s);return[Yr(L("x",e,t,s),n,i)]}case"DepthToSpace":{const n=L("blockSize",e,t,s),i=L("dataFormat",e,t,s).toUpperCase();return[nd(L("x",e,t,s),n,i)]}case"BroadcastTo":return[ta(L("x",e,t,s),L("shape",e,t,s))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Uw(e,t,s){const n=((i,r,o)=>{switch(i.category){case"arithmetic":return C(()=>YN(i,r,o));case"basic_math":return C(()=>KN(i,r,o));case"control":return tC(i,r,o);case"convolution":return C(()=>nC(i,r,o));case"creation":return C(()=>iC(i,r,o));case"dynamic":return rC(i,r,o);case"evaluation":return C(()=>oC(i,r,o));case"image":return C(()=>lC(i,r,o));case"graph":return C(()=>aC(i,r,o));case"logical":return C(()=>cC(i,r,o));case"matrices":return C(()=>pC(i,r,o));case"normalization":return C(()=>uC(i,r,o));case"reduction":return C(()=>hC(i,r,o));case"slice_join":return C(()=>dC(i,r,o));case"spectral":return C(()=>mC(i,r,o));case"transformation":return C(()=>fC(i,r,o));case"custom":const a=xf(i.op);if(a&&a.customExecutor)return a.customExecutor(new HN(i,r,o));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,s);return n instanceof Promise?n.then(i=>[].concat(i)):[].concat(n)}class $w{constructor(e={},t={},s={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=s,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){const e=[];for(let t=0;t<this.contexts.length-1;t++){const s=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(s))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;const e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(const t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(const t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}}function zw(e,t,s,n){const i=new Set,r=[];let o=null,a=null;const l=new Set,c=Object.keys(e).map(h=>Ss(h)[0]);let p=[];n!=null&&(p=n.map(h=>Ss(h.name)[0]));const u=[...t];for(;u.length>0;){const h=u.pop();if((Ww(h)||GB(h))&&(o==null&&(o=h,a=o.children.map(d=>d.name).filter(d=>i.has(d)))),i.add(h.name),s[h.name]!=null)continue;if(c.indexOf(h.name)!==-1)continue;if(p.indexOf(h.name)!==-1)continue;if(h.inputs.length===0){r.push(h.name);continue}h.inputs.forEach(d=>{if(l.has(d.name))return;l.add(d.name),u.push(d)})}return{inputs:e,outputs:t,usedNodes:i,missingInputs:r,dynamicNode:o,syncInputs:a}}function gC(e,t,s){const{usedNodes:n,inputs:i}=s,r=[],o=Object.keys(i).map(p=>Ss(p)[0]).map(p=>e.nodes[p]),a=e.initNodes;o.forEach(p=>{n.has(p.name)&&r.push(p)}),e.weights.forEach(p=>{n.has(p.name)&&r.push(p)}),a!=null&&a.forEach(p=>{n.has(p.name)&&r.push(p)});const l=new Set,c=[];for(;r.length>0;){const p=r.pop();l.add(p.name),t[p.name]||c.push(p),p.children.forEach(u=>{!l.has(u.name)&&n.has(u.name)&&u.inputs.every(h=>l.has(h.name))&&r.push(u)})}return c}const qB=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],HB=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"];function Ww(e){return qB.indexOf(e.op)>=0}function GB(e){return HB.indexOf(e.op)>=0}class _f{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(s=>{this._functionExecutorMap[s]=new _f(e.functions[s],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){const t=Object.keys(e).map(s=>e[s].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{const t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){const s=e.map(i=>i.name).sort(),n=t.map(i=>i.name).sort();return s.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){const s=zw(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:i,syncInputs:r}=s;if(i!=null)throw new Error(`This execution contains the node '${i.name}', which has the dynamic op '${i.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${r}]`);if(n.length>0){const o=t.map(l=>l.name),a=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${a}]. Missing the following inputs: [${n}]`)}return gC(this.graph,this.weightMap,s)}execute(e,t){e=this.mapInputs(e);const s=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);const n=s.map(p=>this.graph.nodes[Ss(p)[0]]),i=t.map(p=>Ss(p)[0]);let r=i.map(p=>this.graph.nodes[p]);r.length===0&&(r=this._outputs);const o=this.getCompilationKey(n,r);let a=this.compiledMap.get(o);a==null&&(a=this.compile(e,r),this.compiledMap.set(o,a));const l={},c={};return C(()=>{const p=new $w(this.weightMap,l,c,this.functionExecutorMap),u=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{const[f,g]=Ss(m),y=[];y[g]=e[m],u[f]=y});const h=this.getFrozenTensorIds(u),d={};for(let m=0;m<a.length;m++){const f=a[m];if(!u[f.name]){const g=Uw(f,u,p);if(g instanceof Promise)throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);u[f.name]=g,this.checkTensorForDisposal(f.name,f,u,p,h,i,d)}}return this.parent==null&&p.dispose(h),t.map(m=>Vt(m,u,p))})}getFrozenTensorIds(e){const t=[].concat.apply([],Object.keys(e).map(s=>e[s]).map(s=>s.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,s,n,i,r,o){if(t.category==="control"||r.indexOf(e)!==-1)return;s[e].forEach(a=>{a!=null&&(o[a.id]=(o[a.id]||0)+t.children.length)}),t.inputs.forEach(a=>{if(a.category!=="control"){const l=jN(a.name,s,n);l!=null&&l.forEach(c=>{if(c&&!i.has(c.id)){const p=o[c.id];p===1?(c.dispose(),delete o[c.id]):p!=null&&o[c.id]--}})}})}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,s=!1,n={},i={}){s||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));const r=new $w(this.weightMap,n,i,this.functionExecutorMap),o=await this.executeWithControlFlow(e,r,t,s),a=t.map(u=>Vt(u,o,r)),l=a.map(u=>u.id),c=Object.keys(e).map(u=>e[u].id),p=new Set([...l,...c,...this.weightIds]);return Object.keys(o).forEach(u=>{const h=o[u];h.forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&r.dispose(p),a}async executeFunctionAsync(e,t,s){const n=e.reduce((i,r,o)=>(i[this.inputs[o].name]=r,i),{});return this._executeAsync(n,this.outputNodes,!0,t,s)}async executeWithControlFlow(e,t,s,n){const i=Object.keys(e),r=i.map(w=>this.graph.nodes[Ss(w)[0]]),o=s.map(w=>Ss(w)[0]),a=o.map(w=>this.graph.nodes[w]),{usedNodes:l,missingInputs:c,dynamicNode:p,syncInputs:u}=zw(e,a,this.weightMap),h=[...r,...this.graph.weights].map(w=>({node:w,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(w=>{const[x,T]=Ss(w),A=[];A[T]=e[w],d[x]=A});const m={},f=this.getFrozenTensorIds(d),g={};for(;h.length>0;){const w=this.processStack(r,h,t,d,g,f,o,m,l);await Promise.all(w)}p==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");const y=a.filter(w=>!Ww(w)&&!Vt(w.name,d,t)).map(w=>w.name);if(y.length>0){let w="";throw p!=null&&(w=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${u}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${i}]. Consider providing the following inputs: [${c}]. ${w}`)}return d}processStack(e,t,s,n,i,r,o,a,l){const c=[];for(;t.length>0;){const p=t.pop();s.currentContext=p.contexts;let u="";if(p.node.op==="Enter"&&L("isConstant",p.node,n,s)&&([u]=Gn(p.node.name,s)),e.indexOf(p.node)===-1){const h=Uw(p.node,n,s);u||([u]=Gn(p.node.name,s));const d=s.currentContext;h instanceof Promise?c.push(h.then(m=>(n[u]=m,s.currentContext=d,this.checkTensorForDisposal(u,p.node,n,s,r,o,a),this.processChildNodes(p.node,t,s,n,i,l),m))):(n[u]=h,this.checkTensorForDisposal(u,p.node,n,s,r,o,a),this.processChildNodes(p.node,t,s,n,i,l))}else this.processChildNodes(p.node,t,s,n,i,l)}return c}processChildNodes(e,t,s,n,i,r){e.children.forEach(o=>{const[a]=Gn(o.name,s);if(i[a]||!r.has(o.name))return;o.op==="Merge"?o.inputNames.some(l=>!!Vt(l,n,s))&&(i[a]=!0,t.push({contexts:s.currentContext,node:o})):o.inputNames.every(l=>!!Vt(l,n,s))&&(i[a]=!0,t.push({contexts:s.currentContext,node:o}))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{const s=e[t],[n]=Ss(t),i=this.graph.nodes[n];if(i.attrParams.shape&&i.attrParams.shape.value){const r=i.attrParams.shape.value,o=r.length===s.shape.length&&s.shape.every((a,l)=>r[l]===-1||r[l]===a);N.assert(o,()=>`The shape of dict['${i.name}'] provided in model.execute(dict) must be [${r}], but was [${s.shape}]`)}i.attrParams.dtype&&i.attrParams.dtype.value&&N.assert(s.dtype===i.attrParams.dtype.value,()=>`The dtype of dict['${i.name}'] provided in model.execute(dict) must be ${i.attrParams.dtype.value}, but was ${s.dtype}`)})}mapInputs(e){const t={};for(const s in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[s]!=null){const n=this._signature.inputs[s];t[n.name]=e[s]}else t[s]=e[s];return t}checkInputs(e){const t=Object.keys(e).filter(s=>{const[n]=Ss(s);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>{if(this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null){const s=this._signature.outputs[t];return s.name}return t},{})}checkOutputs(e){e.forEach(t=>{const[s]=Ss(t);if(!this.graph.nodes[s])throw new Error(`The output '${t}' is not found in the graph`)})}}const YB="?tfjs-format=file",KB="model.json";class Pw{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={})}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}findIOHandler(){const e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Rt.browserHTTPRequest(e,this.loadOptions);else{const t=Rt.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Rt.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");const e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;const t=this.artifacts.modelTopology;let s={};this.artifacts.userDefinedMetadata!=null&&(s=this.artifacts.userDefinedMetadata.signature),this.version=`${t.versions.producer}.${t.versions.minConsumer}`;const n=Rt.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new _f(Fw.Instance.transformGraph(t,s)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),e.modelInitializer!=null){const i=Fw.Instance.transformGraph(e.modelInitializer);this.initializer=new _f(i),this.initializer.weightMap=this.executor.weightMap,this.initializer.execute({},[])}return!0}async save(e,t){if(typeof e=="string"){const s=Rt.getSaveHandlers(e);if(s.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(s.length>1)throw new Error(`Found more than one (${s.length}) save handlers for URL '${e}'`);e=s[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof me)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,s,n)=>(t[s]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);const s=this.executor.execute(e,t);return s.length>1?s:s[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);const s=await this.executor.executeAsync(e,t);return s.length>1?s:s[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,s)=>(t[s]=[e[s]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose()}}async function yC(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&(e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${KB}${YB}`));const s=new Pw(e,t);return await s.load(),s}const kf="2.6.0";function bC(e,t){return Df(e,t)}function Df(e,t,s=new Map,n=new Set){if(e==null)return null;if(n.has(e))throw new Error("Circular references are not supported.");if(s.has(e))return s.get(e);const i=t(e);if(i.recurse&&i.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(i.recurse)if(yo(e)){const r=Array.isArray(e)?[]:{};n.add(e);for(const o in e){const a=e[o],l=Df(a,t,s,n);r[o]=l}return n.delete(e),r}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return s.set(e,i.value),i.value}function xC(e,t=Bw){return wC(e,t)}function wC(e,t,s=new Set){const n=e[0];if(s.has(n))throw new Error("Circular references are not supported.");const i=t(e);if(i.recurse&&i.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(i.recurse)if(yo(n)){const r=Array.isArray(n)?[]:{};s.add(n);for(const o in n){const a=e.map(c=>c[o]),l=wC(a,t,s);r[o]=l}return s.delete(n),r}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return i.value}function Bw(e){return e===null?null:yo(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function Ff(e,t){const s=new Map;Df(e,t,s);for(const i of Array.from(s.keys())){const r=s.get(i);if(r instanceof Promise){const o=await r;s.set(i,o)}}const n=Df(e,t,s);return n}function yo(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof me))}function LC(e){return e==null||XB(e)||Array.isArray(e)||typeof e=="object"&&e instanceof me||N.isTypedArray(e)}function XB(e){return e===null||typeof e!="object"&&typeof e!="function"}function SC(e){return bC(e,JB)}function JB(e){return e instanceof me?{value:e.clone(),recurse:!1}:yo(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}class Mf{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(const t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);const e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");const e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");const t=this.wrap(this.begin+e),s=this.get(t);return this.set(t,this.pop()),s}}class Uf extends Mf{constructor(){super(Uf.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){const e=this.capacity*2,t=new Array(e),s=this.length();for(let n=0;n<s;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=s}}Uf.INITIAL_CAPACITY=32;const IC=vc(Tc());function jw(e){return new ZB(e)}function Eu(e){return new QB(e)}function TC(e,t){return new vC(e,t)}function AC(e,t=Ki.FAIL){return new ej(e,t)}class At{async toArray(){const e=[];let t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){const e=this.prefetch(100),t=[];let s=await e.next();for(;!s.done;)t.push(s.value),s=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),s=e(t.value);for(;!t.done&&s;)t=await this.next(),s=e(t.value)}handleErrors(e){return new aj(this,e)}filter(e){return new rj(this,e)}map(e){return new oj(this,e)}mapAsync(e){return new NC(this,e)}serialMapAsync(e){return new NC(this,e).serial()}flatmap(e){return new lj(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new ij(this,e,t)}columnMajorBatch(e,t=!0,s=Bw){const n=this.rowMajorBatch(e,t);return n.map(i=>xC(i,s))}concatenate(e,t){return new vC(jw([this,e]),t)}take(e){return e<0||e==null?this:new nj(this,e)}skip(e){return e<0||e==null?this:new sj(this,e)}prefetch(e){return new CC(this,e)}shuffle(e,t){return new cj(this,e,t)}serial(){return new tj(this)}}class ZB extends At{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};const e=this.items[this.trav];return this.trav++,{value:SC(e),done:!1}}}class QB extends At{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}}class tj extends At{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}}class sj extends At{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){const e=await this.upstream.next();if(e.done)return e;ce(e.value)}return this.upstream.next()}}class nj extends At{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}}class ij extends At{constructor(e,t,s=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=s,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){const e=[];for(;e.length<this.batchSize;){const t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}}class rj extends At{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){const e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;ce(e.value)}}}class oj extends At{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){const e=await this.upstream.next();if(e.done)return{value:null,done:!0};const t=mn.getTensorsInContainer(e.value),s=this.transform(e.value),n=mn.getTensorsInContainer(s);for(const i of t)mn.isTensorInList(i,n)||i.dispose();return{value:s,done:!1}}}class aj extends At{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}}class NC extends At{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){const e=await this.upstream.next();if(e.done)return{value:null,done:!0};const t=mn.getTensorsInContainer(e.value),s=await this.transform(e.value),n=mn.getTensorsInContainer(s);for(const i of t)mn.isTensorInList(i,n)||i.dispose();return{value:s,done:!1}}}class _u extends At{constructor(){super();this.outputQueue=new Uf,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}}class lj extends _u{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){const e=await this.upstream.next();if(e.done)return!1;const t=mn.getTensorsInContainer(e.value),s=this.transform(e.value),n=mn.getTensorsInContainer(s);this.outputQueue.pushAll(s);for(const i of t)mn.isTensorInList(i,n)||i.dispose();return!0}}class vC extends At{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){const e="TODO: fill in upstream of chained summaries";return`${e} -> Chained`}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){const s=await this.moreIterators.next();if(s.done)return{value:null,done:!0};this.iterator=s.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}const t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}}var Ki;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Ki||(Ki={}));class ej extends At{constructor(e,t=Ki.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){const e="TODO: fill in upstream of zip summaries";return`{${e}} -> Zip`}async nextState(e){await e;let t=0,s=0;function n(r){if(r instanceof At){const o=r.next();return{value:o.then(a=>(t++,a.done&&s++,a.value)),recurse:!1}}else return{value:null,recurse:!0}}const i=await Ff(this.iterators,n);if(t===s)return{value:null,done:!0};if(s>0)switch(this.mismatchMode){case Ki.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ki.SHORTEST:return{value:null,done:!0};case Ki.LONGEST:default:}return this.count++,{value:i,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}}class CC extends At{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new Mf(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){const e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}}class cj extends CC{constructor(e,t,s){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=IC.alea(s||N.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){const e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}}const RC=vc(Tc());class Xi{constructor(){this.size=null}batch(e,t=!0){const s=this;N.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let n;return this.size===Infinity||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),Os(async()=>(await s.iterator()).columnMajorBatch(e,t,pj),n)}concatenate(e){const t=this;let s;return this.size===Infinity||e.size===Infinity?s=Infinity:this.size!=null&&e.size!=null?s=this.size+e.size:s=null,Os(async()=>(await t.iterator()).concatenate(await e.iterator()),s)}filter(e){const t=this;let s;return this.size===Infinity?s=Infinity:s=null,Os(async()=>(await t.iterator()).filter(n=>C(()=>e(n))),s)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){const t=this;return Os(async()=>(await t.iterator()).map(s=>C(()=>e(s))),this.size)}mapAsync(e){const t=this;return Os(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");const t=this;return Os(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){const t=this;let s;return this.size!=null&&e>0?s=this.size*e:e===0?s=0:this.size!=null&&(e===void 0||e<0)?s=Infinity:s=null,Os(async()=>{const n=Eu(async()=>({value:await t.iterator(),done:!1}));return TC(n.take(e))},s)}skip(e){const t=this;let s;return this.size!=null&&e>=0&&this.size>=e?s=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?s=0:s=null,Os(async()=>(await t.iterator()).skip(e),s)}shuffle(e,t,s=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);const n=this,i=RC.alea(t||N.now().toString());return Os(async()=>{let r=i.int32();return s&&(r+=i.int32()),(await n.iterator()).shuffle(e,r.toString())},this.size)}take(e){const t=this;let s;return this.size!=null&&this.size>e?s=e:this.size!=null&&this.size<=e?s=this.size:s=null,Os(async()=>(await t.iterator()).take(e),s)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}}Xi.MAX_BUFFER_SIZE=1e4;function Os(e,t=null){return new class extends Xi{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function OC(e){return Os(async()=>jw(e),e.length)}function EC(e){if(!yo(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let s=0;s<e.length;s++)t=t==null?e[s].size:Math.min(t,e[s].size);else if(e instanceof Object)for(const s in e)t=t==null?e[s].size:Math.min(t,e[s].size);return Os(async()=>{const s=await Ff(e,n=>{if(n instanceof Xi)return{value:n.iterator(),recurse:!1};if(yo(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return AC(s,Ki.SHORTEST)},t)}function pj(e){if(e===null)return null;const t=e[0];if(LC(t)){const s=uj(e);return{value:s,recurse:!1}}return{value:null,recurse:!0}}function uj(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof me?Ge(e):ze(e)}class $f extends Xi{constructor(e){super();this.input=e}async iterator(){const e=await this.input.iterator(),t=e.decodeUTF8(),s=t.split(`
`).map(n=>(n.endsWith("\r")&&(n=n.slice(0,-1)),n));return s}}const Wf='"',ku=Symbol("out"),_C=Symbol("field"),zf=Symbol("quote"),Vw=Symbol("quoteafterquote"),kC=Symbol("quoteinquote");class Pf extends Xi{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new $f(e),t||(t={}),this.hasHeader=!(t.hasHeader===!1),this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(N.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){const e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&N.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);const t=this.fullColumnNames.reduce((n,i)=>(n[i]=n[i]+1||1,n),{}),s=Object.keys(t).filter(n=>t[n]>1);if(N.assert(s.length===0,()=>"Duplicate column names found: "+s.toString()),this.columnConfigs)for(const n of Object.keys(this.columnConfigs)){const i=this.fullColumnNames.indexOf(n);if(i===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){const e=await this.base.iterator(),t=await e.next();if(t.done)throw new Error("No data was found for CSV parsing.");const s=t.value,n=this.parseRow(s,!1);return n}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){const t=this.parseRow(e),s={},n={};for(let i=0;i<this.fullColumnNames.length;i++){const r=this.fullColumnNames[i],o=this.columnConfigs?this.columnConfigs[r]:null;if(this.configuredColumnsOnly&&!o)continue;{const a=t[i];let l=null;if(a==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${r} is empty in this line: ${e}`);l=void 0}else{const c=Number(a);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(a):l=a;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(a);break;default:l=c}}o&&o.isLabel?n[r]=l:s[r]=l}}return Object.keys(n).length===0?s:{xs:s,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){const s=[];let n=0;const i=e.length;let r=ku;for(let o=0;o<i;o++)switch(r){case ku:switch(e.charAt(o)){case Wf:n=o+1,r=zf;break;case this.delimiter:if(n=o+1,this.delimiter===" "&&this.delimWhitespace)break;s.push(""),r=ku;break;default:r=_C,n=o;break}break;case _C:switch(e.charAt(o)){case this.delimiter:s.push(e.substring(n,o)),r=ku,n=o+1;break;default:}break;case zf:switch(e.charAt(o)){case Wf:r=Vw;break;default:}break;case Vw:switch(e.charAt(o)){case this.delimiter:s.push(e.substring(n,o-1)),r=ku,n=o+1;break;case Wf:r=zf;break;default:r=kC;break}break;case kC:switch(e.charAt(o)){case Wf:r=zf;break;default:}break;default:}if(r===Vw?s.push(e.substring(n,i-1)):s.push(e.substring(n)),t&&s.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${s}`);return s}}class Gw extends At{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;const t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=!(e.includeSpectrogram===!1),this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(W().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");const t=new Gw(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(s){throw new Error(`Error thrown while initializing video stream: ${s.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");const e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);const t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize);return}async next(){if(this.isClosed)return{value:null,done:!0};let e,t;const s=await this.getAudioData();if(this.includeSpectrogram){const n=this.flattenQueue(s.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){const n=this.flattenQueue(s.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){const e=[],t=[];let s=0;return new Promise(n=>{const i=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++s===this.numFrames&&(clearInterval(i),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){const t=e[0].length,s=new Float32Array(e.length*t);return e.forEach((n,i)=>s.set(n,i*t)),s}getTensorFromAudioDataArray(e,t){const s=new Float32Array(N.sizeFromShape(t));return s.set(e,s.length-e.length),ze(s,t)}}class qw extends At{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Oe([0],"int32"),this.webcamConfig.centerCrop){const s=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,i=(1-s)/2,r=(1-n)/2,o=i+s,a=n+r;this.cropBox=ls([r,i,a,o],[1,4])}else this.cropBox=ls([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(W().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}const s=new qw(e,t);return await s.start(),s}async start(){this.webcamConfig.facingMode&&N.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Gr.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return C(()=>{const t=e.toFloat().expandDims(0);let s;s=en.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");const n=s.shape;return s.reshape(n.slice(1))})}async capture(){return(await this.next()).value}stop(){const e=this.stream.getTracks();e.forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}}class Bf{}class Hw extends At{split(e){return new hj(this,e)}}class hj extends Hw{constructor(e,t){super();this.upstream=e,this.impl=new dj(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}}class dj extends _u{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){const e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);const t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(const s of t.slice(0,-1))this.outputQueue.push(s);return this.carryover=t[t.length-1],!0}}class DC extends At{decodeUTF8(){return new mj(this)}}class mj extends Hw{constructor(e){super();this.upstream=e,this.impl=new fj(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}}class fj extends _u{constructor(e){super();if(this.upstream=e,W().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{const{StringDecoder:t}=kL();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){const e=await this.upstream.next();let t;if(e.done)return!1;t=e.value;let s;return W().get("IS_BROWSER")?s=this.decoder.decode(t,{stream:!0}):s=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(s),!0}}class jf extends DC{constructor(e,t={}){super();this.file=e,this.options=t,N.assert(e instanceof Uint8Array||(W().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){if(this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size))return{value:null,done:!0};const e=new Promise((t,s)=>{const n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,n)));else{const i=new FileReader;i.onload=o=>{let a=i.result;if(a instanceof ArrayBuffer&&(a=new Uint8Array(a)),!(a instanceof Uint8Array))return s(new TypeError("FileReader returned unknown type."));t(a)},i.onabort=o=>s(new Error("Aborted")),i.onerror=o=>s(new Error(o.type));const r=this.file.slice(this.offset,n);i.readAsArrayBuffer(r)}this.offset=n});return{value:await e,done:!1}}}async function FC(e,t={}){let s,n;typeof e=="string"?s=e:(s=e.url,n=gj(e));const i=await N.fetch(s,n);if(i.ok){const r=new Uint8Array(await i.arrayBuffer());return new jf(r,t)}else throw new Error(i.statusText)}const gj=e=>{const t={method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity};return t};function Vf(e){return typeof e=="string"&&e.substr(0,7)==="file://"}class Gf extends Bf{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Vf(this.input)&&W().get("IS_NODE")){const e=DL();this.input=e.readFileSync(this.input.substr(7))}return new jf(this.input,this.options)}}class qf extends Bf{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Vf(this.url)?new Gf(this.url,this.fileOptions).iterator():FC(this.url,this.fileOptions)}}function MC(e,t={}){return new Pf(new qf(e),t)}function UC(e){const t=Eu(e);return Os(async()=>t)}function $C(e){return Os(async()=>{const t=await e();return Eu(()=>t.next())})}async function WC(e,t){return qw.create(e,t)}async function zC(e){return Gw.create(e)}const Hf="2.6.0";const Yw={};Ee(Yw,{CSVDataset:()=>Pf,Dataset:()=>Xi,FileDataSource:()=>Gf,TextLineDataset:()=>$f,URLDataSource:()=>qf,array:()=>OC,csv:()=>MC,func:()=>UC,generator:()=>$C,microphone:()=>zC,version_data:()=>Hf,webcam:()=>WC,zip:()=>EC});function ee(e,t){Array.isArray(e)||(e=[e]),e.forEach(s=>{s!=null&&N.assert(s.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}const PC=vc(Tc());const yj=vt.nonMaxSuppressionV3Impl,bj=vt.split,wj=vt.tile,xj=vt.topkImpl,Lj=vt.whereImpl;function Kw(e,t,s,n){if(s==="linear")return e.linear(t);if(s==="relu")return e.relu(t);if(s==="elu")return gn(t);if(s==="relu6")return e.relu6(t);if(s==="prelu")return e.prelu(t,n);throw new Error(`Activation ${s} has not been implemented for the CPU backend.`)}class Xw extends Eo{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Fc(this,Us())}write(e,t,s){this.firstUse&&(this.firstUse=!1,W().get("IS_NODE")&&U.warn(`
============================
Hi there 👋. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));const n={};return this.data.set(n,{values:e,dtype:s,refCount:1}),n}makeTensorInfo(e,t,s){const n=this.write(s,e,t);return{dataId:n,shape:e,dtype:t}}incRef(e){const t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){const t=this.data.get(e);t.refCount--}}move(e,t,s,n){this.data.set(e,{values:t,dtype:n,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){const{dtype:t,complexTensorInfos:s}=this.data.get(e);if(t==="complex64"){const n=this.readSync(s.real.dataId),i=this.readSync(s.imag.dataId);return U.mergeRealAndImagArrays(n,i)}return this.data.get(e).values}bufferSync(e){const t=this.readSync(e.dataId);let s=t;if(e.dtype==="string")try{s=t.map(n=>N.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ge(e.shape,e.dtype,s)}makeOutput(e,t,s){const n=this.write(e,t,s);return Us().makeTensorFromDataId(n,t,s,this)}disposeData(e){if(this.data.has(e)){const{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){const t=e.dataId;if(this.data.has(t)){const s=this.data.get(t);s.refCount--,s.refCount<1&&this.disposeData(t)}}async time(e){const t=N.now();e();const s=N.now()-t;return{kernelMs:s}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}stridedSlice(e,t,s,n){ee(e,"stridedSlice");const i=Ms.computeOutShape(t,s,n);if(i.some(a=>a===0))return ze([],i);const r=ge(i,e.dtype),o=this.bufferSync(e);for(let a=0;a<r.size;a++){const l=r.indexToLoc(a),c=new Array(l.length);for(let p=0;p<c.length;p++)c[p]=l[p]*n[p]+t[p];r.set(o.get(...c),...l)}return r.toTensor()}diag(e){const t=this.readSync(e.dataId),s=ge([e.size,e.size],e.dtype),n=s.values;for(let i=0;i<t.length;i++)n[i*e.size+i]=t[i];return s.toTensor()}unstack(e,t){const s=e.shape[t],n=new Array(e.rank-1);let i=0;for(let l=0;l<e.rank;l++)l!==t&&(n[i++]=e.shape[l]);const r=new Array(e.rank).fill(0),o=e.shape.slice();o[t]=1;const a=new Array(s);for(let l=0;l<a.length;l++)r[t]=l,a[l]=he(e,r,o).reshape(n);return a}reverse(e,t){ee(e,"reverse");const s=ge(e.shape,e.dtype),n=this.bufferSync(e);for(let i=0;i<s.size;i++){const r=s.indexToLoc(i),o=r.slice();t.forEach(a=>o[a]=e.shape[a]-1-o[a]),s.set(n.get(...o),...r)}return s.toTensor()}neg(e){return ee(e,"neg"),R(j(-1),e)}addN(e){ee(e,"addN");const t=e.map(i=>this.readSync(i.dataId)),s=ge(e[0].shape,e[0].dtype),n=s.values;for(let i=0;i<e.length;i++){const r=t[i];for(let o=0;o<n.length;o++)n[o]+=r[o]}return s.toTensor()}softmax(e,t){const s=N.parseAxisParam([t],e.shape),n=Lt(e,s),i=U.expandShapeToKeepDim(n.shape,s),r=X(e,n.reshape(i)),o=ut(r),a=this.sum(o,s).reshape(i);return Z(o,a)}pow(e,t){return ee([e,t],"pow"),this.broadcastedBinaryOp(e,t,e.dtype,(s,n)=>Math.pow(s,n))}batchMatMul(e,t,s,n){ee([e,t],"matMul");const i=s?e.shape[1]:e.shape[2],r=s?e.shape[2]:e.shape[1],o=n?t.shape[1]:t.shape[2],a=e.shape[0],l=this.readSync(e.dataId),c=this.readSync(t.dataId),[p,u,h]=s?[e.strides[0],1,e.strides[1]]:[e.strides[0],e.strides[1],1],[d,m,f]=n?[1,t.strides[1],t.strides[0]]:[t.strides[1],1,t.strides[0]],g=r*o,y=ge([a,r,o],e.dtype),w=y.values,x=this.blockSize;for(let T=0;T<a;T++)for(let A=0;A<r;A+=x)for(let _=0;_<o;_+=x)for(let E=0;E<i;E+=x){const F=Math.min(A+x,r),D=Math.min(_+x,o),M=Math.min(E+x,i);for(let P=A;P<F;P++)for(let B=_;B<D;B++){let Y=0;for(let q=E;q<M;q++)Y+=l[T*p+P*u+q*h]*c[q*d+B*m+T*f];w[T*g+(P*o+B)]+=Y}}return y.toTensor()}fusedBatchMatMul({a:e,b:t,transposeA:s,transposeB:n,bias:i,activation:r,preluActivationWeights:o}){let a=this.batchMatMul(e,t,s,n);return i&&(a=$(a,i)),r&&(a=Kw(this,a,r,o)),a}floorDiv(e,t){ee([e,t],"floorDiv");const s=(i,r)=>Math.floor(i/r),n="int32";return this.broadcastedBinaryOp(e,t,n,s)}sum(e,t){ee(e,"sum"),U.assertAxesAreInnerMostDims("sum",t,e.rank);const[s,n]=U.computeOutAndReduceShapes(e.shape,t),i=Ft(e.dtype,"int32"),r=ye(s,i),o=N.sizeFromShape(n),a=this.readSync(r.dataId),l=this.readSync(e.dataId);for(let c=0;c<a.length;++c){const p=c*o;let u=0;for(let h=0;h<o;++h)u+=l[p+h];a[c]=u}return r}prod(e,t){ee(e,"sum");const[s,n]=U.computeOutAndReduceShapes(e.shape,t),i=Ft(e.dtype,"int32"),r=ye(s,i),o=N.sizeFromShape(n),a=this.readSync(r.dataId),l=this.readSync(e.dataId);for(let c=0;c<a.length;++c){const p=c*o;let u=1;for(let h=0;h<o;++h)u*=l[p+h];a[c]=u}return r}unsortedSegmentSum(e,t,s){ee(e,"unsortedSegmentSum");const n=[],i=e.rank-t.rank;for(let r=0;r<i;++r)t=t.expandDims(r+1);for(let r=0;r<s;++r){const o=j(r,"int32"),a=as(o,t).asType("float32"),l=a.mul(e).sum(0);n.push(l)}return Ge(n)}argMin(e,t){ee(e,"argMin");const s=[t];U.assertAxesAreInnerMostDims("argMin",s,e.rank);const[n,i]=U.computeOutAndReduceShapes(e.shape,s),r=ye(n,"int32"),o=N.sizeFromShape(i),a=this.readSync(r.dataId),l=this.readSync(e.dataId);for(let c=0;c<a.length;++c){const p=c*o;let u=l[p],h=0;for(let d=0;d<o;++d){const m=l[p+d];m<u&&(u=m,h=d)}a[c]=h}return r}argMax(e,t){ee(e,"argMax");const s=[t];U.assertAxesAreInnerMostDims("argMax",s,e.rank);const[n,i]=U.computeOutAndReduceShapes(e.shape,s),r=ye(n,"int32"),o=N.sizeFromShape(i),a=this.readSync(r.dataId),l=this.readSync(e.dataId);for(let c=0;c<a.length;++c){const p=c*o;let u=l[p],h=0;for(let d=0;d<o;++d){const m=l[p+d];m>u&&(u=m,h=d)}a[c]=h}return r}cumsum(e,t,s,n){if(ee(e,"cumsum"),t!==e.rank-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${e.rank-1} but got axis=${t}`);const i=Ft(e.dtype,"int32"),r=ye(e.shape,i),o=this.readSync(r.dataId),a=this.readSync(e.dataId),l=e.shape[e.rank-1],c=n?(p,u)=>p+l-u-1:(p,u)=>p+u;for(let p=0;p<a.length;p+=l)for(let u=0;u<l;u++){const h=c(p,u);if(u===0)o[h]=s?0:a[h];else{const d=c(p,u-1);o[h]=s?a[d]+o[d]:a[h]+o[d]}}return r}equal(e,t){return ee([e,t],"equal"),this.broadcastedBinaryOp(e,t,"bool",(s,n)=>s===n?1:0)}notEqual(e,t){return ee([e,t],"notEqual"),this.broadcastedBinaryOp(e,t,"bool",(s,n)=>s!==n?1:0)}less(e,t){return ee([e,t],"less"),this.broadcastedBinaryOp(e,t,"bool",(s,n)=>s<n?1:0)}lessEqual(e,t){return ee([e,t],"lessEqual"),this.broadcastedBinaryOp(e,t,"bool",(s,n)=>s<=n?1:0)}greater(e,t){return ee([e,t],"greater"),this.broadcastedBinaryOp(e,t,"bool",(s,n)=>s>n?1:0)}greaterEqual(e,t){return ee([e,t],"greaterEqual"),this.broadcastedBinaryOp(e,t,"bool",(s,n)=>s>=n?1:0)}logicalAnd(e,t){return ee([e,t],"logicalAnd"),this.broadcastedBinaryOp(e,t,"bool",(s,n)=>s&&n)}logicalOr(e,t){return ee([e,t],"logicalOr"),this.broadcastedBinaryOp(e,t,"bool",(s,n)=>s||n)}select(e,t,s){ee([e,t,s],"select");const n=this.readSync(e.dataId),i=this.readSync(t.dataId),r=this.readSync(s.dataId),o=ye(t.shape,Ft(t.dtype,s.dtype)),a=this.readSync(o.dataId);let l=0;const c=e.rank===0||e.rank>1||t.rank===1?1:N.sizeFromShape(t.shape.slice(1));for(let p=0;p<n.length;p++)for(let u=0;u<c;u++)n[p]===1?a[l++]=i[p]:a[l++]=r[p];return o}where(e){ee([e],"where");const t=this.readSync(e.dataId);return Lj(e.shape,t)}topk(e,t,s){ee(e,"topk");const n=this.readSync(e.dataId);return xj(n,e.shape,e.dtype,t,s)}min(e,t){ee(e,"min"),U.assertAxesAreInnerMostDims("min",t,e.rank);const[s,n]=U.computeOutAndReduceShapes(e.shape,t),i=ye(s,e.dtype),r=N.sizeFromShape(n),o=this.readSync(i.dataId),a=this.readSync(e.dataId);for(let l=0;l<o.length;++l){const c=l*r;let p=a[c];for(let u=0;u<r;++u){const h=a[c+u];h<p&&(p=h)}o[l]=p}return i}minimum(e,t){return ee([e,t],"minimum"),this.broadcastedBinaryOp(e,t,e.dtype,(s,n)=>Math.min(s,n))}mod(e,t){return ee([e,t],"mod"),this.broadcastedBinaryOp(e,t,e.dtype,(s,n)=>{const i=s%n;return s<0&&n<0||s>=0&&n>=0?i:(i+n)%n})}maximum(e,t){return ee([e,t],"maximum"),this.broadcastedBinaryOp(e,t,e.dtype,(s,n)=>Math.max(s,n))}all(e,t){ee(e,"all"),U.assertAxesAreInnerMostDims("all",t,e.rank);const[s,n]=U.computeOutAndReduceShapes(e.shape,t),i=ye(s,e.dtype),r=N.sizeFromShape(n),o=this.readSync(i.dataId),a=this.readSync(e.dataId);for(let l=0;l<o.length;++l){const c=l*r;let p=a[c];for(let u=0;u<r;++u){const h=a[c+u];p=p&&h}o[l]=p}return i}any(e,t){ee(e,"any"),U.assertAxesAreInnerMostDims("any",t,e.rank);const[s,n]=U.computeOutAndReduceShapes(e.shape,t),i=ye(s,e.dtype),r=N.sizeFromShape(n),o=this.readSync(i.dataId),a=this.readSync(e.dataId);for(let l=0;l<o.length;++l){const c=l*r;let p=a[c];for(let u=0;u<r;++u){const h=a[c+u];p=p||h}o[l]=p}return i}squaredDifference(e,t){return ee([e,t],"squaredDifference"),this.broadcastedBinaryOp(e,t,e.dtype,(s,n)=>{const i=s-n;return i*i})}linear(e){return e}relu(e){ee(e,"relu");const t=ye(e.shape,e.dtype),s=this.readSync(t.dataId),n=this.readSync(e.dataId);for(let i=0;i<n.length;++i)s[i]=Math.max(0,n[i]);return t}relu6(e){ee(e,"relu");const t=ye(e.shape,e.dtype),s=this.readSync(t.dataId),n=this.readSync(e.dataId);for(let i=0;i<n.length;++i)s[i]=Math.min(Math.max(0,n[i]),6);return t}prelu(e,t){return ee([e,t],"prelu"),this.broadcastedBinaryOp(e,t,e.dtype,(s,n)=>s<0?n*s:s)}eluDer(e,t){ee([e,t],"eluDer");const s=new Float32Array(t.size),n=this.readSync(t.dataId),i=this.readSync(e.dataId);for(let r=0;r<n.length;++r){const o=n[r];o>=1?s[r]=i[r]:s[r]=i[r]*(o+1)}return this.makeOutput(s,t.shape,"float32")}atan2(e,t){return ee([e,t],"atan2"),this.broadcastedBinaryOp(e,t,e.dtype,(s,n)=>Math.atan2(s,n))}fusedConv2d({input:e,filter:t,convInfo:s,bias:n,activation:i,preluActivationWeights:r}){let o=this.conv2d(e,t,s);return n&&(o=$(o,n)),i&&(o=Kw(this,o,i,r)),o}conv2d(e,t,s){ee([e,t],"conv2d");const n=s.filterHeight,i=s.filterWidth,r=s.dilationHeight,o=s.dilationWidth,a=s.padInfo.left,l=s.padInfo.top,c=s.dataFormat==="channelsLast",p=ge(s.outShape,e.dtype),u=e.strides[0],h=c?e.strides[1]:e.strides[2],d=c?e.strides[2]:1,m=c?1:e.strides[1],f=p.strides[0],g=c?p.strides[1]:p.strides[2],y=c?p.strides[2]:1,w=c?1:p.strides[1],x=this.readSync(e.dataId),T=this.readSync(t.dataId),A=p.values;for(let _=0;_<s.batchSize;++_){const E=_*u,F=_*f;for(let D=0;D<s.outHeight;++D){const M=F+D*g,P=D*s.strideHeight-l;for(let B=0;B<n;B++){const Y=P+B*r;if(Y<0||Y>=s.inHeight)continue;const q=B*t.strides[0],K=E+Y*h;for(let H=0;H<s.outWidth;++H){const Q=M+H*y,J=H*s.strideWidth-a;for(let ie=0;ie<i;ie++){const ne=J+ie*o;if(ne<0||ne>=s.inWidth)continue;const le=q+ie*t.strides[1],ue=K+ne*d;let oe=le;for(let de=0;de<s.inChannels;++de){const Ae=x[ue+de*m];for(let Me=0;Me<s.outChannels;++Me)A[Q+Me*w]+=Ae*T[oe+Me];oe+=s.outChannels}}}}}}return p.toTensor()}conv3d(e,t,s){const n=s.filterDepth,i=s.filterHeight,r=s.filterWidth,o=s.dilationDepth,a=s.dilationHeight,l=s.dilationWidth,c=s.padInfo.front,p=s.padInfo.left,u=s.padInfo.top,h=ge(s.outShape,e.dtype),d=this.readSync(e.dataId),m=this.readSync(t.dataId),f=h.values;for(let g=0;g<s.batchSize;++g){const y=g*e.strides[0],w=g*h.strides[0];for(let x=0;x<s.outDepth;++x){const T=w+x*h.strides[1],A=x*s.strideDepth-c;for(let _=0;_<n;_++){const E=A+_*o;if(E<0||E>=s.inDepth)continue;const F=_*t.strides[0],D=y+E*e.strides[1];for(let M=0;M<s.outHeight;++M){const P=T+M*h.strides[2],B=M*s.strideHeight-u;for(let Y=0;Y<i;Y++){const q=B+Y*a;if(q<0||q>=s.inHeight)continue;const K=F+Y*t.strides[1],H=D+q*e.strides[2];for(let Q=0;Q<s.outWidth;++Q){const J=P+Q*s.outChannels,ie=Q*s.strideWidth-p;for(let ne=0;ne<r;ne++){const le=ie+ne*l;if(le<0||le>=s.inWidth)continue;const ue=K+ne*t.strides[2],oe=H+le*s.inChannels;let de=ue;for(let Ae=0;Ae<s.inChannels;++Ae){const Me=d[oe+Ae];for(let Qe=0;Qe<s.outChannels;++Qe)f[J+Qe]+=Me*m[de+Qe];de+=s.outChannels}}}}}}}}return h.toTensor()}conv2dDerInput(e,t,s){ee([e,t],"conv2dDerInput");const n=ge(s.inShape,"float32"),i=n.values,r=this.readSync(e.dataId),o=this.readSync(t.dataId),[a,l,c]=t.strides,{batchSize:p,filterHeight:u,filterWidth:h,inChannels:d,inHeight:m,inWidth:f,outChannels:g,outHeight:y,outWidth:w,strideHeight:x,strideWidth:T,dataFormat:A}=s,_=u-1-s.padInfo.top,E=h-1-s.padInfo.left,F=A==="channelsLast",D=n.strides[0],M=F?n.strides[1]:n.strides[2],P=F?n.strides[2]:1,B=F?1:n.strides[1],Y=e.strides[0],q=F?e.strides[1]:e.strides[2],K=F?e.strides[2]:1,H=F?1:e.strides[1];for(let Q=0;Q<p;++Q)for(let J=0;J<d;++J)for(let ie=0;ie<m;++ie){const ne=ie-_,le=Math.max(0,Math.ceil(ne/x)),ue=Math.min(y,(u+ne)/x);for(let oe=0;oe<f;++oe){const de=oe-E,Ae=Math.max(0,Math.ceil(de/T)),Me=Math.min(w,(h+de)/T);let Qe=0;for(let $t=le;$t<ue;++$t){const ks=$t*x-ne;for(let bt=Ae;bt<Me;++bt){const ps=bt*T-de,Fn=Y*Q+q*$t+K*bt,Gs=a*(u-1-ks)+l*(h-1-ps)+c*J;for(let Ds=0;Ds<g;++Ds){const cn=r[Fn+H*Ds],Ic=o[Gs+Ds];Qe+=cn*Ic}}}const St=D*Q+M*ie+P*oe+B*J;i[St]=Qe}}return n.toTensor()}conv3dDerInput(e,t,s){const n=ge(s.inShape,"float32"),i=n.values,[r,o,a,l]=n.strides,c=this.readSync(e.dataId),[p,u,h,d]=e.strides,m=this.readSync(t.dataId),[f,g,y,w]=t.strides,{batchSize:x,filterDepth:T,filterHeight:A,filterWidth:_,inChannels:E,inDepth:F,inHeight:D,inWidth:M,outChannels:P,outDepth:B,outHeight:Y,outWidth:q,strideDepth:K,strideHeight:H,strideWidth:Q}=s,J=T-1-s.padInfo.front,ie=A-1-s.padInfo.top,ne=_-1-s.padInfo.left;for(let le=0;le<x;++le)for(let ue=0;ue<E;++ue)for(let oe=0;oe<F;++oe){const de=oe-J,Ae=Math.max(0,Math.ceil(de/K)),Me=Math.min(B,(T+de)/K);for(let Qe=0;Qe<D;++Qe){const St=Qe-ie,$t=Math.max(0,Math.ceil(St/H)),ks=Math.min(Y,(A+St)/H);for(let bt=0;bt<M;++bt){const ps=bt-ne,Fn=Math.max(0,Math.ceil(ps/Q)),Gs=Math.min(q,(_+ps)/Q);let Ds=0;for(let cn=Ae;cn<Me;++cn){const Ic=cn*K-de;for(let ka=$t;ka<ks;++ka){const Da=ka*H-St;for(let Fa=Fn;Fa<Gs;++Fa){const Fg=Fa*Q-ps,Mg=p*le+u*cn+h*ka+d*Fa,KE=f*(T-1-Ic)+g*(A-1-Da)+y*(_-1-Fg)+w*ue;for(let Yu=0;Yu<P;++Yu){const XE=c[Mg+Yu],JE=m[KE+Yu];Ds+=XE*JE}}}}i[r*le+o*oe+a*Qe+l*bt+ue]=Ds}}}return n.toTensor()}conv2dDerFilter(e,t,s){ee([e,t],"conv2dDerFilter");const n=s.strideHeight,i=s.strideWidth,r=s.filterHeight,o=s.filterWidth,a=s.dataFormat==="channelsLast",l=ge(s.filterShape,"float32"),c=s.padInfo.left,p=s.padInfo.top,u=this.bufferSync(e),h=this.bufferSync(t);for(let d=0;d<r;++d){const m=Math.max(0,Math.ceil((p-d)/n)),f=Math.min(s.outHeight,(s.inHeight+p-d)/n);for(let g=0;g<o;++g){const y=Math.max(0,Math.ceil((c-g)/i)),w=Math.min(s.outWidth,(s.inWidth+c-g)/i);for(let x=0;x<s.inChannels;++x)for(let T=0;T<s.outChannels;++T){let A=0;for(let _=0;_<s.batchSize;++_)for(let E=m;E<f;++E){const F=d+E*n-p;for(let D=y;D<w;++D){const M=g+D*i-c;a?A+=u.get(_,F,M,x)*h.get(_,E,D,T):A+=u.get(_,x,F,M)*h.get(_,T,E,D)}}l.set(A,d,g,x,T)}}}return l.toTensor()}conv3dDerFilter(e,t,s){const n=s.strideDepth,i=s.strideHeight,r=s.strideWidth,o=s.filterDepth,a=s.filterHeight,l=s.filterWidth,c=ge(s.filterShape,"float32"),p=c.values,[u,h,d,m]=c.strides,f=this.readSync(t.dataId),[g,y,w,x]=t.strides,T=this.readSync(e.dataId),[A,_,E,F]=e.strides,D=s.padInfo.front,M=s.padInfo.left,P=s.padInfo.top;for(let B=0;B<o;++B){const Y=Math.max(0,Math.ceil((D-B)/n)),q=Math.min(s.outDepth,(s.inDepth+D-B)/n),K=B*u;for(let H=0;H<a;++H){const Q=Math.max(0,Math.ceil((P-H)/i)),J=Math.min(s.outHeight,(s.inHeight+P-H)/i),ie=H*h+K;for(let ne=0;ne<l;++ne){const le=Math.max(0,Math.ceil((M-ne)/r)),ue=Math.min(s.outWidth,(s.inWidth+M-ne)/r),oe=ne*d+ie;for(let de=0;de<s.inChannels;++de){const Ae=de*m+oe;for(let Me=0;Me<s.outChannels;++Me){let Qe=0;for(let St=0;St<s.batchSize;++St){const $t=St*A,ks=St*g;for(let bt=Y;bt<q;++bt){const ps=B+bt*n-D,Fn=ps*_+$t,Gs=bt*y+ks;for(let Ds=Q;Ds<J;++Ds){const cn=H+Ds*i-P,Ic=cn*E+Fn,ka=Ds*w+Gs;for(let Da=le;Da<ue;++Da){const Fa=ne+Da*r-M,Fg=Fa*F+Ic,Mg=Da*x+ka;Qe+=T[Fg+de]*f[Mg+Me]}}}}p[Ae+Me]=Qe}}}}}return c.toTensor()}fusedDepthwiseConv2D({input:e,filter:t,convInfo:s,bias:n,activation:i,preluActivationWeights:r}){let o=this.depthwiseConv2D(e,t,s);return n&&(o=$(o,n)),i&&(o=Kw(this,o,i,r)),o}depthwiseConv2D(e,t,s){ee([e,t],"depthwiseConv2D");const n=s.filterHeight,i=s.filterWidth,r=s.dilationHeight,o=s.dilationWidth,a=s.padInfo.left,l=s.padInfo.top,c=s.outChannels/s.inChannels,p=ge(s.outShape,e.dtype),u=this.readSync(e.dataId),h=this.readSync(t.dataId),d=p.values;for(let m=0;m<s.batchSize;++m){const f=m*e.strides[0],g=m*p.strides[0];for(let y=0;y<s.outHeight;++y){const w=g+y*p.strides[1],x=y*s.strideHeight-a;for(let T=0;T<n;++T){const A=x+T*r;if(A<0||A>=s.inHeight)continue;const _=T*t.strides[0],E=f+A*e.strides[1];for(let F=0;F<s.outWidth;++F){const D=w+F*p.strides[2],M=F*s.strideWidth-l;for(let P=0;P<i;++P){const B=M+P*o;if(B<0||B>=s.inWidth)continue;const Y=_+P*t.strides[1],q=E+B*s.inChannels;let K=D,H=Y;for(let Q=0;Q<s.inChannels;++Q){const J=u[q+Q];for(let ie=0;ie<c;++ie)d[K+ie]+=J*h[H+ie];K+=c,H+=c}}}}}}return p.toTensor()}depthwiseConv2DDerInput(e,t,s){ee([e,t],"depthwiseConv2DDerInput");const n=ge(s.inShape,"float32"),i=n.values,[r,o,a]=n.strides,l=this.readSync(e.dataId),[c,p,u]=e.strides,h=this.readSync(t.dataId),[d,m,f]=t.strides,{batchSize:g,filterHeight:y,filterWidth:w,inChannels:x,inHeight:T,inWidth:A,outChannels:_,outHeight:E,outWidth:F,strideHeight:D,strideWidth:M}=s,P=y-1-s.padInfo.top,B=w-1-s.padInfo.left,Y=_/x;for(let q=0;q<g;++q)for(let K=0;K<x;++K)for(let H=0;H<T;++H){const Q=H-P,J=Math.max(0,Math.ceil(Q/D)),ie=Math.min(E,(y+Q)/D);for(let ne=0;ne<A;++ne){const le=ne-B,ue=Math.max(0,Math.ceil(le/M)),oe=Math.min(F,(w+le)/M);let de=0;for(let Ae=J;Ae<ie;++Ae){const Me=Ae*D-Q;for(let Qe=ue;Qe<oe;++Qe){const St=Qe*M-le,$t=c*q+p*Ae+u*Qe,ks=d*(y-1-Me)+m*(w-1-St)+f*K;for(let bt=0;bt<Y;++bt){const ps=K*Y+bt,Fn=l[$t+ps],Gs=h[ks+bt];de+=Fn*Gs}}}i[r*q+o*H+a*ne+K]=de}}return n.toTensor()}depthwiseConv2DDerFilter(e,t,s){ee([e,t],"depthwiseConv2DDerFilter");const n=s.strideHeight,i=s.strideWidth,r=s.filterHeight,o=s.filterWidth,a=ge(s.filterShape,"float32"),l=s.padInfo.left,c=s.padInfo.top,p=s.outChannels/s.inChannels,u=this.bufferSync(e),h=this.bufferSync(t);for(let d=0;d<r;++d){const m=Math.max(0,Math.ceil((c-d)/n)),f=Math.min(s.outHeight,(s.inHeight+c-d)/n);for(let g=0;g<o;++g){const y=Math.max(0,Math.ceil((l-g)/i)),w=Math.min(s.outWidth,(s.inWidth+l-g)/i);for(let x=0;x<s.outChannels;++x){const T=Math.trunc(x/p),A=x%p;let _=0;for(let E=0;E<s.batchSize;++E)for(let F=m;F<f;++F){const D=d+F*n-c;for(let M=y;M<w;++M){const P=g+M*i-l;_+=u.get(E,D,P,T)*h.get(E,F,M,x)}}a.set(_,d,g,T,A)}}}return a.toTensor()}tile(e,t){return ee(e,"tile"),wj(this.bufferSync(e),t)}gather(e,t,s){ee([e,t],"gather");const n=e.shape.slice(),i=this.readSync(t.dataId);n[s]=i.length;const r=ge(n,e.dtype),o=this.bufferSync(e);for(let a=0;a<r.size;++a){const l=r.indexToLoc(a),c=l.slice();c[s]=i[l[s]];const p=o.locToIndex(c);r.values[a]=o.values[p]}return r.toTensor()}batchToSpaceND(e,t,s){ee([e],"batchToSpaceND");const n=t.reduce((c,p)=>c*p),i=U.getReshaped(e.shape,t,n),r=U.getPermuted(i.length,t.length),o=U.getReshapedPermuted(e.shape,t,n),a=U.getSliceBeginCoords(s,t.length),l=U.getSliceSize(o,s,t.length);return se(e.reshape(i),r).reshape(o).slice(a,l)}pool3d(e,t,s){ee(e,"pool3d");const n=t.strideDepth,i=t.strideHeight,r=t.strideWidth,o=t.dilationDepth,a=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,p=t.effectiveFilterHeight,u=t.effectiveFilterWidth,h=t.padInfo.front,d=t.padInfo.top,m=t.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,g=this.readSync(e.dataId),y=ge(t.outShape,e.dtype),w=y.values,x=t.outShape[1]*t.outShape[2]*t.outShape[3]*t.outShape[4],T=t.outShape[2]*t.outShape[3]*t.outShape[4],A=t.outShape[3]*t.outShape[4],_=t.outShape[4];for(let E=0;E<t.batchSize;++E){const F=E*x,D=E*e.strides[0];for(let M=0;M<t.inChannels;++M)for(let P=0;P<t.outDepth;++P){const B=P*n-h;let Y=B;for(;Y<0;)Y+=o;const q=Math.min(t.inDepth,c+B),K=F+P*T;for(let H=0;H<t.outHeight;++H){const Q=H*i-d;let J=Q;for(;J<0;)J+=a;const ie=Math.min(t.inHeight,p+Q),ne=K+H*A;for(let le=0;le<t.outWidth;++le){const ue=le*r-m;let oe=ue;for(;oe<0;)oe+=l;const de=Math.min(t.inWidth,u+ue),Ae=ne+le*_;let Me=f,Qe=0,St=0;for(let ks=Y;ks<q;ks+=o){const bt=D+ks*e.strides[1];for(let ps=J;ps<ie;ps+=a){const Fn=bt+ps*e.strides[2];for(let Gs=oe;Gs<de;Gs+=l){const Ds=Fn+Gs*e.strides[3],cn=g[Ds+M];if(s==="max"&&cn>Me?Me=cn:s==="avg"&&(Qe+=cn,St++),isNaN(Me))break}if(isNaN(Me))break}if(isNaN(Me))break}const $t=Ae+M;w[$t]=s==="avg"?Qe/St:Me}}}}return y.toTensor()}avgPool3d(e,t){return ee(e,"avgPool3d"),this.pool3d(e,t,"avg").toFloat()}avgPool3dBackprop(e,t,s){ee([e,t],"avgPool3dBackprop");const n=s.strideDepth,i=s.strideHeight,r=s.strideWidth,o=s.filterDepth,a=s.filterHeight,l=s.filterWidth,c=s.dilationDepth,p=s.dilationHeight,u=s.dilationWidth,h=s.effectiveFilterDepth,d=s.effectiveFilterHeight,m=s.effectiveFilterWidth,f=h-1-s.padInfo.front,g=m-1-s.padInfo.left,y=d-1-s.padInfo.top,w=ge(t.shape,"float32"),x=1/(o*a*l),T=this.bufferSync(e);for(let A=0;A<s.batchSize;++A)for(let _=0;_<s.inChannels;++_)for(let E=0;E<s.inDepth;++E)for(let F=0;F<s.inHeight;++F)for(let D=0;D<s.inWidth;++D){const M=E-f,P=F-y,B=D-g;let Y=0;for(let q=0;q<h;q+=c){const K=(M+q)/n;if(K<0||K>=s.outDepth||Math.floor(K)!==K)continue;for(let H=0;H<d;H+=p){const Q=(P+H)/i;if(Q<0||Q>=s.outHeight||Math.floor(Q)!==Q)continue;for(let J=0;J<m;J+=u){const ie=(B+J)/r;if(ie<0||ie>=s.outWidth||Math.floor(ie)!==ie)continue;const ne=T.get(A,K,Q,ie,_);Y+=ne}}}w.set(Y*x,A,E,F,D,_)}return w.toTensor()}maxPool3d(e,t){return ee(e,"maxPool3d"),this.pool3d(e,t,"max").toFloat()}maxPool3dPositions(e,t){const s=ge(t.outShape,"int32"),n=t.strideDepth,i=t.strideHeight,r=t.strideWidth,o=t.dilationDepth,a=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,p=t.effectiveFilterHeight,u=t.effectiveFilterWidth,h=t.padInfo.front,d=t.padInfo.top,m=t.padInfo.left,f=this.bufferSync(e);for(let g=0;g<t.batchSize;++g)for(let y=0;y<t.inChannels;++y)for(let w=0;w<t.outDepth;++w){const x=w*n-h;let T=x;for(;T<0;)T+=o;const A=Math.min(t.inDepth,c+x);for(let _=0;_<t.outHeight;++_){const E=_*i-d;let F=E;for(;F<0;)F+=a;const D=Math.min(t.inHeight,p+E);for(let M=0;M<t.outWidth;++M){const P=M*r-m;let B=P;for(;B<0;)B+=l;const Y=Math.min(t.inWidth,u+P);let q=Number.NEGATIVE_INFINITY,K=-1;for(let H=T;H<A;H+=o){const Q=H-x;for(let J=F;J<D;J+=a){const ie=J-E;for(let ne=B;ne<Y;ne+=l){const le=ne-P,ue=f.get(g,H,J,ne,y);ue>=q&&(q=ue,K=Q*p*u+ie*p+le)}}}s.set(K,g,w,_,M,y)}}}return s.toTensor()}maxPool3dBackprop(e,t,s,n){ee([t,s],"maxPool3dBackprop");const i=this.maxPool3dPositions(t,n),r=n.strideDepth,o=n.strideHeight,a=n.strideWidth,l=n.dilationDepth,c=n.dilationHeight,p=n.dilationWidth,u=n.effectiveFilterDepth,h=n.effectiveFilterHeight,d=n.effectiveFilterWidth,m=u-1-n.padInfo.front,f=d-1-n.padInfo.left,g=h-1-n.padInfo.top,y=ge(t.shape,"float32"),w=this.bufferSync(i),x=this.bufferSync(e);for(let T=0;T<n.batchSize;++T)for(let A=0;A<n.inChannels;++A)for(let _=0;_<n.inDepth;++_)for(let E=0;E<n.inHeight;++E)for(let F=0;F<n.inWidth;++F){const D=_-m,M=E-g,P=F-f;let B=0;for(let Y=0;Y<u;Y+=l){const q=(D+Y)/r;if(q<0||q>=n.outDepth||Math.floor(q)!==q)continue;for(let K=0;K<h;K+=c){const H=(M+K)/o;if(H<0||H>=n.outHeight||Math.floor(H)!==H)continue;for(let Q=0;Q<d;Q+=p){const J=(P+Q)/a;if(J<0||J>=n.outWidth||Math.floor(J)!==J)continue;const ie=u*h*d-1-w.get(T,q,H,J,A),ne=Y*h*d+K*d+Q,le=ie===ne?1:0;if(le===0)continue;const ue=x.get(T,q,H,J,A);B+=ue*le}}}y.set(B,T,_,E,F,A)}return y.toTensor()}resizeBilinear(e,t,s,n){ee(e,"resizeBilinear");const[i,r,o,a]=e.shape,l=this.readSync(e.dataId),c=new Float32Array(N.sizeFromShape([i,t,s,a])),p=[n&&t>1?r-1:r,n&&s>1?o-1:o],u=[n&&t>1?t-1:t,n&&s>1?s-1:s];let h=0;const d=p[0]/u[0],m=p[1]/u[1];for(let f=0;f<i;f++)for(let g=0;g<t;g++){const y=d*g,w=Math.floor(y),x=y-w,T=Math.min(r-1,Math.ceil(y)),A=f*e.strides[0]+w*e.strides[1],_=f*e.strides[0]+T*e.strides[1];for(let E=0;E<s;E++){const F=m*E,D=Math.floor(F),M=F-D,P=Math.min(o-1,Math.ceil(F)),B=A+D*e.strides[2],Y=_+D*e.strides[2],q=A+P*e.strides[2],K=_+P*e.strides[2];for(let H=0;H<a;H++){const Q=l[B+H],J=l[Y+H],ie=l[q+H],ne=l[K+H],le=Q+(ie-Q)*M,ue=J+(ne-J)*M,oe=le+(ue-le)*x;c[h++]=oe}}}return ze(c,[i,t,s,a])}resizeBilinearBackprop(e,t,s){ee([e,t],"resizeBilinearBackprop");const[n,i,r,o]=t.shape,[,a,l]=e.shape,c=new Float32Array(n*i*r*o),p=[s&&a>1?i-1:i,s&&l>1?r-1:r],u=[s&&a>1?a-1:a,s&&l>1?l-1:l],h=p[0]/u[0],d=p[1]/u[1],m=this.readSync(e.dataId);let f=0;for(let g=0;g<n;g++){const y=g*t.strides[0];for(let w=0;w<a;w++){const x=w*h,T=Math.floor(x),A=Math.min(Math.ceil(x),i-1),_=y+T*t.strides[1],E=y+A*t.strides[1],F=x-T,D=1-F;for(let M=0;M<l;M++){const P=M*d,B=Math.floor(P),Y=Math.min(Math.ceil(P),r-1),q=P-B,K=1-q,H=_+B*t.strides[2],Q=_+Y*t.strides[2],J=E+B*t.strides[2],ie=E+Y*t.strides[2],ne=D*K,le=D*q,ue=F*K,oe=F*q;for(let de=0;de<o;de++){const Ae=m[f++];c[H+de]+=Ae*ne,c[Q+de]+=Ae*le,c[J+de]+=Ae*ue,c[ie+de]+=Ae*oe}}}}return ss(c,[n,r,i,o],t.dtype)}resizeNearestNeighbor(e,t,s,n){ee(e,"resizeNearestNeighbor");const[i,r,o,a]=e.shape,l=this.readSync(e.dataId),c=new Float32Array(i*t*s*a),p=[n&&t>1?r-1:r,n&&s>1?o-1:o],u=[n&&t>1?t-1:t,n&&s>1?s-1:s],h=p[0]/u[0],d=p[1]/u[1];let m=0;for(let f=0;f<i;f++){const g=f*e.strides[0];for(let y=0;y<t;y++){const w=h*y,x=Math.min(r-1,n?Math.round(w):Math.floor(w)),T=g+x*e.strides[1];for(let A=0;A<s;A++){const _=d*A,E=Math.min(o-1,n?Math.round(_):Math.floor(_)),F=T+E*e.strides[2];for(let D=0;D<a;D++){const M=l[F+D];c[m++]=M}}}}return ze(c,[i,t,s,a],e.dtype)}resizeNearestNeighborBackprop(e,t,s){ee([e,t],"resizeNearestNeighborBackprop");const[n,i,r,o]=t.shape,[,a,l]=e.shape,c=new Float32Array(n*i*r*o),p=this.readSync(e.dataId),u=[s&&a>1?i-1:i,s&&l>1?r-1:r],h=[s&&a>1?a-1:a,s&&l>1?l-1:l],d=u[0]/h[0],m=u[1]/h[1],f=1/d,g=1/m,y=Math.ceil(f)*2+2,w=Math.ceil(g)*2+2;for(let x=0;x<n;x++){const T=x*t.strides[0];for(let A=0;A<i;A++){const _=T+A*t.strides[1],E=Math.floor(A*f),F=Math.floor(E-y/2);for(let D=0;D<r;D++){const M=_+D*t.strides[2],P=Math.floor(D*g),B=Math.floor(P-w/2);for(let Y=0;Y<o;Y++){let q=0;for(let K=0;K<y;K++){const H=K+F;if(H<0||H>=a)continue;const Q=T+H*e.strides[1],J=H*d,ie=Math.min(i-1,s?Math.round(J):Math.floor(J));if(A!==ie)continue;for(let ne=0;ne<w;ne++){const le=ne+B;if(le<0||le>=l)continue;const ue=Q+le*e.strides[2],oe=le*m,de=Math.min(r-1,s?Math.round(oe):Math.floor(oe));D===de&&(q+=p[ue+Y])}}c[M+Y]=q}}}}return ss(c,t.shape,t.dtype)}localResponseNormalization4D(e,t,s,n,i){ee(e,"localResponseNormalization4D");const r=e.shape[3],o=r-1,a=this.readSync(e.dataId),l=e.size,c=new Float32Array(l);function p(u){const h=u%r;let d=u-h+Math.max(0,h-t);const m=u-h+Math.min(h+t,o);let f=0;for(;d<=m;d++){const g=a[d];f+=g*g}return f}for(let u=0;u<l;u++){const h=p(u),d=a[u]*Math.pow(s+n*h,-i);c[u]=d}return ss(c,e.shape)}LRNGrad(e,t,s,n,i,r,o){ee(e,"LRNGrad");const a=e.shape[3],l=this.readSync(e.dataId),c=this.readSync(t.dataId),p=this.readSync(s.dataId),u=new Float32Array(e.size),h=e.size;for(let d=0;d<h;d++){const m=d%a,f=d-m+Math.max(0,m-n),g=d-m+Math.min(a,m+n+1);let y=0;for(let w=f;w<g;w++)y+=Math.pow(c[w],2);y=r*y+i;for(let w=f;w<g;w++){let x=-2*r*o*c[w]*p[d]/y;d===w&&(x+=Math.pow(y,-o)),x*=l[d],u[w]+=x}}return ss(u,e.shape)}multinomial(e,t,s,n){ee(e,"multinomial");const i=t?e:ts(e),r=i.shape[0],o=i.shape[1],a=ye([r,s],"int32"),l=this.readSync(a.dataId),c=this.readSync(i.dataId);for(let p=0;p<r;++p){const u=p*o,h=new Float32Array(o-1);h[0]=c[u];for(let f=1;f<h.length;++f)h[f]=h[f-1]+c[u+f];const d=PC.alea(n.toString()),m=p*s;for(let f=0;f<s;++f){const g=d();l[m+f]=h.length;for(let y=0;y<h.length;y++)if(g<h[y]){l[m+f]=y;break}}}return a}oneHot(e,t,s,n){ee(e,"oneHot");const i=new Float32Array(e.size*t);i.fill(n);const r=this.readSync(e.dataId);for(let o=0;o<e.size;++o)r[o]>=0&&r[o]<t&&(i[o*t+r[o]]=s);return ls(i,[e.size,t],"int32")}nonMaxSuppression(e,t,s,n,i){ee(e,"nonMaxSuppression");const r=this.readSync(e.dataId),o=this.readSync(t.dataId);return yj(r,o,s,n,i)}depthToSpace(e,t,s){N.assert(s==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${s}`),N.assert(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`);const n=e.shape[0],i=e.shape[1],r=e.shape[2],o=e.shape[3],a=i*t,l=r*t,c=o/(t*t),p=this.readSync(e.dataId),u=new Float32Array(n*a*l*c);let h=0;for(let d=0;d<n;++d)for(let m=0;m<a;++m){const f=Math.floor(m/t),g=m%t;for(let y=0;y<l;++y){const w=Math.floor(y/t),x=y%t,T=(g*t+x)*c;for(let A=0;A<c;++A){const _=A+T,E=_+o*(w+r*(f+i*d));u[h++]=p[E]}}}return ss(u,[n,a,l,c])}broadcastedBinaryOp(e,t,s,n){const i=U.assertAndGetBroadcastShape(e.shape,t.shape),r=ge(i,s),o=this.readSync(e.dataId),a=this.readSync(t.dataId),l=U.getBroadcastDims(e.shape,i),c=U.getBroadcastDims(t.shape,i),p=r.values;if(l.length+c.length===0)for(let u=0;u<p.length;++u)p[u]=n(o[u%o.length],a[u%a.length]);else{const u=this.bufferSync(e),h=this.bufferSync(t);for(let d=0;d<p.length;++d){const m=r.indexToLoc(d),f=m.slice(-e.rank);l.forEach(x=>f[x]=0);const g=u.locToIndex(f),y=m.slice(-t.rank);c.forEach(x=>y[x]=0);const w=h.locToIndex(y);p[d]=n(o[g],a[w])}}return r.toTensor()}split(e,t,s){return bj(e,t,s)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}cropAndResize(e,t,s,n,i,r){const[o,a,l,c]=e.shape,p=t.shape[0],[u,h]=n,d=ge([p,u,h,c],"float32"),m=this.readSync(t.dataId),f=this.readSync(s.dataId),g=this.readSync(e.dataId),y=e.strides,w=d.strides;for(let x=0;x<p;x++){const T=x*4,A=m[T],_=m[T+1],E=m[T+2],F=m[T+3],D=f[x];if(D>=o)continue;const M=u>1?(E-A)*(a-1)/(u-1):0,P=h>1?(F-_)*(l-1)/(h-1):0;for(let B=0;B<u;B++){const Y=u>1?A*(a-1)+B*M:.5*(A+E)*(a-1);if(Y<0||Y>a-1){for(let q=0;q<h;q++)for(let K=0;K<c;K++){const H=K+q*w[2]+B*w[1]+x*w[0];d.values[H]=r}continue}if(i==="bilinear"){const q=Math.floor(Y),K=Math.ceil(Y),H=Y-q;for(let Q=0;Q<h;Q++){const J=h>1?_*(l-1)+Q*P:.5*(_+F)*(l-1);if(J<0||J>l-1){for(let ue=0;ue<c;ue++){const oe=ue+Q*w[2]+B*w[1]+x*w[0];d.values[oe]=r}continue}const ie=Math.floor(J),ne=Math.ceil(J),le=J-ie;for(let ue=0;ue<c;ue++){let oe=ue+ie*y[2]+q*y[1]+D*y[0];const de=g[oe];oe=ue+ne*y[2]+q*y[1]+D*y[0];const Ae=g[oe];oe=ue+ie*y[2]+K*y[1]+D*y[0];const Me=g[oe];oe=ue+ne*y[2]+K*y[1]+D*y[0];const Qe=g[oe],St=de+(Ae-de)*le,$t=Me+(Qe-Me)*le;oe=ue+Q*w[2]+B*w[1]+x*w[0],d.values[oe]=St+($t-St)*H}}}else for(let q=0;q<h;++q){const K=h>1?_*(l-1)+q*P:.5*(_+F)*(l-1);if(K<0||K>l-1){for(let J=0;J<c;J++){const ie=J+q*w[2]+B*w[1]+x*w[0];d.values[ie]=r}continue}const H=Math.round(K),Q=Math.round(Y);for(let J=0;J<c;J++){const ie=J+H*y[2]+Q*y[1]+D*y[0],ne=J+q*w[2]+B*w[1]+x*w[0];d.values[ne]=g[ie]}}}}return d.toTensor()}sparseToDense(e,t,s,n){const{sliceRank:i,numUpdates:r,sliceSize:o,strides:a,outputSize:l}=U.calculateShapes(t,e,s),c=!1;return this.scatter(e,t,s,l,o,r,i,a,n,c)}gatherND(e,t){const s=t.shape,n=s[s.length-1],[i,r,o,a]=U.prepareAndValidate(e,t);if(r===0)return ze([],i,e.dtype);const l=new dn([r,o],e.dtype),c=this.readSync(t.dataId),p=this.readSync(e.dataId);for(let u=0;u<r;u++){const h=[];let d=0;for(let m=0;m<n;m++){const f=c[u*n+m];d+=f*a[m],h.push(f)}if(d<0||d>=e.size/o)throw new Error(`Invalid indices: ${h} does not index into ${e.shape}`);for(let m=0;m<o;m++)l.values[u*o+m]=p[d*o+m]}return l.toTensor().reshape(i)}scatterND(e,t,s){const{sliceRank:n,numUpdates:i,sliceSize:r,strides:o,outputSize:a}=U.calculateShapes(t,e,s),l=j(0),c=!0;return this.scatter(e,t,s,a,r,i,n,o,l,c)}fill(e,t,s){s=s||N.inferDtype(t);const n=N.getArrayFromDType(s,N.sizeFromShape(e));return n.fill(t),Us().makeTensor(n,e,s,this)}onesLike(e){if(e.dtype==="string")throw new Error("onesLike is not supported for string tensors");return this.fill(e.shape,1,e.dtype)}zerosLike(e){const t=N.getArrayFromDType(e.dtype,N.sizeFromShape(e.shape));return this.makeOutput(t,e.shape,e.dtype)}linspace(e,t,s){return U.linspaceImpl(e,t,s)}scatter(e,t,s,n,i,r,o,a,l,c){const p=[n/i,i],u=this.readSync(e.dataId),h=this.readSync(t.dataId);if(n===0)return ze([],s,t.dtype);const d=new dn(p,t.dtype);d.values.fill(this.readSync(l.dataId)[0]);for(let m=0;m<r;m++){const f=[];let g=0;for(let y=0;y<o;y++){const w=u[m*o+y];f.push(w),g+=w*a[y]}if(g<0||g>=n/i)throw new Error(`Invalid indices: ${f} does not index into ${s}`);for(let y=0;y<i;y++)c?d.values[g*i+y]+=h[m*i+y]:d.values[g*i+y]=t.rank===0?h[0]:h[m*i+y]}return d.toTensor().reshape(s)}}function Jw(e){const t=new Float32Array(e.length);for(let s=0;s<e.length;++s)t[s]=Math.abs(e[s]);return t}const Sj=e=>{const{x:t}=e.inputs,s=e.backend;let n=new Float32Array(N.sizeFromShape(t.shape));if(t.dtype!=="complex64"){const i=s.data.get(t.dataId).values;n=Jw(i)}else{const i=s.data.get(t.dataId),r=i.complexTensorInfos.real,o=i.complexTensorInfos.imag,a=s.data.get(r.dataId).values,l=s.data.get(o.dataId).values;for(let c=0;c<a.length;c++){const p=a[c],u=l[c];n[c]=Math.hypot(p,u)}}return s.makeOutput(n,t.shape,"float32")},BC={kernelName:_o,backendName:"cpu",kernelFunc:Sj};function js(e){return(t,s,n,i,r)=>{const o=U.assertAndGetBroadcastShape(t,s),a=o.length,l=N.computeStrides(o),c=N.sizeFromShape(o),p=N.getTypedArrayFromDType(r,c),u=t.length,h=s.length,d=N.computeStrides(t),m=N.computeStrides(s),f=U.getBroadcastDims(t,o),g=U.getBroadcastDims(s,o);if(f.length+g.length===0)for(let y=0;y<p.length;++y)p[y]=e(n[y%n.length],i[y%i.length]);else for(let y=0;y<p.length;++y){const w=N.indexToLoc(y,a,l),x=w.slice(-u);f.forEach(E=>x[E]=0);const T=N.locToIndex(x,u,d),A=w.slice(-h);g.forEach(E=>A[E]=0);const _=N.locToIndex(A,h,m);p[y]=e(n[T],i[_])}return[p,o]}}function Es(e){const{inputs:t,backend:s}=e,{real:n,imag:i}=t,r=s.data.get(n.dataId).values,o=s.data.get(i.dataId).values,a=s.makeTensorInfo(n.shape,"complex64"),l=s.data.get(a.dataId);return l.complexTensorInfos={real:s.makeTensorInfo(n.shape,"float32",r),imag:s.makeTensorInfo(i.shape,"float32",o)},a}const jC={kernelName:jc,backendName:"cpu",kernelFunc:Es};function bi(e){const{inputs:t,backend:s}=e,{x:n}=t;return s.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}const VC={kernelName:Ci,backendName:"cpu",kernelFunc:bi};function bo(e){const{inputs:t,backend:s}=e,{input:n}=t,i=s.data.get(n.dataId).complexTensorInfos.real,r=s.data.get(i.dataId).values;return s.makeTensorInfo(i.shape,i.dtype,r)}const GC={kernelName:mp,backendName:"cpu",kernelFunc:bo};function Xl(e){const{inputs:t,backend:s,attrs:n}=e,{x:i}=t,{dtype:r}=n;if(r==="complex64"){if(i.dtype==="complex64")return bi({inputs:{x:i},backend:s});const o=ye(i.shape),a=Xl({inputs:{x:i},backend:s,attrs:{dtype:"float32"}}),l=Es({inputs:{real:a,imag:o},backend:s});return o.dispose(),s.disposeIntermediateTensorInfo(a),l}if(i.dtype==="complex64"){const o=bo({inputs:{input:i},backend:s}),a=Xl({inputs:{x:o},backend:s,attrs:{dtype:r}});return s.disposeIntermediateTensorInfo(o),a}if(!N.hasEncodingLoss(i.dtype,r)){const o=bi({inputs:{x:i},backend:s});return{dataId:o.dataId,shape:o.shape,dtype:r}}if(r==="int32"){const o=s.data.get(i.dataId).values,a=Int32Array.from(o);return s.makeTensorInfo(i.shape,"int32",a)}if(r==="bool"){const o=s.data.get(i.dataId).values,a=N.toTypedArray([0],i.dtype),[l,c]=js((p,u)=>p!==u?1:0)(i.shape,[],o,a,"bool");return s.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${i.dtype} to ${r}`)}const qC={kernelName:Ai,backendName:"cpu",kernelFunc:Xl};function On(e,t,s,n){return s==null?({inputs:i,backend:r})=>{const{a:o,b:a}=i,l=r;ee([o,a],e);const c=l.data.get(o.dataId).values,p=l.data.get(a.dataId).values,u=n||o.dtype,[h,d]=t(o.shape,a.shape,c,p,u);return l.makeTensorInfo(d,u,h)}:({inputs:i,backend:r})=>{const{a:o,b:a}=i,l=r;if(o.dtype==="complex64"||a.dtype==="complex64"){const c=Xl({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(c.dataId),u=p.complexTensorInfos.real,h=p.complexTensorInfos.imag,d=l.data.get(u.dataId).values,m=l.data.get(h.dataId).values,f=Xl({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,w=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,T=l.data.get(w.dataId).values,[A,_,E]=s(o.shape,a.shape,d,m,x,T),F=l.makeTensorInfo(E,"float32",A),D=l.makeTensorInfo(E,"float32",_),M=Es({inputs:{real:F,imag:D},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(F),l.disposeIntermediateTensorInfo(D),M}else{const c=l.data.get(o.dataId).values,p=l.data.get(a.dataId).values,u=n||o.dtype,[h,d]=t(o.shape,a.shape,c,p,u);return l.makeTensorInfo(d,u,h)}}}function Jl(e){return(t,s,n,i,r,o)=>{const a=U.assertAndGetBroadcastShape(t,s),l=N.sizeFromShape(a),c=a.length,p=N.computeStrides(a),u=N.getTypedArrayFromDType("float32",l),h=N.getTypedArrayFromDType("float32",l),d=U.getBroadcastDims(t,a),m=U.getBroadcastDims(s,a),f=U.mergeRealAndImagArrays(n,i),g=U.mergeRealAndImagArrays(r,o),y=t.length,w=N.computeStrides(t),x=s.length,T=N.computeStrides(s);if(d.length+m.length===0)for(let A=0;A<u.length;A++){const _=A%f.length,E=A%g.length,F=e(f[_*2],f[_*2+1],g[E*2],g[E*2+1]);u[A]=F.real,h[A]=F.imag}else for(let A=0;A<u.length;A++){const _=N.indexToLoc(A,c,p),E=_.slice(-y);d.forEach(B=>E[B]=0);const F=N.locToIndex(E,y,w),D=_.slice(-x);m.forEach(B=>D[B]=0);const M=N.locToIndex(D,x,T),P=e(f[F*2],f[F*2+1],g[M*2],g[M*2+1]);u[A]=P.real,h[A]=P.imag}return[u,h,a]}}const Zw=js((e,t)=>e+t),Ij=Jl((e,t,s,n)=>({real:e+s,imag:t+n})),Qw=On(Zn,Zw,Ij),HC={kernelName:Zn,backendName:"cpu",kernelFunc:Qw};function En(e){return(t,s,n)=>{const i=N.getTypedArrayFromDType(s,t.length);for(let r=0;r<t.length;++r)i[r]=e(t[r],n);return i}}function fe(e,t,s){return({inputs:n,attrs:i,backend:r})=>{const{x:o}=n;if(ee(o,e),o.dtype==="string"||s==="string")throw new Error("unaryKernelFunc does not support string input/output");const a=r,l=a.data.get(o.dataId).values,c=N.sizeFromShape(o.shape),p=s||o.dtype,u=N.getArrayFromDType(p,c);for(let h=0;h<c;++h)u[h]=t(l[h],i);return a.makeTensorInfo(o.shape,p,u)}}function _n(e,t,s){return({inputs:n,attrs:i,backend:r})=>{const{x:o}=n;if(ee(o,e),o.dtype==="string"||s==="string")throw new Error("unaryKernelFunc does not support string input/output");const a=r,l=a.data.get(o.dataId).values,c=s||o.dtype,p=t(l,c,i);return a.makeTensorInfo(o.shape,c,p)}}const ex=En(e=>Math.ceil(e)),vj=_n(wr,ex),YC={kernelName:wr,backendName:"cpu",kernelFunc:vj};const tx=En(e=>Math.exp(e)),Tj=_n(vr,tx),KC={kernelName:vr,backendName:"cpu",kernelFunc:Tj};const sx=En(e=>Math.expm1(e)),Aj=_n(Tr,sx),XC={kernelName:Tr,backendName:"cpu",kernelFunc:Aj};const nx=En(e=>Math.floor(e)),Nj=_n(Ar,nx),JC={kernelName:Ar,backendName:"cpu",kernelFunc:Nj};const ix=En(e=>Math.log(e)),Cj=_n(Or,ix),ZC={kernelName:Or,backendName:"cpu",kernelFunc:Cj};function Yf(e,t,s,n){const i=N.getTypedArrayFromDType(n,N.sizeFromShape(s));for(let r=0;r<i.length;++r){const o=r*t;let a=e[o];for(let l=0;l<t;++l){const c=e[o+l];c>a&&(a=c)}i[r]=a}return i}const rx=js((e,t)=>e*t),Rj=Jl((e,t,s,n)=>({real:e*s-t*n,imag:e*n+t*s})),ox=On(_r,rx,Rj),QC={kernelName:_r,backendName:"cpu",kernelFunc:ox};const ax=En(e=>1/Math.sqrt(e)),Oj=_n(Fr,ax),e0={kernelName:Fr,backendName:"cpu",kernelFunc:Oj};function lx(e,t,s,n,i){const r=Ms.isSliceContinous(n,t,s),o=N.sizeFromShape(s),a=N.computeStrides(n);if(r){const c=Ms.computeFlatOffset(t,a);return e.subarray(c,c+o)}const l=N.getTypedArrayFromDType(i,o);for(let c=0;c<o;++c){const p=s.length,u=N.computeStrides(s),h=N.indexToLoc(c,p,u),d=h.map((f,g)=>f+t[g]),m=N.locToIndex(d,n.length,a);l[c]=e[m]}return l}function Kf(e){const{inputs:t,backend:s,attrs:n}=e,{x:i}=t,{begin:r,size:o}=n;ee(i,"slice");const[a,l]=Ms.parseSliceParams(i,r,o);Ms.assertParamsValid(i,a,l);const c=s.data.get(i.dataId).values,p=lx(c,a,l,i.shape,i.dtype);return s.makeTensorInfo(l,i.dtype,p)}const t0={kernelName:jo,backendName:"cpu",kernelFunc:Kf};const cx=js((e,t)=>e-t),Ej=Jl((e,t,s,n)=>({real:e-s,imag:t-n})),px=On(Br,cx,Ej),s0={kernelName:Br,backendName:"cpu",kernelFunc:px};function Zl(e,t,s,n,i){const r=t.length,o=N.sizeFromShape(t),a=N.computeStrides(t),l=N.computeStrides(i),c=N.getTypedArrayFromDType(s,N.sizeFromShape(i));for(let p=0;p<o;++p){const u=N.indexToLoc(p,r,a),h=new Array(u.length);for(let m=0;m<h.length;m++)h[m]=u[n[m]];const d=N.locToIndex(h,r,l);c[d]=e[p]}return c}function Xf(e,t,s,n){const i=N.parseAxisParam(t,s)[0],r=[1,s[0],1];for(let m=0;m<i;m++)r[0]*=s[m];r[1]=s[i];for(let m=i+1;m<s.length;m++)r[2]*=s[m];const o={},a=new Int32Array(s[i]),l=new dn(r,n,e),c=[],p=r[0]===1&&r[2]===1;for(let m=0;m<s[i];m++){let f;if(p)f=e[m].toString();else{const g=[];for(let y=0;y<r[0];y++)for(let w=0;w<r[2];w++)g.push(l.get(y,m,w));f=g.join(",")}if(o[f]!==void 0)a[m]=o[f];else{const g=Object.keys(o).length;o[f]=g,a[m]=g,c.push(m)}}const u=r.slice();u[1]=Object.keys(o).length;const h=new dn(u,n);c.forEach((m,f)=>{for(let g=0;g<r[0];g++)for(let y=0;y<r[2];y++)h.set(l.get(g,m,y),g,f,y)});const d=s.slice();return d[i]=u[1],{outputValues:h.values,outputShape:d,indices:a}}const ux={};Ee(ux,{addImpl:()=>Zw,ceilImpl:()=>ex,expImpl:()=>tx,expm1Impl:()=>sx,floorImpl:()=>nx,logImpl:()=>ix,maxImpl:()=>Yf,multiplyImpl:()=>rx,rsqrtImpl:()=>ax,simpleAbsImpl:()=>Jw,sliceImpl:()=>lx,subImpl:()=>cx,transposeImpl:()=>Zl,uniqueImpl:()=>Xf});const hx="2.6.0";Vp("cpu",()=>new Xw,1);const _j=fe(dr,e=>Math.acos(e)),n0={kernelName:dr,backendName:"cpu",kernelFunc:_j};const kj=fe(mr,e=>Math.acosh(e)),i0={kernelName:mr,backendName:"cpu",kernelFunc:kj};const Dj=fe(fr,e=>Math.asin(e)),r0={kernelName:fr,backendName:"cpu",kernelFunc:Dj};const Fj=fe(gr,e=>Math.asinh(e)),o0={kernelName:gr,backendName:"cpu",kernelFunc:Fj};const Mj=fe(yr,e=>Math.atan(e)),a0={kernelName:yr,backendName:"cpu",kernelFunc:Mj};const Uj=fe(br,e=>Math.atanh(e)),l0={kernelName:br,backendName:"cpu",kernelFunc:Uj};function Ql(e,t,s,n,i,r){const o=i.strideHeight,a=i.strideWidth,l=i.dilationHeight,c=i.dilationWidth,p=i.effectiveFilterHeight,u=i.effectiveFilterWidth,h=i.padInfo.top,d=i.padInfo.left,m=r==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=ge(i.outShape,s),g=f.values,y=i.outShape[1]*i.outShape[2]*i.outShape[3],w=i.outShape[2]*i.outShape[3],x=i.outShape[3];for(let T=0;T<i.batchSize;++T){const A=T*y,_=T*n[0];for(let E=0;E<i.inChannels;++E)for(let F=0;F<i.outHeight;++F){const D=F*o-h,M=Math.max(0,D),P=Math.min(i.inHeight,p+D),B=A+F*w;for(let Y=0;Y<i.outWidth;++Y){const q=Y*a-d,K=Math.max(0,q),H=Math.min(i.inWidth,u+q);let Q=m,J=0,ie=0;for(let le=M;le<P;le+=l){const ue=_+le*n[1];for(let oe=K;oe<H;oe+=c){const de=ue+oe*n[2],Ae=e[de+E];r==="max"&&Ae>Q?Q=Ae:r==="avg"&&(J+=Ae,ie++)}if(isNaN(Q))break}const ne=B+Y*x+E;g[ne]=r==="avg"?J/ie:Q}}}return f}function Jf(e,t,s,n,i=!1,r=!1){const o=ge(n.outShape,"int32"),a=n.strideHeight,l=n.strideWidth,c=n.dilationHeight,p=n.dilationWidth,u=n.effectiveFilterHeight,h=n.effectiveFilterWidth,d=n.padInfo.top,m=n.padInfo.left,f=ge(t,s,e);for(let g=0;g<n.batchSize;++g)for(let y=0;y<n.inChannels;++y)for(let w=0;w<n.outHeight;++w){const x=w*a-d;let T=x;for(;T<0;)T+=c;const A=Math.min(n.inHeight,u+x);for(let _=0;_<n.outWidth;++_){const E=_*l-m;let F=E;for(;F<0;)F+=p;const D=Math.min(n.inWidth,h+E);let M=Number.NEGATIVE_INFINITY,P=-1;for(let B=T;B<A;B+=c){const Y=B-x;for(let q=F;q<D;q+=p){const K=q-E,H=f.get(g,B,q,y);H>M&&(M=H,i?P=r?((g*n.inHeight+B)*n.inWidth+q)*n.inChannels+y:(B*n.inWidth+q)*n.inChannels+y:P=Y*h+K)}}o.set(P,g,w,_,y)}}return o}function $j(e){const{inputs:t,backend:s,attrs:n}=e,{x:i}=t;ee(i,"avgPool");const{filterSize:r,strides:o,pad:a,dimRoundingMode:l}=n,c=1;N.assert(U.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);const p=U.computePool2DInfo(i.shape,r,o,c,a,l);let u;if(p.filterWidth===1&&p.filterHeight===1&&N.arraysEqual(p.inShape,p.outShape))u=bi({inputs:{x:i},backend:s});else{const h=s.data.get(i.dataId).values,d=N.computeStrides(i.shape),m=Ql(h,i.shape,i.dtype,d,p,"avg");u=s.makeTensorInfo(p.outShape,i.dtype,m.values)}return u}const c0={kernelName:Ti,backendName:"cpu",kernelFunc:$j};function Wj(e){const{inputs:t,backend:s,attrs:n}=e,{dy:i,input:r}=t,o=r;ee([i,r],"avgPoolBackprop");const{filterSize:a,strides:l,pad:c}=n,p=U.computePool2DInfo(o.shape,a,l,1,c),u=p.strideHeight,h=p.strideWidth,d=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.effectiveFilterHeight,w=p.effectiveFilterWidth,x=w-1-p.padInfo.left,T=y-1-p.padInfo.top,A=ge(o.shape,"float32"),_=1/(d*m),E=s.data.get(i.dataId).values,F=ge(i.shape,"float32",E);for(let D=0;D<p.batchSize;++D)for(let M=0;M<p.inChannels;++M)for(let P=0;P<p.inHeight;++P)for(let B=0;B<p.inWidth;++B){const Y=P-T,q=B-x;let K=0;for(let H=0;H<y;H+=f){const Q=(Y+H)/u;if(Q<0||Q>=p.outHeight||Math.floor(Q)!==Q)continue;for(let J=0;J<w;J+=g){const ie=(q+J)/h;if(ie<0||ie>=p.outWidth||Math.floor(ie)!==ie)continue;const ne=F.get(D,Q,ie,M);K+=ne}}A.set(K*_,D,P,B,M)}return s.makeTensorInfo(A.shape,A.dtype,A.values)}const p0={kernelName:Do,backendName:"cpu",kernelFunc:Wj};function zj(e){const{inputs:t,backend:s,attrs:n}=e,{x:i,scale:r,offset:o,mean:a,variance:l}=t;N.assert(a.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),N.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),N.assert(r==null||a.shape.length===r.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ee([i,a,l,r,o],"batchNorm");let{varianceEpsilon:c}=n;c==null&&(c=.001);const p=s.data.get(i.dataId).values,u=s.data.get(a.dataId).values,h=s.data.get(l.dataId).values,d=r?s.data.get(r.dataId).values:new Float32Array([1]),m=o?s.data.get(o.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,y=d.length,w=h.length,x=u.length;let T=0,A=0,_=0,E=0;for(let F=0;F<p.length;++F)f[F]=m[T++]+(p[F]-u[A++])*d[_++]/Math.sqrt(h[E++]+c),T>=g&&(T=0),A>=x&&(A=0),_>=y&&(_=0),E>=w&&(E=0);return s.makeTensorInfo(i.shape,i.dtype,f)}const u0={kernelName:Ni,backendName:"cpu",kernelFunc:zj};const Pj=fe(xr,(e,t)=>{const s=t;return e>s.clipValueMax?s.clipValueMax:e<s.clipValueMin?s.clipValueMin:e}),h0={kernelName:xr,backendName:"cpu",kernelFunc:Pj};function ec(e){const{inputs:t,backend:s}=e,{input:n}=t,i=s.data.get(n.dataId).complexTensorInfos.imag,r=s.data.get(i.dataId).values;return s.makeTensorInfo(i.shape,i.dtype,r)}const d0={kernelName:ep,backendName:"cpu",kernelFunc:ec};function kn(e){const{inputs:t,backend:s,attrs:n}=e,{x:i}=t,{shape:r}=n,o=N.sizeFromShape(i.shape),a=N.inferFromImplicitShape(r,o),l=N.sizeFromShape(a);N.assert(o===l,()=>`The new shape (${a}) has ${l} elements and the old shape (${i.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),s.incRef(i.dataId);const c=s.data.get(i.dataId);if(c.complexTensorInfos!=null){const p=c.complexTensorInfos.real,u=c.complexTensorInfos.imag;p.shape=a,u.shape=a}return{dataId:i.dataId,shape:a,dtype:i.dtype}}const m0={kernelName:Ei,backendName:"cpu",kernelFunc:kn};function tc(e){const{inputs:t,backend:s,attrs:n}=e,{axis:i}=n,r=N.parseAxisParam(i,t[0].shape)[0];let o=U.computeOutShape(t.map(d=>d.shape),r);if(N.sizeFromShape(o)===0)return s.makeTensorInfo(o,t[0].dtype,[]);const a=t.filter(d=>N.sizeFromShape(d.shape)>0);if(a.length===1)return a[0];const l=a.map(d=>d.shape);if(U.assertParamsConsistent(l,r),a[0].dtype==="complex64"){const d=a.map(w=>bo({inputs:{input:w},backend:s})),m=a.map(w=>ec({inputs:{input:w},backend:s})),f=tc({inputs:d,backend:s,attrs:{axis:i}}),g=tc({inputs:m,backend:s,attrs:{axis:i}}),y=Es({inputs:{real:f,imag:g},backend:s});return d.forEach(w=>s.disposeIntermediateTensorInfo(w)),m.forEach(w=>s.disposeIntermediateTensorInfo(w)),s.disposeIntermediateTensorInfo(f),s.disposeIntermediateTensorInfo(g),y}const c=a.map(d=>{const m=N.sizeFromShape(d.shape.slice(r)),f=[-1,m];return kn({inputs:{x:d},backend:s,attrs:{shape:f}})});o=U.computeOutShape(c.map(d=>d.shape),1);const p=N.getTypedArrayFromDType(a[0].dtype,N.sizeFromShape(o));if(c[0].shape[0]===1){let d=0;c.forEach(m=>{const f=s.data.get(m.dataId).values,g=N.sizeFromShape(m.shape);p.set(f,d),d+=g})}else{let d=0;c.forEach(m=>{const f=s.data.get(m.dataId).values;let g=0;for(let y=0;y<m.shape[0];++y){const w=y*o[1]+d;for(let x=0;x<m.shape[1];++x)p[w+x]=f[g++]}d+=m.shape[1]})}const u=U.computeOutShape(a.map(d=>d.shape),r),h=s.makeTensorInfo(u,t[0].dtype,p);return c.forEach(d=>s.disposeIntermediateTensorInfo(d)),h}const f0={kernelName:Fo,backendName:"cpu",kernelFunc:tc};const Bj=fe(Qn,e=>Math.cos(e)),g0={kernelName:Qn,backendName:"cpu",kernelFunc:Bj};const jj=fe(Lr,e=>Math.cosh(e)),y0={kernelName:Lr,backendName:"cpu",kernelFunc:jj};const b0={kernelName:Mo,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:s})=>{const{x:n,filter:i}=e,{strides:r,pad:o,dilations:a}=s,l=t,c=l.data.get(n.dataId).values,p=n.shape.length,u=l.data.get(i.dataId).values,h=i.shape.length,{batchSize:d,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:w,padInfo:x,strideHeight:T,strideWidth:A,filterHeight:_,filterWidth:E,dilationHeight:F,dilationWidth:D,outShape:M}=U.computeDilation2DInfo(n.shape,i.shape,r,o,"NHWC",a),P=N.sizeFromShape(M),B=M.length,Y=N.getArrayFromDType(n.dtype,P);for(let K=0;K<d;++K)for(let H=0;H<y;++H){const Q=H*T-x.top;for(let J=0;J<w;++J){const ie=J*A-x.left;for(let ne=0;ne<g;++ne){let le=Number.MIN_SAFE_INTEGER;for(let oe=0;oe<_;++oe){const de=Q+oe*F;if(de>=0&&de<m)for(let Ae=0;Ae<E;++Ae){const Me=ie+Ae*D;if(Me>=0&&Me<f){const Qe=N.locToIndex([K,de,Me,ne],p,N.computeStrides(n.shape)),St=N.locToIndex([oe,Ae,ne],h,N.computeStrides(i.shape)),$t=c[Qe]+u[St];$t>le&&(le=$t)}}}const ue=N.locToIndex([K,H,J,ne],B,N.computeStrides(M));Y[ue]=le}}}const q=l.write(N.toTypedArray(Y,n.dtype),M,n.dtype);return{dataId:q,shape:M,dtype:n.dtype}}};const w0={kernelName:Ha,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:s})=>{const{x:n,filter:i,dy:r}=e,{strides:o,pad:a,dilations:l}=s,c=t,p=N.toNestedArray(n.shape,c.data.get(n.dataId).values),u=N.toNestedArray(i.shape,c.data.get(i.dataId).values),{batchSize:h,inHeight:d,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:w,strideHeight:x,strideWidth:T,filterHeight:A,filterWidth:_,dilationHeight:E,dilationWidth:F,outShape:D}=U.computeDilation2DInfo(n.shape,i.shape,o,a,"NHWC",l);N.assert(r.rank===D.length,()=>`Error in ${Ha}, dy must have the same rank as output ${D.length}, but got ${r.rank}`);const M=N.toNestedArray(D,c.data.get(r.dataId).values),P=N.makeZerosNestedTypedArray(i.shape,i.dtype);for(let Y=0;Y<h;++Y)for(let q=0;q<g;++q){const K=q*x-w.top;for(let H=0;H<y;++H){const Q=H*T-w.left;for(let J=0;J<f;++J){let ie=Number.MIN_SAFE_INTEGER,ne=0,le=0;for(let ue=0;ue<A;++ue){const oe=K+ue*E;if(oe>=0&&oe<d)for(let de=0;de<_;++de){const Ae=Q+de*F;if(Ae>=0&&Ae<m){const Me=p[Y][oe][Ae][J]+u[ue][de][J];Me>ie&&(ie=Me,ne=ue,le=de)}}}P[ne][le][J]+=M[Y][q][H][J]}}}const B=c.write(N.toTypedArray(P,n.dtype),i.shape,i.dtype);return{dataId:B,shape:i.shape,dtype:i.dtype}}};const x0={kernelName:qa,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:s})=>{const{x:n,filter:i,dy:r}=e,{strides:o,pad:a,dilations:l}=s,c=t,p=N.toNestedArray(n.shape,c.data.get(n.dataId).values),u=N.toNestedArray(i.shape,c.data.get(i.dataId).values),{batchSize:h,inHeight:d,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:w,strideHeight:x,strideWidth:T,filterHeight:A,filterWidth:_,dilationHeight:E,dilationWidth:F,outShape:D}=U.computeDilation2DInfo(n.shape,i.shape,o,a,"NHWC",l);N.assert(r.rank===D.length,()=>`Error in ${qa}, dy must have the same rank as output ${D.length}, but got ${r.rank}`);const M=N.toNestedArray(D,c.data.get(r.dataId).values),P=N.makeZerosNestedTypedArray(n.shape,n.dtype);for(let Y=0;Y<h;++Y)for(let q=0;q<g;++q){const K=q*x-w.top;for(let H=0;H<y;++H){const Q=H*T-w.left;for(let J=0;J<f;++J){let ie=Number.MIN_SAFE_INTEGER,ne=K<0?0:K,le=Q<0?0:Q;for(let ue=0;ue<A;++ue){const oe=K+ue*E;if(oe>=0&&oe<d)for(let de=0;de<_;++de){const Ae=Q+de*F;if(Ae>=0&&Ae<m){const Me=p[Y][oe][Ae][J]+u[ue][de][J];Me>ie&&(ie=Me,ne=oe,le=Ae)}}}P[Y][ne][le][J]+=M[Y][q][H][J]}}}const B=c.write(N.toTypedArray(P,n.dtype),n.shape,n.dtype);return{dataId:B,shape:n.shape,dtype:n.dtype}}};const Vj=js((e,t)=>e/t),Gj=On(ei,Vj),Du={kernelName:ei,backendName:"cpu",kernelFunc:Gj};const qj=fe(Sr,e=>e>=0?e:Math.exp(e)-1),L0={kernelName:Sr,backendName:"cpu",kernelFunc:qj};const Hj=U.ERF_P,Yj=U.ERF_A1,Kj=U.ERF_A2,Xj=U.ERF_A3,Jj=U.ERF_A4,Zj=U.ERF_A5,Qj=fe(Ir,e=>{const t=Math.sign(e),s=Math.abs(e),n=1/(1+Hj*s);return t*(1-((((Zj*n+Jj)*n+Xj)*n+Kj)*n+Yj)*n*Math.exp(-s*s))}),S0={kernelName:Ir,backendName:"cpu",kernelFunc:Qj};function Zf(e,t,s){const n=e.shape,i=n[0],r=n[1],o=s.data.get(e.dataId),a=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[i,r],p=N.sizeFromShape(c),u=N.getTypedArrayFromDType("float32",p),h=N.getTypedArrayFromDType("float32",p);for(let g=0;g<i;g++){const y=Kf({inputs:{x:a},backend:s,attrs:{begin:[g,0],size:[1,r]}}),w=Kf({inputs:{x:l},backend:s,attrs:{begin:[g,0],size:[1,r]}}),x=Es({inputs:{real:y,imag:w},backend:s}),{real:T,imag:A}=e3(x,t,s),_=U.mergeRealAndImagArrays(T,A);for(let E=0;E<r;E++){const F=U.getComplexWithIndex(_,E);u[g*r+E]=F.real,h[g*r+E]=F.imag}s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(w),s.disposeIntermediateTensorInfo(x)}const d=s.makeTensorInfo(c,"float32",u),m=s.makeTensorInfo(c,"float32",h),f=Es({inputs:{real:d,imag:m},backend:s});return s.disposeIntermediateTensorInfo(d),s.disposeIntermediateTensorInfo(m),f}function e3(e,t,s){const n=N.sizeFromShape(e.shape),i=s.data.get(e.dataId),r=s.data.get(i.complexTensorInfos.real.dataId).values,o=s.data.get(i.complexTensorInfos.imag.dataId).values;if(t3(n)){const a=dx(r,o,n,t,s),l=[e.shape[0],e.shape[1]];if(t){const c=s.makeTensorInfo(l,"float32",a.real),p=s.makeTensorInfo(l,"float32",a.imag),u=s.makeTensorInfo([],"float32",N.createScalarValue(n,"float32")),h=bi({inputs:{x:u},backend:s}),d=Du.kernelFunc({inputs:{a:c,b:u},backend:s}),m=Du.kernelFunc({inputs:{a:p,b:h},backend:s}),f=s.data.get(d.dataId).values,g=s.data.get(m.dataId).values;return s.disposeIntermediateTensorInfo(c),s.disposeIntermediateTensorInfo(p),s.disposeIntermediateTensorInfo(u),s.disposeIntermediateTensorInfo(h),s.disposeIntermediateTensorInfo(d),s.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return a}else{const a=U.mergeRealAndImagArrays(r,o),l=s3(a,n,t);return U.splitRealAndImagArrays(l)}}function t3(e){return(e&e-1)===0}function dx(e,t,s,n,i){if(s===1)return{real:e,imag:t};const r=U.mergeRealAndImagArrays(e,t),o=s/2,a=U.complexWithEvenIndex(r),l=a.real,c=a.imag,p=[l.length],u=i.makeTensorInfo(p,"float32",l),h=i.makeTensorInfo(p,"float32",c),d=Es({inputs:{real:u,imag:h},backend:i}),m=U.complexWithOddIndex(r),f=m.real,g=m.imag,y=[f.length],w=i.makeTensorInfo(y,"float32",f),x=i.makeTensorInfo(y,"float32",g),T=Es({inputs:{real:w,imag:x},backend:i}),A=dx(l,c,o,n,i),_=A.real,E=A.imag,F=[_.length],D=i.makeTensorInfo(F,"float32",_),M=i.makeTensorInfo(F,"float32",E),P=Es({inputs:{real:D,imag:M},backend:i}),B=dx(f,g,o,n,i),Y=B.real,q=B.imag,K=[Y.length],H=i.makeTensorInfo(K,"float32",Y),Q=i.makeTensorInfo(K,"float32",q),J=Es({inputs:{real:H,imag:Q},backend:i}),ie=U.exponents(s,n),ne=[ie.real.length],le=i.makeTensorInfo(ne,"float32",ie.real),ue=i.makeTensorInfo(ne,"float32",ie.imag),oe=Es({inputs:{real:le,imag:ue},backend:i}),de=ox({inputs:{a:oe,b:J},backend:i}),Ae=Qw({inputs:{a:P,b:de},backend:i}),Me=px({inputs:{a:P,b:de},backend:i}),Qe=bo({inputs:{input:Ae},backend:i}),St=bo({inputs:{input:Me},backend:i}),$t=ec({inputs:{input:Ae},backend:i}),ks=ec({inputs:{input:Me},backend:i}),bt=tc({inputs:[Qe,St],backend:i,attrs:{axis:0}}),ps=tc({inputs:[$t,ks],backend:i,attrs:{axis:0}}),Fn=i.data.get(bt.dataId).values,Gs=i.data.get(ps.dataId).values;return i.disposeIntermediateTensorInfo(u),i.disposeIntermediateTensorInfo(h),i.disposeIntermediateTensorInfo(d),i.disposeIntermediateTensorInfo(w),i.disposeIntermediateTensorInfo(x),i.disposeIntermediateTensorInfo(T),i.disposeIntermediateTensorInfo(D),i.disposeIntermediateTensorInfo(M),i.disposeIntermediateTensorInfo(P),i.disposeIntermediateTensorInfo(H),i.disposeIntermediateTensorInfo(Q),i.disposeIntermediateTensorInfo(J),i.disposeIntermediateTensorInfo(le),i.disposeIntermediateTensorInfo(ue),i.disposeIntermediateTensorInfo(oe),i.disposeIntermediateTensorInfo(de),i.disposeIntermediateTensorInfo(Ae),i.disposeIntermediateTensorInfo(Me),i.disposeIntermediateTensorInfo(Qe),i.disposeIntermediateTensorInfo($t),i.disposeIntermediateTensorInfo(St),i.disposeIntermediateTensorInfo(ks),i.disposeIntermediateTensorInfo(bt),i.disposeIntermediateTensorInfo(ps),{real:Fn,imag:Gs}}function s3(e,t,s){const n=new Float32Array(t*2);for(let i=0;i<t;i++){let r=0,o=0;for(let a=0;a<t;a++){const l=U.exponent(i*a,t,s),c=U.getComplexWithIndex(e,a);r+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}s&&(r/=t,o/=t),U.assignToTypedArray(n,r,o,i)}return n}function n3(e){const{inputs:t,backend:s}=e,{input:n}=t,i=N.sizeFromShape(n.shape),r=n.shape[n.shape.length-1],o=i/r,a=kn({inputs:{x:n},backend:s,attrs:{shape:[o,r]}}),l=Zf(a,!1,s),c=kn({inputs:{x:l},backend:s,attrs:{shape:n.shape}});return s.disposeIntermediateTensorInfo(a),s.disposeIntermediateTensorInfo(l),c}const I0={kernelName:Kc,backendName:"cpu",kernelFunc:n3};const v0={kernelName:Uo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:s})=>{const{image:n}=e,i=s,r=N.getTypedArrayFromDType(n.dtype,N.sizeFromShape(n.shape)),[o,a,l,c]=n.shape,p=i.data.get(n.dataId).values;for(let h=0;h<o;h++){const d=h*l*a*c;for(let m=0;m<a;m++){const f=m*(l*c);for(let g=0;g<l;g++){const y=g*c;for(let w=0;w<c;w++){const x=[o,m,g,w],T=x[2],A=Math.round(l-T),_=d+f+y+w;let E=p[_];if(A>=0&&A<l){const F=A*c,D=d+f+F+w;E=p[D]}r[_]=E}}}}const u=i.write(r,n.shape,n.dtype);return{dataId:u,shape:n.shape,dtype:n.dtype}}};function i3(e){const{inputs:t,backend:s}=e,{input:n}=t,i=N.sizeFromShape(n.shape),r=n.shape[n.shape.length-1],o=i/r,a=kn({inputs:{x:n},backend:s,attrs:{shape:[o,r]}}),l=Zf(a,!0,s),c=kn({inputs:{x:l},backend:s,attrs:{shape:n.shape}});return s.disposeIntermediateTensorInfo(a),s.disposeIntermediateTensorInfo(l),c}const T0={kernelName:Qc,backendName:"cpu",kernelFunc:i3};const r3=fe(Nr,e=>Number.isFinite(e)?1:0,"bool"),A0={kernelName:Nr,backendName:"cpu",kernelFunc:r3};const o3=fe(Cr,e=>Math.abs(e)===Infinity?1:0,"bool"),N0={kernelName:Cr,backendName:"cpu",kernelFunc:o3};const a3=fe(Rr,e=>Number.isNaN(e)?1:0,"bool"),C0={kernelName:Rr,backendName:"cpu",kernelFunc:a3};const l3=fe(Er,e=>Math.log1p(e)),R0={kernelName:Er,backendName:"cpu",kernelFunc:l3};const c3=fe(Ya,e=>e?0:1,"bool"),O0={kernelName:Ya,backendName:"cpu",kernelFunc:c3};const E0={kernelName:Ri,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:s})=>{const{x:n}=e,{reductionIndices:i,keepDims:r}=t,o=s;let a=n.shape;const l=a.length,c=N.parseAxisParam(i,a);let p=c;const u=U.getAxesPermutation(p,l);let h=o.data.get(n.dataId).values;if(u!=null){const x=new Array(l);for(let T=0;T<x.length;T++)x[T]=a[u[T]];h=Zl(h,a,n.dtype,u,x),p=U.getInnerMostAxes(p.length,l),a=x}ee(n,"max"),U.assertAxesAreInnerMostDims("max",p,l);const[d,m]=U.computeOutAndReduceShapes(a,p),f=N.sizeFromShape(m),g=Yf(h,f,d,n.dtype),y=o.write(g,d,n.dtype);let w=d;if(r){const x=U.expandShapeToKeepDim(d,c);w=x}return{dataId:y,shape:w,dtype:n.dtype}}};function p3(e){const{inputs:t,backend:s,attrs:n}=e,{x:i}=t;ee(i,"maxPool");const{filterSize:r,strides:o,pad:a,dimRoundingMode:l}=n,c=1;N.assert(U.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);const p=U.computePool2DInfo(i.shape,r,o,c,a,l);let u;if(p.filterWidth===1&&p.filterHeight===1&&N.arraysEqual(p.inShape,p.outShape))u=bi({inputs:{x:i},backend:s});else{const h=s.data.get(i.dataId).values,d=N.computeStrides(i.shape),m=Ql(h,i.shape,i.dtype,d,p,"max");u=s.makeTensorInfo(p.outShape,i.dtype,m.values)}return u}const _0={kernelName:Oi,backendName:"cpu",kernelFunc:p3};function u3(e){const{inputs:t,backend:s,attrs:n}=e,{dy:i,input:r,output:o}=t,a=r;ee([r,o],"maxPoolBackprop");const{filterSize:l,strides:c,pad:p,dimRoundingMode:u}=n,h=U.computePool2DInfo(a.shape,l,c,1,p,u),d=s.data.get(a.dataId).values,m=ge(h.outShape,a.dtype,Jf(d,a.shape,a.dtype,h).values),f=h.strideHeight,g=h.strideWidth,y=h.dilationHeight,w=h.dilationWidth,x=h.effectiveFilterHeight,T=h.effectiveFilterWidth,A=T-1-h.padInfo.left,_=x-1-h.padInfo.top,E=ge(a.shape,"float32"),F=s.data.get(i.dataId).values,D=ge(i.shape,"float32",F);for(let M=0;M<h.batchSize;++M)for(let P=0;P<h.inChannels;++P)for(let B=0;B<h.inHeight;++B)for(let Y=0;Y<h.inWidth;++Y){const q=B-_,K=Y-A;let H=0;for(let Q=0;Q<x;Q+=y){const J=(q+Q)/f;if(J<0||J>=h.outHeight||Math.floor(J)!==J)continue;for(let ie=0;ie<T;ie+=w){const ne=(K+ie)/g;if(ne<0||ne>=h.outWidth||Math.floor(ne)!==ne)continue;const le=x*T-1-m.get(M,J,ne,P),ue=Q*T+ie,oe=le===ue?1:0;if(oe===0)continue;const de=D.get(M,J,ne,P);H+=de*oe}}E.set(H,M,B,Y,P)}return s.makeTensorInfo(E.shape,E.dtype,E.values)}const k0={kernelName:$o,backendName:"cpu",kernelFunc:u3};function D0(e,t,s,n,i){const r=N.computeStrides(t),o=Ql(e,t,s,r,i,"max"),a=Jf(e,t,s,i,!0,n);return[o.values,a.values]}const F0={kernelName:Wo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:s})=>{const{x:n}=e,{filterSize:i,strides:r,pad:o,includeBatchInIndex:a}=t,l=s;ee(n,"MaxPoolWithArgmax");const c=l.data.get(n.dataId).values,p=U.computePool2DInfo(n.shape,i,r,[1,1],o),[u,h]=D0(c,n.shape,n.dtype,a,p),d=l.write(u,p.outShape,n.dtype),m=l.write(h,p.outShape,n.dtype);return[{dataId:d,shape:p.outShape,dtype:n.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};const h3=vt.nonMaxSuppressionV4Impl,M0={kernelName:zo,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:s})=>{const{boxes:n,scores:i}=e,{maxOutputSize:r,iouThreshold:o,scoreThreshold:a,padToMaxOutputSize:l}=s,c=t;ee(n,"NonMaxSuppressionPadded");const p=c.data.get(n.dataId).values,u=c.data.get(i.dataId).values,{selectedIndices:h,validOutputs:d}=h3(p,u,r,o,a,l);return[h,d]}};const d3=vt.nonMaxSuppressionV5Impl,U0={kernelName:Po,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:s})=>{const{boxes:n,scores:i}=e,{maxOutputSize:r,iouThreshold:o,scoreThreshold:a,softNmsSigma:l}=s,c=t;ee(n,"NonMaxSuppressionWithScore");const p=c.data.get(n.dataId).values,u=c.data.get(i.dataId).values,h=r,d=o,m=a,f=l,{selectedIndices:g,selectedScores:y}=d3(p,u,h,d,m,f);return[g,y]}};const m3=js((e,t)=>e!==t?1:0),f3=On(Ka,m3,null,"bool"),$0={kernelName:Ka,backendName:"cpu",kernelFunc:f3};function g3(e){const{inputs:t,backend:s,attrs:n}=e,{x:i}=t,{paddings:r,constantValue:o}=n;ee(i,"pad");const a=r.map((w,x)=>w[0]+i.shape[x]+w[1]),l=r.map(w=>w[0]),c=s.data.get(i.dataId).values,p=N.sizeFromShape(i.shape),u=i.shape.length,h=N.computeStrides(i.shape),d=N.sizeFromShape(a),m=a.length,f=N.computeStrides(a),g=N.getTypedArrayFromDType(i.dtype,d);o!==0&&g.fill(o);for(let w=0;w<p;w++){const x=N.indexToLoc(w,u,h),T=x.map((_,E)=>_+l[E]),A=N.locToIndex(T,m,f);g[A]=c[w]}const y=s.write(g,a,i.dtype);return{dataId:y,shape:a,dtype:i.dtype}}const Qf={kernelName:Bo,backendName:"cpu",kernelFunc:g3};const y3=fe(kr,e=>1/e),W0={kernelName:kr,backendName:"cpu",kernelFunc:y3};const z0={kernelName:Ho,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:s})=>{const{image:n}=e,{radians:i,fillValue:r,center:o}=t,a=s,l=N.getTypedArrayFromDType(n.dtype,N.sizeFromShape(n.shape)),[c,p,u,h]=n.shape,[d,m]=U.getImageCenter(o,p,u),f=255,g=Math.sin(i),y=Math.cos(i),w=a.data.get(n.dataId).values;for(let T=0;T<c;T++){const A=T*u*p*h;for(let _=0;_<p;_++){const E=_*(u*h);for(let F=0;F<u;F++){const D=F*h;for(let M=0;M<h;M++){const P=[c,_,F,M],B=P[2],Y=P[1];let q=(B-d)*y-(Y-m)*g,K=(B-d)*g+(Y-m)*y;q=Math.round(q+d),K=Math.round(K+m);let H=r;if(typeof r!="number"&&(M===3?H=f:H=r[M]),q>=0&&q<u&&K>=0&&K<p){const J=K*(u*h),ie=q*h,ne=A+J+ie+M;H=w[ne]}const Q=A+E+D+M;l[Q]=H}}}}const x=a.write(l,n.shape,n.dtype);return{dataId:x,shape:n.shape,dtype:n.dtype}}};const b3=fe(Dr,e=>{const t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),P0={kernelName:Dr,backendName:"cpu",kernelFunc:b3};const w3=U.SELU_SCALEALPHA,x3=U.SELU_SCALE,L3=fe(Mr,e=>e>=0?x3*e:w3*(Math.exp(e)-1)),B0={kernelName:Mr,backendName:"cpu",kernelFunc:L3};const S3=fe(Wr,e=>1/(1+Math.exp(-e))),j0={kernelName:Wr,backendName:"cpu",kernelFunc:S3};const I3=fe($r,e=>e<0?-1:e>0?1:0),V0={kernelName:$r,backendName:"cpu",kernelFunc:I3};const v3=fe(ti,e=>Math.sin(e)),G0={kernelName:ti,backendName:"cpu",kernelFunc:v3};const T3=fe(Ur,e=>Math.sinh(e)),q0={kernelName:Ur,backendName:"cpu",kernelFunc:T3};const A3=11920928955078125e-23,H0=Math.log(A3)+2,N3=fe(zr,e=>{const t=e>-H0,s=e<H0,n=Math.exp(e);let i;return s?i=n:t?i=e:i=Math.log(1+n),i}),Y0={kernelName:zr,backendName:"cpu",kernelFunc:N3};function mx(e){const{inputs:t,attrs:s,backend:n}=e,{x:i}=t,{perm:r}=s;ee(i,"transpose");const o=i.shape.length,a=new Array(o);for(let u=0;u<a.length;u++)a[u]=i.shape[r[u]];const l=n.data.get(i.dataId).values,c=Zl(l,i.shape,i.dtype,r,a),p=n.write(c,a,i.dtype);return{dataId:p,shape:a,dtype:i.dtype}}const K0={kernelName:_i,backendName:"cpu",kernelFunc:mx};function C3(e){const{inputs:t,backend:s,attrs:n}=e,{x:i}=t,{blockShape:r,paddings:o}=n;ee([i],"spaceToBatchND");const a=N.sizeFromShape(r),l=[[0,0]];l.push(...o);for(let _=1+r.length;_<i.shape.length;++_)l.push([0,0]);const c=Qf.kernelFunc({inputs:{x:i},backend:s,attrs:{paddings:l,constantValue:0}}),p=U.getReshaped(c.shape,r,a,!1),u=U.getPermuted(p.length,r.length,!1),h=U.getReshapedPermuted(c.shape,r,a,!1),d={x:c},m={shape:p},f=kn({inputs:d,backend:s,attrs:m}),g={x:f},y={perm:u},w=mx({inputs:g,backend:s,attrs:y}),x={x:w},T={shape:h},A=kn({inputs:x,backend:s,attrs:T});return s.disposeIntermediateTensorInfo(c),s.disposeIntermediateTensorInfo(f),s.disposeIntermediateTensorInfo(w),A}const X0={kernelName:Vo,backendName:"cpu",kernelFunc:C3};const R3=fe(Pr,e=>Math.sqrt(e)),J0={kernelName:Pr,backendName:"cpu",kernelFunc:R3};const Z0={kernelName:Go,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{const{x:s}=e,n=t;ee(s,"square");const i=n.data.get(s.dataId).values,r=new Float32Array(i.length);for(let a=0;a<i.length;++a){const l=i[a];r[a]=l*l}const o=n.write(r,s.shape,s.dtype);return{dataId:o,shape:s.shape,dtype:s.dtype}}};const O3=js((e,t)=>{const s=e-t;return s*s}),E3=On(si,O3),Q0={kernelName:si,backendName:"cpu",kernelFunc:E3};const _3=fe(Vr,(e,t)=>{const s=t;return isNaN(e)?NaN:e>0?1:s.alpha}),eR={kernelName:Vr,backendName:"cpu",kernelFunc:_3};const k3=fe(ni,e=>Math.tan(e)),tR={kernelName:ni,backendName:"cpu",kernelFunc:k3};const D3=fe(jr,e=>Math.tanh(e)),sR={kernelName:jr,backendName:"cpu",kernelFunc:D3};function F3(e){const{inputs:t,attrs:s,backend:n}=e,{axis:i}=s,{x:r}=t;ee(r,"unique");const o=n.data.get(r.dataId).values,{outputValues:a,outputShape:l,indices:c}=Xf(o,i,r.shape,r.dtype);return[n.makeTensorInfo(l,r.dtype,a),n.makeTensorInfo([c.length],"int32",c)]}const nR={kernelName:qo,backendName:"cpu",kernelFunc:F3};const M3=[BC,n0,i0,HC,r0,o0,a0,l0,c0,p0,u0,qC,YC,h0,jC,f0,g0,y0,b0,x0,w0,Du,L0,S0,KC,XC,I0,v0,JC,VC,T0,d0,A0,N0,C0,ZC,R0,O0,_0,k0,F0,E0,QC,M0,U0,$0,Qf,GC,W0,m0,z0,P0,e0,B0,j0,V0,G0,q0,t0,Y0,X0,J0,Z0,Q0,eR,s0,tR,sR,K0,nR];for(const e of M3)Za(e);const va={},fx={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function gx(e,t){va[e]=t}function on(e){if(!(e in va)){const s=U3(e);if(s!==null)va[e]=s;else return console.log("Could not get context for WebGL version",e),null}const t=va[e];return t.isContextLost()?(delete va[e],on(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),va[e])}function $3(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function U3(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");const t=$3(e);return t.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete va[e]},!1),e===1?t.getContext("webgl",fx)||t.getContext("experimental-webgl",fx):t.getContext("webgl2",fx)}var wo;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(wo||(wo={}));var is;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(is||(is={}));var Xt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Xt||(Xt={}));function Ta(e,t){return[t,e]}function iR(e,t){return e*t}function xo(e){const t=N.sizeFromShape(e),s=Math.ceil(t/4);return N.sizeToSquarishShape(s)}function wi(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function rR(e,t){const[s,n]=wi(e,t);return s*n*4}function Fu(e,t){const s=e;let n,i,r,o,a,l,c,p,u,h;return W().getNumber("WEBGL_VERSION")===2?(n=s.R32F,i=s.R16F,r=s.RGBA16F,o=s.RGBA32F,a=s.RED,c=4,p=1,u=s.HALF_FLOAT,h=s.FLOAT):(n=e.RGBA,i=e.RGBA,r=e.RGBA,o=s.RGBA,a=e.RGBA,c=4,p=4,u=t!=null?t.HALF_FLOAT_OES:null,h=e.FLOAT),l=e.RGBA,{internalFormatFloat:n,internalFormatHalfFloat:i,internalFormatPackedHalfFloat:r,internalFormatPackedFloat:o,textureFormatFloat:a,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:p,textureTypeHalfFloat:u,textureTypeFloat:h}}function pe(e,t){const s=t();return W().getBool("DEBUG")&&W3(e),s}function W3(e){const t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+z3(e,t))}const P3=596e-10,B3=65504;function oR(e){return!!(W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||P3<Math.abs(e)&&Math.abs(e)<B3)}function z3(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Mu(e,t){return Ji(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function aR(e,t){const s=Ji(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(pe(e,()=>e.shaderSource(s,t)),pe(e,()=>e.compileShader(s)),e.getShaderParameter(s,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(s)),new Error("Failed to compile vertex shader.");return s}function lR(e,t){const s=Ji(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(pe(e,()=>e.shaderSource(s,t)),pe(e,()=>e.compileShader(s)),e.getShaderParameter(s,e.COMPILE_STATUS)===!1)throw j3(t,e.getShaderInfoLog(s)),new Error("Failed to compile fragment shader.");return s}const V3=/ERROR: [0-9]+:([0-9]+):/g;function j3(e,t){const s=V3.exec(t);if(s==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}const n=+s[1],i=e.split(`
`),r=i.length.toString().length+2,o=i.map((u,h)=>N.rightPad((h+1).toString(),r)+u);let a=0;for(let u=0;u<o.length;u++)a=Math.max(o[u].length,a);const l=o.slice(0,n-1),c=o.slice(n-1,n),p=o.slice(n);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${N.rightPad(c[0],a)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
`))}function cR(e){return Ji(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function pR(e,t){if(pe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function eg(e,t){if(pe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function uR(e,t){const s=Ji(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return pe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),pe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),s}function hR(e,t){const s=Ji(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return pe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,s)),pe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),s}function dR(e){return Ji(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function mR(e,t){const s=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){const n=`[${e}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(e>s||t>s){const n=`[${e}x${t}]`,i=`[${s}x${s}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+i+".")}}function fR(e){return Ji(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function yx(e,t,s,n,i,r,o){const a=e.getAttribLocation(t,s);return a===-1?!1:(pe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),pe(e,()=>e.vertexAttribPointer(a,i,e.FLOAT,!1,r,o)),pe(e,()=>e.enableVertexAttribArray(a)),!0)}function q3(e,t,s){G3(e,s),pe(e,()=>e.activeTexture(e.TEXTURE0+s)),pe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function gR(e,t,s){return Ji(e,()=>e.getUniformLocation(t,s),'uniform "'+s+'" not present in program.')}function yR(e,t,s){return e.getUniformLocation(t,s)}function bR(e,t,s,n){pe(e,()=>q3(e,t,n)),pe(e,()=>e.uniform1i(s,n))}function tg(e,t,s){pe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,s)),pe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function bx(e,t){pe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),pe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Uu(e){const t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+H3(e,t))}function H3(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Ji(e,t,s){const n=pe(e,()=>t());if(n==null)throw new Error(s);return n}function G3(e,t){const s=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+e.TEXTURE0;if(n<e.TEXTURE0||n>s){const i=`[gl.TEXTURE0, gl.TEXTURE${s}]`;throw new Error(`textureUnit must be in ${i}.`)}}function Lo(e,t=2){return N.sizeFromShape(e.slice(0,e.length-t))}function So(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function sg(e){let t=[1,1,1];const s=e.length===0||e.length===1&&e[0]===1;return s||(t=[Lo(e),...So(e)]),t}function wR(e,t=!1){let s=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(t&&(s=s*2,e=e.map((i,r)=>r>=e.length-2?N.nearestLargerEven(e[r]):e[r]),e.length===1&&(e=[2,e[0]])),e.length!==2){const i=N.squeezeShape(e);e=i.newShape}let n=N.sizeFromShape(e);if(e.length<=1&&n<=s)return[1,n];if(e.length===2&&e[0]<=s&&e[1]<=s)return e;if(e.length===3&&e[0]*e[1]<=s&&e[2]<=s)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=s&&e[1]*e[2]<=s)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=s&&e[3]<=s)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=s&&e[1]*e[2]*e[3]<=s)return[e[0],e[1]*e[2]*e[3]];if(t){const i=Lo(e);let r=2,o=2;return e.length&&([r,o]=So(e)),n=i*(r/2)*(o/2),N.sizeToSquarishShape(n).map(a=>a*2)}return N.sizeToSquarishShape(n)}function ng(e){return e%2===0}function sc(e,t){if(e=e.slice(-2),t=t.slice(-2),N.arraysEqual(e,t))return!0;if(!e.length||!t.length)return!0;if(e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){const s=e.slice(-1)[0],n=t.slice(-1)[0];if(s===n)return!0;if(ng(s)&&ng(n)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&ng(e[0])&&ng(t[0])}let wx,xx;function xR(e){if(wx==null){const t=on(e);wx=t.getParameter(t.MAX_TEXTURE_SIZE)}return wx}function LR(e){if(xx==null){const t=on(e);xx=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,xx)}function SR(e){if(e===0)return 0;let t;const s=on(e);return an(s,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:an(s,"EXT_disjoint_timer_query")?t=1:t=0,t}function an(e,t){const s=e.getExtension(t);return s!=null}function Lx(e){try{const t=on(e);if(t!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function IR(e){if(e===0)return!1;const t=on(e);if(e===1){if(!an(t,"OES_texture_float"))return!1}else if(!an(t,"EXT_color_buffer_float"))return!1;const s=Sx(t);return s}function vR(e){if(e===0)return!1;const t=on(e);if(e===1){if(!an(t,"OES_texture_float"))return!1;if(!an(t,"WEBGL_color_buffer_float"))return!1}else{if(an(t,"EXT_color_buffer_float"))return Sx(t);const n="EXT_color_buffer_half_float";if(an(t,n)){const i=t.getExtension(n);return Y3(t,i)}return!1}const s=Sx(t);return s}function Sx(e){const t=Fu(e),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);const n=1,i=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,n,i,0,t.textureFormatFloat,t.textureTypeFloat,null);const r=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,r),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);const o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(r),o}function Y3(e,t){const s=Fu(e,t),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);const i=1,r=1;e.texImage2D(e.TEXTURE_2D,0,s.internalFormatHalfFloat,i,r,0,s.textureFormatFloat,s.textureTypeHalfFloat,null);const o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);const a=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(o),a}function TR(e){if(e!==2)return!1;const t=on(e),s=t.fenceSync!=null;return s}function xi(e,t){Array.isArray(e)||(e=[e]),e.forEach(s=>{s!=null&&N.assert(s.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}const ve=W();ve.registerFlag("HAS_WEBGL",()=>ve.getNumber("WEBGL_VERSION")>0);ve.registerFlag("WEBGL_VERSION",()=>Lx(2)?2:Lx(1)?1:0);ve.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);ve.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>ve.get("WEBGL_VERSION")===2);ve.registerFlag("WEBGL_CPU_FORWARD",()=>!0);ve.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);ve.registerFlag("WEBGL_PACK",()=>ve.getBool("HAS_WEBGL"));ve.registerFlag("WEBGL_PACK_NORMALIZATION",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_CLIP",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);ve.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_REDUCE",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_LAZILY_UNPACK",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_CONV_IM2COL",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>xR(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>LR(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{const e=ve.getNumber("WEBGL_VERSION");return e===0?0:SR(e)});ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>ve.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!rl.isMobile());ve.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>IR(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>ve.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:ve.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));ve.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>vR(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_FENCE_API_ENABLED",()=>TR(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>{const e=ve.getBool("WEBGL_RENDER_FLOAT32_ENABLED");return e?4:0});ve.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});const{simpleAbsImpl:AR,addImpl:NR,ceilImpl:CR,expImpl:RR,expm1Impl:OR,floorImpl:ER,logImpl:_R,maxImpl:kR,multiplyImpl:DR,rsqrtImpl:FR,sliceImpl:MR,subImpl:UR,transposeImpl:ig,uniqueImpl:$R}=ux;class WR{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((i,r)=>`T${r}`);const s=[];this.variableNames.forEach(i=>{s.push(`float v${i} = get${i}AtOutCoords();`)});const n=this.variableNames.map(i=>`v${i}`).join(" + ");this.userCode=`
void main() {
${s.join(`
`)}
float result = ${n};
setOutput(result);
}
`}}class zR{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((i,r)=>`T${r}`);const s=[];this.variableNames.forEach(i=>{s.push(`vec4 v${i} = get${i}AtOutCoords();`)});const n=this.variableNames.map(i=>`v${i}`).join(" + ");this.userCode=`
void main() {
${s.join(`
`)}
vec4 result = ${n};
setOutput(result);
}
`}}class PR{constructor(e,t,s){this.variableNames=["A"];const{windowSize:n,batchSize:i,outSize:r}=e;s||this.variableNames.push("bestIndicesA"),this.outputShape=[i,r];const o=t==="max"?">":"<",a=s?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${n}; i++) {
int inIdx = ${a};
float candidate = getA(batch, inIdx);
if (candidate ${o} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}}function Ix(e,t){return["x","y","z","w","u","v"].slice(0,t).map(s=>`${e}.${s}`)}function _t(e,t){return t===1?[e]:Ix(e,t)}function BR(e,t){if(e===1)return"rc";let s="";for(let n=0;n<e;n++)s+=t[n],n<e-1&&(s+=",");return s}function ct(){let e,t,s,n,i,r,o,a,l,c;return W().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",s="out",n="in",i="texture",r="outputColor",o="out vec4 outputColor;",a=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",s="varying",n="varying",i="texture2D",r="gl_FragColor",o="",a=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:s,varyingFs:n,texture2D:i,output:r,defineOutput:o,defineSpecialNaN:a,defineSpecialInf:l,defineRound:c}}function Hn(e,t,s="index"){const n=N.computeStrides(t);return n.map((i,r)=>{const o=`int ${e[r]} = ${s} / ${i}`,a=r===n.length-1?`int ${e[r+1]} = ${s} - ${e[r]} * ${i}`:`index -= ${e[r]} * ${i}`;return`${o}; ${a};`}).join("")}function nc(e){const t=N.computeStrides(e).map(s=>s.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}const rg=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;const{getBroadcastDims:jR}=U;function VR(e,t,s,n){const i=[];e.forEach(m=>{const f=N.sizeFromShape(m.shapeInfo.logicalShape);m.shapeInfo.isUniform?i.push(`uniform float ${m.name}${f>1?`[${f}]`:""};`):(i.push(`uniform sampler2D ${m.name};`),i.push(`uniform int offset${m.name};`))});const r=i.join(`
`),o=e.map(m=>K3(m,t,n)).join(`
`),a=t.texShape,l=ct(),c=Z3(l);let p,u,h=tV(l);t.isPacked?(p=X3(t.logicalShape,a),u=eV(l)):(p=J3(t.logicalShape,a),u=Q3(l)),n&&(h+=sV);const d=[h,c,u,r,p,o,s].join(`
`);return d}function ic(e){const t=e.shapeInfo.logicalShape;switch(t.length){case 0:return nV(e);case 1:return iV(e);case 2:return rV(e);case 3:return oV(e);case 4:return aV(e);case 5:return lV(e);case 6:return cV(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function GR(e){const t=e.shapeInfo.logicalShape;switch(t.length){case 0:return pV(e);case 1:return uV(e);case 2:return hV(e);case 3:return dV(e);default:return mV(e)}}function K3(e,t,s=!1){let n="";s?n+=GR(e):n+=ic(e);const i=e.shapeInfo.logicalShape,r=t.logicalShape;return i.length<=r.length&&(s?n+=fV(e,t):n+=gV(e,t)),n}function X3(e,t){switch(e.length){case 0:return qR();case 1:return yV(e,t);case 2:return xV(e,t);case 3:return bV(e,t);default:return wV(e,t)}}function J3(e,t){switch(e.length){case 0:return qR();case 1:return LV(e,t);case 2:return AV(e,t);case 3:return SV(e,t);case 4:return IV(e,t);case 5:return vV(e,t);case 6:return TV(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Z3(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function Q3(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function eV(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function tV(e){const t=`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${NV}
${CV}
${RV}
`;return t}const NV=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,CV=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,RV=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,sV=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function qR(){return`
int getOutputCoords() {
return 0;
}
`}function yV(e,t){const s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${s[1]}.0);
}
`:s[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${s[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
}
`}function LV(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function bV(e,t){const s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],n=Math.ceil(e[2]/2),i=n*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int b = index / ${i};
index -= b * ${i};
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec3(b, r, c);
}
`}function SV(e,t){const s=Hn(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec3(r, c, d);
}
`}function wV(e,t){const s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],n=Math.ceil(e[e.length-1]/2),i=n*Math.ceil(e[e.length-2]/2);let r=i,o="",a="b, r, c";for(let l=2;l<e.length-1;l++)r*=e[e.length-l-1],o=`
int b${l} = index / ${r};
index -= b${l} * ${r};
`+o,a=`b${l}, `+a;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
${o}
int b = index / ${i};
index -= b * ${i};
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec${e.length}(${a});
}
`}function IV(e,t){const s=Hn(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec4(r, c, d, d2);
}
`}function vV(e,t){const s=Hn(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function TV(e,t){const s=Hn(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function xV(e,t){const s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(N.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
}
`;const n=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec2(r, c);
}
`}function AV(e,t){return N.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Aa(e){return`offset${e}`}function pV(e){const t=e.name,s="get"+t.charAt(0).toUpperCase()+t.slice(1),n=ct();return`
vec4 ${s}() {
return ${n.texture2D}(${t}, halfCR);
}
`}function nV(e){const t=e.name,s="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${t};}`;const[n,i]=e.shapeInfo.texShape;if(n===1&&i===1)return`
float ${s}() {
return sampleTexture(${t}, halfCR);
}
`;const[r,o]=e.shapeInfo.texShape,a=Aa(t);return`
float ${s}() {
vec2 uv = uvFromFlat(${r}, ${o}, ${a});
return sampleTexture(${t}, uv);
}
`}function uV(e){const t=e.name,s="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e.shapeInfo.texShape,i=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)],r=ct();return`
vec4 ${s}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${r.texture2D}(${t}, uv);
}
`}function iV(e){const t=e.name,s="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${s}(int index) {
${rc(e)}
}
`;const n=e.shapeInfo.texShape,i=n[0],r=n[1];if(r===1&&i===1)return`
float ${s}(int index) {
return sampleTexture(${t}, halfCR);
}
`;const o=Aa(t);return r===1?`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${i}.0);
return sampleTexture(${t}, uv);
}
`:i===1?`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${r}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = uvFromFlat(${i}, ${r}, index + ${o});
return sampleTexture(${t}, uv);
}
`}function hV(e){const t=e.shapeInfo.logicalShape,s=e.name,n="get"+s.charAt(0).toUpperCase()+s.slice(1),i=e.shapeInfo.texShape,r=i[0],o=i[1],a=ct();if(i!=null&&N.arraysEqual(t,i))return`
vec4 ${n}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${r}.0);
return ${a.texture2D}(${s}, uv);
}
`;const l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=Math.ceil(t[1]/2);return`
vec4 ${n}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${a.texture2D}(${s}, uv);
}
`}function rV(e){const t=e.shapeInfo.logicalShape,s=e.name,n="get"+s.charAt(0).toUpperCase()+s.slice(1),i=e.shapeInfo.texShape;if(i!=null&&N.arraysEqual(t,i)){const u=i[0],h=i[1];return`
float ${n}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${u}.0);
return sampleTexture(${s}, uv);
}
`}const{newShape:r,keptDims:o}=N.squeezeShape(t),a=r;if(a.length<t.length){const u=oc(e,a),h=["row","col"];return`
${ic(u)}
float ${n}(int row, int col) {
return ${n}(${ac(h,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${rc(e)}
}
`;const l=i[0],c=i[1],p=Aa(s);return c===1?`
float ${n}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${s}, uv);
}
`:l===1?`
float ${n}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${s}, uv);
}
`:`
float ${n}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${p};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${s}, uv);
}
`}function dV(e){const t=e.shapeInfo.logicalShape,s=e.name,n="get"+s.charAt(0).toUpperCase()+s.slice(1),i=e.shapeInfo.texShape,r=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)];if(t[0]===1){const u=t.slice(1),h=[1,2],d=oc(e,u),m=["b","row","col"];return`
${GR(d)}
vec4 ${n}(int b, int row, int col) {
return ${n}(${ac(m,h)});
}
`}const o=r[0],a=r[1],l=Math.ceil(t[2]/2),c=l*Math.ceil(t[1]/2),p=ct();return`
vec4 ${n}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${o}, ${a}, ${c}, ${l}, b, row, col);
return ${p.texture2D}(${s}, uv);
}
`}function oV(e){const t=e.shapeInfo.logicalShape,s=e.name,n="get"+s.charAt(0).toUpperCase()+s.slice(1),i=t[1]*t[2],r=t[2],{newShape:o,keptDims:a}=N.squeezeShape(t),l=o;if(l.length<t.length){const m=oc(e,l),f=["row","col","depth"];return`
${ic(m)}
float ${n}(int row, int col, int depth) {
return ${n}(${ac(f,a)});
}
`}if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${i}, ${r}, 1)));
${rc(e)}
}
`;const c=e.shapeInfo.texShape,p=c[0],u=c[1],h=e.shapeInfo.flatOffset;if(u===i&&h==null)return`
float ${n}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${u}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;if(u===r&&h==null)return`
float ${n}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;const d=Aa(s);return`
float ${n}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${r} + depth + ${d};
vec2 uv = uvFromFlat(${p}, ${u}, index);
return sampleTexture(${s}, uv);
}
`}function mV(e){const t=e.shapeInfo.logicalShape,s=t.length,n=e.name,i="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],a=o[0],l=o[1],c=Math.ceil(t[s-1]/2);let p=c*Math.ceil(t[s-2]/2),u="int b, int row, int col",h=`b * ${p} + (row / 2) * ${c} + (col / 2)`;for(let m=2;m<s-1;m++)u=`int b${m}, `+u,p*=t[s-m-1],h=`b${m} * ${p} + `+h;const d=ct();return`
vec4 ${i}(${u}) {
int index = ${h};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${a});
return ${d.texture2D}(${n}, uv);
}
`}function aV(e){const t=e.shapeInfo.logicalShape,s=e.name,n="get"+s.charAt(0).toUpperCase()+s.slice(1),i=t[3],r=t[2]*i,o=t[1]*r,{newShape:a,keptDims:l}=N.squeezeShape(t);if(a.length<t.length){const m=oc(e,a),f=["row","col","depth","depth2"];return`
${ic(m)}
float ${n}(int row, int col, int depth, int depth2) {
return ${n}(${ac(f,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${r}, ${i}, 1)));
${rc(e)}
}
`;const c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,u=p[0],h=p[1];if(h===o&&c==null)return`
float ${n}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${r}, ${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${u}.0);
return sampleTexture(${s}, uv);
}
`;if(h===i&&c==null)return`
float ${n}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${u}.0);
return sampleTexture(${s}, uv);
}
`;const d=Aa(s);return`
float ${n}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${r} +
depth * ${i} + depth2;
vec2 uv = uvFromFlat(${u}, ${h}, index + ${d});
return sampleTexture(${s}, uv);
}
`}function lV(e){const t=e.shapeInfo.logicalShape,s=e.name,n="get"+s.charAt(0).toUpperCase()+s.slice(1),i=t[4],r=t[3]*i,o=t[2]*r,a=t[1]*o,{newShape:l,keptDims:c}=N.squeezeShape(t);if(l.length<t.length){const f=oc(e,l),g=["row","col","depth","depth2","depth3"];return`
${ic(f)}
float ${n}(int row, int col, int depth, int depth2, int depth3) {
return ${n}(${ac(g,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${a}, ${o}, ${r}, ${i})) +
depth3;
${rc(e)}
}
`;const p=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,h=u[0],d=u[1];if(d===a&&p==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${o}, ${r}, ${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${s}, uv);
}
`;if(d===i&&p==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${s}, uv);
}
`;const m=Aa(s);return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} + depth * ${r} +
depth2 * ${i} + depth3 + ${m};
vec2 uv = uvFromFlat(${h}, ${d}, index);
return sampleTexture(${s}, uv);
}
`}function cV(e){const t=e.shapeInfo.logicalShape,s=e.name,n="get"+s.charAt(0).toUpperCase()+s.slice(1),{newShape:i,keptDims:r}=N.squeezeShape(t);if(i.length<t.length){const g=oc(e,i),y=["row","col","depth","depth2","depth3","depth4"];return`
${ic(g)}
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${n}(${ac(y,r)});
}
`}const o=t[5],a=t[4]*o,l=t[3]*a,c=t[2]*l,p=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${p}, ${c}, ${l}, ${a})) +
dot(
vec2(depth3, depth4),
vec2(${o}, 1)));
${rc(e)}
}
`;const u=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],m=h[1];if(m===p&&u==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${a}, ${o})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;if(m===o&&u==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;const f=Aa(s);return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${p} + col * ${c} + depth * ${l} +
depth2 * ${a} + depth3 * ${o} + depth4 + ${f};
vec2 uv = uvFromFlat(${d}, ${m}, index);
return sampleTexture(${s}, uv);
}
`}function rc(e){const t=e.name,s=N.sizeFromShape(e.shapeInfo.logicalShape);return s<2?`return ${t};`:`
for (int i = 0; i < ${s}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function fV(e,t){const s=e.name,n=s.charAt(0).toUpperCase()+s.slice(1),i="get"+n+"AtOutCoords",r=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,a=jR(e.shapeInfo.logicalShape,t.logicalShape),l=Re(o),c=o-r;let p;const u=["x","y","z","w","u","v"];r===0?p="":o<2&&a.length>=1?p="coords = 0;":p=a.map(w=>`coords.${u[w+c]} = 0;`).join(`
`);let h="";o<2&&r>0?h="coords":h=e.shapeInfo.logicalShape.map((w,x)=>`coords.${u[x+c]}`).join(", ");let d="return outputValue;";const m=N.sizeFromShape(e.shapeInfo.logicalShape),f=m===1,g=N.sizeFromShape(t.logicalShape),y=g===1;if(r===1&&!f&&!y)d=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(f&&!y)o===1?d=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:d=`
return vec4(outputValue.x);
`;else if(a.length){const w=r-2,x=r-1;a.indexOf(w)>-1&&a.indexOf(x)>-1?d="return vec4(outputValue.x);":a.indexOf(w)>-1?d="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":a.indexOf(x)>-1&&(d="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${i}() {
${l} coords = getOutputCoords();
${p}
vec4 outputValue = get${n}(${h});
${d}
}
`}function gV(e,t){const s=e.name,n=s.charAt(0).toUpperCase()+s.slice(1),i="get"+n+"AtOutCoords",r=t.texShape,o=e.shapeInfo.texShape,a=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&a===l&&e.shapeInfo.flatOffset==null&&N.arraysEqual(o,r))return`
float ${i}() {
return sampleTexture(${s}, resultUV);
}
`;const c=Re(l),p=jR(e.shapeInfo.logicalShape,t.logicalShape),u=l-a;let h;const d=["x","y","z","w","u","v"];a===0?h="":l<2&&p.length>=1?h="coords = 0;":h=p.map(f=>`coords.${d[f+u]} = 0;`).join(`
`);let m="";return l<2&&a>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${d[g+u]}`).join(", "),`
float ${i}() {
${c} coords = getOutputCoords();
${h}
return get${n}(${m});
}
`}function Re(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function oc(e,t){const s=JSON.parse(JSON.stringify(e));return s.shapeInfo.logicalShape=t,s}function ac(e,t){return t.map(s=>e[s]).join(", ")}class HR{constructor(e,t,s,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,N.assert(e.length>2,()=>`Packed arg${s.charAt(0).toUpperCase()+s.slice(1)} supports only inputs with rank above 2.`);const i=e[e.length-1],r=Math.ceil(i/t);this.outputShape=e.slice(0,-1),r>1&&this.outputShape.push(r),n||this.variableNames.push("bestIndicesA");const o=this.outputShape,a=o.length,l=Re(a),c=_t("coords",a);let p,u;if(r===1){u=a+1;const E=Re(u);p=`
${E} sourceLocR = ${E}(${c.join()}, 0);
++${c[a-1]};
${E} sourceLocG = ${E}(${c.join()}, 0);
++${c[a-2]};
${E} sourceLocA = ${E}(${c.join()}, 0);
--${c[a-1]};
${E} sourceLocB = ${E}(${c.join()}, 0);
--${c[a-2]};`}else u=a,p=`
${l} sourceLocR = coords;
++${c[a-1]};
${l} sourceLocG = coords;
++${c[a-2]};
${l} sourceLocA = coords;
--${c[a-1]};
${l} sourceLocB = coords;
--${c[a-2]};`;const h=["x","y","z","w","u","v"].slice(0,u),d="."+h[u-1],m=h.map(E=>"int "+E),f=_t("sourceLocR",u-1).concat("inIdx.r"),g=_t("sourceLocG",u-1).concat("inIdx.g"),y=_t("sourceLocB",u-1).concat("inIdx.b"),w=_t("sourceLocA",u-1).concat("inIdx.a"),x=s==="max"?"greaterThan":"lessThan",T=n?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${w.join()})));`,A=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,_=n?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${h.join()}),
vec2(${h.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${h.join()}),
vec2(${h.slice(-2).join()}));
}
${_}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[a-1]} < ${o[a-1]-1};
bool hasNextRow = ${c[a-2]} < ${o[a-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
sourceLocB${d}, sourceLocA${d}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${A};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${T}
vec4 candidate = ${A};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}}class YR{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;const t=e.filterHeight,s=e.filterWidth,n=e.strideHeight,i=e.strideWidth,r=e.dilationHeight,o=e.dilationWidth,a=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=a-1-e.padInfo.top,p=l-1-e.padInfo.left,u=1/(t*s);this.userCode=`
const ivec2 pads = ivec2(${c}, ${p});
const float avgMultiplier = float(${u});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${a};
wR += ${r}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${o}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}}class KR{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;const t=e.filterDepth,s=e.filterHeight,n=e.filterWidth,i=e.strideDepth,r=e.strideHeight,o=e.strideWidth,a=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=p-1-e.padInfo.front,m=u-1-e.padInfo.top,f=h-1-e.padInfo.left,g=1/(t*s*n);this.userCode=`
const ivec3 pads = ivec3(${d}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${a}) {
float dyD = float(dyDCorner + wD) / ${i}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${u};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${h};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}}const vx={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"};class Tx{constructor(e,t,s){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=U.assertAndGetBroadcastShape(t,s),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}}const XR=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,og="return a + b;",ag="return a - b;",Ax="return a * b;",JR=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,ZR=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,QR="return float(a == b);",e2="return float(a != b);",t2="return float(a < b);",s2="return float(a <= b);",n2="return float(a > b);",i2="return float(a >= b);",r2="return float(a >= 1.0 && b >= 1.0);",o2="return float(a >= 1.0 || b >= 1.0);",a2=XR+`
return max(a, b);
`,l2=XR+`
return min(a, b);
`,c2=`if (b == 0.0) return NAN;
return mod(a, b);`,p2="return (b >= 1.0) ? a : a * (b + 1.0);",Nx="return (a < 0.) ? b * a : a;";class kt{constructor(e,t,s){this.variableNames=["A","B"],this.outputShape=U.assertAndGetBroadcastShape(t,s),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}}const lg=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,u2=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,h2=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+lg+`
return result;
`,Cx=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`,d2=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,m2=`
return vec4(equal(a, b));
`,f2=`
return vec4(notEqual(a, b));
`,g2=`
return vec4(lessThan(a, b));
`,y2=`
return vec4(lessThanEqual(a, b));
`,b2=`
return vec4(greaterThan(a, b));
`,w2=`
return vec4(greaterThanEqual(a, b));
`,x2=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,L2=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,S2=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+lg+`
return result;
`,I2=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+lg+`
return result;
`,v2=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+lg+`
return result;
`;class Li{constructor(e,t,s,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=U.assertAndGetBroadcastShape(t,s);const i=this.outputShape.length;let r="";if(n)if(i===0||N.sizeFromShape(this.outputShape)===1)r=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else{const o=Re(i);if(r=`
${o} coords = getOutputCoords();
`,i===1)r+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{const a=_t("coords",i);r+=`
bool nextRowOutOfBounds =
(${a[i-2]} + 1) >= ${this.outputShape[i-2]};
bool nextColOutOfBounds =
(${a[i-1]} + 1) >= ${this.outputShape[i-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${r}
setOutput(result);
}
`}}class T2{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(s,n)=>{this.minLoc==null&&(this.minLoc=s.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=s.getUniformLocationNoThrow(n,"maxVal")),s.gl.uniform1f(this.minLoc,e),s.gl.uniform1f(this.maxLoc,t)}}}class A2{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(s,n)=>{this.minLoc==null&&(this.minLoc=s.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=s.getUniformLocationNoThrow(n,"maxVal")),s.gl.uniform1f(this.minLoc,e),s.gl.uniform1f(this.maxLoc,t)}}}class N2{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}}class C2{constructor(e){this.outputShape=[],this.outputShape=U.computeOutShape(e,1),this.variableNames=e.map((r,o)=>`T${o}`);const t=new Array(e.length-1);t[0]=e[0][1];for(let r=1;r<t.length;r++)t[r]=t[r-1]+e[r][1];const s=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let r=1;r<t.length;r++){const o=t[r-1];s.push(`else if (yC < ${t[r]}) setOutput(getT${r}(yR, yC-${o}));`)}const n=t.length,i=t[t.length-1];s.push(`else setOutput(getT${n}(yR, yC-${i}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${s.join(`
`)}
}
`}}class R2{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=U.computeOutShape(e,t);const s=this.outputShape,n=s.length,i=Re(n),r=_t("coords",n),o=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((m,f)=>`T${f}`);const a=new Array(e.length-1);a[0]=e[0][t];for(let m=1;m<a.length;m++)a[m]=a[m-1]+e[m][t];const l=o[t],c=o.slice(-2),p=o.join();let u=`if (${l} < ${a[0]}) {
return getChannel(
getT0(${p}), vec2(${c.join()}));
}`;for(let m=1;m<a.length;m++){const f=a[m-1];u+=`
if (${l} < ${a[m]} && ${l} >= ${a[m-1]}) {
return getChannel(
getT${m}(${cg(o,l,f)}),
vec2(${cg(c,l,f)}));
}`}const h=a.length,d=a[a.length-1];u+=`
return getChannel(
getT${h}(${cg(o,l,d)}),
vec2(${cg(c,l,d)}));`,this.userCode=`
float getValue(${o.map(m=>"int "+m)}) {
${u}
}
void main() {
${i} coords = getOutputCoords();
vec4 result = vec4(getValue(${r}), 0., 0., 0.);
${r[n-1]} = ${r[n-1]} + 1;
if (${r[n-1]} < ${s[n-1]}) {
result.g = getValue(${r});
}
${r[n-2]} = ${r[n-2]} + 1;
if (${r[n-2]} < ${s[n-2]}) {
result.a = getValue(${r});
}
${r[n-1]} = ${r[n-1]} - 1;
if (${r[n-2]} < ${s[n-2]} &&
${r[n-1]} < ${s[n-1]}) {
result.b = getValue(${r});
}
setOutput(result);
}
`}}function cg(e,t,s){const n=e.indexOf(t),i=e.map((r,o)=>o===n?`${r} - ${s}`:r);return i.join()}class O2{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;const t=e.strideHeight,s=e.strideWidth,n=e.padInfo.top,i=e.padInfo.left,r=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${s} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${r}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}}class E2{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;const t=e.filterHeight,s=e.filterWidth,n=e.strideHeight,i=e.strideWidth,r=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,a=s-1-e.padInfo.left,l=r?1:2,c=r?2:3,p=r?3:1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${s} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${r}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}}class _2{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;const t=e.strideDepth,s=e.strideHeight,n=e.strideWidth,i=e.padInfo.front,r=e.padInfo.top,o=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${s} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${o};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}}class k2{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;const t=e.filterDepth,s=e.filterHeight,n=e.filterWidth,i=e.strideDepth,r=e.strideHeight,o=e.strideWidth,a=t-1-e.padInfo.front,l=s-1-e.padInfo.top,c=n-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${a}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${i}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${s}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${s} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}}class D2{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;const t=e.strideHeight,s=e.strideWidth,n=e.padInfo.top,i=e.padInfo.left,r=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${r} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${s} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}}class F2{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;const t=e.filterHeight,s=e.filterWidth,n=e.strideHeight,i=e.strideWidth,r=t-1-e.padInfo.top,o=s-1-e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${r}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${s} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${a}; dm++) {
int d2 = d1 * ${a} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}}class Rx{constructor(e,t=!1,s=null,n=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;const i=e.padInfo.top,r=e.padInfo.left,o=e.strideHeight,a=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,u=e.filterWidth,h=Math.floor(e.inChannels/4)*4,d=e.inChannels%4,m=e.dataFormat==="channelsLast",f=m?1:2,g=m?2:3,y=m?3:1;let w="",x="";s&&(n?w=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${s}
}`:w=`
float activation(float x) {
${s}
}
`,x="result = activation(result);");const T=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.userCode=`
${w}
const ivec2 strides = ivec2(${o}, ${a});
const ivec2 pads = ivec2(${i}, ${r});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${y}];
ivec2 xRCCorner =
ivec2(coords[${f}], coords[${g}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${u}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${d===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${d===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${d===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${T}
${x}
setOutput(result);
}
`}}class M2{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;const t=e.padInfo.front,s=e.padInfo.top,n=e.padInfo.left,i=e.strideDepth,r=e.strideHeight,o=e.strideWidth,a=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,u=e.filterHeight,h=e.filterWidth,d=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${i}, ${r}, ${o});
const ivec3 pads = ivec3(${t}, ${s}, ${n});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${a};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${u}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${d}) *
getW(wF, wR, wC, ${d}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1),
getX(batch, xF, xR, xC, ${d} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2),
getW(wF, wR, wC, ${d} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}}class Ox{constructor(e,t=!1,s=null,n=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;const i=e.inHeight,r=e.inWidth,o=e.padInfo.top,a=e.padInfo.left,l=e.strideHeight,c=e.strideWidth,p=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,m=e.outChannels/e.inChannels;let f="",g="";s&&(n?f=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${s}
}`:f=`
float activation(float x) {
${s}
}
`,g="result = activation(result);");const y=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.userCode=`
${f}
const ivec2 strides = ivec2(${l}, ${c});
const ivec2 pads = ivec2(${o}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${m};
int q = d2 - d1 * ${m};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${p};
if (xR < 0 || xR >= ${i}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${r}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${y}
${g}
setOutput(result);
}
`}}class Ex{constructor(e,t=!1,s=null,n=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;const i=e.inHeight,r=e.inWidth,o=e.padInfo.top,a=e.padInfo.left,l=e.strideHeight,c=e.strideWidth,p=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,m=d;let f="int xR; int xC; int xCOffset;";for(let x=0;x<h;x++)for(let T=0;T<d;T++)f+=`
vec4 xTexelR${x}C${T*2} = vec4(0.);
vec4 wR${x}C${T} = vec4(0.);
vec4 xR${x}C${T} = vec4(0.);`;for(let x=0;x<h;x++)for(let T=0;T<m;T++){const A=T*2;if(f+=`
xR = xRCorner + ${x*p};
xC = xCCorner + ${A*u};
`,c===1){if(A<d&&(a%2===1?f+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${i} && xCOffset >= 0 && xCOffset < ${r}) {
xTexelR${x}C${A} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${r}) {
xTexelR${x}C${A}.zw = vec2(0.);
}
} else {
xTexelR${x}C${A} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${i} && xCOffset >= 0 && xCOffset < ${r}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${r}) {
previous.zw = vec2(0.);
}
xR${x}C${A} = vec4(previous.zw, xTexelR${x}C${A}.xy);
} else {
xR${x}C${A} = vec4(0, 0, xTexelR${x}C${A}.xy);
}
`:f+=`
if(xR >= 0 && xR < ${i} && xC >= 0 && xC < ${r}) {
xTexelR${x}C${A} = getX(batch, xR, xC, d1);
} else {
xTexelR${x}C${A} = vec4(0.);
}
xR${x}C${A} = xTexelR${x}C${A};
`,A+1<d)){const _=a%2===0?N.nearestLargerEven(u):u;u%2===0&&a%2===1||u%2!==0&&a%2!==1?(f+=`
xCOffset = xC + ${a%2} + ${_};
if(xR >= 0 && xR < ${i} &&
xCOffset >= 0 && xCOffset < ${r}) {
xTexelR${x}C${A+2} = getX(batch, xR, xCOffset, d1);
}
`,u>1&&(f+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${i} &&
xCOffset >= 0 && xCOffset < ${r}) {
xTexelR${x}C${A} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${A} = vec4(0.);
}
`),f+=`
xR${x}C${A+1} = vec4(
xTexelR${x}C${A}.zw, xTexelR${x}C${A+2}.xy);
`):f+=`
xCOffset = xC + ${_};
if(xR >= 0 && xR < ${i} &&
xCOffset >= 0 && xCOffset < ${r}) {
xTexelR${x}C${A+2} = getX(batch, xR, xCOffset, d1);
}
xR${x}C${A+1} = xTexelR${x}C${A+2};
`}}else A<d&&(f+=`
if(xR >= 0 && xR < ${i}) {
`,a%2===1?(f+=`
xCOffset = xC + 1 - ${c};
if(xCOffset >= 0 && xCOffset < ${r}) {
xTexelR${x}C${A} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${A} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${r}) {
xTexelR${x}C${A+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${x}C${A+2} = vec4(0.);
}
xR${x}C${A} = vec4(
xTexelR${x}C${A}.zw, xTexelR${x}C${A+2}.zw);
`,A+1<d&&(f+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${c};
if(xCOffset >= 0 && xCOffset < ${r}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${x}C${A+1} = vec4(xTexelR${x}C${A+2}.xy, final.xy);
`)):(f+=`
if(xC >= 0 && xC < ${r}) {
xTexelR${x}C${A} = getX(batch, xR, xC, d1);
} else {
xTexelR${x}C${A} = vec4(0.);
}
xCOffset = xC + ${c};
if(xCOffset >= 0 && xCOffset < ${r}) {
xTexelR${x}C${A+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${A+2} = vec4(0.);
}
xR${x}C${A} = vec4(
xTexelR${x}C${A}.xy, xTexelR${x}C${A+2}.xy);
`,A+1<d&&(f+=`
xR${x}C${A+1} = vec4(
xTexelR${x}C${A}.zw, xTexelR${x}C${A+2}.zw);
`)),f+="}");A<d&&(f+=`
vec4 wTexelR${x}C${A} = getW(${x}, ${A}, d1, q);
wR${x}C${A} = vec4(wTexelR${x}C${A}.xz, wTexelR${x}C${A}.xz);
`,A+1<d&&(f+=`
vec4 wTexelR${x}C${A+1} = getW(${x}, ${A+1}, d1, q);
wR${x}C${A+1} =
vec4(wTexelR${x}C${A+1}.xz, wTexelR${x}C${A+1}.xz);`))}for(let x=0;x<h;x++)for(let T=0;T<d;T++)f+=`dotProd += xR${x}C${T} * wR${x}C${T};`;let g="",y="";s&&(n?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${s}
}`:g=`vec4 activation(vec4 x) {
${s}
}`,y="result = activation(result);");const w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.userCode=`
${g}
const ivec2 strides = ivec2(${l}, ${c});
const ivec2 pads = ivec2(${o}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${f}
vec4 result = dotProd;
${w}
${y}
setOutput(result);
}
`}}class U2{constructor(e,t,s,n,i){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];const[r,o,a,l]=e,[c]=t,[p,u]=s;this.outputShape=[c,p,u,l];const h=n==="bilinear"?1:0,[d,m]=[`${o-1}.0`,`${a-1}.0`],[f,g,y]=p>1?[`${(o-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,x,T]=u>1?[`${(a-1)/(u-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${w});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${r}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${d} ) {
setOutput(float(${i}));
return;
}
float in_x = ${T};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${i}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${h} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}}class _x{constructor(e,t,s){this.variableNames=["x"],this.outputShape=e;const n=e.length,i=t?"0.0":`getX(${$2(n,"coords")})`,r=e[e.length-1];let o="",a="";t?(o=s?`end != ${r-1}`:"end != 0",a=s?"end + 1":"end - 1"):(o=s?`end + pow2 < ${r}`:"end >= pow2",a=s?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${Re(n)} coords = getOutputCoords();
int end = ${W2(n,"coords")};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${o}) {
int idx = ${a};
${W2(n,"coords")} = idx;
val += getX(${$2(n,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,s)=>{this.index==null&&(this.index=t.getUniformLocation(s,"index")),t.gl.uniform1f(this.index,e)}}}function $2(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function W2(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}class z2{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=wo.DENSE;const t=xo(e),s=ct();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Hn(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${s.output} = result;
}
`}}class P2{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=wo.DENSE;const t=xo(e),s=ct();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Hn(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${s.output} = result;
}
`}}class B2{constructor(e,t,s){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}}class j2{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}}class V2{constructor(e){this.variableNames=["A"],this.outTexUsage=is.DOWNLOAD;const t=ct();this.outputShape=e,this.userCode=`
${rg}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}}class G2{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=is.DOWNLOAD;const t=ct();this.outputShape=e,this.userCode=`
${rg}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}}class q2{constructor(e,t,s=!1){this.variableNames=["A"];const n=ct(),[i,r]=t;this.outputShape=e;let o="result";s&&(o="floor(result * 255. + 0.5)"),this.userCode=`
${nc(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${r};
int c = imod(flatIndex, ${r});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${r}.0, ${i}.0);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${o}, 0., 0., 0.);
}
`}}class H2{constructor(e,t,s=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;const n=ct(),[i,r]=t;this.outputShape=e;let o="",a="result";s&&(a="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){const p=l*2+c;o+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${r};
c = imod(flatIndex, ${r});
uv = (vec2(c, r) + halfCR) / vec2(${r}.0, ${i}.0);
values = ${n.texture2D}(A, uv);
if(offset == 0) {
result[${p}] = values[0];
} else if(offset == 1) {
result[${p}] = values[1];
} else if(offset == 2) {
result[${p}] = values[2];
} else {
result[${p}] = values[3];
}
}
}
`}this.userCode=`
${nc(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${o}
${n.output} = ${a};
}
`}}const kx={REAL:"return real * expR - imag * expI;",IMAG:"return real * expI + imag * expR;"};class Dx{constructor(e,t,s){this.variableNames=["real","imag"];const n=t[1];this.outputShape=t;const i=s?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,r=s?`${n}.0`:"1.0";this.userCode=`
const float exponentMultiplier = ${i};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${e}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${n});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${n}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${r};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}}class Y2{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,s)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(s,"value")),t.gl.uniform1f(this.valueLoc,e)}}}class K2{constructor(e,t,s){this.variableNames=["A","indices"];const n=e.slice();n[s]=t,this.outputShape=n,this.rank=n.length;const i=Re(this.rank),r=OV(e,s);this.userCode=`
void main() {
${i} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}}function OV(e,t){const s=e.length;if(s>4)throw Error(`Gather for rank ${s} is not yet supported`);if(s===1)return"int(getIndices(resRC))";const n=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[];for(let r=0;r<e.length;r++)r===t?i.push(`int(getIndices(${n[r]}))`):i.push(`${n[r]}`);return i.join()}class X2{constructor(e,t,s){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=s;const n=Re(t.length),i=Re(s.length),r=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${n} strides = ${n}(${this.strides});
void main() {
${i} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${r};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}}function J2(e){const t=ct(),s=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return aR(e,s)}function Z2(e){const t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return uR(e,t)}function Q2(e){const t=new Uint16Array([0,1,2,2,1,3]);return hR(e,t)}function $u(e,t,s,n,i,r){mR(t,s);const o=dR(e),a=e.TEXTURE_2D;return pe(e,()=>e.bindTexture(a,o)),pe(e,()=>e.texParameteri(a,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),pe(e,()=>e.texParameteri(a,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),pe(e,()=>e.texParameteri(a,e.TEXTURE_MIN_FILTER,e.NEAREST)),pe(e,()=>e.texParameteri(a,e.TEXTURE_MAG_FILTER,e.NEAREST)),pe(e,()=>e.texImage2D(a,0,n,t,s,0,i,r,null)),pe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function Fx(e){return e.internalFormatFloat}function eO(e,t,s,n){const[i,r]=Ta(t,s);return $u(e,i,r,Fx(n),n.textureFormatFloat,e.FLOAT)}function Mx(e){return e.internalFormatHalfFloat}function tO(e,t,s,n){const[i,r]=Ta(t,s);return $u(e,i,r,Mx(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Ux(e){return e.downloadTextureFormat}function sO(e,t,s,n){const[i,r]=Ta(t,s);return $u(e,i,r,Ux(n),e.RGBA,e.UNSIGNED_BYTE)}function $x(e){return e.internalFormatPackedFloat}function nO(e,t,s,n){const[i,r]=wi(t,s);return $u(e,i,r,$x(n),e.RGBA,e.FLOAT)}function Wx(e){return e.internalFormatPackedHalfFloat}function iO(e,t,s,n){const[i,r]=wi(t,s);return $u(e,i,r,Wx(n),e.RGBA,n.textureTypeHalfFloat)}function rO(e,t,s){const n=0,i=3*4,r=3*4+2*4;pe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s));const o=yx(e,t,"clipSpacePos",s,3,r,n);return o&&yx(e,t,"uv",s,2,r,i)}function oO(e,t,s,n,i,r){pe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,a,l;i instanceof Uint8Array?(o=new Uint8Array(s*n*4),a=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(s*n*4),a=e.FLOAT,l=r.internalFormatPackedFloat),o.set(i),pe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,s,n,0,e.RGBA,a,o)),pe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function aO(e,t,s){pe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),s.data instanceof Uint8Array?pe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,s.width,s.height,0,e.RGBA,e.UNSIGNED_BYTE,s.data)):pe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,s)),pe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function lO(e,t,s,n){const i=e.createBuffer();pe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,i));const r=4,o=4,a=r*o*t*s;return pe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,a,e.STREAM_READ)),pe(e,()=>e.readPixels(0,0,s,t,e.RGBA,e.FLOAT,0)),pe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),i}function cO(e,t,s){const n=e,i=new Float32Array(s);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,i),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),i}function pO(e,t,s,n){const[i,r]=Ta(t,s),o=4,a=new Uint8Array(iR(t*s,o));return pe(e,()=>e.readPixels(0,0,i,r,n.downloadTextureFormat,e.UNSIGNED_BYTE,a)),new Float32Array(a.buffer)}function uO(e,t,s,n,i,r,o,a){const l=e,c=new Float32Array(rR(r,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function hO(e,t,s){const n=new Float32Array(t*s*4);return pe(e,()=>e.readPixels(0,0,s,t,e.RGBA,e.FLOAT,n)),n}class zx{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];const t=W().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,gx(t,e)):this.gl=on(t);let s="WEBGL_color_buffer_float";const n="EXT_color_buffer_half_float";if(W().getNumber("WEBGL_VERSION")===1){const i="OES_texture_float",r="OES_texture_half_float";if(this.textureFloatExtension=Mu(this.gl,i),an(this.gl,r))this.textureHalfFloatExtension=Mu(this.gl,r);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(s),an(this.gl,n))this.colorBufferHalfFloatExtension=Mu(this.gl,n);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(s="EXT_color_buffer_float",an(this.gl,s))this.colorBufferFloatExtension=this.gl.getExtension(s);else if(an(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Z2(this.gl),this.indexBuffer=Q2(this.gl),this.framebuffer=fR(this.gl),this.textureConfig=Fu(this.gl,this.textureHalfFloatExtension)}get debug(){return W().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");const e=this.gl;pe(e,()=>e.finish()),pe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),pe(e,()=>e.deleteFramebuffer(this.framebuffer)),pe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),pe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),pe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),eO(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),tO(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),sO(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),aO(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,s,n){this.throwIfDisposed(),oO(this.gl,e,t,s,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),iO(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),nO(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(bx(this.gl,this.framebuffer),this.outputTexture=null),pe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,s){return this.downloadMatrixDriver(e,()=>pO(this.gl,t,s,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,s,n,i,r){return uO(this.gl,e,t,s,n,i,r,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return cO(this.gl,e,t)}createBufferFromTexture(e,t,s){this.bindTextureToFrameBuffer(e);const n=lO(this.gl,t,s,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){const e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,s;if(W().getBool("WEBGL_FENCE_API_ENABLED")){const n=e,i=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),s=()=>{const r=n.clientWaitSync(i,0,0);return r===n.ALREADY_SIGNALED||r===n.CONDITION_SATISFIED},t=i}else W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),s=()=>this.isQueryAvailable(t,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):s=()=>!0;return{query:t,isFencePassed:s}}downloadMatrixFromPackedTexture(e,t,s){return this.downloadMatrixDriver(e,()=>hO(this.gl,t,s))}createProgram(e){this.throwIfDisposed();const t=this.gl,s=lR(t,e),n=J2(t),i=cR(t);return pe(t,()=>t.attachShader(i,n)),pe(t,()=>t.attachShader(i,s)),pR(t,i),this.debug&&eg(t,i),this.vertexAttrsAreBound||(this.setProgram(i),this.vertexAttrsAreBound=rO(t,this.program,this.vertexBuffer)),i}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&pe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&eg(this.gl,this.program),pe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,s=!0){return this.throwIfDisposed(),s?gR(this.gl,e,t):yR(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),pe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,s){this.throwIfDisposed(),this.throwIfNoProgram(),bR(this.gl,e,t,s)}setOutputMatrixTexture(e,t,s){this.setOutputMatrixTextureDriver(e,s,t)}setOutputPackedMatrixTexture(e,t,s){this.throwIfDisposed();const[n,i]=wi(t,s);this.setOutputMatrixTextureDriver(e,n,i)}setOutputMatrixWriteRegion(e,t,s,n){this.setOutputMatrixWriteRegionDriver(s,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,s,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&eg(this.gl,this.program),Uu(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();const e=this.gl;this.debug&&this.debugValidate(),pe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),pe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Mu(this.gl,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){const s=this.gl,n=this.getQueryTimerExtensionWebGL2(),i=s.createQuery();return s.beginQuery(n.TIME_ELAPSED_EXT,i),i}const e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){const t=this.gl,s=this.getQueryTimerExtensionWebGL2();t.endQuery(s.TIME_ELAPSED_EXT);return}const e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await N.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){const s=this.gl,n=s.getQueryParameter(e,s.QUERY_RESULT);return n/1e6}else{const s=this.getQueryTimerExtensionWebGL1(),n=s.getQueryObjectEXT(e,s.QUERY_RESULT_EXT);return n/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){const s=this.gl,n=this.getQueryTimerExtensionWebGL2(),i=s.getQueryParameter(e,s.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),i&&!this.disjoint}else{const s=this.getQueryTimerExtensionWebGL1(),n=s.getQueryObjectEXT(e,s.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){const e=EV(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){const{resolveFn:s}=this.itemsToPoll[t];s()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;N.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),tg(this.gl,e,this.framebuffer),this.debug&&Uu(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(tg(this.gl,this.outputTexture,this.framebuffer),this.debug&&Uu(this.gl)):bx(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);const s=t();return this.unbindTextureToFrameBuffer(),s}setOutputMatrixTextureDriver(e,t,s){this.throwIfDisposed();const n=this.gl;tg(n,e,this.framebuffer),this.debug&&Uu(n),this.outputTexture=e,pe(n,()=>n.viewport(0,0,t,s)),pe(n,()=>n.scissor(0,0,t,s))}setOutputMatrixWriteRegionDriver(e,t,s,n){this.throwIfDisposed(),pe(this.gl,()=>this.gl.scissor(e,t,s,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}}function EV(e){let t=0;for(;t<e.length;++t){const s=e[t]();if(!s)break}return t-1}function dO(e,t,s,n){const i=t.userCode,r=s.map((d,m)=>{const f={logicalShape:d.shape,texShape:d.isUniform?null:d.texData.texShape,isUniform:d.isUniform,isPacked:d.isUniform?!1:d.texData.isPacked,flatOffset:null};return d.texData!=null&&d.texData.slice!=null&&d.texData.slice.flatOffset>0&&(f.flatOffset=d.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),o=r.map(d=>d.shapeInfo),a={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},l=VR(r,a,i,t.packedInputs),c=e.createProgram(l);let p=null;const u=e.getUniformLocation(c,"NAN",!1);W().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(c,"INFINITY",!1));const h={};for(let d=0;d<t.variableNames.length;d++){const m=t.variableNames[d],f=!1;h[m]=e.getUniformLocation(c,m,f),h[`offset${m}`]=e.getUniformLocation(c,`offset${m}`,f)}return{program:t,source:l,webGLProgram:c,uniformLocations:h,inShapeInfos:o,outShapeInfo:a,infLoc:p,nanLoc:u}}function mO(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((s,n)=>{const i=s.logicalShape,r=t[n],o=r.shape;if(!N.arraysEqual(i,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${i} and ${o} must match`);if(s.isUniform&&r.isUniform)return;const a=s.texShape,l=r.isUniform?null:r.texData.texShape;if(!N.arraysEqual(a,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${a} and ${l} must match`)})}function fO(e,t,s,n,i){mO(t.inShapeInfos,s),mO([t.outShapeInfo],[n]);const r=n.texData.texture,o=n.texData.texShape;n.texData.isPacked?e.setOutputPackedMatrixTexture(r,o[0],o[1]):e.setOutputMatrixTexture(r,o[0],o[1]),e.setProgram(t.webGLProgram),W().getNumber("WEBGL_VERSION")===1&&(t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity)),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),s.forEach((a,l)=>{const c=t.program.variableNames[l],p=t.uniformLocations[c],u=t.uniformLocations[`offset${c}`];if(p==null)return;if(a.isUniform){if(N.sizeFromShape(a.shape)<2)e.gl.uniform1f(p,a.uniformValues[0]);else{let h=a.uniformValues;h instanceof Float32Array||(h=new Float32Array(h)),e.gl.uniform1fv(p,h)}return}a.texData.slice!=null&&u!=null&&e.gl.uniform1i(u,a.texData.slice.flatOffset),e.setInputMatrixTexture(a.texData.texture,p,l)}),i!=null&&i(e,t.webGLProgram),e.executeProgram()}function gO(e,t,s){let n="";t.concat(s).forEach(o=>{const a=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0,l=o.isUniform?"uniform":o.texData.texShape;n+=`${o.shape}_${l}_${a}`});const i=e.userCode;let r=e.constructor.name;return r+="_"+n+"_"+i,r}class yO{constructor(e,t,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;const{filterWidth:n,inChannels:i,strideWidth:r,strideHeight:o,padInfo:a,outWidth:l,dilationWidth:c,dilationHeight:p,dataFormat:u}=s,{left:h,top:d}=a,m=i*n,f=ct(),g=u==="channelsLast",y=g?0:1,w=g?1:2;let x="";for(let T=0;T<=1;T++)for(let A=0;A<=1;A++)x+=`
blockIndex = rc.y + ${A};
pos = rc.x + ${T};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${o} - ${d};
d0 = offsetY + ${p} * (pos / ${m});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${r}. - ${h}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${m}.) / ${i}.));
if(d1 < ${t[w]} && d1 >= 0) {
ch = int(mod(float(pos), ${i}.));
if (${g}) {
innerDims = vec2(d1, ch);
result[${T*2+A}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${T*2+A}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${x}
${f.output} = result;
}
`}}class bO{constructor(e,t,s,n,i){this.variableNames=["x"],this.outputShape=[];const r=t,o=e[3]-1;this.outputShape=e;let a;const l=`float(${s}) + float(${n}) * sum`;i===.5?a=`inversesqrt(${l})`:i===1?a=`1.0/(${l})`:a=`exp(log(${l}) * float(-${i}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${r}; j <= ${r}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${o}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${a};
setOutput(val);
}
`}}class wO{constructor(e,t,s,n,i){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=s,this.alpha=n,this.beta=i,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${n}) * norm + float(${s});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${n})
* float(${i})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${i});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}}class xO{constructor(e,t,s,n,i){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;const r=t,o=e[3]-1;this.outputShape=e;let a;const l=`float(${s}) + float(${n}) * sum`;i===.5?a=`inversesqrt(${l})`:i===1?a=`1.0/(${l})`:a=`exp(log(${l}) * float(-${i}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${r};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${r}; j <= ${r}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${a};
setOutput(result);
}
`}}class LO{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;const t=e.strideHeight,s=e.strideWidth,n=e.dilationHeight,i=e.effectiveFilterHeight,r=e.effectiveFilterWidth,o=i-1-e.padInfo.top,a=r-1-e.padInfo.left,l=i*r-1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${n}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${r} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}}class SO{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;const t=e.strideDepth,s=e.strideHeight,n=e.strideWidth,i=e.dilationDepth,r=e.dilationHeight,o=e.dilationWidth,a=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=a-1-e.padInfo.front,u=l-1-e.padInfo.top,h=c-1-e.padInfo.left,d=a*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${u}, ${h});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${a};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${r}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${o}) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${d} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}}class pg{constructor(e,t,s=!1,n=!1,i=!1,r=null,o=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t;const a=s?e[1]:e[2],l=Math.ceil(a/2),c=s?"i * 2, rc.y":"rc.y, i * 2",p=n?"rc.z, i * 2":"i * 2, rc.z",u=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=n?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"];let d="",m="";r&&(o?d=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${r}
}`:d=`vec4 activation(vec4 x) {
${r}
}`,m="result = activation(result);");const f=i?"result += getBiasAtOutCoords();":"";i&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.userCode=`
${d}
const float sharedDimension = ${l}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${l}; i++) {
vec4 a = getMatrixA(rc.x, ${c});
vec4 b = getMatrixB(rc.x, ${p});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${u[0]} * ${h[0]});
result += (${u[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${f}
${m}
setOutput(result);
}
`}}class IO{constructor(e,t,s){this.variableNames=["probs"],this.outputShape=[e,s],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,s)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(s,"seed")),t.gl.uniform1f(this.seedLoc,e)}}}class vO{constructor(e,t,s,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${n}), float(${s}),
float(index == coords.y)));
}
`}}class TO{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;const t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{const s=_t("rc",t),n=Re(t),i=_V(t,e,s),r=kV(t,e[e.length-1],e[e.length-2],s),o=DV(e,s);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${i}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${o}));
}
}
`}}}function FV(e,t){const s=[];for(let n=0;n<=1;n++)for(let i=0;i<=1;i++){let r=`${n===0?"r":"rp1"}, ${i===0?"c":"cp1"}`;for(let o=2;o<e;o++)r=`${t[t.length-1-o]},`+r;s.push(r)}return s}function _V(e,t,s){if(e===1)return`rc > ${t[0]}`;let n="";for(let i=e-2;i<e;i++)n+=`${s[i]} >= ${t[i]}`,i<e-1&&(n+="||");return n}function kV(e,t,s,n){if(e===1)return"";const i=n.slice(-2);return`
int r = ${i[0]};
int c = ${i[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${s};
`}function DV(e,t){const s=e.length,n=FV(s,t);return s===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${n[0]}),
cEdge ? 0. : getA(${n[1]}),
rEdge ? 0. : getA(${n[2]}),
rEdge || cEdge ? 0. : getA(${n[3]})`}class AO{constructor(e,t,s){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);const n=e.length,i=Re(n),r=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),a=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
int start = ${r};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(float(${s}));
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${i} start = ${i}(${r});
${i} end = ${i}(${o});
void main() {
${i} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(float(${s}));
} else {
${i} coords = outC - start;
setOutput(getX(${a}));
}
}
`}}class NO{constructor(e,t,s){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);const n=e.length,i=Re(n),r=t.map(m=>m[0]).join(","),o=t.map((m,f)=>m[0]+e[f]).join(","),a=_t("rc",n),l=_t("source",n),c=`${a[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${l.slice(-2).join()})`,u=[`${i} rc = outputLoc;`,`${a[n-1]} += 1;
if(${c}) {
`,n===1?"":`}
rc = outputLoc;
${a[n-2]} += 1;
if(${a[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${a[n-1]} += 1;
if(${c}) {`],h=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))";let d="";for(let m=0,f=n===1?2:4;m<f;m++)d+=`
${u[m]}
if (${h}) {
result[${m}] = float(${s});
} else {
${i} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${p});
}
`;d+=n===1?"} ":"}}",this.userCode=`
const ${i} start = ${i}(${r});
const ${i} end = ${i}(${o});
void main() {
${i} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}}class Zi{constructor(e,t,s,n=!1,i=!1){if(this.variableNames=["x"],t==="avg"&&s)throw new Error("Cannot compute positions for average pool.");const r=e.filterWidth,o=e.strideHeight,a=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,u=e.effectiveFilterWidth,h=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;const m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`;let y="0.0";if(m||(y="-1.0 / 1e-20"),s){const E=">=";this.userCode=`
const ivec2 strides = ivec2(${o}, ${a});
const ivec2 pads = ivec2(${h}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${u};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${E} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?i?f:g:`wR * ${u} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}const w="max";let x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");const T=Math.floor(r/4)*4,A=r%4,_=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${o}, ${a});
const ivec2 pads = ivec2(${h}, ${d});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${_}
}
int xC = xCCorner + ${T};
if (${A===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${_}
} else if (${A===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${_}
} else if (${A===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${_}
}
}
setOutput(${x});
}
`}}class ug{constructor(e,t,s,n=!1,i=!1){if(this.variableNames=["x"],t==="avg"&&s)throw new Error("Cannot compute positions for average pool.");const r=e.filterWidth,o=e.strideDepth,a=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,u=e.dilationWidth,h=e.effectiveFilterDepth,d=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;const w=t==="avg";let x="0.0";if(w||(x="-1.0 / 1e-20"),s){const D=">=";this.userCode=`
const ivec3 strides =
ivec3(${o}, ${a}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${h};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${D} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?i?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}const T="max";let A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");const _=Math.floor(r/4)*4,E=r%4,F=`
if (${w}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${T}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${o}, ${a}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${h};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${_}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${u}, ch),
getValue(batch, xD, xR, xC + 2 * ${u}, ch),
getValue(batch, xD, xR, xC + 3 * ${u}, ch)
);
${F}
}
int xC = xCCorner + ${_};
if (${E===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${F}
} else if (${E===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${u}, ch),
initializationValue,
initializationValue
);
${F}
} else if (${E===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${u}, ch),
getValue(batch, xD, xR, xC + 2 * ${u}, ch),
initializationValue
);
${F}
}
}
setOutput(${A});
}
}
`}}class hg{constructor(e,t){this.variableNames=["x"];const{windowSize:s,batchSize:n,inSize:i,outSize:r}=e;this.outputShape=[n,r];let o="0.0",a="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",a="min"):t==="max"&&(o="-1.0 / 1e-20",a="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");const c=Math.floor(s/4)*4,p=s%4;let u=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${a}(values, minMaxValue);
}
`,h="vec4";t==="all"?(o="1.0",u=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,h="bvec4"):t==="any"&&(o="0.0",u=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,h="bvec4");let d="";i%s>0&&(d=`
if (inIdx < 0 || inIdx >= ${i}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${o};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${s};
vec4 minMaxValue = vec4(${o});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${h} values = ${h}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${u}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
${h} values = ${h}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${u}
} else if (${p===2}) {
${h} values = ${h}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${u}
} else if (${p===3}) {
${h} values = ${h}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${u}
}
setOutput(${l});
}
`}}class dg{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let s="";for(let n=0;n<4;n++){let i="thisRC = rc;";n%2===1&&(i+="thisRC.z += 1;"),n>1&&(i+="thisRC.y += 1;"),s+=`
${i}
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${n}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${n>0?"}":""}
`}this.userCode=`
${MV(t)}
${nc(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${s}
setOutput(result);
}
`}}function MV(e){const t=Hn(["r","c","d"],e);return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t}
return ivec3(r, c, d);
}
`}class CO{constructor(e,t,s){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t.shape;const[,n,i]=t.shape,[,r,o]=e.shape,a=[s&&r>1?n-1:n,s&&o>1?i-1:i],l=[s&&r>1?r-1:r,s&&o>1?o-1:o],c=a[0]/l[0],p=a[1]/l[1],u=1/c,h=1/p,d=Math.ceil(u)*2+2,m=Math.ceil(h)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${u});
const float invWidthScale = float(${h});
const int winHeight = int(${d});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${r}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${i-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}}class RO{constructor(e,t,s,n){this.variableNames=["A"],this.outputShape=[];const[i,r,o,a]=e;this.outputShape=[i,t,s,a];const l=[n&&t>1?r-1:r,n&&s>1?o-1:o],c=[n&&t>1?t-1:t,n&&s>1?s-1:s];this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${l[0]/c[0]},
${l[1]/c[1]});
const vec2 inputShapeRC = vec2(${r}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC;
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(sourceFracIndexRC);
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}}class OO{constructor(e,t,s,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];const[i,r,o,a]=e;this.outputShape=[i,t,s,a];const l=[n&&t>1?r-1:r,n&&s>1?o-1:o],c=[n&&t>1?t-1:t,n&&s>1?s-1:s];this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${l[0]/c[0]},
${l[1]/c[1]},
${l[1]/c[1]});
const vec3 inputShapeRC = vec3(${r}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = vec3(yRC) * effectiveInputOverOutputRatioRC;
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(sourceFracIndexRC);
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${a-1};
bool hasNextRow = coords.z < ${s-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}}class EO{constructor(e,t,s){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t.shape;const[,n,i]=t.shape,[,r,o]=e.shape,a=[s&&r>1?n-1:n,s&&o>1?i-1:i],l=[s&&r>1?r-1:r,s&&o>1?o-1:o],c=a[0]/l[0],p=a[1]/l[1],u=1/c,h=1/p,d=Math.ceil(u)*2+2,m=Math.ceil(h)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${u});
const float invWidthScale = float(${h});
const int winHeight = int(${d});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${r}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float sourceFracRow =
float(${a[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${a[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${n}) - 1),
${s} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${i}) - 1),
${s} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}}class _O{constructor(e,t,s,n){this.variableNames=["A"],this.outputShape=[];const[i,r,o,a]=e;this.outputShape=[i,t,s,a];const l=[n&&t>1?r-1:r,n&&s>1?o-1:o],c=[n&&t>1?t-1:t,n&&s>1?s-1:s],p=n?"0.5":"0.0";this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${l[0]/c[0]},
${l[1]/c[1]});
const vec2 inputShapeRC = vec2(${r}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC;
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}}class kO{constructor(e,t){this.variableNames=["x"];const s=e.length;if(s>4)throw new Error(`WebGL backend: Reverse of rank-${s} tensor is not yet supported`);if(this.outputShape=e,s===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}const n=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,i=e.map((o,a)=>n(a)).join(","),r=Re(s);this.userCode=`
void main() {
${r} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}}class DO{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;const s=e.length;if(s>4)throw new Error(`WebGL backend: Reverse of rank-${s} tensor is not yet supported`);this.outputShape=e;const n=_t("rc",s),i=`${n[s-1]} + 1 < ${this.outputShape[s-1]}`,r=`${n[s-2]} + 1 < ${this.outputShape[s-2]}`,o=Re(s);s===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${i}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${a(n.slice())};
if(${i}){
result.g = ${l(n.slice())};
}
if(${r}) {
result.b = ${c(n.slice())};
if(${i}) {
result.a = ${p(n.slice())};
}
}
setOutput(result);
}
`;function a(d){return u(d)}function l(d){return d[s-1]="("+d[s-1]+" + 1)",u(d)}function c(d){return d[s-2]="("+d[s-2]+" + 1)",u(d)}function p(d){return d[s-1]="("+d[s-1]+" + 1)",d[s-2]="("+d[s-2]+" + 1)",u(d)}function u(d){const m=e.map((y,w)=>h(w,d)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function h(d,m){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${m[d]} - 1`:`${m[d]}`}}}class Px{constructor(e,t,s,n,i,r,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=r;const a=Re(i.length),l=Re(r.length);let c="";s===1?c="i":s===2&&(c="i, j");const p=`getIndices(${c})`;let u="";n===1?u="i":n===2&&(u="i, coords[1]");const h=`getUpdates(${u})`,d=t>1?"strides[j]":"strides";this.userCode=`
${a} strides = ${a}(${i});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${d};
}
if (flattenedIndex == coords[0]) {
sum += ${h};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}}class FO{constructor(e,t){this.variableNames=["x","segmentIds"];const s=e.windowSize,n=e.batchSize,i=e.inSize,r=e.numSegments,o=r*Math.ceil(i/s);this.outputShape=[n,o];const a="0.0",l="sumValue",c=Math.floor(s/4)*4,p=s%4,u=`
sumValue += dot(values, segFilter);
`;let h="";i%s>0&&(h=`
if (inIdx < 0 || inIdx >= ${i}) {
return initializationValue;
}
`);let d="";i%s>0&&(d=`
if (inIdx < 0 || inIdx >= ${i}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${a};
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${d}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${r})) * float(${s}));
int currentSeg = int(mod(float(outIdx), float(${r})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${u}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${u}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${u}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${u}
}
setOutput(${l});
}
`}}class MO{constructor(e,t,s){this.variableNames=["c","a","b"],this.outputShape=t;let n,i;if(s>4)throw Error(`Where for rank ${s} is not yet supported`);if(s===1)i="resRC",n="resRC";else{const o=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&a.push(`${o[c]}`);n=a.join(),i=l.join()}const r=Re(s);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
float cVal = getC(${n});
if (cVal >= 1.0) {
setOutput(getA(${i}));
} else {
setOutput(getB(${i}));
}
}
`}}class UO{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;const t=Re(this.rank),s=`uniform int start[${this.rank}];`,n=UV(this.rank);let i;const r=e.map((o,a)=>`sourceLoc.${Bx[a]} = start[${a}] + coords.${Bx[a]};`);i=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
${s}
void main() {
${i}
setOutput(getSource(${n}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,s)=>{if(this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(s,"start"),this.startLoc==null))return;t.gl.uniform1iv(this.startLoc,e)}}}const Bx=["x","y","z","w","u","v"];function UV(e){if(e===1)return"sourceLoc";if(e<=6)return Bx.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}class $O{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;const t=Re(this.rank),s=_t("coords",this.rank),n=_t("sourceLoc",this.rank),i=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,r=`getChannel(getSource(${n.join()}), ${i})`,o=`
result.x = ${r};
if (++${s[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.y = ${r};
--${n[this.rank-1]};
}
`,a=this.rank===1?"":`
--${s[this.rank-1]};
if (++${s[this.rank-2]} < ${e[this.rank-2]}) {
++${n[this.rank-2]};
result.z = ${r};
if (++${s[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.w = ${r};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${n[p]} = ${s[p]} + start[${p}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${o}
${a}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,s)=>{if(this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(s,"start"),this.startLoc==null))return;t.gl.uniform1iv(this.startLoc,e)}}}class WO{constructor(e,t,s){this.variableNames=["x"],this.outputShape=s;const n=s.length,i=Re(s.length),r=Re(s.length);let o="";if(n===1)o="coords * strides + begin";else{let a=0;o=s.map((l,c)=>(a++,s.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${a-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${i} begin = ${i}(${e});
${i} strides = ${i}(${t});
void main() {
${r} coords = getOutputCoords();
setOutput(getX(${o}));
}
`}}class jO{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,s){const n=PO(t,s),i=BO(e,n,s);i in this.freeTextures||(this.freeTextures[i]=[]),i in this.usedTextures||(this.usedTextures[i]=[]);const r=zO(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,s);if(this.freeTextures[i].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=r,this.log();const a=this.freeTextures[i].shift();return this.usedTextures[i].push(a),a}let o;return n===Xt.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===Xt.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===Xt.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===Xt.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===Xt.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[i].push(o),this.numUsedTextures++,this._numBytesAllocated+=r,this.log(),o}releaseTexture(e,t,s,n){if(this.freeTextures==null)return;const i=PO(s,n),r=BO(t,i,n);r in this.freeTextures||(this.freeTextures[r]=[]);const o=zO(t,i,this.gpgpu.gl,this.gpgpu.textureConfig,n),a=W().get("WEBGL_DELETE_TEXTURE_THRESHOLD");a!==-1&&this._numBytesAllocated>a?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[r].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;const l=this.usedTextures[r],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;const e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);const t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures==null)return;for(const e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(const e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}function $V(e,t){const s=e;if(t===s.R32F)return 4;if(t===s.R16F)return 2;if(t===s.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===s.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function zO(e,t,s,n,i){const r=WV(t,n);let o;if(i){const[l,c]=wi(e[0],e[1]);o=l*c}else{const[l,c]=Ta(e[0],e[1]);o=l*c}const a=$V(s,r);return o*a}function WV(e,t){switch(e){case Xt.PACKED_2X2_FLOAT32:return $x(t);case Xt.PACKED_2X2_FLOAT16:return Wx(t);case Xt.UNPACKED_FLOAT32:return Fx(t);case Xt.UNPACKED_FLOAT16:return Mx(t);case Xt.PACKED_4X1_UNSIGNED_BYTE:return Ux(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function zV(e){return W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Xt.PACKED_2X2_FLOAT32:Xt.UNPACKED_FLOAT32:e?Xt.PACKED_2X2_FLOAT16:Xt.UNPACKED_FLOAT16}function PO(e,t){if(e===is.UPLOAD)return Xt.PACKED_2X2_FLOAT32;if(e===is.RENDER||e==null)return zV(t);if(e===is.DOWNLOAD||e===is.PIXELS)return Xt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function BO(e,t,s){return`${e[0]}_${e[1]}_${t}_${s}`}class VO{constructor(e,t){this.variableNames=["A"];const s=new Array(e.length);for(let r=0;r<s.length;r++)s[r]=e[r]*t[r];this.outputShape=s,this.rank=s.length;const n=Re(this.rank),i=PV(e);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${i}));
}
`}}function PV(e){const t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;const s=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let i=0;i<e.length;i++)n.push(`imod(${s[i]}, ${e[i]})`);return n.join()}class $e{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}}const Qi="if (isnan(x)) return x;",GO="return x;",jx="return abs(x);",Vx=Qi+`
return (x < 0.0) ? 0.0 : x;
`,Gx=Qi+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,qx="return (x >= 0.0) ? x : (exp(x) - 1.0);",qO=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${U.SELU_SCALEALPHA};
float scale = ${U.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`;function HO(e=0){return Qi+`
return x > 0.0 ? 1.0 : float(${e});
`}const Hx="return -x;",Yx="return ceil(x);",Kx="return floor(x);",YO=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,KO="return float(isnan(x));",XO="return float(isinf(x));",JO="return float(!isnan(x) && !isinf(x));",ZO=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Xx="return exp(x);",Jx="return exp(x) - 1.0;",QO=`if (x < 0.0) return NAN;
return log(x);`,e1="return log(1.0 + x);",t1="return sqrt(x);",s1="return inversesqrt(x);",n1="return 1.0 / (1.0 + exp(-1.0 * x));",i1=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,r1=Qi+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,o1=Qi+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,a1=Qi+`
return atan(x);
`,l1=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,c1=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,p1=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,u1=Qi+"return log(x + sqrt(x * x + 1.0));",h1=Qi+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,d1=Qi+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,m1=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${U.ERF_P};
float a1 = ${U.ERF_A1};
float a2 = ${U.ERF_A2};
float a3 = ${U.ERF_A3};
float a4 = ${U.ERF_A4};
float a5 = ${U.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,f1="return 1.0 / x;",g1="return float(!(x >= 1.0));",y1="return float(int(x));",Wu="return x;";const b1="return x;",w1=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,Zx=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Qx=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,eL=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`;class lc{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}}class x1{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;const t=e.length,s=_t("rc",t),n=Re(t),i=BR(t,s),r=s.slice(-2),o=t<=1?"rc":`vec2(${r.join(",")})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 packedInput = getA(${i});
setOutput(getChannel(packedInput, ${o}));
}
`}}const{segment_util:L1}=U,BV=vt.split,jV=vt.tile,VV=vt.topkImpl,GV=vt.whereImpl,qV=1e-7,HV=1e-4,mg={};function YV(e){return e in mg||(mg[e]={}),mg[e]}function fg(e,t=!1){if(e==="linear")return t?b1:GO;if(e==="relu")return t?Zx:Vx;if(e==="elu")return t?eL:qx;if(e==="relu6")return t?Qx:Gx;if(e==="prelu")return t?Cx:Nx;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}const KV=128,XV=600;function JV(){return W().global.screen==null?1024:W().global.screen.height*W().global.screen.width*window.devicePixelRatio*XV/1024/1024}const S1=1e3;class tL extends Eo{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!W().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){const t=on(W().getNumber("WEBGL_VERSION"));this.binaryCache=YV(W().getNumber("WEBGL_VERSION")),this.gpgpu=new zx(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new jO(this.gpgpu),this.numMBBeforeWarning=JV(),this.texData=new Fc(this,Us())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,s){if((W().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||W().getBool("DEBUG"))&&this.checkNumericalProblems(e),s==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");const n={};return this.texData.set(n,{shape:t,dtype:s,values:e,usage:is.UPLOAD,refCount:1}),n}incRef(e){const t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){const t=this.texData.get(e);t.refCount--}}move(e,t,s,n){if(W().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:s,dtype:n,values:t,usage:is.UPLOAD,refCount:1})}disposeIntermediateTensorInfo(e){const t=e.dataId;if(this.texData.has(t)){const s=this.texData.get(t);s.refCount--,s.refCount<1&&this.disposeData(t)}}readSync(e){const t=this.texData.get(e),{values:s,dtype:n,complexTensors:i,slice:r,shape:o,isPacked:a}=t;if(r!=null){let u;a?u=new lc(o,Wu):u=new $e(o,Wu);const h=this.runWebGLProgram(u,[{dataId:e,shape:o,dtype:n}],n),d=this.readSync(h.dataId);return this.disposeIntermediateTensorInfo(h),d}if(s!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return s;const l=this.activeTimers!=null;let c;l&&(c=N.now());let p;if(n==="complex64"){const u=i.real.dataSync(),h=i.imag.dataSync();p=U.mergeRealAndImagArrays(u,h)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=N.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){const d=this.pendingRead.get(e);return new Promise(m=>d.push(m))}const t=this.texData.get(e),{values:s,shape:n,slice:i,dtype:r,complexTensors:o,isPacked:a}=t;if(i!=null){let d;a?d=new lc(n,Wu):d=new $e(n,Wu);const m=this.runWebGLProgram(d,[{dataId:e,shape:n,dtype:r}],r),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(s!=null)return this.convertAndCacheOnCPU(e);if(!W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&W().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(r!=="complex64"&&W().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);const d=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(d.texture,...xo(n))}this.pendingRead.set(e,[]),r!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(r==="complex64"){const d=await Promise.all([o.real.data(),o.imag.data()]),m=d[0],f=d[1];p=U.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{const d=N.sizeFromShape(n);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,d)}c!=null&&this.disposeIntermediateTensorInfo(c);const u=this.convertAndCacheOnCPU(e,p),h=this.pendingRead.get(e);return this.pendingRead.delete(e),h.forEach(d=>d(u)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),u}checkNumericalProblems(e){if(e==null)return;for(let t=0;t<e.length;t++){const s=e[t];if(!oR(s))throw W().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${s} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${s} cannot be represented on this device.`)}}getValuesFromTexture(e){const{shape:t,dtype:s,isPacked:n}=this.texData.get(e),i=N.sizeFromShape(t);if(W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){const u=this.decode(e),h=this.texData.get(u.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(h.texture,...xo(t)).subarray(0,i);return this.disposeIntermediateTensorInfo(u),d}const r=W().getBool("WEBGL_PACK")&&n===!0,o=r?sg(t):t,a=r?new G2(o):new V2(o),l=this.runWebGLProgram(a,[{shape:o,dtype:s,dataId:e}],"float32"),c=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,i);return this.disposeIntermediateTensorInfo(l),p}async time(e){const t=this.activeTimers,s=[];let n=!1;this.programTimersStack==null?(this.programTimersStack=s,n=!0):this.activeTimers.push(s),this.activeTimers=s,e();const i=N.flatten(this.activeTimers.map(a=>a.query)).filter(a=>a!=null),r=N.flatten(this.activeTimers.map(a=>a.name)).filter(a=>a!=null);this.activeTimers=t,n&&(this.programTimersStack=null);const o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){const a=await Promise.all(i);o.kernelMs=N.sum(a),o.getExtraProfileInfo=()=>a.map((l,c)=>({name:r[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:N.now(),endMs:null}}endTimer(e){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=N.now(),e)}async getQueryTime(e){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);const t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;this.releaseGPUData(e);const{complexTensors:t}=this.texData.get(e);t!=null&&(t.real.dispose(),t.imag.dispose()),this.texData.delete(e)}releaseGPUData(e){const{texture:t,dtype:s,texShape:n,usage:i,isPacked:r,slice:o}=this.texData.get(e),a=o&&o.origDataId||e,l=this.dataRefCount.get(a);l>1?this.dataRefCount.set(a,l-1):(this.dataRefCount.delete(a),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,s),this.textureManager.releaseTexture(t,n,i,r)));const c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return W().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Us().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=KV){const s=this.getCPUBackend();return!this.warnedAboutCPUBackend&&s==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),s!=null&&e.every(n=>this.texData.get(n.dataId).texture==null&&N.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}complex(e,t){const s=this.makeOutput(e.shape,"complex64"),n=this.texData.get(s.dataId);return n.complexTensors={real:Us().keep(e.clone()),imag:Us().keep(t.clone())},s}real(e){const t=this.texData.get(e.dataId);return t.complexTensors.real.clone()}imag(e){const t=this.texData.get(e.dataId);return t.complexTensors.imag.clone()}slice(e,t,s){if(this.shouldExecuteOnCPU([e])){const r=MR(this.texData.get(e.dataId).values,t,s,e.shape,e.dtype);return this.makeOutput(s,e.dtype,r)}if(N.sizeFromShape(s)===0)return ze([],s,e.dtype);const{isPacked:n}=this.texData.get(e.dataId),i=Ms.isSliceContinous(e.shape,t,s);if(n||!i){const r=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $O(s):new UO(s),o=r.getCustomSetupFunc(t);return this.compileAndRun(r,[e],null,o)}return this.uploadToGPU(e.dataId),this.shallowSlice(e,t,s)}shallowSlice(e,t,s){const n=this.texData.get(e.dataId),i=this.makeOutput(s,e.dtype),r=this.texData.get(i.dataId);Object.assign(r,n),r.shape=s,r.dtype=e.dtype;let o=Ms.computeFlatOffset(t,e.strides);n.slice&&(o+=n.slice.flatOffset),r.slice={flatOffset:o,origDataId:n.slice&&n.slice.origDataId||e.dataId};const a=this.dataRefCount.get(r.slice.origDataId)||1;return this.dataRefCount.set(r.slice.origDataId,a+1),i}stridedSlice(e,t,s,n){const i=this.tryRunOnCpuOrThrow([e],()=>this.cpuBackend.stridedSlice(e,t,s,n));if(i)return i;const r=Ms.computeOutShape(t,s,n);if(r.some(a=>a===0))return ze([],r);const o=new WO(t,n,r);return this.compileAndRun(o,[e])}reverse(e,t){const s=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new DO(e.shape,t):new kO(e.shape,t);return this.compileAndRun(s,[e])}concat(e,t){if(e[0].dtype==="complex64"){const o=e.map(l=>Zs(l)),a=e.map(l=>yn(l));return Gt(this.concat(o,t),this.concat(a,t))}if(e.length===1)return e[0];if(e.length>W().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){const o=Math.floor(e.length/2),a=this.concat(e.slice(0,o),t),l=this.concat(e.slice(o),t);return this.concat([a,l],t)}if(W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].rank>1){const o=new R2(e.map(a=>a.shape),t);return this.compileAndRun(o,e)}const s=U.computeOutShape(e.map(o=>o.shape),t),n=e.map(o=>o.as2D(-1,N.sizeFromShape(o.shape.slice(t)))),i=new C2(n.map(o=>o.shape)),r=this.compileAndRun(i,n);return r.reshape(s)}neg(e){const t=this.tryRunOnCpuOrThrow([e],()=>this.cpuBackend.neg(e));if(t)return t;if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Hx,e.dtype);const s=new $e(e.shape,Hx);return this.compileAndRun(s,[e])}batchMatMul(e,t,s,n){const i=s?e.shape[2]:e.shape[1],r=n?t.shape[1]:t.shape[2],o=s?e.shape[1]:e.shape[2],[a,,]=e.shape;if((i===1||r===1)&&o>S1){s&&(e=se(e,[0,2,1])),n&&(t=se(t,[0,2,1]));const p=r===1?e:e.as3D(a,o,1),u=r===1?2:1,h=r===1?t.as3D(a,1,o):t;return this.multiply(p,h).sum(u,!0)}const l=Ft(e.dtype,t.dtype),c=new pg(e.shape,[a,i,r],s,n);return this.compileAndRun(c,[e,t],l)}fusedBatchMatMul({a:e,b:t,transposeA:s,transposeB:n,bias:i,activation:r,preluActivationWeights:o}){const a=s?e.shape[2]:e.shape[1],l=n?t.shape[1]:t.shape[2],[c,,]=e.shape,p=Ft(e.dtype,t.dtype),u=i!=null,h=o!=null,d=r?fg(r,!0):null,m=new pg(e.shape,[c,a,l],s,n,u,d,h),f=[e,t];return i&&f.push(i),o&&f.push(o),this.compileAndRun(m,f,p)}multiply(e,t){if(e.dtype==="complex64"){const i=this.texData.get(e.dataId),r=this.texData.get(t.dataId),o=new Tx(vx.REAL,e.shape,t.shape),a=new Tx(vx.IMAG,e.shape,t.shape),l=[this.makeComplexComponentTensorInfo(e,i.complexTensors.real),this.makeComplexComponentTensorInfo(e,i.complexTensors.imag),this.makeComplexComponentTensorInfo(t,r.complexTensors.real),this.makeComplexComponentTensorInfo(t,r.complexTensors.imag)],c=this.compileAndRun(o,l),p=this.compileAndRun(a,l),u=this.complex(c,p);return c.dispose(),p.dispose(),u}const s=Ft(e.dtype,t.dtype);if(this.shouldExecuteOnCPU([e,t])){const i=this.texData.get(e.dataId),r=this.texData.get(t.dataId),[o,a]=DR(e.shape,t.shape,i.values,r.values,s);return this.makeOutput(a,s,o)}if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,Ax,e.dtype);const n=new kt(Ax,e.shape,t.shape);return this.compileAndRun(n,[e,t],e.dtype)}localResponseNormalization4D(e,t,s,n,i){const r=W().getBool("WEBGL_PACK_NORMALIZATION")?new xO(e.shape,t,s,n,i):new bO(e.shape,t,s,n,i);return this.compileAndRun(r,[e])}LRNGrad(e,t,s,n,i,r,o){const a=new wO(t.shape,n,i,r,o);return this.compileAndRun(a,[t,s,e])}tile(e,t){if(e.dtype==="string"){const n=this.readSync(e.dataId),i=n.map(o=>N.decodeString(o)),r=ge(e.shape,e.dtype,i);return jV(r,t)}const s=new VO(e.shape,t);return this.compileAndRun(s,[e])}pad(e,t,s){const n=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new NO(e.shape,t,s):new AO(e.shape,t,s);return this.compileAndRun(n,[e])}gather(e,t,s){const n=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.gather(e,t,s));if(n)return n;const i=new K2(e.shape,t.size,s);return this.compileAndRun(i,[e,t])}batchToSpaceND(e,t,s){N.assert(e.rank<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");const n=t.reduce((c,p)=>c*p),i=U.getReshaped(e.shape,t,n),r=U.getPermuted(i.length,t.length),o=U.getReshapedPermuted(e.shape,t,n),a=U.getSliceBeginCoords(s,t.length),l=U.getSliceSize(o,s,t.length);return se(e.reshape(i),r).reshape(o).slice(a,l)}spaceToBatchND(e,t,s){N.assert(e.rank<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");const n=t.reduce((p,u)=>p*u),i=[[0,0]];i.push(...s);for(let p=1+t.length;p<e.shape.length;++p)i.push([0,0]);const r=e.pad(i),o=U.getReshaped(r.shape,t,n,!1),a=U.getPermuted(o.length,t.length,!1),l=U.getReshapedPermuted(r.shape,t,n,!1),c=se(r.reshape(o),a);return O(c,l)}reduce(e,t,s){const n=e.shape[0],i=e.shape[1],r=U.computeOptimalWindowSize(i),o=Math.ceil(i/r),a={windowSize:r,inSize:i,batchSize:n,outSize:o},l=new hg(a,t),c=this.compileAndRun(l,[e],s);return c.shape[1]===1?c:this.reduce(c,t,s)}argReduce(e,t,s=null){let n=e.shape[0],i=e.shape[1];s!=null&&(n=s.shape[0],i=s.shape[1]);const r=U.computeOptimalWindowSize(i),o={windowSize:r,inSize:i,batchSize:n,outSize:Math.ceil(i/r)},a=new PR(o,t,s==null),l=[e];s!=null&&l.push(s);const c=this.compileAndRun(a,l,"int32");return c.shape[1]===1?c:this.argReduce(e,t,c)}argReducePacked(e,t,s=null){const n=s!=null?s.shape:e.shape,i=n[n.length-1],r=U.computeOptimalWindowSize(i),o=new HR(n,r,t,s==null),a=s==null?[e]:[e,s],l=this.compileAndRun(o,a,"int32");return l.rank===e.rank?this.argReducePacked(e,t,l):l}sum(e,t){U.assertAxesAreInnerMostDims("sum",t,e.rank);const[s,n]=U.computeOutAndReduceShapes(e.shape,t),i=N.sizeFromShape(n),r=e.as2D(-1,i),o=Mp(e.dtype);return this.reduce(r,"sum",o).reshape(s)}prod(e,t){const s=this.tryRunOnCpuOrThrow([e],()=>this.cpuBackend.prod(e,t));if(s)return s;const[n,i]=U.computeOutAndReduceShapes(e.shape,t),r=N.sizeFromShape(i),o=e.as2D(-1,r),a=Mp(e.dtype);return this.reduce(o,"prod",a).reshape(n)}unsortedSegmentSum(e,t,s){let n=0;const i=U.getAxesPermutation([n],e.rank);let r=e;i!=null&&(r=se(e,i),n=U.getInnerMostAxes(1,e.rank)[0]);const o=L1.computeOutShape(r.shape,n,s),a=N.sizeFromShape([r.shape[n]]),l=r.as2D(-1,a),c=Mp(e.dtype);let p=this.segOpCompute(l,"unsortedSegmentSum",t,c,s).reshape(o);return i!=null&&(p=se(p,U.getUndoAxesPermutation(i))),p}segOpCompute(e,t,s,n,i){const r=e.shape[0],o=e.shape[1],a=L1.segOpComputeOptimalWindowSize(o,i),l={windowSize:a,inSize:o,batchSize:r,numSegments:i},c=new FO(l,t),p=this.compileAndRun(c,[e,s],n);return p.shape[1]===i?p:(s=$i(0,i).tile([o/a]),this.segOpCompute(p,t,s,n,i))}argMinMaxReduce(e,t,s){const n=[t];if(U.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),n,e.rank),!W().getBool("WEBGL_PACK_REDUCE")||e.rank<=2){const[i,r]=U.computeOutAndReduceShapes(e.shape,n),o=N.sizeFromShape(r),a=e.as2D(-1,o);return this.argReduce(a,s).reshape(i)}return this.argReducePacked(e,s)}argMin(e,t){return this.argMinMaxReduce(e,t,"min")}argMax(e,t){return this.argMinMaxReduce(e,t,"max")}cumsum(e,t,s,n){if(t!==e.rank-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${e.rank-1} but got axis=${t}`);const i=e.shape[t];let r=e;for(let o=0;o<=Math.ceil(Math.log2(i))-1;o++){const a=new _x(e.shape,!1,n),l=a.getCustomSetupFunc(o),c=r;r=this.compileAndRun(a,[r],r.dtype,l),c.dispose()}if(s){const o=new _x(e.shape,s,n),a=r;r=this.compileAndRun(o,[r]),a.dispose()}return r}equal(e,t){if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,m2,"bool");const s=new kt(QR,e.shape,t.shape);return this.compileAndRun(s,[e,t],"bool")}notEqual(e,t){if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,f2,"bool");const s=new kt(e2,e.shape,t.shape);return this.compileAndRun(s,[e,t],"bool")}less(e,t){const s=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.less(e,t));if(s)return s;if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,g2,"bool");const n=new kt(t2,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}lessEqual(e,t){if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,y2,"bool");const s=new kt(s2,e.shape,t.shape);return this.compileAndRun(s,[e,t],"bool")}greater(e,t){const s=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.greater(e,t));if(s)return s;if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,b2,"bool");const n=new kt(n2,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}greaterEqual(e,t){if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,w2,"bool");const s=new kt(i2,e.shape,t.shape);return this.compileAndRun(s,[e,t],"bool")}logicalNot(e){const t=new $e(e.shape,g1);return this.compileAndRun(t,[e])}logicalAnd(e,t){if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,x2,"bool");const s=new kt(r2,e.shape,t.shape);return this.compileAndRun(s,[e,t],"bool")}logicalOr(e,t){if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,L2,"bool");const s=new kt(o2,e.shape,t.shape);return this.compileAndRun(s,[e,t],"bool")}select(e,t,s){const n=new MO(e.rank,t.shape,t.rank);return this.compileAndRun(n,[e,t,s],Ft(t.dtype,s.dtype))}where(e){U.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");const t=e.dataSync();return GV(e.shape,t)}topk(e,t,s){const n=e.dataSync();return VV(n,e.shape,e.dtype,t,s)}min(e,t){U.assertAxesAreInnerMostDims("min",t,e.rank);const[s,n]=U.computeOutAndReduceShapes(e.shape,t),i=N.sizeFromShape(n),r=e.as2D(-1,i);return this.reduce(r,"min",r.dtype).reshape(s)}minimum(e,t){const s=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.minimum(e,t));if(s)return s;const n=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Li(I2,e.shape,t.shape):new kt(l2,e.shape,t.shape);return this.compileAndRun(n,[e,t])}mod(e,t){const s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Li(v2,e.shape,t.shape):new kt(c2,e.shape,t.shape);return this.compileAndRun(s,[e,t])}maximum(e,t){const s=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.maximum(e,t));if(s)return s;const n=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Li(S2,e.shape,t.shape):new kt(a2,e.shape,t.shape);return this.compileAndRun(n,[e,t])}all(e,t){U.assertAxesAreInnerMostDims("all",t,e.rank);const[s,n]=U.computeOutAndReduceShapes(e.shape,t),i=N.sizeFromShape(n),r=e.as2D(-1,i);return this.reduce(r,"all",r.dtype).reshape(s)}any(e,t){U.assertAxesAreInnerMostDims("any",t,e.rank);const[s,n]=U.computeOutAndReduceShapes(e.shape,t),i=N.sizeFromShape(n),r=e.as2D(-1,i);return this.reduce(r,"any",r.dtype).reshape(s)}floorDiv(e,t){const s=JR,n="int32";if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,u2,n);const i=new kt(s,e.shape,t.shape);return this.compileAndRun(i,[e,t],n)}add(e,t){if(e.dtype==="complex64"&&t.dtype==="complex64")return this.complexSeparableBinaryOp(e,t,og);const s=Ft(e.dtype,t.dtype);if(this.shouldExecuteOnCPU([e,t])){const i=this.texData.get(e.dataId),r=this.texData.get(t.dataId),[o,a]=NR(e.shape,t.shape,i.values,r.values,s);return this.makeOutput(a,s,o)}if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,og,s);const n=new kt(og,e.shape,t.shape);return this.compileAndRun(n,[e,t],s)}packedUnaryOp(e,t,s){const n=new lc(e.shape,t);return this.compileAndRun(n,[e],s)}packedBinaryOp(e,t,s,n,i=!1){const r=new Li(s,e.shape,t.shape,i);return this.compileAndRun(r,[e,t],n)}complexSeparableBinaryOp(e,t,s){const n=this.texData.get(e.dataId),i=this.texData.get(t.dataId),[r,o]=[[n.complexTensors.real,i.complexTensors.real],[n.complexTensors.imag,i.complexTensors.imag]].map(l=>{const[c,p]=l,u=this.makeComplexComponentTensorInfo(e,c),h=this.makeComplexComponentTensorInfo(t,p),d=new kt(s,e.shape,t.shape);return this.compileAndRun(d,[u,h],Ft(c.dtype,p.dtype))}),a=this.complex(r,o);return r.dispose(),o.dispose(),a}makeComplexComponentTensorInfo(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}addN(e){if(e.length===1)return e[0];if(e.length>W().get("WEBGL_MAX_TEXTURES_IN_SHADER")){const r=Math.floor(e.length/2),o=this.addN(e.slice(0,r)),a=this.addN(e.slice(r));return this.addN([o,a])}const t=e.map(r=>r.dtype).reduce((r,o)=>Ft(r,o)),s=e.map(r=>r.shape),n=W().getBool("WEBGL_PACK"),i=n?new zR(e[0].shape,s):new WR(e[0].shape,s);return this.compileAndRun(i,e,t)}subtract(e,t){if(e.dtype==="complex64"&&t.dtype==="complex64")return this.complexSeparableBinaryOp(e,t,ag);const s=Ft(e.dtype,t.dtype);if(this.shouldExecuteOnCPU([e,t])){const i=this.texData.get(e.dataId),r=this.texData.get(t.dataId),[o,a]=UR(e.shape,t.shape,i.values,r.values,s);return this.makeOutput(a,s,o)}if(W().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,ag,e.dtype);const n=new kt(ag,e.shape,t.shape);return this.compileAndRun(n,[e,t],s)}pow(e,t){const s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS"),n=s?new Li(h2,e.shape,t.shape):new kt(ZR,e.shape,t.shape),i=Ft(e.dtype,t.dtype);return this.compileAndRun(n,[e,t],i)}ceil(e){if(this.shouldExecuteOnCPU([e])){const s=CR(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,s)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Yx,e.dtype);const t=new $e(e.shape,Yx);return this.compileAndRun(t,[e])}floor(e){if(this.shouldExecuteOnCPU([e])){const s=ER(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,s)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Kx,e.dtype);const t=new $e(e.shape,Kx);return this.compileAndRun(t,[e])}sign(e){const t=new $e(e.shape,YO);return this.compileAndRun(t,[e])}isNaN(e){const t=new $e(e.shape,KO);return this.compileAndRun(t,[e],"bool")}isInf(e){const t=new $e(e.shape,XO);return this.compileAndRun(t,[e],"bool")}isFinite(e){const t=new $e(e.shape,JO);return this.compileAndRun(t,[e],"bool")}round(e){const t=new $e(e.shape,ZO);return this.compileAndRun(t,[e])}exp(e){if(this.shouldExecuteOnCPU([e])){const s=RR(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,s)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Xx,e.dtype);const t=new $e(e.shape,Xx);return this.compileAndRun(t,[e])}expm1(e){if(this.shouldExecuteOnCPU([e])){const s=OR(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,s)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Jx,e.dtype);const t=new $e(e.shape,Jx);return this.compileAndRun(t,[e])}softmax(e,t){const s=N.parseAxisParam([t],e.shape),n=Lt(e,s),i=U.expandShapeToKeepDim(n.shape,s),r=this.subtract(e,n.reshape(i)),o=this.exp(r),a=this.sum(o,s).reshape(i);return Z(o,a)}log(e){if(this.shouldExecuteOnCPU([e])){const s=_R(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,s)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,w1,e.dtype);const t=new $e(e.shape,QO);return this.compileAndRun(t,[e])}log1p(e){const t=new $e(e.shape,e1);return this.compileAndRun(t,[e])}sqrt(e){const t=new $e(e.shape,t1);return this.compileAndRun(t,[e])}rsqrt(e){if(this.shouldExecuteOnCPU([e])){const s=FR(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,s)}const t=new $e(e.shape,s1);return this.compileAndRun(t,[e])}reciprocal(e){const t=new $e(e.shape,f1);return this.compileAndRun(t,[e])}relu(e){let t;return W().getBool("WEBGL_PACK")?t=new lc(e.shape,Zx):t=new $e(e.shape,Vx),this.compileAndRun(t,[e])}relu6(e){let t;return W().getBool("WEBGL_PACK")?t=new lc(e.shape,Qx):t=new $e(e.shape,Gx),this.compileAndRun(t,[e])}prelu(e,t){const s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Li(Cx,e.shape,t.shape):new kt(Nx,e.shape,t.shape);return this.compileAndRun(s,[e,t])}elu(e){if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,eL,e.dtype);const t=new $e(e.shape,qx);return this.compileAndRun(t,[e])}eluDer(e,t){const s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Li(d2,e.shape,t.shape):new kt(p2,e.shape,t.shape);return this.compileAndRun(s,[e,t])}selu(e){const t=new $e(e.shape,qO);return this.compileAndRun(t,[e])}int(e){const t=new $e(e.shape,y1);return this.compileAndRun(t,[e],"int32")}clip(e,t,s){let n;W().getBool("WEBGL_PACK_CLIP")?n=new A2(e.shape):n=new T2(e.shape);const i=n.getCustomSetupFunc(t,s);return this.compileAndRun(n,[e],null,i)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){const s=AR(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,jx,e.dtype);const t=new $e(e.shape,jx);return this.compileAndRun(t,[e])}complexAbs(e){const t=this.texData.get(e.dataId),s=new N2(e.shape),n=[this.makeComplexComponentTensorInfo(e,t.complexTensors.real),this.makeComplexComponentTensorInfo(e,t.complexTensors.imag)];return this.compileAndRun(s,n)}sigmoid(e){const t=new $e(e.shape,n1);return this.compileAndRun(t,[e])}softplus(e){const t=new $e(e.shape,i1);return this.compileAndRun(t,[e])}asin(e){const t=new $e(e.shape,r1);return this.compileAndRun(t,[e])}acos(e){const t=new $e(e.shape,o1);return this.compileAndRun(t,[e])}atan(e){const t=new $e(e.shape,a1);return this.compileAndRun(t,[e])}sinh(e){const t=new $e(e.shape,l1);return this.compileAndRun(t,[e])}cosh(e){const t=new $e(e.shape,c1);return this.compileAndRun(t,[e])}tanh(e){const t=new $e(e.shape,p1);return this.compileAndRun(t,[e])}asinh(e){const t=new $e(e.shape,u1);return this.compileAndRun(t,[e])}acosh(e){const t=new $e(e.shape,h1);return this.compileAndRun(t,[e])}atanh(e){const t=new $e(e.shape,d1);return this.compileAndRun(t,[e])}erf(e){const t=new $e(e.shape,m1);return this.compileAndRun(t,[e])}step(e,t){const s=new $e(e.shape,HO(t));return this.compileAndRun(s,[e])}conv2dByMatMul(e,t,s,n,i,r){const o=e.shape,a=this.texData.get(e.dataId),l=s.inChannels,c=o[0]*o[1]*o[2],p=s.outChannels,u=s.dataFormat==="channelsLast",h=!1,d=!1,m=(c===1||p===1)&&l>S1,f=o[2]%2!==0&&!!a.isPacked;if(m||!W().getBool("WEBGL_LAZILY_UNPACK")||!W().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!f){const _=u?o[0]*o[1]*o[2]:o[0]*o[2]*o[3],E=O(e,[1,_,s.inChannels]),F=O(t,[1,s.inChannels,s.outChannels]),D=this.fusedBatchMatMul({a:E,b:F,transposeA:h,transposeB:d,bias:n,activation:i,preluActivationWeights:r});return O(D,s.outShape)}const g=u?o[0]*o[1]*(o[2]+1):o[0]*o[2]*(o[3]+1),y={dataId:e.dataId,shape:[1,g,s.inChannels],dtype:e.dtype},w=a.shape;a.shape=a.shape.slice(),a.shape[a.shape.length-2]++,N.assert(sc(a.shape,y.shape),()=>`packed reshape ${a.shape} to ${y.shape} isn't free`);const x=O(t,[1,s.inChannels,s.outChannels]),T=this.fusedBatchMatMul({a:y,b:x,transposeA:h,transposeB:d,bias:n,activation:i,preluActivationWeights:r}),A=this.texData.get(T.dataId);return N.assert(A.isPacked,()=>"batchMatMul result is expected to be packed"),a.shape=w,A.shape=s.outShape,Us().makeTensorFromDataId(T.dataId,s.outShape,T.dtype)}conv2dWithIm2Row(e,t,s,n,i,r){const{filterWidth:o,filterHeight:a,inChannels:l,outWidth:c,outHeight:p,dataFormat:u}=s,h=u==="channelsLast",d=o*a*l,m=p*c,f=[d,m],g=!0,y=!1,w=e.squeeze([0]),x=t.reshape([1,d,-1]),T=new yO(f,w.shape,s),A=this.compileAndRun(T,[w]).reshape([1,f[0],f[1]]),_=n!=null,E=r!=null,F=i?fg(i,!0):null,D=new pg(A.shape,[1,m,s.outChannels],g,y,_,F,E),M=[A,x];n&&M.push(n),E&&M.push(r);const P=this.compileAndRun(D,M);return h?P.reshape([1,p,c,s.outChannels]):P.reshape([1,s.outChannels,p,c])}fusedConv2d({input:e,filter:t,convInfo:s,bias:n,activation:i,preluActivationWeights:r}){if(s.filterHeight===1&&s.filterWidth===1&&s.dilationHeight===1&&s.dilationWidth===1&&s.strideHeight===1&&s.strideWidth===1&&(s.padInfo.type==="SAME"||s.padInfo.type==="VALID"))return this.conv2dByMatMul(e,t,s,n,i,r);if(W().getBool("WEBGL_CONV_IM2COL")&&e.shape[0]===1)return this.conv2dWithIm2Row(e,t,s,n,i,r);const o=n!=null,a=r!=null,l=i?fg(i,!1):null,c=new Rx(s,o,l,a),p=[e,t];return n&&p.push(n),r&&p.push(r),this.compileAndRun(c,p)}conv2d(e,t,s){if(s.filterHeight===1&&s.filterWidth===1&&s.dilationHeight===1&&s.dilationWidth===1&&s.strideHeight===1&&s.strideWidth===1&&(s.padInfo.type==="SAME"||s.padInfo.type==="VALID"))return this.conv2dByMatMul(e,t,s);if(W().getBool("WEBGL_CONV_IM2COL")&&e.shape[0]===1)return this.conv2dWithIm2Row(e,t,s);const n=new Rx(s);return this.compileAndRun(n,[e,t])}conv2dDerInput(e,t,s){const n=new E2(s);return this.compileAndRun(n,[e,t])}conv2dDerFilter(e,t,s){const n=new O2(s);return this.compileAndRun(n,[e,t])}fusedDepthwiseConv2D({input:e,filter:t,convInfo:s,bias:n,activation:i,preluActivationWeights:r}){const o=W().getBool("WEBGL_PACK_DEPTHWISECONV")&&s.strideWidth<=2&&s.outChannels/s.inChannels===1,a=i?fg(i,o):null,l=[e,t],c=n!=null,p=r!=null;c&&l.push(n),p&&l.push(r);let u;return o?(u=new Ex(s,c,a,p),this.compileAndRun(u,l)):(u=new Ox(s,c,a,p),this.compileAndRun(u,l))}depthwiseConv2D(e,t,s){let n;return W().getBool("WEBGL_PACK_DEPTHWISECONV")&&s.strideWidth<=2&&s.outChannels/s.inChannels===1?(n=new Ex(s),this.compileAndRun(n,[e,t])):(n=new Ox(s),this.compileAndRun(n,[e,t]))}depthwiseConv2DDerInput(e,t,s){const n=new F2(s);return this.compileAndRun(n,[e,t])}depthwiseConv2DDerFilter(e,t,s){const n=new D2(s);return this.compileAndRun(n,[e,t])}conv3d(e,t,s){const n=new M2(s);return this.compileAndRun(n,[e,t])}conv3dDerInput(e,t,s){const n=new k2(s);return this.compileAndRun(n,[e,t])}conv3dDerFilter(e,t,s){const n=new _2(s);return this.compileAndRun(n,[e,t])}cast(e,t){return U.castTensor(e,t,this)}unstack(e,t){const s=e.shape[t],n=new Array(e.rank-1);let i=0;for(let l=0;l<e.rank;l++)l!==t&&(n[i++]=e.shape[l]);const r=new Array(e.rank).fill(0),o=e.shape.slice();o[t]=1;const a=new Array(s);for(let l=0;l<a.length;l++)r[t]=l,a[l]=this.slice(e,r,o).reshape(n);return a}avgPool3d(e,t){const s=new ug(t,"avg",!1);return this.compileAndRun(s,[e],"float32")}avgPool3dBackprop(e,t,s){const n=new KR(s);return this.compileAndRun(n,[e],t.dtype)}maxPool3d(e,t){const s=new ug(t,"max",!1);return this.compileAndRun(s,[e],"float32")}maxPool3dBackprop(e,t,s,n){const i=!0,r=new ug(n,"max",i),o=this.compileAndRun(r,[t]),a=new SO(n),l=this.compileAndRun(a,[e,o],t.dtype);return o.dispose(),l}resizeBilinear(e,t,s,n){const i=W().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new OO(e.shape,t,s,n):new RO(e.shape,t,s,n);return this.compileAndRun(i,[e],"float32")}resizeBilinearBackprop(e,t,s){const n=new CO(e,t,s);return this.compileAndRun(n,[e])}resizeNearestNeighbor(e,t,s,n){const i=new _O(e.shape,t,s,n);return this.compileAndRun(i,[e])}resizeNearestNeighborBackprop(e,t,s){const n=new EO(e,t,s);return this.compileAndRun(n,[e])}multinomial(e,t,s,n){const i=t?e:ts(e),r=i.shape[0],o=i.shape[1],a=new IO(r,o,s),l=a.getCustomSetupFunc(n);return this.compileAndRun(a,[i],"int32",l)}oneHot(e,t,s,n){const i=new vO(e.size,t,s,n);return this.compileAndRun(i,[e])}diag(e){const t=new j2(e.size);return this.compileAndRun(t,[e])}cropAndResize(e,t,s,n,i,r){const o=new U2(e.shape,t.shape,n,i,r);return this.compileAndRun(o,[e,t,s],"float32")}depthToSpace(e,t,s){N.assert(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`);const n=e.shape[0],i=s==="NHWC"?e.shape[1]:e.shape[2],r=s==="NHWC"?e.shape[2]:e.shape[3],o=s==="NHWC"?e.shape[3]:e.shape[1],a=i*t,l=r*t,c=o/(t*t),p=s==="NHWC"?[n,a,l,c]:[n,c,a,l],u=new B2(p,t,s);return this.compileAndRun(u,[e])}split(e,t,s){return BV(e,t,s)}scatterND(e,t,s){const{sliceRank:n,numUpdates:i,sliceSize:r,strides:o,outputSize:a}=U.calculateShapes(t,e,s),l=[a/r,r],c=e.reshape([i,n]),p=t.reshape([i,r]);if(a===0)return U.reshapeTensor(ze([]),s);const u=j(0),h=new Px(i,n,c.rank,p.rank,o,l),d=this.compileAndRun(h,[p,c,u]);return d.reshape(s)}sparseToDense(e,t,s,n){const{sliceRank:i,numUpdates:r,strides:o,outputSize:a}=U.calculateShapes(t,e,s),l=!1,c=new Px(r,i,e.rank,t.rank,o,[a,1],l),p=this.compileAndRun(c,[t,e,n]);return p.reshape(s)}fft(e){const t=!1;return this.fftImpl(e,t)}ifft(e){const t=!0;return this.fftImpl(e,t)}fftImpl(e,t){const s=this.texData.get(e.dataId),n=new Dx(kx.REAL,e.shape,t),i=new Dx(kx.IMAG,e.shape,t),r=[this.makeComplexComponentTensorInfo(e,s.complexTensors.real),this.makeComplexComponentTensorInfo(e,s.complexTensors.imag)],o=this.compileAndRun(n,r),a=this.compileAndRun(i,r),l=this.complex(o,a).as2D(e.shape[0],e.shape[1]);return o.dispose(),a.dispose(),l}gatherND(e,t){const s=t.shape,n=s[s.length-1],[i,r,o,a]=U.prepareAndValidate(e,t),l=t.reshape([r,n]),c=e.reshape([e.size/o,o]),p=new X2(n,a,[r,o]),u=this.compileAndRun(p,[c,l]);return u.reshape(i)}fill(e,t,s){if(s=s||N.inferDtype(t),s==="string"){const n=N.getArrayFromDType(s,N.sizeFromShape(e));return n.fill(t),Us().makeTensor(n,e,s,this)}else{const n=new Y2(e,t),i=n.getCustomSetupFunc(t);return this.compileAndRun(n,[],s,i)}}onesLike(e){if(e.dtype==="string")throw new Error("onesLike is not supported under string dtype");return this.fill(e.shape,1,e.dtype)}zerosLike(e){return this.fill(e.shape,e.dtype==="string"?"":0,e.dtype)}linspace(e,t,s){return U.linspaceImpl(e,t,s)}makeTensorInfo(e,t,s){const n=this.write(s,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,s){const{dataId:n}=this.makeTensorInfo(e,t,s);return Us().makeTensorFromDataId(n,e,t,this)}unpackTensor(e){const t=new x1(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){const t=new TO(e.shape),s=!0;return this.runWebGLProgram(t,[e],e.dtype,null,s)}packedReshape(e,t){const s=[Lo(e.shape),...So(e.shape)],n={dtype:e.dtype,shape:s,dataId:e.dataId},i=[Lo(t),...So(t)],r=new dg(i,s),o=!0,a=this.runWebGLProgram(r,[n],e.dtype,null,o);return{dataId:a.dataId,shape:t,dtype:a.dtype}}decode(e){const t=this.texData.get(e),{isPacked:s,shape:n,dtype:i}=t,r=sg(n);let o;s?o=new P2(r):o=new z2(r);const a=!0,l=this.runWebGLProgram(o,[{shape:r,dtype:i,dataId:e}],i,null,a);return{dtype:i,shape:n,dataId:l.dataId}}runWebGLProgram(e,t,s,n,i=!1){const r=this.makeTensorInfo(e.outputShape,s),o=this.texData.get(r.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===wo.DENSE){const m=xo(e.outputShape);o.texShape=m.map(f=>f*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),N.sizeFromShape(r.shape)===0)return o.values=N.getTypedArrayFromDType(r.dtype,0),r;const a=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let f=this.texData.get(m.dataId);if(f.texture==null){if(!e.packedInputs&&N.sizeFromShape(m.shape)<=W().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:f.values};e.packedInputs&&(f.isPacked=!0,f.shape=m.shape)}else if(!!f.isPacked!==!!e.packedInputs)m=f.isPacked?this.unpackTensor(m):this.packTensor(m),a.push(m),f=this.texData.get(m.dataId);else if(f.isPacked&&!sc(f.shape,m.shape)){const g=m,y=m.shape;m.shape=f.shape,m=this.packedReshape(m,y),a.push(m),f=this.texData.get(m.dataId),g.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:f,isUniform:!1}});this.uploadToGPU(r.dataId);const c={shape:r.shape,texData:o,isUniform:!1},p=gO(e,l,c),u=this.getAndSaveBinary(p,()=>dO(this.gpgpu,e,l,c)),h=this.activeTimers!=null;let d;if(h&&(d=this.startTimer()),fO(this.gpgpu,u,l,c,n),a.forEach(m=>this.disposeIntermediateTensorInfo(m)),h&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)})),!W().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&i===!1){const m=this.unpackTensor(r);return this.disposeIntermediateTensorInfo(r),m}return r}compileAndRun(e,t,s,n,i=!1){s=s||t[0].dtype;const r=this.runWebGLProgram(e,t,s,n,i);return Us().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){if(this.disposed)return;if(!W().getBool("IS_TEST")){const e=Object.keys(this.binaryCache);e.forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]})}this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=C(()=>{if(!W().get("WEBGL_RENDER_FLOAT32_ENABLED")){const e=W().getBool("DEBUG");W().set("DEBUG",!1);const t=this.abs(j(1e-8)).dataSync()[0];if(W().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?qV:HV}uploadToGPU(e){const t=this.texData.get(e),{shape:s,dtype:n,values:i,texture:r,usage:o,isPacked:a}=t;if(r!=null)return;const l=this.activeTimers!=null;let c;l&&(c=N.now());let p=t.texShape;if(p==null&&(p=wR(s,a),t.texShape=p),i!=null){const u=sg(s);let h,d=p[1],m=p[0];const f=i instanceof Uint8Array;a?([d,m]=wi(p[0],p[1]),h=new H2(u,[m,d],f)):h=new q2(u,[m,d],f);const g=this.makeTensorInfo([m,d],n);f?this.texData.get(g.dataId).usage=is.PIXELS:this.texData.get(g.dataId).usage=is.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),d,m,i);const y=!0,w=this.runWebGLProgram(h,[g],n,null,y),x=this.texData.get(w.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(w.dataId),t.values=null,l&&(this.uploadWaitMs+=N.now()-c)}else{const u=this.acquireTexture(p,o,n,a);t.texture=u}}convertAndCacheOnCPU(e,t){const s=this.texData.get(e),{dtype:n}=s;return this.releaseGPUData(e),t!=null&&(s.values=ZV(t,n)),s.values}acquireTexture(e,t,s,n){if(this.numBytesInGPU+=this.computeBytes(e,s),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){const i=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${i} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*N.bytesPerElement(t)}tryRunOnCpuOrThrow(e,t){if(this.shouldExecuteOnCPU(e))try{return t()}catch(s){if(W().getBool("IS_TEST"))throw new Error("CPU forwarding failed")}return null}}function ZV(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){const s=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let n=0;n<s.length;++n)s[n]=Math.round(e[n]);return s}else throw new Error(`Unknown dtype ${t}`)}const sL="2.6.0";function I1(){W().set("WEBGL_FORCE_F16_TEXTURES",!0)}rl.isBrowser()&&Vp("webgl",()=>new tL,2);const f5e={forceHalfFloat:I1};const gg="if (isnan(x)) return x;",v1=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,T1=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Io(e){return({inputs:t,backend:s})=>{const{x:n}=t,i=s,r=new $e(n.shape,e);return i.runWebGLProgram(r,[n],n.dtype)}}function cc(e,t,s,n){return({inputs:i,backend:r})=>{const{a:o,b:a}=i,l=r,c=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Li(t,o.shape,a.shape,!!s):new kt(e,o.shape,a.shape),p=n||o.dtype,u=l.runWebGLProgram(c,[o,a],p);return u}}const QV=v1+`
return atan(a, b);
`,eG=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+T1+`
return result;
`,tG=cc(QV,eG),A1={kernelName:ko,backendName:"webgl",kernelFunc:tG};function zu(e){const{inputs:t,backend:s}=e,{x:n}=t;return s.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}const N1={kernelName:Ci,backendName:"webgl",kernelFunc:zu};function sG(e){const{inputs:t,backend:s,attrs:n}=e,{x:i}=t;xi(i,"avgPool");const{filterSize:r,strides:o,pad:a,dimRoundingMode:l}=n,c=1;N.assert(U.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);const p=U.computePool2DInfo(i.shape,r,o,c,a,l);if(p.filterWidth===1&&p.filterHeight===1&&N.arraysEqual(p.inShape,p.outShape))return zu({inputs:{x:i},backend:s});const u=new Zi(p,"avg",!1);return s.runWebGLProgram(u,[i],"float32")}const C1={kernelName:Ti,backendName:"webgl",kernelFunc:sG};function nG(e){const{inputs:t,backend:s,attrs:n}=e,{dy:i,input:r}=t,o=r;xi([i,r],"avgPoolBackprop");const{filterSize:a,strides:l,pad:c}=n,p=U.computePool2DInfo(o.shape,a,l,1,c),u=new YR(p);return s.runWebGLProgram(u,[i],o.dtype)}const R1={kernelName:Do,backendName:"webgl",kernelFunc:nG};class O1{constructor(e,t,s,n,i,r){this.outputShape=[],this.variableNames=["x","mean","variance"],U.assertAndGetBroadcastShape(e,t),U.assertAndGetBroadcastShape(e,s);let o="0.0";n!=null&&(U.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let a="1.0";i!=null&&(U.assertAndGetBroadcastShape(e,i),this.variableNames.push("scale"),a="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${o};
float scale = ${a};
float inv = scale * inversesqrt(variance + float(${r}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}}class E1{constructor(e,t,s,n,i,r){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],U.assertAndGetBroadcastShape(e,t),U.assertAndGetBroadcastShape(e,s);let o="vec4(0.0)";n!=null&&(U.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let a="vec4(1.0)";i!=null&&(U.assertAndGetBroadcastShape(e,i),this.variableNames.push("scale"),a="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${o};
vec4 scale = ${a};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${r}));
setOutput((x - mean) * inv + offset);
}
`}}const iG=({inputs:e,backend:t,attrs:s})=>{const{x:n,mean:i,variance:r,offset:o,scale:a}=e;N.assert(i.shape.length===r.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),N.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),N.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=s;l==null&&(l=.001);const c=[n,i,r];let p=null;o!=null&&(p=o.shape,c.push(o));let u=null;a!=null&&(u=a.shape,c.push(a));const h=W().getBool("WEBGL_PACK_NORMALIZATION")?new E1(n.shape,i.shape,r.shape,p,u,l):new O1(n.shape,i.shape,r.shape,p,u,l),d=t.runWebGLProgram(h,c,c[0].dtype);return d},_1={kernelName:Ni,backendName:"webgl",kernelFunc:iG};const rG=gg+`
return cos(x);
`,oG=Io(rG),k1={kernelName:Qn,backendName:"webgl",kernelFunc:oG};const aG=`
if (a == b) {
return 1.0;
};
return a / b;`,lG=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,cG=cc(aG,lG,!0),D1={kernelName:ei,backendName:"webgl",kernelFunc:cG};class F1{constructor(e){this.variableNames=["Image"],this.outputShape=[];const t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}}const M1={kernelName:Uo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{const{image:s}=e,n=t,i=new F1(s.shape),r=n.runWebGLProgram(i,[s],s.dtype);return r}};class U1{constructor(e){this.variableNames=["A"];const t=ct(),[s,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${s}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}}class $1{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;const t=ct(),[s,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}.0, ${s}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}}const W1={kernelName:Xa,backendName:"webgl",kernelFunc:pG};let pc;function pG(e){const{inputs:t,backend:s,attrs:n}=e;let{pixels:i}=t;const{numChannels:r}=n,o=typeof HTMLVideoElement!="undefined"&&i instanceof HTMLVideoElement,a=typeof HTMLImageElement!="undefined"&&i instanceof HTMLImageElement,[l,c]=o?[i.videoWidth,i.videoHeight]:[i.width,i.height],p=[c,l],u=[c,l,r];(a||o)&&(pc==null&&(pc=document.createElement("canvas").getContext("2d")),pc.canvas.width=l,pc.canvas.height=c,pc.drawImage(i,0,0,l,c),i=pc.canvas);const h=s.makeTensorInfo(p,"int32");s.texData.get(h.dataId).usage=is.PIXELS,s.gpgpu.uploadPixelDataToTexture(s.getTexture(h.dataId),i);const d=W().getBool("WEBGL_PACK")?new $1(u):new U1(u),m=s.runWebGLProgram(d,[h],"int32");return s.disposeData(h.dataId),m}function uG(e){const t=[];for(;t.length===0||t[t.length-1].outSize!==1;){const s=t.length?t[t.length-1].outSize:e[1],n=U.computeOptimalWindowSize(s);t.push({inSize:s,windowSize:n,outSize:Math.ceil(s/n)})}return t}function z1(e,t,s,n){const i=uG(e.shape);let r=e;for(let o=0;o<i.length;o++){const{inSize:a,windowSize:l,outSize:c}=i[o],p=new hg({windowSize:l,inSize:a,batchSize:e.shape[0],outSize:c},s),u=r;r=n.runWebGLProgram(p,[r],t),u.dataId!==e.dataId&&n.disposeData(u.dataId)}return r}function P1(e,t,s){const n=[Lo(e.shape),...So(e.shape)],i={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Lo(t),...So(t)],o=new dg(r,n),a=!0,l=s.runWebGLProgram(o,[i],e.dtype,null,a);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function yg(e){const{inputs:t,backend:s,attrs:n}=e,{x:i}=t,{shape:r}=n,o=s,a=N.sizeFromShape(i.shape),l=N.inferFromImplicitShape(r,a),c=N.sizeFromShape(l);N.assert(a===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${i.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`);const p=o.texData.get(i.dataId);return p.isPacked&&!sc(i.shape,l)&&!(p.texture!==null&&sc(p.shape,l))?P1(i,l,o):(o.incRef(i.dataId),{dataId:i.dataId,shape:l,dtype:i.dtype})}const B1={kernelName:Ei,backendName:"webgl",kernelFunc:yg};function j1(e,t,s,n){const i=N.sizeFromShape(t),r=N.sizeFromShape(e.shape),o=r/i,a=yg({inputs:{x:e},attrs:{shape:[o,i]},backend:n}),l=z1(a,e.dtype,"max",n),c=yg({inputs:{x:l},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(l),c}class V1{constructor(e,t){this.variableNames=["A"];const s=new Array(e.length);for(let r=0;r<s.length;r++)s[r]=e[t[r]];this.outputShape=s,this.rank=s.length;const n=Re(this.rank),i=hG(t);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${i}));
}
`}}function hG(e){const t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);const s=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let i=0;i<e.length;i++)n[e[i]]=s[i];return n.join()}class G1{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;const s=new Array(e.length);for(let c=0;c<s.length;c++)s[c]=e[t[c]];if(this.outputShape=s,this.rank=s.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);const n=Re(this.rank),i=Ix("rc",this.rank),r=new Array(this.rank);for(let c=0;c<t.length;c++)r[t[c]]=i[c];const o=`vec2(${r.slice(-2).join()})`,a=`++${i[this.rank-1]} < ${s[this.rank-1]}`,l=`getChannel(getA(${r.join()}), ${o})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${a}) {
result[1] = ${l};
}
--${i[this.rank-1]};
if(++${i[this.rank-2]} < ${s[this.rank-2]}) {
result[2] = ${l};
if(${a}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}}function bg(e,t,s){const n=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new G1(e.shape,t):new V1(e.shape,t);return s.runWebGLProgram(n,[e],e.dtype)}const q1={kernelName:Ri,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:s})=>{const{x:n}=e,{reductionIndices:i,keepDims:r}=t,o=s,a=n.shape.length,l=N.parseAxisParam(i,n.shape);let c=l;const p=U.getAxesPermutation(c,a),u=p!=null,h=o.shouldExecuteOnCPU([n]);let d=n;if(u){if(h){const w=o.texData.get(d.dataId),x=w.values,T=new Array(a);for(let E=0;E<T.length;E++)T[E]=n.shape[p[E]];const A=ig(x,n.shape,n.dtype,p,T);d=o.makeTensorInfo(T,n.dtype);const _=o.texData.get(d.dataId);_.values=A}else d=bg(n,p,o);c=U.getInnerMostAxes(c.length,a)}U.assertAxesAreInnerMostDims("max",c,a);const[m,f]=U.computeOutAndReduceShapes(d.shape,c);let g=m;r&&(g=U.expandShapeToKeepDim(m,l));let y;if(h){const w=o.texData.get(d.dataId),x=w.values,T=kR(x,N.sizeFromShape(f),g,n.dtype);y=o.makeTensorInfo(g,n.dtype);const A=o.texData.get(y.dataId);A.values=T}else y=j1(d,f,g,o);return u&&o.disposeIntermediateTensorInfo(d),y}};function dG(e){const{inputs:t,backend:s,attrs:n}=e,{x:i}=t;xi(i,"maxPool");const{filterSize:r,strides:o,pad:a,dimRoundingMode:l}=n,c=1;N.assert(U.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);const p=U.computePool2DInfo(i.shape,r,o,c,a,l);if(p.filterWidth===1&&p.filterHeight===1&&N.arraysEqual(p.inShape,p.outShape))return zu({inputs:{x:i},backend:s});const u=new Zi(p,"max",!1);return s.runWebGLProgram(u,[i],i.dtype)}const H1={kernelName:Oi,backendName:"webgl",kernelFunc:dG};function mG(e){const{inputs:t,backend:s,attrs:n}=e,{dy:i,input:r,output:o}=t,a=r;xi([r,o],"maxPoolBackprop");const{filterSize:l,strides:c,pad:p,dimRoundingMode:u}=n,h=U.computePool2DInfo(a.shape,l,c,1,p,u),d=!0,m=new Zi(h,"max",d),f=s.runWebGLProgram(m,[a],a.dtype),g=new LO(h),y=s.runWebGLProgram(g,[i,f],a.dtype);return s.disposeIntermediateTensorInfo(f),y}const Y1={kernelName:$o,backendName:"webgl",kernelFunc:mG};function K1(e,t,s,n){let i=new Zi(s,"max",!1);const r=n.runWebGLProgram(i,[e],"float32");i=new Zi(s,"max",!0,!0,t);const o=n.runWebGLProgram(i,[e],"float32");return[r,o]}const X1={kernelName:Wo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:s})=>{const{x:n}=e,{filterSize:i,strides:r,pad:o,includeBatchInIndex:a}=t,l=s;N.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);const c=[1,1];N.assert(U.eitherStridesOrDilationsAreOne(r,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${c}'`);const p=U.computePool2DInfo(n.shape,i,r,c,o),[u,h]=K1(n,a,p,l);return[u,h]}};const J1={kernelName:cp,backendName:"webgl",kernelFunc:({inputs:e,backend:t,attrs:s})=>{U.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes:n,scores:i}=e,{maxOutputSize:r,iouThreshold:o,scoreThreshold:a}=s,l=t,c=l.readSync(n.dataId),p=l.readSync(i.dataId),u=r,h=o,d=a;return vt.nonMaxSuppressionV3Impl(c,p,u,h,d)}};const fG=vt.nonMaxSuppressionV4Impl,Z1={kernelName:zo,backendName:"webgl",kernelFunc:({inputs:e,backend:t,attrs:s})=>{U.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes:n,scores:i}=e,{maxOutputSize:r,iouThreshold:o,scoreThreshold:a,padToMaxOutputSize:l}=s,c=t,p=c.readSync(n.dataId),u=c.readSync(i.dataId),{selectedIndices:h,validOutputs:d}=fG(p,u,r,o,a,l);return[h,d]}};const gG=vt.nonMaxSuppressionV5Impl,Q1={kernelName:Po,backendName:"webgl",kernelFunc:({inputs:e,backend:t,attrs:s})=>{U.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes:n,scores:i}=e,{maxOutputSize:r,iouThreshold:o,scoreThreshold:a,softNmsSigma:l}=s,c=t,p=c.readSync(n.dataId),u=c.readSync(i.dataId),h=r,d=o,m=a,f=l,{selectedIndices:g,selectedScores:y}=gG(p,u,h,d,m,f);return[g,y]}};class eE{constructor(e,t,s,n){this.variableNames=["Image"],this.outputShape=[];const i=e[1],r=e[2],o=Math.sin(t).toFixed(3),a=Math.cos(t).toFixed(3);this.outputShape=e;const[l,c]=U.getImageCenter(n,i,r),p=l.toFixed(3),u=c.toFixed(3);let h="";typeof s=="number"?h=`float outputValue = ${s.toFixed(2)};`:h=`
vec3 fill = vec3(${s.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - ${p}) * ${a} - (float(y) - ${u}) * ${o};
float coordYFloat = (float(x) - ${p}) * ${o} + (float(y) - ${u}) * ${a};
int coordX = int(round(coordXFloat + ${p}));
int coordY = int(round(coordYFloat + ${u}));
${h}
if(coordX >= 0 && coordX < ${r} && coordY >= 0 && coordY < ${i}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}}const tE={kernelName:Ho,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:s})=>{const{image:n}=e,{radians:i,fillValue:r,center:o}=t,a=s,l=new eE(n.shape,i,r,o),c=a.runWebGLProgram(l,[n],n.dtype);return c}};const yG=gg+`
return sin(x);
`,bG=Io(yG),sE={kernelName:ti,backendName:"webgl",kernelFunc:bG};const wG="return x * x;",xG=Io(wG),nE={kernelName:Go,backendName:"webgl",kernelFunc:xG};const iE="return (a - b) * (a - b);",LG=cc(iE,iE),rE={kernelName:si,backendName:"webgl",kernelFunc:LG};const SG="return tan(x);",IG=Io(SG),oE={kernelName:ni,backendName:"webgl",kernelFunc:IG};const aE={kernelName:_i,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:s})=>{const{x:n}=e,{perm:i}=t,r=s,o=n.shape.length,a=new Array(o);for(let c=0;c<a.length;c++)a[c]=n.shape[i[c]];let l;if(r.shouldExecuteOnCPU([n])){const c=r.texData.get(n.dataId),p=c.values,u=ig(p,n.shape,n.dtype,i,a);l=r.makeTensorInfo(a,n.dtype);const h=r.texData.get(l.dataId);h.values=u}else l=bg(n,i,r);return l}};function vG(e){const{inputs:t,attrs:s,backend:n}=e,{axis:i}=s,{x:r}=t;xi(r,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");const o=n.readSync(r.dataId),{outputValues:a,outputShape:l,indices:c}=$R(o,i,r.shape,r.dtype);return[n.makeTensorInfo(l,r.dtype,a),n.makeTensorInfo([c.length],"int32",c)]}const lE={kernelName:qo,backendName:"webgl",kernelFunc:vG};const TG=[A1,C1,R1,_1,k1,D1,M1,W1,N1,q1,H1,Y1,X1,J1,Z1,Q1,B1,tE,sE,nE,rE,oE,aE,lE];for(const e of TG)Za(e);const cE="2.6.0";const Ju={};Ee(Ju,{Abs:()=>_o,Acos:()=>dr,Acosh:()=>mr,AdadeltaOptimizer:()=>ca,AdagradOptimizer:()=>pa,AdamOptimizer:()=>ua,AdamaxOptimizer:()=>ha,Add:()=>Zn,AddN:()=>Mc,All:()=>ty,Any:()=>sy,ArgMax:()=>Uc,ArgMin:()=>$c,Asin:()=>fr,Asinh:()=>gr,Atan:()=>yr,Atan2:()=>ko,Atanh:()=>br,AvgPool:()=>Ti,AvgPool3D:()=>Wc,AvgPool3DBackprop:()=>ny,AvgPoolBackprop:()=>Do,BatchMatMul:()=>zc,BatchToSpaceND:()=>Pc,BroadcastTo:()=>Bc,Callback:()=>fw,CallbackList:()=>Hb,Cast:()=>Ai,Ceil:()=>wr,ClipByValue:()=>xr,Complex:()=>jc,Concat:()=>Fo,Conv2D:()=>Vc,Conv2DBackpropFilter:()=>iy,Conv2DBackpropInput:()=>Gc,Conv3D:()=>qc,Conv3DBackpropFilterV2:()=>ry,Conv3DBackpropInputV2:()=>oy,Cos:()=>Qn,Cosh:()=>Lr,CropAndResize:()=>ay,Cumsum:()=>Hc,CustomCallback:()=>Kb,DataStorage:()=>Fc,DepthToSpace:()=>ly,DepthwiseConv2dNative:()=>Yc,DepthwiseConv2dNativeBackpropFilter:()=>cy,DepthwiseConv2dNativeBackpropInput:()=>py,Diag:()=>uy,Dilation2D:()=>Mo,Dilation2DBackpropFilter:()=>Ha,Dilation2DBackpropInput:()=>qa,Div:()=>ei,ENV:()=>Jg,EarlyStopping:()=>gw,Elu:()=>Sr,EluGrad:()=>hy,Environment:()=>Xg,Equal:()=>dy,Erf:()=>Ir,Exp:()=>vr,Expm1:()=>Tr,FFT:()=>Kc,Fill:()=>my,FlipLeftRight:()=>Uo,Floor:()=>Ar,FloorDiv:()=>Xc,FromPixels:()=>Xa,FusedBatchNorm:()=>Ni,FusedConv2D:()=>Ah,FusedDepthwiseConv2D:()=>Nh,GatherNd:()=>fy,GatherV2:()=>Jc,GraphModel:()=>Pw,Greater:()=>gy,GreaterEqual:()=>Zc,History:()=>Yb,IFFT:()=>Qc,Identity:()=>Ci,Imag:()=>ep,InputSpec:()=>st,IsFinite:()=>Nr,IsInf:()=>Cr,IsNan:()=>Rr,KernelBackend:()=>Eo,LRN:()=>sp,LRNBackprop:()=>Sy,LayerVariable:()=>nm,LayersModel:()=>nn,Less:()=>yy,LessEqual:()=>by,LinSpace:()=>wy,Log:()=>Or,Log1p:()=>Er,LogSoftmax:()=>tp,LogicalAnd:()=>xy,LogicalNot:()=>Ya,LogicalOr:()=>Ly,Max:()=>Ri,MaxPool:()=>Oi,MaxPool3D:()=>ip,MaxPool3DBackprop:()=>Iy,MaxPoolBackprop:()=>$o,MaxPoolWithArgmax:()=>Wo,Maximum:()=>np,Mean:()=>y_,Min:()=>rp,Minimum:()=>op,Mod:()=>ap,MomentumOptimizer:()=>da,Multiply:()=>_r,Negate:()=>lp,NonMaxSuppressionV3:()=>cp,NonMaxSuppressionV4:()=>zo,NonMaxSuppressionV5:()=>Po,NotEqual:()=>Ka,OP_SCOPE_SUFFIX:()=>Xy,OneHot:()=>up,OnesLike:()=>pp,Optimizer:()=>gs,PadV2:()=>Bo,Pool:()=>b_,Pow:()=>hp,Prelu:()=>dp,Prod:()=>vy,RMSPropOptimizer:()=>ma,RNN:()=>rn,Range:()=>Ty,Rank:()=>By,Real:()=>mp,Reciprocal:()=>kr,Reduction:()=>gt,Relu:()=>fp,Relu6:()=>bp,Reshape:()=>Ei,ResizeBilinear:()=>yp,ResizeBilinearGrad:()=>Ny,ResizeNearestNeighbor:()=>gp,ResizeNearestNeighborGrad:()=>Ay,Reverse:()=>wp,RotateWithOffset:()=>Ho,Round:()=>Dr,Rsqrt:()=>Fr,SGDOptimizer:()=>zi,ScatterNd:()=>Cy,SelectV2:()=>xp,Selu:()=>Mr,Sequential:()=>mo,Sigmoid:()=>Wr,Sign:()=>$r,Sin:()=>ti,Sinh:()=>Ur,Slice:()=>jo,Softmax:()=>Ip,Softplus:()=>zr,SpaceToBatchND:()=>Vo,SparseToDense:()=>Ry,SplitV:()=>Sp,Sqrt:()=>Pr,Square:()=>Go,SquaredDifference:()=>si,Step:()=>Vr,StridedSlice:()=>Oy,Sub:()=>Br,Sum:()=>Lp,SymbolicTensor:()=>xs,Tan:()=>ni,Tanh:()=>jr,Tensor:()=>me,TensorBuffer:()=>dn,Tile:()=>vp,TopK:()=>Ey,Transpose:()=>_i,Unique:()=>qo,Unpack:()=>Tp,UnsortedSegmentSum:()=>Ap,Variable:()=>ci,ZerosLike:()=>Np,_FusedMatMul:()=>Th,abs:()=>et,acos:()=>Uh,acosh:()=>$h,add:()=>$,addN:()=>Wh,addStrict:()=>DU,all:()=>hl,any:()=>Zo,argMax:()=>Qo,argMin:()=>zh,asin:()=>Ph,asinh:()=>Bh,atan:()=>jh,atan2:()=>Vh,atanh:()=>Gh,avgPool:()=>ds,avgPool3d:()=>ml,backend:()=>mb,backend_util:()=>U,basicLSTMCell:()=>dI,batchNorm:()=>Xs,batchNorm2d:()=>Yh,batchNorm3d:()=>Kh,batchNorm4d:()=>Xh,batchToSpaceND:()=>Yr,booleanMaskAsync:()=>hU,broadcastTo:()=>ta,browser:()=>Gr,buffer:()=>ge,callbacks:()=>WN,cast:()=>G,ceil:()=>Jh,clipByValue:()=>xt,clone:()=>Fs,complex:()=>Gt,concat:()=>be,concat1d:()=>Zh,concat2d:()=>Qh,concat3d:()=>ed,concat4d:()=>td,constraints:()=>zb,conv1d:()=>fl,conv2d:()=>rt,conv2dTranspose:()=>yl,conv3d:()=>bl,conv3dTranspose:()=>fI,copyRegisteredKernels:()=>L_,cos:()=>Kr,cosh:()=>wl,cosineWindow:()=>Jp,cumsum:()=>xl,customGrad:()=>fs,data:()=>Yw,deprecationWarn:()=>It,depthToSpace:()=>nd,depthwiseConv2d:()=>fn,deregisterOp:()=>BN,device_util:()=>rl,diag:()=>gI,dilation2d:()=>id,disableDeprecationWarnings:()=>Vk,dispose:()=>ce,disposeVariables:()=>Gk,div:()=>Z,divNoNan:()=>rd,divStrict:()=>FU,dot:()=>yI,dropout:()=>Tb,elu:()=>gn,enableDebugMode:()=>jk,enableProdMode:()=>Bk,enclosingPowerOfTwo:()=>Ab,engine:()=>Us,env:()=>W,equal:()=>as,equalStrict:()=>wU,erf:()=>od,exp:()=>ut,expandDims:()=>Mt,expm1:()=>ad,eye:()=>sa,fft:()=>so,fill:()=>Wt,findBackend:()=>Jk,findBackendFactory:()=>Zk,floor:()=>ui,floorDiv:()=>ul,fused:()=>xn,gather:()=>hi,gatherND:()=>vb,gather_util:()=>JS,getBackend:()=>Kk,getGradient:()=>Ch,getKernel:()=>Rp,getKernelsForBackend:()=>Op,grad:()=>kF,grads:()=>DF,greater:()=>Ut,greaterEqual:()=>ms,greaterEqualStrict:()=>xU,greaterStrict:()=>LU,ifft:()=>Wi,imag:()=>yn,image:()=>en,inTopKAsync:()=>JU,initializers:()=>Gb,input:()=>wm,io:()=>Rt,irfft:()=>kl,isFinite:()=>wI,isInf:()=>xI,isNaN:()=>LI,keep:()=>pt,kernel_impls:()=>vt,layers:()=>lw,leakyRelu:()=>Ll,less:()=>Xr,lessEqual:()=>Ws,lessEqualStrict:()=>SU,lessStrict:()=>IU,linalg:()=>Cb,linspace:()=>cd,loadGraphModel:()=>yC,loadLayersModel:()=>rN,localResponseNormalization:()=>pd,log:()=>zt,log1p:()=>Sl,logSigmoid:()=>SI,logSoftmax:()=>Il,logSumExp:()=>dd,logicalAnd:()=>Yt,logicalNot:()=>Jr,logicalOr:()=>vl,logicalXor:()=>II,losses:()=>j$,matMul:()=>Te,math:()=>XS,max:()=>Lt,maxPool:()=>ft,maxPool3d:()=>Tl,maxPoolWithArgmax:()=>md,maximum:()=>Ht,maximumStrict:()=>MU,mean:()=>Xe,memory:()=>pl,metrics:()=>hw,min:()=>Ui,minimum:()=>bn,minimumStrict:()=>UU,mod:()=>Al,modStrict:()=>$U,model:()=>nN,models:()=>dw,moments:()=>na,movingAverage:()=>GU,mul:()=>R,mulStrict:()=>WU,multiRNNCell:()=>vI,multinomial:()=>fd,neg:()=>ke,nextFrame:()=>Zp,norm:()=>Kp,notEqual:()=>Js,notEqualStrict:()=>vU,oneHot:()=>pi,ones:()=>Kt,onesLike:()=>Ot,op:()=>S,outerProduct:()=>TI,pad:()=>Pt,pad1d:()=>AI,pad2d:()=>NI,pad3d:()=>CI,pad4d:()=>RI,pool:()=>OI,pow:()=>es,powStrict:()=>zU,prelu:()=>Qr,print:()=>Fh,prod:()=>Nl,profile:()=>qk,rand:()=>EI,randomGamma:()=>DI,randomNormal:()=>qp,randomUniform:()=>wn,range:()=>$i,ready:()=>Yk,real:()=>Zs,reciprocal:()=>yd,registerBackend:()=>Vp,registerCallbackConstructor:()=>oN,registerGradient:()=>ky,registerKernel:()=>Za,registerOp:()=>PN,regularizers:()=>mw,relu:()=>Fe,relu6:()=>bd,removeBackend:()=>Xk,reshape:()=>O,reverse:()=>Et,reverse1d:()=>FI,reverse2d:()=>MI,reverse3d:()=>UI,reverse4d:()=>$I,rfft:()=>no,round:()=>wd,rsqrt:()=>Cl,scalar:()=>j,scatterND:()=>Ib,scatter_util:()=>QS,selu:()=>Rl,separableConv2d:()=>eo,sequential:()=>iN,serialization:()=>V,setBackend:()=>uI,setPlatform:()=>Qk,setdiff1dAsync:()=>xd,sigmoid:()=>os,sign:()=>Ld,signal:()=>B$,sin:()=>Ol,sinh:()=>El,slice:()=>he,slice1d:()=>_l,slice2d:()=>Hp,slice3d:()=>to,slice4d:()=>ia,slice_util:()=>Ms,softmax:()=>ts,softplus:()=>di,spaceToBatchND:()=>Zr,sparseToDense:()=>Xp,spectral:()=>P$,split:()=>Bt,sqrt:()=>Je,square:()=>xe,squaredDifference:()=>io,squaredDifferenceStrict:()=>PU,squeeze:()=>Qs,stack:()=>Ge,step:()=>mi,stridedSlice:()=>Sd,sub:()=>X,subStrict:()=>BU,sum:()=>te,sumOutType:()=>Mp,tan:()=>Id,tanh:()=>Mi,tensor:()=>ze,tensor1d:()=>Oe,tensor2d:()=>ls,tensor3d:()=>ll,tensor4d:()=>ss,tensor5d:()=>WI,tensor6d:()=>zI,tensor_util:()=>mn,test_util:()=>cI,tidy:()=>C,tile:()=>$s,time:()=>Hk,topk:()=>vd,train:()=>ao,transpose:()=>se,truncatedNormal:()=>ro,unique:()=>Yp,unregisterGradient:()=>x_,unregisterKernel:()=>w_,unsortedSegmentSum:()=>Td,unstack:()=>qe,upcastType:()=>Ft,util:()=>N,valueAndGrad:()=>FF,valueAndGrads:()=>MF,variable:()=>Ad,variableGrads:()=>hd,version:()=>AG,version_converter:()=>kf,version_core:()=>db,version_layers:()=>uo,where:()=>mt,whereAsync:()=>Dl,zeros:()=>ye,zerosLike:()=>re});const AG={"tfjs-core":db,"tfjs-backend-cpu":hx,"tfjs-backend-webgl":sL,"tfjs-data":Hf,"tfjs-layers":uo,"tfjs-converter":kf,tfjs:cE};function er(e,t,s=!1){if(e.beginPath(),t.slice(1).forEach(({x:n,y:i},r)=>{const o=t[r];e.moveTo(o.x,o.y),e.lineTo(n,i)}),s){const n=t[t.length-1],i=t[0];if(!n||!i)return;e.moveTo(n.x,n.y),e.lineTo(i.x,i.y)}e.stroke()}class Ts{constructor(e,t){if(!Yn(e)||!Yn(t))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:e,height:t})}`);this._width=e,this._height=t}get width(){return this._width}get height(){return this._height}reverse(){return new Ts(1/this.width,1/this.height)}}const Qu={};Ee(Qu,{computeReshapedDimensions:()=>rL,getCenterPoint:()=>Ra,isDimensions:()=>xg,isEven:()=>wg,isFloat:()=>iL,isTensor:()=>Na,isTensor1D:()=>NG,isTensor2D:()=>nL,isTensor3D:()=>tr,isTensor4D:()=>ln,isValidNumber:()=>Yn,isValidProbablitiy:()=>uc,range:()=>Si,round:()=>Ca});function Na(e,t){return e instanceof me&&e.shape.length===t}function NG(e){return Na(e,1)}function nL(e){return Na(e,2)}function tr(e){return Na(e,3)}function ln(e){return Na(e,4)}function iL(e){return e%1!==0}function wg(e){return e%2===0}function Ca(e,t=2){const s=Math.pow(10,t);return Math.floor(e*s)/s}function xg(e){return e&&e.width&&e.height}function rL({width:e,height:t},s){const n=s/Math.max(t,e);return new Ts(Math.round(e*n),Math.round(t*n))}function Ra(e){return e.reduce((t,s)=>t.add(s),new _e(0,0)).div(new _e(e.length,e.length))}function Si(e,t,s){return Array(e).fill(0).map((n,i)=>t+i*s)}function Yn(e){return!!e&&e!==Infinity&&e!==-Infinity&&!isNaN(e)||e===0}function uc(e){return Yn(e)&&0<=e&&e<=1}class _e{constructor(e,t){this._x=e,this._y=t}get x(){return this._x}get y(){return this._y}add(e){return new _e(this.x+e.x,this.y+e.y)}sub(e){return new _e(this.x-e.x,this.y-e.y)}mul(e){return new _e(this.x*e.x,this.y*e.y)}div(e){return new _e(this.x/e.x,this.y/e.y)}abs(){return new _e(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(Math.pow(this.x,2)+Math.pow(this.y,2))}floor(){return new _e(Math.floor(this.x),Math.floor(this.y))}}class it{constructor(e,t=!0){const s=e||{},n=[s.left,s.top,s.right,s.bottom].every(Yn),i=[s.x,s.y,s.width,s.height].every(Yn);if(!i&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(s)}`);const[r,o,a,l]=i?[s.x,s.y,s.width,s.height]:[s.left,s.top,s.right-s.left,s.bottom-s.top];it.assertIsValidBox({x:r,y:o,width:a,height:l},"Box.constructor",t),this._x=r,this._y=o,this._width=a,this._height=l}static isRect(e){return!!e&&[e.x,e.y,e.width,e.height].every(Yn)}static assertIsValidBox(e,t,s=!1){if(!it.isRect(e))throw new Error(`${t} - invalid box: ${JSON.stringify(e)}, expected object with properties x, y, width, height`);if(!s&&(e.width<0||e.height<0))throw new Error(`${t} - width (${e.width}) and height (${e.height}) must be positive numbers`)}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new _e(this.left,this.top)}get topRight(){return new _e(this.right,this.top)}get bottomLeft(){return new _e(this.left,this.bottom)}get bottomRight(){return new _e(this.right,this.bottom)}round(){const[e,t,s,n]=[this.x,this.y,this.width,this.height].map(i=>Math.round(i));return new it({x:e,y:t,width:s,height:n})}floor(){const[e,t,s,n]=[this.x,this.y,this.width,this.height].map(i=>Math.floor(i));return new it({x:e,y:t,width:s,height:n})}toSquare(){let{x:e,y:t,width:s,height:n}=this;const i=Math.abs(s-n);return s<n&&(e-=i/2,s+=i),n<s&&(t-=i/2,n+=i),new it({x:e,y:t,width:s,height:n})}rescale(e){const t=xg(e)?e.width:e,s=xg(e)?e.height:e;return new it({x:this.x*t,y:this.y*s,width:this.width*t,height:this.height*s})}pad(e,t){let[s,n,i,r]=[this.x-e/2,this.y-t/2,this.width+e,this.height+t];return new it({x:s,y:n,width:i,height:r})}clipAtImageBorders(e,t){const{x:s,y:n,right:i,bottom:r}=this,o=Math.max(s,0),a=Math.max(n,0),l=i-o,c=r-a,p=Math.min(l,e-o),u=Math.min(c,t-a);return new it({x:o,y:a,width:p,height:u}).floor()}shift(e,t){const{width:s,height:n}=this,i=this.x+e,r=this.y+t;return new it({x:i,y:r,width:s,height:n})}padAtBorders(e,t){const s=this.width+1,n=this.height+1;let i=1,r=1,o=s,a=n,l=this.left,c=this.top,p=this.right,u=this.bottom;return p>t&&(o=-p+t+s,p=t),u>e&&(a=-u+e+n,u=e),l<1&&(a=2-l,l=1),c<1&&(a=2-c,c=1),{dy:r,edy:a,dx:i,edx:o,y:c,ey:u,x:l,ex:p,w:s,h:n}}calibrate(e){return new it({left:this.left+e.left*this.width,top:this.top+e.top*this.height,right:this.right+e.right*this.width,bottom:this.bottom+e.bottom*this.height}).toSquare().round()}}class Ga extends it{constructor(e,t,s,n,i=!1){super({left:e,top:t,right:s,bottom:n},i)}}class Oo{constructor(e,t,s,n,i){this._imageDims=new Ts(i.width,i.height),this._score=e,this._classScore=t,this._className=s,this._box=new it(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new it(this._box).rescale(this.imageDims.reverse())}forSize(e,t){return new Oo(this.score,this.classScore,this.className,this.relativeBox,{width:e,height:t})}}class ht extends Oo{constructor(e,t,s){super(e,e,"",t,s)}forSize(e,t){const{score:s,relativeBox:n,imageDims:i}=super.forSize(e,t);return new ht(s,n,i)}}function oh(e,t,s=!0){const n=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),i=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),r=n*i;return s?r/(e.area+t.area-r):r/Math.min(e.area,t.area)}function rh(e){const t=e.map(a=>a.x),s=e.map(a=>a.y),n=t.reduce((a,l)=>l<a?l:a,Infinity),i=s.reduce((a,l)=>l<a?l:a,Infinity),r=t.reduce((a,l)=>a<l?l:a,0),o=s.reduce((a,l)=>a<l?l:a,0);return new Ga(n,i,r,o)}function ih(e,t,s,n=!0){let i=t.map((o,a)=>({score:o,boxIndex:a})).sort((o,a)=>o.score-a.score).map(o=>o.boxIndex);const r=[];for(;i.length>0;){const o=i.pop();r.push(o);const a=i,l=[];for(let c=0;c<a.length;c++){const p=a[c],u=e[o],h=e[p];l.push(oh(u,h,n))}i=i.filter((c,p)=>l[p]<=s)}return r}function un(e,t){return C(()=>{const[s,n,i]=t,r=Wt([...e.shape.slice(0,3),1],s),o=Wt([...e.shape.slice(0,3),1],n),a=Wt([...e.shape.slice(0,3),1],i),l=be([r,o,a],3);return X(e,l)})}function nh(e,t=!1){return C(()=>{const[s,n]=e.shape.slice(1);if(s===n)return e;const i=Math.abs(s-n),r=Math.round(i*(t?.5:1)),o=s>n?2:1,a=h=>{const d=e.shape.slice();return d[o]=h,Wt(d,0)},l=a(r),c=i-l.shape[o],p=t&&c?a(c):null,u=[p,e,l].filter(h=>!!h).map(h=>G(h,"float32"));return be(u,o)})}function VL(e){const t=e.slice();for(let s=t.length-1;s>0;s--){const n=Math.floor(Math.random()*(s+1)),i=t[s];t[s]=t[n],t[n]=i}return t}function $a(e){return 1/(1+Math.exp(-e))}function GL(e){return Math.log(e/(1-e))}class ja extends it{constructor(e,t,s,n,i=!1){super({x:e,y:t,width:s,height:n},i)}}const CG=.5,RG=.43,OG=.45;class Hs{constructor(e,t,s=new _e(0,0)){const{width:n,height:i}=t;this._imgDims=new Ts(n,i),this._shift=s,this._positions=e.map(r=>r.mul(new _e(n,i)).add(s))}get shift(){return new _e(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(e=>e.sub(this._shift).div(new _e(this.imageWidth,this.imageHeight)))}forSize(e,t){return new this.constructor(this.relativePositions,{width:e,height:t})}shiftBy(e,t){return new this.constructor(this.relativePositions,this._imgDims,new _e(e,t))}shiftByPoint(e){return this.shiftBy(e.x,e.y)}align(e,t={}){if(e){const i=e instanceof ht?e.box.floor():new it(e);return this.shiftBy(i.x,i.y).align(null,t)}const{useDlibAlignment:s,minBoxPadding:n}=Object.assign({},{useDlibAlignment:!1,minBoxPadding:.2},t);return s?this.alignDlib():this.alignMinBbox(n)}alignDlib(){const e=this.getRefPointsForAlignment(),[t,s,n]=e,i=p=>n.sub(p).magnitude(),r=(i(t)+i(s))/2,o=Math.floor(r/OG),a=Ra(e),l=Math.floor(Math.max(0,a.x-CG*o)),c=Math.floor(Math.max(0,a.y-RG*o));return new ja(l,c,Math.min(o,this.imageWidth+l),Math.min(o,this.imageHeight+c))}alignMinBbox(e){const t=rh(this.positions);return t.pad(t.width*e,t.height*e)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}}class wS extends Hs{getRefPointsForAlignment(){const e=this.positions;return[e[0],e[1],Ra([e[3],e[4]])]}}class Va extends Hs{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ra)}}class Dc{constructor(e,t){this._label=e,this._distance=t}get label(){return this._label}get distance(){return this._distance}toString(e=!0){return`${this.label}${e?` (${Ca(this.distance)})`:""}`}}class kc extends it{constructor(e,t){super(e);this._label=t}static assertIsValidLabeledBox(e,t){if(it.assertIsValidBox(e,t),!Yn(e.label))throw new Error(`${t} - expected property label (${e.label}) to be a number`)}get label(){return this._label}}class hr{constructor(e,t){if(!(typeof e=="string"))throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(t)||t.some(s=>!(s instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=e,this._descriptors=t}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(e=>Array.from(e))}}static fromJSON(e){const t=e.descriptors.map(s=>new Float32Array(s));return new hr(e.label,t)}}class bS extends kc{constructor(e,t,s,n){super(e,t);this._score=s,this._classScore=n}static assertIsValidPredictedBox(e,t){if(kc.assertIsValidLabeledBox(e,t),!uc(e.score)||!uc(e.classScore))throw new Error(`${t} - expected properties score (${e.score}) and (${e.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}}function Mn(e){return e.detection instanceof ht}function ar(e,t){const s={detection:t};return Object.assign({},e,s)}function oL(){const e=window.fetch||function(){throw new Error("fetch - missing fetch implementation for browser environment")},t=function(){throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:t}}function Lg(e){let t="";if(!e)try{e=require("fs")}catch(n){t=n.toString()}const s=e?function(n){return new Promise((i,r)=>{e.readFile(n,function(o,a){return o?r(o):i(a)})})}:function(){throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)};return{readFile:s}}function aL(){const e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,s=function(){if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=function(){if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},i=global.fetch||function(){throw new Error("fetch - missing fetch implementation for nodejs environment")},r=Lg();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:s,createImageElement:n,fetch:i,...r}}function lL(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}const cL=vc(ML());let Jt;function EG(){if(!Jt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Jt}function pL(e){Jt=e}function uL(){if(lL())return pL(oL());if(cL.isNodejs())return pL(aL())}function _G(e){if(Jt||uL(),!Jt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");const{Canvas:t=Jt.Canvas,Image:s=Jt.Image}=e;Jt.Canvas=t,Jt.Image=s,Jt.createCanvasElement=e.createCanvasElement||(()=>new t),Jt.createImageElement=e.createImageElement||(()=>new s),Jt.ImageData=e.ImageData||Jt.ImageData,Jt.Video=e.Video||Jt.Video,Jt.fetch=e.fetch||Jt.fetch,Jt.readFile=e.readFile||Jt.readFile}const Ve={getEnv:EG,setEnv:pL,initialize:uL,createBrowserEnv:oL,createFileSystem:Lg,createNodejsEnv:aL,monkeyPatch:_G,isBrowser:lL,isNodejs:cL.isNodejs};uL();function cr(e){return!Ve.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function us(e){const{Canvas:t,CanvasRenderingContext2D:s}=Ve.getEnv();if(e instanceof s)return e;const n=cr(e);if(!(n instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");const i=n.getContext("2d");if(!i)throw new Error("resolveContext2d - canvas 2d context is null");return i}var Ii;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(Ii||(Ii={}));class Sg{constructor(e={}){const{anchorPosition:t,backgroundColor:s,fontColor:n,fontSize:i,fontStyle:r,padding:o}=e;this.anchorPosition=t||Ii.TOP_LEFT,this.backgroundColor=s||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=i||14,this.fontStyle=r||"Georgia",this.padding=o||4}}class hc{constructor(e,t,s={}){this.text=typeof e=="string"?[e]:e instanceof hc?e.text:e,this.anchor=t,this.options=new Sg(s)}measureWidth(e){const{padding:t}=this.options;return this.text.map(s=>e.measureText(s).width).reduce((s,n)=>s<n?n:s,0)+2*t}measureHeight(){const{fontSize:e,padding:t}=this.options;return this.text.length*e+2*t}getUpperLeft(e,t){const{anchorPosition:s}=this.options,n=s===Ii.BOTTOM_RIGHT||s===Ii.TOP_RIGHT,i=s===Ii.BOTTOM_LEFT||s===Ii.BOTTOM_RIGHT,r=this.measureWidth(e),o=this.measureHeight(),a=n?this.anchor.x-r:this.anchor.x,l=i?this.anchor.y-o:this.anchor.y;if(t){const{width:c,height:p}=t,u=Math.max(Math.min(a,c-r),0),h=Math.max(Math.min(l,p-o),0);return{x:u,y:h}}return{x:a,y:l}}draw(e){const t=cr(e),s=us(t),{backgroundColor:n,fontColor:i,fontSize:r,fontStyle:o,padding:a}=this.options;s.font=`${r}px ${o}`;const l=this.measureWidth(s),c=this.measureHeight();s.fillStyle=n;const p=this.getUpperLeft(s,t);s.fillRect(p.x,p.y,l,c),s.fillStyle=i,this.text.forEach((u,h)=>{const d=a+p.x,m=a+p.y+(h+1)*r;s.fillText(u,d,m)})}}class pE{constructor(e={}){const{boxColor:t,lineWidth:s,label:n,drawLabelOptions:i}=e;this.boxColor=t||"rgba(0, 0, 255, 1)",this.lineWidth=s||2,this.label=n;const r={anchorPosition:Ii.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Sg(Object.assign({},r,i))}}class hL{constructor(e,t={}){this.box=new it(e),this.options=new pE(t)}draw(e){const t=us(e),{boxColor:s,lineWidth:n}=this.options,{x:i,y:r,width:o,height:a}=this.box;t.strokeStyle=s,t.lineWidth=n,t.strokeRect(i,r,o,a);const{label:l}=this.options;l&&new hc([l],{x:i-n/2,y:r},this.options.drawLabelOptions).draw(e)}}function kG(e,t){const s=Array.isArray(t)?t:[t];s.forEach(n=>{const i=n instanceof ht?n.score:Mn(n)?n.detection.score:void 0,r=n instanceof ht?n.box:Mn(n)?n.detection.box:new it(n),o=i?`${Ca(i)}`:void 0;new hL(r,{label:o}).draw(e)})}function Pa(e){const{Image:t,Video:s}=Ve.getEnv();return e instanceof t&&e.complete||e instanceof s&&e.readyState>=3}function Ih(e){return new Promise((t,s)=>{if(e instanceof Ve.getEnv().Canvas||Pa(e))return t(null);function n(r){if(!r.currentTarget)return;r.currentTarget.removeEventListener("load",n),r.currentTarget.removeEventListener("error",i),t(r)}function i(r){if(!r.currentTarget)return;r.currentTarget.removeEventListener("load",n),r.currentTarget.removeEventListener("error",i),s(r)}e.addEventListener("load",n),e.addEventListener("error",i)})}function Sh(e){return new Promise((t,s)=>{if(!(e instanceof Blob))return s("bufferToImage - expected buf to be of type: Blob");const n=new FileReader;n.onload=()=>{if(typeof n.result!="string")return s("bufferToImage - expected reader.result to be a string, in onload");const i=Ve.getEnv().createImageElement();i.onload=()=>t(i),i.onerror=s,i.src=n.result},n.onerror=s,n.readAsDataURL(e)})}function pr(e){const{Image:t,Video:s}=Ve.getEnv();return e instanceof t?new Ts(e.naturalWidth,e.naturalHeight):e instanceof s?new Ts(e.videoWidth,e.videoHeight):new Ts(e.width,e.height)}function Ro({width:e,height:t}){const{createCanvasElement:s}=Ve.getEnv(),n=s();return n.width=e,n.height=t,n}function Ba(e,t){const{ImageData:s}=Ve.getEnv();if(!(e instanceof s)&&!Pa(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");const{width:n,height:i}=t||pr(e),r=Ro({width:n,height:i});return e instanceof s?us(r).putImageData(e,0,0):us(r).drawImage(e,0,0,n,i),r}async function xh(e,t){const s=t||Ve.getEnv().createCanvasElement(),[n,i,r]=e.shape.slice(ln(e)?1:0),o=C(()=>e.as3D(n,i,r).toInt());return await Gr.toPixels(o,s),o.dispose(),s}function _c(e){const{Image:t,Canvas:s,Video:n}=Ve.getEnv();return e instanceof t||e instanceof s||e instanceof n}function wh(e,t,s=!1){const{Image:n,Canvas:i}=Ve.getEnv();if(!(e instanceof n||e instanceof i))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");const r=pr(e),o=t/Math.max(r.height,r.width),a=o*r.width,l=o*r.height,c=Ro({width:t,height:t}),p=e instanceof i?e:Ba(e),u=Math.abs(a-l)/2,h=s&&a<l?u:0,d=s&&l<a?u:0;return us(c).drawImage(p,h,d,a,l),c}class vi{constructor(e,t=!1){if(this._imageTensors=[],this._canvases=[],this._treatAsBatchInput=!1,this._inputDimensions=[],!Array.isArray(e))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${e}`);this._treatAsBatchInput=t,this._batchSize=e.length,e.forEach((s,n)=>{if(tr(s)){this._imageTensors[n]=s,this._inputDimensions[n]=s.shape;return}if(ln(s)){const r=s.shape[0];if(r!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${r} passed, but not supported in input array`);this._imageTensors[n]=s,this._inputDimensions[n]=s.shape.slice(1);return}const i=s instanceof Ve.getEnv().Canvas?s:Ba(s);this._canvases[n]=i,this._inputDimensions[n]=[i.height,i.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return Si(this.batchSize,0,1).map((e,t)=>this.getReshapedInputDimensions(t))}getInput(e){return this.canvases[e]||this.imageTensors[e]}getInputDimensions(e){return this._inputDimensions[e]}getInputHeight(e){return this._inputDimensions[e][0]}getInputWidth(e){return this._inputDimensions[e][1]}getReshapedInputDimensions(e){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");const t=this.getInputWidth(e),s=this.getInputHeight(e);return rL({width:t,height:s},this.inputSize)}toBatchTensor(e,t=!0){return this._inputSize=e,C(()=>{const s=Si(this.batchSize,0,1).map(i=>{const r=this.getInput(i);if(r instanceof me){let o=ln(r)?r:r.expandDims();return o=nh(o,t),(o.shape[1]!==e||o.shape[2]!==e)&&(o=en.resizeBilinear(o,[e,e])),o.as3D(e,e,3)}if(r instanceof Ve.getEnv().Canvas)return Gr.fromPixels(wh(r,e,t));throw new Error(`toBatchTensor - at batchIdx ${i}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${r}`)}),n=Ge(s.map(i=>G(i,"float32"))).as4D(this.batchSize,e,e,3);return n})}}async function nt(e){if(e instanceof vi)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");const s=i=>Array.isArray(e)?` at input index ${i}:`:"",n=t.map(cr);return n.forEach((i,r)=>{if(!_c(i)&&!tr(i)&&!ln(i))throw typeof t[r]=="string"?new Error(`toNetInput -${s(r)} string passed, but could not resolve HTMLElement for element id ${t[r]}`):new Error(`toNetInput -${s(r)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ln(i)){const o=i.shape[0];if(o!==1)throw new Error(`toNetInput -${s(r)} tf.Tensor4D with batchSize ${o} passed, but not supported in input array`)}}),await Promise.all(n.map(i=>_c(i)&&Ih(i))),new vi(n,Array.isArray(e))}async function No(e,t){const{Canvas:s}=Ve.getEnv();let n=e;if(!(e instanceof s)){const o=await nt(e);if(o.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");const a=o.getInput(0);n=a instanceof s?a:await xh(a)}const i=us(n),r=t.map(o=>o instanceof ht?o.forSize(n.width,n.height).box.floor():o).map(o=>o.clipAtImageBorders(n.width,n.height));return r.map(({x:o,y:a,width:l,height:c})=>{const p=Ro({width:l,height:c});return us(p).putImageData(i.getImageData(o,a,l,c),0,0),p})}async function Co(e,t){if(!tr(e)&&!ln(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ln(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return C(()=>{const[s,n,i]=e.shape.slice(ln(e)?1:0),r=t.map(a=>a instanceof ht?a.forSize(n,s).box:a).map(a=>a.clipAtImageBorders(n,s)),o=r.map(({x:a,y:l,width:c,height:p})=>to(e.as3D(s,n,i),[l,a,0],[p,c,i]));return o})}async function ur(e,t){const s=Ve.getEnv().fetch,n=await s(e,t);if(!(n.status<400))throw new Error(`failed to fetch: (${n.status}) ${n.statusText}, from url: ${n.url}`);return n}async function yS(e){const t=await ur(e),s=await t.blob();if(!s.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${s.type}, for url: ${t.url}`);return Sh(s)}async function Lh(e){return(await ur(e)).json()}async function gS(e){return new Float32Array(await(await ur(e)).arrayBuffer())}function Ig(e,t){const s=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:s};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${s}`};const n=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(n,"");const i=e.split("/").filter(a=>a),r=e.endsWith(".json")?i[i.length-1]:s;let o=n+(e.endsWith(".json")?i.slice(0,i.length-1):i).join("/");return o=e.startsWith("/")?`/${o}`:o,{modelBaseUri:o,manifestUri:o==="/"?`/${r}`:`${o}/${r}`}}async function bh(e,t){const{manifestUri:s,modelBaseUri:n}=Ig(e,t);let i=await Lh(s);return Rt.loadWeights(i,n)}function fS(e,t,s=!1){const{width:n,height:i}=s?pr(t):t;return e.width=n,e.height=i,{width:n,height:i}}class Zt{constructor(e){this._name=e,this._params=void 0,this._paramMappings=[]}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(e){const{obj:t,objProp:s}=this.traversePropertyPath(e);return t[s]}reassignParamFromPath(e,t){const{obj:s,objProp:n}=this.traversePropertyPath(e);s[n].dispose(),s[n]=t}getParamList(){return this._paramMappings.map(({paramPath:e})=>({path:e,tensor:this.getParamFromPath(e)}))}getTrainableParams(){return this.getParamList().filter(e=>e.tensor instanceof ci)}getFrozenParams(){return this.getParamList().filter(e=>!(e.tensor instanceof ci))}variable(){this.getFrozenParams().forEach(({path:e,tensor:t})=>{this.reassignParamFromPath(e,t.variable())})}freeze(){this.getTrainableParams().forEach(({path:e,tensor:t})=>{const s=ze(t.dataSync());t.dispose(),this.reassignParamFromPath(e,s)})}dispose(e=!0){this.getParamList().forEach(t=>{if(e&&t.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${t.path}`);t.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:e})=>Array.from(e.dataSync())).reduce((e,t)=>e.concat(t)))}async load(e){if(e instanceof Float32Array){this.extractWeights(e);return}await this.loadFromUri(e)}async loadFromUri(e){if(e&&typeof e!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);const t=await bh(e,this.getDefaultModelName());this.loadFromWeightMap(t)}async loadFromDisk(e){if(e&&typeof e!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);const{readFile:t}=Ve.getEnv(),{manifestUri:s,modelBaseUri:n}=Ig(e,this.getDefaultModelName()),i=l=>Promise.all(l.map(c=>t(c).then(p=>p.buffer))),r=Rt.weightsLoaderFactory(i),o=JSON.parse((await t(s)).toString()),a=await r(o,n);this.loadFromWeightMap(a)}loadFromWeightMap(e){const{paramMappings:t,params:s}=this.extractParamsFromWeigthMap(e);this._paramMappings=t,this._params=s}extractWeights(e){const{paramMappings:t,params:s}=this.extractParams(e);this._paramMappings=t,this._params=s}traversePropertyPath(e){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");const t=e.split("/").reduce((i,r)=>{if(!i.nextObj.hasOwnProperty(r))throw new Error(`traversePropertyPath - object does not have property ${r}, for path ${e}`);return{obj:i.nextObj,objProp:r,nextObj:i.nextObj[r]}},{nextObj:this.params}),{obj:s,objProp:n}=t;if(!s||!n||!(s[n]instanceof me))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${e}`);return{obj:s,objProp:n}}}function _s(e,t,s){return C(()=>{let n=eo(e,t.depthwise_filter,t.pointwise_filter,s,"same");return n=$(n,t.bias),n})}function vg(e,t,s=!1){return C(()=>{const n=Fe(s?$(rt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):_s(e,t.conv0,[2,2])),i=_s(n,t.conv1,[1,1]),r=Fe($(n,i)),o=_s(r,t.conv2,[1,1]);return Fe($(n,$(i,o)))})}function Pu(e,t,s=!1,n=!0){return C(()=>{const i=Fe(s?$(rt(e,t.conv0.filters,n?[2,2]:[1,1],"same"),t.conv0.bias):_s(e,t.conv0,n?[2,2]:[1,1])),r=_s(i,t.conv1,[1,1]),o=Fe($(i,r)),a=_s(o,t.conv2,[1,1]),l=Fe($(i,$(r,a))),c=_s(l,t.conv3,[1,1]);return Fe($(i,$(r,$(a,c))))})}function Oa(e,t,s="same",n=!1){return C(()=>{const i=$(rt(e,t.filters,[1,1],s),t.bias);return n?Fe(i):i})}function Is(e,t){Object.keys(e).forEach(s=>{t.some(n=>n.originalPath===s)||e[s].dispose()})}function dc(e,t){return function(s,n,i,r){const o=ss(e(s*n*i*i),[i,i,s,n]),a=Oe(e(n));return t.push({paramPath:`${r}/filters`},{paramPath:`${r}/bias`}),{filters:o,bias:a}}}function Tg(e,t){return function(s,n,i){const r=ls(e(s*n),[s,n]),o=Oe(e(n));return t.push({paramPath:`${i}/weights`},{paramPath:`${i}/bias`}),{weights:r,bias:o}}}class dL{constructor(e,t,s){this.depthwise_filter=e,this.pointwise_filter=t,this.bias=s}}function mc(e,t){return function(s,n,i){const r=ss(e(3*3*s),[3,3,s,1]),o=ss(e(s*n),[1,1,s,n]),a=Oe(e(n));return t.push({paramPath:`${i}/depthwise_filter`},{paramPath:`${i}/pointwise_filter`},{paramPath:`${i}/bias`}),new dL(r,o,a)}}function fc(e){return function(t){const s=e(`${t}/depthwise_filter`,4),n=e(`${t}/pointwise_filter`,4),i=e(`${t}/bias`,1);return new dL(s,n,i)}}function Vs(e,t){return function(s,n,i){const r=e[s];if(!Na(r,n))throw new Error(`expected weightMap[${s}] to be a Tensor${n}D, instead have ${r}`);return t.push({originalPath:s,paramPath:i||s}),r}}function vs(e){let t=e;function s(i){const r=t.slice(0,i);return t=t.slice(i),r}function n(){return t}return{extractWeights:s,getRemainingWeights:n}}function Ag(e,t){const s=dc(e,t),n=mc(e,t);function i(o,a,l,c=!1){const p=c?s(o,a,3,`${l}/conv0`):n(o,a,`${l}/conv0`),u=n(a,a,`${l}/conv1`),h=n(a,a,`${l}/conv2`);return{conv0:p,conv1:u,conv2:h}}function r(o,a,l,c=!1){const{conv0:p,conv1:u,conv2:h}=i(o,a,l,c),d=n(a,a,`${l}/conv3`);return{conv0:p,conv1:u,conv2:h,conv3:d}}return{extractDenseBlock3Params:i,extractDenseBlock4Params:r}}function uE(e){const t=[],{extractWeights:s,getRemainingWeights:n}=vs(e),{extractDenseBlock4Params:i}=Ag(s,t),r=i(3,32,"dense0",!0),o=i(32,64,"dense1"),a=i(64,128,"dense2"),l=i(128,256,"dense3");if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:t,params:{dense0:r,dense1:o,dense2:a,dense3:l}}}function Ng(e){return function(t){const s=e(`${t}/filters`,4),n=e(`${t}/bias`,1);return{filters:s,bias:n}}}function Cg(e,t){const s=Vs(e,t),n=Ng(s),i=fc(s);function r(a,l=!1){const c=l?n(`${a}/conv0`):i(`${a}/conv0`),p=i(`${a}/conv1`),u=i(`${a}/conv2`);return{conv0:c,conv1:p,conv2:u}}function o(a,l=!1){const c=l?n(`${a}/conv0`):i(`${a}/conv0`),p=i(`${a}/conv1`),u=i(`${a}/conv2`),h=i(`${a}/conv3`);return{conv0:c,conv1:p,conv2:u,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:o}}function hE(e){const t=[],{extractDenseBlock4Params:s}=Cg(e,t),n={dense0:s("dense0",!0),dense1:s("dense1"),dense2:s("dense2"),dense3:s("dense3")};return Is(e,t),{params:n,paramMappings:t}}class Rg extends Zt{constructor(){super("FaceFeatureExtractor")}forwardInput(e){const{params:t}=this;if(!t)throw new Error("FaceFeatureExtractor - load model before inference");return C(()=>{const s=e.toBatchTensor(112,!0),n=[122.782,117.001,104.298],i=un(s,n).div(j(255));let r=Pu(i,t.dense0,!0);return r=Pu(r,t.dense1),r=Pu(r,t.dense2),r=Pu(r,t.dense3),r=ds(r,[7,7],[2,2],"valid"),r})}async forward(e){return this.forwardInput(await nt(e))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeigthMap(e){return hE(e)}extractParams(e){return uE(e)}}function Bu(e,t){return C(()=>$(Te(e,t.weights),t.bias))}function dE(e,t,s){const n=[],{extractWeights:i,getRemainingWeights:r}=vs(e),o=Tg(i,n),a=o(t,s,"fc");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{fc:a}}}function mE(e){const t=[],s=Vs(e,t);function n(r){const o=s(`${r}/weights`,2),a=s(`${r}/bias`,1);return{weights:o,bias:a}}const i={fc:n("fc")};return Is(e,t),{params:i,paramMappings:t}}function Og(e){const t={},s={};return Object.keys(e).forEach(n=>{const i=n.startsWith("fc")?s:t;i[n]=e[n]}),{featureExtractorMap:t,classifierMap:s}}class Eg extends Zt{constructor(e,t){super(e);this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){const{params:t}=this;if(!t)throw new Error(`${this._name} - load model before inference`);return C(()=>{const s=e instanceof vi?this.faceFeatureExtractor.forwardInput(e):e;return Bu(s.as2D(s.shape[0],-1),t.fc)})}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){const{params:t,paramMappings:s}=this.extractClassifierParams(e);this._params=t,this._paramMappings=s}extractClassifierParams(e){return dE(e,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeigthMap(e){const{featureExtractorMap:t,classifierMap:s}=Og(e);return this.faceFeatureExtractor.loadFromWeightMap(t),mE(s)}extractParams(e){const t=this.getClassifierChannelsIn(),s=this.getClassifierChannelsOut(),n=s*t+s,i=e.slice(0,e.length-n),r=e.slice(e.length-n);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(r)}}const fh=["neutral","happy","sad","angry","fearful","disgusted","surprised"];class lr{constructor(e){if(e.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${e.length}`);fh.forEach((t,s)=>{this[t]=e[s]})}asSortedArray(){return fh.map(e=>({expression:e,probability:this[e]})).sort((e,t)=>t.probability-e.probability)}}class gh extends Eg{constructor(e=new Rg){super("FaceExpressionNet",e)}forwardInput(e){return C(()=>ts(this.runNet(e)))}async forward(e){return this.forwardInput(await nt(e))}async predictExpressions(e){const t=await nt(e),s=await this.forwardInput(t),n=await Promise.all(qe(s).map(async r=>{const o=await r.data();return r.dispose(),o}));s.dispose();const i=n.map(r=>new lr(r));return t.isBatchInput?i:i[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}}function dh(e){return e.expressions instanceof lr}function Rc(e,t){const s={expressions:t};return Object.assign({},e,s)}function DG(e,t,s=.1,n){const i=Array.isArray(t)?t:[t];i.forEach(r=>{const o=r instanceof lr?r:dh(r)?r.expressions:void 0;if(!o)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");const a=o.asSortedArray(),l=a.filter(u=>u.probability>s),c=Mn(r)?r.detection.box.bottomLeft:n||new _e(0,0),p=new hc(l.map(u=>`${u.expression} (${Ca(u.probability)})`),c);p.draw(e)})}function or(e){return Mn(e)&&e.landmarks instanceof Hs&&e.unshiftedLandmarks instanceof Hs&&e.alignedRect instanceof ht}function Ao(e,t){const{box:s}=e.detection,n=t.shiftBy(s.x,s.y),i=n.align(),{imageDims:r}=e.detection,o=new ht(e.detection.score,i.rescale(r.reverse()),r),a={landmarks:n,unshiftedLandmarks:t,alignedRect:o};return Object.assign({},e,a)}class fE{constructor(e={}){const{drawLines:t=!0,drawPoints:s=!0,lineWidth:n,lineColor:i,pointSize:r,pointColor:o}=e;this.drawLines=t,this.drawPoints=s,this.lineWidth=n||1,this.pointSize=r||2,this.lineColor=i||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}}class gE{constructor(e,t={}){this.faceLandmarks=e,this.options=new fE(t)}draw(e){const t=us(e),{drawLines:s,drawPoints:n,lineWidth:i,lineColor:r,pointSize:o,pointColor:a}=this.options;if(s&&this.faceLandmarks instanceof Va&&(t.strokeStyle=r,t.lineWidth=i,er(t,this.faceLandmarks.getJawOutline()),er(t,this.faceLandmarks.getLeftEyeBrow()),er(t,this.faceLandmarks.getRightEyeBrow()),er(t,this.faceLandmarks.getNose()),er(t,this.faceLandmarks.getLeftEye(),!0),er(t,this.faceLandmarks.getRightEye(),!0),er(t,this.faceLandmarks.getMouth(),!0)),n){t.strokeStyle=a,t.fillStyle=a;const l=c=>{t.beginPath(),t.arc(c.x,c.y,o,0,2*Math.PI),t.fill()};this.faceLandmarks.positions.forEach(l)}}}function FG(e,t){const s=Array.isArray(t)?t:[t];s.forEach(n=>{const i=n instanceof Hs?n:or(n)?n.landmarks:void 0;if(!i)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new gE(i).draw(e)})}const Zu={};Ee(Zu,{AnchorPosition:()=>Ii,DrawBox:()=>hL,DrawBoxOptions:()=>pE,DrawFaceLandmarks:()=>gE,DrawFaceLandmarksOptions:()=>fE,DrawTextField:()=>hc,DrawTextFieldOptions:()=>Sg,drawContour:()=>er,drawDetections:()=>kG,drawFaceExpressions:()=>DG,drawFaceLandmarks:()=>FG});function MG(e,t){const s=dc(e,t),n=mc(e,t);function i(o,a,l){const c=n(o,a,`${l}/separable_conv0`),p=n(a,a,`${l}/separable_conv1`),u=s(o,a,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:p,expansion_conv:u}}function r(o,a){const l=n(o,o,`${a}/separable_conv0`),c=n(o,o,`${a}/separable_conv1`),p=n(o,o,`${a}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:p}}return{extractConvParams:s,extractSeparableConvParams:n,extractReductionBlockParams:i,extractMainBlockParams:r}}function yE(e,t){const s=[],{extractWeights:n,getRemainingWeights:i}=vs(e),{extractConvParams:r,extractSeparableConvParams:o,extractReductionBlockParams:a,extractMainBlockParams:l}=MG(n,s),c=r(3,32,3,"entry_flow/conv_in"),p=a(32,64,"entry_flow/reduction_block_0"),u=a(64,128,"entry_flow/reduction_block_1"),h={conv_in:c,reduction_block_0:p,reduction_block_1:u},d={};Si(t,0,1).forEach(y=>{d[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});const m=a(128,256,"exit_flow/reduction_block"),f=o(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(i().length!==0)throw new Error(`weights remaing after extract: ${i().length}`);return{paramMappings:s,params:{entry_flow:h,middle_flow:d,exit_flow:g}}}function UG(e,t){const s=Vs(e,t),n=Ng(s),i=fc(s);function r(a){const l=i(`${a}/separable_conv0`),c=i(`${a}/separable_conv1`),p=n(`${a}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:p}}function o(a){const l=i(`${a}/separable_conv0`),c=i(`${a}/separable_conv1`),p=i(`${a}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:i,extractReductionBlockParams:r,extractMainBlockParams:o}}function bE(e,t){const s=[],{extractConvParams:n,extractSeparableConvParams:i,extractReductionBlockParams:r,extractMainBlockParams:o}=UG(e,s),a=n("entry_flow/conv_in"),l=r("entry_flow/reduction_block_0"),c=r("entry_flow/reduction_block_1"),p={conv_in:a,reduction_block_0:l,reduction_block_1:c},u={};Si(t,0,1).forEach(f=>{u[`main_block_${f}`]=o(`middle_flow/main_block_${f}`)});const h=r("exit_flow/reduction_block"),d=i("exit_flow/separable_conv"),m={reduction_block:h,separable_conv:d};return Is(e,s),{params:{entry_flow:p,middle_flow:u,exit_flow:m},paramMappings:s}}function wE(e,t,s){return $(rt(e,t.filters,s,"same"),t.bias)}function mL(e,t,s=!0){let n=s?Fe(e):e;return n=_s(n,t.separable_conv0,[1,1]),n=_s(Fe(n),t.separable_conv1,[1,1]),n=ft(n,[3,3],[2,2],"same"),n=$(n,wE(e,t.expansion_conv,[2,2])),n}function $G(e,t){let s=_s(Fe(e),t.separable_conv0,[1,1]);return s=_s(Fe(s),t.separable_conv1,[1,1]),s=_s(Fe(s),t.separable_conv2,[1,1]),s=$(s,e),s}class xE extends Zt{constructor(e){super("TinyXception");this._numMainBlocks=e}forwardInput(e){const{params:t}=this;if(!t)throw new Error("TinyXception - load model before inference");return C(()=>{const s=e.toBatchTensor(112,!0),n=[122.782,117.001,104.298],i=un(s,n).div(j(256));let r=Fe(wE(i,t.entry_flow.conv_in,[2,2]));return r=mL(r,t.entry_flow.reduction_block_0,!1),r=mL(r,t.entry_flow.reduction_block_1),Si(this._numMainBlocks,0,1).forEach(o=>{r=$G(r,t.middle_flow[`main_block_${o}`])}),r=mL(r,t.exit_flow.reduction_block),r=Fe(_s(r,t.exit_flow.separable_conv,[1,1])),r})}async forward(e){return this.forwardInput(await nt(e))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeigthMap(e){return bE(e,this._numMainBlocks)}extractParams(e){return yE(e,this._numMainBlocks)}}function LE(e){const t=[],{extractWeights:s,getRemainingWeights:n}=vs(e),i=Tg(s,t),r=i(512,1,"fc/age"),o=i(512,2,"fc/gender");if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:t,params:{fc:{age:r,gender:o}}}}function SE(e){const t=[],s=Vs(e,t);function n(r){const o=s(`${r}/weights`,2),a=s(`${r}/bias`,1);return{weights:o,bias:a}}const i={fc:{age:n("fc/age"),gender:n("fc/gender")}};return Is(e,t),{params:i,paramMappings:t}}var Jn;(function(e){e.FEMALE="female",e.MALE="male"})(Jn||(Jn={}));class vh extends Zt{constructor(e=new xE(2)){super("AgeGenderNet");this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){const{params:t}=this;if(!t)throw new Error(`${this._name} - load model before inference`);return C(()=>{const s=e instanceof vi?this.faceFeatureExtractor.forwardInput(e):e,n=ds(s,[7,7],[2,2],"valid").as2D(s.shape[0],-1),i=Bu(n,t.fc.age).as1D(),r=Bu(n,t.fc.gender);return{age:i,gender:r}})}forwardInput(e){return C(()=>{const{age:t,gender:s}=this.runNet(e);return{age:t,gender:ts(s)}})}async forward(e){return this.forwardInput(await nt(e))}async predictAgeAndGender(e){const t=await nt(e),s=await this.forwardInput(t),n=qe(s.age),i=qe(s.gender),r=n.map((a,l)=>({ageTensor:a,genderTensor:i[l]})),o=await Promise.all(r.map(async({ageTensor:a,genderTensor:l})=>{const c=(await a.data())[0],p=(await l.data())[0],u=p>.5,h=u?Jn.MALE:Jn.FEMALE,d=u?p:1-p;return a.dispose(),l.dispose(),{age:c,gender:h,genderProbability:d}}));return s.age.dispose(),s.gender.dispose(),t.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){const{params:t,paramMappings:s}=this.extractClassifierParams(e);this._params=t,this._paramMappings=s}extractClassifierParams(e){return LE(e)}extractParamsFromWeigthMap(e){const{featureExtractorMap:t,classifierMap:s}=Og(e);return this.faceFeatureExtractor.loadFromWeightMap(t),SE(s)}extractParams(e){const t=512*1+1+(512*2+2),s=e.slice(0,e.length-t),n=e.slice(e.length-t);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(n)}}class _g extends Eg{postProcess(e,t,s){const n=s.map(({width:r,height:o})=>{const a=t/Math.max(o,r);return{width:r*a,height:o*a}}),i=n.length;return C(()=>{const r=(p,u)=>Ge([Wt([68],p),Wt([68],u)],1).as2D(1,136).as1D(),o=(p,u)=>{const{width:h,height:d}=n[p];return u(h,d)?Math.abs(h-d)/2:0},a=p=>o(p,(u,h)=>u<h),l=p=>o(p,(u,h)=>h<u),c=e.mul(Wt([i,136],t)).sub(Ge(Array.from(Array(i),(p,u)=>r(a(u),l(u))))).div(Ge(Array.from(Array(i),(p,u)=>r(n[u].width,n[u].height))));return c})}forwardInput(e){return C(()=>{const t=this.runNet(e);return this.postProcess(t,e.inputSize,e.inputDimensions.map(([s,n])=>({height:s,width:n})))})}async forward(e){return this.forwardInput(await nt(e))}async detectLandmarks(e){const t=await nt(e),s=C(()=>qe(this.forwardInput(t))),n=await Promise.all(s.map(async(i,r)=>{const o=Array.from(await i.data()),a=o.filter((c,p)=>wg(p)),l=o.filter((c,p)=>!wg(p));return new Va(Array(68).fill(0).map((c,p)=>new _e(a[p],l[p])),{height:t.getInputHeight(r),width:t.getInputWidth(r)})}));return s.forEach(i=>i.dispose()),t.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}}class za extends _g{constructor(e=new Rg){super("FaceLandmark68Net",e)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}}function IE(e){const t=[],{extractDenseBlock3Params:s}=Cg(e,t),n={dense0:s("dense0",!0),dense1:s("dense1"),dense2:s("dense2")};return Is(e,t),{params:n,paramMappings:t}}function vE(e){const t=[],{extractWeights:s,getRemainingWeights:n}=vs(e),{extractDenseBlock3Params:i}=Ag(s,t),r=i(3,32,"dense0",!0),o=i(32,64,"dense1"),a=i(64,128,"dense2");if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:t,params:{dense0:r,dense1:o,dense2:a}}}class TE extends Zt{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(e){const{params:t}=this;if(!t)throw new Error("TinyFaceFeatureExtractor - load model before inference");return C(()=>{const s=e.toBatchTensor(112,!0),n=[122.782,117.001,104.298],i=un(s,n).div(j(255));let r=vg(i,t.dense0,!0);return r=vg(r,t.dense1),r=vg(r,t.dense2),r=ds(r,[14,14],[2,2],"valid"),r})}async forward(e){return this.forwardInput(await nt(e))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeigthMap(e){return IE(e)}extractParams(e){return vE(e)}}class mh extends _g{constructor(e=new TE){super("FaceLandmark68TinyNet",e)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}}class mS extends za{}function AE(e,t){return $(R(e,t.weights),t.biases)}function fL(e,t,s,n,i="same"){const{filters:r,bias:o}=t.conv;let a=rt(e,r,s,i);return a=$(a,o),a=AE(a,t.scale),n?Fe(a):a}function NE(e,t){return fL(e,t,[1,1],!0)}function gL(e,t){return fL(e,t,[1,1],!1)}function kg(e,t){return fL(e,t,[2,2],!0,"valid")}function WG(e,t){function s(a,l,c){const p=e(a),u=p.length/(l*c*c);if(iL(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${c}`);return C(()=>se(ss(p,[l,u,c,c]),[2,3,1,0]))}function n(a,l,c,p){const u=s(a,l,c),h=Oe(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:h}}function i(a,l){const c=Oe(e(a)),p=Oe(e(a));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:p}}function r(a,l,c,p){const u=n(a,l,c,`${p}/conv`),h=i(l,`${p}/scale`);return{conv:u,scale:h}}function o(a,l,c,p,u=!1){const h=r((u?.5:1)*a,l,c,`${p}/conv1`),d=r(a,l,c,`${p}/conv2`);return{conv1:h,conv2:d}}return{extractConvLayerParams:r,extractResidualLayerParams:o}}function CE(e){const{extractWeights:t,getRemainingWeights:s}=vs(e),n=[],{extractConvLayerParams:i,extractResidualLayerParams:r}=WG(t,n),o=i(4704,32,7,"conv32_down"),a=r(9216,32,3,"conv32_1"),l=r(9216,32,3,"conv32_2"),c=r(9216,32,3,"conv32_3"),p=r(36864,64,3,"conv64_down",!0),u=r(36864,64,3,"conv64_1"),h=r(36864,64,3,"conv64_2"),d=r(36864,64,3,"conv64_3"),m=r(147456,128,3,"conv128_down",!0),f=r(147456,128,3,"conv128_1"),g=r(147456,128,3,"conv128_2"),y=r(589824,256,3,"conv256_down",!0),w=r(589824,256,3,"conv256_1"),x=r(589824,256,3,"conv256_2"),T=r(589824,256,3,"conv256_down_out"),A=C(()=>se(ls(t(256*128),[128,256]),[1,0]));if(n.push({paramPath:"fc"}),s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);const _={conv32_down:o,conv32_1:a,conv32_2:l,conv32_3:c,conv64_down:p,conv64_1:u,conv64_2:h,conv64_3:d,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:w,conv256_2:x,conv256_down_out:T,fc:A};return{params:_,paramMappings:n}}function zG(e,t){const s=Vs(e,t);function n(o){const a=s(`${o}/scale/weights`,1),l=s(`${o}/scale/biases`,1);return{weights:a,biases:l}}function i(o){const a=s(`${o}/conv/filters`,4),l=s(`${o}/conv/bias`,1),c=n(o);return{conv:{filters:a,bias:l},scale:c}}function r(o){return{conv1:i(`${o}/conv1`),conv2:i(`${o}/conv2`)}}return{extractConvLayerParams:i,extractResidualLayerParams:r}}function RE(e){const t=[],{extractConvLayerParams:s,extractResidualLayerParams:n}=zG(e,t),i=s("conv32_down"),r=n("conv32_1"),o=n("conv32_2"),a=n("conv32_3"),l=n("conv64_down"),c=n("conv64_1"),p=n("conv64_2"),u=n("conv64_3"),h=n("conv128_down"),d=n("conv128_1"),m=n("conv128_2"),f=n("conv256_down"),g=n("conv256_1"),y=n("conv256_2"),w=n("conv256_down_out"),x=e.fc;if(t.push({originalPath:"fc",paramPath:"fc"}),!nL(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);const T={conv32_down:i,conv32_1:r,conv32_2:o,conv32_3:a,conv64_down:l,conv64_1:c,conv64_2:p,conv64_3:u,conv128_down:h,conv128_1:d,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:w,fc:x};return Is(e,t),{params:T,paramMappings:t}}function Kn(e,t){let s=NE(e,t.conv1);return s=gL(s,t.conv2),s=$(s,e),s=Fe(s),s}function ju(e,t){let s=kg(e,t.conv1);s=gL(s,t.conv2);let n=ds(e,2,2,"valid");const i=ye(n.shape),r=n.shape[3]!==s.shape[3],o=n.shape[1]!==s.shape[1]||n.shape[2]!==s.shape[2];if(o){const a=[...s.shape];a[1]=1;const l=ye(a);s=be([s,l],1);const c=[...s.shape];c[2]=1;const p=ye(c);s=be([s,p],2)}return n=r?be([n,i],3):n,s=$(n,s),s=Fe(s),s}class Wa extends Zt{constructor(){super("FaceRecognitionNet")}forwardInput(e){const{params:t}=this;if(!t)throw new Error("FaceRecognitionNet - load model before inference");return C(()=>{const s=G(e.toBatchTensor(150,!0),"float32"),n=[122.782,117.001,104.298],i=un(s,n).div(j(256));let r=kg(i,t.conv32_down);r=ft(r,3,2,"valid"),r=Kn(r,t.conv32_1),r=Kn(r,t.conv32_2),r=Kn(r,t.conv32_3),r=ju(r,t.conv64_down),r=Kn(r,t.conv64_1),r=Kn(r,t.conv64_2),r=Kn(r,t.conv64_3),r=ju(r,t.conv128_down),r=Kn(r,t.conv128_1),r=Kn(r,t.conv128_2),r=ju(r,t.conv256_down),r=Kn(r,t.conv256_1),r=Kn(r,t.conv256_2),r=ju(r,t.conv256_down_out);const o=r.mean([1,2]),a=Te(o,t.fc);return a})}async forward(e){return this.forwardInput(await nt(e))}async computeFaceDescriptor(e){const t=await nt(e),s=C(()=>qe(this.forwardInput(t))),n=await Promise.all(s.map(i=>i.data()));return s.forEach(i=>i.dispose()),t.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeigthMap(e){return RE(e)}extractParams(e){return CE(e)}}function dS(e){const t=new Wa;return t.extractWeights(e),t}function Oc(e,t){const s={descriptor:t};return Object.assign({},e,s)}function hS(e){return typeof e.age=="number"}function Ec(e,t){const s={age:t};return Object.assign({},e,s)}function uS(e){return(e.gender===Jn.MALE||e.gender===Jn.FEMALE)&&uc(e.genderProbability)}function Cc(e,t,s){const n={gender:t,genderProbability:s};return Object.assign({},e,n)}function PG(e,t){function s(l,c){const p=ss(e(3*3*l),[3,3,l,1]),u=Oe(e(l)),h=Oe(e(l)),d=Oe(e(l)),m=Oe(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:h,batch_norm_mean:d,batch_norm_variance:m}}function n(l,c,p,u,h){const d=ss(e(l*c*p*p),[p,p,l,c]),m=Oe(e(c));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${h?"batch_norm_offset":"bias"}`}),{filters:d,bias:m}}function i(l,c,p,u){const{filters:h,bias:d}=n(l,c,p,u,!0);return{filters:h,batch_norm_offset:d}}function r(l,c,p){const u=s(l,`${p}/depthwise_conv`),h=i(l,c,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:h}}function o(){const l=i(3,32,3,"mobilenetv1/conv_0"),c=r(32,64,"mobilenetv1/conv_1"),p=r(64,128,"mobilenetv1/conv_2"),u=r(128,128,"mobilenetv1/conv_3"),h=r(128,256,"mobilenetv1/conv_4"),d=r(256,256,"mobilenetv1/conv_5"),m=r(256,512,"mobilenetv1/conv_6"),f=r(512,512,"mobilenetv1/conv_7"),g=r(512,512,"mobilenetv1/conv_8"),y=r(512,512,"mobilenetv1/conv_9"),w=r(512,512,"mobilenetv1/conv_10"),x=r(512,512,"mobilenetv1/conv_11"),T=r(512,1024,"mobilenetv1/conv_12"),A=r(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:p,conv_3:u,conv_4:h,conv_5:d,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:w,conv_11:x,conv_12:T,conv_13:A}}function a(){const l=i(1024,256,1,"prediction_layer/conv_0"),c=i(256,512,3,"prediction_layer/conv_1"),p=i(512,128,1,"prediction_layer/conv_2"),u=i(128,256,3,"prediction_layer/conv_3"),h=i(256,128,1,"prediction_layer/conv_4"),d=i(128,256,3,"prediction_layer/conv_5"),m=i(256,64,1,"prediction_layer/conv_6"),f=i(64,128,3,"prediction_layer/conv_7"),g=n(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=n(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),w=n(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=n(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),T=n(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),A=n(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),_=n(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),E=n(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),F=n(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),D=n(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),M=n(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),P=n(128,18,1,"prediction_layer/box_predictor_5/class_predictor"),B={box_encoding_predictor:g,class_predictor:y},Y={box_encoding_predictor:w,class_predictor:x},q={box_encoding_predictor:T,class_predictor:A},K={box_encoding_predictor:_,class_predictor:E},H={box_encoding_predictor:F,class_predictor:D},Q={box_encoding_predictor:M,class_predictor:P};return{conv_0:l,conv_1:c,conv_2:p,conv_3:u,conv_4:h,conv_5:d,conv_6:m,conv_7:f,box_predictor_0:B,box_predictor_1:Y,box_predictor_2:q,box_predictor_3:K,box_predictor_4:H,box_predictor_5:Q}}return{extractMobilenetV1Params:o,extractPredictionLayerParams:a}}function OE(e){const t=[],{extractWeights:s,getRemainingWeights:n}=vs(e),{extractMobilenetV1Params:i,extractPredictionLayerParams:r}=PG(s,t),o=i(),a=r(),l=ll(s(5118*4),[1,5118,4]),c={extra_dim:l};if(t.push({paramPath:"output_layer/extra_dim"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{mobilenetv1:o,prediction_layer:a,output_layer:c},paramMappings:t}}function BG(e,t){const s=Vs(e,t);function n(c,p,u){const h=s(`${c}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),d=s(`${c}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:h,batch_norm_offset:d}}function i(c){const p=`mobilenetv1/conv_${c}`,u=`MobilenetV1/Conv2d_${c}_depthwise`,h=`${p}/depthwise_conv`,d=`${p}/pointwise_conv`,m=s(`${u}/depthwise_weights`,4,`${h}/filters`),f=s(`${u}/BatchNorm/gamma`,1,`${h}/batch_norm_scale`),g=s(`${u}/BatchNorm/beta`,1,`${h}/batch_norm_offset`),y=s(`${u}/BatchNorm/moving_mean`,1,`${h}/batch_norm_mean`),w=s(`${u}/BatchNorm/moving_variance`,1,`${h}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:w},pointwise_conv:n("MobilenetV1",c,d)}}function r(){return{conv_0:n("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:i(1),conv_2:i(2),conv_3:i(3),conv_4:i(4),conv_5:i(5),conv_6:i(6),conv_7:i(7),conv_8:i(8),conv_9:i(9),conv_10:i(10),conv_11:i(11),conv_12:i(12),conv_13:i(13)}}function o(c,p){const u=s(`${c}/weights`,4,`${p}/filters`),h=s(`${c}/biases`,1,`${p}/bias`);return{filters:u,bias:h}}function a(c){const p=o(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),u=o(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function l(){return{conv_0:n("Prediction",0,"prediction_layer/conv_0"),conv_1:n("Prediction",1,"prediction_layer/conv_1"),conv_2:n("Prediction",2,"prediction_layer/conv_2"),conv_3:n("Prediction",3,"prediction_layer/conv_3"),conv_4:n("Prediction",4,"prediction_layer/conv_4"),conv_5:n("Prediction",5,"prediction_layer/conv_5"),conv_6:n("Prediction",6,"prediction_layer/conv_6"),conv_7:n("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:a(0),box_predictor_1:a(1),box_predictor_2:a(2),box_predictor_3:a(3),box_predictor_4:a(4),box_predictor_5:a(5)}}return{extractMobilenetV1Params:r,extractPredictionLayerParams:l}}function EE(e){const t=[],{extractMobilenetV1Params:s,extractPredictionLayerParams:n}=BG(e,t),i=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!tr(i))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${i}`);const r={mobilenetv1:s(),prediction_layer:n(),output_layer:{extra_dim:i}};return Is(e,t),{params:r,paramMappings:t}}function Dn(e,t,s){return C(()=>{let n=rt(e,t.filters,s,"same");return n=$(n,t.batch_norm_offset),xt(n,0,6)})}const jG=.0010000000474974513;function VG(e,t,s){return C(()=>{let n=fn(e,t.filters,s,"same");return n=Xs(n,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,jG),xt(n,0,6)})}function GG(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function _E(e,t){return C(()=>{let s,n=Dn(e,t.conv_0,[2,2]);const i=[t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13];if(i.forEach((r,o)=>{const a=o+1,l=GG(a);n=VG(n,r.depthwise_conv,l),n=Dn(n,r.pointwise_conv,[1,1]),a===11&&(s=n)}),s===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:n,conv11:s}})}function kE(e,t,s,n,i){const r=e.shape[0],o=Math.min(s,r),a=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>i).sort((p,u)=>u.score-p.score),l=p=>p<=n?1:0,c=[];return a.forEach(p=>{if(c.length>=o)return;const u=p.score;for(let h=c.length-1;h>=0;--h){const d=qG(e,p.boxIndex,c[h]);if(d===0)continue;if(p.score*=l(d),p.score<=i)break}u===p.score&&c.push(p.boxIndex)}),c}function qG(e,t,s){const n=e.arraySync(),i=Math.min(n[t][0],n[t][2]),r=Math.min(n[t][1],n[t][3]),o=Math.max(n[t][0],n[t][2]),a=Math.max(n[t][1],n[t][3]),l=Math.min(n[s][0],n[s][2]),c=Math.min(n[s][1],n[s][3]),p=Math.max(n[s][0],n[s][2]),u=Math.max(n[s][1],n[s][3]),h=(o-i)*(a-r),d=(p-l)*(u-c);if(h<=0||d<=0)return 0;const m=Math.max(i,l),f=Math.max(r,c),g=Math.min(o,p),y=Math.min(a,u),w=Math.max(g-m,0)*Math.max(y-f,0);return w/(h+d-w)}function HG(e){const t=qe(se(e,[1,0])),s=[X(t[2],t[0]),X(t[3],t[1])],n=[$(t[0],Z(s[0],j(2))),$(t[1],Z(s[1],j(2)))];return{sizes:s,centers:n}}function YG(e,t){const{sizes:s,centers:n}=HG(e),i=qe(se(t,[1,0])),r=Z(R(ut(Z(i[2],j(5))),s[0]),j(2)),o=$(R(Z(i[0],j(10)),s[0]),n[0]),a=Z(R(ut(Z(i[3],j(5))),s[1]),j(2)),l=$(R(Z(i[1],j(10)),s[1]),n[1]);return se(Ge([X(o,r),X(l,a),$(o,r),$(l,a)]),[1,0])}function DE(e,t,s){return C(()=>{const n=e.shape[0];let i=YG(O($s(s.extra_dim,[n,1,1]),[-1,4]),O(e,[-1,4]));i=O(i,[n,i.shape[0]/n,4]);const r=os(he(t,[0,0,1],[-1,-1,-1]));let o=he(r,[0,0,0],[-1,-1,1]);o=O(o,[n,o.shape[1]]);const a=qe(i),l=qe(o);return{boxes:a,scores:l}})}function Ea(e,t){return C(()=>{const s=e.shape[0],n=O(Oa(e,t.box_encoding_predictor),[s,-1,1,4]),i=O(Oa(e,t.class_predictor),[s,-1,3]);return{boxPredictionEncoding:n,classPrediction:i}})}function FE(e,t,s){return C(()=>{const n=Dn(e,s.conv_0,[1,1]),i=Dn(n,s.conv_1,[2,2]),r=Dn(i,s.conv_2,[1,1]),o=Dn(r,s.conv_3,[2,2]),a=Dn(o,s.conv_4,[1,1]),l=Dn(a,s.conv_5,[2,2]),c=Dn(l,s.conv_6,[1,1]),p=Dn(c,s.conv_7,[2,2]),u=Ea(t,s.box_predictor_0),h=Ea(e,s.box_predictor_1),d=Ea(i,s.box_predictor_2),m=Ea(o,s.box_predictor_3),f=Ea(l,s.box_predictor_4),g=Ea(p,s.box_predictor_5),y=be([u.boxPredictionEncoding,h.boxPredictionEncoding,d.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),w=be([u.classPrediction,h.classPrediction,d.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:w}})}class pn{constructor({minConfidence:e,maxResults:t}={}){if(this._name="SsdMobilenetv1Options",this._minConfidence=e||.5,this._maxResults=t||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}}class To extends Zt{constructor(){super("SsdMobilenetv1")}forwardInput(e){const{params:t}=this;if(!t)throw new Error("SsdMobilenetv1 - load model before inference");return C(()=>{const s=G(e.toBatchTensor(512,!1),"float32"),n=X(R(s,j(.007843137718737125)),j(1)),i=_E(n,t.mobilenetv1),{boxPredictions:r,classPredictions:o}=FE(i.out,i.conv11,t.prediction_layer);return DE(r,o,t.output_layer)})}async forward(e){return this.forwardInput(await nt(e))}async locateFaces(e,t={}){const{maxResults:s,minConfidence:n}=new pn(t),i=await nt(e),{boxes:r,scores:o}=this.forwardInput(i),a=r[0],l=o[0];for(let w=1;w<r.length;w++)r[w].dispose(),o[w].dispose();const c=Array.from(await l.data()),p=.5,u=kE(a,c,s,p,n),h=i.getReshapedInputDimensions(0),d=i.inputSize,m=d/h.width,f=d/h.height,g=a.arraySync(),y=u.map(w=>{const[x,T]=[Math.max(0,g[w][0]),Math.min(1,g[w][2])].map(E=>E*f),[A,_]=[Math.max(0,g[w][1]),Math.min(1,g[w][3])].map(E=>E*m);return new ht(c[w],new ja(A,x,_-A,T-x),{height:i.getInputHeight(0),width:i.getInputWidth(0)})});return a.dispose(),l.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeigthMap(e){return EE(e)}extractParams(e){return OE(e)}}function jg(e){const t=new To;return t.extractWeights(e),t}function BL(e){return jg(e)}class jL extends To{}const ME=.4,UE=[new _e(.738768,.874946),new _e(2.42204,2.65704),new _e(4.30971,7.04493),new _e(10.246,4.59428),new _e(12.6868,11.8741)],$E=[new _e(1.603231,2.094468),new _e(6.041143,7.080126),new _e(2.882459,3.518061),new _e(4.266906,5.178857),new _e(9.041765,10.66308)],WE=[117.001,114.697,97.404],zE="tiny_yolov2_model",PE="tiny_yolov2_separable_conv_model";const Dg=e=>typeof e=="number";function eh(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Dg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Dg(t.x)&&Dg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Dg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function gc(e){return C(()=>{const t=R(e,j(.10000000149011612));return $(Fe(X(e,t)),t)})}function sr(e,t){return C(()=>{let s=Pt(e,[[0,0],[1,1],[1,1],[0,0]]);return s=rt(s,t.conv.filters,[1,1],"valid"),s=X(s,t.bn.sub),s=R(s,t.bn.truediv),s=$(s,t.conv.bias),gc(s)})}function nr(e,t){return C(()=>{let s=Pt(e,[[0,0],[1,1],[1,1],[0,0]]);return s=eo(s,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),s=$(s,t.bias),gc(s)})}function KG(e,t){const s=dc(e,t);function n(o,a){const l=Oe(e(o)),c=Oe(e(o));return t.push({paramPath:`${a}/sub`},{paramPath:`${a}/truediv`}),{sub:l,truediv:c}}function i(o,a,l){const c=s(o,a,3,`${l}/conv`),p=n(a,`${l}/bn`);return{conv:c,bn:p}}const r=mc(e,t);return{extractConvParams:s,extractConvWithBatchNormParams:i,extractSeparableConvParams:r}}function BE(e,t,s,n){const{extractWeights:i,getRemainingWeights:r}=vs(e),o=[],{extractConvParams:a,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=KG(i,o);let p;if(t.withSeparableConvs){const[u,h,d,m,f,g,y,w,x]=n,T=t.isFirstLayerConv2d?a(u,h,3,"conv0"):c(u,h,"conv0"),A=c(h,d,"conv1"),_=c(d,m,"conv2"),E=c(m,f,"conv3"),F=c(f,g,"conv4"),D=c(g,y,"conv5"),M=w?c(y,w,"conv6"):void 0,P=x?c(w,x,"conv7"):void 0,B=a(x||w||y,5*s,1,"conv8");p={conv0:T,conv1:A,conv2:_,conv3:E,conv4:F,conv5:D,conv6:M,conv7:P,conv8:B}}else{const[u,h,d,m,f,g,y,w,x]=n,T=l(u,h,"conv0"),A=l(h,d,"conv1"),_=l(d,m,"conv2"),E=l(m,f,"conv3"),F=l(f,g,"conv4"),D=l(g,y,"conv5"),M=l(y,w,"conv6"),P=l(w,x,"conv7"),B=a(x,5*s,1,"conv8");p={conv0:T,conv1:A,conv2:_,conv3:E,conv4:F,conv5:D,conv6:M,conv7:P,conv8:B}}if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:p,paramMappings:o}}function XG(e,t){const s=Vs(e,t);function n(a){const l=s(`${a}/sub`,1),c=s(`${a}/truediv`,1);return{sub:l,truediv:c}}function i(a){const l=s(`${a}/filters`,4),c=s(`${a}/bias`,1);return{filters:l,bias:c}}function r(a){const l=i(`${a}/conv`),c=n(`${a}/bn`);return{conv:l,bn:c}}const o=fc(s);return{extractConvParams:i,extractConvWithBatchNormParams:r,extractSeparableConvParams:o}}function jE(e,t){const s=[],{extractConvParams:n,extractConvWithBatchNormParams:i,extractSeparableConvParams:r}=XG(e,s);let o;if(t.withSeparableConvs){const a=t.filterSizes&&t.filterSizes.length||9;o={conv0:t.isFirstLayerConv2d?n("conv0"):r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:a>7?r("conv6"):void 0,conv7:a>8?r("conv7"):void 0,conv8:n("conv8")}}else o={conv0:i("conv0"),conv1:i("conv1"),conv2:i("conv2"),conv3:i("conv3"),conv4:i("conv4"),conv5:i("conv5"),conv6:i("conv6"),conv7:i("conv7"),conv8:n("conv8")};return Is(e,s),{params:o,paramMappings:s}}var th;(function(e){e[e.XS=224]="XS",e[e.SM=320]="SM",e[e.MD=416]="MD",e[e.LG=608]="LG"})(th||(th={}));class Xn{constructor({inputSize:e,scoreThreshold:t}={}){if(this._name="TinyYolov2Options",this._inputSize=e||416,this._scoreThreshold=t||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}}class yc extends Zt{constructor(e){super("TinyYolov2");eh(e),this._config=e}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(e,t){let s=sr(e,t.conv0);return s=ft(s,[2,2],[2,2],"same"),s=sr(s,t.conv1),s=ft(s,[2,2],[2,2],"same"),s=sr(s,t.conv2),s=ft(s,[2,2],[2,2],"same"),s=sr(s,t.conv3),s=ft(s,[2,2],[2,2],"same"),s=sr(s,t.conv4),s=ft(s,[2,2],[2,2],"same"),s=sr(s,t.conv5),s=ft(s,[2,2],[1,1],"same"),s=sr(s,t.conv6),s=sr(s,t.conv7),Oa(s,t.conv8,"valid",!1)}runMobilenet(e,t){let s=this.config.isFirstLayerConv2d?gc(Oa(e,t.conv0,"valid",!1)):nr(e,t.conv0);return s=ft(s,[2,2],[2,2],"same"),s=nr(s,t.conv1),s=ft(s,[2,2],[2,2],"same"),s=nr(s,t.conv2),s=ft(s,[2,2],[2,2],"same"),s=nr(s,t.conv3),s=ft(s,[2,2],[2,2],"same"),s=nr(s,t.conv4),s=ft(s,[2,2],[2,2],"same"),s=nr(s,t.conv5),s=ft(s,[2,2],[1,1],"same"),s=t.conv6?nr(s,t.conv6):s,s=t.conv7?nr(s,t.conv7):s,Oa(s,t.conv8,"valid",!1)}forwardInput(e,t){const{params:s}=this;if(!s)throw new Error("TinyYolov2 - load model before inference");return C(()=>{let n=G(e.toBatchTensor(t,!1),"float32");return n=this.config.meanRgb?un(n,this.config.meanRgb):n,n=n.div(j(256)),this.config.withSeparableConvs?this.runMobilenet(n,s):this.runTinyYolov2(n,s)})}async forward(e,t){return await this.forwardInput(await nt(e),t)}async detect(e,t={}){const{inputSize:s,scoreThreshold:n}=new Xn(t),i=await nt(e),r=await this.forwardInput(i,s),o=C(()=>qe(r)[0].expandDims()),a={width:i.getInputWidth(0),height:i.getInputHeight(0)},l=await this.extractBoxes(o,i.getReshapedInputDimensions(0),n);r.dispose(),o.dispose();const c=l.map(f=>f.box),p=l.map(f=>f.score),u=l.map(f=>f.classScore),h=l.map(f=>this.config.classes[f.label]),d=ih(c.map(f=>f.rescale(s)),p,this.config.iouThreshold,!0),m=d.map(f=>new Oo(p[f],u[f],h[f],c[f],a));return m}getDefaultModelName(){return""}extractParamsFromWeigthMap(e){return jE(e,this.config)}extractParams(e){const t=this.config.filterSizes||yc.DEFAULT_FILTER_SIZES,s=t?t.length:void 0;if(s!==7&&s!==8&&s!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${s} filterSizes in config`);return BE(e,this.config,this.boxEncodingSize,t)}async extractBoxes(e,t,s){const{width:n,height:i}=t,r=Math.max(n,i),o=r/n,a=r/i,l=e.shape[1],c=this.config.anchors.length,[p,u,h]=C(()=>{const g=e.reshape([l,l,c,this.boxEncodingSize]),y=g.slice([0,0,0,0],[l,l,c,4]),w=g.slice([0,0,0,4],[l,l,c,1]),x=this.withClassScores?ts(g.slice([0,0,0,5],[l,l,c,this.config.classes.length]),3):j(0);return[y,w,x]}),d=[],m=await u.array(),f=await p.array();for(let g=0;g<l;g++)for(let y=0;y<l;y++)for(let w=0;w<c;w++){const x=$a(m[g][y][w][0]);if(!s||x>s){const T=(y+$a(f[g][y][w][0]))/l*o,A=(g+$a(f[g][y][w][1]))/l*a,_=Math.exp(f[g][y][w][2])*this.config.anchors[w].x/l*o,E=Math.exp(f[g][y][w][3])*this.config.anchors[w].y/l*a,F=T-_/2,D=A-E/2,M={row:g,col:y,anchor:w},{classScore:P,label:B}=this.withClassScores?await this.extractPredictedClass(h,M):{classScore:1,label:0};d.push({box:new Ga(F,D,F+_,D+E),score:x,classScore:x*P,label:B,...M})}}return p.dispose(),u.dispose(),h.dispose(),d}async extractPredictedClass(e,t){const{row:s,col:n,anchor:i}=t,r=await e.array();return Array(this.config.classes.length).fill(0).map((o,a)=>r[s][n][i][a]).map((o,a)=>({classScore:o,label:a})).reduce((o,a)=>o.classScore>a.classScore?o:a)}}yc.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];class Ma extends yc{constructor(e=!0){const t=Object.assign({},{withSeparableConvs:e,iouThreshold:ME,classes:["face"]},e?{anchors:$E,meanRgb:WE}:{anchors:UE,withClassScores:!0});super(t)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(e,t){const s=await this.detect(e,t);return s.map(n=>new ht(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?PE:zE}extractParamsFromWeigthMap(e){return super.extractParamsFromWeigthMap(e)}}function zL(e,t=!0){const s=new Ma(t);return s.extractWeights(e),s}class sh extends Xn{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}}class hn{async then(e){return e(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}}async function _a(e,t,s,n,i=({alignedRect:r})=>r){const r=e.map(l=>or(l)?i(l):l.detection),o=n||(t instanceof me?await Co(t,r):await No(t,r)),a=await s(o);return o.forEach(l=>l instanceof me&&l.dispose()),a}async function bc(e,t,s,n,i){return _a([e],t,async r=>s(r[0]),n,i)}const VE=.4,GE=[new _e(1.603231,2.094468),new _e(6.041143,7.080126),new _e(2.882459,3.518061),new _e(4.266906,5.178857),new _e(9.041765,10.66308)],qE=[117.001,114.697,97.404];class Ua extends yc{constructor(){const e={withSeparableConvs:!0,iouThreshold:VE,classes:["face"],anchors:GE,meanRgb:qE,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(e)}get anchors(){return this.config.anchors}async locateFaces(e,t){const s=await this.detect(e,t);return s.map(n=>new ht(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeigthMap(e){return super.extractParamsFromWeigthMap(e)}}const Be={ssdMobilenetv1:new To,tinyFaceDetector:new Ua,tinyYolov2:new Ma,faceLandmark68Net:new za,faceLandmark68TinyNet:new mh,faceRecognitionNet:new Wa,faceExpressionNet:new gh,ageGenderNet:new vh},Gg=(e,t)=>Be.ssdMobilenetv1.locateFaces(e,t),qL=(e,t)=>Be.tinyFaceDetector.locateFaces(e,t),HL=(e,t)=>Be.tinyYolov2.locateFaces(e,t),qg=e=>Be.faceLandmark68Net.detectLandmarks(e),YL=e=>Be.faceLandmark68TinyNet.detectLandmarks(e),KL=e=>Be.faceRecognitionNet.computeFaceDescriptor(e),XL=e=>Be.faceExpressionNet.predictExpressions(e),JL=e=>Be.ageGenderNet.predictAgeAndGender(e),Hg=e=>Be.ssdMobilenetv1.load(e),ZL=e=>Be.tinyFaceDetector.load(e),QL=e=>Be.tinyYolov2.load(e),eS=e=>Be.faceLandmark68Net.load(e),tS=e=>Be.faceLandmark68TinyNet.load(e),sS=e=>Be.faceRecognitionNet.load(e),nS=e=>Be.faceExpressionNet.load(e),iS=e=>Be.ageGenderNet.load(e),rS=Hg,oS=Gg,aS=qg;class HE extends hn{constructor(e,t,s){super();this.parentTask=e,this.input=t,this.extractedFaces=s}}class qu extends HE{async run(){const e=await this.parentTask,t=await _a(e,this.input,async s=>await Promise.all(s.map(n=>Be.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return e.map((s,n)=>Rc(s,t[n]))}withAgeAndGender(){return new Vu(this,this.input)}}class Hu extends HE{async run(){const e=await this.parentTask;if(!e)return;const t=await bc(e,this.input,s=>Be.faceExpressionNet.predictExpressions(s),this.extractedFaces);return Rc(e,t)}withAgeAndGender(){return new Gu(this,this.input)}}class Lc extends qu{withAgeAndGender(){return new wc(this,this.input)}withFaceDescriptors(){return new ir(this,this.input)}}class Sc extends Hu{withAgeAndGender(){return new xc(this,this.input)}withFaceDescriptor(){return new rr(this,this.input)}}class YE extends hn{constructor(e,t,s){super();this.parentTask=e,this.input=t,this.extractedFaces=s}}class Vu extends YE{async run(){const e=await this.parentTask,t=await _a(e,this.input,async s=>await Promise.all(s.map(n=>Be.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return e.map((s,n)=>{const{age:i,gender:r,genderProbability:o}=t[n];return Ec(Cc(s,r,o),i)})}withFaceExpressions(){return new qu(this,this.input)}}class Gu extends YE{async run(){const e=await this.parentTask;if(!e)return;const{age:t,gender:s,genderProbability:n}=await bc(e,this.input,i=>Be.ageGenderNet.predictAgeAndGender(i),this.extractedFaces);return Ec(Cc(e,s,n),t)}withFaceExpressions(){return new Hu(this,this.input)}}class wc extends Vu{withFaceExpressions(){return new Lc(this,this.input)}withFaceDescriptors(){return new ir(this,this.input)}}class xc extends Gu{withFaceExpressions(){return new Sc(this,this.input)}withFaceDescriptor(){return new rr(this,this.input)}}class hh extends hn{constructor(e,t){super();this.parentTask=e,this.input=t}}class ir extends hh{async run(){const e=await this.parentTask,t=await _a(e,this.input,s=>Promise.all(s.map(n=>Be.faceRecognitionNet.computeFaceDescriptor(n))),null,s=>s.landmarks.align(null,{useDlibAlignment:!0}));return t.map((s,n)=>Oc(e[n],s))}withFaceExpressions(){return new Lc(this,this.input)}withAgeAndGender(){return new wc(this,this.input)}}class rr extends hh{async run(){const e=await this.parentTask;if(!e)return;const t=await bc(e,this.input,s=>Be.faceRecognitionNet.computeFaceDescriptor(s),null,s=>s.landmarks.align(null,{useDlibAlignment:!0}));return Oc(e,t)}withFaceExpressions(){return new Sc(this,this.input)}withAgeAndGender(){return new xc(this,this.input)}}class ch extends hn{constructor(e,t,s){super();this.parentTask=e,this.input=t,this.useTinyLandmarkNet=s}get landmarkNet(){return this.useTinyLandmarkNet?Be.faceLandmark68TinyNet:Be.faceLandmark68Net}}class ph extends ch{async run(){const e=await this.parentTask,t=e.map(i=>i.detection),s=this.input instanceof me?await Co(this.input,t):await No(this.input,t),n=await Promise.all(s.map(i=>this.landmarkNet.detectLandmarks(i)));return s.forEach(i=>i instanceof me&&i.dispose()),e.map((i,r)=>Ao(i,n[r]))}withFaceExpressions(){return new Lc(this,this.input)}withAgeAndGender(){return new wc(this,this.input)}withFaceDescriptors(){return new ir(this,this.input)}}class uh extends ch{async run(){const e=await this.parentTask;if(!e)return;const{detection:t}=e,s=this.input instanceof me?await Co(this.input,[t]):await No(this.input,[t]),n=await this.landmarkNet.detectLandmarks(s[0]);return s.forEach(i=>i instanceof me&&i.dispose()),Ao(e,n)}withFaceExpressions(){return new Sc(this,this.input)}withAgeAndGender(){return new xc(this,this.input)}withFaceDescriptor(){return new rr(this,this.input)}}class ah extends hn{constructor(e,t=new pn){super();this.input=e,this.options=t}}class Nc extends ah{async run(){const{input:e,options:t}=this,s=t instanceof sh?n=>Be.tinyFaceDetector.locateFaces(n,t):t instanceof pn?n=>Be.ssdMobilenetv1.locateFaces(n,t):t instanceof Xn?n=>Be.tinyYolov2.locateFaces(n,t):null;if(!s)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return s(e)}runAndExtendWithFaceDetections(){return new Promise(async e=>{const t=await this.run();return e(t.map(s=>ar({},s)))})}withFaceLandmarks(e=!1){return new ph(this.runAndExtendWithFaceDetections(),this.input,e)}withFaceExpressions(){return new qu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Vu(this.runAndExtendWithFaceDetections(),this.input)}}class lh extends ah{async run(){const e=await new Nc(this.input,this.options);let t=e[0];return e.forEach(s=>{s.score>t.score&&(t=s)}),t}runAndExtendWithFaceDetection(){return new Promise(async e=>{const t=await this.run();return e(t?ar({},t):void 0)})}withFaceLandmarks(e=!1){return new uh(this.runAndExtendWithFaceDetection(),this.input,e)}withFaceExpressions(){return new Hu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Gu(this.runAndExtendWithFaceDetection(),this.input)}}function lS(e,t=new pn){return new lh(e,t)}function Ac(e,t=new pn){return new Nc(e,t)}async function Yg(e,t){return console.warn("allFacesSsdMobilenetv1 is deprecated and will be removed soon, use the high level api instead"),await Ac(e,new pn(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function cS(e,t={}){return console.warn("allFacesTinyYolov2 is deprecated and will be removed soon, use the high level api instead"),await Ac(e,new Xn(t)).withFaceLandmarks().withFaceDescriptors()}const pS=Yg;function yh(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");const s=Array.from(e),n=Array.from(t);return Math.sqrt(s.map((i,r)=>i-n[r]).reduce((i,r)=>i+Math.pow(r,2),0))}class Kg{constructor(e,t=.6){this._distanceThreshold=t;const s=Array.isArray(e)?e:[e];if(!s.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1;const i=()=>`person ${n++}`;this._labeledDescriptors=s.map(r=>{if(r instanceof hr)return r;if(r instanceof Float32Array)return new hr(i(),[r]);if(r.descriptor&&r.descriptor instanceof Float32Array)return new hr(i(),[r.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(e,t){return t.map(s=>yh(s,e)).reduce((s,n)=>s+n,0)/(t.length||1)}matchDescriptor(e){return this.labeledDescriptors.map(({descriptors:t,label:s})=>new Dc(s,this.computeMeanDistance(e,t))).reduce((t,s)=>t.distance<s.distance?t:s)}findBestMatch(e){const t=this.matchDescriptor(e);return t.distance<this.distanceThreshold?t:new Dc("unknown",t.distance)}toJSON(){return{distanceThreshold:this.distanceThreshold,labeledDescriptors:this.labeledDescriptors.map(e=>e.toJSON())}}static fromJSON(e){const t=e.labeledDescriptors.map(s=>hr.fromJSON(s));return new Kg(t,e.distanceThreshold)}}function PL(e){const t=new Ua;return t.extractWeights(e),t}function Vg(e,t){const{width:s,height:n}=new Ts(t.width,t.height);if(s<=0||n<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:s,height:n})}`);if(Array.isArray(e))return e.map(i=>Vg(i,{width:s,height:n}));if(or(e)){const i=e.detection.forSize(s,n),r=e.unshiftedLandmarks.forSize(i.box.width,i.box.height);return Ao(ar(e,i),r)}return Mn(e)?ar(e,e.detection.forSize(s,n)):e instanceof Hs||e instanceof ht?e.forSize(s,n):e}var UL="0.5.3";class WL{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}}return xS();})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=face-api.js.map