face-api/dist/tfjs.esm.js

4224 lines
1.0 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var JB=Object.create,Mh=Object.defineProperty,QB=Object.getPrototypeOf,e3=Object.prototype.hasOwnProperty,t3=Object.getOwnPropertyNames,r3=Object.getOwnPropertyDescriptor;var DI=r=>Mh(r,"__esModule",{value:!0});var Gr=(r,e)=>()=>(e||(e={exports:{}},r(e.exports,e)),e.exports),tt=(r,e)=>{DI(r);for(var t in e)Mh(r,t,{get:e[t],enumerable:!0})},o3=(r,e,t)=>{if(DI(r),e&&typeof e=="object"||typeof e=="function")for(let o of t3(e))!e3.call(r,o)&&o!=="default"&&Mh(r,o,{get:()=>e[o],enumerable:!(t=r3(e,o))||t.enumerable});return r},Tc=r=>r&&r.__esModule?r:o3(Mh(r!=null?JB(QB(r)):{},"default",{value:r,enumerable:!0}),r);var gN=Gr(()=>{});var XN=Gr((KN,N_)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(KN,typeof N_=="object"&&N_,typeof define=="function"&&define)});var ZN=Gr((YN,S_)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(YN,typeof S_=="object"&&S_,typeof define=="function"&&define)});var QN=Gr((JN,T_)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(JN,typeof T_=="object"&&T_,typeof define=="function"&&define)});var tS=Gr((eS,E_)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(eS,typeof E_=="object"&&E_,typeof define=="function"&&define)});var oS=Gr((rS,A_)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(rS,typeof A_=="object"&&A_,typeof define=="function"&&define)});var sS=Gr((nS,D_)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(nS,typeof D_=="object"&&D_,typeof define=="function"&&define)});var iS=Gr(()=>{});var aS=Gr((uye,sg)=>{(function(r,e){var t=this,o=256,n=6,s=52,a="random",i=e.pow(o,n),l=e.pow(2,s),u=l*2,c=o-1,p;function m(_,w,C){var D=[];w=w==!0?{entropy:!0}:w||{};var A=g(h(w.entropy?[_,b(r)]:_==null?x():_,3),D),F=new f(D),M=function(){for(var z=F.g(n),G=i,U=0;z<l;)z=(z+U)*o,G*=o,U=F.g(1);for(;z>=u;)z/=2,G/=2,U>>>=1;return(z+U)/G};return M.int32=function(){return F.g(4)|0},M.quick=function(){return F.g(4)/4294967296},M.double=M,g(b(F.S),r),(w.pass||C||function(z,G,U,H){return H&&(H.S&&d(H,F),z.state=function(){return d(F,{})}),U?(e[a]=z,G):z})(M,A,"global"in w?w.global:this==e,w.state)}e["seed"+a]=m;function f(_){var w,C=_.length,D=this,A=0,F=D.i=D.j=0,M=D.S=[];for(C||(_=[C++]);A<o;)M[A]=A++;for(A=0;A<o;A++)M[A]=M[F=c&F+_[A%C]+(w=M[A])],M[F]=w;(D.g=function(z){for(var G,U=0,H=D.i,J=D.j,Y=D.S;z--;)G=Y[H=c&H+1],U=U*o+Y[c&(Y[H]=Y[J=c&J+G])+(Y[J]=G)];return D.i=H,D.j=J,U})(o)}function d(_,w){return w.i=_.i,w.j=_.j,w.S=_.S.slice(),w}function h(_,w){var C=[],D=typeof _,A;if(w&&D=="object")for(A in _)try{C.push(h(_[A],w-1))}catch(F){}return C.length?C:D=="string"?_:_+"\0"}function g(_,w){for(var C=_+"",D,A=0;A<C.length;)w[c&A]=c&(D^=w[c&A]*19)+C.charCodeAt(A++);return b(w)}function x(){try{var _;return p&&(_=p.randomBytes)?_=_(o):(_=new Uint8Array(o),(t.crypto||t.msCrypto).getRandomValues(_)),b(_)}catch(D){var w=t.navigator,C=w&&w.plugins;return[+new Date,t,C,t.screen,b(r)]}}function b(_){return String.fromCharCode.apply(0,_)}if(g(e.random(),r),typeof sg=="object"&&sg.exports){sg.exports=m;try{p=iS()}catch(_){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var Um=Gr((cye,lS)=>{var I4=XN(),N4=ZN(),S4=QN(),T4=tS(),E4=oS(),A4=sS(),Ou=aS();Ou.alea=I4;Ou.xor128=N4;Ou.xorwow=S4;Ou.xorshift7=T4;Ou.xor4096=E4;Ou.tychei=A4;lS.exports=Ou});var KE=Gr(()=>{});var Kp=Gr(()=>{});var Az=Gr(()=>{});var Dz=Gr(()=>{});var $z=Gr((Kx,hI)=>{var gI=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return K.buffer!=Ke&&kr(K.buffer),Ft}function o(){return K.buffer!=Ke&&kr(K.buffer),ho}function n(){return K.buffer!=Ke&&kr(K.buffer),vr}function s(){return K.buffer!=Ke&&kr(K.buffer),Uo}function a(){return K.buffer!=Ke&&kr(K.buffer),xo}var i=typeof e!="undefined"?e:{},l={},u;for(u in i)i.hasOwnProperty(u)&&(l[u]=i[u]);var c=[],p="./this.program",m=function(I,$){throw $},f=!1,d=!1,h=!1,g=!1;f=typeof window=="object",d=typeof importScripts=="function",h=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!f&&!h&&!d;var x=i.ENVIRONMENT_IS_PTHREAD||!1;x&&(Ke=i.buffer,ns=i.DYNAMIC_BASE,Ao=i.DYNAMICTOP_PTR);var b="";function _(I){return i.locateFile?i.locateFile(I,b):b+I}var w,C,D,A,F,M;if(h){d?b=Kp().dirname(b)+"/":b=__dirname+"/",w=function($,P){return F||(F=require("fs")),M||(M=Kp()),$=M.normalize($),F.readFileSync($,P?null:"utf8")},D=function($){var P=w($,!0);return P.buffer||(P=new Uint8Array(P)),ye(P.buffer),P},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof EI))throw I}),process.on("unhandledRejection",ea),m=function(I){process.exit(I)},i.inspect=function(){return"[Emscripten Module object]"};var z;try{z=Az()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}Worker=z.Worker}else g?(typeof read!="undefined"&&(w=function($){return read($)}),D=function($){var P;return typeof readbuffer=="function"?new Uint8Array(readbuffer($)):(P=read($,"binary"),ye(typeof P=="object"),P)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(m=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(f||d)&&(d?b=self.location.href:document.currentScript&&(b=document.currentScript.src),typeof r!="undefined"&&r&&(b=r),b.indexOf("blob:")!==0?b=b.substr(0,b.lastIndexOf("/")+1):b="",h?(w=function($,P){return F||(F=require("fs")),M||(M=Kp()),$=M.normalize($),F.readFileSync($,P?null:"utf8")},D=function($){var P=w($,!0);return P.buffer||(P=new Uint8Array(P)),ye(P.buffer),P}):(w=function($){var P=new XMLHttpRequest;return P.open("GET",$,!1),P.send(null),P.responseText},d&&(D=function($){var P=new XMLHttpRequest;return P.open("GET",$,!1),P.responseType="arraybuffer",P.send(null),new Uint8Array(P.response)}),C=function($,P,j){var de=new XMLHttpRequest;de.open("GET",$,!0),de.responseType="arraybuffer",de.onload=function(){if(de.status==200||de.status==0&&de.response){P(de.response);return}j()},de.onerror=j,de.send(null)}),A=function(I){document.title=I});h&&typeof performance=="undefined"&&(performance=Dz().performance);var G=i.print||console.log.bind(console),U=i.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(i[u]=l[u]);l=null,i.arguments&&(c=i.arguments),i.thisProgram&&(p=i.thisProgram),i.quit&&(m=i.quit);var H=Atomics.load,J=Atomics.store,Y=Atomics.compareExchange,X;i.wasmBinary&&(X=i.wasmBinary);var re;i.noExitRuntime&&(re=i.noExitRuntime),typeof WebAssembly!="object"&&U("no native wasm support detected");var K,ne=new WebAssembly.Table({initial:169,maximum:169+0,element:"anyfunc"}),ae,ie=0,pe=0,le=!1,ge=0;function ye(I,$){I||ea("Assertion failed: "+$)}function be(I){var $=i["_"+I];return ye($,"Cannot call unknown function "+I+", make sure it is exported"),$}function ke(I,$,P,j,de){var xe={string:function(bo){var Za=0;if(bo!=null&&bo!==0){var pm=(bo.length<<2)+1;Za=Cc(pm),ct(bo,Za,pm)}return Za},array:function(bo){var Za=Cc(bo.length);return kt(bo,Za),Za}};function he(bo){return $==="string"?Fe(bo):$==="boolean"?Boolean(bo):bo}var Te=be(I),dt=[],mr=0;if(j)for(var Rr=0;Rr<j.length;Rr++){var Nc=xe[P[Rr]];Nc?(mr===0&&(mr=lm()),dt[Rr]=Nc(j[Rr])):dt[Rr]=j[Rr]}var cm=Te.apply(null,dt);return cm=he(cm),mr!==0&&Ic(mr),cm}function Ee(I,$,P,j){P=P||[];var de=P.every(function(he){return he==="number"}),xe=$!=="string";return xe&&de&&!j?be(I):function(){return ke(I,$,P,arguments,j)}}function $e(I,$,P){for(var j=$+P,de="";!($>=j);){var xe=I[$++];if(!xe)return de;if(!(xe&128)){de+=String.fromCharCode(xe);continue}var he=I[$++]&63;if((xe&224)==192){de+=String.fromCharCode((xe&31)<<6|he);continue}var Te=I[$++]&63;if((xe&240)==224?xe=(xe&15)<<12|he<<6|Te:xe=(xe&7)<<18|he<<12|Te<<6|I[$++]&63,xe<65536)de+=String.fromCharCode(xe);else{var dt=xe-65536;de+=String.fromCharCode(55296|dt>>10,56320|dt&1023)}}return de}function Fe(I,$){return I?$e(o(),I,$):""}function He(I,$,P,j){if(!(j>0))return 0;for(var de=P,xe=P+j-1,he=0;he<I.length;++he){var Te=I.charCodeAt(he);if(Te>=55296&&Te<=57343){var dt=I.charCodeAt(++he);Te=65536+((Te&1023)<<10)|dt&1023}if(Te<=127){if(P>=xe)break;$[P++]=Te}else if(Te<=2047){if(P+1>=xe)break;$[P++]=192|Te>>6,$[P++]=128|Te&63}else if(Te<=65535){if(P+2>=xe)break;$[P++]=224|Te>>12,$[P++]=128|Te>>6&63,$[P++]=128|Te&63}else{if(P+3>=xe)break;$[P++]=240|Te>>18,$[P++]=128|Te>>12&63,$[P++]=128|Te>>6&63,$[P++]=128|Te&63}}return $[P]=0,P-de}function ct(I,$,P){return He(I,o(),$,P)}function vt(I){for(var $=0,P=0;P<I.length;++P){var j=I.charCodeAt(P);j>=55296&&j<=57343&&(j=65536+((j&1023)<<10)|I.charCodeAt(++P)&1023),j<=127?++$:j<=2047?$+=2:j<=65535?$+=3:$+=4}return $}function kt(I,$){t().set(I,$)}var ft=65536;function Ct(I,$){return I%$>0&&(I+=$-I%$),I}var Ke,Ft,ho,er,go,vr,Uo,to,xo;function kr(I){Ke=I,i.HEAP8=Ft=new Int8Array(I),i.HEAP16=er=new Int16Array(I),i.HEAP32=vr=new Int32Array(I),i.HEAPU8=ho=new Uint8Array(I),i.HEAPU16=go=new Uint16Array(I),i.HEAPU32=Uo=new Uint32Array(I),i.HEAPF32=to=new Float32Array(I),i.HEAPF64=xo=new Float64Array(I)}var Eo=5256464,jo=Eo,ro=13584,ns=5256464,Ao=12656,xc=i.INITIAL_MEMORY||16777216;if(x)K=i.wasmMemory,Ke=i.buffer;else if(i.wasmMemory)K=i.wasmMemory;else if(K=new WebAssembly.Memory({initial:xc/ft,maximum:2147483648/ft,shared:!0}),!(K.buffer instanceof SharedArrayBuffer))throw U("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),h&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");K&&(Ke=K.buffer),xc=Ke.byteLength,kr(Ke),x||(n()[Ao>>2]=ns);function ss(I){for(;I.length>0;){var $=I.shift();if(typeof $=="function"){$(i);continue}var P=$.func;typeof P=="number"?$.arg===void 0?i.dynCall_v(P):i.dynCall_vi(P,$.arg):P($.arg===void 0?null:$.arg)}}var Ji=[],Fl=[],Jx=[],Xp=[],gh=[],Yp=!1;x&&(Yp=!0);function qo(){if(!x){if(i.preRun)for(typeof i.preRun=="function"&&(i.preRun=[i.preRun]);i.preRun.length;)ty(i.preRun.shift());ss(Ji)}}function xh(){Yp=!0,ss(Fl)}function Qx(){x||ss(Jx)}function ey(){if(!x){if(i.postRun)for(typeof i.postRun=="function"&&(i.postRun=[i.postRun]);i.postRun.length;)Ol(i.postRun.shift());ss(gh)}}function ty(I){Ji.unshift(I)}function Ol(I){gh.unshift(I)}var yc=Math.ceil,ry=Math.floor,Qi=0,Zp=null,Pl=null;function oy(I){ye(!x,"addRunDependency cannot be used in a pthread worker"),Qi++,i.monitorRunDependencies&&i.monitorRunDependencies(Qi)}function ny(I){if(Qi--,i.monitorRunDependencies&&i.monitorRunDependencies(Qi),Qi==0&&(Zp!==null&&(clearInterval(Zp),Zp=null),Pl)){var $=Pl;Pl=null,$()}}i.preloadedImages={},i.preloadedAudios={};function ea(I){throw i.onAbort&&i.onAbort(I),x&&console.error("Pthread aborting at "+new Error().stack),I+="",G(I),U(I),le=!0,ge=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(I)}function Jp(I,$){return String.prototype.startsWith?I.startsWith($):I.indexOf($)===0}var sy="data:application/octet-stream;base64,";function yh(I){return Jp(I,sy)}var iy="file://";function bh(I){return Jp(I,iy)}var Ho="tfjs-backend-wasm-threaded-simd.wasm";yh(Ho)||(Ho=_(Ho));function _h(){try{if(X)return new Uint8Array(X);if(D)return D(Ho);throw"both async and sync fetching of the wasm failed"}catch(I){ea(I)}}function ay(){return!X&&(f||d)&&typeof fetch=="function"&&!bh(Ho)?fetch(Ho,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+Ho+"'";return I.arrayBuffer()}).catch(function(){return _h()}):new Promise(function(I,$){I(_h())})}function ly(){var I={a:Qy};function $(he,Te){var dt=he.exports;if(i.asm=dt,ae=Te,!x){var mr=ve.unusedWorkers.length;ve.unusedWorkers.forEach(function(Rr){ve.loadWasmModuleToWorker(Rr,function(){--mr||ny("wasm-instantiate")})})}}x||oy("wasm-instantiate");function P(he){$(he.instance,he.module)}function j(he){return ay().then(function(Te){return WebAssembly.instantiate(Te,I)}).then(he,function(Te){U("failed to asynchronously prepare wasm: "+Te),ea(Te)})}function de(){if(!X&&typeof WebAssembly.instantiateStreaming=="function"&&!yh(Ho)&&!bh(Ho)&&typeof fetch=="function")fetch(Ho,{credentials:"same-origin"}).then(function(he){var Te=WebAssembly.instantiateStreaming(he,I);return Te.then(P,function(dt){U("wasm streaming compile failed: "+dt),U("falling back to ArrayBuffer instantiation"),j(P)})});else return j(P)}if(i.instantiateWasm)try{var xe=i.instantiateWasm(I,$);return xe}catch(he){return U("Module.instantiateWasm callback failed with error: "+he),!1}return de(),{}}var uy={};function cy(){ve.initRuntime()}x||Fl.push({func:function(){tm()}});var wh=0,vh=0,kh=0;function bc(I,$,P){I=I|0,$=$|0,P=P|0,wh=I,kh=$,vh=P}i.__register_pthread_ptr=bc;var Qp={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},_c=13568;function wc(I,$){if(I<=0||I>t().length||I&!0||$<0)return-28;if($==0)return 0;$>=2147483647&&($=Infinity);var P=Atomics.load(n(),_c>>2),j=0;if(P==I){var de=Atomics.compareExchange(n(),_c>>2,P,0);if(de==P&&(--$,j=1,$<=0))return 1}var xe=Atomics.notify(n(),I>>2,$);if(xe>=0)return xe+j;throw"Atomics.notify returned an unexpected value "+xe}i._emscripten_futex_wake=wc;function py(I){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in _kill_thread!";n()[I+12>>2]=0;var $=ve.pthreads[I];$.worker.terminate(),ve.freeThreadData($),ve.runningWorkers.splice(ve.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function my(I){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var $=ve.pthreads[I];$.worker.postMessage({cmd:"cancel"})}function fy(I){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";n()[I+12>>2]=0;var $=ve.pthreads[I];if($){var P=$.worker;ve.returnWorkerToPool(P)}}var ve={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){bc(ve.mainThreadBlock,!d,1),II(ve.mainThreadBlock)},initMainThreadBlock:function(){for(var I=8,$=0;$<I;++$)ve.allocateUnusedWorker();ve.mainThreadBlock=12816;for(var $=0;$<232/4;++$)s()[ve.mainThreadBlock/4+$]=0;n()[ve.mainThreadBlock+12>>2]=ve.mainThreadBlock;var P=ve.mainThreadBlock+156;n()[P>>2]=P;for(var j=13056,$=0;$<128;++$)s()[j/4+$]=0;Atomics.store(s(),ve.mainThreadBlock+104>>2,j),Atomics.store(s(),ve.mainThreadBlock+40>>2,ve.mainThreadBlock),Atomics.store(s(),ve.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(ve.exitHandlers!==null){for(;ve.exitHandlers.length>0;)ve.exitHandlers.pop()();ve.exitHandlers=null}x&&ie&&CI()},threadExit:function(I){var $=Gs();$&&(Atomics.store(s(),$+4>>2,I),Atomics.store(s(),$+0>>2,1),Atomics.store(s(),$+60>>2,1),Atomics.store(s(),$+64>>2,0),ve.runExitHandlers(),wc($+0,2147483647),bc(0,0,0),ie=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){ve.runExitHandlers(),Atomics.store(s(),ie+4>>2,-1),Atomics.store(s(),ie+0>>2,1),wc(ie+0,2147483647),ie=pe=0,bc(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in ve.pthreads){var $=ve.pthreads[I];$&&$.worker&&ve.returnWorkerToPool($.worker)}ve.pthreads={};for(var P=0;P<ve.unusedWorkers.length;++P){var j=ve.unusedWorkers[P];j.terminate()}ve.unusedWorkers=[];for(var P=0;P<ve.runningWorkers.length;++P){var j=ve.runningWorkers[P],$=j.pthread;ve.freeThreadData($),j.terminate()}ve.runningWorkers=[]},freeThreadData:function(I){if(!!I){if(I.threadInfoStruct){var $=n()[I.threadInfoStruct+104>>2];n()[I.threadInfoStruct+104>>2]=0,am($),am(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&am(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){delete ve.pthreads[I.pthread.thread],ve.unusedWorkers.push(I),ve.runningWorkers.splice(ve.runningWorkers.indexOf(I),1),ve.freeThreadData(I.pthread),I.pthread=void 0},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,$){I.onmessage=function(P){var j=P.data,de=j.cmd;if(I.pthread&&(ve.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),j.targetThread&&j.targetThread!=Gs()){var xe=ve.pthreads[j.targetThread];xe?xe.worker.postMessage(P.data,j.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+j.targetThread+", but that thread no longer exists!"),ve.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")rb();else if(de==="spawnThread")Eh(P.data);else if(de==="cleanupThread")fy(j.thread);else if(de==="killThread")py(j.thread);else if(de==="cancelThread")my(j.thread);else if(de==="loaded")I.loaded=!0,$&&$(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(de==="print")G("Thread "+j.threadId+": "+j.text);else if(de==="printErr")U("Thread "+j.threadId+": "+j.text);else if(de==="alert")alert("Thread "+j.threadId+": "+j.text);else if(de==="exit"){var he=I.pthread&&Atomics.load(s(),I.pthread.thread+68>>2);he&&ve.returnWorkerToPool(I)}else de==="cancelDone"?ve.returnWorkerToPool(I):de==="objectTransfer"?ve.receiveObjectTransfer(P.data):P.data.target==="setimmediate"?I.postMessage(P.data):U("worker sent an unknown command "+de);ve.currentProxiedOperationCallerThread=void 0},I.onerror=function(P){U("pthread sent an error! "+P.filename+":"+P.lineno+": "+P.message)},h&&(I.on("message",function(P){I.onmessage({data:P})}),I.on("error",function(P){I.onerror(P)}),I.on("exit",function(P){console.log("worker exited - TODO: update the worker queue?")})),I.postMessage({cmd:"load",urlOrBlob:i.mainScriptUrlOrBlob||r,wasmMemory:K,wasmModule:ae,DYNAMIC_BASE:ns,DYNAMICTOP_PTR:Ao})},allocateUnusedWorker:function(){var I=_("tfjs-backend-wasm-threaded-simd.worker.js");ve.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return ve.unusedWorkers.length==0&&(ve.allocateUnusedWorker(),ve.loadWasmModuleToWorker(ve.unusedWorkers[0])),ve.unusedWorkers.length>0?ve.unusedWorkers.pop():null},busySpinWait:function(I){for(var $=performance.now()+I;performance.now()<$;);}};function dy(I,$){Eo=jo=I,ro=$,Ic(I)}i.establishStackSpace=dy;function hy(){return re}i.getNoExitRuntime=hy;function gy(I,$,P,j){ea("Assertion failed: "+Fe(I)+", at: "+[$?Fe($):"unknown filename",P,j?Fe(j):"unknown function"])}function xy(I,$){var P=_main(I,$)}var Ml;h?Ml=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:x?Ml=function(){return performance.now()-i.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ml=dateNow:Ml=function(){return performance.now()};function yy(I){return n()[wI()>>2]=I,I}function by(I,$){if(x)return Ka(1,1,I,$);Xp.unshift({func:I,arg:$})}function _y(I,$){if(I==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var P=ve.pthreads[I],j=P&&P.worker;if(!j)return;j.postMessage({cmd:"processThreadQueue"})}return 1}function wy(){ea()}function vy(I,$){I=I|0,$=$|0}function ky(I,$,P){if(I<=0||I>t().length||I&!0)return-28;if(d){var j=Atomics.wait(n(),I>>2,$,P);if(j==="timed-out")return-73;if(j==="not-equal")return-6;if(j==="ok")return 0;throw"Atomics.wait returned an unexpected value "+j}else{var de=Atomics.load(n(),I>>2);if($!=de)return-6;var xe=performance.now(),he=xe+P;Atomics.store(n(),_c>>2,I);for(var Te=I;I==Te;){if(xe=performance.now(),xe>he)return-73;rb(),I=Atomics.load(n(),_c>>2)}return 0}}function Cy(){return kh|0}function Iy(){return vh|0}function Ny(I,$,P){o().copyWithin(I,$,$+P)}function Sy(){return navigator.hardwareConcurrency}function Ka(I,$){for(var P=arguments.length-2,j=lm(),de=Cc(P*8),xe=de>>3,he=0;he<P;he++)a()[xe+he]=arguments[2+he];var Te=SI(I,P,de,$);return Ic(j),Te}var Ll=[];function vc(I,$){vc.array||(vc.array=[]);var P=vc.array;P.length=0;for(var j;j=o()[I++];)j===100||j===102?($=$+7&~7,P.push(a()[$>>3]),$+=8):($=$+3&~3,P.push(n()[$>>2]),$+=4);return P}function Ty(I,$,P){Ll.length=$;for(var j=P>>3,de=0;de<$;de++)Ll[de]=a()[j+de];var xe=I<0,he=xe?uy[-I-1]:Jy[I];if(xe){var Te=Ll[1],dt=Ll[2],mr=vc(Te,dt);return he.apply(null,mr)}return he.apply(null,Ll)}function Ey(){return o().length}function Ay(I){try{return K.grow(I-Ke.byteLength+65535>>>16),kr(K.buffer),1}catch($){}}function Dy(I){I=I>>>0;var $=Ey();if(I<=$)return!1;var P=65536,j=2147483648;if(I>j)return!1;for(var de=16777216,xe=1;xe<=4;xe*=2){var he=$*(1+.2/xe);he=Math.min(he,I+100663296);var Te=Math.min(j,Ct(Math.max(de,I,he),P)),dt=Ay(Te);if(dt)return!0}return!1}var Je={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var I=Je.eventHandlers.length-1;I>=0;--I)Je._removeHandler(I);Je.eventHandlers=[],Je.deferredCalls=[]},registerRemoveEventListeners:function(){Je.removeEventListenersRegistered||(Xp.push(Je.removeAllEventListeners),Je.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,$,P){function j(he,Te){if(he.length!=Te.length)return!1;for(var dt in he)if(he[dt]!=Te[dt])return!1;return!0}for(var de in Je.deferredCalls){var xe=Je.deferredCalls[de];if(xe.targetFunction==I&&j(xe.argsList,P))return}Je.deferredCalls.push({targetFunction:I,precedence:$,argsList:P}),Je.deferredCalls.sort(function(he,Te){return he.precedence<Te.precedence})},removeDeferredCalls:function(I){for(var $=0;$<Je.deferredCalls.length;++$)Je.deferredCalls[$].targetFunction==I&&(Je.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Je.inEventHandler&&Je.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Je.canPerformEventHandlerRequests())for(var I=0;I<Je.deferredCalls.length;++I){var $=Je.deferredCalls[I];Je.deferredCalls.splice(I,1),--I,$.targetFunction.apply(null,$.argsList)}},inEventHandler:0,currentEventHandler:null,eventHandlers:[],removeAllHandlersOnTarget:function(I,$){for(var P=0;P<Je.eventHandlers.length;++P)Je.eventHandlers[P].target==I&&(!$||$==Je.eventHandlers[P].eventTypeString)&&Je._removeHandler(P--)},_removeHandler:function(I){var $=Je.eventHandlers[I];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Je.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var $=function(de){++Je.inEventHandler,Je.currentEventHandler=I,Je.runDeferredCalls(),I.handlerFunc(de),Je.runDeferredCalls(),--Je.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=$,I.target.addEventListener(I.eventTypeString,$,I.useCapture),Je.eventHandlers.push(I),Je.registerRemoveEventListeners();else for(var P=0;P<Je.eventHandlers.length;++P)Je.eventHandlers[P].target==I.target&&Je.eventHandlers[P].eventTypeString==I.eventTypeString&&Je._removeHandler(P--)},queueEventHandlerOnThread_iiii:function(I,$,P,j,de){var xe=lm(),he=Cc(12);n()[he>>2]=P,n()[he+4>>2]=j,n()[he+8>>2]=de,ob(I,637534208,$,j,he),Ic(xe)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return ve.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function $y(I){var $=vt(I)+1,P=im($);return ct(I,P,$),P}function Ry(I,$,P,j){var de=lm(),xe=Cc(12),he=0;$&&(he=$y($)),n()[xe>>2]=he,n()[xe+4>>2]=P,n()[xe+8>>2]=j,ob(I,657457152,0,he,xe),Ic(de)}function Fy(I,$,P,j){$=$?Fe($):"",Ry(I,$,P,j)}function Oy(I){return I>2?Fe(I):I}var Py=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function My(I){I=Oy(I);var $=Py[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return $}function em(I){return My(I)}function Ch(I,$,P){var j=em(I);if(!j)return-4;if(j.canvasSharedPtr&&(n()[j.canvasSharedPtr>>2]=$,n()[j.canvasSharedPtr+4>>2]=P),j.offscreenCanvas||!j.controlTransferredOffscreen){j.offscreenCanvas&&(j=j.offscreenCanvas);var de=!1;if(j.GLctxObject&&j.GLctxObject.GLctx){var xe=j.GLctxObject.GLctx.getParameter(2978);de=xe[0]===0&&xe[1]===0&&xe[2]===j.width&&xe[3]===j.height}j.width=$,j.height=P,de&&j.GLctxObject.GLctx.viewport(0,0,$,P)}else if(j.canvasSharedPtr){var he=n()[j.canvasSharedPtr+8>>2];return Fy(he,I,$,P),1}else return-4;return 0}function Ih(I,$,P){return x?Ka(2,1,I,$,P):Ch(I,$,P)}function Ly(I,$,P){var j=em(I);return j?Ch(I,$,P):Ih(I,$,P)}function zy(I){I=I|0}function By(I,$){I=I|0,$=$|0}function Vy(I){var $=I.getExtension("ANGLE_instanced_arrays");if($)return I.vertexAttribDivisor=function(P,j){$.vertexAttribDivisorANGLE(P,j)},I.drawArraysInstanced=function(P,j,de,xe){$.drawArraysInstancedANGLE(P,j,de,xe)},I.drawElementsInstanced=function(P,j,de,xe,he){$.drawElementsInstancedANGLE(P,j,de,xe,he)},1}function Wy(I){var $=I.getExtension("OES_vertex_array_object");if($)return I.createVertexArray=function(){return $.createVertexArrayOES()},I.deleteVertexArray=function(P){$.deleteVertexArrayOES(P)},I.bindVertexArray=function(P){$.bindVertexArrayOES(P)},I.isVertexArray=function(P){return $.isVertexArrayOES(P)},1}function Gy(I){var $=I.getExtension("WEBGL_draw_buffers");if($)return I.drawBuffers=function(P,j){$.drawBuffersWEBGL(P,j)},1}var ot={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var I=new Float32Array(ot.MINI_TEMP_BUFFER_SIZE),$=0;$<ot.MINI_TEMP_BUFFER_SIZE;$++)ot.miniTempBufferFloatViews[$]=I.subarray(0,$+1);for(var P=new Int32Array(ot.MINI_TEMP_BUFFER_SIZE),$=0;$<ot.MINI_TEMP_BUFFER_SIZE;$++)ot.miniTempBufferIntViews[$]=P.subarray(0,$+1)},recordError:function($){ot.lastError||(ot.lastError=$)},getNewId:function(I){for(var $=ot.counter++,P=I.length;P<$;P++)I[P]=null;return $},MINI_TEMP_BUFFER_SIZE:256,miniTempBufferFloatViews:[0],miniTempBufferIntViews:[0],getSource:function(I,$,P,j){for(var de="",xe=0;xe<$;++xe){var he=j?n()[j+xe*4>>2]:-1;de+=Fe(n()[P+xe*4>>2],he<0?void 0:he)}return de},createContext:function(I,$){var P=I.getContext("webgl",$);if(!P)return 0;var j=ot.registerContext(P,$);return j},registerContext:function(I,$){var P=im(8);n()[P+4>>2]=Gs();var j={handle:P,attributes:$,version:$.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=j),ot.contexts[P]=j,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&ot.initExtensions(j),P},makeContextCurrent:function(I){return ot.currentContext=ot.contexts[I],i.ctx=Xa=ot.currentContext&&ot.currentContext.GLctx,!(I&&!Xa)},getContext:function(I){return ot.contexts[I]},deleteContext:function(I){ot.currentContext===ot.contexts[I]&&(ot.currentContext=null),typeof Je=="object"&&Je.removeAllHandlersOnTarget(ot.contexts[I].GLctx.canvas),ot.contexts[I]&&ot.contexts[I].GLctx.canvas&&(ot.contexts[I].GLctx.canvas.GLctxObject=void 0),am(ot.contexts[I].handle),ot.contexts[I]=null},initExtensions:function(I){if(I||(I=ot.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var $=I.GLctx;Vy($),Wy($),Gy($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query");var P=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],j=$.getSupportedExtensions()||[];j.forEach(function(de){P.indexOf(de)!=-1&&$.getExtension(de)})}},populateUniformTable:function(I){for(var $=ot.programs[I],P=ot.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},j=P.uniforms,de=Xa.getProgramParameter($,35718),xe=0;xe<de;++xe){var he=Xa.getActiveUniform($,xe),Te=he.name;P.maxUniformLength=Math.max(P.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var dt=Xa.getUniformLocation($,Te);if(dt){var mr=ot.getNewId(ot.uniforms);j[Te]=[he.size,mr],ot.uniforms[mr]=dt;for(var Rr=1;Rr<he.size;++Rr){var Nc=Te+"["+Rr+"]";dt=Xa.getUniformLocation($,Nc),mr=ot.getNewId(ot.uniforms),ot.uniforms[mr]=dt}}}}},Uy=["default","low-power","high-performance"];function jy(I,$){var P={},j=$>>2;P.alpha=!!n()[j+(0>>2)],P.depth=!!n()[j+(4>>2)],P.stencil=!!n()[j+(8>>2)],P.antialias=!!n()[j+(12>>2)],P.premultipliedAlpha=!!n()[j+(16>>2)],P.preserveDrawingBuffer=!!n()[j+(20>>2)];var de=n()[j+(24>>2)];P.powerPreference=Uy[de],P.failIfMajorPerformanceCaveat=!!n()[j+(28>>2)],P.majorVersion=n()[j+(32>>2)],P.minorVersion=n()[j+(36>>2)],P.enableExtensionsByDefault=n()[j+(40>>2)],P.explicitSwapControl=n()[j+(44>>2)],P.proxyContextToMainThread=n()[j+(48>>2)],P.renderViaOffscreenBackBuffer=n()[j+(52>>2)];var xe=em(I);if(!xe)return-4;if(P.explicitSwapControl)return-1;var he=ot.createContext(xe,P);return he}function qy(I,$){return jy(I,$)}var zl={splitPath:function(I){var $=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return $.exec(I).slice(1)},normalizeArray:function(I,$){for(var P=0,j=I.length-1;j>=0;j--){var de=I[j];de==="."?I.splice(j,1):de===".."?(I.splice(j,1),P++):P&&(I.splice(j,1),P--)}if($)for(;P;P--)I.unshift("..");return I},normalize:function(I){var $=I.charAt(0)==="/",P=I.substr(-1)==="/";return I=zl.normalizeArray(I.split("/").filter(function(j){return!!j}),!$).join("/"),!I&&!$&&(I="."),I&&P&&(I+="/"),($?"/":"")+I},dirname:function(I){var $=zl.splitPath(I),P=$[0],j=$[1];return!P&&!j?".":(j&&(j=j.substr(0,j.length-1)),P+j)},basename:function(I){if(I==="/")return"/";var $=I.lastIndexOf("/");return $===-1?I:I.substr($+1)},extname:function(I){return zl.splitPath(I)[3]},join:function(){var I=Array.prototype.slice.call(arguments,0);return zl.normalize(I.join("/"))},join2:function(I,$){return zl.normalize(I+"/"+$)}},kc={mappings:{},buffers:[null,[],[]],printChar:function(I,$){var P=kc.buffers[I];$===0||$===10?((I===1?G:U)($e(P,0)),P.length=0):P.push($)},varargs:void 0,get:function(){kc.varargs+=4;var I=n()[kc.varargs-4>>2];return I},getStr:function(I){var $=Fe(I);return $},get64:function(I,$){return I}};function Nh(I){return x?Ka(3,1,I):0}function Sh(I,$,P,j,de){if(x)return Ka(4,1,I,$,P,j,de)}function Th(I,$,P,j){if(x)return Ka(5,1,I,$,P,j);for(var de=0,xe=0;xe<P;xe++){for(var he=n()[$+xe*8>>2],Te=n()[$+(xe*8+4)>>2],dt=0;dt<Te;dt++)kc.printChar(I,o()[he+dt]);de+=Te}return n()[j>>2]=de,0}function Hy(I){var $=ve.exitHandlers.pop();I&&$()}function Ky(I,$){ve.exitHandlers===null&&(ve.exitHandlers=[]),ve.exitHandlers.push(function(){TI(I,$)})}function Eh(I){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var $=ve.getNewWorker();if($.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";ve.runningWorkers.push($);for(var P=im(128*4),j=0;j<128;++j)n()[P+j*4>>2]=0;var de=I.stackBase+I.stackSize,xe=ve.pthreads[I.pthread_ptr]={worker:$,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,thread:I.pthread_ptr,threadInfoStruct:I.pthread_ptr},he=xe.threadInfoStruct>>2;Atomics.store(s(),he+(0>>2),0),Atomics.store(s(),he+(4>>2),0),Atomics.store(s(),he+(8>>2),0),Atomics.store(s(),he+(68>>2),I.detached),Atomics.store(s(),he+(104>>2),P),Atomics.store(s(),he+(48>>2),0),Atomics.store(s(),he+(40>>2),xe.threadInfoStruct),Atomics.store(s(),he+(44>>2),42),Atomics.store(s(),he+(108>>2),I.stackSize),Atomics.store(s(),he+(84>>2),I.stackSize),Atomics.store(s(),he+(80>>2),de),Atomics.store(s(),he+(108+8>>2),de),Atomics.store(s(),he+(108+12>>2),I.detached),Atomics.store(s(),he+(108+20>>2),I.schedPolicy),Atomics.store(s(),he+(108+24>>2),I.schedPrio);var Te=vI(),dt=Te+40;Atomics.store(s(),he+(176>>2),dt),$.pthread=xe;var mr={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,selfThreadId:I.pthread_ptr,parentThreadId:I.parent_pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};$.runPthread=function(){mr.time=performance.now(),$.postMessage(mr,I.transferList)},$.loaded&&($.runPthread(),delete $.runPthread)}function Xy(I,$,P){if(!$&&!P)return Qp.EINVAL;if(!I)return U("pthread_getschedparam called with a null thread pointer!"),Qp.ESRCH;var j=n()[I+12>>2];if(j!==I)return U("pthread_getschedparam attempted on thread "+I+", which does not point to a valid thread, or does not exist anymore!"),Qp.ESRCH;var de=Atomics.load(s(),I+108+20>>2),xe=Atomics.load(s(),I+108+24>>2);return $&&(n()[$>>2]=de),P&&(n()[P>>2]=xe),0}function Gs(){return wh|0}i._pthread_self=Gs;function Yy(I,$,P,j){if(typeof SharedArrayBuffer=="undefined")return U("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return U("pthread_create called with a null thread pointer!"),28;var de=[],xe=0;if(x&&(de.length===0||xe))return NI(687865856,I,$,P,j);if(xe)return xe;var he=0,Te=0,dt=0,mr=0,Rr=0;if($){he=n()[$>>2],he+=81920,Te=n()[$+8>>2],dt=n()[$+12>>2]!==0;var Nc=n()[$+16>>2]===0;if(Nc){var cm=n()[$+20>>2],bo=n()[$+24>>2],Za=ve.currentProxiedOperationCallerThread?ve.currentProxiedOperationCallerThread:Gs();Xy(Za,$+20,$+24),mr=n()[$+20>>2],Rr=n()[$+24>>2],n()[$+20>>2]=cm,n()[$+24>>2]=bo}else mr=n()[$+20>>2],Rr=n()[$+24>>2]}else he=2097152;var pm=Te==0;pm?Te=kI(16,he):(Te-=he,ye(Te>0));for(var Sc=im(232),sb=0;sb<232>>2;++sb)s()[(Sc>>2)+sb]=0;n()[I>>2]=Sc,n()[Sc+12>>2]=Sc;var AI=Sc+156;n()[AI>>2]=AI;var ib={stackBase:Te,stackSize:he,allocatedOwnStack:pm,schedPolicy:mr,schedPrio:Rr,detached:dt,startRoutine:P,pthread_ptr:Sc,parent_pthread_ptr:Gs(),arg:j,transferList:de};return x?(ib.cmd="spawnThread",postMessage(ib,de)):Eh(ib),0}function Zy(I){return I=+I,I>=0?+ry(I+.5):+yc(I-.5)}function Ah(I){if(x)return Ka(6,1,I);switch(I){case 30:return 16384;case 85:var $=2147483648;return $/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return yy(28),-1}x?ve.initWorker():ve.initMainThreadBlock();var Xa;ot.init();var Jy=[null,by,Ih,Nh,Sh,Th,Ah],Qy={e:gy,r:xy,w:_y,a:wy,l:vy,d:ky,c:wc,h:Ml,g:Cy,x:Iy,q:Ny,B:Sy,t:Ty,A:Dy,u:Ly,k:zy,s:By,v:qy,m:Nh,o:Sh,i:Th,p:cy,memory:K||i.wasmMemory,y:Hy,z:Ky,j:Yy,b:Gs,f:Zy,n:Ah,table:ne},Dh=ly();i.asm=Dh;var tm=i.___wasm_call_ctors=function(){return(tm=i.___wasm_call_ctors=i.asm.C).apply(null,arguments)},rm=i._init=function(){return(rm=i._init=i.asm.D).apply(null,arguments)},$h=i._register_tensor=function(){return($h=i._register_tensor=i.asm.E).apply(null,arguments)},Bl=i._dispose_data=function(){return(Bl=i._dispose_data=i.asm.F).apply(null,arguments)},om=i._dispose=function(){return(om=i._dispose=i.asm.G).apply(null,arguments)},eb=i._Abs=function(){return(eb=i._Abs=i.asm.H).apply(null,arguments)},tb=i._Add=function(){return(tb=i._Add=i.asm.I).apply(null,arguments)},nm=i._AddN=function(){return(nm=i._AddN=i.asm.J).apply(null,arguments)},Rh=i._ArgMax=function(){return(Rh=i._ArgMax=i.asm.K).apply(null,arguments)},Fh=i._AvgPool=function(){return(Fh=i._AvgPool=i.asm.L).apply(null,arguments)},q=i._BatchMatMul=function(){return(q=i._BatchMatMul=i.asm.M).apply(null,arguments)},se=i._ClipByValue=function(){return(se=i._ClipByValue=i.asm.N).apply(null,arguments)},we=i._Conv2D=function(){return(we=i._Conv2D=i.asm.O).apply(null,arguments)},Xe=i._Conv2DBackpropInput=function(){return(Xe=i._Conv2DBackpropInput=i.asm.P).apply(null,arguments)},Ye=i._Cos=function(){return(Ye=i._Cos=i.asm.Q).apply(null,arguments)},Kt=i._CropAndResize=function(){return(Kt=i._CropAndResize=i.asm.R).apply(null,arguments)},lt=i._Cumsum=function(){return(lt=i._Cumsum=i.asm.S).apply(null,arguments)},st=i._DepthToSpace=function(){return(st=i._DepthToSpace=i.asm.T).apply(null,arguments)},yr=i._DepthwiseConv2dNative=function(){return(yr=i._DepthwiseConv2dNative=i.asm.U).apply(null,arguments)},ta=i._Equal=function(){return(ta=i._Equal=i.asm.V).apply(null,arguments)},ra=i._Exp=function(){return(ra=i._Exp=i.asm.W).apply(null,arguments)},Oh=i._FlipLeftRight=function(){return(Oh=i._FlipLeftRight=i.asm.X).apply(null,arguments)},sm=i._Floor=function(){return(sm=i._Floor=i.asm.Y).apply(null,arguments)},yo=i._FloorDiv=function(){return(yo=i._FloorDiv=i.asm.Z).apply(null,arguments)},Ya=i._FusedBatchNorm=function(){return(Ya=i._FusedBatchNorm=i.asm._).apply(null,arguments)},Ph=i._FusedConv2D=function(){return(Ph=i._FusedConv2D=i.asm.$).apply(null,arguments)},Lz=i._FusedDepthwiseConv2D=function(){return(Lz=i._FusedDepthwiseConv2D=i.asm.aa).apply(null,arguments)},zz=i._Gather=function(){return(zz=i._Gather=i.asm.ba).apply(null,arguments)},Bz=i._GatherNd=function(){return(Bz=i._GatherNd=i.asm.ca).apply(null,arguments)},Vz=i._Greater=function(){return(Vz=i._Greater=i.asm.da).apply(null,arguments)},Wz=i._GreaterEqual=function(){return(Wz=i._GreaterEqual=i.asm.ea).apply(null,arguments)},Gz=i._LeakyRelu=function(){return(Gz=i._LeakyRelu=i.asm.fa).apply(null,arguments)},Uz=i._Less=function(){return(Uz=i._Less=i.asm.ga).apply(null,arguments)},jz=i._LessEqual=function(){return(jz=i._LessEqual=i.asm.ha).apply(null,arguments)},qz=i._Log=function(){return(qz=i._Log=i.asm.ia).apply(null,arguments)},Hz=i._LogicalAnd=function(){return(Hz=i._LogicalAnd=i.asm.ja).apply(null,arguments)},Kz=i._Max=function(){return(Kz=i._Max=i.asm.ka).apply(null,arguments)},Xz=i._MaxPool=function(){return(Xz=i._MaxPool=i.asm.la).apply(null,arguments)},Yz=i._Maximum=function(){return(Yz=i._Maximum=i.asm.ma).apply(null,arguments)},Zz=i._Mean=function(){return(Zz=i._Mean=i.asm.na).apply(null,arguments)},Jz=i._Min=function(){return(Jz=i._Min=i.asm.oa).apply(null,arguments)},Qz=i._Minimum=function(){return(Qz=i._Minimum=i.asm.pa).apply(null,arguments)},eB=i._Multiply=function(){return(eB=i._Multiply=i.asm.qa).apply(null,arguments)},tB=i._Neg=function(){return(tB=i._Neg=i.asm.ra).apply(null,arguments)},rB=i._NonMaxSuppressionV3=function(){return(rB=i._NonMaxSuppressionV3=i.asm.sa).apply(null,arguments)},oB=i._NonMaxSuppressionV4=function(){return(oB=i._NonMaxSuppressionV4=i.asm.ta).apply(null,arguments)},nB=i._NonMaxSuppressionV5=function(){return(nB=i._NonMaxSuppressionV5=i.asm.ua).apply(null,arguments)},sB=i._NotEqual=function(){return(sB=i._NotEqual=i.asm.va).apply(null,arguments)},iB=i._OneHot=function(){return(iB=i._OneHot=i.asm.wa).apply(null,arguments)},aB=i._PadV2=function(){return(aB=i._PadV2=i.asm.xa).apply(null,arguments)},lB=i._Pow=function(){return(lB=i._Pow=i.asm.ya).apply(null,arguments)},uB=i._Prelu=function(){return(uB=i._Prelu=i.asm.za).apply(null,arguments)},cB=i._Prod=function(){return(cB=i._Prod=i.asm.Aa).apply(null,arguments)},pB=i._RealDiv=function(){return(pB=i._RealDiv=i.asm.Ba).apply(null,arguments)},mB=i._Relu=function(){return(mB=i._Relu=i.asm.Ca).apply(null,arguments)},fB=i._Relu6=function(){return(fB=i._Relu6=i.asm.Da).apply(null,arguments)},dB=i._ResizeBilinear=function(){return(dB=i._ResizeBilinear=i.asm.Ea).apply(null,arguments)},hB=i._Reverse=function(){return(hB=i._Reverse=i.asm.Fa).apply(null,arguments)},gB=i._RotateWithOffset=function(){return(gB=i._RotateWithOffset=i.asm.Ga).apply(null,arguments)},xB=i._Round=function(){return(xB=i._Round=i.asm.Ha).apply(null,arguments)},yB=i._Rsqrt=function(){return(yB=i._Rsqrt=i.asm.Ia).apply(null,arguments)},bB=i._ScatterNd=function(){return(bB=i._ScatterNd=i.asm.Ja).apply(null,arguments)},_B=i._SelectV2=function(){return(_B=i._SelectV2=i.asm.Ka).apply(null,arguments)},wB=i._Sigmoid=function(){return(wB=i._Sigmoid=i.asm.La).apply(null,arguments)},vB=i._Sin=function(){return(vB=i._Sin=i.asm.Ma).apply(null,arguments)},kB=i._Softmax=function(){return(kB=i._Softmax=i.asm.Na).apply(null,arguments)},CB=i._Sqrt=function(){return(CB=i._Sqrt=i.asm.Oa).apply(null,arguments)},IB=i._Square=function(){return(IB=i._Square=i.asm.Pa).apply(null,arguments)},NB=i._SquaredDifference=function(){return(NB=i._SquaredDifference=i.asm.Qa).apply(null,arguments)},SB=i._Step=function(){return(SB=i._Step=i.asm.Ra).apply(null,arguments)},TB=i._StridedSlice=function(){return(TB=i._StridedSlice=i.asm.Sa).apply(null,arguments)},EB=i._Sub=function(){return(EB=i._Sub=i.asm.Ta).apply(null,arguments)},AB=i._Sum=function(){return(AB=i._Sum=i.asm.Ua).apply(null,arguments)},DB=i._Tanh=function(){return(DB=i._Tanh=i.asm.Va).apply(null,arguments)},$B=i._Tile=function(){return($B=i._Tile=i.asm.Wa).apply(null,arguments)},RB=i._TopK=function(){return(RB=i._TopK=i.asm.Xa).apply(null,arguments)},FB=i._Transpose=function(){return(FB=i._Transpose=i.asm.Ya).apply(null,arguments)},OB=i.__FusedMatMul=function(){return(OB=i.__FusedMatMul=i.asm.Za).apply(null,arguments)},im=i._malloc=function(){return(im=i._malloc=i.asm._a).apply(null,arguments)},am=i._free=function(){return(am=i._free=i.asm.$a).apply(null,arguments)},wI=i.___errno_location=function(){return(wI=i.___errno_location=i.asm.ab).apply(null,arguments)},vI=i._emscripten_get_global_libc=function(){return(vI=i._emscripten_get_global_libc=i.asm.bb).apply(null,arguments)},PB=i.___em_js__initPthreadsJS=function(){return(PB=i.___em_js__initPthreadsJS=i.asm.cb).apply(null,arguments)},kI=i._memalign=function(){return(kI=i._memalign=i.asm.db).apply(null,arguments)},CI=i.___pthread_tsd_run_dtors=function(){return(CI=i.___pthread_tsd_run_dtors=i.asm.eb).apply(null,arguments)},rb=i._emscripten_main_thread_process_queued_calls=function(){return(rb=i._emscripten_main_thread_process_queued_calls=i.asm.fb).apply(null,arguments)},MB=i._emscripten_current_thread_process_queued_calls=function(){return(MB=i._emscripten_current_thread_process_queued_calls=i.asm.gb).apply(null,arguments)},II=i._emscripten_register_main_browser_thread_id=function(){return(II=i._emscripten_register_main_browser_thread_id=i.asm.hb).apply(null,arguments)},LB=i._emscripten_main_browser_thread_id=function(){return(LB=i._emscripten_main_browser_thread_id=i.asm.ib).apply(null,arguments)},zB=i._emscripten_async_run_in_main_thread=function(){return(zB=i._emscripten_async_run_in_main_thread=i.asm.jb).apply(null,arguments)},BB=i._emscripten_sync_run_in_main_thread=function(){return(BB=i._emscripten_sync_run_in_main_thread=i.asm.kb).apply(null,arguments)},VB=i._emscripten_sync_run_in_main_thread_0=function(){return(VB=i._emscripten_sync_run_in_main_thread_0=i.asm.lb).apply(null,arguments)},WB=i._emscripten_sync_run_in_main_thread_1=function(){return(WB=i._emscripten_sync_run_in_main_thread_1=i.asm.mb).apply(null,arguments)},GB=i._emscripten_sync_run_in_main_thread_2=function(){return(GB=i._emscripten_sync_run_in_main_thread_2=i.asm.nb).apply(null,arguments)},UB=i._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(UB=i._emscripten_sync_run_in_main_thread_xprintf_varargs=i.asm.ob).apply(null,arguments)},jB=i._emscripten_sync_run_in_main_thread_3=function(){return(jB=i._emscripten_sync_run_in_main_thread_3=i.asm.pb).apply(null,arguments)},NI=i._emscripten_sync_run_in_main_thread_4=function(){return(NI=i._emscripten_sync_run_in_main_thread_4=i.asm.qb).apply(null,arguments)},qB=i._emscripten_sync_run_in_main_thread_5=function(){return(qB=i._emscripten_sync_run_in_main_thread_5=i.asm.rb).apply(null,arguments)},HB=i._emscripten_sync_run_in_main_thread_6=function(){return(HB=i._emscripten_sync_run_in_main_thread_6=i.asm.sb).apply(null,arguments)},KB=i._emscripten_sync_run_in_main_thread_7=function(){return(KB=i._emscripten_sync_run_in_main_thread_7=i.asm.tb).apply(null,arguments)},SI=i._emscripten_run_in_main_runtime_thread_js=function(){return(SI=i._emscripten_run_in_main_runtime_thread_js=i.asm.ub).apply(null,arguments)},ob=i._emscripten_async_queue_on_thread_=function(){return(ob=i._emscripten_async_queue_on_thread_=i.asm.vb).apply(null,arguments)},XB=i._emscripten_tls_init=function(){return(XB=i._emscripten_tls_init=i.asm.wb).apply(null,arguments)},lm=i.stackSave=function(){return(lm=i.stackSave=i.asm.xb).apply(null,arguments)},Cc=i.stackAlloc=function(){return(Cc=i.stackAlloc=i.asm.yb).apply(null,arguments)},Ic=i.stackRestore=function(){return(Ic=i.stackRestore=i.asm.zb).apply(null,arguments)},TI=i.dynCall_vi=function(){return(TI=i.dynCall_vi=i.asm.Ab).apply(null,arguments)},YB=i.dynCall_v=function(){return(YB=i.dynCall_v=i.asm.Bb).apply(null,arguments)},ZB=i.dynCall_ii=function(){return(ZB=i.dynCall_ii=i.asm.Cb).apply(null,arguments)};i.asm=Dh,i.cwrap=Ee,i.PThread=ve,i.PThread=ve,i._pthread_self=Gs,i.wasmMemory=K,i.ExitStatus=EI;var um;i.then=function(I){if(um)I(i);else{var $=i.onRuntimeInitialized;i.onRuntimeInitialized=function(){$&&$(),I(i)}}return i};function EI(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}Pl=function I(){um||nb(),um||(Pl=I)};function nb(I){if(I=I||c,Qi>0||(qo(),Qi>0))return;function $(){um||(um=!0,i.calledRun=!0,!le&&(xh(),Qx(),i.onRuntimeInitialized&&i.onRuntimeInitialized(),ey()))}i.setStatus?(i.setStatus("Running..."),setTimeout(function(){setTimeout(function(){i.setStatus("")},1),$()},1)):$()}if(i.run=nb,i.preInit)for(typeof i.preInit=="function"&&(i.preInit=[i.preInit]);i.preInit.length>0;)i.preInit.pop()();return x||(re=!0),x||nb(),e}}();typeof Kx=="object"&&typeof hI=="object"?hI.exports=gI:typeof define=="function"&&define.amd?define([],function(){return gI}):typeof Kx=="object"&&(Kx.WasmBackendModuleThreadedSimd=gI)});var Fz=Gr((Xx,xI)=>{var yI=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},o={},n;for(n in t)t.hasOwnProperty(n)&&(o[n]=t[n]);var s=[],a="./this.program",i=function(q,se){throw se},l=!1,u=!1,c=!1,p=!1;l=typeof window=="object",u=typeof importScripts=="function",c=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",p=!l&&!c&&!u;var m="";function f(q){return t.locateFile?t.locateFile(q,m):m+q}var d,h,g,x,b,_;c?(u?m=Kp().dirname(m)+"/":m=__dirname+"/",d=function(se,we){return b||(b=require("fs")),_||(_=Kp()),se=_.normalize(se),b.readFileSync(se,we?null:"utf8")},g=function(se){var we=d(se,!0);return we.buffer||(we=new Uint8Array(we)),U(we.buffer),we},process.argv.length>1&&(a=process.argv[1].replace(/\\/g,"/")),s=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof om))throw q}),process.on("unhandledRejection",Ji),i=function(q){process.exit(q)},t.inspect=function(){return"[Emscripten Module object]"}):p?(typeof read!="undefined"&&(d=function(se){return read(se)}),g=function(se){var we;return typeof readbuffer=="function"?new Uint8Array(readbuffer(se)):(we=read(se,"binary"),U(typeof we=="object"),we)},typeof scriptArgs!="undefined"?s=scriptArgs:typeof arguments!="undefined"&&(s=arguments),typeof quit=="function"&&(i=function(q){quit(q)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(l||u)&&(u?m=self.location.href:document.currentScript&&(m=document.currentScript.src),r&&(m=r),m.indexOf("blob:")!==0?m=m.substr(0,m.lastIndexOf("/")+1):m="",d=function(se){var we=new XMLHttpRequest;return we.open("GET",se,!1),we.send(null),we.responseText},u&&(g=function(se){var we=new XMLHttpRequest;return we.open("GET",se,!1),we.responseType="arraybuffer",we.send(null),new Uint8Array(we.response)}),h=function(se,we,Xe){var Ye=new XMLHttpRequest;Ye.open("GET",se,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){we(Ye.response);return}Xe()},Ye.onerror=Xe,Ye.send(null)},x=function(q){document.title=q});var w=t.print||console.log.bind(console),C=t.printErr||console.warn.bind(console);for(n in o)o.hasOwnProperty(n)&&(t[n]=o[n]);o=null,t.arguments&&(s=t.arguments),t.thisProgram&&(a=t.thisProgram),t.quit&&(i=t.quit);var D;t.wasmBinary&&(D=t.wasmBinary);var A;t.noExitRuntime&&(A=t.noExitRuntime),typeof WebAssembly!="object"&&C("no native wasm support detected");var F,M=new WebAssembly.Table({initial:151,maximum:151+0,element:"anyfunc"}),z=!1,G=0;function U(q,se){q||Ji("Assertion failed: "+se)}function H(q){var se=t["_"+q];return U(se,"Cannot call unknown function "+q+", make sure it is exported"),se}function J(q,se,we,Xe,Ye){var Kt={string:function(yo){var Ya=0;if(yo!=null&&yo!==0){var Ph=(yo.length<<2)+1;Ya=rm(Ph),ae(yo,Ya,Ph)}return Ya},array:function(yo){var Ya=rm(yo.length);return ie(yo,Ya),Ya}};function lt(yo){return se==="string"?K(yo):se==="boolean"?Boolean(yo):yo}var st=H(q),yr=[],ta=0;if(Xe)for(var ra=0;ra<Xe.length;ra++){var Oh=Kt[we[ra]];Oh?(ta===0&&(ta=tm()),yr[ra]=Oh(Xe[ra])):yr[ra]=Xe[ra]}var sm=st.apply(null,yr);return sm=lt(sm),ta!==0&&$h(ta),sm}function Y(q,se,we,Xe){we=we||[];var Ye=we.every(function(lt){return lt==="number"}),Kt=se!=="string";return Kt&&Ye&&!Xe?H(q):function(){return J(q,se,we,arguments,Xe)}}var X=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function re(q,se,we){for(var Xe=se+we,Ye=se;q[Ye]&&!(Ye>=Xe);)++Ye;if(Ye-se>16&&q.subarray&&X)return X.decode(q.subarray(se,Ye));for(var Kt="";se<Ye;){var lt=q[se++];if(!(lt&128)){Kt+=String.fromCharCode(lt);continue}var st=q[se++]&63;if((lt&224)==192){Kt+=String.fromCharCode((lt&31)<<6|st);continue}var yr=q[se++]&63;if((lt&240)==224?lt=(lt&15)<<12|st<<6|yr:lt=(lt&7)<<18|st<<12|yr<<6|q[se++]&63,lt<65536)Kt+=String.fromCharCode(lt);else{var ta=lt-65536;Kt+=String.fromCharCode(55296|ta>>10,56320|ta&1023)}}return Kt}function K(q,se){return q?re(ge,q,se):""}function ne(q,se,we,Xe){if(!(Xe>0))return 0;for(var Ye=we,Kt=we+Xe-1,lt=0;lt<q.length;++lt){var st=q.charCodeAt(lt);if(st>=55296&&st<=57343){var yr=q.charCodeAt(++lt);st=65536+((st&1023)<<10)|yr&1023}if(st<=127){if(we>=Kt)break;se[we++]=st}else if(st<=2047){if(we+1>=Kt)break;se[we++]=192|st>>6,se[we++]=128|st&63}else if(st<=65535){if(we+2>=Kt)break;se[we++]=224|st>>12,se[we++]=128|st>>6&63,se[we++]=128|st&63}else{if(we+3>=Kt)break;se[we++]=240|st>>18,se[we++]=128|st>>12&63,se[we++]=128|st>>6&63,se[we++]=128|st&63}}return se[we]=0,we-Ye}function ae(q,se,we){return ne(q,ge,se,we)}function ie(q,se){le.set(q,se)}var pe,le,ge,ye,be,ke,Ee,$e,Fe;function He(q){pe=q,t.HEAP8=le=new Int8Array(q),t.HEAP16=ye=new Int16Array(q),t.HEAP32=ke=new Int32Array(q),t.HEAPU8=ge=new Uint8Array(q),t.HEAPU16=be=new Uint16Array(q),t.HEAPU32=Ee=new Uint32Array(q),t.HEAPF32=$e=new Float32Array(q),t.HEAPF64=Fe=new Float64Array(q)}var ct=t.INITIAL_MEMORY||16777216;function vt(q){for(;q.length>0;){var se=q.shift();if(typeof se=="function"){se(t);continue}var we=se.func;typeof we=="number"?se.arg===void 0?t.dynCall_v(we):t.dynCall_vi(we,se.arg):we(se.arg===void 0?null:se.arg)}}var kt=[],ft=[],Ct=[],Ke=[],Ft=!1,ho=!1;function er(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)xo(t.preRun.shift());vt(kt)}function go(){Ft=!0,vt(ft)}function vr(){vt(Ct)}function Uo(){ho=!0}function to(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)kr(t.postRun.shift());vt(Ke)}function xo(q){kt.unshift(q)}function kr(q){Ke.unshift(q)}var Eo=Math.ceil,jo=Math.floor,ro=0,ns=null,Ao=null;function xc(q){ro++,t.monitorRunDependencies&&t.monitorRunDependencies(ro)}function ss(q){if(ro--,t.monitorRunDependencies&&t.monitorRunDependencies(ro),ro==0&&(ns!==null&&(clearInterval(ns),ns=null),Ao)){var se=Ao;Ao=null,se()}}t.preloadedImages={},t.preloadedAudios={};function Ji(q){throw t.onAbort&&t.onAbort(q),q+="",w(q),C(q),z=!0,G=1,q="abort("+q+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(q)}function Fl(q,se){return String.prototype.startsWith?q.startsWith(se):q.indexOf(se)===0}var Jx="data:application/octet-stream;base64,";function Xp(q){return Fl(q,Jx)}var gh="file://";function Yp(q){return Fl(q,gh)}var qo="tfjs-backend-wasm.wasm";Xp(qo)||(qo=f(qo));function xh(){try{if(D)return new Uint8Array(D);if(g)return g(qo);throw"both async and sync fetching of the wasm failed"}catch(q){Ji(q)}}function Qx(){return!D&&(l||u)&&typeof fetch=="function"&&!Yp(qo)?fetch(qo,{credentials:"same-origin"}).then(function(q){if(!q.ok)throw"failed to load wasm binary file at '"+qo+"'";return q.arrayBuffer()}).catch(function(){return xh()}):new Promise(function(q,se){q(xh())})}function ey(){var q={env:ea,wasi_snapshot_preview1:ea};function se(lt,st){var yr=lt.exports;t.asm=yr,F=yr.memory,He(F.buffer),ss("wasm-instantiate")}xc("wasm-instantiate");function we(lt){se(lt.instance)}function Xe(lt){return Qx().then(function(st){return WebAssembly.instantiate(st,q)}).then(lt,function(st){C("failed to asynchronously prepare wasm: "+st),Ji(st)})}function Ye(){if(!D&&typeof WebAssembly.instantiateStreaming=="function"&&!Xp(qo)&&!Yp(qo)&&typeof fetch=="function")fetch(qo,{credentials:"same-origin"}).then(function(lt){var st=WebAssembly.instantiateStreaming(lt,q);return st.then(we,function(yr){C("wasm streaming compile failed: "+yr),C("falling back to ArrayBuffer instantiation"),Xe(we)})});else return Xe(we)}if(t.instantiateWasm)try{var Kt=t.instantiateWasm(q,se);return Kt}catch(lt){return C("Module.instantiateWasm callback failed with error: "+lt),!1}return Ye(),{}}ft.push();function ty(q){He(F.buffer)}var Ol={splitPath:function(q){var se=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return se.exec(q).slice(1)},normalizeArray:function(q,se){for(var we=0,Xe=q.length-1;Xe>=0;Xe--){var Ye=q[Xe];Ye==="."?q.splice(Xe,1):Ye===".."?(q.splice(Xe,1),we++):we&&(q.splice(Xe,1),we--)}if(se)for(;we;we--)q.unshift("..");return q},normalize:function(q){var se=q.charAt(0)==="/",we=q.substr(-1)==="/";return q=Ol.normalizeArray(q.split("/").filter(function(Xe){return!!Xe}),!se).join("/"),!q&&!se&&(q="."),q&&we&&(q+="/"),(se?"/":"")+q},dirname:function(q){var se=Ol.splitPath(q),we=se[0],Xe=se[1];return!we&&!Xe?".":(Xe&&(Xe=Xe.substr(0,Xe.length-1)),we+Xe)},basename:function(q){if(q==="/")return"/";var se=q.lastIndexOf("/");return se===-1?q:q.substr(se+1)},extname:function(q){return Ol.splitPath(q)[3]},join:function(){var q=Array.prototype.slice.call(arguments,0);return Ol.normalize(q.join("/"))},join2:function(q,se){return Ol.normalize(q+"/"+se)}},yc={mappings:{},buffers:[null,[],[]],printChar:function(q,se){var we=yc.buffers[q];se===0||se===10?((q===1?w:C)(re(we,0)),we.length=0):we.push(se)},varargs:void 0,get:function(){yc.varargs+=4;var q=ke[yc.varargs-4>>2];return q},getStr:function(q){var se=K(q);return se},get64:function(q,se){return q}};function ry(q){return 0}function Qi(q,se,we,Xe,Ye){}function Zp(q,se,we,Xe){for(var Ye=0,Kt=0;Kt<we;Kt++){for(var lt=ke[se+Kt*8>>2],st=ke[se+(Kt*8+4)>>2],yr=0;yr<st;yr++)yc.printChar(q,ge[lt+yr]);Ye+=st}return ke[Xe>>2]=Ye,0}function Pl(q){Rh(q)}function oy(q){Pl(q)}function ny(q){return q=+q,q>=0?+jo(q+.5):+Eo(q-.5)}var ea={emscripten_notify_memory_growth:ty,fd_close:ry,fd_seek:Qi,fd_write:Zp,proc_exit:oy,roundf:ny},Jp=ey();t.asm=Jp;var sy=t._init=function(){return(sy=t._init=t.asm.init).apply(null,arguments)},yh=t._register_tensor=function(){return(yh=t._register_tensor=t.asm.register_tensor).apply(null,arguments)},iy=t._dispose_data=function(){return(iy=t._dispose_data=t.asm.dispose_data).apply(null,arguments)},bh=t._dispose=function(){return(bh=t._dispose=t.asm.dispose).apply(null,arguments)},Ho=t._Abs=function(){return(Ho=t._Abs=t.asm.Abs).apply(null,arguments)},_h=t._Add=function(){return(_h=t._Add=t.asm.Add).apply(null,arguments)},ay=t._AddN=function(){return(ay=t._AddN=t.asm.AddN).apply(null,arguments)},ly=t._ArgMax=function(){return(ly=t._ArgMax=t.asm.ArgMax).apply(null,arguments)},uy=t._AvgPool=function(){return(uy=t._AvgPool=t.asm.AvgPool).apply(null,arguments)},cy=t._BatchMatMul=function(){return(cy=t._BatchMatMul=t.asm.BatchMatMul).apply(null,arguments)},wh=t._ClipByValue=function(){return(wh=t._ClipByValue=t.asm.ClipByValue).apply(null,arguments)},vh=t._Conv2D=function(){return(vh=t._Conv2D=t.asm.Conv2D).apply(null,arguments)},kh=t._Conv2DBackpropInput=function(){return(kh=t._Conv2DBackpropInput=t.asm.Conv2DBackpropInput).apply(null,arguments)},bc=t._Cos=function(){return(bc=t._Cos=t.asm.Cos).apply(null,arguments)},Qp=t._CropAndResize=function(){return(Qp=t._CropAndResize=t.asm.CropAndResize).apply(null,arguments)},_c=t._Cumsum=function(){return(_c=t._Cumsum=t.asm.Cumsum).apply(null,arguments)},wc=t._DepthToSpace=function(){return(wc=t._DepthToSpace=t.asm.DepthToSpace).apply(null,arguments)},py=t._DepthwiseConv2dNative=function(){return(py=t._DepthwiseConv2dNative=t.asm.DepthwiseConv2dNative).apply(null,arguments)},my=t._Equal=function(){return(my=t._Equal=t.asm.Equal).apply(null,arguments)},fy=t._Exp=function(){return(fy=t._Exp=t.asm.Exp).apply(null,arguments)},ve=t._FlipLeftRight=function(){return(ve=t._FlipLeftRight=t.asm.FlipLeftRight).apply(null,arguments)},dy=t._Floor=function(){return(dy=t._Floor=t.asm.Floor).apply(null,arguments)},hy=t._FloorDiv=function(){return(hy=t._FloorDiv=t.asm.FloorDiv).apply(null,arguments)},gy=t._FusedBatchNorm=function(){return(gy=t._FusedBatchNorm=t.asm.FusedBatchNorm).apply(null,arguments)},xy=t._FusedConv2D=function(){return(xy=t._FusedConv2D=t.asm.FusedConv2D).apply(null,arguments)},Ml=t._FusedDepthwiseConv2D=function(){return(Ml=t._FusedDepthwiseConv2D=t.asm.FusedDepthwiseConv2D).apply(null,arguments)},yy=t._Gather=function(){return(yy=t._Gather=t.asm.Gather).apply(null,arguments)},by=t._GatherNd=function(){return(by=t._GatherNd=t.asm.GatherNd).apply(null,arguments)},_y=t._Greater=function(){return(_y=t._Greater=t.asm.Greater).apply(null,arguments)},wy=t._GreaterEqual=function(){return(wy=t._GreaterEqual=t.asm.GreaterEqual).apply(null,arguments)},vy=t._LeakyRelu=function(){return(vy=t._LeakyRelu=t.asm.LeakyRelu).apply(null,arguments)},ky=t._Less=function(){return(ky=t._Less=t.asm.Less).apply(null,arguments)},Cy=t._LessEqual=function(){return(Cy=t._LessEqual=t.asm.LessEqual).apply(null,arguments)},Iy=t._Log=function(){return(Iy=t._Log=t.asm.Log).apply(null,arguments)},Ny=t._LogicalAnd=function(){return(Ny=t._LogicalAnd=t.asm.LogicalAnd).apply(null,arguments)},Sy=t._Max=function(){return(Sy=t._Max=t.asm.Max).apply(null,arguments)},Ka=t._MaxPool=function(){return(Ka=t._MaxPool=t.asm.MaxPool).apply(null,arguments)},Ll=t._Maximum=function(){return(Ll=t._Maximum=t.asm.Maximum).apply(null,arguments)},vc=t._Mean=function(){return(vc=t._Mean=t.asm.Mean).apply(null,arguments)},Ty=t._Min=function(){return(Ty=t._Min=t.asm.Min).apply(null,arguments)},Ey=t._Minimum=function(){return(Ey=t._Minimum=t.asm.Minimum).apply(null,arguments)},Ay=t._Multiply=function(){return(Ay=t._Multiply=t.asm.Multiply).apply(null,arguments)},Dy=t._Neg=function(){return(Dy=t._Neg=t.asm.Neg).apply(null,arguments)},Je=t._NonMaxSuppressionV3=function(){return(Je=t._NonMaxSuppressionV3=t.asm.NonMaxSuppressionV3).apply(null,arguments)},$y=t._NonMaxSuppressionV4=function(){return($y=t._NonMaxSuppressionV4=t.asm.NonMaxSuppressionV4).apply(null,arguments)},Ry=t._NonMaxSuppressionV5=function(){return(Ry=t._NonMaxSuppressionV5=t.asm.NonMaxSuppressionV5).apply(null,arguments)},Fy=t._NotEqual=function(){return(Fy=t._NotEqual=t.asm.NotEqual).apply(null,arguments)},Oy=t._OneHot=function(){return(Oy=t._OneHot=t.asm.OneHot).apply(null,arguments)},Py=t._PadV2=function(){return(Py=t._PadV2=t.asm.PadV2).apply(null,arguments)},My=t._Pow=function(){return(My=t._Pow=t.asm.Pow).apply(null,arguments)},em=t._Prelu=function(){return(em=t._Prelu=t.asm.Prelu).apply(null,arguments)},Ch=t._Prod=function(){return(Ch=t._Prod=t.asm.Prod).apply(null,arguments)},Ih=t._RealDiv=function(){return(Ih=t._RealDiv=t.asm.RealDiv).apply(null,arguments)},Ly=t._Relu=function(){return(Ly=t._Relu=t.asm.Relu).apply(null,arguments)},zy=t._Relu6=function(){return(zy=t._Relu6=t.asm.Relu6).apply(null,arguments)},By=t._ResizeBilinear=function(){return(By=t._ResizeBilinear=t.asm.ResizeBilinear).apply(null,arguments)},Vy=t._Reverse=function(){return(Vy=t._Reverse=t.asm.Reverse).apply(null,arguments)},Wy=t._RotateWithOffset=function(){return(Wy=t._RotateWithOffset=t.asm.RotateWithOffset).apply(null,arguments)},Gy=t._Round=function(){return(Gy=t._Round=t.asm.Round).apply(null,arguments)},ot=t._Rsqrt=function(){return(ot=t._Rsqrt=t.asm.Rsqrt).apply(null,arguments)},Uy=t._ScatterNd=function(){return(Uy=t._ScatterNd=t.asm.ScatterNd).apply(null,arguments)},jy=t._SelectV2=function(){return(jy=t._SelectV2=t.asm.SelectV2).apply(null,arguments)},qy=t._Sigmoid=function(){return(qy=t._Sigmoid=t.asm.Sigmoid).apply(null,arguments)},zl=t._Sin=function(){return(zl=t._Sin=t.asm.Sin).apply(null,arguments)},kc=t._Softmax=function(){return(kc=t._Softmax=t.asm.Softmax).apply(null,arguments)},Nh=t._Sqrt=function(){return(Nh=t._Sqrt=t.asm.Sqrt).apply(null,arguments)},Sh=t._Square=function(){return(Sh=t._Square=t.asm.Square).apply(null,arguments)},Th=t._SquaredDifference=function(){return(Th=t._SquaredDifference=t.asm.SquaredDifference).apply(null,arguments)},Hy=t._Step=function(){return(Hy=t._Step=t.asm.Step).apply(null,arguments)},Ky=t._StridedSlice=function(){return(Ky=t._StridedSlice=t.asm.StridedSlice).apply(null,arguments)},Eh=t._Sub=function(){return(Eh=t._Sub=t.asm.Sub).apply(null,arguments)},Xy=t._Sum=function(){return(Xy=t._Sum=t.asm.Sum).apply(null,arguments)},Gs=t._Tanh=function(){return(Gs=t._Tanh=t.asm.Tanh).apply(null,arguments)},Yy=t._Tile=function(){return(Yy=t._Tile=t.asm.Tile).apply(null,arguments)},Zy=t._TopK=function(){return(Zy=t._TopK=t.asm.TopK).apply(null,arguments)},Ah=t._Transpose=function(){return(Ah=t._Transpose=t.asm.Transpose).apply(null,arguments)},Xa=t.__FusedMatMul=function(){return(Xa=t.__FusedMatMul=t.asm._FusedMatMul).apply(null,arguments)},Jy=t._malloc=function(){return(Jy=t._malloc=t.asm.malloc).apply(null,arguments)},Qy=t._free=function(){return(Qy=t._free=t.asm.free).apply(null,arguments)},Dh=t.__start=function(){return(Dh=t.__start=t.asm._start).apply(null,arguments)},tm=t.stackSave=function(){return(tm=t.stackSave=t.asm.stackSave).apply(null,arguments)},rm=t.stackAlloc=function(){return(rm=t.stackAlloc=t.asm.stackAlloc).apply(null,arguments)},$h=t.stackRestore=function(){return($h=t.stackRestore=t.asm.stackRestore).apply(null,arguments)};t.asm=Jp,t.cwrap=Y;var Bl;t.then=function(q){if(Bl)q(t);else{var se=t.onRuntimeInitialized;t.onRuntimeInitialized=function(){se&&se(),q(t)}}return t};function om(q){this.name="ExitStatus",this.message="Program terminated with exit("+q+")",this.status=q}var eb=!1;Ao=function q(){Bl||nm(),Bl||(Ao=q)};function tb(q){var se=t.__start;try{se();var we=0;Rh(we,!0)}catch(Ye){if(Ye instanceof om)return;if(Ye=="unwind"){A=!0;return}else{var Xe=Ye;Ye&&typeof Ye=="object"&&Ye.stack&&(Xe=[Ye,Ye.stack]),C("exception thrown: "+Xe),i(1,Ye)}}finally{eb=!0}}function nm(q){if(q=q||s,ro>0||(er(),ro>0))return;function se(){Bl||(Bl=!0,t.calledRun=!0,!z&&(go(),vr(),t.onRuntimeInitialized&&t.onRuntimeInitialized(),Fh&&tb(q),to()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),se()},1)):se()}t.run=nm;function Rh(q,se){se&&A&&q===0||(A||(z=!0,G=q,Uo(),t.onExit&&t.onExit(q)),i(q,new om(q)))}if(t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();var Fh=!0;return t.noInitialRun&&(Fh=!1),A=!0,nm(),e}}();typeof Xx=="object"&&typeof xI=="object"?xI.exports=yI:typeof define=="function"&&define.amd?define([],function(){return yI}):typeof Xx=="object"&&(Xx.WasmBackendModule=yI)});var n3=1e-7,s3=1e-4,Ja=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Us=class{decComplexRef(e){}time(e){return Z("time")}read(e){return Z("read")}readSync(e){return Z("readSync")}numDataIds(){return Z("numDataIds")}disposeData(e){return Z("disposeData")}write(e,t,o){return Z("write")}move(e,t,o,n){return Z("move")}memory(){return Z("memory")}floatPrecision(){return Z("floatPrecision")}epsilon(){return this.floatPrecision()===32?n3:s3}batchMatMul(e,t,o,n){return Z("batchMatMul")}fusedBatchMatMul({a:e,b:t,transposeA:o,transposeB:n,bias:s,activation:a,preluActivationWeights:i}){return Z("fusedBatchMatMul")}slice(e,t,o){return Z("slice")}stridedSlice(e,t,o,n){return Z("stridedSlice")}unstack(e,t){return Z("unstack")}reverse(e,t){return Z("reverse")}concat(e,t){return Z("concat")}neg(e){return Z("neg")}add(e,t){return Z("add")}addN(e){return Z("addN")}subtract(e,t){return Z("subtract")}multiply(e,t){return Z("multiply")}realDivide(e,t){return Z("realDivide")}floorDiv(e,t){return Z("floorDiv")}sum(e,t){return Z("sum")}prod(e,t){return Z("prod")}unsortedSegmentSum(e,t,o){return Z("unsortedSegmentSum")}argMin(e,t){return Z("argMin")}argMax(e,t){return Z("argMax")}equal(e,t){return Z("equal")}notEqual(e,t){return Z("notEqual")}less(e,t){return Z("less")}lessEqual(e,t){return Z("lessEqual")}greater(e,t){return Z("greater")}greaterEqual(e,t){return Z("greaterEqual")}logicalNot(e){return Z("logicalNot")}logicalAnd(e,t){return Z("logicalAnd")}logicalOr(e,t){return Z("logicalOr")}where(e){return Z("where")}select(e,t,o){return Z("select")}topk(e,t,o){return Z("topk")}min(e,t){return Z("min")}minimum(e,t){return Z("minimum")}mod(e,t){return Z("mod")}max(e,t){return Z("max")}maximum(e,t){return Z("maximum")}all(e,t){return Z("all")}any(e,t){return Z("any")}squaredDifference(e,t){return Z("squaredDifference")}ceil(e){return Z("ceil")}floor(e){return Z("floor")}round(e){return Z("round")}sign(e){return Z("sign")}isNaN(e){return Z("isNaN")}isInf(e){return Z("isInf")}isFinite(e){return Z("isFinite")}pow(e,t){return Z("pow")}exp(e){return Z("exp")}expm1(e){return Z("expm1")}softmax(e,t){return Z("softmax")}log(e){return Z("log")}log1p(e){return Z("log1p")}sqrt(e){return Z("sqrt")}rsqrt(e){return Z("rsqrt")}square(e){return Z("square")}reciprocal(e){return Z("reciprocal")}relu(e){return Z("relu")}relu6(e){return Z("relu6")}prelu(e,t){return Z("prelu")}elu(e){return Z("elu")}eluDer(e,t){return Z("eluDer")}selu(e){return Z("selu")}int(e){return Z("int")}clip(e,t,o){return Z("clip")}abs(e){return Z("abs")}complexAbs(e){return Z("complexAbs")}sigmoid(e){return Z("sigmoid")}softplus(e){return Z("softplus")}sin(e){return Z("sin")}cos(e){return Z("cos")}tan(e){return Z("tan")}asin(e){return Z("asin")}acos(e){return Z("acos")}atan(e){return Z("atan")}atan2(e,t){return Z("atan2")}sinh(e){return Z("sinh")}cosh(e){return Z("cosh")}tanh(e){return Z("tanh")}asinh(e){return Z("asinh")}acosh(e){return Z("acosh")}atanh(e){return Z("atanh")}erf(e){return Z("erf")}step(e,t){return Z("step")}fusedConv2d({input:e,filter:t,convInfo:o,bias:n,activation:s,preluActivationWeights:a}){return Z("fusedConv2d")}conv2d(e,t,o){return Z("conv2d")}conv2dDerInput(e,t,o){return Z("conv2dDerInput")}conv2dDerFilter(e,t,o){return Z("conv2dDerFilter")}fusedDepthwiseConv2D({input:e,filter:t,convInfo:o,bias:n,activation:s,preluActivationWeights:a}){return Z("fusedDepthwiseConv2D")}depthwiseConv2D(e,t,o){return Z("depthwiseConv2D")}depthwiseConv2DDerInput(e,t,o){return Z("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(e,t,o){return Z("depthwiseConv2DDerFilter")}conv3d(e,t,o){return Z("conv3d")}conv3dDerInput(e,t,o){return Z("conv3dDerInput")}conv3dDerFilter(e,t,o){return Z("conv3dDerFilter")}maxPool(e,t){return Z("maxPool")}maxPoolBackprop(e,t,o,n){return Z("maxPoolBackprop")}avgPool(e,t){return Z("avgPool")}avgPoolBackprop(e,t,o){return Z("avgPoolBackprop")}avgPool3d(e,t){return Z("avgPool3d")}avgPool3dBackprop(e,t,o){return Z("avgPool3dBackprop")}maxPool3d(e,t){return Z("maxPool3d")}maxPool3dBackprop(e,t,o,n){return Z("maxPool3dBackprop")}reshape(e,t){return Z("reshape")}cast(e,t){return Z("cast")}tile(e,t){return Z("tile")}pad(e,t,o){return Z("pad")}transpose(e,t){return Z("transpose")}gather(e,t,o,n=0){return Z("gather")}gatherND(e,t){return Z("gatherND")}scatterND(e,t,o){return Z("scatterND")}batchToSpaceND(e,t,o){return Z("batchToSpaceND")}spaceToBatchND(e,t,o){return Z("spaceToBatchND")}resizeBilinear(e,t,o,n,s){return Z("resizeBilinear")}resizeBilinearBackprop(e,t,o){return Z("resizeBilinearBackprop")}resizeNearestNeighbor(e,t,o,n,s){return Z("resizeNearestNeighbor")}resizeNearestNeighborBackprop(e,t,o){return Z("resizeNearestNeighborBackprop")}batchNorm(e,t,o,n,s,a){return Z("batchNorm")}localResponseNormalization4D(e,t,o,n,s){return Z("localResponseNormalization4D")}LRNGrad(e,t,o,n,s,a,i){return Z("LRNGrad")}multinomial(e,t,o,n){return Z("multinomial")}oneHot(e,t,o,n){return Z("oneHot")}cumsum(e,t,o,n){return Z("cumsum")}nonMaxSuppression(e,t,o,n,s){return Z("nonMaxSuppression")}fft(e){return Z("fft")}ifft(e){return Z("ifft")}complex(e,t){return Z("complex")}real(e){return Z("real")}imag(e){return Z("imag")}cropAndResize(e,t,o,n,s,a){return Z("cropAndResize")}depthToSpace(e,t,o){return Z("depthToSpace")}split(e,t,o){return Z("split")}sparseToDense(e,t,o,n){return Z("sparseToDense")}diag(e){return Z("diag")}fill(e,t,o){return Z("fill")}onesLike(e){return Z("onesLike")}zerosLike(e){return Z("zerosLike")}linspace(e,t,o){return Z("linspace")}dispose(){return Z("dispose")}};function Z(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function $I(r){let e=r.length,t=0,o=0;for(;e>0;)o=Math.random()*e|0,e--,t=r[e],r[e]=r[o],r[o]=t}function Ec(r,e,t){return Math.max(r,Math.min(e,t))}function i3(r){return r%2==0?r:r+1}function a3(r){let e=0;for(let t=0;t<r.length;t++)e+=r[t];return e}function l3(r,e){let t=Math.random();return e*t+(1-t)*r}function u3(r,e){let t=0;for(let o=0;o<r.length;o++){let n=Number(r[o])-Number(e[o]);t+=n*n}return t}function T(r,e){if(!r)throw new Error(typeof e=="string"?e:e())}function We(r,e,t=""){T(Ur(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function Do(r){T(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function is(r,e=[],t=!1){if(e==null&&(e=[]),Array.isArray(r)||nr(r)&&!t)for(let o=0;o<r.length;++o)is(r[o],e,t);else e.push(r);return e}function ht(r){if(r.length===0)return 1;let e=r[0];for(let t=1;t<r.length;t++)e*=r[t];return e}function c3(r){return r.length===0}function Ur(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==e[t])return!1;return!0}function it(r){return r%1==0}function p3(r){if(Math.tanh!=null)return Math.tanh(r);if(r===Infinity)return 1;if(r===-Infinity)return-1;{let e=Math.exp(2*r);return(e-1)/(e+1)}}function m3(r){let e=Math.ceil(Math.sqrt(r));return[e,Math.ceil(r/e)]}function f3(r){let e=new Uint32Array(r);for(let t=0;t<r;++t)e[t]=t;return $I(e),e}function Vl(r,e){return e<=r.length?r:r+" ".repeat(e-r.length)}function d3(r,e=o=>0,t){return new Promise((o,n)=>{let s=0,a=()=>{if(r()){o();return}s++;let i=e(s);if(t!=null&&s>=t){n();return}setTimeout(a,i)};a()})}function h3(r,e){let t=1,o=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)t*=r[s];else if(r[s]===-1){if(o!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${o} and dim ${s}`);o=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(o===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!=0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let n=r.slice();return n[o]=e/t,n}function tr(r,e){let t=e.length;return r=r==null?e.map((o,n)=>n):[].concat(r),T(r.every(o=>o>=-t&&o<t),()=>`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),T(r.every(o=>it(o)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(o=>o<0?t+o:o)}function ab(r,e){let t=[],o=[],n=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||n?null:tr(e,r).sort(),a=0;for(let i=0;i<r.length;++i){if(s!=null){if(s[a]===i&&r[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${r[i]}' is not 1`);(s[a]==null||s[a]>i)&&r[i]===1&&(t.push(r[i]),o.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),o.push(i))}return{newShape:t,keptDims:o}}function lb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else throw new Error(`Unknown data type ${r}`);return t}function ub(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function cb(r,e){for(let t=0;t<r.length;t++){let o=r[t];if(isNaN(o)||!isFinite(o))throw Error(`A tensor of type ${e} being uploaded contains ${o}.`)}}function pb(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function mb(r,e){return!(e==="complex64"||e==="float32"&&r!=="complex64"||e==="int32"&&r!=="float32"&&r!=="complex64"||e==="bool"&&r==="bool")}function nr(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function fb(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function db(r){if(r==null)return 0;let e=0;return r.forEach(t=>e+=t.length),e}function as(r){return typeof r=="string"||r instanceof String}function RI(r){return typeof r=="boolean"}function FI(r){return typeof r=="number"}function Ac(r){return Array.isArray(r)?Ac(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":FI(r)?"float32":as(r)?"string":RI(r)?"bool":"float32"}function js(r){return!!(r&&r.constructor&&r.call&&r.apply)}function Dc(r,e){for(let t=e;t<r;++t)if(r%t==0)return t;return r}function qs(r){let e=r.length;if(e<2)return[];let t=new Array(e-1);t[e-2]=r[e-1];for(let o=e-3;o>=0;--o)t[o]=t[o+1]*r[o+1];return t}function OI(r,e,t){let o=new Array;if(e.length===1){let n=e[0];for(let s=0;s<n;s++)o[s]=t[r+s]}else{let n=e[0],s=e.slice(1),a=s.reduce((i,l)=>i*l);for(let i=0;i<n;i++)o[i]=OI(r+i*a,s,t)}return o}function Wl(r,e){if(r.length===0)return e[0];let t=r.reduce((o,n)=>o*n);if(t===0)return[];if(t!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}.`);return OI(0,r,e)}function mm(r,e){let t=$c(r,e);for(let o=0;o<t.length;o++)t[o]=1;return t}function $c(r,e){if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${e}`)}function g3(r,e){let t=r.reduce((o,n)=>o*n,1);if(e==null||e==="float32")return Wl(r,new Float32Array(t));if(e==="int32")return Wl(r,new Int32Array(t));if(e==="bool")return Wl(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function fm(r){r.forEach(e=>{T(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function x3(r,e,t){if(e===0)return 0;if(e===1)return r[0];let o=r[r.length-1];for(let n=0;n<r.length-1;++n)o+=t[n]*r[n];return o}function y3(r,e,t){if(e===0)return[];if(e===1)return[r];let o=new Array(e);for(let n=0;n<o.length-1;++n)o[n]=Math.floor(r/t[n]),r-=o[n]*t[n];return o[o.length-1]=r,o}function dm(r){return r&&r.then&&typeof r.then=="function"}var PI="tfjsflags",Lh=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,o){if(this.flagRegistry[e]={evaluationFn:t,setHook:o},this.urlFlags[e]!=null){let n=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(dm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=b3(this.global.location.search);PI in e&&e[PI].split(",").forEach(o=>{let[n,s]=o.split(":");this.urlFlags[n]=_3(n,s)})}};function b3(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...o)=>(w3(e,o[0],o[1]),o.join("="))),e}function w3(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function _3(r,e){if(e=e.toLowerCase(),e==="true"||e==="false")return e==="true";if(`${+e}`===e)return+e;throw new Error(`Could not parse value flag value ${e} for flag ${r}.`)}function W(){return hb}var hb=null;function MI(r){hb=r}var gb;function xb(){if(gb==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");gb=r}return gb}function v3(){let r=xb();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function yb(r,e){let t=v3();if(t.has(r))return t.get(r);{let o=e();return t.set(r,o),t.get(r)}}var ls="Abs",Hs="Acos",Ks="Acosh",_o="Add",Ko="AddN",Gl="All",Ul="Any",Xo="ArgMax",oa="ArgMin",Xs="Asin",Ys="Asinh",Zs="Atan",Js="Atanh",Qs="Atan2",Yo="AvgPool",jl="AvgPoolGrad",na="AvgPool3D",ql="AvgPool3DGrad",Zo="BatchMatMul",sa="BatchToSpaceND",Hl="Bincount",bb="BroadcastTo",$o="Cast",ei="Ceil",Ro="ClipByValue",Kl="Complex",ia="ComplexAbs",us="Concat",Jo="Conv2D",Xl="Conv2DBackpropFilter",Qo="Conv2DBackpropInput",aa="Conv3D",Yl="Conv3DBackpropFilterV2",Zl="Conv3DBackpropInputV2",en="Cos",ti="Cosh",tn="Cumsum",ri="CropAndResize",Jl="DenseBincount",oi="DepthToSpace",rn="DepthwiseConv2dNative",Ql="DepthwiseConv2dNativeBackpropFilter",eu="DepthwiseConv2dNativeBackpropInput",tu="Diag",la="Dilation2D",Rc="Dilation2DBackpropInput",Fc="Dilation2DBackpropFilter",on="RealDiv",ni="Elu",ru="EluGrad",si="Erf",ii="Equal",nn="Exp",cs="ExpandDims",ai="Expm1",ou="FFT",ua="Fill",li="FlipLeftRight",sn="Floor",an="FloorDiv",ln="FusedBatchNorm",ps="GatherV2",ui="GatherNd",ci="Greater",un="GreaterEqual",ms="Identity",nu="IFFT",su="Imag",pi="IsFinite",mi="IsInf",fi="IsNan",cn="LeakyRelu",di="Less",hi="LessEqual",iu="LinSpace",pn="Log",gi="Log1p",xi="LogicalAnd",Qa="LogicalNot",el="LogicalOr",_b="LogSoftmax",ca="LRN",au="LRNGrad",mn="Max",fn="Maximum",dn="MaxPool",lu="MaxPoolGrad",pa="MaxPool3D",uu="MaxPool3DGrad",cu="MaxPoolWithArgmax",hn="Mean",gn="Min",xn="Minimum",ma="MirrorPad",yi="Mod",pu="Multinomial",yn="Multiply",fs="Neg",bi="NotEqual",_i="NonMaxSuppressionV3",wi="NonMaxSuppressionV4",vi="NonMaxSuppressionV5",ds="OnesLike",bn="OneHot",hs="Pack",_n="PadV2",k3="Pool",wn="Pow",vn="Prelu",ki="Prod",fa="Range",mu="Real",Ci="Reciprocal",kn="Relu",gs="Reshape",da="ResizeNearestNeighbor",fu="ResizeNearestNeighborGrad",Cn="ResizeBilinear",du="ResizeBilinearGrad",In="Relu6",Nn="Reverse",Sn="Round",Tn="Rsqrt",Ii="ScatterNd",xs="Select",Ni="Selu",ys="Slice",En="Sin",Si="Sinh",Ti="Sign",An="Sigmoid",Ei="Softplus",Dn="Sqrt",$n="Sum",ha="SpaceToBatchND",bs="SplitV",Rn="Softmax",Fn="SquaredDifference",ga="Square",On="Sub",hu="SparseToDense",Ai="StridedSlice",Di="Tan",Pn="Tanh",wo="Tile",$i="TopK",Mn="Transpose",gu="Unique",_s="Unpack",xa="UnsortedSegmentSum",ws="ZerosLike",Fo="Step",Oc="FromPixels",Ri="RotateWithOffset",vs="_FusedMatMul",ks="FusedConv2D",Cs="FusedDepthwiseConv2D";var Pc=yb("kernelRegistry",()=>new Map),hm=yb("gradRegistry",()=>new Map);function gm(r,e){let t=wb(r,e);return Pc.get(t)}function zh(r){return hm.get(r)}function xm(r){let e=Pc.entries(),t=[];for(;;){let{done:o,value:n}=e.next();if(o)break;let[s,a]=n,[i]=s.split("_");i===r&&t.push(a)}return t}function tl(r){let{kernelName:e,backendName:t}=r,o=wb(e,t);Pc.has(o)&&console.warn(`The kernel '${e}' for backend '${t}' is already registered`),Pc.set(o,r)}function vb(r){let{kernelName:e}=r;hm.has(e)&&W().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${e}'`),hm.set(e,r)}function C3(r,e){let t=wb(r,e);if(!Pc.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);Pc.delete(t)}function I3(r){if(!hm.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);hm.delete(r)}function N3(r,e){xm(r).forEach(o=>{let n=Object.assign({},o,{backendName:e});tl(n)})}function wb(r,e){return`${e}_${r}`}var y={};tt(y,{arraysEqual:()=>Ur,assert:()=>T,assertNonNegativeIntegerDimensions:()=>fm,assertNonNull:()=>Do,assertShapesMatch:()=>We,bytesFromStringArray:()=>db,bytesPerElement:()=>fb,checkConversionForErrors:()=>cb,clamp:()=>Ec,computeStrides:()=>qs,createScalarValue:()=>S3,createShuffledIndices:()=>f3,decodeString:()=>Lc,distSquared:()=>u3,encodeString:()=>rl,fetch:()=>E3,flatten:()=>is,getArrayFromDType:()=>ub,getTypedArrayFromDType:()=>lb,hasEncodingLoss:()=>mb,indexToLoc:()=>y3,inferDtype:()=>Ac,inferFromImplicitShape:()=>h3,isBoolean:()=>RI,isFunction:()=>js,isInt:()=>it,isNumber:()=>FI,isPromise:()=>dm,isScalarShape:()=>c3,isString:()=>as,isTypedArray:()=>nr,isValidDtype:()=>pb,locToIndex:()=>x3,makeOnesTypedArray:()=>mm,makeZerosNestedTypedArray:()=>g3,makeZerosTypedArray:()=>$c,nearestDivisor:()=>Dc,nearestLargerEven:()=>i3,now:()=>Bh,parseAxisParam:()=>tr,randUniform:()=>l3,repeatedTry:()=>d3,rightPad:()=>Vl,shuffle:()=>$I,sizeFromShape:()=>ht,sizeToSquarishShape:()=>m3,squeezeShape:()=>ab,sum:()=>a3,tanh:()=>p3,toNestedArray:()=>Wl,toTypedArray:()=>Mc});function S3(r,e){return e==="string"?rl(r):Mc([r],e)}function T3(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function Mc(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=is(r)),W().getBool("DEBUG")&&cb(r,e),T3(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let o=0;o<t.length;++o)Math.round(r[o])!==0&&(t[o]=1);return t}else throw new Error(`Unknown data type ${e}`)}function Bh(){return W().platform.now()}function E3(r,e){return W().platform.fetch(r,e)}function rl(r,e="utf-8"){return e=e||"utf-8",W().platform.encode(r,e)}function Lc(r,e="utf-8"){return e=e||"utf-8",W().platform.decode(r,e)}var kb=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new LI)}profileKernel(e,t,o){let n,s=()=>{n=o()},a=this.backendTimer.time(s);if(W().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<n.length;l++){let u=n[l];u.data().then(c=>{A3(c,u.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:o,timeMs:n,inputs:s,extraInfo:a}=e;o.forEach(i=>{Promise.all([i.data(),n,a]).then(l=>{this.logger.logKernelProfile(t,i,l[0],l[1],s,l[2])})})}};function A3(r,e,t){if(e!=="float32")return!1;for(let o=0;o<r.length;o++){let n=r[o];if(isNaN(n)||!isFinite(n))return console.warn(`Found ${n} in the result of '${t}'`),!0}return!1}var LI=class{logKernelProfile(e,t,o,n,s,a){let i=typeof n=="number"?Vl(`${n}ms`,9):n.error,l=Vl(e,25),u=t.rank,c=t.size,p=Vl(t.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||t.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${l} %c${i} %c${u}D ${p} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function zI(r,e,t){let o={},n={};for(let l=0;l<e.length;l++)o[e[l].id]=!0;for(let l=0;l<r.length;l++){let u=r[l],c=u.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<e.length;d++)if(o[m.id]){u.outputs.forEach(h=>o[h.id]=!0),f=!0,n[u.id]=!0;break}if(f)break}}let s={};s[t.id]=!0;let a={};for(let l=r.length-1;l>=0;l--){let u=r[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let m in c)s[c[m].id]=!0,a[u.id]=!0;break}}let i=[];for(let l=0;l<r.length;l++){let u=r[l];if(n[u.id]&&a[u.id]){let c={};for(let m in u.inputs){let f=u.inputs[m];o[f.id]&&(c[m]=f)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function BI(r,e,t,o){for(let n=e.length-1;n>=0;n--){let s=e[n],a=[];if(s.outputs.forEach(l=>{let u=r[l.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let l in s.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Ur(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let p=r[c.id];r[c.id]=o(p,u),p.dispose()}}}}var VI=20,ym=3,Cb=7;function WI(r,e,t,o){let n=qs(e),s=D3(r,e,t,n),a=e.length,i=Vh(r,e,t,n,s),l=["Tensor"];return o&&(l.push(` dtype: ${t}`),l.push(` rank: ${a}`),l.push(` shape: [${e}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
`)),l.join(`
`)}function D3(r,e,t,o){let n=ht(e),s=o[o.length-1],a=new Array(s).fill(0),i=e.length,l=t==="complex64"?_m(r):r;if(i>1)for(let u=0;u<n/s;u++){let c=u*s;for(let p=0;p<s;p++)a[p]=Math.max(a[p],bm(l[c+p],0,t).length)}return a}function bm(r,e,t){let o;return Array.isArray(r)?o=`${parseFloat(r[0].toFixed(Cb))} + ${parseFloat(r[1].toFixed(Cb))}j`:as(r)?o=`'${r}'`:t==="bool"?o=GI(r):o=parseFloat(r.toFixed(Cb)).toString(),Vl(o,e)}function GI(r){return r===0?"false":"true"}function Vh(r,e,t,o,n,s=!0){let a=t==="complex64"?2:1,i=e[0],l=e.length;if(l===0){if(t==="complex64"){let h=_m(r);return[bm(h[0],0,t)]}return t==="bool"?[GI(r[0])]:[r[0].toString()]}if(l===1){if(i>VI){let g=ym*a,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((i-ym)*a,i*a));return t==="complex64"&&(x=_m(x),b=_m(b)),["["+x.map((_,w)=>bm(_,n[w],t)).join(", ")+", ..., "+b.map((_,w)=>bm(_,n[i-ym+w],t)).join(", ")+"]"]}let h=t==="complex64"?_m(r):Array.from(r);return["["+h.map((g,x)=>bm(g,n[x],t)).join(", ")+"]"]}let u=e.slice(1),c=o.slice(1),p=o[0]*a,m=[];if(i>VI){for(let h=0;h<ym;h++){let g=h*p,x=g+p;m.push(...Vh(r.slice(g,x),u,t,c,n,!1))}m.push("...");for(let h=i-ym;h<i;h++){let g=h*p,x=g+p;m.push(...Vh(r.slice(g,x),u,t,c,n,h===i-1))}}else for(let h=0;h<i;h++){let g=h*p,x=g+p;m.push(...Vh(r.slice(g,x),u,t,c,n,h===i-1))}let f=l===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
`;for(let h=2;h<l;h++)d+=`
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function _m(r){let e=[];for(let t=0;t<r.length;t+=2)e.push([r[t],r[t+1]]);return e}var pt=class{constructor(e,t,o){if(this.dtype=t,this.shape=e.slice(),this.size=ht(e),o!=null){let n=o.length;T(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=o||ub(t,this.size),this.strides=qs(e)}set(e,...t){t.length===0&&(t=[0]),T(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let o=this.locToIndex(t);this.values[o]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let o=e[e.length-1];for(let n=0;n<e.length-1;++n)o+=this.strides[n]*e[n];return this.values[o]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let o=0;o<e.length-1;++o)t+=this.strides[o]*e[o];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let o=0;o<t.length-1;++o)t[o]=Math.floor(e/this.strides[o]),e-=t[o]*this.strides[o];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Fi().makeTensor(this.values,this.shape,this.dtype)}},Fi=null,zc=null,$3=null;function UI(r){Fi=r}function jI(r){zc=r}function qI(r){$3=r}var R=class{constructor(e,t,o,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=ht(e),this.strides=qs(e),this.dataId=o,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return zc.buffer(this.shape,this.dtype,e)}bufferSync(){return zc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Wl(this.shape,e)}arraySync(){return Wl(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Fi().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(o=>Lc(o))}catch(o){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Fi().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Lc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Fi().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Fi().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return zc.print(this,e)}clone(){return this.throwIfDisposed(),zc.clone(this)}toString(e=!1){let t=this.dataSync();return WI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),zc.cast(this,e)}variable(e=!0,t,o){return this.throwIfDisposed(),Fi().makeVariable(this,e,t,o)}};Object.defineProperty(R,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});var ol=class extends R{constructor(e,t,o,n){super(e.shape,e.dtype,e.dataId,n);this.trainable=t,this.name=o}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Ur(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Fi().disposeTensor(this),this.dataId=e.dataId,Fi().incRef(this,null)}dispose(){Fi().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ol,Symbol.hasInstance,{value:r=>r instanceof R&&r.assign!=null&&r.assign instanceof Function});var Ln={};tt(Ln,{assertTypesMatch:()=>Ab,getTensorsInContainer:()=>wm,isTensorInList:()=>F3,makeTypesMatch:()=>Ge});var Ib;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(Ib||(Ib={}));var Nb;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(Nb||(Nb={}));var Sb;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(Sb||(Sb={}));var Tb;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(Tb||(Tb={}));var Eb;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(Eb||(Eb={}));var R3={float32:Tb,int32:Nb,bool:Sb,complex64:Eb};function fr(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return R3[r][e]}function xu(r){return fr(r,"int32")}function Ge(r,e){if(r.dtype===e.dtype)return[r,e];let t=fr(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function Ab(r,e){T(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function F3(r,e){return e.some(t=>t.id===r.id)}function wm(r){let e=[],t=new Set;return HI(r,e,t),e}function HI(r,e,t){if(r==null)return;if(r instanceof R){e.push(r);return}if(!O3(r))return;let o=r;for(let n in o){let s=o[n];t.has(s)||(t.add(s),HI(s,e,t))}}function O3(r){return Array.isArray(r)||typeof r=="object"}var Db=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},yu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Db}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t];if(await this.initializeBackend(o).success){await this.setBackend(o);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,o=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:o},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:o}=this.initializeBackend(e);if(!(o?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new kb(this.backendInstance),!0}setupRegisteredKernels(){xm(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){xm(e).forEach(o=>{o.disposeFunc!=null&&o.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let o=t.factory();if(o&&!(o instanceof Us)&&typeof o.then=="function"){let n=++this.pendingBackendInitId,s=o.then(a=>n<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=o,{success:!0,asyncInit:!1}}catch(o){return console.warn(`Initialization of backend ${e} failed`),console.warn(o.stack||o.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t],{success:n,asyncInit:s}=this.initializeBackend(o);if(s||n)return{name:o,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let o=this.state.tensorInfo.get(t),n=o.backend,s=this.readSync(t);n.disposeData(t),o.backend=e,e.move(t,s,o.shape,o.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let o=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");o=e}let n;return this.scopedRun(()=>this.startScope(o),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,o){e();try{let n=o();return t(),n}catch(n){throw t(),n}}nextTensorId(){return yu.nextTensorId++}nextVariableId(){return yu.nextVariableId++}clone(e){let t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),o={x:e},n=a=>({x:()=>{let i="float32",l={x:a},u={dtype:i};return E.runKernelFunc(c=>c.cast(a,i),l,null,$o,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,o,[t],n,s,{}),t}runKernel(e,t,o,n,s){let a=null,i=null;return this.runKernelFunc(a,t,i,e,o,n,s)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,o){let n=this.backend.numDataIds(),s=0;o.forEach(l=>{s+=l.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e,t,o,n,s,a,i){let l,u=[],c=this.isTapeOn();n==null&&(n=this.state.activeScope!=null?this.state.activeScope.name:"");let p=this.state.numBytes,m=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let f;this.backendName==null&&this.backend;let d=gm(n,this.backendName),h;if(d!=null)f=()=>{let x=this.backend.numDataIds();h=d.kernelFunc({inputs:t,attrs:s,backend:this.backend});let b=Array.isArray(h)?h:[h];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(n,x,b);let _=b.map(w=>{if(w.rank!=null)return w;let{dataId:C,shape:D,dtype:A}=w;return this.makeTensorFromDataId(C,D,A)});if(c){let w=this.getTensorsForGradient(n,t,_);if(w==null){i==null&&(i=[]);let C=_.filter((D,A)=>i[A]);w=(a||[]).slice().concat(C)}u=this.saveTensorsForBackwardMode(w)}return _};else{if(e==null)throw new Error(`Error running ${n}: Neither modular kernel nor forward func passed`);let x=b=>{!c||(u=b.map(_=>this.keep(this.clone(_))))};f=()=>{let b=this.backend.numDataIds();h=this.tidy(()=>e(this.backend,x));let _=Array.isArray(h)?h:[h];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(n,b,_),_}}let g;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?l=f():(g=this.profiler.profileKernel(n,t,()=>f()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(g),l=g.outputs)}),c&&this.addTapeNode(n,t,l,o,u,s),this.state.profiling&&this.state.activeProfile.kernels.push({name:n,bytesAdded:this.state.numBytes-p,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-m,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(t).map(x=>t[x]!=null?t[x].shape:null),outputShapes:l.map(x=>x.shape),kernelTimeMs:g.timeMs,extraInfo:g.extraInfo}),Array.isArray(h)?l:l[0]}saveTensorsForBackwardMode(e){return e.map(o=>this.keep(this.clone(o)))}getTensorsForGradient(e,t,o){let n=zh(e);if(n!=null){let s=n.inputsToSave||[],a=n.outputsToSave||[],i;n.saveAllInputs?(T(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let l=o.filter((u,c)=>a[c]);return i.concat(l)}return null}makeTensor(e,t,o,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");o=o||"float32",n=n||this.backend;let s=e;o==="string"&&as(e[0])&&(s=e.map(l=>rl(l)));let a=n.write(s,t,o),i=new R(t,o,a,this.nextTensorId());if(this.incRef(i,n),o==="string"){let l=this.state.tensorInfo.get(a),u=db(s);this.state.numBytes+=u-l.bytes,l.bytes=u}return i}makeTensorFromDataId(e,t,o,n){o=o||"float32";let s=new R(t,o,e,this.nextTensorId());return this.incRef(s,n),s}makeVariable(e,t=!0,o,n){o=o||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let s=new ol(e,t,o,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}incRef(e,t){let o=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,o===0){this.state.numDataBuffers++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*fb(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n,refCount:0}),this.state.numBytes+=n}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof ol||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;let t=this.state.tensorInfo.get(e.dataId);t.refCount<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):(t.backend.decComplexRef(e.dataId),this.state.tensorInfo.get(e.dataId).refCount--)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,o=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-o;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,o,n,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:o,saved:s},l=zh(e);l!=null&&(n=l.gradFunc),n!=null&&(i.gradient=u=>(u=u.map((c,p)=>{if(c==null){let m=o[p],f=$c(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),n(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=wm(e),o=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!o.has(a.id)&&a.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===n.id&&this.track(s)})}gradients(e,t,o,n=!1){if(T(t.length>0,()=>"gradients() received an empty list of xs."),o!=null&&o.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${o.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));T(s instanceof R,()=>"The result y returned by f() must be a tensor.");let a=zI(this.state.activeTape,t,s);if(!n&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=o==null?P3(s.shape):o,BI(i,a,u=>this.tidy(u),M3);let l=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:l}})}customGrad(e){return T(js(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{T(t.every(s=>s instanceof R),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let o,n={};return t.forEach((s,a)=>{n[a]=s}),this.runKernelFunc((s,a)=>(o=e(...t,a),T(o.value instanceof R,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),T(js(o.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),o.value),n,(s,a)=>{let i=o.gradFunc(s,a),l=Array.isArray(i)?i:[i];T(l.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),T(l.every(c=>c instanceof R),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return l.forEach((c,p)=>{u[p]=()=>c}),u})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Bh(),o=await this.backend.time(e);return o.wallMs=Bh()-t,o}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Db;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};yu.nextTensorId=0;yu.nextVariableId=0;function P3(r){let e=mm(ht(r),"float32");return E.makeTensor(e,r,"float32")}function $b(){let r=xb();if(r._tfengine==null){let e=new Lh(r);r._tfengine=new yu(e)}return MI(r._tfengine.ENV),UI(()=>r._tfengine),r._tfengine}var E=$b();function M3(r,e){let t={a:r,b:e};return E.runKernel(_o,t)}var Bc={};tt(Bc,{isBrowser:()=>Rb,isMobile:()=>z3});function L3(){return typeof navigator!="undefined"&&navigator!=null}function z3(){if(L3()){let r=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(r)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(r.substr(0,4))}return!1}function Rb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Oi=W();Oi.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Oi.registerFlag("IS_BROWSER",()=>Rb());Oi.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Oi.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Oi.registerFlag("PROD",()=>!1);Oi.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Oi.getBool("DEBUG"));Oi.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Oi.registerFlag("IS_TEST",()=>!1);Oi.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Cr(r,e){let t=r;if(nr(r))return e==="string"?[]:[r.length];if(!Array.isArray(r))return[];let o=[];for(;Array.isArray(t)||nr(t)&&e!=="string";)o.push(t.length),t=t[0];return Array.isArray(r)&&W().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&KI(r,o,[]),o}function KI(r,e,t){if(t=t||[],!Array.isArray(r)&&!nr(r)){T(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}T(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),T(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let o=e.slice(1);for(let n=0;n<r.length;++n)KI(r[n],o,t.concat(n))}function XI(r,e,t,o){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==e||r==="numeric"&&e==="string")throw new Error(`Argument '${t}' passed to '${o}' must be ${r} tensor, but got ${e} tensor`)}}function v(r,e,t,o="numeric"){if(r instanceof R)return XI(o,r.dtype,e,t),r;let n=Ac(r);if(n!=="string"&&["bool","int32","float32"].indexOf(o)>=0&&(n=o),XI(o,n,e,t),r==null||!nr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let l=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${l}'`)}let s=Cr(r,n);!nr(r)&&!Array.isArray(r)&&(r=[r]);let i=n!=="string"?Mc(r,n):is(r,[],!0);return E.makeTensor(i,s,n)}function ya(r,e,t,o="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>v(s,`${e}[${a}]`,t,o))}var YI="__op";function N(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],o=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+YI;let n=(...s)=>{E.startScope(t);try{let a=o(...s);return dm(a)&&console.error("Cannot return a Promise inside of tidy."),E.endScope(a),a}catch(a){throw E.endScope(null),a}};return Object.defineProperty(n,"name",{value:t,configurable:!0}),n}function B3(r,e){let t=v(r,"real","complex"),o=v(e,"imag","complex");We(t.shape,o.shape,`real and imag shapes, ${t.shape} and ${o.shape}, must match in call to tf.complex().`);let n={real:t,imag:o};return E.runKernel(Kl,n)}var vo=N({complex_:B3});function jr(r,e,t,o){if(o==null&&(o=Ac(r)),o==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!nr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){fm(e);let n=ht(e),s=ht(t);T(n===s,()=>`Based on the provided shape, [${e}], the tensor should have ${n} values but has ${s}`);for(let a=0;a<t.length;++a){let i=t[a],l=a===t.length-1?i!==ht(e.slice(a)):!0;T(t[a]===e[a]||!l,()=>`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!nr(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=o!=="string"?Mc(r,o):is(r,[],!0),E.makeTensor(r,e,o)}function Fr(r,e,t){let o=Cr(r,t);return jr(r,e,o,t)}var vm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Wh=4;async function ZI(r,e){let t=[],o=[],n=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a<n.length;++a){let i=n[a],l=Array.isArray(r)?r[a].tensor:r[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let m=await l.bytes(),f=m.reduce((g,x)=>g+x.length,0)+Wh*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let x=m[g],b=new Uint8Array(new Uint32Array([x.length]).buffer);d.set(b,h),h+=Wh,d.set(x,h),h+=x.length}p(d)});o.push(c)}else o.push(l.data());e!=null&&(u.group=e),t.push(u)}let s=await Promise.all(o);return{data:V3(s),specs:t}}function Gh(r,e){let t={},o,n=0;for(let s of e){let a=s.name,i=s.dtype,l=s.shape,u=ht(l),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=vm[p.dtype],f=r.slice(n,n+u*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")o===void 0&&(o=W3()),c=o(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);n+=u*m}else if(i==="string"){let p=ht(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(n,n+Wh))[0];n+=Wh;let d=new Uint8Array(r.slice(n,n+f));c.push(d),n+=f}}else{let p=vm[i],m=r.slice(n,n+u*p);if(i==="float32")c=new Float32Array(m);else if(i==="int32")c=new Int32Array(m);else if(i==="bool")c=new Uint8Array(m);else if(i==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let x=0;x<f.length;x++)f[x]=c[x*2],d[x]=c[x*2+1];let h=Fr(f,l,"float32"),g=Fr(d,l,"float32");t[a]=vo(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);n+=u*p}i!=="complex64"&&(t[a]=Fr(c,l,i))}return t}function V3(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let e=0,t=[];r.forEach(s=>{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let o=new Uint8Array(e),n=0;return t.forEach(s=>{o.set(new Uint8Array(s.buffer),n),n+=s.byteLength}),o.buffer}var Fb=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function JI(r){return Fb?Buffer.byteLength(r):new Blob([r]).size}function QI(r){if(Fb)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let o=0,n=e.length;o<n;o++)t+=String.fromCharCode(e[o]);return btoa(t)}function eN(r){if(Fb){let o=Buffer.from(r,"base64");return o.buffer.slice(o.byteOffset,o.byteOffset+o.byteLength)}let e=atob(r),t=new Uint8Array(e.length);for(let o=0;o<e.length;++o)t.set([e.charCodeAt(o)],o);return t.buffer}function Vc(r){if(r.length===1)return r[0];let e=0;r.forEach(n=>{e+=n.byteLength});let t=new Uint8Array(e),o=0;return r.forEach(n=>{t.set(new Uint8Array(n),o),o+=n.byteLength}),t.buffer}function Ob(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function Pi(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:JI(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:JI(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function G3(){let r=t=>{let o=t<<13,n=0;for(;(o&8388608)==0;)n-=8388608,o<<=1;return o&=~8388608,n+=947912704,o|n},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function U3(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function j3(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function W3(){let r=G3(),e=U3(),t=j3();return o=>{let n=new ArrayBuffer(4*o.length),s=new Uint32Array(n);for(let a=0;a<o.length;a++){let i=o[a],l=r[t[i>>10]+(i&1023)]+e[i>>10];s[a]=l}return new Float32Array(n)}}var St=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return St.instance==null&&(St.instance=new St),St.instance}static registerSaveRouter(e){St.getInstance().saveRouters.push(e)}static registerLoadRouter(e){St.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return St.getHandlers(e,"save")}static getLoadHandlers(e,t){return St.getHandlers(e,"load",t)}static getHandlers(e,t,o){let n=[];return(t==="load"?St.getInstance().loadRouters:St.getInstance().saveRouters).forEach(a=>{let i=a(e,o);i!==null&&n.push(i)}),n}},tN=r=>St.registerSaveRouter(r),rN=r=>St.registerLoadRouter(r),oN=r=>St.getSaveHandlers(r),nN=(r,e)=>St.getLoadHandlers(r,e);var Pb="tensorflowjs",Mb=1,bu="models_store",nl="model_info_store";function sN(){if(!W().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function Lb(r){let e=r.result;e.createObjectStore(bu,{keyPath:"modelPath"}),e.createObjectStore(nl,{keyPath:"modelPath"})}var ba=class{constructor(e){if(this.indexedDB=sN(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((o,n)=>{let s=this.indexedDB.open(Pb,Mb);s.onupgradeneeded=()=>Lb(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction(bu,"readonly"),u=i.objectStore(bu).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));o(u.result.modelArtifacts)},u.onerror=c=>(a.close(),n(u.error)),i.oncomplete=()=>a.close()}else{let i=Pi(t),l=a.transaction(nl,"readwrite"),u=l.objectStore(nl),c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;c.onsuccess=()=>{p=a.transaction(bu,"readwrite");let f=p.objectStore(bu).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});f.onsuccess=()=>o({modelArtifactsInfo:i}),f.onerror=d=>{u=l.objectStore(nl);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),n(f.error)),h.onerror=g=>(a.close(),n(f.error))}},c.onerror=m=>(a.close(),n(c.error)),l.oncomplete=()=>{p==null?a.close():p.oncomplete=()=>a.close()}}},s.onerror=a=>n(s.error)})}};ba.URL_SCHEME="indexeddb://";var iN=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ba.URL_SCHEME)?q3(r.slice(ba.URL_SCHEME.length)):null;St.registerSaveRouter(iN);St.registerLoadRouter(iN);function q3(r){return new ba(r)}function H3(r){return r.startsWith(ba.URL_SCHEME)?r.slice(ba.URL_SCHEME.length):r}var zb=class{constructor(){this.indexedDB=sN()}async listModels(){return new Promise((e,t)=>{let o=this.indexedDB.open(Pb,Mb);o.onupgradeneeded=()=>Lb(o),o.onsuccess=()=>{let n=o.result,s=n.transaction(nl,"readonly"),i=s.objectStore(nl).getAll();i.onsuccess=()=>{let l={};for(let u of i.result)l[u.modelPath]=u.modelArtifactsInfo;e(l)},i.onerror=l=>(n.close(),t(i.error)),s.oncomplete=()=>n.close()},o.onerror=n=>t(o.error)})}async removeModel(e){return e=H3(e),new Promise((t,o)=>{let n=this.indexedDB.open(Pb,Mb);n.onupgradeneeded=()=>Lb(n),n.onsuccess=()=>{let s=n.result,a=s.transaction(nl,"readwrite"),i=a.objectStore(nl),l=i.get(e),u;l.onsuccess=()=>{if(l.result==null)return s.close(),o(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),p=()=>{u=s.transaction(bu,"readwrite");let f=u.objectStore(bu).delete(e);f.onsuccess=()=>t(l.result.modelArtifactsInfo),f.onerror=d=>o(l.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),o(l.error))}},l.onerror=c=>(s.close(),o(l.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},n.onerror=s=>o(n.error)})}};var _a="/",Wc="tensorflowjs_models",aN="info",K3="model_topology",X3="weight_specs",Y3="weight_data",Z3="model_metadata";function lN(r){return{info:[Wc,r,aN].join(_a),topology:[Wc,r,K3].join(_a),weightSpecs:[Wc,r,X3].join(_a),weightData:[Wc,r,Y3].join(_a),modelMetadata:[Wc,r,Z3].join(_a)}}function J3(r){let e=r.split(_a);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(_a)}function Q3(r){return r.startsWith(wa.URL_SCHEME)?r.slice(wa.URL_SCHEME.length):r}var wa=class{constructor(e){if(!W().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=lN(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),o=JSON.stringify(e.weightSpecs),n=Pi(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,o),this.LS.setItem(this.keys.weightData,QI(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:n}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},o=JSON.parse(this.LS.getItem(this.keys.topology));if(o==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=o;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=eN(a),t}};wa.URL_SCHEME="localstorage://";var uN=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(wa.URL_SCHEME)?eV(r.slice(wa.URL_SCHEME.length)):null;St.registerSaveRouter(uN);St.registerLoadRouter(uN);function eV(r){return new wa(r)}var Bb=class{constructor(){T(W().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),T(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Wc+_a,o=_a+aN;for(let n=0;n<this.LS.length;++n){let s=this.LS.key(n);if(s.startsWith(t)&&s.endsWith(o)){let a=J3(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=Q3(e);let t=lN(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let o=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),o}};var Gc="://",qr=class{constructor(){this.managers={}}static getInstance(){return qr.instance==null&&(qr.instance=new qr),qr.instance}static registerManager(e,t){T(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Gc)&&(e=e.slice(0,e.indexOf(Gc))),T(e.length>0,()=>"scheme must not be an empty string.");let o=qr.getInstance();T(o.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),o.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Uh(r){if(r.indexOf(Gc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${qr.getSchemes().join(",")}`);return{scheme:r.split(Gc)[0],path:r.split(Gc)[1]}}async function cN(r,e,t=!1){T(r!==e,()=>`Old path and new path are the same: '${r}'`);let o=St.getLoadHandlers(r);T(o.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),T(o.length<2,()=>`Copying failed because more than one (${o.length}) load handlers for source URL ${r}.`);let n=o[0],s=St.getSaveHandlers(e);T(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),T(s.length<2,()=>`Copying failed because more than one (${o.length}) save handlers for destination URL ${e}.`);let a=s[0],i=Uh(r).scheme,l=Uh(r).path,u=i===Uh(r).scheme,c=await n.load();t&&u&&await qr.getManager(i).removeModel(l);let p=await a.save(c);return t&&!u&&await qr.getManager(i).removeModel(l),p.modelArtifactsInfo}async function pN(){let r=qr.getSchemes(),e={};for(let t of r){let o=await qr.getManager(t).listModels();for(let n in o){let s=t+Gc+n;e[s]=o[n]}}return e}async function mN(r){let e=Uh(r);return qr.getManager(e.scheme).removeModel(e.path)}async function fN(r,e){return cN(r,e,!1)}async function dN(r,e){return cN(r,e,!0)}var hN=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(W().get("IS_BROWSER")){W().setPlatform("browser",new hN);try{qr.registerManager(wa.URL_SCHEME,new Bb)}catch(r){}try{qr.registerManager(ba.URL_SCHEME,new zb)}catch(r){}}var tV={importFetch:()=>gN()},Vb;var xN=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return W().global.fetch!=null?W().global.fetch(e,t):(Vb==null&&(Vb=tV.importFetch()),Vb(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};W().get("IS_NODE")&&W().setPlatform("node",new xN);function Ie(r,e="float32",t){return e=e||"float32",fm(r),new pt(r,e,t)}function rV(r,e){let t=v(r,"x","cast");if(!pb(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let o={x:t},n={dtype:e};return E.runKernel($o,o,n)}var oe=N({cast_:rV});function oV(r){let t={x:v(r,"x","clone","string_or_numeric")};return E.runKernel(ms,t)}var Oo=N({clone_:oV});function Wb(r,e=!1){console.log(r.toString(e))}$b();var nV={buffer:Ie,cast:oe,clone:Oo,print:Wb};jI(nV);var Ir={};tt(Ir,{browserFiles:()=>_N,browserHTTPRequest:()=>kN,concatenateArrayBuffers:()=>Vc,copyModel:()=>fN,decodeWeights:()=>Gh,encodeWeights:()=>ZI,fromMemory:()=>IN,getLoadHandlers:()=>nN,getModelArtifactsInfoForJSON:()=>Pi,getSaveHandlers:()=>oN,http:()=>Hh,isHTTPScheme:()=>qh,listModels:()=>pN,loadWeights:()=>wN,moveModel:()=>dN,registerLoadRouter:()=>rN,registerSaveRouter:()=>tN,removeModel:()=>mN,weightsLoaderFactory:()=>jb,withSaveHandler:()=>NN});var sV="model",iV=".json",aV=".weights.bin";function yN(r){return new Promise(e=>setTimeout(e)).then(r)}var sl=class{constructor(e){if(!W().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(sl.URL_SCHEME)&&(e=e.slice(sl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=sV),this.modelTopologyFileName=e+iV,this.weightDataFileName=e+aV}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let o=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await yN(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await yN(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Pi(e)}}}};sl.URL_SCHEME="downloads://";var bN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((o,n)=>{let s=new FileReader;s.onload=a=>{let i=JSON.parse(a.target.result),l=i.modelTopology;if(l==null){n(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&o({modelTopology:l});let u=i.weightsManifest;if(u==null){n(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(u,t)}catch(d){n(d);return}let p=[],m=[],f=[];u.forEach(d=>{d.paths.forEach(h=>{m.push(h),f.push(null)}),p.push(...d.weights)}),u.forEach(d=>{d.paths.forEach(h=>{let g=new FileReader;g.onload=x=>{let b=x.target.result,_=m.indexOf(h);if(f[_]=b,f.indexOf(null)===-1){let w={modelTopology:l,weightSpecs:p,weightData:Vc(f),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(w.signature=i.signature),i.userDefinedMetadata!=null&&(w.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(w.modelInitializer=i.modelInitializer),o(w)}},g.onerror=x=>n(`Failed to weights data from file of path '${h}'.`),g.readAsArrayBuffer(c[h])})})},s.onerror=a=>n(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let o=[],n=t.map(a=>Ob(a.name)),s={};for(let a of e)a.paths.forEach(i=>{let l=Ob(i);if(o.indexOf(l)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${l}'`);if(o.push(l),n.indexOf(l)===-1)throw new Error(`Weight file with basename '${l}' is not provided.`);s[i]=t[n.indexOf(l)]});if(o.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${o.length}) and the number of weight files provided (${t.length}).`);return s}},uV=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(sl.URL_SCHEME)?lV(r.slice(sl.URL_SCHEME.length)):null;St.registerSaveRouter(uV);function lV(r="model"){return new sl(r)}function _N(r){return new bN(r)}function Gb(r,e,t,o){a(r),t=t==null?0:t,o=o==null?1:o,i(t,o);let n=0,s=l=>(l.then(u=>{let c=t+ ++n/r.length*(o-t);return e(c),u}),l);function a(l){T(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){T(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),T(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),T(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(r.map(s))}async function Ub(r,e){e==null&&(e={});let t=e.fetchFunc==null?W().platform.fetch:e.fetchFunc,o=r.map(p=>t(p,e.requestInit,{isBinary:!0})),n=0,s=.5,i=(e.onProgress==null?await Promise.all(o):await Gb(o,e.onProgress,n,s)).map(p=>p.arrayBuffer()),l=.5,u=1;return e.onProgress==null?await Promise.all(i):await Gb(i,e.onProgress,l,u)}async function wN(r,e="",t,o){return jb(a=>Ub(a,{requestInit:o}))(r,e,t)}function jb(r){return async(e,t="",o)=>{let n=e.map(()=>!1),s={},a=o!=null?o.map(()=>!1):[],i=[];if(e.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,b=vm[x]*ht(g.shape),_=()=>{n[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};o!=null?o.forEach((w,C)=>{w===g.name&&(_(),a[C]=!0)}):_(),i.push(g.name),h+=b})}),!a.every(f=>f)){let f=o.filter((d,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=n.reduce((f,d,h)=>(d&&f.push(h),f),[]),u=[];l.forEach(f=>{e[f].paths.forEach(d=>{let h=t+(t.endsWith("/")?"":"/")+d;u.push(h)})});let c=await r(u),p={},m=0;return l.forEach(f=>{let d=e[f].paths.length,h=0;for(let w=0;w<d;w++)h+=c[m+w].byteLength;let g=new ArrayBuffer(h),x=new Uint8Array(g),b=0;for(let w=0;w<d;w++){let C=new Uint8Array(c[m+w]);x.set(C,b),b+=C.byteLength}s[f].forEach(w=>{let C=g.slice(w.groupOffset,w.groupOffset+w.sizeBytes),D=Gh(C,[w.manifestEntry]);for(let A in D)p[A]=D[A]}),m+=d}),p}}var cV="application/octet-stream",pV="application/json",jh=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(T(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=W().platform.fetch,T(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&T(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let o=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(n)],{type:pV}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:cV}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Pi(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let h=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?h+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":h+=" Please make sure the server is serving valid JSON for this request.",new Error(h)}let o=t.modelTopology,n=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,i=t.format,l=t.signature,u=t.userDefinedMetadata;if(o==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,p;n!=null&&([c,p]=await this.loadWeights(n));let m={modelTopology:o,weightSpecs:c,weightData:p,generatedBy:s,convertedBy:a,format:i};l!=null&&(m.signature=l),u!=null&&(m.userDefinedMetadata=u);let f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[o,n]=mV(t),s=this.weightPathPrefix||o,a=[];for(let c of e)a.push(...c.weights);let i=[],l=[];for(let c of e)for(let p of c.paths)this.weightUrlConverter!=null?l.push(this.weightUrlConverter(p)):i.push(s+p+n);this.weightUrlConverter&&i.push(...await Promise.all(l));let u=await Ub(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Vc(u)]}};jh.URL_SCHEME_REGEX=/^https?:\/\//;function mV(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),o=r.substring(0,e),n=t>e?r.substring(t):"";return[o+"/",n]}function qh(r){return r.match(jh.URL_SCHEME_REGEX)!=null}var vN=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(o=>qh(o)):t=qh(r),t)return Hh(r,e)}return null};St.registerSaveRouter(vN);St.registerLoadRouter(vN);function Hh(r,e){return new jh(r,e)}function kN(r,e){return Hh(r,e)}var Kh=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},CN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function IN(r,e,t,o){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new Kh(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Kh({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Kh({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:o}))}function NN(r){return new CN(r)}var SN={};tt(SN,{confusionMatrix:()=>xV});function fV(r,e,t=!1,o=!1){let n=v(r,"a","matMul"),s=v(e,"b","matMul");[n,s]=Ge(n,s);let a={a:n,b:s},i={transposeA:t,transposeB:o};return E.runKernel(Zo,a,i)}var Ue=N({matMul_:fV});function dV(r,e,t=1,o=0){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let s={indices:v(r,"indices","oneHot","int32")},a={depth:e,onValue:t,offValue:o};return E.runKernel(bn,s,a)}var Is=N({oneHot_:dV});function hV(r,e){let t=v(r,"x","transpose");if(e==null&&(e=t.shape.map((s,a)=>a).reverse()),T(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of perm ${e}.`),e.forEach(s=>{T(s>=0&&s<t.rank,()=>`All entries in 'perm' must be between 0 and ${t.rank-1} but got ${e}`)}),t.rank<=1)return t.clone();let o={x:t},n={perm:e};return E.runKernel(Mn,o,n)}var je=N({transpose_:hV});function gV(r,e,t){let o=v(r,"labels","confusionMatrix"),n=v(e,"predictions","confusionMatrix");T(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),T(o.rank===1,()=>`Expected the rank of labels to be 1, but got ${o.rank}`),T(n.rank===1,()=>`Expected the rank of predictions to be 1, but got ${n.rank}`),T(o.shape[0]===n.shape[0],()=>`Mismatch in the number of examples: ${o.shape[0]} vs. ${n.shape[0]}. Labels and predictions should have the same number of elements.`),T(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=Is(oe(o,"int32"),t),a=Is(oe(n,"int32"),t),i=je(s),l=Ue(i,a);return oe(l,"int32")}var xV=N({confusionMatrix_:gV});var Xh={};tt(Xh,{fromPixels:()=>_V,toPixels:()=>bV});function qb(r,e,t){if(Do(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let o=Cr(r,t);if(o.length!==3&&o.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return jr(r,e,o,t)}var Uc;function yV(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,o=!1,n=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)o=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)n=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(n){let d=2;if(n&&r.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(gm(Oc,E.backendName)!=null){let d={pixels:r},h={numChannels:e};return E.runKernel(Oc,d,h)}let[u,c]=n?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;a?p=r.getContext("2d").getImageData(0,0,u,c).data:o||t?p=r.data:(s||n||i)&&(Uc==null&&(Uc=document.createElement("canvas").getContext("2d")),Uc.canvas.width=u,Uc.canvas.height=c,Uc.drawImage(r,0,0,u,c),p=Uc.getImageData(0,0,u,c).data);let m;if(e===4)m=new Int32Array(p);else{let d=u*c;m=new Int32Array(d*e);for(let h=0;h<d;h++)for(let g=0;g<e;++g)m[h*e+g]=p[h*4+g]}return qb(m,[c,u,e],"int32")}async function bV(r,e){let t=v(r,"img","toPixels");if(!(r instanceof R)){let u=t;t=oe(u,"int32"),u.dispose()}if(t.rank!==2&&t.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${t.rank}.`);let[o,n]=t.shape.slice(0,2),s=t.rank===2?1:t.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(t.dtype!=="float32"&&t.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${t.dtype}. Please use float32 or int32 tensors.`);let a=await t.data(),i=t.dtype==="float32"?255:1,l=new Uint8ClampedArray(n*o*4);for(let u=0;u<o*n;++u){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=a[u*s+m];if(t.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(t.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*i,c[1]=f*i,c[2]=f*i):c[m]=f*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(e!=null){e.width=n,e.height=o;let u=e.getContext("2d"),c=new ImageData(l,n,o);u.putImageData(c,0,0)}return t!==r&&t.dispose(),l}var _V=N({fromPixels_:yV});var Yh={};tt(Yh,{prepareAndValidate:()=>TN});function TN(r,e){let t=r.shape.length,o=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(o<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${o}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[o-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[o-1]} vs. ${t}`);if(ht(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let n=e.shape,s=n[n.length-1],a=1;for(let p=0;p<n.length-1;++p)a*=n[p];let i=r.shape,l=n.slice();l.pop();let u=1;for(let p=s;p<t;++p)u*=i[p],l.push(i[p]);let c=[...qs(r.shape).map(p=>p/u),1].slice(0,s);return[l,a,u,c]}var Zh={};tt(Zh,{calculateShapes:()=>EN,validateInput:()=>Jh,validateUpdateShape:()=>Hb});function Hb(r,e,t){let o=e.rank>1?e.shape[e.rank-1]:1,n=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${o}, and batchDim: ${n}.`;if(t.rank<n)throw new Error(s+` update.rank < ${n}. `);if(r.length<o+(t.rank-n))throw new Error(s+` Output shape length < ${o+(t.rank-n)}`);if(t.rank!==n+r.length-o)throw new Error(s+` update.rank != ${n+r.length-o}`);for(let a=0;a<n;++a)if(t.shape[a]!==e.shape[a])throw new Error(s+` updates.shape[${a}] (${t.shape[a]}) != indices.shape[${a}] (${e.shape[a]}).`);for(let a=0;a<t.rank-n;++a)if(t.shape[a+n]!==r[a+o])throw new Error(s+` updates.shape[${a+n}] (${t.shape[a+n]}) != shape[${a+n}] (${r[a+n]})`)}function Jh(r,e,t){if(e.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${e.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(e.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${e.dtype}`);if(t.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);if(t.length===0){if(e.size===0)throw new Error(`Indices specified for empty output. indices shape: ${e.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}Hb(t,e,r)}function EN(r,e,t){let o=e.shape.length,n=o>1?e.shape[o-1]:1,s=t.length,a=1;for(let p=n;p<s;++p)a*=t[p];let i=n<1?1:n,l=ht(e.shape)/i,u=[...qs(t.slice(0,n)),1],c=ht(t);return{sliceRank:n,numUpdates:l,sliceSize:a,strides:u,outputSize:c}}var sr={};tt(sr,{assertParamsValid:()=>wV,computeFlatOffset:()=>kV,computeOutShape:()=>AN,getNormalizedAxes:()=>zN,isSliceContinous:()=>vV,maskToAxes:()=>Qh,parseSliceParams:()=>Kb,sliceInfo:()=>CV,startForAxis:()=>MN,startIndicesWithElidedDims:()=>FN,stopForAxis:()=>LN,stopIndicesWithElidedDims:()=>ON,stridesForAxis:()=>PN,stridesWithElidedDims:()=>DN});function wV(r,e,t){let o=r.shape.length;T(o===e.length,()=>`Error in slice${o}D: Length of begin ${e} must match the rank of the array (${o}).`),T(o===t.length,()=>`Error in slice${o}D: Length of size ${t} must match the rank of the array (${o}).`);for(let n=0;n<o;++n)T(e[n]+t[n]<=r.shape[n],()=>`Error in slice${o}D: begin[${n}] + size[${n}] (${e[n]+t[n]}) would overflow input.shape[${n}] (${r.shape[n]})`)}function Qh(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function AN(r,e,t){let o=[];for(let n=0;n<r.length;n++)o[n]=Math.ceil((e[n]-r[n])/t[n]);return o}function DN(r,e,t,o){let n=[...r];for(let s=n.length;s<o.length;s++)n.push(1);for(let s=0;s<t;s++)s===0?n[e]=1:(n.splice(e,0,1),n.pop());return n}function $N(r,e,t){return t<=r?t:t-(e-1)}function RN(r,e){let t=[];for(let o=0;o<r;o++)t.push(e+o);return t}function zN(r,e,t,o,n,s,a,i,l){let u=r.length,c=new Array(u),p=new Array(u),m=new Array(u);if(e.length&&t>0){let f=e[0],d=t+1;c=FN(a,f,d,o,r),p=ON(i,f,d,n,r),m=DN(s,f,d,r)}else for(let f=0;f<u;f++)c[f]=MN(a,o,s,r,f,l),p[f]=LN(i,n,s,r,f,l),m[f]=PN(s,f,l);return{begin:c,end:p,strides:m}}function FN(r,e,t,o,n){let s=[...n],a=RN(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=0;else{let l=$N(e,t,i),u=o[l];r&1<<l&&(u=0),s[i]=u}return s}function ON(r,e,t,o,n){let s=[...n],a=RN(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=Number.MAX_SAFE_INTEGER;else{let l=$N(e,t,i),u=o[l];r&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[i]=u}for(let i=0;i<s.length;i++){let l=n[i];s[i]<0&&(s[i]+=l),s[i]=Ec(0,s[i],n[i])}return s}function PN(r,e,t){let o=r[e];return(t&1<<e||o==null)&&(o=1),o}function MN(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),a=Ec(0,a,l-1),a}function LN(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),i>0?a=Ec(0,a,l):a=Ec(-1,a,l-1),a}function vV(r,e,t){let o=t.length;for(let n=0;n<t.length;n++)if(t[n]>1){o=n;break}for(let n=o+1;n<t.length;n++)if(e[n]>0||t[n]!==r[n])return!1;return!0}function kV(r,e){let t=r.length>0?r[r.length-1]:1;for(let o=0;o<r.length-1;o++)t+=r[o]*e[o];return t}function Kb(r,e,t){let o,n=r.shape.length;typeof e=="number"?o=[e,...new Array(n-1).fill(0)]:e.length<n?o=e.concat(new Array(n-e.length).fill(0)):o=e.slice(),o.forEach(a=>{T(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(n).fill(-1):typeof t=="number"?s=[t,...new Array(n-1).fill(-1)]:t.length<n?s=t.concat(new Array(n-t.length).fill(-1)):s=t,s=s.map((a,i)=>a>=0?a:(T(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-o[i])),[o,s]}function CV(r,e,t,o,n,s,a,i,l){let u=e.slice(),c=t.slice(),p=o;o==null&&(p=new Array(u.length));let m=Qh(a);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.length-u.length,d=Qh(i),h=r.slice();d.forEach(A=>{u[A]=0,c[A]=1,h.splice(A,0,1)});let{begin:g,end:x,strides:b}=zN(h,m,f,u,c,p,n,s,a);u=g,c=x,p=b;let _=Qh(l);_.forEach(A=>{c[A]=u[A]+1,p[A]=1});let w=AN(u,c,p),C=w.filter((A,F)=>_.indexOf(F)===-1);return{nonStrided:p.every(A=>A===1),$begin:u,$end:c,$strides:p,size:w,newShape:h,outShape:C}}var ee={};tt(ee,{Serializable:()=>eg,SerializationMap:()=>va,registerClass:()=>oo});var eg=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},va=class{constructor(){this.classNameMap={}}static getMap(){return va.instance==null&&(va.instance=new va),va.instance}static register(e){va.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function oo(r){T(r.className!=null,()=>"Class being registered does not have the static className property defined."),T(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),T(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),va.register(r)}var BN={};tt(BN,{TEST_EPSILON_FLOAT16:()=>VN,encodeStrings:()=>WN,expectArrayBuffersEqual:()=>DV,expectArraysClose:()=>NV,expectArraysEqual:()=>TV,expectNumbersClose:()=>EV,expectPromiseToFail:()=>SV,expectValuesInRange:()=>AV,testEpsilon:()=>Xb});var IV=.001,VN=.1;function NV(r,e,t){return t==null&&(t=Xb()),Yb(r,e,(o,n)=>Zb(o,n,t))}function Xb(){return E.backend.floatPrecision()===32?IV:VN}function Yb(r,e,t){let o=!0;if((nr(r)||nr(e))&&(o=!1),nr(r)&&nr(e)&&(o=!0),o){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=Cr(r),i=Cr(e);if(!Ur(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let n=nr(r)?r:is(r),s=nr(e)?e:is(e);if(n.length!==s.length)throw new Error(`Arrays have different lengths actual: ${n.length} vs expected: ${s.length}.
Actual: ${n}.
Expected: ${s}.`);for(let a=0;a<s.length;++a){let i=n[a],l=s[a];if(!t(i,l))throw new Error(`Arrays differ: actual[${a}] = ${i}, expected[${a}] = ${l}.
Actual: ${n}.
Expected: ${s}.`)}}function SV(r,e){r().then(()=>e.fail(),()=>e())}function TV(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return as(r)||as(r[0])||as(e)||as(e[0])?Yb(r,t,(o,n)=>o==n):Yb(r,e,(o,n)=>Zb(o,n,0))}function EV(r,e,t){if(t==null&&(t=Xb()),!Zb(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`)}function Zb(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function AV(r,e,t){for(let o=0;o<r.length;o++)if(r[o]<e||r[o]>t)throw new Error(`Value out of range:${r[o]} low: ${e}, high: ${t}`)}function DV(r,e){expect(new Float32Array(r)).toEqual(new Float32Array(e))}function WN(r){for(let e=0;e<r.length;e++){let t=r[e];Array.isArray(t)?WN(t):r[e]=rl(t)}return r}var Jb="2.8.5";function $V(){W().set("PROD",!0)}function RV(){W().set("DEBUG",!0)}function FV(){W().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Ot(r){W().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}qI(Ot);function OV(){E.disposeVariables()}function Ns(){return E}function jc(){return E.memory()}function PV(r){return E.profile(r)}function V(r,e){return E.tidy(r,e)}function Ae(r){wm(r).forEach(t=>t.dispose())}function At(r){return E.keep(r)}function MV(r){return E.time(r)}function GN(r){return E.setBackend(r)}function LV(){return E.ready()}function zV(){return E.backendName}function BV(r){E.removeBackend(r)}function VV(r){return E.findBackend(r)}function WV(r){return E.findBackendFactory(r)}function _u(r,e,t=1){return E.registerBackend(r,e,t)}function Qb(){return E.backend}function GV(r,e){W().setPlatform(r,e)}function UV(r,e){let t=v(r,"a","add"),o=v(e,"b","add");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(_o,n)}var Q=N({add_:UV});function jV(r,e){let t=v(r,"a","floorDiv"),o=v(e,"b","floorDiv");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(an,n)}var wu=N({floorDiv_:jV});function qV(r,e){let t=v(r,"a","div"),o=v(e,"b","div");if([t,o]=Ge(t,o),t.dtype==="int32"&&o.dtype==="int32")return wu(t,o);let n={a:t,b:o},s={};return E.runKernel(on,n,s)}var fe=N({div_:qV});function HV(r,e){let t=v(r,"a","mul"),o=v(e,"b","mul");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(yn,n)}var O=N({mul_:HV});function KV(r){let e=v(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return E.runKernel(ia,t)}else{let t={x:e};return E.runKernel(ls,t)}}var Tt=N({abs_:KV});function XV(r){let t={x:v(r,"x","acos")};return E.runKernel(Hs,t)}var km=N({acos_:XV});function YV(r){let t={x:v(r,"x","acosh")};return E.runKernel(Ks,t)}var Cm=N({acosh_:YV});function ZV(r){T(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),T(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((n,s)=>v(n,`tensors${s}`,"addN")),t=e[0];e.forEach(n=>{if(n.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(n=>{if(!Ur(n.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let o=e;return E.runKernel(Ko,o)}var e_=N({addN_:ZV});function JV(r,e=null,t=!1){let n={x:v(r,"x","all","bool")},s={axis:e,keepDims:t};return E.runKernel(Gl,n,s)}var vu=N({all_:JV});function QV(r,e=null,t=!1){let n={x:v(r,"x","any","bool")},s={axis:e,keepDims:t};return E.runKernel(Ul,n,s)}var il=N({any_:QV});function eW(r,e=0){let o={x:v(r,"x","argMax")},n={axis:e};return E.runKernel(Xo,o,n)}var al=N({argMax_:eW});function tW(r,e=0){let o={x:v(r,"x","argMin")},n={axis:e};return E.runKernel(oa,o,n)}var Im=N({argMin_:tW});function rW(r){let t={x:v(r,"x","asin")};return E.runKernel(Xs,t)}var Nm=N({asin_:rW});function oW(r){let t={x:v(r,"x","asinh")};return E.runKernel(Ys,t)}var Sm=N({asinh_:oW});function nW(r){let t={x:v(r,"x","atan")};return E.runKernel(Zs,t)}var Tm=N({atan_:nW});function sW(r,e){let t=v(r,"a","atan2"),o=v(e,"b","atan2");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(Qs,n)}var Em=N({atan2_:sW});function iW(r){let t={x:v(r,"x","atanh")};return E.runKernel(Js,t)}var Am=N({atanh_:iW});function aW(r,e,t,o,n="NHWC",s){let a=r[3],i=[...e,a],l=UN(n);return ku(r,i,t,s,o,null,null,l)}function t_(r,e,t,o,n,s,a="channelsLast"){let[i,l]=tg(e),u;if(a==="channelsLast")u=[i,l,r[3],r[3]];else if(a==="channelsFirst")u=[i,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return ku(r,u,t,o,n,s,!1,a)}function lW(r,e,t,o,n,s,a="NDHWC"){let[i,l,u]=r_(e),c,p;if(a==="NDHWC")p="channelsLast",c=[i,l,u,r[4],r[4]];else if(a==="NCDHW")p="channelsFirst",c=[i,l,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return jN(r,c,t,o,n,!1,p,s)}function ku(r,e,t,o,n,s,a=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=r;else if(i==="channelsFirst")[l,p,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,f,,d]=e,[h,g]=tg(t),[x,b]=tg(o),_=qc(m,x),w=qc(f,b),{padInfo:C,outHeight:D,outWidth:A}=uW(n,u,c,h,g,_,w,s,i),F=a?d*p:d,M;return i==="channelsFirst"?M=[l,F,D,A]:i==="channelsLast"&&(M=[l,D,A,F]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:D,outWidth:A,outChannels:F,padInfo:C,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:_,effectiveFilterWidth:w,dilationHeight:x,dilationWidth:b,inShape:r,outShape:M,filterShape:e}}function jN(r,e,t,o,n,s=!1,a="channelsLast",i){let[l,u,c,p,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[l,u,c,p,m]=r;else if(a==="channelsFirst")[l,m,u,c,p]=r;else throw new Error(`Unknown dataFormat ${a}`);let[f,d,h,,g]=e,[x,b,_]=r_(t),[w,C,D]=r_(o),A=qc(f,w),F=qc(d,C),M=qc(h,D),{padInfo:z,outDepth:G,outHeight:U,outWidth:H}=cW(n,u,c,p,x,b,_,A,F,M,i),J=s?g*m:g,Y;return a==="channelsFirst"?Y=[l,J,G,U,H]:a==="channelsLast"&&(Y=[l,G,U,H,J]),{batchSize:l,dataFormat:a,inDepth:u,inHeight:c,inWidth:p,inChannels:m,outDepth:G,outHeight:U,outWidth:H,outChannels:J,padInfo:z,strideDepth:x,strideHeight:b,strideWidth:_,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:A,effectiveFilterHeight:F,effectiveFilterWidth:M,dilationDepth:w,dilationHeight:C,dilationWidth:D,inShape:r,outShape:Y,filterShape:e}}function pW(r,e,t,o,n){o==null&&(o=o_(r,e,t));let s=r[0],a=r[1],i=Cu((s-e+2*o)/t+1,n),l=Cu((a-e+2*o)/t+1,n);return[i,l]}function mW(r,e,t,o,n,s){n==null&&(n=o_(r,e,o));let a=r[0],i=r[1],l=r[2],u=Cu((a-e+2*n)/o+1,s),c=Cu((i-e+2*n)/o+1,s),p=Cu((l-e+2*n)/o+1,s);return[u,c,p,t]}function o_(r,e,t,o=1){let n=qc(e,o);return Math.floor((r[0]*(t-1)-t+n)/2)}function tg(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function r_(r){return typeof r=="number"?[r,r,r]:r}function qc(r,e){return e<=1?r:r+(r-1)*(e-1)}function uW(r,e,t,o,n,s,a,i,l){let u,c,p;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=pW([e,t],s,o,r,i);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(e/o),p=Math.ceil(t/n);let m=Math.max(0,(c-1)*o+s-e),f=Math.max(0,(p-1)*n+a-t),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;u={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/o),p=Math.ceil((t-a+1)/n);else if(typeof r=="object"){let m=l==="channelsLast"?r[1][0]:r[2][0],f=l==="channelsLast"?r[1][1]:r[2][1],d=l==="channelsLast"?r[2][0]:r[3][0],h=l==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=Cu((e-s+m+f)/o+1,i),p=Cu((t-a+d+h)/n+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:p}}function cW(r,e,t,o,n,s,a,i,l,u,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=mW([e,t,o,1],i,1,n,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(e/n),f=Math.ceil(t/s),d=Math.ceil(o/a);let h=(m-1)*n+i-e,g=(f-1)*s+l-t,x=(d-1)*a+u-o,b=Math.floor(h/2),_=h-b,w=Math.floor(g/2),C=g-w,D=Math.floor(x/2),A=x-D;p={top:w,bottom:C,left:D,right:A,front:b,back:_,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((e-i+1)/n),f=Math.ceil((t-l+1)/s),d=Math.ceil((o-u+1)/a);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function Cu(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function Po(r){let[e,t,o]=tg(r);return e===1&&t===1&&o===1}function Pt(r,e){return Po(r)||Po(e)}function UN(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function fW(r,e){let o={x:v(r,"x","reshape","string_or_numeric")},n={shape:e};return E.runKernel(gs,o,n)}var L=N({reshape_:fW});function dW(r,e,t,o,n){let s=v(r,"x","avgPool","float32"),a=1;T(Pt(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),n!=null&&T(it(o),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=E.runKernel(Yo,u,c);return p=oe(p,s.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ka=N({avgPool_:dW});function hW(r,e,t,o,n,s="NDHWC",a){a==null?a=[1,1,1]:Ot("dilations is deprecated, this field will be gone in v3.0.0.");let i=v(r,"x","avgPool3d","float32"),l=i,u=!1;i.rank===4&&(u=!0,l=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),T(l.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${l.rank}.`),T(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),T(Pt(t,a),()=>`Error in avgPool3d: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),n!=null&&T(it(o),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let c={x:l},p={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s,dilations:a},m=E.runKernel(na,c,p);return m=oe(m,l.dtype),u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Dm=N({avgPool3d_:hW});function gW(r,e=0){T(r.length>=1,()=>"Pass at least one tensor to concat");let t=ya(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),t.length===1)return Oo(t[0]);let o=t,n={axis:e};return E.runKernel(us,o,n)}var Qe=N({concat_:gW});function xW(r){let t={x:v(r,"x","sigmoid")};return E.runKernel(An,t)}var Hr=N({sigmoid_:xW});function yW(r,e,t){let o=v(r,"x","slice","string_or_numeric");if(o.rank===0)throw new Error("Slicing scalar is not possible");let n={x:o},s={begin:e,size:t};return E.runKernel(ys,n,s)}var Oe=N({slice_:yW});function bW(r){let t={x:v(r,"x","tanh")};return E.runKernel(Pn,t)}var Mi=N({tanh_:bW});function _W(r,e,t,o,n,s){let a=v(r,"forgetBias","basicLSTMCell"),i=v(e,"lstmKernel","basicLSTMCell"),l=v(t,"lstmBias","basicLSTMCell"),u=v(o,"data","basicLSTMCell"),c=v(n,"c","basicLSTMCell"),p=v(s,"h","basicLSTMCell"),m=Qe([u,p],1),f=Ue(m,i),d=Q(f,l),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Oe(d,[0,0],x),_=Oe(d,[0,g],x),w=Oe(d,[0,g*2],x),C=Oe(d,[0,g*3],x),D=Q(O(Hr(b),Mi(_)),O(c,Hr(Q(a,w)))),A=O(Mi(D),Hr(C));return[D,A]}var wW=N({basicLSTMCell_:_W});function vW(r,e,t){let o=v(r,"x","batchToSpaceND"),n=e.reduce((i,l)=>i*l);T(o.rank>=1+e.length,()=>`input rank is ${o.rank} but should be > than blockShape.length ${e.length}`),T(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),T(o.shape[0]%n==0,()=>`input tensor batch is ${o.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${n}`);let s={x:o},a={blockShape:e,crops:t};return E.runKernel(sa,s,a)}var Ca=N({batchToSpaceND_:vW});function qN(r){let e;return r.rank===0||r.rank===1?e=L(r,[1,1,1,r.size]):r.rank===2?e=L(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function kW(r,e,t,o,n,s){s==null&&(s=.001);let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;o!=null&&(c=v(o,"offset","batchNorm")),T(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),T(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),T(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:qN(a),scale:u,offset:c,mean:i,variance:l},f={varianceEpsilon:s},d=E.runKernel(ln,m,f);return L(d,a.shape)}var zn=N({batchNorm_:kW});function CW(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),T(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),T(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),T(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),zn(a,i,l,c,u,s)}var n_=N({batchNorm2d_:CW});function IW(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),T(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),T(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),T(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),zn(a,i,l,c,u,s)}var s_=N({batchNorm3d_:IW});function NW(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),T(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),T(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),T(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),zn(a,i,l,c,u,s)}var i_=N({batchNorm4d_:NW});function SW(r,e,t){let o=v(r,"x","bincount"),n=v(e,"weights","bincount");T(o.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${o.dtype}`),T(t>=0,()=>`size must be non-negative, but got ${t}.`),T(n.size===o.size||n.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${o.shape}, weights shape: ${n.shape}.`);let s={x:o,weights:n},a={size:t};return E.runKernel(Hl,s,a)}var a_=N({bincount_:SW});function TW(r,e){let t=v(r,"broadcastTo","x"),o=t.shape;if(e.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${e}].`);if(e.length<t.rank)throw new Error(`broadcastTo(): shape.length=${e.length} < input.rank=${t.rank}.`);if(e.length>t.rank){let u=t.shape.slice();for(;u.length<e.length;)u.unshift(1);t=L(t,u)}let n=t.shape,s=Array.from(e);for(let u=e.length-1;u>=0;u--)if(n[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Oo(t);let i={x:t},l={reps:s};return E.runKernel(wo,i,l)}var ll=N({broadcastTo_:TW});function EW(r){let t={x:v(r,"x","ceil")};return E.runKernel(ei,t)}var $m=N({ceil_:EW});function AW(r,e,t){let o=v(r,"x","clipByValue");T(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`);let n={x:o},s={clipValueMin:e,clipValueMax:t};return E.runKernel(Ro,n,s)}var ir=N({clipByValue_:AW});function DW(r){return Qe(r,0)}var l_=N({concat1d_:DW});function $W(r,e){return Qe(r,e)}var u_=N({concat2d_:$W});function RW(r,e){return Qe(r,e)}var c_=N({concat3d_:RW});function FW(r,e){return Qe(r,e)}var p_=N({concat4d_:FW});function OW(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","conv2d"),l=v(e,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),T(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),T(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),a!=null&&T(it(o),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p=n==="NHWC"?u.shape[3]:u.shape[1];T(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),T(Pt(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let m={x:u,filter:l},f={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},d=E.runKernel(Jo,m,f);return c?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Kr=N({conv2d_:OW});function PW(r,e,t,o,n="NWC",s=1,a){let i=v(r,"x","conv1d"),l=v(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1]])),T(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),T(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),a!=null&&T(it(o),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),T(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),T(Pt(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),T(n==="NWC",()=>`Error in conv1d: got dataFormat of ${n} but only NWC is currently supported.`);let p=L(l,[1,l.shape[0],l.shape[1],l.shape[2]]),m=L(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Kr(m,p,[1,t],o,"NHWC",[1,s],a);return c?L(g,[g.shape[2],g.shape[3]]):L(g,[g.shape[0],g.shape[2],g.shape[3]])}var Iu=N({conv1d_:PW});function MW(r,e,t,o,n,s="NHWC",a){T(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,l=e,u=!1;e.rank===3&&(u=!0,l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),T(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),T(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),T(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],p=s==="NHWC"?l.shape[3]:l.shape[1];T(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),T(p===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${t.shape[3]}.`),a!=null&&T(it(n),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let m={dy:l,filter:t},f={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,inputShape:i},d=E.runKernel(Qo,m,f);return u?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Hc=N({conv2DBackpropInput_:MW});function LW(r,e,t,o,n,s){let a=v(r,"x","conv2dTranspose"),i=v(e,"filter","conv2dTranspose");return Hc(t,a,i,o,n,"NHWC",s)}var Nu=N({conv2dTranspose_:LW});function zW(r,e,t,o,n="NDHWC",s=[1,1,1]){let a=v(r,"x","conv3d"),i=v(e,"filter","conv3d"),l=a,u=!1;a.rank===4&&(u=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),T(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),T(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),T(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),T(Pt(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),T(n==="NDHWC",()=>`Error in conv3d: got dataFormat of ${n} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:t,pad:o,dataFormat:n,dilations:s},m=E.runKernel(aa,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Rm=N({conv3d_:zW});function BW(r,e,t,o,n){T(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let l=s[4],u=a.shape[4];T(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),T(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),T(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),T(l===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${t.shape[3]}.`),T(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},p={pad:n,strides:o,inputShape:s},m=E.runKernel(Zl,c,p);return i?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var rg=N({conv3DBackpropInput_:BW});function VW(r,e,t,o,n){let s=v(r,"x","conv3dTranspose"),a=v(e,"filter","conv3dTranspose");return rg(t,s,a,o,n)}var WW=N({conv3dTranspose_:VW});function GW(r){let t={x:v(r,"x","cos")};return E.runKernel(en,t)}var Ia=N({cos_:GW});function UW(r){let t={x:v(r,"x","cosh")};return E.runKernel(ti,t)}var Su=N({cosh_:UW});function jW(r,e=0,t=!1,o=!1){let s={x:v(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:o};return E.runKernel(tn,s,a)}var Tu=N({cumsum_:jW});function qW(r,e,t,o=!1){let n=v(r,"x","denseBincount"),s=v(e,"weights","denseBincount");T(n.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${n.dtype}`),T(n.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${n.rank}.`),T(t>=0,()=>`size must be non-negative, but got ${t}.`),T(s.size===n.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${n.shape}, weights shape: ${s.shape}.`);let a={x:n,weights:s},i={size:t,binaryOutput:o};return E.runKernel(Jl,a,i)}var m_=N({denseBincount_:qW});function HW(r,e,t="NHWC"){let o=v(r,"x","depthToSpace"),n=t==="NHWC"?o.shape[1]:o.shape[2],s=t==="NHWC"?o.shape[2]:o.shape[3],a=t==="NHWC"?o.shape[3]:o.shape[1];T(n*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${n} and ${e} for depthToSpace with input shape
${o.shape}`),T(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${e} for depthToSpace with input shape
${o.shape}`),T(a%(e*e)==0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${o.shape}`);let i={x:o},l={blockSize:e,dataFormat:t};return E.runKernel(oi,i,l)}var Fm=N({depthToSpace_:HW});function KW(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","depthwiseConv2d"),l=v(e,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),T(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),T(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),T(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),a!=null&&T(it(o),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p={x:u,filter:l},m={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},f=E.runKernel(rn,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Mo=N({depthwiseConv2d_:KW});function XW(r){let t={x:v(r,"x","diag")};return E.runKernel(tu,t)}var YW=N({diag_:XW});function ZW(r,e,t,o,n=[1,1],s="NHWC"){let a=v(r,"x","dilation2d"),i=v(e,"filter","dilation2d");T(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),T(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),T(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=a,u=!1;a.rank===3&&(l=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:t,pad:o,dilations:n},m=E.runKernel(la,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Om=N({dilation2d_:ZW});function JW(r,e){let t=r.length,o=[];for(let n=0;n<t;n++){let s=t-1-n,a=r[s]||1;(e[e.length-1-n]||1)>1&&a===1&&o.unshift(s)}return o}function It(r,e){let t=[];for(let o=0;o<e.length;o++){let n=r[r.length-o-1],s=e.length-o-1,a=e[s];(n==null||n===1&&a>1)&&t.unshift(s)}return t}function Be(r,e){let t=[],o=Math.max(r.length,e.length);for(let n=0;n<o;n++){let s=r[r.length-n-1];s==null&&(s=1);let a=e[e.length-n-1];if(a==null&&(a=1),s===1)t.unshift(a);else if(a===1)t.unshift(s);else if(s!==a){let i=`Operands could not be broadcast together with shapes ${r} and ${e}.`;throw Error(i)}else t.unshift(s)}return t}function QW(r,e){let t=v(r,"a","equal"),o=v(e,"b","equal");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(ii,n)}var Xr=N({equal_:QW});function eG(r,e,t){let o=v(e,"a","where"),n=v(t,"b","where"),s=v(r,"condition","where","bool"),a=Be(o.shape,n.shape),i=ll(o,a),l=ll(n,a);s.rank===1&&T(s.shape[0]===o.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&We(s.shape,l.shape,"Error in where: ");let u={condition:s,t:i,e:l};return E.runKernel(xs,u)}var Dt=N({where_:eG});function tG(r){let t={x:v(r,"x","zerosLike")};return E.runKernel(ws,t)}var Ne=N({zerosLike_:tG});function rG(r,e){let t=v(r,"a","div"),o=v(e,"b","div");[t,o]=Ge(t,o);let n=fe(t,o),s=Ne(n),a=Xr(o,s);return Dt(a,s,n)}var Pm=N({divNoNan_:rG});function oG(r,e){let t=v(r,"t1","dot"),o=v(e,"t2","dot");T((t.rank===1||t.rank===2)&&(o.rank===1||o.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${o.rank}.`);let n=t.rank===1?t.size:t.shape[1],s=o.rank===1?o.size:o.shape[0];if(T(n===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${n} and ${s}.`),t.rank===1&&o.rank===1){let a=L(t,[1,-1]),i=L(o,[-1,1]),l=Ue(a,i);return L(l,[])}else if(t.rank===1&&o.rank===2){let a=L(t,[1,-1]),i=L(o,[o.shape[0],o.shape[1]]),l=Ue(a,i);return L(l,[l.size])}else if(t.rank===2&&o.rank===1){let a=L(o,[-1,1]),i=Ue(t,a);return L(i,[i.size])}else{let a=L(o,[o.shape[0],o.shape[1]]);return Ue(t,a)}}var f_=N({dot_:oG});function nG(r){let t={x:v(r,"x","elu")};return E.runKernel(ni,t)}var Ss=N({elu_:nG});function sG(r){let e=v(r,"x","erf");T(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=oe(e,"float32"));let t={x:e};return E.runKernel(si,t)}var Mm=N({erf_:sG});function iG(r){let t={x:v(r,"x","exp")};return E.runKernel(nn,t)}var Jt=N({exp_:iG});function aG(r,e=0){let t=v(r,"x","expandDims","string_or_numeric");T(e<=t.rank,()=>"Axis must be <= rank of the tensor");let o={input:t},n={dim:e};return E.runKernel(cs,o,n)}var br=N({expandDims_:aG});function lG(r){let t={x:v(r,"x","expm1")};return E.runKernel(ai,t)}var Lm=N({expm1_:lG});function uG(r,e){let t=v(r,"x","tile","string_or_numeric");T(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let o={x:t},n={reps:e};return E.runKernel(wo,o,n)}var Lo=N({tile_:uG});function cG(r,e,t,o="float32"){e==null&&(e=r);let n=Ie([r,e],o),s=r<=e?r:e;for(let i=0;i<s;++i)n.set(1,i,i);let a=L(n.toTensor(),[r,e]);if(t==null)return a;if(t.length===1)return Lo(br(a,0),[t[0],1,1]);if(t.length===2)return Lo(br(br(a,0),0),[t[0],t[1],1,1]);if(t.length===3)return Lo(br(br(br(a,0),0),0),[t[0],t[1],t[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${t.length}D.`)}var Kc=N({eye_:cG});function Na(r,e,t){let o={shape:r,value:e,dtype:t};return E.runKernel(ua,{},o)}function pG(r){let t={x:v(r,"x","floor")};return E.runKernel(sn,t)}var Ts=N({floor_:pG});function mG(r,e,t=0,o=0){let n=v(r,"x","gather"),s=v(e,"indices","gather","int32"),a={x:n,indices:s},i={axis:t,batchDims:o};return E.runKernel(ps,a,i)}var Bn=N({gather_:mG});function fG(r,e){let t=v(r,"a","greater"),o=v(e,"b","greater");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(ci,n)}var Xt=N({greater_:fG});function dG(r,e){let t=v(r,"a","greaterEqual"),o=v(e,"b","greaterEqual");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(un,n)}var Or=N({greaterEqual_:dG});function hG(r){let t={input:v(r,"input","imag")};return E.runKernel(su,t)}var Eu=N({imag_:hG});function gG(r){let t={x:v(r,"x","isFinite")};return E.runKernel(pi,t)}var d_=N({isFinite_:gG});function xG(r){let t={x:v(r,"x","isInf")};return E.runKernel(mi,t)}var h_=N({isInf_:xG});function yG(r){let t={x:v(r,"x","isNaN")};return E.runKernel(fi,t)}var g_=N({isNaN_:yG});function bG(r,e=.2){let o={x:v(r,"x","leakyRelu")},n={alpha:e};return E.runKernel(cn,o,n)}var Sa=N({leakyRelu_:bG});function _G(r,e){let t=v(r,"a","less"),o=v(e,"b","less");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(di,n)}var Ta=N({less_:_G});function wG(r,e){let t=v(r,"a","lessEqual"),o=v(e,"b","lessEqual");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(hi,n)}var no=N({lessEqual_:wG});function x_(r,e,t){if(t<=0)throw new Error("The number of values should be positive.");let o={start:r,stop:e,num:t};return E.runKernel(iu,{},o)}function vG(r,e=5,t=1,o=1,n=.5){let s=v(r,"x","localResponseNormalization");T(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),T(it(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=L(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:a},u={depthRadius:e,bias:t,alpha:o,beta:n},c=E.runKernel(ca,l,u);return i?L(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var zm=N({localResponseNormalization_:vG});function kG(r){let t={x:v(r,"x","log")};return E.runKernel(pn,t)}var ar=N({log_:kG});function CG(r){let t={x:v(r,"x","log1p")};return E.runKernel(gi,t)}var Au=N({log1p_:CG});function IG(r){return T(js(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let o=v(e,"x","tf.grad","string_or_numeric"),n=t!=null?v(t,"dy","tf.grad"):null;return E.tidy(()=>{let{value:s,grads:a}=E.gradients(()=>r(o),[o],n);return n!=null&&We(s.shape,n.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),og(a),a[0]})}}function NG(r){return T(js(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{T(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let o=ya(e,"args","tf.grads","string_or_numeric"),n=t!=null?v(t,"dy","tf.grads"):null;return E.tidy(()=>{let{value:s,grads:a}=E.gradients(()=>r(...o),o,n);return n!=null&&We(s.shape,n.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),og(a),a})}}function SG(r){return T(js(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{T(e instanceof R,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),T(t==null||t instanceof R,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:o,value:n}=E.gradients(()=>r(e),[e],t);return og(o),{grad:o[0],value:n}}}function TG(r){return T(js(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{T(Array.isArray(e)&&e.every(n=>n instanceof R),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),T(t==null||t instanceof R,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let o=E.gradients(()=>r(...e),e,t);return t!=null&&We(o.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),og(o.grads),o}}function ng(r,e){T(js(r),()=>"The f passed in variableGrads(f) must be a function"),T(e==null||Array.isArray(e)&&e.every(u=>u instanceof ol),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in E.registeredVariables)e.push(E.registeredVariables[u])}let o=t?e.filter(u=>!u.trainable):null,n=e.length;e=e.filter(u=>u.trainable),T(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${n} variables is trainable.`);let s=!0,{value:a,grads:i}=E.gradients(r,e,null,s);T(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),T(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let l={};return e.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),o!=null&&o.forEach(u=>l[u.name]=null),{value:a,grads:l}}function Yr(r){return E.customGrad(r)}function og(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function EG(r){let t={x:v(r,"x","neg")};return E.runKernel(fs,t)}var qe=N({neg_:EG});function AG(r){let t={x:v(r,"x","softplus")};return E.runKernel(Ei,t)}var Es=N({softplus_:AG});function DG(r){let e=v(r,"x","logSigmoid");return Yr(o=>({value:qe(Es(qe(o))),gradFunc:a=>O(a,Hr(qe(o)))}))(e)}var y_=N({logSigmoid_:DG});function $G(r,e=null,t=!1){let n={x:v(r,"x","max")},s={reductionIndices:e,keepDims:t};return E.runKernel(mn,n,s)}var lr=N({max_:$G});function RG(r,e){let t=v(r,"a","sub"),o=v(e,"b","sub");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(On,n)}var ce=N({sub_:RG});function FG(r,e=null,t=!1){let o=v(r,"x","sum");o.dtype==="bool"&&(o=oe(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return E.runKernel($n,n,s)}var _e=N({sum_:FG});function OG(r,e=-1){let t=v(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return Yr((n,s)=>{let a=!0,i=lr(n,e,!0),l=ce(n,i),u=ce(oe(l,"float32"),ar(_e(Jt(l),e,a)));return s([u]),{value:u,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Jt(f);return ce(p,O(_e(p,e,d),h))}}})(t)}var Du=N({logSoftmax_:OG});function b_(r,e){for(let t=0;t<r.length;++t)if(r[r.length-t-1]!==e-1-t)return!1;return!0}function HN(r,e,t){let o=r.length+e.length,n=[],s=0,a=0;for(let i=0;i<o;i++)t.indexOf(i)===-1?n.push(r[s++]):n.push(e[a++]);return n}function __(r,e){let t=[],o=r.length;for(let s=0;s<o;s++)e.indexOf(s)===-1&&t.push(r[s]);let n=e.map(s=>r[s]);return[t,n]}function Vn(r,e){let t=e.map(o=>1);return HN(r,t,e)}function PG(r,e,t){T(b_(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function w_(r,e){if(b_(r,e))return null;let t=[];for(let o=0;o<e;++o)r.indexOf(o)===-1&&t.push(o);return r.forEach(o=>t.push(o)),t}function Bm(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function MG(r,e){let t=[];for(let o=e-r;o<e;++o)t.push(o);return t}function LG(r,e=null,t=!1){let o=v(r,"x","logSumExp"),n=tr(e,o.shape),s=lr(o,n,!0),a=ce(o,s),i=Jt(a),l=_e(i,n),u=ar(l),c=Q(L(s,u.shape),u);if(t){let p=Vn(c.shape,n);return L(c,p)}return c}var Vm=N({logSumExp_:LG});function zG(r,e){let t=v(r,"a","logicalAnd","bool"),o=v(e,"b","logicalAnd","bool");Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(xi,n)}var dr=N({logicalAnd_:zG});function BG(r){let t={x:v(r,"x","logicalNot","bool")};return E.runKernel(Qa,t)}var Ea=N({logicalNot_:BG});function VG(r,e){let t=v(r,"a","logicalOr","bool"),o=v(e,"b","logicalOr","bool");Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(el,n)}var $u=N({logicalOr_:VG});function WG(r,e){let t=v(r,"a","logicalXor","bool"),o=v(e,"b","logicalXor","bool");return Be(t.shape,o.shape),dr($u(r,e),Ea(dr(r,e)))}var v_=N({logicalXor_:WG});function GG(r,e,t,o,n){let s=v(r,"x","maxPool"),a=1,i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),T(Pt(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),n!=null&&T(it(o),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=E.runKernel(dn,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Aa=N({maxPool_:GG});function UG(r,e=[1,1,1],t,o,n,s="NDHWC",a){a==null?a=[1,1,1]:Ot("dilations is deprecated, this field will be gone in v3.0.0.");let i=v(r,"x","maxPool3d"),l=i,u=!1;i.rank===4&&(u=!0,l=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),T(l.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${l.rank}.`),T(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),T(Pt(t,a),()=>`Error in maxPool3d: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),n!=null&&T(it(o),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let c={x:l},p={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s,dilations:a},m=E.runKernel(pa,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Wm=N({maxPool3d_:UG});function jG(r,e,t,o,n=!1){let a={x:v(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:o,includeBatchInIndex:n},l=E.runKernel(cu,a,i);return{result:l[0],indexes:l[1]}}var k_=N({maxPoolWithArgmax_:jG});function qG(r,e){let t=v(r,"a","maximum"),o=v(e,"b","maximum");[t,o]=Ge(t,o),t.dtype==="bool"&&(t=oe(t,"int32"),o=oe(o,"int32")),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(fn,n)}var Nr=N({maximum_:qG});function HG(r,e=null,t=!1){let n={x:v(r,"x","mean")},s={axis:e,keepDims:t};return E.runKernel(hn,n,s)}var xt=N({mean_:HG});function KG(r,e=null,t=!1){let n={x:v(r,"x","min")},s={axis:e,keepDims:t};return E.runKernel(gn,n,s)}var Li=N({min_:KG});function XG(r,e){let t=v(r,"a","minimum"),o=v(e,"b","minimum");[t,o]=Ge(t,o),t.dtype==="bool"&&(t=oe(t,"int32"),o=oe(o,"int32")),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(xn,n)}var zo=N({minimum_:XG});function YG(r,e,t){T(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let o=v(r,"x","mirrorPad");if(o.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");T(e.length===o.rank,()=>`Padding doesn't match input. Must be ${o.rank}. Got ${e.length}.`);let n=t==="reflect"?1:0;for(let i=0;i<o.rank;i++)T(e[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),T(e[i][0]>=0&&e[i][0]<=o.shape[i]-n&&e[i][1]>=0&&e[i][1]<=o.shape[i]-n,()=>`Padding in dimension ${i} cannot be greater than or equal to ${o.shape[i]-n} or less than 0 for input of shape ${o.shape}`);let s={paddings:e,mode:t},a={x:o};return E.runKernel(ma,a,s)}var Gm=N({mirrorPad_:YG});function ZG(r,e){let t=v(r,"a","mod"),o=v(e,"b","mod");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(yi,n)}var Ru=N({mod_:ZG});function JG(r){let e=v(r,"x","square"),t={};return E.runKernel("Square",{x:e},t)}var Me=N({square_:JG});function QG(r,e=null,t=!1){r=v(r,"x","moments");let o=tr(e,r.shape),n=xt(r,o,t),s=n.shape;t||(s=Vn(n.shape,o));let a=Me(ce(oe(r,"float32"),L(n,s))),i=xt(a,o,t);return{mean:n,variance:i}}var Xc=N({moments_:QG});function e4(r,e,t,o){let n=v(e,"data","multiRNNCell"),s=ya(t,"c","multiRNNCell"),a=ya(o,"h","multiRNNCell"),i=n,l=[];for(let p=0;p<r.length;p++){let m=r[p](i,s[p],a[p]);l.push(m[0]),l.push(m[1]),i=m[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var t4=N({multiRNNCell_:e4});function r4(r,e,t,o=!1){let n=v(r,"logits","multinomial"),s=n.size,a=n.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let l={logits:a===1?L(n,[1,-1]):n},u={numSamples:e,seed:t,normalized:o},c=E.runKernel(pu,l,u);return a===1?L(c,[c.size]):c}var C_=N({multinomial_:r4});function o4(r,e){let t=v(r,"a","notEqual"),o=v(e,"b","notEqual");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(bi,n)}var ko=N({notEqual_:o4});function mt(r,e="float32"){if(e==="complex64"){let o=mt(r,"float32"),n=mt(r,"float32");return vo(o,n)}let t=$c(ht(r),e);return E.makeTensor(t,r,e)}function Sr(r,e="float32"){if(e==="complex64"){let o=Sr(r,"float32"),n=mt(r,"float32");return vo(o,n)}let t=mm(ht(r),e);return E.makeTensor(t,r,e)}function n4(r){let t={x:v(r,"x","onesLike")};return E.runKernel(ds,t)}var rr=N({onesLike_:n4});function s4(r,e){let t=v(r,"v1","outerProduct"),o=v(e,"v2","outerProduct");T(t.rank===1&&o.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${o.rank}.`);let n=L(t,[-1,1]),s=L(o,[1,-1]);return Ue(n,s)}var i4=N({outerProduct_:s4});function a4(r,e,t=0){let o=v(r,"x","pad");if(o.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let n={paddings:e,constantValue:t},s={x:o};return E.runKernel(_n,s,n)}var Pr=N({pad_:a4});function l4(r,e,t=0){return T(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),Pr(r,[e],t)}var u4=N({pad1d_:l4});function c4(r,e,t=0){return T(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Pr(r,e,t)}var p4=N({pad2d_:c4});function m4(r,e,t=0){return T(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Pr(r,e,t)}var f4=N({pad3d_:m4});function d4(r,e,t=0){return T(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Pr(r,e,t)}var h4=N({pad4d_:d4});function g4(r,e,t){let o=v(r,"x","spaceToBatchND");T(o.rank>=1+e.length,()=>`input rank ${o.rank} should be > than [blockShape] ${e.length}`),T(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),T(o.shape.reduce((a,i,l)=>l>0&&l<=e.length?a&&(i+t[l-1][0]+t[l-1][1])%e[l-1]==0:a,!0),()=>`input spatial dimensions ${o.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let n={x:o},s={blockShape:e,paddings:t};return E.runKernel(ha,n,s)}var Da=N({spaceToBatchND_:g4});function b4(r,e,t,o,n,s){n==null&&(n=[1,1]),s==null&&(s=1),o===0&&(o="valid");let a=v(r,"x","maxPool"),i=a,l=!1;a.rank===3&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]])),T(Pt(s,n),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${n}'`);let u=t_(i.shape,e,s,n,o),c=[u.dilationHeight,u.dilationWidth],p;o==="same"?p=y4([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let m=c[0]===1&&c[1]===1,[f,d]=x4([u.inHeight,u.inWidth],c,p),h=m?o:"valid",g=m?i:Da(i,c,f),b=(t==="avg"?()=>ka(g,e,s,h):()=>Aa(g,e,s,h))(),_=m?b:Ca(b,c,d);return l?L(_,[_.shape[1],_.shape[2],_.shape[3]]):_}function x4(r,e,t){let o=t.map(c=>c[0]),n=t.map(c=>c[1]),s=r.concat(o,n),a=e.map((c,p)=>(c-s[p]%c)%c),i=n.map((c,p)=>c+a[p]),l=e.map((c,p)=>[o[p],i[p]]),u=e.map((c,p)=>[0,a[p]]);return[l,u]}function y4(r,e){let o=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),n=o.map(a=>Math.floor(a/2)),s=o.map((a,i)=>a-n[i]);return o.map((a,i)=>[n[i],s[i]])}var I_=N({pool_:b4});function _4(r,e){let t=v(r,"base","pow"),o=v(e,"exp","pow");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(wn,n)}var _r=N({pow_:_4});function w4(r,e){let t=v(r,"x","prelu"),o=v(e,"alpha","prelu"),n={x:t,alpha:o};return E.runKernel(vn,n)}var $a=N({prelu_:w4});function v4(r,e=null,t=!1){let o=v(r,"x","prod");o.dtype==="bool"&&(o=oe(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return E.runKernel(ki,n,s)}var Fu=N({prod_:v4});function k4(r,e,t){let o=ht(r),n=null;if(t==null||t==="float32")n=new Float32Array(o);else if(t==="int32")n=new Int32Array(o);else if(t==="bool")n=new Uint8Array(o);else throw new Error(`Unknown data type ${t}`);for(let s=0;s<o;s++)n[s]=e();return E.makeTensor(n,r,t)}var C4=N({rand_:k4});var ig=Tc(Um());var Yc=class{constructor(e,t,o,n,s){this.mean=e,this.stdDev=t,this.dtype=o,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=ig.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,o=!1;for(;!o;){let n,s,a;do n=2*this.random()-1,s=2*this.random()-1,a=n*n+s*s;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(o=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},$_=class{constructor(e,t,o,n){this.alpha=e,this.beta=1/t,this.dtype=o;let s=n||Math.random();this.randu=ig.alea(s.toString()),this.randn=new Yc(0,1,o,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,o,n,s,a;for(;;){do n=this.randn.nextValue(),a=1+this.c*n;while(a<=0);if(a*=a*a,e=n*n,t=1-.331*e*e,o=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<o)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},R_=class{constructor(e=0,t=1,o,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=o,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=ig.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function D4(r,e,t=1,o="float32",n){if(t==null&&(t=1),o==null&&(o="float32"),o!=="float32"&&o!=="int32")throw new Error(`Unsupported data type ${o}`);let s=new $_(e,t,o,n),a=Ie(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var $4=N({randomGamma_:D4});function R4(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error(`Unsupported data type ${o}`);let s=new Yc(e,t,o,!1,n),a=Ie(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var ag=N({randomNormal_:R4});function F4(r,e=0,t=1,o="float32",n){let s=Ie(r,o),a=new R_(e,t,null,n);for(let i=0;i<s.values.length;i++)s.values[i]=a.nextValue();return s.toTensor()}var As=N({randomUniform_:F4});function Zc(r,e,t=1,o="float32"){if(t===0)throw new Error("Cannot have a step of zero");let n={start:r,stop:e,step:t,dtype:o};return E.runKernel(fa,{},n)}function O4(r){let t={input:v(r,"input","real")};return E.runKernel(mu,t)}var ul=N({real_:O4});function P4(r){let t={x:v(r,"x","reciprocal")};return E.runKernel(Ci,t)}var jm=N({reciprocal_:P4});function M4(r){let t={x:v(r,"x","relu")};return E.runKernel(kn,t)}var Tr=N({relu_:M4});function L4(r){let t={x:v(r,"x","relu6")};return E.runKernel(In,t)}var Pu=N({relu6_:L4});function z4(r,e){let o={x:v(r,"x","reverse")},n={dims:e};return E.runKernel(Nn,o,n)}var Yt=N({reverse_:z4});function B4(r){let e=v(r,"x","reverse");return T(e.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),Yt(e,0)}var V4=N({reverse1d_:B4});function W4(r,e){let t=v(r,"x","reverse");return T(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),Yt(t,e)}var G4=N({reverse2d_:W4});function U4(r,e){let t=v(r,"x","reverse");return T(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),Yt(t,e)}var j4=N({reverse3d_:U4});function q4(r,e){let t=v(r,"x","reverse");return T(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),Yt(t,e)}var H4=N({reverse4d_:q4});function K4(r){let t={x:v(r,"x","round")};return E.runKernel(Sn,t)}var qm=N({round_:K4});function X4(r){let t={x:v(r,"x","rsqrt")};return E.runKernel(Tn,t)}var Mu=N({rsqrt_:X4});function ue(r,e){if((nr(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&nr(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return jr(r,[],[],e)}function Y4(r){let t={x:v(r,"x","selu")};return E.runKernel(Ni,t)}var Lu=N({selu_:Y4});function Z4(r,e,t,o,n,s=[1,1],a="NHWC"){let i=v(r,"x","separableConv2d"),l=v(e,"depthwiseFilter","separableConv2d"),u=v(t,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");T(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),T(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),T(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),T(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),T(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=l.shape[2],f=l.shape[3];T(u.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${u.shape[2]}.`);let d=Mo(c,l,o,n,a,s),g=Kr(d,u,1,"valid",a);return p?L(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Hm=N({separableConv2d_:Z4});async function J4(r,e){let t=v(r,"x","setdiff1d"),o=v(e,"y","setdiff1d");T(t.dtype===o.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${o.dtype}).`),T(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),T(o.rank===1,()=>`y should be 1D tensor, but got y (${o.shape}).`);let n=await t.data(),s=await o.data(),a=new Set(s),i=0;for(let c=0;c<n.length;c++)a.has(n[c])||i++;let l=new pt([i],t.dtype),u=new pt([i],"int32");for(let c=0,p=0;c<n.length;c++)a.has(n[c])||(l.values[p]=n[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var F_=J4;function Q4(r){let t={x:v(r,"x","sign")};return E.runKernel(Ti,t)}var Km=N({sign_:Q4});function eU(r){let t={x:v(r,"x","sin")};return E.runKernel(En,t)}var zu=N({sin_:eU});function tU(r){let t={x:v(r,"x","sinh")};return E.runKernel(Si,t)}var Bu=N({sinh_:tU});function rU(r,e,t){let o=v(r,"x","slice1d");return T(o.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${o.rank} tensor`),Oe(o,[e],[t])}var Xm=N({slice1d_:rU});function oU(r,e,t){let o=v(r,"x","slice2d");return T(o.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${o.rank} tensor`),Oe(o,e,t)}var lg=N({slice2d_:oU});function nU(r,e,t){let o=v(r,"x","slice3d");return T(o.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${o.rank} tensor`),Oe(o,e,t)}var Ym=N({slice3d_:nU});function sU(r,e,t){let o=v(r,"x","slice4d");return T(o.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${o.rank} tensor`),Oe(o,e,t)}var Jc=N({slice4d_:sU});function iU(r,e=-1){let t=v(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let o={logits:t},n={dim:e};return E.runKernel(Rn,o,n)}var Ra=N({softmax_:iU});function aU(r){T(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return E.runKernel(ou,e)}var Fa=N({fft_:aU});function lU(r){T(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return E.runKernel(nu,e)}var zi=N({ifft_:lU});function uU(r){let e=r.shape[r.shape.length-1],t=r.size/e,o;if(e<=2){let n=L(r,[t,e]);o=zi(n)}else{let n=[t,2*(e-1)],s=L(ul(r),[t,e]),a=L(Eu(r),[t,e]),i=Yt(Oe(s,[0,1],[t,e-2]),1),l=O(Yt(Oe(a,[0,1],[t,e-2]),1),ue(-1)),u=Qe([s,i],1),c=Qe([a,l],1),p=L(vo(u,c),[n[0],n[1]]);o=zi(p)}if(o=ul(o),r.rank===3&&r.shape[0]!==0){let n=o,s=r.shape[0];o=L(o,[s,o.shape[0]/s,o.shape[1]]),n.dispose()}return o}var Vu=N({irfft_:uU});function cU(r,e,t=0){let n={x:v(r,"x","split")},s={numOrSizeSplits:e,axis:t};return E.runKernel(bs,n,s)}var ur=N({split_:cU});function pU(r,e){T(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],o=r.size/t,n;if(e!=null&&e<t){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,n=Oe(r,d,h),t=e}else if(e!=null&&e>t){let d=r.shape.map(h=>h);d[r.shape.length-1]=e-t,n=Qe([r,mt(d)],r.shape.length-1),t=e}else n=r;let s=Ne(n),a=L(vo(n,s),[o,t]),i=Fa(a),l=Math.floor(t/2)+1,u=ul(i),c=Eu(i),p=ur(u,[l,t-l],u.shape.length-1),m=ur(c,[l,t-l],c.shape.length-1),f=n.shape.slice();return f[n.shape.length-1]=l,L(vo(p[0],m[0]),f)}var Oa=N({rfft_:pU});function mU(r){let t={x:v(r,"x","sqrt")};return E.runKernel(Dn,t)}var yt=N({sqrt_:mU});function fU(r,e){let t=v(r,"a","squaredDifference"),o=v(e,"b","squaredDifference");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o},s={};return E.runKernel(Fn,n,s)}var Pa=N({squaredDifference_:fU});function dU(r,e){let t=v(r,"x","squeeze");return L(t,ab(t.shape,e).newShape)}var Co=N({squeeze_:dU});function hU(r,e=0){let t=ya(r,"tensors","stack","string_or_numeric");T(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&T(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let o=t,n={axis:e};return E.runKernel(hs,o,n)}var Wt=N({stack_:hU});function gU(r,e=0){let o={x:v(r,"x","step")},n={alpha:e};return E.runKernel(Fo,o,n)}var Ds=N({step_:gU});function xU(r,e,t,o,n=0,s=0,a=0,i=0,l=0){let c={x:v(r,"x","stridedSlice")},p={begin:e,end:t,strides:o,beginMask:n,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:l};return E.runKernel(Ai,c,p)}var Zm=N({stridedSlice_:xU});function yU(r){let t={x:v(r,"x","tan")};return E.runKernel(Di,t)}var Jm=N({tan_:yU});function Gt(r,e){Do(r);let t=Cr(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return jr(r,null,t,e)}function Bi(r,e,t){if(Do(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let o=Cr(r,t);if(o.length!==2&&o.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return jr(r,e,o,t)}function bU(r,e,t){if(Do(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let o=Cr(r,t);if(o.length!==4&&o.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return jr(r,e,o,t)}function _U(r,e,t){if(Do(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let o=Cr(r,t);if(o.length!==5&&o.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return jr(r,e,o,t)}function wU(r,e,t){if(Do(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let o=Cr(r,t);if(o.length!==6&&o.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||o,jr(r,e,o,t)}function vU(r,e=1,t=!0){let o=v(r,"x","topk");if(o.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let n=o.shape[o.shape.length-1];if(e>n)throw new Error(`'k' passed to topk() must be <= the last dimension (${n}) but got ${e}`);let s={x:o},a={k:e,sorted:t},[i,l]=E.runKernel($i,s,a);return{values:i,indices:l}}var Qm=N({topk_:vU});function kU(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Yc(e,t,o,!0,n),a=Ie(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var Wu=N({truncatedNormal_:kU});function CU(r,e=0){let t=v(r,"x","unique","string_or_numeric");T(t.rank>0,()=>"The input tensor must be at least 1D");let o={x:t},n={axis:e},[s,a]=E.runKernel(gu,o,n);return{values:s,indices:a}}var Qc=N({unique_:CU});function IU(r,e,t){let o=v(r,"x","unsortedSegmentSum"),n=v(e,"segmentIds","unsortedSegmentSum","int32");T(it(t),()=>"numSegments must be of dtype int");let s={x:o,segmentIds:n},a={numSegments:t};return E.runKernel(xa,s,a)}var ef=N({unsortedSegmentSum_:IU});function NU(r,e=0){let t=v(r,"x","unstack","string_or_numeric");T(e>=-t.shape.length&&e<t.shape.length,()=>`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let o={value:t},n={axis:e};return E.runKernel(_s,o,n)}var cr=N({unstack_:NU});function O_(r,e=!0,t,o){return E.makeVariable(r,e,t,o)}function P_(r,e){let t=[];for(let s=0;s<e.length;s++)e[s]&&t.push(s);let o=Ie(r,"int32"),n=Ie([t.length,r.length],"int32");for(let s=0;s<t.length;s++){let a=o.indexToLoc(t[s]),i=s*r.length;n.values.set(a,i)}return n.toTensor()}async function SU(r){let e=v(r,"condition","whereAsync","bool"),t=await e.data(),o=P_(e.shape,t);return r!==e&&e.dispose(),o}var tf=SU;async function TU(r,e,t){let o=v(r,"tensor","boolMask"),n=v(e,"mask","boolMask","bool"),s=t==null?0:t,a=n.rank,i=o.shape;T(a>0,()=>"mask cannot be scalar"),We(i.slice(s,s+a),n.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let h=s;h<s+a;h++)l*=i[h];let u=i.slice(0,s).concat([l],i.slice(s+a)),c=L(o,u),p=L(n,[-1]),m=await tf(p),f=Co(m,[1]),d=Bn(c,f,s);return r!==o&&o.dispose(),e!==n&&n.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var EU=TU;function AU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","notEqualStrict"),o=v(e,"b","notEqualStrict");return We(t.shape,o.shape,"Error in notEqualStrict: "),ko(t,o)}function DU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","lessStrict"),o=v(e,"b","lessStrict");return We(t.shape,o.shape,"Error in lessStrict: "),Ta(t,o)}function $U(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","equalStrict"),o=v(e,"b","equalStrict");return We(t.shape,o.shape,"Error in equalStrict: "),Xr(t,o)}function RU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","lessEqualStrict"),o=v(e,"b","lessEqualStrict");return We(t.shape,o.shape,"Error in lessEqualStrict: "),no(t,o)}function FU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","greaterStrict"),o=v(e,"b","greaterStrict");return We(t.shape,o.shape,"Error in greaterStrict: "),Xt(t,o)}function OU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","greaterEqualStrict"),o=v(e,"b","greaterEqualStrict");return We(t.shape,o.shape,"Error in greaterEqualStrict: "),Or(t,o)}var M_=N({equalStrict_:$U}),L_=N({greaterEqualStrict_:OU}),z_=N({greaterStrict_:FU}),B_=N({lessEqualStrict_:RU}),V_=N({lessStrict_:DU}),W_=N({notEqualStrict_:AU});function PU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","addStrict"),o=v(e,"b","addStrict");return We(t.shape,o.shape,"Error in addStrict: "),Q(t,o)}function MU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","subStrict"),o=v(e,"b","subStrict");return We(t.shape,o.shape,"Error in subStrict: "),ce(t,o)}function LU(r,e){return Ot("strict variants of ops have been deprecated and will be removed in future"),We(r.shape,e.shape,"Error in powStrict: "),_r(r,e)}function zU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","mul"),o=v(e,"b","mul");return We(t.shape,o.shape,"Error in multiplyStrict: "),O(t,o)}function BU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","div"),o=v(e,"b","div");return We(t.shape,o.shape,"Error in divideStrict: "),fe(t,o)}function VU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","modStrict"),o=v(e,"b","modStrict");return We(t.shape,o.shape,"Error in modStrict: "),Ru(t,o)}function WU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","minimumStrict"),o=v(e,"b","minimumStrict");return We(t.shape,o.shape,"Error in minimumStrict: "),zo(t,o)}function GU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","maximumStrict"),o=v(e,"b","maximumStrict");return We(t.shape,o.shape,"Error in maximumStrict: "),Nr(t,o)}function UU(r,e){Ot("strict variants of ops have been deprecated and will be removed in future");let t=v(r,"a","squaredDifferenceStrict"),o=v(e,"b","squaredDifferenceStrict");return We(t.shape,o.shape,"Error in squaredDifferenceStrict: "),Pa(t,o)}var G_=N({addStrict_:PU}),U_=N({divStrict_:BU}),j_=N({maximumStrict_:GU}),q_=N({minimumStrict_:WU}),H_=N({modStrict_:VU}),K_=N({mulStrict_:zU}),X_=N({powStrict_:LU}),Y_=N({squaredDifferenceStrict_:UU}),Z_=N({subStrict_:MU});function jU(r,e="euclidean",t=null,o=!1){r=v(r,"x","norm");let n=uS(r,e,t),s=n.shape;if(o){let a=tr(t,r.shape);s=Vn(n.shape,a)}return L(n,s)}function uS(r,e,t=null){if(r.rank===0)return Tt(r);if(r.rank!==1&&t===null)return uS(L(r,[-1]),e,t);if(r.rank===1||typeof t=="number"||Array.isArray(t)&&t.length===1){if(e===1)return _e(Tt(r),t);if(e===Infinity)return lr(Tt(r),t);if(e===-Infinity)return Li(Tt(r),t);if(e==="euclidean"||e===2)return yt(_e(_r(Tt(r),ue(2,"int32")),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}if(Array.isArray(t)&&t.length===2){if(e===1)return lr(_e(Tt(r),t[0]),t[1]-1);if(e===Infinity)return lr(_e(Tt(r),t[1]),t[0]);if(e===-Infinity)return Li(_e(Tt(r),t[1]),t[0]);if(e==="fro"||e==="euclidean")return yt(_e(Me(r),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}throw new Error(`Error in norm: invalid axis: ${t}`)}var Gu=N({norm_:jU});function qU(r,e,t,o,n=!0){let s=v(r,"v","movingAverage"),a=v(e,"x","movingAverage"),i=v(t,"decay","movingAverage");Ab(s,a),T(Ur(s.shape,a.shape),()=>"Shape mismatch in v and x");let l=ue(1),u=ce(l,i),c=O(ce(a,s),u);if(n){T(o!=null,()=>"When using zeroDebias: true, step is required.");let p=v(o,"step","movingAverage");c=fe(c,ce(l,_r(i,p)))}return Q(s,c)}var HU=N({movingAverage_:qU});function KU(r,e,t){let o=v(r,"indices","scatterND","int32"),n=v(e,"updates","scatterND");Jh(n,o,t);let s={indices:o,updates:n},a={shape:t};return E.runKernel(Ii,s,a)}var J_=N({scatterND_:KU});function cS(r,e,t,o){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let n=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===n))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${n}]`);if(e.dtype!==o.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function XU(r,e,t,o=0){let n=v(r,"sparseIndices","sparseToDense","int32"),s=v(e,"sparseValues","sparseToDense"),a=v(o,"defaultValue","sparseToDense",s.dtype);cS(n,s,t,a);let i={sparseIndices:n,sparseValues:s,defaultValue:a},l={outputShape:t};return E.runKernel(hu,i,l)}var rf=N({sparseToDense_:XU});function YU(r,e){let t=v(e,"indices","gatherND","int32"),n={params:v(r,"x","gatherND"),indices:t};return E.runKernel(ui,n)}var Q_=N({gatherND_:YU});function pS(r,e){if(e==null)return r.shape.slice();if(Ur(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let o=0;o<r.shape.length;o++)e[o]==null&&r.shape[o]!=null?t.push(r.shape[o]):t.push(e[o]);return t}return e}function ZU(r,e,t,o){let n=v(r,"x","dropout");if(T(n.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${n.dtype} tensor instead.`),T(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof R?n.clone():n;let s=pS(n,t),a=1-e,i=fe(Ts(Q(As(s,0,1,"float32",o),a)),a);return O(n,i)}var ew=N({dropout_:ZU});function tw(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function of(r,e,t){let o=1-r%2,n=new Float32Array(r);for(let s=0;s<r;++s){let a=2*Math.PI*s/(r+o-1);n[s]=e-t*Math.cos(a)}return Gt(n,"float32")}async function JU(r,e,t=1){let o=v(r,"predictions","inTopK"),n=v(e,"targets","inTopK");T(o.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${o.rank}`),T(o.rank-1===n.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${o.rank} and targets rank ${n.rank}`),We(o.shape.slice(0,o.shape.length-1),n.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=o.shape[o.shape.length-1];T(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await o.data(),i=await n.data(),[l,u]=[a.length/s,s],c=lb("bool",l);for(let p=0;p<l;p++){let m=p*u,f=a.subarray(m,m+u),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<t;h++)if(d[h].index===i[p]){c[p]=1;break}}return r!==o&&o.dispose(),e!==n&&n.dispose(),Fr(c,n.shape,"bool")}var QU=JU;var Wn={};tt(Wn,{conv2d:()=>rj,depthwiseConv2d:()=>ij,matMul:()=>lj});function ej(r,e,t,o,n,s="NHWC",a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]])),T(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),T(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),T(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];T(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),T(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),a!=null&&T(it(n),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p={x:i,dy:l},m={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,filterShape:t};return E.runKernel(Xl,p,m)}var ep=N({conv2DBackpropFilter_:ej});function Uu(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return O(r,Ds(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function ju(r,e){let t=e,o=It(r.shape,e.shape);return o.length>0&&(t=_e(t,o)),L(t,r.shape)}function qu(r,e,t,o){if(e==="linear")return r;if(e==="relu")return Tr(r);if(e==="elu")return Ss(r);if(e==="relu6")return Pu(r);if(e==="prelu")return $a(r,t);if(e==="leakyrelu")return Sa(r,o);throw new Error(`Unknown fused activation ${e}.`)}var Hu=(r,e)=>!(r>0)||e==="linear";function tj({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Hu(E.state.gradientDepth,l)===!1){let C=Kr(r,e,t,o,n,s,a);return i!=null&&(C=Q(C,i)),qu(C,l,u,c)}let p=v(r,"x","conv2d"),m=v(e,"filter","conv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),T(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),T(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),a!=null&&T(it(o),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),T(f.shape[3]===m.shape[2],()=>`Error in conv2d: depth of input (${f.shape[3]}) must match input depth for filter ${m.shape[2]}.`),T(Pt(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),T(n==="NHWC",()=>`Error in conv2d: got dataFormat of ${n} but only NHWC is currently supported.`);let h=ku(f.shape,m.shape,t,s,o,a),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Ge(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused conv2d"));let b=(C,D)=>{let[A,F,M,z]=D,G=Uu(C,M,l);T(Po(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let U=Hc(F.shape,G,A,t,o),H=ep(F,G,A.shape,t,o),J=[U,H];if(z!=null){let Y=ju(z,G);J.push(Y)}return J},_={x:f,filter:m,bias:g,preluActivationWeights:x},w={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Yr((D,A,F)=>{let M=E.runKernel(ks,_,w);return F([A,D,M]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m):Yr((D,A,F,M)=>{let z=E.runKernel(ks,_,w);return M([A,D,z,F]),d&&(z=L(z,[z.shape[1],z.shape[2],z.shape[3]])),{value:z,gradFunc:b}})(f,m,g)}var rj=N({fusedConv2d_:tj});function oj(r,e,t,o,n,s=[1,1],a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:l},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,filterShape:t};return E.runKernel(Ql,u,c)}var ug=N({depthwiseConv2dNativeBackpropFilter_:oj});function nj(r,e,t,o,n,s=[1,1],a){let i=e,l=!1;e.rank===3&&(l=!0,i=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,inputShape:r},p=E.runKernel(eu,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var cg=N({depthwiseConv2dNativeBackpropInput_:nj});function sj({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Hu(E.state.gradientDepth,l)===!1){let C=Mo(r,e,t,o,n,s,a);return i!=null&&(C=Q(C,i)),qu(C,l,u,c)}let p=v(r,"x","depthwiseConv2d"),m=v(e,"filter","depthwiseConv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),T(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),T(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),T(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),T(Pt(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),a!=null&&T(it(o),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${o}.`);let h=ku(f.shape,m.shape,t,s,o,a,!0),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Ge(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused depthwiseConv2d"));let b=(C,D)=>{T(Po(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[A,F,M,z]=D,G=Uu(C,M,l),U=cg(F.shape,G,A,t,o,s,a),H=ug(F,G,A.shape,t,o,s,a);if(z!=null){let J=ju(g,G);return[U,H,J]}return[U,H]},_={x:f,filter:m,bias:g,preluActivationWeights:x},w={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Yr((D,A,F)=>{let M=E.runKernel(Cs,_,w);return F([A,D,M]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m):Yr((D,A,F,M)=>{let z=E.runKernel(Cs,_,w);return M([A,D,z,F]),d&&(z=L(z,[z.shape[1],z.shape[2],z.shape[3]])),{value:z,gradFunc:b}})(f,m,g)}var ij=N({fusedDepthwiseConv2d_:sj});function aj({a:r,b:e,transposeA:t=!1,transposeB:o=!1,bias:n,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i}){if(Hu(E.state.gradientDepth,s)===!1){let z=Ue(r,e,t,o);return n!=null&&(z=Q(z,n)),qu(z,s,a,i)}let l=v(r,"a","fused matMul"),u=v(e,"b","fused matMul");[l,u]=Ge(l,u);let c=t?l.shape[l.rank-2]:l.shape[l.rank-1],p=o?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?l.shape[l.rank-1]:l.shape[l.rank-2],f=o?u.shape[u.rank-2]:u.shape[u.rank-1],d=l.shape.slice(0,-2),h=u.shape.slice(0,-2),g=ht(d),x=ht(h);T(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),T(Ur(d,h),()=>`Error in fused matMul: outer dimensions (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),T(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${t} and transposeB=${o} must match.`);let b=l.shape.slice(0,-2).concat([m,f]),_=t?L(l,[g,c,m]):L(l,[g,m,c]),w=o?L(u,[x,f,p]):L(u,[x,p,f]),C;n!=null&&(C=v(n,"bias","fused matMul"),[C]=Ge(C,l),Be(b,C.shape));let D;a!=null&&(D=v(a,"prelu weights","fused matMul"));let A=(z,G)=>{let[U,H,J,Y]=G,X=Uu(L(z,J.shape),J,s),re,K;if(!t&&!o?(re=Ue(X,H,!1,!0),K=Ue(U,X,!0,!1)):!t&&o?(re=Ue(X,H,!1,!1),K=Ue(X,U,!0,!1)):t&&!o?(re=Ue(H,X,!1,!0),K=Ue(U,X,!1,!1)):(re=Ue(H,X,!0,!0),K=Ue(X,U,!0,!0)),n!=null){let ne=ju(Y,X);return[re,K,ne]}else return[re,K]},F={a:_,b:w,bias:C,preluActivationWeights:D},M={transposeA:t,transposeB:o,activation:s,leakyreluAlpha:i};return n==null?Yr((G,U,H)=>{let J=E.runKernel(vs,F,M);return H([G,U,J]),{value:L(J,b),gradFunc:A}})(_,w):Yr((G,U,H,J)=>{let Y=E.runKernel(vs,F,M);return J([G,U,Y,H]),{value:L(Y,b),gradFunc:A}})(_,w,C)}var lj=N({fusedMatMul_:aj});function uj(r){return of(r,.54,.46)}var mS=N({hammingWindow_:uj});function cj(r){return of(r,.5,.5)}var pg=N({hannWindow_:cj});function pj(r,e,t,o=!1,n=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Oe(r,s,e)),s+=t;if(o)for(;s<r.size;){let i=s+e-r.size,l=Qe([Oe(r,s,e-i),Na([i],n)]);a.push(l),s+=t}return a.length===0?Bi([],[0,e]):L(Qe(a),[a.length,e])}var mg=N({frame_:pj});function mj(r,e,t,o,n=pg){o==null&&(o=tw(e));let s=mg(r,e,t),a=O(s,n(e)),i=[];for(let l=0;l<s.shape[0];l++)i.push(Oa(Oe(a,[l,0],[1,e]),o));return Qe(i)}var fS=N({stft_:mj});function fj(r,e,t,o,n="bilinear",s=0){let a=v(r,"image","cropAndResize"),i=v(e,"boxes","cropAndResize","float32"),l=v(t,"boxInd","cropAndResize","int32"),u=i.shape[0];T(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),T(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),T(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),T(o.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${o.length}.`),T(o[0]>=1&&o[1]>=1,()=>`cropSize must be atleast [1,1], but was ${o}`),T(n==="bilinear"||n==="nearest",()=>`method must be bilinear or nearest, but was ${n}`);let c={image:a,boxes:i,boxInd:l},p={method:n,extrapolationValue:s,cropSize:o};return E.runKernel(ri,c,p)}var dS=N({cropAndResize_:fj});function dj(r){let e=v(r,"image","flipLeftRight","float32");T(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return E.runKernel(li,t,{})}var hS=N({flipLeftRight_:dj});function hj(r,e,t=0,o=.5){let n=v(r,"image","rotateWithOffset","float32");T(n.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${n.rank}.`);let s={image:n},a={radians:e,fillValue:t,center:o};return E.runKernel(Ri,s,a)}var gS=N({rotateWithOffset_:hj});function Gn(r,e,t,o,n,s){o==null&&(o=.5),n==null&&(n=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),T(0<=o&&o<=1,()=>`iouThreshold must be in [0, 1], but was '${o}'`),T(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),T(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),T(e.rank===1,()=>"scores must be a 1D tensor"),T(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),T(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s}}function gj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppression"),a=v(e,"scores","nonMaxSuppression"),i=Gn(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l={maxOutputSize:t,iouThreshold:o,scoreThreshold:n};return E.runKernel(_i,{boxes:s,scores:a},l)}var xS=N({nonMaxSuppression_:gj});function yS(r,e,t){let o=xj(r,e,t),n=o<0?-(o+1):o;r.splice(n,0,e)}function xj(r,e,t){return bj(r,e,t||yj)}function yj(r,e){return r>e?1:r<e?-1:0}function bj(r,e,t){let o=0,n=r.length,s=0,a=!1;for(;o<n;){s=o+(n-o>>>1);let i=t(e,r[s]);i>0?o=s+1:(n=s,a=!i)}return a?o:-o-1}function ow(r,e,t,o,n){return rw(r,e,t,o,n,0)}function nw(r,e,t,o,n,s){return rw(r,e,t,o,n,0,!1,s,!0)}function sw(r,e,t,o,n,s){return rw(r,e,t,o,n,s,!0)}function rw(r,e,t,o,n,s,a=!1,i=!1,l=!1){let u=[];for(let g=0;g<e.length;g++)e[g]>n&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(bS);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<t&&u.length>0;){let g=u.pop(),{score:x,boxIndex:b,suppressBeginIndex:_}=g;if(x<n)break;let w=!1;for(let C=p.length-1;C>=_;--C){let D=_j(r,b,p[C]);if(D>=o){w=!0;break}if(g.score=g.score*wj(o,c,D),g.score<=n)break}g.suppressBeginIndex=p.length,w||(g.score===x?(p.push(b),m.push(g.score)):g.score>n&&yS(u,g,bS))}let f=p.length,d=t-f;i&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return a&&(h.selectedScores=m),l&&(h.validOutputs=f),h}function _j(r,e,t){let o=r.subarray(e*4,e*4+4),n=r.subarray(t*4,t*4+4),s=Math.min(o[0],o[2]),a=Math.min(o[1],o[3]),i=Math.max(o[0],o[2]),l=Math.max(o[1],o[3]),u=Math.min(n[0],n[2]),c=Math.min(n[1],n[3]),p=Math.max(n[0],n[2]),m=Math.max(n[1],n[3]),f=(i-s)*(l-a),d=(p-u)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),x=Math.min(i,p),b=Math.min(l,m),_=Math.max(x-h,0)*Math.max(b-g,0);return _/(f+d-_)}function wj(r,e,t){let o=Math.exp(e*t*t);return t<=r?o:0}function bS(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function vj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppressionAsync"),a=v(e,"scores","nonMaxSuppressionAsync"),i=Gn(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l=await Promise.all([s.data(),a.data()]),u=l[0],c=l[1],{selectedIndices:p}=ow(u,c,t,o,n);return s!==r&&s.dispose(),a!==e&&a.dispose(),Gt(p,"int32")}var _S=vj;function kj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=Gn(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s},p=E.runKernel(vi,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var wS=N({nonMaxSuppressionWithScore_:kj});async function Cj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=Gn(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:m,selectedScores:f}=sw(c,p,t,o,n,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Gt(m,"int32"),selectedScores:Gt(f)}}var vS=Cj;function Ij(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=Gn(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,m={boxes:a,scores:i},f={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=E.runKernel(wi,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var kS=N({nonMaxSuppressionPadded_:Ij});async function Nj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=Gn(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[m,f]=await Promise.all([a.data(),i.data()]),{selectedIndices:d,validOutputs:h}=nw(m,f,u,c,p,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Gt(d,"int32"),validOutputs:ue(h,"int32")}}var CS=Nj;function Sj(r,e,t=!1,o=!1){let n=v(r,"images","resizeBilinear");T(n.rank===3||n.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${n.rank}.`),T(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),T(o===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=E.runKernel(Cn,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var fg=N({resizeBilinear_:Sj});function Tj(r,e,t=!1,o=!1){let n=v(r,"images","resizeNearestNeighbor");T(n.rank===3||n.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${n.rank}.`),T(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),T(n.dtype==="float32"||n.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),T(o===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=E.runKernel(da,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var dg=N({resizeNearestNeighbor_:Tj});function Ej(r,e,t){T(e%1==0,()=>`bandPart(): numLower must be an integer, got ${e}.`),T(t%1==0,()=>`bandPart(): numUpper must be an integer, got ${t}.`);let o=v(r,"a","bandPart");T(o.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${o.rank}.`);let n=o.shape,[s,a]=o.shape.slice(-2);if(!(e<=s))throw new Error(`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`);if(!(t<=a))throw new Error(`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`);e<0&&(e=s),t<0&&(t=a);let i=L(Zc(0,s,1,"int32"),[-1,1]),l=Zc(0,a,1,"int32"),u=ce(i,l),c=dr(no(u,ue(+e,"int32")),Or(u,ue(-t,"int32"))),p=mt([s,a],o.dtype);return L(Wt(cr(L(o,[-1,s,a])).map(m=>Dt(c,m,p))),n)}var IS=N({bandPart_:Ej});function Aj(r){let e;if(Array.isArray(r)){e=!1,T(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let n=r[0].shape[0];for(let s=1;s<r.length;++s)T(r[s].shape[0]===n,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${n})`)}else e=!0,r=ur(r,r.shape[0],0).map(n=>Co(n,[0]));T(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],o=r;for(let n=0;n<r.length;++n)t.push(E.tidy(()=>{let s=o[n];if(n>0)for(let a=0;a<n;++a){let i=O(_e(O(t[a],s)),t[a]);s=ce(s,i)}return fe(s,Gu(s,"euclidean"))}));return e?Wt(t,0):t}var NS=N({gramSchmidt_:Aj});function Dj(r,e=!1){if(T(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return SS(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((l,u)=>l*u),o=cr(L(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),n=[],s=[];o.forEach(l=>{let[u,c]=SS(l,e);n.push(u),s.push(c)});let a=L(Wt(n,0),r.shape),i=L(Wt(s,0),r.shape);return[a,i]}}function SS(r,e=!1){return E.tidy(()=>{T(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],o=r.shape[1],n=Kc(t),s=Oo(r),a=Bi([[1]],[1,1]),i=Oo(a),l=t>=o?o:t;for(let u=0;u<l;++u){let c=s,p=i,m=n;[i,s,n]=E.tidy(()=>{let f=Oe(s,[u,u],[t-u,1]),d=Gu(f),h=Oe(s,[u,u],[1,1]),g=Dt(Xt(h,0),Bi([[-1]]),Bi([[1]])),x=ce(h,O(g,d)),b=fe(f,x);b.shape[0]===1?i=Oo(a):i=Qe([a,Oe(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let _=qe(fe(Ue(g,x),d)),w=Oe(s,[u,0],[t-u,o]),C=O(_,i),D=je(i);if(u===0)s=ce(w,Ue(C,Ue(D,w)));else{let M=ce(w,Ue(C,Ue(D,w)));s=Qe([Oe(s,[0,0],[u,o]),M],0)}let A=je(C),F=Oe(n,[0,u],[t,n.shape[1]-u]);if(u===0)n=ce(F,Ue(Ue(F,i),A));else{let M=ce(F,Ue(Ue(F,i),A));n=Qe([Oe(n,[0,0],[t,u]),M],1)}return[i,s,n]}),Ae([c,p,m])}return!e&&t>o&&(n=Oe(n,[0,0],[t,o]),s=Oe(s,[0,0],[o,o])),[n,s]})}var TS=N({qr_:Dj});var Ut;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Ut||(Ut={}));function $j(r,e,t=Ut.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"losses","computeWeightedLoss"),n=null;e!=null&&(n=v(e,"weights","computeWeightedLoss"));let s=n==null?o:O(o,n);if(t===Ut.NONE)return s;if(t===Ut.SUM)return _e(s);if(t===Ut.MEAN){if(n==null)return xt(s);{let a=o.size/n.size,i=fe(_e(s),_e(n));return a>1?fe(i,ue(a)):i}}if(t===Ut.SUM_BY_NONZERO_WEIGHTS){if(n==null)return fe(_e(s),ue(o.size));{let a=O(n,Sr(o.shape)),i=oe(_e(ko(a,ue(0))),"float32");return fe(_e(s),i)}}throw Error(`Unknown reduction: ${t}`)}var Er=N({computeWeightedLoss_:$j});function Rj(r,e,t,o=Ut.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","absoluteDifference"),s=v(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=v(t,"weights","absoluteDifference")),We(n.shape,s.shape,"Error in absoluteDifference: ");let i=Tt(ce(n,s));return Er(i,a,o)}var ES=N({absoluteDifference_:Rj});function Fj(r,e,t,o,n=Ut.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","cosineDistance"),a=v(e,"predictions","cosineDistance"),i=null;o!=null&&(i=v(o,"weights","cosineDistance")),We(s.shape,a.shape,"Error in cosineDistance: ");let l=ue(1),u=ce(l,_e(O(s,a),t,!0));return Er(u,i,n)}var AS=N({cosineDistance_:Fj});function Oj(r,e,t,o=Ut.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","hingeLoss"),s=v(e,"predictions","hingeLoss"),a=null;t!=null&&(a=v(t,"weights","hingeLoss")),We(n.shape,s.shape,"Error in hingeLoss: ");let i=ue(1);n=ce(O(ue(2),n),i);let l=Tr(ce(i,O(n,s)));return Er(l,a,o)}var DS=N({hingeLoss_:Oj});function Pj(r,e,t,o=1,n=Ut.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","huberLoss"),a=v(e,"predictions","huberLoss"),i=null;t!=null&&(i=v(t,"weights","huberLoss")),We(s.shape,a.shape,"Error in huberLoss: ");let l=ue(o),u=Tt(ce(a,s)),c=zo(u,l),p=ce(u,c),m=Q(O(ue(.5),Me(c)),O(l,p));return Er(m,i,n)}var $S=N({huberLoss_:Pj});function Mj(r,e,t,o=1e-7,n=Ut.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","logLoss"),a=v(e,"predictions","logLoss"),i=null;t!=null&&(i=v(t,"weights","logLoss")),We(s.shape,a.shape,"Error in logLoss: ");let l=ue(1),u=ue(o),c=qe(O(s,ar(Q(a,u)))),p=O(ce(l,s),ar(Q(ce(l,a),u))),m=ce(c,p);return Er(m,i,n)}var RS=N({logLoss_:Mj});function Lj(r,e,t,o=Ut.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","meanSquaredError"),s=v(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=v(t,"weights","meanSquaredError")),We(n.shape,s.shape,"Error in meanSquaredError: ");let i=Pa(n,s);return Er(i,a,o)}var FS=N({meanSquaredError_:Lj});function zj(r,e){let t=v(r,"labels","sigmoidCrossEntropyWithLogits"),o=v(e,"logits","sigmoidCrossEntropyWithLogits");We(t.shape,o.shape,"Error in sigmoidCrossEntropyWithLogits: ");let n=Tr(o),s=O(o,t),a=Au(Jt(qe(Tt(o))));return Q(ce(n,s),a)}function Bj(r,e,t,o=0,n=Ut.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"multiClassLabels","sigmoidCrossEntropy"),a=v(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","sigmoidCrossEntropy")),We(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),o>0){let u=ue(o),c=ue(1),p=ue(.5);s=Q(O(s,ce(c,u)),O(p,u))}let l=zj(s,a);return Er(l,i,n)}var OS=N({sigmoidCrossEntropy_:Bj});function Vj(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return Yr((n,s,a)=>{let l=Vm(s,[t],!0),u=ce(oe(s,"float32"),l);a([n,u]);let c=qe(O(u,n));return{value:_e(c,[t]),gradFunc:(f,d)=>{let[h,g]=d,x=Vn(f.shape,[t]);return[O(L(f,x),ce(oe(h,"float32"),Jt(g))),O(L(f,x),ce(Jt(g),oe(h,"float32")))]}}})(r,e)}function Wj(r,e,t,o=0,n=Ut.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"onehotLabels","softmaxCrossEntropy"),a=v(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","softmaxCrossEntropy")),We(s.shape,a.shape,"Error in softmaxCrossEntropy: "),o>0){let u=ue(o),c=ue(1),p=ue(s.shape[1]);s=Q(O(s,ce(c,u)),fe(u,p))}let l=Vj(s,a);return Er(l,i,n)}var PS=N({softmaxCrossEntropy_:Wj});var Gj={fft:Fa,ifft:zi,rfft:Oa,irfft:Vu},Uj={hammingWindow:mS,hannWindow:pg,frame:mg,stft:fS},$s={flipLeftRight:hS,resizeNearestNeighbor:dg,resizeBilinear:fg,rotateWithOffset:gS,cropAndResize:dS,nonMaxSuppression:xS,nonMaxSuppressionAsync:_S,nonMaxSuppressionWithScore:wS,nonMaxSuppressionWithScoreAsync:vS,nonMaxSuppressionPadded:kS,nonMaxSuppressionPaddedAsync:CS},iw={bandPart:IS,gramSchmidt:NS,qr:TS},jj={absoluteDifference:ES,computeWeightedLoss:Er,cosineDistance:AS,hingeLoss:DS,huberLoss:$S,logLoss:RS,meanSquaredError:FS,sigmoidCrossEntropy:OS,softmaxCrossEntropy:PS};var Mr=class extends eg{minimize(e,t=!1,o){let{value:n,grads:s}=this.computeGradients(e,o);if(o!=null){let a=o.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ae(s),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return ng(e,t)}dispose(){this.iterations_!=null&&Ae(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ue(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Mr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var tp=class extends Mr{constructor(e,t,o=null){super();this.learningRate=e,this.rho=t,this.epsilon=o,this.accumulatedGrads=[],this.accumulatedUpdates=[],o==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${o}/accum_grad`,variable:V(()=>Ne(s).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${o}/accum_var`,variable:V(()=>Ne(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedGrads[n].variable,u=this.accumulatedUpdates[n].variable;V(()=>{let c=Q(O(l,this.rho),O(Me(i),1-this.rho)),p=O(fe(yt(Q(u,this.epsilon)),yt(Q(l,this.epsilon))),i),m=Q(O(u,this.rho),O(Me(p),1-this.rho));l.assign(c),u.assign(m);let f=Q(O(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ae(this.accumulatedGrads.map(e=>e.variable)),Ae(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,o=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};tp.className="Adadelta";oo(tp);var rp=class extends Mr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o];if(this.accumulatedGrads[n]==null){let l=!1;this.accumulatedGrads[n]={originalName:`${o}/accumulator`,variable:V(()=>Na(s.shape,this.initialAccumulatorValue).variable(l))}}let a=Array.isArray(e)?e[n].tensor:e[o];if(a==null)return;let i=this.accumulatedGrads[n].variable;V(()=>{let l=Q(i,Me(a));i.assign(l);let u=Q(O(fe(a,yt(Q(l,E.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ae(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};rp.className="Adagrad";oo(rp);var op=class extends Mr{constructor(e,t,o,n=null){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=ue(t).variable(),this.accBeta2=ue(o).variable()}),n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);V(()=>{let o=ce(1,this.accBeta1),n=ce(1,this.accBeta2);t.forEach((s,a)=>{let i=E.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:V(()=>Ne(i).variable(l))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:V(()=>Ne(i).variable(l))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedSecondMoment[a].variable,m=Q(O(c,this.beta1),O(u,1-this.beta1)),f=Q(O(p,this.beta2),O(Me(u),1-this.beta2)),d=fe(m,o),h=fe(f,n);c.assign(m),p.assign(f);let g=Q(O(fe(d,Q(yt(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(O(this.accBeta1,this.beta1)),this.accBeta2.assign(O(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ae(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(_r(this.beta1,this.iterations_+1)),this.accBeta2.assign(_r(this.beta2,this.iterations_+1))});let t=e.length/2,o=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};op.className="Adam";oo(op);var np=class extends Mr{constructor(e,t,o,n=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=ue(0).variable(),this.accBeta1=ue(t).variable()}),n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);V(()=>{let o=ce(1,this.accBeta1),n=fe(-this.learningRate,Q(O(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=E.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ne(i).variable(l)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ne(i).variable(l)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedWeightedInfNorm[a].variable,m=Q(O(c,this.beta1),O(u,1-this.beta1)),f=O(p,this.beta2),d=Tt(u),h=Nr(f,d);c.assign(m),p.assign(h);let g=Q(O(fe(n,o),fe(m,Q(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(Q(this.iteration,1)),this.accBeta1.assign(O(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ae(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};np.className="Adamax";oo(np);var cl=class extends Mr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=Array.isArray(e)?e[n].tensor:e[o];if(s==null)return;let a=E.registeredVariables[o];V(()=>{let i=Q(O(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=At(ue(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};cl.className="SGD";oo(cl);var sp=class extends cl{constructor(e,t,o=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=o,this.accumulations=[],this.m=ue(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o];if(this.accumulations[n]==null){let l=!1;this.accumulations[n]={originalName:`${o}/momentum`,variable:V(()=>Ne(s).variable(l))}}let a=this.accumulations[n].variable,i=Array.isArray(e)?e[n].tensor:e[o];i!=null&&V(()=>{let l,u=Q(O(this.m,a),i);this.useNesterov?l=Q(O(this.c,Q(i,O(u,this.m))),s):l=Q(O(this.c,u),s),a.assign(u),s.assign(l)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ae(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};sp.className="Momentum";oo(sp);var ip=class extends Mr{constructor(e,t=.9,o=0,n=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=o,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,n==null&&(this.epsilon=E.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${o}/rms`,variable:V(()=>Ne(s).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${o}/momentum`,variable:V(()=>Ne(s).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${o}/mg`,variable:V(()=>Ne(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedMeanSquares[n].variable,u=this.accumulatedMoments[n].variable;V(()=>{let c=Q(O(l,this.decay),O(Me(i),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[n].variable,m=Q(O(p,this.decay),O(i,1-this.decay)),f=fe(O(i,this.learningRate),yt(ce(c,Q(Me(m),this.epsilon)))),d=Q(O(u,this.momentum),f);l.assign(c),p.assign(m),u.assign(d);let h=ce(s,d);s.assign(h)}else{let p=Q(O(l,this.decay),O(Me(i),1-this.decay)),m=Q(O(u,this.momentum),fe(O(i,this.learningRate),yt(Q(p,this.epsilon))));l.assign(p),u.assign(m);let f=ce(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ae(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ae(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ae(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,o=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ip.className="RMSProp";oo(ip);var Ma=class{static sgd(e){return new cl(e)}static momentum(e,t,o=!1){return new sp(e,t,o)}static rmsprop(e,t=.9,o=0,n=null,s=!1){return new ip(e,t,o,n,s)}static adam(e=.001,t=.9,o=.999,n=null){return new op(e,t,o,n)}static adadelta(e=.001,t=.95,o=null){return new tp(e,t,o)}static adamax(e=.002,t=.9,o=.999,n=null,s=0){return new np(e,t,o,n,s)}static adagrad(e,t=.1){return new rp(e,t)}};var pl={sgd:Ma.sgd,momentum:Ma.momentum,adadelta:Ma.adadelta,adagrad:Ma.adagrad,rmsprop:Ma.rmsprop,adamax:Ma.adamax,adam:Ma.adam};var qj=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function nf(){return new Promise(r=>qj(()=>r()))}var S={};tt(S,{ERF_A1:()=>oq,ERF_A2:()=>nq,ERF_A3:()=>sq,ERF_A4:()=>iq,ERF_A5:()=>aq,ERF_P:()=>rq,PARALLELIZE_THRESHOLD:()=>hg,SELU_SCALE:()=>lw,SELU_SCALEALPHA:()=>aw,applyActivation:()=>qu,assertAndGetBroadcastShape:()=>Be,assertAxesAreInnerMostDims:()=>PG,assertParamsConsistent:()=>Hj,assignToTypedArray:()=>hq,axesAreInnerMostDims:()=>b_,calculateShapes:()=>EN,castTensor:()=>vq,combineLocations:()=>HN,complexWithEvenIndex:()=>mq,complexWithOddIndex:()=>fq,computeConv2DInfo:()=>ku,computeConv3DInfo:()=>jN,computeDefaultPad:()=>o_,computeDilation2DInfo:()=>aW,computeOptimalWindowSize:()=>Xj,computeOutAndReduceShapes:()=>__,computeOutShape:()=>Kj,computePool2DInfo:()=>t_,computePool3DInfo:()=>lW,convertConv2DDataFormat:()=>UN,eitherStridesOrDilationsAreOne:()=>Pt,expandShapeToKeepDim:()=>Vn,exponent:()=>xq,exponents:()=>gq,fromStringArrayToUint8:()=>Iq,fromUint8ToStringArray:()=>Cq,getAxesPermutation:()=>w_,getBroadcastDims:()=>JW,getComplexWithIndex:()=>dq,getFusedBiasGradient:()=>ju,getFusedDyActivation:()=>Uu,getImageCenter:()=>Yj,getInnerMostAxes:()=>MG,getPermuted:()=>Jj,getReductionAxes:()=>It,getReshaped:()=>Zj,getReshapedPermuted:()=>Qj,getSliceBeginCoords:()=>eq,getSliceSize:()=>tq,getUndoAxesPermutation:()=>Bm,log:()=>uq,mergeRealAndImagArrays:()=>cq,prepareAndValidate:()=>TN,prepareSplitSize:()=>yq,reshapeTensor:()=>kq,segment_util:()=>MS,shouldFuse:()=>Hu,slice_util:()=>sr,splitRealAndImagArrays:()=>pq,tupleValuesAreOne:()=>Po,upcastType:()=>fr,validateInput:()=>Jh,validateUpdateShape:()=>Hb,warn:()=>lq});function Hj(r,e){let t=r[0].length;r.forEach((n,s)=>{T(n.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),T(e>=0&&e<t,()=>`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let o=r[0];r.forEach((n,s)=>{for(let a=0;a<t;a++)T(a===e||n[a]===o[a],()=>`Error in concat${t}D: Shape of tensors[${s}] (${n}) does not match the shape of the rest (${o}) along the non-concatenated axis ${s}.`)})}function Kj(r,e){let t=r[0].slice();for(let o=1;o<r.length;o++)t[e]+=r[o][e];return t}var hg=30;function Xj(r){return r<=hg?r:Dc(r,Math.floor(Math.sqrt(r)))}function Yj(r,e,t){let o=t*(typeof r=="number"?r:r[0]),n=e*(typeof r=="number"?r:r[1]);return[o,n]}function Zj(r,e,t,o=!0){let n=[];if(o)n=n.concat(e.slice(0)),n.push(r[0]/t),n=n.concat(r.slice(1));else{n=n.concat(r[0]);let s=e.length;for(let a=0;a<s;++a)n=n.concat([r[a+1]/e[a],e[a]]);n=n.concat(r.slice(s+1))}return n}function Jj(r,e,t=!0){let o=[];if(t){o.push(e);for(let n=e+1;n<r;++n)n<=2*e?(o.push(n),o.push(n-(e+1))):o.push(n)}else{let n=[],s=[];for(let a=1;a<r;++a)a>=e*2+1||a%2==1?s.push(a):n.push(a);o.push(...n),o.push(0),o.push(...s)}return o}function Qj(r,e,t,o=!0){let n=[];o?n.push(r[0]/t):n.push(r[0]*t);for(let s=1;s<r.length;++s)s<=e.length?o?n.push(e[s-1]*r[s]):n.push(r[s]/e[s-1]):n.push(r[s]);return n}function eq(r,e){let t=[0];for(let o=0;o<e;++o)t.push(r[o][0]);return t}function tq(r,e,t){let o=r.slice(0,1);for(let n=0;n<t;++n)o.push(r[n+1]-e[n][0]-e[n][1]);return o}var aw=1.7580993408473768,lw=1.0507009873554805;var rq=.3275911,oq=.254829592,nq=-.284496736,sq=1.421413741,iq=-1.453152027,aq=1.061405429;function lq(...r){W().getBool("IS_TEST")||console.warn(...r)}function uq(...r){W().getBool("IS_TEST")||console.log(...r)}function cq(r,e){if(r.length!==e.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${e.length}.`);let t=new Float32Array(r.length*2);for(let o=0;o<t.length;o+=2)t[o]=r[o/2],t[o+1]=e[o/2];return t}function pq(r){let e=new Float32Array(r.length/2),t=new Float32Array(r.length/2);for(let o=0;o<r.length;o+=2)e[o/2]=r[o],t[o/2]=r[o+1];return{real:e,imag:t}}function mq(r){let e=Math.ceil(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=0;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function fq(r){let e=Math.floor(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=2;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function dq(r,e){let t=r[e*2],o=r[e*2+1];return{real:t,imag:o}}function hq(r,e,t,o){r[o*2]=e,r[o*2+1]=t}function gq(r,e){let t=new Float32Array(r/2),o=new Float32Array(r/2);for(let n=0;n<Math.ceil(r/2);n++){let s=(e?2:-2)*Math.PI*(n/r);t[n]=Math.cos(s),o[n]=Math.sin(s)}return{real:t,imag:o}}function xq(r,e,t){let o=(t?2:-2)*Math.PI*(r/e),n=Math.cos(o),s=Math.sin(o);return{real:n,imag:s}}function yq(r,e,t=0){let o=[];if(typeof e=="number")T(r.shape[t]%e==0,()=>"Number of splits must evenly divide the axis."),o=new Array(e).fill(r.shape[t]/e);else{let n=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);T(n<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,l)=>l>0?i+l:i);e[s]=r.shape[t]-a}T(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),o=e}return o}var MS={};tt(MS,{collectGatherOpShapeInfo:()=>wq,computeOutShape:()=>_q,segOpComputeOptimalWindowSize:()=>bq});function bq(r,e){let t=!1,o;for(r<=hg?(o=r,t=!0):o=Dc(r,Math.floor(Math.sqrt(r)));!t;)o>e||o===r?t=!0:o=Dc(r,o+1);return o}function _q(r,e,t){let o=[],n=r.length;for(let s=0;s<n;s++)s!==e?o.push(r[s]):o.push(t);return o}function wq(r,e,t,o){let n=e.shape.length,s=r.shape.length;if(o!==0&&(o<-n||o>n))throw new Error(`Expect batchDims in the range of [-${n}, ${n}], but got ${o}`);if(o<0&&(o+=n),o>s)throw new Error(`batchDims (${o}) must be less than rank(x) (
${s}).`);if(t<o)throw new Error(`batchDims (${o}) must be less than or equal to axis (${t}).`);for(let p=0;p<o;++p)if(r.shape[p]!==e.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${e.shape[p]}.`);let a=r.shape[t],i=[],l=1,u=1,c=1;for(let p=0;p<o;++p)i.push(r.shape[p]),l*=r.shape[p];for(let p=o;p<t;p++)i.push(r.shape[p]),u*=r.shape[p];for(let p=o;p<n;p++)i.push(e.shape[p]);for(let p=t+1;p<s;p++)i.push(r.shape[p]),c*=r.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:a,outputShape:i}}function vq(r,e,t){if(e==="complex64"){if(r.dtype==="complex64")return r.clone();let o=mt(r.shape),n=oe(r,"float32"),s=t.complex(n,o);return o.dispose(),n.dispose(),s}if(!mb(r.dtype,e))return E.makeTensorFromDataId(r.dataId,r.shape,e);if(r.dtype==="complex64"){let o=t.real(r),n=oe(o,e);return o.dispose(),n}if(e==="int32")return t.int(r);if(e==="bool"){let o=ue(0,r.dtype),n=t.notEqual(r,o);return o.dispose(),n}else throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${e}`)}function kq(r,e){return E.makeTensorFromDataId(r.dataId,e,r.dtype)}function Cq(r){try{return r.map(e=>Lc(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function Iq(r){return r.map(e=>rl(e))}var Ar={};tt(Ar,{nonMaxSuppressionV3Impl:()=>ow,nonMaxSuppressionV4Impl:()=>nw,nonMaxSuppressionV5Impl:()=>sw,whereImpl:()=>P_});var gg={kernelName:ls,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,Ds(oe(t,"float32"),-1))}}};var LS={kernelName:Hs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=Me(oe(t,"float32")),n=yt(ce(ue(1),o));return qe(fe(r,n))}}}};var zS={kernelName:Ks,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=yt(ce(Me(oe(t,"float32")),1));return fe(r,o)}}}};var BS={kernelName:_o,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=r,l=It(t.shape,n);return l.length>0&&(i=_e(i,l)),L(i,t.shape)},b:()=>{let i=r,l=It(o.shape,n);return l.length>0&&(i=_e(i,l)),L(i,o.shape)}}}};var VS={kernelName:Ko,saveAllInputs:!0,gradFunc:(r,e)=>{let t={};return e.forEach((o,n)=>{t[n]=()=>r.clone()}),t}};var WS={kernelName:Xo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ne(t)}}};var GS={kernelName:oa,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ne(t)}}};var US={kernelName:Xs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>fe(r,yt(ce(ue(1),Me(oe(t,"float32")))))}}};var jS={kernelName:Ys,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=yt(Q(ue(1),Me(oe(t,"float32"))));return fe(r,o)}}}};var qS={kernelName:Qs,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=Q(Me(t),Me(o)),l=O(r,fe(o,i)),u=It(t.shape,n);return u.length>0&&(l=_e(l,u)),L(l,t.shape)},b:()=>{let i=Q(Me(t),Me(o)),l=qe(O(r,fe(t,i))),u=It(o.shape,n);return u.length>0&&(l=_e(l,u)),L(l,o.shape)}}}};var HS={kernelName:Zs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>fe(r,Q(Me(oe(t,"float32")),1))}}};var KS={kernelName:Js,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>fe(r,ce(ue(1),Me(oe(t,"float32"))))}}};function Nq(r,e,t,o,n=[1,1,1],s,a){let i=v(r,"dy","avgPool3dGrad"),l=v(e,"input","avgPool3dGrad"),u=i,c=l,p=!1;l.rank===4&&(p=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=L(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),T(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),T(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),T(Pt(o,n),()=>`Error in avgPool3dGrad: Either strides or dilations must be 1. Got strides ${o} and dilations '${n}'`),a!=null&&T(it(s),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let m={dy:u,input:c},f={filterSize:t,strides:o,dilations:n,pad:s,dimRoundingMode:a},d=E.runKernel(ql,m,f);return p?L(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var XS=N({avgPool3dGrad_:Nq});var YS={kernelName:na,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,dilations:a,pad:i,dimRoundingMode:l}=t,u=a==null?[1,1,1]:a;return{x:()=>XS(r,o,n,s,u,i,l)}}};function Sq(r,e,t,o,n){let s=v(r,"dy","avgPoolGrad"),a=v(e,"input","avgPoolGrad");T(a.rank===s.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${s.rank})`);let i=a,l=s,u=!1;a.rank===3&&(u=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),l=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),T(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:t,strides:o,pad:n},m=E.runKernel(jl,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ZS=N({avgPoolGrad_:Sq});var JS={kernelName:Yo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a}=t;return{x:()=>ZS(r,o,n,s,a)}}};var QS={kernelName:Zo,inputsToSave:["a","b"],gradFunc:(r,e,t)=>{let[o,n]=e,{transposeA:s,transposeB:a}=t;return!s&&!a?{a:()=>Ue(r,n,!1,!0),b:()=>Ue(o,r,!0,!1)}:!s&&a?{a:()=>Ue(r,n,!1,!1),b:()=>Ue(r,o,!0,!1)}:s&&!a?{a:()=>Ue(n,r,!1,!0),b:()=>Ue(o,r,!1,!1)}:{a:()=>Ue(n,r,!0,!0),b:()=>Ue(r,o,!0,!0)}}};var e0={kernelName:sa,gradFunc:(r,e,t)=>{let{blockShape:o,crops:n}=t;return{x:()=>Da(r,o,n)}}};var t0={kernelName:bb,gradFunc:(r,e,t)=>{let o=t,n=o.inputShape,s=o.shape,a=Array.from(s);for(let l=n.length-1;l>=0;l--)if(n[l]===s[l])a[l]=1;else if(n[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${s}].`);let i=[];for(let l=0;l<a.length;l++)a[l]>1&&i.push(l);return{x:()=>_e(r,i,!0)}}};var r0={kernelName:$o,gradFunc:r=>({x:()=>r.clone()})};var o0={kernelName:ei,gradFunc:r=>({x:()=>Ne(r)})};var n0={kernelName:Ro,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{clipValueMin:n,clipValueMax:s}=t;return{x:()=>Dt(dr(Or(o,n),no(o,s)),r,Ne(r))}}};var s0={kernelName:ia,inputsToSave:["x"],gradFunc:gg.gradFunc};var i0={kernelName:us,saveAllInputs:!0,gradFunc:(r,e,t)=>{let o=e.map(l=>l.shape),{axis:n}=t,s=tr(n,e[0].shape)[0],a=o.map(l=>l[s]);return ur(r,a,s).map(l=>()=>l)}};var a0={kernelName:Jo,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{dilations:s,strides:a,pad:i,dataFormat:l}=t;return T(Po(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Hc(o.shape,r,n,a,i,l),filter:()=>ep(o,r,n.shape,a,i,l)}}};var l0={kernelName:Qo,inputsToSave:["dy","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{strides:s,pad:a,dataFormat:i,dimRoundingMode:l}=t;return{dy:()=>Kr(r,n,s,a,i,1,l),filter:()=>ep(r,o,n.shape,s,a,i,l)}}};function Tq(r,e,t,o,n){let s=r;r.rank===4&&(s=L(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let a=e;a.rank===4&&(a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]])),T(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),T(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),T(t.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${t}.`),T(s.shape[4]===t[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${t[3]}.`),T(a.shape[4]===t[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${t[4]}).`);let i={x:s,dy:a},l={strides:o,pad:n,filterShape:t};return E.runKernel(Yl,i,l)}var u0=N({conv3DBackpropFilter_:Tq});var c0={kernelName:aa,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s}=t;T(Po(o),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${o}'`);let[a,i]=e;return{x:()=>rg(a.shape,r,i,n,s),filter:()=>u0(a,r,i.shape,n,s)}}};var p0={kernelName:en,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(qe(zu(oe(t,"float32"))),r)}}};var m0={kernelName:ti,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(Bu(oe(t,"float32")),r)}}};var f0={kernelName:tn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n,exclusive:s,reverse:a}=t;return{x:()=>{let i=w_([n],o.rank),l=Tu(r,n,s,!a);return i!=null&&(l=je(l,i)),l}}}};var d0={kernelName:rn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s,dimRoundingMode:a}=t,i=o==null?[1,1]:o;T(Po(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=e;return T(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),T(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),T(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),T(Pt(n,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'.`),a!=null&&T(it(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),{x:()=>cg(l.shape,r,u,n,s,o,a),filter:()=>ug(l,r,u.shape,n,s,o,a)}}};var h0={kernelName:la,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,s={x:o,filter:n,dy:r},a={x:o,filter:n,dy:r};return{x:()=>E.runKernel(Rc,s,t),filter:()=>E.runKernel(Fc,a,t)}}};var g0={kernelName:ni,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e,o={dy:r,y:t};return{x:()=>E.runKernel(ru,o)}}};var x0={kernelName:si,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=O(Jt(qe(Me(t))),2/Math.sqrt(Math.PI));return{x:()=>O(r,o)}}};var y0={kernelName:nn,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,t)}}};var b0={kernelName:cs,inputsToSave:["input"],gradFunc:(r,e)=>{let[t]=e;return{input:()=>L(r,t.shape)}}};var _0={kernelName:ai,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,Jt(t))}}};var w0={kernelName:sn,gradFunc:r=>({x:()=>Ne(r)})};var v0={kernelName:an,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=fe(r,oe(o,"float32")),l=It(t.shape,n);return l.length>0?L(_e(i,l),t.shape):i},b:()=>{let i=O(r,oe(t,"float32")),l=It(o.shape,n);l.length>0&&(i=L(_e(i,l),o.shape));let u=Me(o);return qe(fe(i,oe(u,"float32")))}}}};var k0={kernelName:ln,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,e,t)=>{let{varianceEpsilon:o}=t,[n,s,a,i]=e,l=i==null?ue(1):i,u=It(s.shape,n.shape),c=[];if(s.rank===1){for(let w=0;w<n.shape.length-1;++w)c.push(n.shape[w]);c.push(1)}let p=ce(n,s),m=O(r,l),f=Mu(Q(a,ue(o))),d=O(O(O(f,f),f),ue(-.5));return{x:()=>s.rank===1?L(O(O(r,Lo(L(f,[1,1,1,s.shape[0]]),c)),l),n.shape):L(O(O(r,f),l),n.shape),mean:()=>{let w=O(O(f,ue(-1)),m);return s.rank===1&&(w=_e(w,u)),L(w,s.shape)},variance:()=>{let w=O(O(d,p),m);return s.rank===1&&(w=_e(w,u)),L(w,s.shape)},scale:()=>{let w=O(p,f),C=O(r,w);return s.rank===1&&(C=_e(C,u)),L(C,s.shape)},offset:()=>{let w=r;return s.rank===1&&(w=_e(w,u)),L(w,s.shape)}}}};var N0={kernelName:ps,inputsToSave:["x","indices"],gradFunc:(r,e,t)=>{let[o,n]=e,{axis:s}=t,a=tr(s,o.shape)[0];return{x:()=>{let l=o.shape,u=n.size,c=l.slice(0,a),p=c.length,m=l.slice(s,l.length).slice(1),f=m.length,d=C0(0,p),h=C0(p+1,p+1+f),g=I0([c,[u],m]),x=L(r,g),b=L(n,[u]),_=I0([[p],d,h]),w=je(x,_),C=ef(w,b,o.shape[a]),D=Bm(_);return C=je(C,D),C},indices:()=>n}}};function C0(r,e){let t=[];for(let o=r;o<e;++o)t.push(o);return t}function I0(r){let e=[];for(let t=0;t<r.length;++t)for(let o=0;o<r[t].length;++o)e.push(r[t][o]);return e}var S0={kernelName:un,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>Ne(t),b:()=>Ne(o)}}};var T0={kernelName:ms,gradFunc:r=>({x:()=>oe(r,"float32")})};var E0={kernelName:pi,gradFunc:r=>({x:()=>Ne(r)})};var A0={kernelName:mi,gradFunc:r=>({x:()=>Ne(r)})};var D0={kernelName:fi,gradFunc:r=>({x:()=>Ne(r)})};var $0={kernelName:cn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{alpha:n}=t,s=Xt(o,0);return{x:()=>Dt(s,r,O(r,n))}}};var R0={kernelName:gi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>fe(r,Q(t,1))}}};var F0={kernelName:pn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>fe(r,oe(t,"float32"))}}};var O0={kernelName:_b,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t;return{logits:()=>{let s=!0,a=Jt(o);return ce(r,O(_e(r,n,s),a))}}}};function Eq(r,e,t,o=5,n=1,s=1,a=.5){let i={x:r,y:e,dy:t},l={depthRadius:o,bias:n,alpha:s,beta:a};return E.runKernel(au,i,l)}var P0=N({localResponseNormalizationBackprop_:Eq});var M0={kernelName:ca,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{depthRadius:s,bias:a,alpha:i,beta:l}=t;return{x:()=>P0(o,n,r,s,a,i,l)}}};function xg(r,e,t,o){return e.rank<t.rank&&(e=L(e,Vn(e.shape,o))),r.rank<t.rank&&(r=L(r,Vn(r.shape,o))),{x:()=>O(r,oe(Xr(t,e),r.dtype))}}var uw={kernelName:mn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{reductionIndices:n}=o,s=e[0],a=e[1],i=tr(n,s.shape),l=xg(r,a,s,i);return{x:()=>l.x()}}};var L0={kernelName:fn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>O(r,oe(Or(t,o),"float32")),b:()=>O(r,oe(Ta(t,o),"float32"))}}};function Aq(r,e,t,o,n,s=[1,1,1],a,i){let l=v(r,"dy","maxPool3dGrad"),u=v(e,"input","maxPool3dGrad"),c=v(t,"output","maxPool3dGrad"),p=l,m=u,f=c,d=!1;u.rank===4&&(d=!0,p=L(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=L(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),f=L(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),T(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),T(m.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${m.rank}.`),T(f.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${f.rank}.`),T(Pt(n,s),()=>`Error in maxPool3dGrad: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&T(it(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={dy:p,input:m,output:f},g={filterSize:o,strides:n,dilations:s,pad:a,dimRoundingMode:i},x=E.runKernel(uu,h,g);return d?L(x,[x.shape[1],x.shape[2],x.shape[3],x.shape[4]]):x}var z0=N({maxPool3dGrad_:Aq});var B0={kernelName:pa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,dilations:i,pad:l,dimRoundingMode:u}=t,c=i==null?[1,1,1]:i;return{x:()=>z0(r,o,n,s,a,c,l,u)}}};function Dq(r,e,t,o,n,s,a){let i=v(r,"dy","maxPoolGrad"),l=v(e,"input","maxPoolGrad"),u=v(t,"output","maxPoolGrad");T(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),T(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),T(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),a!=null&&T(it(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let c={dy:i,input:l,output:u},p={filterSize:o,strides:n,pad:s,dimRoundingMode:a};return E.runKernel(lu,c,p)}var V0=N({maxPoolGrad_:Dq});var W0={kernelName:dn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i}=t;return{x:()=>V0(r,o,n,s,a,i)}}};var G0={kernelName:hn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t,s=tr(n,o.shape),i=__(o.shape,s)[1],l=ht(i);return{x:()=>{let c=o.shape.slice();s.forEach(f=>{c[f]=1});let p=L(r,c);return fe(O(p,Sr(o.shape,"float32")),l)}}}};var U0={kernelName:gn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{axis:n}=o,[s,a]=e,i=tr(n,s.shape),l=xg(r,a,s,i);return{x:()=>l.x()}}};var j0={kernelName:xn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>O(r,oe(no(t,o),"float32")),b:()=>O(r,oe(Xt(t,o),"float32"))}}};var q0={kernelName:ma,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Oe(r,s,o.shape)}}};var H0={kernelName:yi,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=It(t.shape,n);return i.length>0?L(_e(r,i),t.shape):r},b:()=>{let i=O(r,qe(Ts(fe(t,o)))),l=It(o.shape,n);return l.length>0?L(_e(i,l),o.shape):i}}}};var K0={kernelName:yn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=O(r,oe(o,"float32")),l=It(t.shape,n);return l.length>0?L(_e(i,l),t.shape):i},b:()=>{let i=O(r,oe(t,"float32")),l=It(o.shape,n);return l.length>0?L(_e(i,l),o.shape):i}}}};var X0={kernelName:fs,gradFunc:r=>({x:()=>qe(r)})};var Y0={kernelName:bn,inputsToSave:["indices"],gradFunc:(r,e)=>{let t=e[0];return{indices:()=>mt(t.shape,"float32")}}};var Z0={kernelName:ds,gradFunc:r=>({x:()=>Ne(r)})};var J0={kernelName:hs,saveAllInputs:!0,gradFunc:(r,e,t)=>{let{axis:o}=t;return cr(r,o).map(s=>()=>s)}};var cw={kernelName:_n,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Oe(r,s,o.shape)}}};var Q0={kernelName:wn,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,e)=>{let[t,o,n]=e,s=t,a=o,i=Be(s.shape,a.shape);return{a:()=>{let c=oe(a,"float32"),p=O(r,O(c,_r(s,ce(c,ue(1))))),m=It(s.shape,i);return m.length>0&&(p=_e(p,m)),L(p,s.shape)},b:()=>{let c=Xt(s,0),p=Dt(c,ar(s),Ne(s)),m=O(r,O(n,p)),f=It(a.shape,i);return f.length>0&&(m=_e(m,f)),L(m,a.shape)}}}};var eT={kernelName:vn,inputsToSave:["x","alpha"],gradFunc:(r,e)=>{let[t,o]=e,n=Xt(t,0);return{x:()=>Dt(n,r,O(r,o)),alpha:()=>{let s=Dt(n,Ne(r),O(r,t)),a=It(o.shape,r.shape);return a.length>0&&(s=_e(s,a)),L(s,o.shape)}}}};var tT={kernelName:on,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=fe(r,oe(o,"float32")),l=It(t.shape,n);return l.length>0?L(_e(i,l),t.shape):i},b:()=>{let i=O(r,oe(t,"float32")),l=It(o.shape,n);l.length>0&&(i=L(_e(i,l),o.shape));let u=Me(o);return qe(fe(i,oe(u,"float32")))}}}};var rT={kernelName:Ci,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>fe(r,qe(Me(t)))}}};var oT={kernelName:In,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=O(no(t,6),Ds(t));return{x:()=>O(r,oe(o,"float32"))}}};var nT={kernelName:kn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,oe(Ds(t),"float32"))}}};var sT={kernelName:gs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>L(r,t.shape)}}};var iT={kernelName:Cn,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>E.runKernel(du,n,t)}}};var aT={kernelName:da,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>E.runKernel(fu,n,t)}}};var lT={kernelName:Nn,gradFunc:(r,e,t)=>{let{dims:o}=t,n=tr(o,r.shape);return{x:()=>Yt(r,n)}}};var uT={kernelName:Sn,gradFunc:r=>({x:()=>Ne(r)})};var cT={kernelName:Tn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>qe(fe(r,O(_r(t,1.5),2)))}}};var pT={kernelName:xs,inputsToSave:["condition"],gradFunc:(r,e)=>{let[t]=e;return{condition:()=>oe(Ne(t),"float32"),t:()=>O(r,oe(t,r.dtype)),e:()=>O(r,oe(Ea(t),r.dtype))}}};var mT={kernelName:Ni,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=Xt(t,ue(0)),n=ue(aw),s=ue(lw),a=O(r,s),i=O(O(r,n),Jt(oe(t,"float32")));return Dt(o,a,i)}}}};var fT={kernelName:An,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,O(t,ce(ue(1),t)))}}};var dT={kernelName:Ti,gradFunc:r=>({x:()=>Ne(r)})};var hT={kernelName:En,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(Ia(oe(t,"float32")),r)}}};var gT={kernelName:Si,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(Su(oe(t,"float32")),r)}}};var xT={kernelName:ys,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{begin:n,size:s}=t,a=o.shape,[i,l]=Kb(o,n,s),u=[];for(let c=0;c<r.rank;c++)u.push([i[c],a[c]-i[c]-l[c]]);return{x:()=>Pr(r,u)}}};var yT={kernelName:Rn,outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{dim:n}=t,s=!0,a=O(r,o);return{logits:()=>ce(a,O(_e(a,[n],s),o))}}};var bT={kernelName:Ei,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,Hr(t))}}};var pw={kernelName:ha,gradFunc:(r,e,t)=>{let{blockShape:o,paddings:n}=t;return{x:()=>Ca(r,o,n)}}};var mw={kernelName:bs,gradFunc:(r,e,t)=>{let{axis:o}=t;return{x:()=>Qe(r,o)}}};var _T={kernelName:Dn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>fe(r,O(yt(oe(t,"float32")),2))}}};var wT={kernelName:ga,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,O(oe(t,"float32"),2))}}};var vT={kernelName:Fn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=ue(2);return{a:()=>O(r,O(n,ce(t,o))),b:()=>O(r,O(n,ce(o,t)))}}};var kT={kernelName:Fo,gradFunc:r=>({x:()=>Ne(r)})};var CT={kernelName:On,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=r,l=It(t.shape,n);return l.length>0&&(i=_e(i,l)),L(i,t.shape)},b:()=>{let i=r,l=It(o.shape,n);return l.length>0&&(i=_e(i,l)),L(qe(i),o.shape)}}}};var IT={kernelName:$n,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,n=o.shape.slice(),{axis:s}=t;tr(s,o.shape).forEach(u=>{n[u]=1});let i=L(r,n),l=O(i,Sr(o.shape,"float32"));return{x:()=>l}}};var NT={kernelName:Di,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>fe(r,Me(Ia(t)))}}};var ST={kernelName:Pn,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(ce(ue(1),Me(t)),r)}}};var TT={kernelName:wo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{reps:n}=t;return{x:()=>{let a=Ne(o);if(o.rank===1)for(let i=0;i<n[0];++i)a=Q(a,Oe(r,[i*o.shape[0]],[o.shape[0]]));else if(o.rank===2)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)a=Q(a,Oe(r,[i*o.shape[0],l*o.shape[1]],[o.shape[0],o.shape[1]]));else if(o.rank===3)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)for(let u=0;u<n[2];++u)a=Q(a,Oe(r,[i*o.shape[0],l*o.shape[1],u*o.shape[2]],[o.shape[0],o.shape[1],o.shape[2]]));else if(o.rank===4)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)for(let u=0;u<n[2];++u)for(let c=0;c<n[3];++c)a=Q(a,Oe(r,[i*o.shape[0],l*o.shape[1],u*o.shape[2],c*o.shape[3]],[o.shape[0],o.shape[1],o.shape[2],o.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${o.rank} tensors yet.`);return a}}}};var ET={kernelName:Mn,gradFunc:(r,e,t)=>{let o=t,{perm:n}=o,s=Bm(n);return{x:()=>je(r,s)}}};var AT={kernelName:_s,gradFunc:(r,e,t)=>{let o=t,{axis:n}=o;return{value:()=>Wt(r,n)}}};var DT={kernelName:xa,inputsToSave:["segmentIds"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>$q(r,t)}}};function $q(r,e){let t=Nr(e,Ne(e)),o=Bn(r,t),n=Or(e,ue(0,"int32")),s=o.rank-n.rank;for(let i=0;i<s;++i)n=br(n,i+1);n=dr(n,Sr(o.shape,"bool"));let a=Ne(o);return Dt(n,o,a)}var $T={kernelName:ws,gradFunc:r=>({x:()=>Ne(r)})};var Rq=[gg,LS,zS,BS,VS,WS,GS,US,jS,qS,HS,KS,YS,JS,QS,e0,t0,r0,o0,n0,s0,i0,l0,a0,c0,p0,m0,f0,d0,h0,tT,g0,x0,y0,b0,_0,v0,w0,k0,N0,S0,T0,E0,A0,D0,$0,R0,F0,O0,M0,uw,uw,L0,B0,W0,G0,U0,j0,q0,H0,K0,X0,Y0,Z0,J0,cw,cw,Q0,eT,rT,oT,nT,sT,iT,aT,lT,uT,cT,pT,mT,fT,dT,hT,gT,xT,yT,bT,pw,pw,mw,mw,_T,vT,wT,kT,CT,IT,NT,ST,TT,ET,AT,DT,$T];for(let r of Rq)vb(r);R.prototype.abs=function(){return this.throwIfDisposed(),Tt(this)};R.prototype.acos=function(){return this.throwIfDisposed(),km(this)};R.prototype.acosh=function(){return this.throwIfDisposed(),Cm(this)};R.prototype.addStrict=function(r){return this.throwIfDisposed(),G_(this,r)};R.prototype.add=function(r){return this.throwIfDisposed(),Q(this,r)};R.prototype.all=function(r,e){return this.throwIfDisposed(),vu(this,r,e)};R.prototype.any=function(r,e){return this.throwIfDisposed(),il(this,r,e)};R.prototype.argMax=function(r){return this.throwIfDisposed(),al(this,r)};R.prototype.argMin=function(r){return this.throwIfDisposed(),Im(this,r)};R.prototype.asScalar=function(){return this.throwIfDisposed(),T(this.size===1,()=>"The array must have only 1 element."),L(this,[])};R.prototype.asType=function(r){return this.throwIfDisposed(),oe(this,r)};R.prototype.as1D=function(){return this.throwIfDisposed(),L(this,[this.size])};R.prototype.as2D=function(r,e){return this.throwIfDisposed(),L(this,[r,e])};R.prototype.as3D=function(r,e,t){return this.throwIfDisposed(),L(this,[r,e,t])};R.prototype.as4D=function(r,e,t,o){return this.throwIfDisposed(),L(this,[r,e,t,o])};R.prototype.as5D=function(r,e,t,o,n){return this.throwIfDisposed(),L(this,[r,e,t,o,n])};R.prototype.asin=function(){return this.throwIfDisposed(),Nm(this)};R.prototype.asinh=function(){return this.throwIfDisposed(),Sm(this)};R.prototype.atan=function(){return this.throwIfDisposed(),Tm(this)};R.prototype.atan2=function(r){return this.throwIfDisposed(),Em(this,r)};R.prototype.atanh=function(){return this.throwIfDisposed(),Am(this)};R.prototype.avgPool=function(r,e,t,o){return this.throwIfDisposed(),ka(this,r,e,t,o)};R.prototype.batchToSpaceND=function(r,e){return this.throwIfDisposed(),Ca(this,r,e)};R.prototype.batchNorm=function(r,e,t,o,n){return this.throwIfDisposed(),zn(this,r,e,t,o,n)};R.prototype.broadcastTo=function(r){return this.throwIfDisposed(),ll(this,r)};R.prototype.cast=function(r){return this.throwIfDisposed(),oe(this,r)};R.prototype.ceil=function(){return this.throwIfDisposed(),$m(this)};R.prototype.clipByValue=function(r,e){return this.throwIfDisposed(),ir(this,r,e)};R.prototype.concat=function(r,e){return this.throwIfDisposed(),r instanceof R&&(r=[r]),Qe([this,...r],e)};R.prototype.conv1d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Iu(this,r,e,t,o,n,s)};R.prototype.conv2dTranspose=function(r,e,t,o,n){return this.throwIfDisposed(),Nu(this,r,e,t,o,n)};R.prototype.conv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Kr(this,r,e,t,o,n,s)};R.prototype.cos=function(){return this.throwIfDisposed(),Ia(this)};R.prototype.cosh=function(){return this.throwIfDisposed(),Su(this)};R.prototype.cumsum=function(r,e,t){return this.throwIfDisposed(),Tu(this,r,e,t)};R.prototype.depthToSpace=function(r,e){return this.throwIfDisposed(),Fm(this,r,e)};R.prototype.depthwiseConv2D=function(r,e,t,o,n,s){return Ot("depthwiseConv2D is deprecated, use depthwiseConv2d instead"),this.throwIfDisposed(),Mo(this,r,e,t,o,n,s)};R.prototype.depthwiseConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Mo(this,r,e,t,o,n,s)};R.prototype.dilation2d=function(r,e,t,o,n){return this.throwIfDisposed(),Om(this,r,e,t,o,n)};R.prototype.divNoNan=function(r){return this.throwIfDisposed(),Pm(this,r)};R.prototype.divStrict=function(r){return this.throwIfDisposed(),U_(this,r)};R.prototype.div=function(r){return this.throwIfDisposed(),fe(this,r)};R.prototype.dot=function(r){return this.throwIfDisposed(),f_(this,r)};R.prototype.elu=function(){return this.throwIfDisposed(),Ss(this)};R.prototype.equalStrict=function(r){return this.throwIfDisposed(),M_(this,r)};R.prototype.equal=function(r){return this.throwIfDisposed(),Xr(this,r)};R.prototype.erf=function(){return this.throwIfDisposed(),Mm(this)};R.prototype.exp=function(){return this.throwIfDisposed(),Jt(this)};R.prototype.expandDims=function(r){return this.throwIfDisposed(),br(this,r)};R.prototype.expm1=function(){return this.throwIfDisposed(),Lm(this)};R.prototype.fft=function(){return this.throwIfDisposed(),Fa(this)};R.prototype.flatten=function(){return this.throwIfDisposed(),L(this,[this.size])};R.prototype.floor=function(){return this.throwIfDisposed(),Ts(this)};R.prototype.floorDiv=function(r){return this.throwIfDisposed(),wu(this,r)};R.prototype.gather=function(r,e){return this.throwIfDisposed(),Bn(this,r,e)};R.prototype.greaterEqualStrict=function(r){return this.throwIfDisposed(),L_(this,r)};R.prototype.greaterEqual=function(r){return this.throwIfDisposed(),Or(this,r)};R.prototype.greaterStrict=function(r){return this.throwIfDisposed(),z_(this,r)};R.prototype.greater=function(r){return this.throwIfDisposed(),Xt(this,r)};R.prototype.ifft=function(){return this.throwIfDisposed(),zi(this)};R.prototype.irfft=function(){return this.throwIfDisposed(),Vu(this)};R.prototype.isFinite=function(){return this.throwIfDisposed(),d_(this)};R.prototype.isInf=function(){return this.throwIfDisposed(),h_(this)};R.prototype.isNaN=function(){return this.throwIfDisposed(),g_(this)};R.prototype.leakyRelu=function(r){return this.throwIfDisposed(),Sa(this,r)};R.prototype.lessEqualStrict=function(r){return this.throwIfDisposed(),B_(this,r)};R.prototype.lessEqual=function(r){return this.throwIfDisposed(),no(this,r)};R.prototype.lessStrict=function(r){return this.throwIfDisposed(),V_(this,r)};R.prototype.less=function(r){return this.throwIfDisposed(),Ta(this,r)};R.prototype.localResponseNormalization=function(r,e,t,o){return this.throwIfDisposed(),zm(this,r,e,t,o)};R.prototype.logSigmoid=function(){return this.throwIfDisposed(),y_(this)};R.prototype.logSoftmax=function(r){return this.throwIfDisposed(),Du(this,r)};R.prototype.logSumExp=function(r,e){return this.throwIfDisposed(),Vm(this,r,e)};R.prototype.log=function(){return this.throwIfDisposed(),ar(this)};R.prototype.log1p=function(){return this.throwIfDisposed(),Au(this)};R.prototype.logicalAnd=function(r){return this.throwIfDisposed(),dr(this,r)};R.prototype.logicalNot=function(){return this.throwIfDisposed(),Ea(this)};R.prototype.logicalOr=function(r){return this.throwIfDisposed(),$u(this,r)};R.prototype.logicalXor=function(r){return this.throwIfDisposed(),v_(this,r)};R.prototype.matMul=function(r,e,t){return this.throwIfDisposed(),Ue(this,r,e,t)};R.prototype.maxPool=function(r,e,t,o){return this.throwIfDisposed(),Aa(this,r,e,t,o)};R.prototype.max=function(r,e){return this.throwIfDisposed(),lr(this,r,e)};R.prototype.maximumStrict=function(r){return this.throwIfDisposed(),j_(this,r)};R.prototype.maximum=function(r){return this.throwIfDisposed(),Nr(this,r)};R.prototype.mean=function(r,e){return this.throwIfDisposed(),xt(this,r,e)};R.prototype.min=function(r,e){return this.throwIfDisposed(),Li(this,r,e)};R.prototype.minimumStrict=function(r){return this.throwIfDisposed(),q_(this,r)};R.prototype.minimum=function(r){return this.throwIfDisposed(),zo(this,r)};R.prototype.mirrorPad=function(r,e){return this.throwIfDisposed(),Gm(this,r,e)};R.prototype.modStrict=function(r){return this.throwIfDisposed(),H_(this,r)};R.prototype.mod=function(r){return this.throwIfDisposed(),Ru(this,r)};R.prototype.mulStrict=function(r){return this.throwIfDisposed(),K_(this,r)};R.prototype.mul=function(r){return this.throwIfDisposed(),O(this,r)};R.prototype.neg=function(){return this.throwIfDisposed(),qe(this)};R.prototype.norm=function(r,e,t){return this.throwIfDisposed(),Gu(this,r,e,t)};R.prototype.notEqualStrict=function(r){return this.throwIfDisposed(),W_(this,r)};R.prototype.notEqual=function(r){return this.throwIfDisposed(),ko(this,r)};R.prototype.oneHot=function(r,e=1,t=0){return this.throwIfDisposed(),Is(this,r,e,t)};R.prototype.onesLike=function(){return this.throwIfDisposed(),rr(this)};R.prototype.pad=function(r,e){return this.throwIfDisposed(),Pr(this,r,e)};R.prototype.pool=function(r,e,t,o,n){return this.throwIfDisposed(),I_(this,r,e,t,o,n)};R.prototype.powStrict=function(r){return this.throwIfDisposed(),X_(this,r)};R.prototype.pow=function(r){return this.throwIfDisposed(),_r(this,r)};R.prototype.prelu=function(r){return this.throwIfDisposed(),$a(this,r)};R.prototype.prod=function(r,e){return this.throwIfDisposed(),Fu(this,r,e)};R.prototype.reciprocal=function(){return this.throwIfDisposed(),jm(this)};R.prototype.relu=function(){return this.throwIfDisposed(),Tr(this)};R.prototype.relu6=function(){return this.throwIfDisposed(),Pu(this)};R.prototype.reshapeAs=function(r){return this.throwIfDisposed(),L(this,r.shape)};R.prototype.reshape=function(r){return this.throwIfDisposed(),L(this,r)};R.prototype.resizeBilinear=function(r,e,t){return this.throwIfDisposed(),fg(this,r,e,t)};R.prototype.resizeNearestNeighbor=function(r,e,t){return this.throwIfDisposed(),dg(this,r,e,t)};R.prototype.reverse=function(r){return this.throwIfDisposed(),Yt(this,r)};R.prototype.rfft=function(){return this.throwIfDisposed(),Oa(this)};R.prototype.round=function(){return this.throwIfDisposed(),qm(this)};R.prototype.rsqrt=function(){return this.throwIfDisposed(),Mu(this)};R.prototype.selu=function(){return this.throwIfDisposed(),Lu(this)};R.prototype.separableConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Hm(this,r,e,t,o,n,s)};R.prototype.sigmoid=function(){return this.throwIfDisposed(),Hr(this)};R.prototype.sign=function(){return this.throwIfDisposed(),Km(this)};R.prototype.sin=function(){return this.throwIfDisposed(),zu(this)};R.prototype.sinh=function(){return this.throwIfDisposed(),Bu(this)};R.prototype.slice=function(r,e){return this.throwIfDisposed(),Oe(this,r,e)};R.prototype.softmax=function(r){return this.throwIfDisposed(),Ra(this,r)};R.prototype.softplus=function(){return this.throwIfDisposed(),Es(this)};R.prototype.spaceToBatchND=function(r,e){return this.throwIfDisposed(),Da(this,r,e)};R.prototype.split=function(r,e){return this.throwIfDisposed(),ur(this,r,e)};R.prototype.sqrt=function(){return this.throwIfDisposed(),yt(this)};R.prototype.square=function(){return this.throwIfDisposed(),Me(this)};R.prototype.squaredDifference=function(r){return this.throwIfDisposed(),Pa(this,r)};R.prototype.squaredDifferenceStrict=function(r){return this.throwIfDisposed(),Y_(this,r)};R.prototype.squeeze=function(r){return this.throwIfDisposed(),Co(this,r)};R.prototype.stack=function(r,e){this.throwIfDisposed();let t=r instanceof R?[this,r]:[this,...r];return Wt(t,e)};R.prototype.step=function(r){return this.throwIfDisposed(),Ds(this,r)};R.prototype.stridedSlice=function(r,e,t,o,n,s,a,i){return this.throwIfDisposed(),Zm(this,r,e,t,o,n,s,a,i)};R.prototype.subStrict=function(r){return this.throwIfDisposed(),Z_(this,r)};R.prototype.sub=function(r){return this.throwIfDisposed(),ce(this,r)};R.prototype.sum=function(r,e){return this.throwIfDisposed(),_e(this,r,e)};R.prototype.tan=function(){return this.throwIfDisposed(),Jm(this)};R.prototype.tanh=function(){return this.throwIfDisposed(),Mi(this)};R.prototype.tile=function(r){return this.throwIfDisposed(),Lo(this,r)};R.prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};R.prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};R.prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};R.prototype.topk=function(r,e){return this.throwIfDisposed(),Qm(this,r,e)};R.prototype.transpose=function(r){return this.throwIfDisposed(),je(this,r)};R.prototype.unique=function(r){return this.throwIfDisposed(),Qc(this,r)};R.prototype.unsortedSegmentSum=function(r,e){return this.throwIfDisposed(),ef(this,r,e)};R.prototype.unstack=function(r){return this.throwIfDisposed(),cr(this,r)};R.prototype.where=function(r,e){return this.throwIfDisposed(),Dt(r,this,e)};R.prototype.zerosLike=function(){return this.throwIfDisposed(),Ne(this)};var yw={};tt(yw,{maxNorm:()=>Oq,minMaxNorm:()=>Lq,nonNeg:()=>Mq,unitNorm:()=>Pq});var fw;function Qt(){return fw==null&&(fw=Qb().epsilon()),fw}function Zr(){return"channelsLast"}var Io=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Io.prototype)}},Lr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Lr.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},Se=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Se.prototype)}},sf=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,sf.prototype)}},dw=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,dw.prototype)}};function Un(r,e){if(Array.isArray(r)){let t=[];for(let o=0;o<e;o++)t=t.concat(r);return t}else{let t=new Array(e);return t.fill(r),t}}function Bo(r,e){if(!r)throw new sf(e)}function hw(r,e){let t=0;for(let o of r)o===e&&t++;return t}function hr(r){return r.length===1?r[0]:r}function bt(r){return Array.isArray(r)?r:[r]}function jn(r){let t=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function La(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(e,t)=>t.toUpperCase())}var qn={};function ap(r){if(r==null)return null;let e={};return e.className=r.getClassName(),e.config=r.getConfig(),e}function gw(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(e=>gw(e));else{let e=Object.keys(r);for(let t of e){let o=r[t];o!=null&&typeof o=="object"&&(!Array.isArray(o)&&o.type==="ndarray"&&typeof o.value=="number"?r[t]=o.value:gw(o))}}}function Vi(r,e={},t={},o="object",n=!1){if(typeof r=="string"){let s=r,a;if(s in t)a=t[s];else if(s in qn)a=qn[s];else if(a=e[s],a==null)throw new B(`Unknown ${o}: ${r}. This may be due to one of the following reasons:
1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{let s=r;if(s.className==null||s.config==null)throw new B(`${o}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let a=s.className,i,l;if(a in t?[i,l]=t[a]:a in qn?[i,l]=qn.className:a in e&&([i,l]=e[a]),i==null)throw new B(`Unknown ${o}: ${a}. This may be due to one of the following reasons:
1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let f of Object.keys(qn))u[f]=qn[f];for(let f of Object.keys(t))u[f]=t[f];let c=s.config;c.customObjects=u;let p=Object.assign({},qn);for(let f of Object.keys(t))qn[f]=t[f];gw(s.config);let m=l(i,s.config,t,n);return qn=Object.assign({},p),m}else{let u=Object.assign({},qn);for(let p of Object.keys(t))qn[p]=t[p];let c=new i(s.config);return qn=Object.assign({},u),c}}}function Fq(r,e){return r<e?-1:r>e?1:0}function af(r,e){return-1*Fq(r,e)}function Hn(r){if(r==null)return r;let e=[];for(let t of r)e.indexOf(t)===-1&&e.push(t);return e}function RT(r){if(r==null)throw new B(`Invalid value in obj: ${JSON.stringify(r)}`);for(let e in r)if(r.hasOwnProperty(e))return!1;return!0}function Wi(r,e,t){if(t!=null&&r.indexOf(t)<0)throw new B(`${t} is not a valid ${e}. Valid values are ${r} or null/undefined.`)}function yg(r,e,t=0,o=Infinity){return Bo(t>=0),Bo(o>=t),Array.isArray(r)&&r.length>=t&&r.length<=o&&r.every(n=>typeof n===e)}function jt(r,e){Array.isArray(r)?(y.assert(r.length>0,()=>`${e} is unexpectedly an empty array.`),r.forEach((t,o)=>jt(t,`element ${o+1} of ${e}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${e} to be a positive integer, but got ${FT(r)}.`)}function FT(r){return r===null?"null":Array.isArray(r)?"["+r.map(e=>FT(e)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function OT(r,e){let t=y.now(),o;return(...s)=>{let a=y.now();return a-t<e||(t=a,o=r(...s)),o}}function bg(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}function xw(r,e){return V(()=>yt(_e(O(r,r),e,!0)))}var lp=class extends ee.Serializable{getConfig(){return{}}},lf=class extends lp{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=xw(e,this.axis),o=ir(t,0,this.maxValue);return O(e,fe(o,Q(Qt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};lf.className="MaxNorm";ee.registerClass(lf);var uf=class extends lp{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>fe(e,Q(Qt(),xw(e,this.axis))))}getConfig(){return{axis:this.axis}}};uf.className="UnitNorm";ee.registerClass(uf);var cf=class extends lp{apply(e){return Tr(e)}};cf.className="NonNeg";ee.registerClass(cf);var pf=class extends lp{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=xw(e,this.axis),o=Q(O(this.rate,ir(t,this.minValue,this.maxValue)),O(1-this.rate,t));return O(e,fe(o,Q(Qt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};pf.className="MinMaxNorm";ee.registerClass(pf);var PT={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Mt(r){return ap(r)}function MT(r,e={}){return Vi(r,ee.SerializationMap.getMap().classNameMap,e,"constraint")}function Lt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in PT?PT[r]:r,config:{}};return MT(t)}else return r instanceof lp?r:MT(r)}function Oq(r){return new lf(r)}function Pq(r){return new uf(r)}function Mq(){return new cf}function Lq(r){return new pf(r)}var kw={};tt(kw,{constant:()=>qq,glorotNormal:()=>Qq,glorotUniform:()=>Jq,heNormal:()=>eH,heUniform:()=>tH,identity:()=>Yq,leCunNormal:()=>rH,leCunUniform:()=>oH,ones:()=>jq,orthogonal:()=>nH,randomNormal:()=>Kq,randomUniform:()=>Hq,truncatedNormal:()=>Xq,varianceScaling:()=>Zq,zeros:()=>Uq});var LT=["channelsFirst","channelsLast"],zT=["nearest","bilinear"],BT=["valid","same","causal"],VT=["max","avg"],WT=["sum","mul","concat","ave"];var up=new Map;function $t(r){Wi(LT,"DataFormat",r)}function GT(r){Wi(zT,"InterpolationFormat",r)}function Jr(r){Wi(BT,"PaddingMode",r)}function bw(r){Wi(VT,"PoolMode",r)}var mf=[],UT="/";function Rs(r,e){mf.push(r);try{let t=e();return mf.pop(),t}catch(t){throw mf.pop(),t}}function zq(){return mf.length===0?"":mf.join(UT)+UT}function _g(r){if(!jT(r))throw new Error("Not a valid tensor name: '"+r+"'");return zq()+r}function wg(r){if(!jT(r))throw new Error("Not a valid tensor name: '"+r+"'");up.has(r)||up.set(r,0);let e=up.get(r);if(up.set(r,up.get(r)+1),e>0){let t=`${r}_${e}`;return up.set(t,1),t}else return r}var Bq=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function jT(r){return!!r.match(Bq)}function qT(r){return r===parseInt(r.toString(),10)}function Kn(r,e,t){e==null&&(e=0),t==null&&(t=r.length);let o=1;for(let n=e;n<t;++n)o*=r[n];return o}function HT(r){return r=Array.isArray(r)?new Float32Array(r):r,Gt(r)}function Ku(r){return Li(HT(r)).dataSync()[0]}function Fs(r){return lr(HT(r)).dataSync()[0]}function zr(r,e){if(e<r)throw new B(`end (${e}) < begin (${r}) is forbidden.`);let t=[];for(let o=r;o<e;++o)t.push(o);return t}function za(r,e){return r.asType(e)}function Ba(r,e=-1){let t=r.shape.slice();return e<0&&(e=t.length+e+1),t.splice(e,0,1),r.reshape(t)}function KT(r,e){return V(()=>{if(r.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let t=Ba(r,1);return vg(t,[1,e,1])})}function XT(r){let e=[Kn(r.shape)];return r.reshape(e)}function YT(r){if(r.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let e=[r.shape[0],Kn(r.shape,1)];return r.reshape(e)}function Va(r,e,t){return V(()=>{switch(r.rank){case 1:return Xm(r,e,t);case 2:return lg(r,[e,0],[t,r.shape[1]]);case 3:return Ym(r,[e,0,0],[t,r.shape[1],r.shape[2]]);case 4:return Jc(r,[e,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Oe(r,[e,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Oe(r,[e,0,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function _w(r,e,t){return V(()=>{switch(r.rank){case 1:return Xm(r,e,t);case 2:return lg(r,[0,e],[r.shape[0],t]);case 3:return Ym(r,[0,0,e],[r.shape[0],r.shape[1],t]);case 4:return Jc(r,[0,0,0,e],[r.shape[0],r.shape[1],r.shape[2],t]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function ff(r,e,t,o){return V(()=>{switch(r.rank){case 1:return Xm(r,e,t);case 2:switch(o){case 1:return Va(r,e,t);case 2:return _w(r,e,t);default:throw new B(`The axis is not within the rank of the tensor ${o}`)}case 3:switch(o){case 1:return Va(r,e,t);case 2:return Ym(r,[0,e,0],[r.shape[0],t,r.shape[2]]);case 3:return _w(r,e,t);default:throw new B(`The axis is not within the rank of the tensor ${o}`)}case 4:switch(o){case 1:return Va(r,e,t);case 2:return Jc(r,[0,e,0,0],[r.shape[0],t,r.shape[2],r.shape[3]]);case 3:return Jc(r,[0,0,e,0],[r.shape[0],r.shape[1],t,r.shape[3]]);case 4:return _w(r,e,t);default:throw new B(`The axis is not within the rank of the tensor ${o}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function cp(r,e=-1){let t;return e<0&&(t=r[0].rank,t!==0?e=t:e=0),e===r[0].rank&&(e=-1),Qe(r,e)}function ww(r,e){switch(r.rank){case 1:return l_([r,e]);case 2:return u_([r,e],0);case 3:return c_([r,e],0);case 4:return p_([r,e],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function vg(r,e){if(Array.isArray(e)||(e=[e]),r.rank!==e.length)throw new B(`The length of input n (${e.length}) does not match the number of dimensions in input x (${r.rank})`);return Lo(r,e)}function pp(r,e=0,t=1,o,n){return ag(r,e,t,o,n)}function Xn(r,e,t,o){if(r.rank<2||e.rank<2)throw new Se(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${e.shape}`);if(e.rank>=3){let n=r.shape.slice(-1)[0],s=e.shape.slice(-2)[0];if(n!==s)throw new Se(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${e.shape}`)}if(r.rank===2&&e.rank===2){let n=!1,s=!1;return Wn.matMul({a:r,b:e,transposeA:n,transposeB:s,bias:o?vw(r.rank,o,Zr()):null,activation:t})}else{let n=r.shape.slice(),s=n.pop();r=r.reshape([-1,s]);let a=e.shape.slice(),i=a.pop(),l=a.pop(),u=[...a,i],c=Array.from({length:e.rank},(d,h)=>h===0?e.rank-2:h<=e.rank-2?h-1:h);e=e.transpose(c).reshape([l,-1]);let p=[...n,...u],m=!1,f=!1;return Wn.matMul({a:r,b:e,transposeA:m,transposeB:f,bias:o?vw(r.rank,o,Zr()):null,activation:t}).reshape(p)}}function kg(r,e,t){return V(()=>(Array.isArray(e)?e=Gt(e,"int32"):e=e.toInt(),Bn(r,e,t)))}function Xu(r){return O(r,r)}function vw(r,e,t){let o=e.shape;if(e.rank!==1&&e.rank!==r)throw new B(`Unexpected bias dimensions: ${e.rank}; expected it to be 1 or ${r}`);if(r===5){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1,1]):e.reshape([1,o[3],o[0],o[1],o[2]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===4){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1]):e.reshape([1,o[2],o[0],o[1]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===3){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1]):e.reshape([1,o[1],o[0]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,o[0]]):e.reshape([1].concat(o))}else if(r<3)return e;throw new B(`Unsupported input rank by biasAdd: ${e.rank}`)}function so(r,e,t){return V(()=>(t==null&&(t=Zr()),$t(t),r.add(vw(r.rank,e,t))))}function ZT(r,e=1){if(e!==1)throw new Se(`Support for alpha values other than 1 (${e}) is not implemented yet.`);return Ss(r)}function JT(r){return V(()=>fe(r,Tt(r).add(1)))}function Cg(r,e,t,o){return V(()=>ew(r,e,t,o))}function QT(r){return V(()=>{let e=Q(.5,O(.2,r));return ir(e,0,1)})}function ml(r,e,t=!1){return t?r():e()}var e1=["fanIn","fanOut","fanAvg"],t1=["normal","uniform","truncatedNormal"];function Vq(r){Wi(e1,"FanMode",r)}function Wq(r){Wi(t1,"Distribution",r)}var io=class extends ee.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},df=class extends io{apply(e,t){return mt(e,t)}};df.className="Zeros";ee.registerClass(df);var Yu=class extends io{apply(e,t){return Sr(e,t)}};Yu.className="Ones";ee.registerClass(Yu);var hf=class extends io{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return V(()=>O(ue(this.value),Sr(e,t)))}getConfig(){return{value:this.value}}};hf.className="Constant";ee.registerClass(hf);var gf=class extends io{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return As(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};gf.className="RandomUniform";ee.registerClass(gf);var xf=class extends io{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`randomNormal does not support dType ${t}.`);return pp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};xf.className="RandomNormal";ee.registerClass(xf);var yf=class extends io{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`truncatedNormal does not support dType ${t}.`);return Wu(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};yf.className="TruncatedNormal";ee.registerClass(yf);var bf=class extends io{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return V(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return O(this.gain,Kc(e[0]))})}getConfig(){return{gain:this.gain}}};bf.className="Identity";ee.registerClass(bf);function Gq(r,e="channelsLast"){let t,o;if($t(e),r.length===2)t=r[0],o=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(e==="channelsFirst"){let n=Kn(r,2);t=r[1]*n,o=r[0]*n}else if(e==="channelsLast"){let n=Kn(r,0,r.length-2);t=r[r.length-2]*n,o=r[r.length-1]*n}}else{let n=Kn(r);t=Math.sqrt(n),o=Math.sqrt(n)}return[t,o]}var Br=class extends io{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Vq(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Wq(this.distribution),this.seed=e.seed}apply(e,t){let o=Gq(e),n=o[0],s=o[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,n):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(n+s)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`${this.getClassName()} does not support dType ${t}.`);return Wu(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return As(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Br.className="VarianceScaling";ee.registerClass(Br);var mp=class extends Br{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Br.className}};mp.className="GlorotUniform";ee.registerClass(mp);var fp=class extends Br{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Br.className}};fp.className="GlorotNormal";ee.registerClass(fp);var dp=class extends Br{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Br.className}};dp.className="HeNormal";ee.registerClass(dp);var hp=class extends Br{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Br.className}};hp.className="HeUniform";ee.registerClass(hp);var gp=class extends Br{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Br.className}};gp.className="LeCunNormal";ee.registerClass(gp);var xp=class extends Br{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Br.className}};xp.className="LeCunNormal";ee.registerClass(xp);var _f=class extends io{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Se("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return V(()=>{if(e.length<2)throw new Se("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let o=e[0]>e[1]?[e[1],e[0]]:e,n=pp(o,0,1,"float32"),s=iw.gramSchmidt(n);return e[0]>e[1]&&(s=s.transpose()),O(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};_f.className="Orthogonal";ee.registerClass(_f);var r1={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function o1(r,e={}){return Vi(r,ee.SerializationMap.getMap().classNameMap,e,"initializer")}function Nt(r){return ap(r)}function gt(r){if(typeof r=="string"){let e=r in r1?r1[r]:r;if(e==="GlorotNormal")return new fp;if(e==="GlorotUniform")return new mp;if(e==="HeNormal")return new dp;if(e==="HeUniform")return new hp;if(e==="LeCunNormal")return new gp;if(e==="LeCunUniform")return new xp;{let t={};return t.className=e,t.config={},o1(t)}}else return r instanceof io?r:o1(r)}function Uq(){return new df}function jq(){return new Yu}function qq(r){return new hf(r)}function Hq(r){return new gf(r)}function Kq(r){return new xf(r)}function Xq(r){return new yf(r)}function Yq(r){return new bf(r)}function Zq(r){return new Br(r)}function Jq(r){return new mp(r)}function Qq(r){return new fp(r)}function eH(r){return new dp(r)}function tH(r){return new hp(r)}function rH(r){return new gp(r)}function oH(r){return new xp(r)}function nH(r){return new _f(r)}var sv={};tt(sv,{Layer:()=>Le,RNN:()=>co,RNNCell:()=>wl,activation:()=>vK,add:()=>DK,alphaDropout:()=>d6,average:()=>$K,averagePooling1d:()=>iv,averagePooling2d:()=>av,averagePooling3d:()=>lv,avgPool1d:()=>VK,avgPool2d:()=>GK,avgPool3d:()=>jK,avgPooling1d:()=>WK,avgPooling2d:()=>UK,avgPooling3d:()=>qK,batchNormalization:()=>LK,bidirectional:()=>i6,concatenate:()=>RK,conv1d:()=>dK,conv2d:()=>hK,conv2dTranspose:()=>gK,conv3d:()=>xK,convLstm2d:()=>r6,convLstm2dCell:()=>o6,cropping2D:()=>bK,dense:()=>kK,depthwiseConv2d:()=>wK,dot:()=>MK,dropout:()=>CK,elu:()=>lK,embedding:()=>AK,flatten:()=>NK,gaussianDropout:()=>f6,gaussianNoise:()=>m6,globalAveragePooling1d:()=>HK,globalAveragePooling2d:()=>KK,globalMaxPool1d:()=>l6,globalMaxPool2d:()=>u6,globalMaxPooling1d:()=>L1,globalMaxPooling2d:()=>z1,gru:()=>YK,gruCell:()=>ZK,input:()=>qg,inputLayer:()=>aK,layerNormalization:()=>zK,leakyReLU:()=>cK,lstm:()=>JK,lstmCell:()=>QK,masking:()=>h6,maxPool1d:()=>c6,maxPool2d:()=>p6,maxPooling1d:()=>B1,maxPooling2d:()=>V1,maxPooling3d:()=>XK,maximum:()=>FK,minimum:()=>OK,multiply:()=>PK,permute:()=>EK,prelu:()=>pK,reLU:()=>uK,repeatVector:()=>SK,reshape:()=>TK,rnn:()=>n6,separableConv2d:()=>yK,simpleRNN:()=>e6,simpleRNNCell:()=>t6,softmax:()=>mK,spatialDropout1d:()=>IK,stackedRNNCells:()=>s6,thresholdedReLU:()=>fK,timeDistributed:()=>a6,upSampling2d:()=>_K,zeroPadding2d:()=>BK});var sH=0;function Ig(){return sH++}var Ng={};function fl(r=""){return r in Ng||(Ng[r]=0),Ng[r]+=1,r+Ng[r].toString()}function Sg(r){return Array.isArray(r)&&Array.isArray(r[0])}function yp(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Pe(r){let e;if(Array.isArray(r)){if(r.length!==1)throw new B(`Expected Tensor length to be 1; got ${r.length}`);e=r[0]}else e=r;return e}function et(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new B(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function bp(r){let e=0;for(let t of r)t.shape.length===0?e+=1:e+=t.shape.reduce((o,n)=>o*n);return e}var n1="Variable",wf=class{constructor(e,t="float32",o=n1,n=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Ig(),o=o==null?n1:o,this.originalName=_g(o),this.name=wg(this.originalName),this.trainable_=n,this.constraint=s,this.val=O_(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),iH(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function iH(r,e){if(r.shape.toString()!==e.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(e.shape))}function vf(r){return r.map(e=>e.read())}function _p(r){r.forEach(e=>{e[0].write(e[1])})}var Et=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Vr=class{constructor(e,t,o,n,s,a,i){this.dtype=e,this.shape=t,this.sourceLayer=o,this.inputs=n,this.callArgs=s,this.outputTensorIndex=i,this.id=Ig(),a!=null&&(this.originalName=_g(a),this.name=wg(this.originalName)),this.rank=t.length}},aH=0,dl=class{constructor(e,t){this.callArgs=t,this.id=aH++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let o of e.inboundLayers)o!=null&&o.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},lH=0,Le=class extends ee.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=lH++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let o=this.getClassName();t=jn(o)+"_"+fl(o)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let o;if(e.batchInputShape!=null)o=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),o=[s].concat(e.inputShape)}this.batchInputShape=o;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Lr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return hr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return hr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Io(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Io(`Layer ${this.name} is not connected, no input to return.`);return hr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Io(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Io(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return hr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=bt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=bt(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let o=0;o<e.length;o++){let n=e[o],s=t[o];if(s==null)continue;let a=n.rank;if(s.ndim!=null&&a!==s.ndim)throw new B(`Input ${o} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new B(`Input ${o} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new B(`Input ${o} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&n.dtype!==s.dtype)throw new B(`Input ${o} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${n.dtype}.`);if(s.axes){let i=n.shape;for(let l in s.axes){let u=Number(l),c=s.axes[l],p=u>=0?i[u]:i[i.length+u];if(c!=null&&[c,null].indexOf(p)===-1)throw new B(`Input ${o} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${c} but got shape ${i}.`)}}if(s.shape!=null)for(let i=0;i<s.shape.length;++i){let l=s.shape[i],u=n.shape[i];if(l!=null&&u!=null&&l!==u)throw new B(`Input ${o} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let o=bt(e),n=!0;for(let a of o)if(!(a instanceof Vr)){n=!1;break}let s=!0;for(let a of o)if(a instanceof Vr){s=!1;break}if(n===s)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return Rs(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of bt(e))a.push(i.shape);this.build(hr(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),i=bt(a),l=[];for(let u of i)o.indexOf(u)!==-1&&(u=u.clone()),l.push(u);if(a=hr(l),this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=uH(e),i=this.computeOutputShape(a),l,u=cH(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?l=i.map((c,p)=>new Vr(u,c,this,bt(e),t,this.name,p)):l=new Vr(u,i,this,bt(e),t,this.name),this.addInboundNode(e,l,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return l}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((o,n)=>{o!=null&&e[n]!=null&&e[n]!==o&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Io(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let o=JSON.stringify(t.outputShapes);e.indexOf(o)===-1&&e.push(o)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Io(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Lr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return bp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return vf(e?this.trainableWeights:this.weights)}setWeights(e){V(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let o=[],n=vf(t);for(let s=0;s<n.length;++s){let a=n[s],i=t[s],l=e[s];if(!y.arraysEqual(a.shape,l.shape))throw new B(`Layer weight shape ${a.shape} not compatible with provided weight shape ${l.shape}`);o.push([i,l])}_p(o)})}addWeight(e,t,o,n,s,a,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),o==null&&(o="float32"),this.fastWeightInitDuringBuild&&(n=gt("zeros"));let l=n.apply(t,o),u=new wf(l,o,e,a,i);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=bt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(o=>{if(o!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,o,n,s,a,i=null){let l=bt(e);t=bt(t),o=bt(o),n=bt(n),s=yp(s),a=yp(a);let u=[],c=[],p=[];for(let m of l)u.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new dl({outboundLayer:this,inboundLayers:u,nodeIndices:c,tensorIndices:p,inputTensors:l,outputTensors:t,inputMasks:o,outputMasks:n,inputShapes:s,outputShapes:a},i);for(let m=0;m<t.length;m++)t[m].sourceLayer=this,t[m].nodeIndex=this.inboundNodes.length-1,t[m].tensorIndex=m}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function uH(r){r=bt(r);let e=[];for(let t of r)e.push(t.shape);return hr(e)}function cH(r){return"float32"}function Cw(r,e,t){if((e==null||t!=null&&t>0)&&(e=r.sourceLayer,t=r.nodeIndex),e.inboundNodes.length===0)return[r];{let o=e.inboundNodes[t];if(o.inboundLayers.length===0)return o.inputTensors;{let n=[];for(let s=0;s<o.inboundLayers.length;s++){let a=o.inputTensors[s],i=o.inboundLayers[s],l=o.nodeIndices[s],u=Cw(a,i,l);for(let c of u)n.indexOf(c)===-1&&n.push(c)}return n}}}var Gi=class extends Le{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:fl("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let o=e.dtype||"float32";this.batchInputShape=t,this.dtype=o,this.inputSpec=[{shape:t}];let n=new Vr(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new dl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Gi.className="InputLayer";ee.registerClass(Gi);function Tg(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let e=r.batchShape;r.shape!=null&&e==null&&(e=[null].concat(r.shape));let t=r.dtype;return t==null&&(t="float32"),new Gi({batchInputShape:e,name:r.name,dtype:t,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}async function Ui(r){if(r==null)return;let e=[],t=[],o=[];for(let n in r){let s=r[n];if(typeof s!="number"){let a=s;e.push(a.data()),t.push(n),o.push(a)}}if(e.length>0){let n=await Promise.all(e);for(let s=0;s<n.length;++s)r[t[s]]=n[s][0];Ae(o)}}function Eg(r){if(r!=null)for(let e in r){let t=r[e];typeof t!="number"&&t.dispose()}}var s1;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(s1||(s1={}));var pH=125,hl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Ag=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},i1=class extends hl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let o=t.size==null?0:t.size;this.seen+=o;for(let n in t){let s=t[n];if(typeof s=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+s*o;else{let a;n in this.totals?a=this.totals[n]:this.totals[n]=0;let i=V(()=>Q(this.totals[n],O(s,o)));this.totals[n]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let o of this.params.metrics)this.totals[o]!=null&&(typeof this.totals[o]=="number"?t[o]=this.totals[o]/this.seen:V(()=>{let n=O(fe(1,this.seen),this.totals[o]);t[o]=n,this.totals[o].dispose(),At(t[o])}))}},Dg=class extends hl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let o in t)this.history[o]==null&&(this.history[o]=[]),this.history[o].push(t[o])}async syncData(){let e=[],t=[],o=[];for(let s in this.history){let a=this.history[s];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let l=a[i];e.push(l.data()),t.push(s),o.push(i)}}let n=await Promise.all(e);for(let s=0;s<n.length;++s)this.history[t[s]][o[s]].dispose(),this.history[t[s]][o[s]]=n[s][0]}},$g=class extends hl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=pH),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");y.isNumber(this.yieldEvery)&&(this.maybeWait=OT(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,o){let n=[];this.yield!=null&&(await Ui(o),n.push(this.yield(e,t,o))),n.push(nf()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ui(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let o=[];this.epochEnd!=null&&(await Ui(t),o.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&o.push(nf()),await Promise.all(o)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ui(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let o=[];this.batchEnd!=null&&(await Ui(t),o.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?o.push(nf()):y.isNumber(this.yieldEvery)&&o.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(o)}async onTrainBegin(e){this.trainBegin!=null&&(await Ui(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ui(e),await this.trainEnd(e))}};function Rg(r,e){return r==null&&(r={}),r instanceof hl?[r]:Array.isArray(r)&&r[0]instanceof hl?r:bt(r).map(o=>new $g(o,e))}var ao=class{constructor(){}static registerCallbackConstructor(e,t){y.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ao.checkForDuplicate(t),ao.constructors[e]==null&&(ao.constructors[e]=[]),ao.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ao.constructors)ao.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){ao.constructors={}}static createCallbacks(e){let t=[];for(let o in ao.constructors){let n=+o;e>=n&&t.push(...ao.constructors[n])}return t.map(o=>new o)}};ao.constructors={};function Fg(r,e,t,o,n,s,a,i,l){let u=new Dg,c=[new i1,...ao.createCallbacks(e)];r!=null&&c.push(...r),c.push(u);let p=new Ag(c);return p.setParams({epochs:t,initialEpoch:o,samples:n,steps:s,batchSize:a,verbose:e,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Qr(r,e={},t=!1){return Vi(r,ee.SerializationMap.getMap().classNameMap,e,"layer",t)}function kf(r,e){return V(()=>{r.dtype!=="float32"&&(r=r.asType("float32"));let t=_e(Xu(r),e,!0),o=Na(t.shape,Qt()),n=yt(Nr(t,o));return fe(r,n)})}function ji(r,e){return V(()=>xt(Xu(ce(e,r)),-1))}function wp(r,e){return V(()=>xt(Tt(ce(e,r)),-1))}function gl(r,e){return V(()=>{let t=ce(r,e),o=ir(Tt(r),Qt(),Number.MAX_VALUE),n=Tt(fe(t,o));return O(100,xt(n,-1))})}function mH(r,e){return V(()=>{let t=ir(e,Qt(),Number.MAX_VALUE),o=ar(Q(1,t)),n=ir(r,Qt(),Number.MAX_VALUE),s=ar(Q(1,n));return xt(Xu(ce(o,s)),-1)})}function fH(r,e){return V(()=>{let t=Nr(0,ce(1,O(r,e)));return xt(Xu(t),-1)})}function dH(r,e){return V(()=>{let t=Nr(0,ce(1,O(r,e)));return xt(t,-1)})}function hH(r,e){return V(()=>{let t=_e(O(r,e),-1),o=lr(O(ce(1,r),e),-1);return Nr(0,Q(1,ce(o,t)))})}function gH(r,e){return V(()=>{let t=Math.log(2),o=ce(e,r),n=ce(Q(o,Es(O(-2,o))),t);return xt(n,-1)})}function Zu(r,e,t=!1){return V(()=>{if(t)e=Ra(e);else{let o=_e(e,e.shape.length-1,!0);e=fe(e,o)}return e=ir(e,Qt(),1-Qt()),qe(_e(O(r.toFloat(),ar(e)),e.shape.length-1))})}function vp(r,e,t=!1){return V(()=>{let o=Ts(XT(r)).toInt();e=ir(e,Qt(),1-Qt());let n=e.shape,s=Is(o,n[n.length-1]).reshape(n);return Zu(s,e,t)})}function xH(r,e){if(!y.arraysEqual(r.shape,e.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(e.shape)}`);return V(()=>{let t=e.relu(),o=e.abs().neg();return t.sub(e.mul(r)).add(o.exp().log1p())})}function kp(r,e){return V(()=>{let t;return t=ir(e,Qt(),1-Qt()),t=ar(fe(t,ce(1,t))),xt(xH(r,t),-1)})}function yH(r,e){return V(()=>{let t=ir(r,Qt(),1),o=ir(e,Qt(),1);return _e(O(r,ar(fe(t,o))),-1)})}function bH(r,e){return V(()=>{let t=ar(Q(Qt(),e));return xt(ce(e,O(r,t)),-1)})}function Cf(r,e){return V(()=>{let t=kf(r,-1),o=kf(e,-1),n=O(t,o);return qe(_e(n,-1))})}var If={meanSquaredError:ji,meanAbsoluteError:wp,meanAbsolutePercentageError:gl,meanSquaredLogarithmicError:mH,squaredHinge:fH,hinge:dH,categoricalHinge:hH,logcosh:gH,categoricalCrossentropy:Zu,sparseCategoricalCrossentropy:vp,binaryCrossentropy:kp,kullbackLeiblerDivergence:yH,poisson:bH,cosineProximity:Cf};function Og(r){if(typeof r=="string"){if(r in If)return If[r];let e=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(e=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(e)}else return r}function Nf(r,e){return V(()=>{let t=O(.5,rr(e)),o=za(Xt(e,t),r.dtype);return xt(Xr(r,o),-1)})}function Sf(r,e){return V(()=>za(Xr(al(r,-1),al(e,-1)),"float32"))}function a1(r,e){return V(()=>dr(r.equal(1),e.equal(1)).sum().cast("float32"))}function _H(r,e){return V(()=>dr(r.equal(1),e.equal(0)).sum().cast("float32"))}function wH(r,e){return V(()=>dr(r.equal(0),e.equal(1)).sum().cast("float32"))}function Iw(r,e){return V(()=>{let t=a1(r,e),o=wH(r,e),n=t.add(o);return Dt(Xt(n,0),t.div(n),0).cast("float32")})}function l1(r,e){return V(()=>{let t=a1(r,e),o=_H(r,e),n=t.add(o);return Dt(Xt(n,0),t.div(n),0).cast("float32")})}function Pg(r,e){return kp(r,e)}function Mg(r,e){return r.rank===e.rank&&(r=r.squeeze([r.rank-1])),e=e.argMax(-1),e.dtype!==r.dtype&&(e=e.asType(r.dtype)),Xr(r,e).asType("float32")}var vH=ji,kH=ji,CH=wp,IH=wp,NH=gl,SH=gl,Tf=Zu,TH=Cf,Nw=vp,Lg={binaryAccuracy:Nf,categoricalAccuracy:Sf,precision:Iw,categoricalCrossentropy:Tf,sparseCategoricalCrossentropy:Nw,mse:vH,MSE:kH,mae:CH,MAE:IH,mape:NH,MAPE:SH,cosine:TH};function u1(r){if(typeof r=="string"&&r in Lg)return Lg[r];if(typeof r!="string"&&r!=null)return r;throw new B(`Unknown metric ${r}`)}function Ef(r){if(Bo(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let e;for(let t of Object.keys(If))if(If[t]===r){e=t;break}if(e!==void 0)return e;for(let t of Object.keys(Lg))if(Lg[t]===r){e=t;break}return e!==void 0?e:r.name}}function c1(r){let e={Adagrad:()=>pl.adagrad(.01),Adadelta:()=>pl.adadelta(1,.95,Qt()),Adam:()=>pl.adam(.001,.9,.999,Qt()),Adamax:()=>pl.adamax(.002,.9,.999,Qt(),0),RMSProp:()=>pl.rmsprop(.001,.9,0,Qt()),SGD:()=>pl.sgd(.01)};if(e.adagrad=e.Adagrad,e.adadelta=e.Adadelta,e.adam=e.Adam,e.adamax=e.Adamax,e.rmsprop=e.RMSProp,e.sgd=e.SGD,r in e)return e[r]();throw new B(`Unknown Optimizer ${r}`)}var p1=1*1024*1024;function Tw(r,e,t=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!Sw(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(t){let o=JSON.stringify(r);o.length>p1&&console.warn(`User-defined metadata of model "${e}" is too large in size (length=${o.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${p1}.`)}}function Sw(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let e=Object.keys(r);for(let t of e)if(typeof t!="string"||!Sw(r[t]))return!1;return!0}else if(Array.isArray(r)){for(let e of r)if(!Sw(e))return!1;return!0}else return!1;else{let e=typeof r;return e==="string"||e==="number"||e==="boolean"}}function m1(r,e,t,o=console.log){let n=AH(r),s=["Layer (type)","Output shape","Param #"];n?(e=e||65,t=t||[.45,.85,1]):(e=e||98,t=t||[.33,.55,.67,1]),t[t.length-1]<=1&&(t=t.map(c=>Math.floor(e*c)));let a;if(!n){s.push("Receives inputs"),a=[];for(let c in r.nodesByDepth)a.push(...r.nodesByDepth[c])}o("_".repeat(e)),zg(s,t,o),o("=".repeat(e));let i=r.layers;for(let c=0;c<i.length;++c)n?DH(i[c],t,o):$H(i[c],t,a,o),o((c===i.length-1?"=":"_").repeat(e));r.checkTrainableWeightsConsistency();let l=EH(r),u=bp(r.nonTrainableWeights);o(`Total params: ${l+u}`),o(`Trainable params: ${l}`),o(`Non-trainable params: ${u}`),o("_".repeat(e))}function EH(r){let e;return r.collectedTrainableWeights!=null?e=bp(r.collectedTrainableWeights):e=bp(r.trainableWeights),e}function AH(r){let e=!0,t=[],o=[];for(let n in r.nodesByDepth)t.push(r.nodesByDepth[n]);for(let n of t){if(n.length>1||n.length===1&&n[0].inboundLayers.length>1){e=!1;break}o.push(...n)}if(e)for(let n of r.layers){let s=!1;for(let a of n.inboundNodes)if(o.indexOf(a)!==-1)if(s){e=!1;break}else s=!0;if(!e)break}return e}function zg(r,e,t=console.log){let o="";for(let n=0;n<r.length;++n)n>0&&(o=o.slice(0,o.length-1)+" "),o+=r[n],o=o.slice(0,e[n]),o+=" ".repeat(e[n]-o.length);t(o)}function DH(r,e,t){let o;try{o=JSON.stringify(r.outputShape)}catch(i){o="multiple"}let n=r.name,s=r.getClassName(),a=[`${n} (${s})`,o,r.countParams().toString()];zg(a,e,t)}function $H(r,e,t,o){let n;try{n=JSON.stringify(r.outputShape)}catch(c){n="multiple"}let s=[];for(let c of r.inboundNodes)if(!(t!=null&&t.length>0&&t.indexOf(c)===-1))for(let p=0;p<c.inboundLayers.length;++p){let m=c.inboundLayers[p].name,f=c.nodeIndices[p],d=c.tensorIndices[p];s.push(`${m}[${f}][${d}]`)}let a=r.name,i=r.getClassName(),l=s.length===0?"":s[0],u=[`${a} (${i})`,n,r.countParams().toString(),l];zg(u,e,o);for(let c=1;c<s.length;++c)zg(["","","",s[c]],e,o)}function f1(r,e,t){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&e===0&&typeof t=="string"}function Ju(r,e){if(r===null)return null;if(typeof r=="string")return La(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],o=r.length;for(let n=0;n<o;++n){let s=r[n];f1(e,n,s)?t.push(s):t.push(Ju(s,e))}return t}else{let t={};for(let o of Object.keys(r)){let n=r[o];if(o==="name"&&typeof n=="string")t[o]=n;else{let s=La(o);t[s]=Ju(n,s)}}return t}}function Bg(r,e){if(r==null)return null;if(typeof r=="string")return jn(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],o=r.length;for(let n=0;n<o;++n){let s=r[n];f1(e,n,s)?t.push(s):t.push(Bg(s,e))}return t}else{let t={};for(let o of Object.keys(r)){let n=r[o],s=jn(o);(o==="name"||o==="className")&&typeof n=="string"?t[s]=n:t[s]=Bg(n,o)}return t}}var xl="2.8.5";function RH(r,e){if(r.dtype==null||r.dtype===e.dtype)return e;try{return oe(e,r.dtype)}catch(t){throw new B(`The dtype of the feed (${e.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var Os=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Os)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,o){if(this.id2Value[e.id]==null)this.id2Value[e.id]=RH(e,t),this.name2Id[e.name]=e.id,o!=null&&(this.id2Mask[e.id]=o);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Vr){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Vr){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ae(this.id2Mask)}},Ew={},d1={};function Qu(r,e,t,o){let n=t==null?!1:t.training,s=Array.isArray(r),a=s?r:[r],i=a.map(d=>d.name),l=[],u=e.names();for(let d of i)u.indexOf(d)!==-1?l.push(e.getValue(d)):l.push(null);o!=null&&(o.maxNumTensors=-Infinity,o.minNumTensors=Infinity);let c=i.join(",")+"|"+e.names().join(","),p,m;if(Ew[c]==null){let d=FH(a,e);p=d.sorted,m=d.recipientCounts,Ew[c]=p,d1[c]=m}p=Ew[c],m={},n||Object.assign(m,d1[c]);let f=new Os(e);for(let d=0;d<p.length;++d){if(o!=null){let M=jc().numTensors;M>o.maxNumTensors&&(o.maxNumTensors=M),M<o.minNumTensors&&(o.minNumTensors=M)}let h=p[d],g=h.sourceLayer;if(g instanceof Gi)continue;let x=[],b=[],_=[],w=!1;for(let M of h.inputs){let z=f.getValue(M),G=f.getMask(M);x.push(z),b.push(G),G!=null&&(w=!0),n||(m[M.name]--,m[M.name]===0&&!e.hasKey(M)&&i.indexOf(M.name)===-1&&!z.isDisposed&&M.sourceLayer.stateful!==!0&&_.push(z))}w&&(t=t||{},t.mask=b[0]);let C=bt(g.apply(x,t)),D=null;g.supportsMasking&&(D=g.computeMask(x,b));let A=OH(h),F=Array.isArray(A)?A:[A];for(let M=0;M<F.length;++M){f.hasKey(F[M])||f.add(F[M],C[M],Array.isArray(D)?D[0]:D);let z=i.indexOf(F[M].name);z!==-1&&(l[z]=C[M])}n||Ae(_)}return f.disposeMasks(),s?l:l[0]}function FH(r,e){y.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let t=[],o={};if(r.length===1){let n=h1(r[0],e);t=n.sorted,o=n.recipientMap}else{let n=new Set;for(let s of r){let{sorted:a,recipientMap:i}=h1(s,e);for(let l of a)n.has(l.name)||(t.push(l),n.add(l.name));for(let l in i)o[l]==null&&(o[l]=new Set),i[l].forEach(u=>o[l].add(u))}}return{sorted:t,recipientCounts:PH(o)}}function PH(r){let e={};for(let t in r)e[t]=r[t].size;return e}function h1(r,e){let t=new Set,o=[],n={};for(let i of e.names())t.add(i);let s=[],a=[];for(s.push(r);s.length>0;){let i=s[s.length-1];if(t.has(i.name)){s.pop();continue}let l=a[a.length-1]===s.length-1;if(i.inputs.length===0||l)s.pop(),o.push(i),t.add(i.name),l&&a.pop();else{a.push(s.length-1);for(let u of i.inputs)n[u.name]==null&&(n[u.name]=new Set),n[u.name].add(i.name),!t.has(u.name)&&s.push(u)}}return{sorted:o,recipientMap:n}}function OH(r){let e;if(r.sourceLayer.inboundNodes.length===1)e=r.sourceLayer.output;else{let t=null;for(let o=0;o<r.sourceLayer.inboundNodes.length;++o)for(let n of r.sourceLayer.inboundNodes[o].outputTensors)if(n.id===r.id){t=o;break}e=r.sourceLayer.getOutputAt(t)}return e}var Vo=class extends Le{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=fl(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Hn(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);Hn(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let _=b.sourceLayer,w=b.nodeIndex,C=b.tensorIndex;this.outputLayers.push(_),this.outputLayersNodeIndices.push(w),this.outputLayersTensorIndices.push(C)}for(let b of this.inputs){let _=b.sourceLayer,w=b.nodeIndex,C=b.tensorIndex;Bo(w===0,"input layer has >1 nodes"),Bo(C===0,"input layer has >1 tensors"),this.inputLayers.push(_),this.inputLayersNodeIndices.push(w),this.inputLayersTensorIndices.push(C)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let _=this.inputLayers[b];if(!(_ instanceof Gi))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${_.getClassName()}.`);this.inputNames.push(_.name),this.feedInputShapes.push(_.batchInputShape),this.feedInputNames.push(_.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},o={},n={},s={},a={},i=[],l=(b,_,w,C,D,A)=>{(C==null||D==null||A==null)&&(C=b.sourceLayer,D=b.nodeIndex,A=b.tensorIndex);let F=C.inboundNodes[D];if(w.indexOf(F)!==-1)throw new Lr(`The tensor ${b.name} at layer "${C.name}" is part of a cycle.`);if(_.indexOf(F)!==-1)return;this.containerNodes.add(Vo.nodeKey(C,D)),C.id in a||(a[C.id]=Object.keys(a).length),w.indexOf(F)===-1&&w.push(F);let M=F.inboundLayers.length;for(let z=0;z<M;z++){let G=F.inputTensors[z],U=F.inboundLayers[z],H=F.nodeIndices[z],J=F.tensorIndices[z];l(G,_,w,U,H,J)}for(_.push(F);w.indexOf(F)>=0;)w.splice(w.indexOf(F),1);i.push(F)},u=[],c=[];for(let b of this.outputs)l(b,u,c);let p=i.slice().reverse();for(let b of p){o[b.id]=b,b.id in t||(t[b.id]=0);let _=t[b.id],w=n[b.outboundLayer.id]==null?0:n[b.outboundLayer.id];_=Math.max(_,w),n[b.outboundLayer.id]=_,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=_;for(let C=0;C<b.inboundLayers.length;C++){let D=b.inboundLayers[C],A=b.nodeIndices[C],F=D.inboundNodes[A],M=t[F.id]==null?0:t[F.id];t[F.id]=Math.max(_+1,M),o[F.id]=F}}let m={};for(let b in t){let _=t[b];_ in m||(m[_]=[]),m[_].push(o[b])}let f={};for(let b in n){let _=n[b];_ in f||(f[_]=[]),f[_].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(af);this.layers=[];for(let b of d){let _=f[b];_.sort((w,C)=>{let D=a[w.id],A=a[C.id];return D<A?-1:D>A?1:0});for(let w of _)w instanceof Vo&&this.internalContainerRefs.push(w),this.layers.push(w)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(af);let h=this.inputs.slice(),g=[];for(let b of d)for(let _ of m[b]){let w=_.outboundLayer;if(w!=null){for(let C of _.inputTensors)if(h.indexOf(C)===-1)throw new Lr(`Graph disconnected: cannot obtain value for tensor ${C} at layer "${w.name}". The following previous layers were accessed without issue: ${g}`);for(let C of _.outputTensors)h.push(C);g.push(w.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let _=x.filter(w=>w===b).length;if(_!==1)throw new Lr(`The name "${b}" is used ${_} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new dl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(o=>o.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.layers)t.push(...o.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let o={},n=0;for(let a of this.layers)for(let i of a.weights){if(o[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);o[i.originalName]=i,n++}let s=[];for(let a in e){let i=a;if(o[a]==null){let l=a.split("/");i=l.slice(0,-2).concat([l[l.length-1]]).join("/")}if(o[i]!=null)s.push([o[i],e[a]]);else if(t)throw new B(`Provided weight data has no target variable: ${a}`);delete o[i]}if(t){let a=[];for(let i in o)a.push(i);if(a.length>0)throw new B(`${a.length} of ${n} weights are not set: ${a}`)}_p(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${xl}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let o=Bg(this.updatedConfig());return t?JSON.stringify(o):o}call(e,t){return V(()=>{e=bt(e);let o=new Os;for(let n=0;n<this.inputs.length;++n)o.add(this.inputs[n],e[n]);return Qu(this.outputs,o,t)})}computeMask(e,t){return V(()=>{e=bt(e);let o;return t==null?o=Un(null,e.length):o=bt(t),this.runInternalGraph(e,o)[1]})}computeOutputShape(e){let t=yp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let o={};for(let i=0;i<t.length;i++){let l=this.inputLayers[i],u=t[i],c=l.name+"_0_0";o[c]=u}let n=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(af);if(n.length>1)for(let i of n){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<u.inboundLayers.length;h++){let g=u.inboundLayers[h],x=u.nodeIndices[h],b=u.tensorIndices[h],_=`${g.name}_${x}_${b}`,w=o[_];p.push(w)}let m=c.computeOutputShape(hr(p)),f=yp(m),d=c.inboundNodes.indexOf(u);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;o[g]=f[h]}}}let s=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let l=this.outputLayers[i],u=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],p=`${l.name}_${u}_${c}`;a.push(p)}for(let i=0;i<a.length;i++){let l=a[i];Bo(l in o),s.push(o[l])}return hr(s)}runInternalGraph(e,t){t==null&&(t=Un(null,e.length));let o={};for(let l=0;l<this.inputs.length;++l){let u=this.inputs[l],c=e[l],p=t[l];o[u.id]=[c,p]}let n=Object.keys(this.nodesByDepth).map(l=>parseInt(l,10)).sort(af);for(let l of n){let u=this.nodesByDepth[l];for(let c of u){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in o&&d.push(o[h.id]);if(d.length===m.length){let h={},g,x,b,_;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[w,C]=d[0];h.mask==null&&(h.mask=C),b=bt(p.call(w,h)),_=bt(p.computeMask(w,C)),g=[w],x=[C]}else g=d.map(w=>w[0]),x=d.map(w=>w[1]),h.mask==null&&(h.mask=x),b=bt(p.call(g,h)),_=bt(p.computeMask(g,x));if(p.activityRegularizer)throw new Se("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let w=0;w<f.length;++w){let C=f[w],D=b[w],A=_[w];o[C.id]=[D,A]}}}}let s=[],a=[],i=[];for(let l of this.outputs){Bo(l.id in o,`Could not compute output ${l.name} : ${l.id}`);let[u,c]=o[l.id];i.push(u.shape),s.push(u),a.push(c)}return[s,a,i]}buildNodeConversionMap(e){let t={},o;for(let n of this.layers){o=n instanceof Vo?1:0;for(let s=0;s<n.inboundNodes.length;s++){let a=Vo.nodeKey(n,s);this.containerNodes.has(a)&&(t[a]=o,o+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let o of this.layers)if(o.name===e)return o;throw new B(`No such layer: ${e}`)}calculateLosses(){return V(()=>{let e=[];for(let t of this.layers)for(let o=0;o<t.inboundNodes.length;++o){let n=Vo.nodeKey(t,o);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),o=[];for(let a of this.layers){let i=a.getClassName(),l=a.getConfig(),u=[];for(let p=0;p<a.inboundNodes.length;p++){let m=a.inboundNodes[p],f=Vo.nodeKey(a,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let x=m.inboundLayers[g],b=m.nodeIndices[g],_=m.tensorIndices[g],w=Vo.nodeKey(x,b),C=t[w];C==null&&(C=0),h.push([x.name,C,_,d])}u.push(h)}}}let c={};c.name=a.name,c.className=i,c.config=l,c.inboundNodes=u,o.push(c)}e.layers=o;let n=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],l=this.inputLayersNodeIndices[a],u=Vo.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.inputLayersTensorIndices[a];n.push([i.name,c,p])}e.inputLayers=n;let s=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],l=this.outputLayersNodeIndices[a],u=Vo.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.outputLayersTensorIndices[a];s.push([i.name,c,p])}return e.outputLayers=s,e}static fromConfig(e,t,o={},n=!1){let s={},a={};function i(g,x){g.name in a?a[g.name].push(x):a[g.name]=[x]}function l(g,x){let b=[],_;for(let w of x){let C=w[0],D=w[1],A=w[2];if(_=w[3]==null?{}:w[3],!(C in s)){i(g,x);return}let F=s[C];if(F.inboundNodes.length<=D){i(g,x);return}let M=F.inboundNodes[D];b.push(M.outputTensors[A])}b.length>0&&g.apply(hr(b),_)}function u(g){let x=g.name,b=Qr(g,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(n),s[x]=b,g.inboundNodes.forEach(w=>{if(!(w instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${w}`);i(b,w)})}let c=t.name,p=t.layers;for(let g of p)u(g);for(;!RT(a);)for(let g of p){let x=s[g.name];if(x.name in a){let b=a[x.name];delete a[x.name];for(let _ of b)l(x,_)}}let m=[],f=[],d=t.inputLayers;for(let g of d){let x=g[0],b=g[1],_=g[2];Bo(x in s);let C=s[x].inboundNodes[b].outputTensors;m.push(C[_])}let h=t.outputLayers;for(let g of h){let x=g[0],b=g[1],_=g[2];Bo(x in s);let C=s[x].inboundNodes[b].outputTensors;f.push(C[_])}return new e({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function MH(r,e,t){let o=e.length;if(r==null||Array.isArray(r)&&r.length===0)return e.map(n=>null);if(o===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&e[0]in r?[r[e[0]]]:[r];if(Array.isArray(r)){if(r.length!==o)throw new Error(`Provided ${t} is an array of ${r.length} element(s), but the model has ${o} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let n=[];return e.forEach(s=>{s in r?n.push(r[s]):n.push(null)}),n}else throw new Error(`The model has multiple (${o}) outputs, so ${t} must be either an array with ${o} elements or an object with ${e} keys. Provided ${t} not understood: ${JSON.stringify(r)}`)}function Vg(r,e){return MH(r,e,"classWeight")}async function Wg(r,e,t,o){if(e!=null||o!=null)throw new Error("Support sampleWeight is not implemented yet");if(t!=null){let n=V(()=>{if(r.shape.length===1)return r.clone();if(r.shape.length===2)if(r.shape[1]>1){let i=1;return r.argMax(i)}else{if(r.shape[1]===1)return r.reshape([r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await n.data());Ae(n);let a=[];return s.forEach(i=>{if(t[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);a.push(t[i])}),Gt(a,"float32")}else return null}function g1(r,e){return O(r,e)}var LH=32;function y1(r,e){let t,o,n=e;t=n.xs,o=n.ys,y.assert(t!=null&&o!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${e}`);let s=x1("input",r.inputNames,t),a=x1("output",r.outputNames,o),i=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(a.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let l=0;l<s.length;l++)y.assert(s[l].shape[0]===i,()=>`Batch size mismatch: input ${r.inputNames[l]} has ${s[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);for(let l=0;l<a.length;l++)y.assert(a[l].shape[0]===i,()=>`Batch size mismatch: output ${r.outputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);return{xs:s,ys:a}}function x1(r,e,t){if(t instanceof R)return[t];if(Array.isArray(t))return y.assert(t.length===e.length,()=>`Received an array of ${t.length} Tensors, but expected ${e.length} to match the ${r} keys ${e}.`),t;{let o=[];for(let n of e){if(t[n]==null)throw new B(`The feature data generated by the dataset lacks the required ${r} key '${n}'.`);o.push(t[n])}return o}}function zH(r){if(r.length===3)throw new Se("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function _1(r,e,t){let o=t.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(t!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(t.epochs!=null&&t.epochs>0&&Number.isInteger(t.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${t.epochs}`),y.assert(!o||t.batchesPerEpoch>0&&Number.isInteger(t.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${t.batchesPerEpoch}`),y.assert(t.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let n=t.validationData!=null,s,a;if(n)if(b1(t.validationData))y.assert(t.validationBatches==null||t.validationBatches>0&&Number.isInteger(t.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${t.validationBatches}`);else{let g=zH(t.validationData);s=g.xs,a=g.ys}let i=r.makeTrainFunction(),l=r.getDedupedMetricsNames(),u;n?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=Rg(t.callbacks,t.yieldEvery),p=t.verbose==null?1:t.verbose,{callbackList:m,history:f}=Fg(c,p,t.epochs,null,null,BH(e,t),null,n,u);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=t.initialEpoch==null?0:t.initialEpoch,h=await e.iterator();for(;d<t.epochs;){let g={};await m.onEpochBegin(d);let x=0,b=0;for(o||(h=await e.iterator());o?x<t.batchesPerEpoch:!0;){let _=await h.next();if(o&&_.done){console.warn(`You provided \`batchesPerEpoch\` as ${t.batchesPerEpoch}, but your dataset iterator ran out of data after ${x} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${t.batchesPerEpoch*t.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(_.value!=null){let{xs:w,ys:C}=y1(r,_.value),D={};D.batch=b,D.size=w[0].shape[0],await m.onBatchBegin(b,D);let A=[];if(t.classWeight!=null){let z=Vg(t.classWeight,r.outputNames);for(let G=0;G<z.length;++G)A.push(await Wg(C[G],null,z[G]))}let F=w.concat(C).concat(A),M=i(F);Ae(F);for(let z=0;z<l.length;++z){let G=l[z],U=M[z];D[G]=U,At(U)}await m.onBatchEnd(b,D),Eg(D),b++,x++}if(o?x>=t.batchesPerEpoch:_.done){if(n){let w;b1(t.validationData)?w=bt(await r.evaluateDataset(t.validationData,{batches:t.validationBatches})):w=bt(r.evaluate(s,a,{batchSize:t.validationBatchSize==null?LH:t.validationBatchSize,verbose:0}));for(let C=0;C<r.metricsNames.length;++C)g[`val_${r.metricsNames[C]}`]=w[C]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function BH(r,e){let t=null;return e.batchesPerEpoch!=null?t=e.batchesPerEpoch:Number.isFinite(r.size)&&(t=r.size),t}function b1(r){return typeof r.iterator=="function"}function VH(r){return typeof r.next=="function"}async function w1(r,e,t){t=t||{};let o=t.batches!=null,n=r.testFunction,s=[];if(t.verbose>0)throw new Se("Verbose mode is not implemented yet.");y.assert(!o||t.batches>0&&Number.isInteger(t.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(t.batches)}`);let a=VH(e)?e:await e.iterator(),i=0,l=0;for(;o?l<t.batches:!0;){let u=await a.next();if(s=V(()=>{if(u.value){let{xs:c,ys:p}=y1(r,u.value),m=c.concat(p),f=V(()=>n(m));if(Ae(m),l===0)for(let h=0;h<f.length;++h)s.push(ue(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],x=s[h];s[h]=V(()=>Q(s[h],O(d,g))),l>0&&Ae(x)}Ae(f),i+=d,++l}return s}),u.done){o&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${t.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=fe(s[u],i),Ae(c)}return hr(s)}function Gg(r){y.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function Cp(r,e,t){return r==null?[null]:Array.isArray(r)?r.map(o=>Va(o,e,t-e)):Va(r,e,t-e)}function Ug(r,e){return V(()=>r==null?null:Array.isArray(r)?r.map(t=>Ug(t,e)):kg(r,e.dtype==="int32"?e:e.toInt()))}function jg(r,e){let t=[],o=0,n=null;for(;o<r;)n=o+e,n>=r&&(n=r),t.push([o,n]),o=n;return t}async function WH(r,e,t,o,n,s,a,i,l,u,c,p,m,f,d){n==null&&(n=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(l!=null&&u!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(t,n,f,"steps_per_epoch"),x;g!=null&&(x=zr(0,g)),a==null&&(a=1);let{callbackList:b,history:_}=Fg(i,a,s,m,g,f,n,h,p);b.setModel(r),r.history=_,await b.onTrainBegin(),r.stopTraining_=!1;for(let w=m;w<s;++w){await b.onEpochBegin(w);let C={};if(f!=null)throw new Se("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Se("batch shuffling is not implemneted yet");c&&y.shuffle(x);let D=Gt(x),A=jg(g,n);for(let F=0;F<A.length;++F){let M={};if(await b.onBatchBegin(F,M),V(()=>{let z=A[F][0],G=A[F][1],U=Va(D,z,G-z);M.batch=F,M.size=G-z;let H=Ug(t,U),J=e(H);for(let Y=0;Y<o.length;++Y){let X=o[Y],re=J[Y];M[X]=re,At(re)}if(F===A.length-1&&h){let Y=r.testLoop(l,u,n);for(let X=0;X<o.length;++X){let re=o[X],K=Y[X];At(K),C["val_"+re]=K}}}),await b.onBatchEnd(F,M),Eg(M),r.stopTraining_)break}D.dispose()}if(await b.onEpochEnd(w,C),r.stopTraining_)break}return await b.onTrainEnd(),await r.history.syncData(),r.history}async function v1(r,e,t,o={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let n,s,a,i,l,u,c;try{let p=o.batchSize==null?32:o.batchSize;Gg(p);let m=!1,f=await r.standardizeUserData(e,t,o.sampleWeight,o.classWeight,m,p);n=f[0],s=f[1],c=f[2];let d=!1,h;if(o.validationData!=null&&o.validationData.length>0){if(d=!0,o.validationData.length===2)a=o.validationData[0],i=o.validationData[1];else throw o.validationData.length===3?new Se("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${o.validationData} is invalid.`);let A=!0,F=await r.standardizeUserData(a,i,null,null,A,p);l=F[0],u=F[1],h=l.concat(u)}else if(o.validationSplit!=null&&o.validationSplit>0&&o.validationSplit<1){d=!0;let A=Math.floor(n[0].shape[0]*(1-o.validationSplit)),F=n[0].shape[0];l=Cp(n,A,F),n=Cp(n,0,A),u=Cp(s,A,F),s=Cp(s,0,A),h=l.concat(u)}else o.validationSteps!=null&&(d=!0);let g=n.concat(s).concat(c);r.checkTrainableWeightsConsistency();let x=r.makeTrainFunction(),b=r.getDedupedMetricsNames(),_,w;d?(r.makeTestFunction(),_=r.testFunction,w=b.slice().concat(b.map(A=>"val_"+A))):(_=null,h=[],w=b.slice());let C=Rg(o.callbacks,o.yieldEvery);return await WH(r,x,g,b,p,o.epochs,o.verbose,C,_,h,o.shuffle,w,o.initialEpoch,null,null)}finally{r.isTraining=!1,yl(n,e),yl(s,t),yl(l,a),yl(u,i),c!=null&&Ae(c)}}function Aw(r){let e=[];r instanceof R&&(r=[r]);for(let t=0;t<r.length;++t){let o=r[t];if(o.rank===1)e.push(Ba(o,1));else{if(o.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");e.push(o)}}return e}function yl(r,e){if(r==null)return;let t=[];if(e instanceof R)t.push(e.id);else if(Array.isArray(e))e.forEach(n=>t.push(n.id));else if(e!=null)for(let n in e){let s=e[n];t.push(s.id)}let o=[];if(r instanceof R)t.indexOf(r.id)===-1&&o.push(r);else if(Array.isArray(r))r.forEach(n=>{t.indexOf(n.id)===-1&&o.push(n)});else if(r!=null)for(let n in r){let s=r[n];t.indexOf(s.id)===-1&&o.push(s)}o.forEach(n=>{n.isDisposed||n.dispose()})}function GH(r){return r instanceof R}function Dw(r){return Array.isArray(r)}function k1(r){return!GH(r)&&!Dw(r)}function C1(r,e,t,o=!0,n=""){if(e==null||e.length===0){if(r!=null){let a=!1;if(Dw(r)&&r.length>0)a=!0;else if(k1(r)){for(let i in r)if(r.hasOwnProperty(i)){a=!0;break}}else a=!0;if(a)throw new B(`Error when checking model ${n} expected no data, but got ${r}`)}return[]}if(r==null)return e.map(a=>null);let s;if(k1(r)){r=r,s=[];for(let a of e){if(r[a]==null)throw new B(`No data provided for "${a}". Need data for each key in: ${e}`);s.push(r[a])}}else if(Dw(r)){if(r=r,r.length!==e.length)throw new B(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${e.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,e.length>1)throw new B(`The model ${n} expects ${e.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=Aw(s),t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new B(`Error when checking ${n}: expected ${e[a]} to have ${t[a].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<t[a].length;++l){if(l===0&&!o)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c>=0&&u!==c)throw new B(`Error when checking ${n}: expected ${e[a]} to have shape [${t[a]}], but got array with shape [${i.shape}].`)}}return s}function UH(r,e,t){let o=Hn(r.map(s=>s.shape[0]));o.sort();let n=Hn(e.map(s=>s.shape[0]));if(n.sort(),o.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(n.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(o.length>0&&n.length>0&&!y.arraysEqual(o,n))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${o[0]} input sample(s) and ${n[0]} target sample(s).`)}function jH(r,e,t){let o=[ji,kp,Zu];for(let n=0;n<r.length;++n){let s=r[n],a=e[n],i=t[n];if(a!=null){if(a===Zu&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(o.indexOf(a)!==-1){let l=s.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],m=u[c];if(m!=null&&p!==m)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function I1(r,e,t,o=!0,n=""){let s;if(Array.isArray(r)){if(r.length!==e.length)throw new B(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${e.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(e.length>1)throw new B(`The model expects ${e.length} ${n} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new B(`Error when checking ${n}: expected ${e[a]} to have ${t[a].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<t[a].length;++l){if(l===0&&!o)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c!==u)throw new B(`Error when checking ${n}: expected ${e[a]} to have shape ${JSON.stringify(t[a])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function qH(r,e){if(r==null||Array.isArray(r)&&r.length===0)return e.map(o=>[]);let t;if(typeof r=="string"||typeof r=="function")t=[r];else if(Array.isArray(r)||typeof r=="object")t=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(t))return e.map(o=>t);{let o=[];for(let n of e){let s=t.hasOwnProperty(n)?t[n]:[];Array.isArray(s)||(s=[s]),o.push(s)}return o}}var HH="layers-model",No=class extends Vo{constructor(e){super(e);this.isTraining=!1}summary(e,t,o=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");m1(this,e,t,o)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=c1(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Mr))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new B(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Og(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>Og(i))}else{let a=Og(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],l=this.outputNames[a];this.feedOutputNames.push(l),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let o=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Rs("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(o.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let n=qH(e.metrics,this.outputNames),s=(a,i,l)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([l,a])};Rs("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(o.indexOf(a)!==-1)continue;let i=n[a];(u=>{let c="",p,m,f;for(let d of u){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[a];g[g.length-1]===1||this.lossFunctions[a]===kp?["accuracy","acc"].indexOf(d)!==-1?m=Nf:["crossentropy","ce"].indexOf(d)!==-1&&(m=Pg):this.lossFunctions[a]===vp?["accuracy","acc"].indexOf(d)!==-1?m=Mg:["crossentropy","ce"].indexOf(d)!==-1&&(m=Nw):["accuracy","acc"].indexOf(d)!==-1?m=Sf:["crossentropy","ce"].indexOf(d)!==-1&&(m=Tf);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=u1(d),p=c+Ef(d);let h;Rs(p,()=>{h=f}),s(a,p,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,o={}){let n=o.batchSize==null?32:o.batchSize;Gg(n);let s=!0,a=this.standardizeUserDataXY(e,t,s,n);try{let i=a[0].concat(a[1]);this.makeTestFunction();let l=this.testFunction,u=this.testLoop(l,i,n,o.verbose,o.steps);return hr(u)}finally{yl(a[0],e),yl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),w1(this,e,t)}checkNumSamples(e,t,o,n="steps"){let s;if(o!=null){if(s=null,t!=null)throw new B(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let o=Array.isArray(t),n=o?t:[t],s=this.retrieveSymbolicTensors(n),a=new Os;if(e instanceof R&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let l=0;l<this.inputs.length;++l)a.add(this.inputs[l],e[l])}else for(let l of this.inputs){let u=e[l.name];if(u==null)throw new B(`No value is provided for the model's input ${l.name}`);a.add(l,u)}let i=Qu(s,a);return o?i:i[0]}retrieveSymbolicTensors(e){let t=Un(null,e.length),o=e.length;for(let n of this.layers){let s=Array.isArray(n.output)?n.output:[n.output],a=s.map(i=>i.name);for(let i=0;i<e.length;++i){let l=a.indexOf(e[i]);if(l!==-1&&(t[i]=s[l],o--),o===0)break}if(o===0)break}if(o>0){let n=[];throw t.forEach((s,a)=>{s==null&&n.push(e[a])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,o=!1){return V(()=>{let n=this.checkNumSamples(e);if(o)throw new Se("Verbose predictLoop() is not implemented yet.");let s=jg(n,t),a=this.outputs.map(i=>[]);for(let i=0;i<s.length;++i)V(()=>{let u=s[i][0],c=s[i][1],p=Cp(e,u,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new Os(m);return Qu(this.outputs,f)}).forEach((u,c)=>a[c].push(u));return hr(a.map(i=>Qe(i,0)))})}predict(e,t={}){let o=Aw(e);I1(o,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return Gg(n),this.predictLoop(o,n)}finally{yl(o,e)}}predictOnBatch(e){I1(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,o=!0,n){if(this.optimizer_==null)throw new Lr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===vp?s.push(i.slice(0,i.length-1).concat([1])):s.push(i)}if(e=C1(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=C1(t,this.feedOutputNames,s,!1,"target"),UH(e,t,null),jH(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,o,n,s=!0,a){let[i,l]=this.standardizeUserDataXY(e,t,s,a);if(o!=null)throw new Error("sample weight is not supported yet.");let u=null;if(n!=null){let c=Vg(n,this.outputNames);u=[];for(let p=0;p<c.length;++p)u.push(await Wg(l[p],null,c[p]))}return[i,l,u]}testLoop(e,t,o,n=0,s){return V(()=>{let a=this.checkNumSamples(t,o,s,"steps"),i=[];if(n>0)throw new Se("Verbose mode is not implemented yet.");if(s!=null)throw new Se("steps mode in testLoop() is not implemented yet");{let l=jg(a,o),u=Gt(zr(0,a));for(let c=0;c<l.length;++c){let p=l[c][0],m=l[c][1],f=Va(u,p,m-p),d=Ug(t,f),h=e(d);if(c===0)for(let g=0;g<h.length;++g)i.push(ue(0));for(let g=0;g<h.length;++g){let x=h[g];i[g]=Q(i[g],O(m-p,x))}}for(let c=0;c<i.length;++c)i[c]=fe(i[c],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let o=0;o<e.length;++o){let n=e[o],s=n;hw(e,n)>1&&(s+=`_${hw(e.slice(0,o),n)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],o=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:o[h]});let m=new Os(p),f=Qu(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let x=this.lossFunctions[h](n[h],f[h]);s[h]!=null&&(x=g1(x,s[h]));let b=xt(x);t.push(b),h===0?d=x:d=Q(d,x)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=t[h];else{let x=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=xt(x(n[b],f[b]))}At(g),a.push(g)}return d=xt(d),this.calculateLosses().forEach(h=>{d=Q(d,h)}),d},l=this.collectedTrainableWeights.map(p=>p.read()),u=!0;return[this.optimizer_.minimize(i,u,l)].concat(a)}}makeTestFunction(){this.testFunction=e=>V(()=>{let t=[],o,n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:n[u]});let i=new Os(a),l=Qu(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let c=this.lossFunctions[u],p=xt(c(s[u],l[u]));u===0?o=p:o=Q(o,p),t.push(o)}for(let u=0;u<this.metricsTensors.length;++u){let c=this.metricsTensors[u][0],p=this.metricsTensors[u][1],m=xt(c(s[p],l[p]));t.push(m)}return t})}async fit(e,t,o={}){return v1(this,e,t,o)}async fitDataset(e,t){return _1(this,e,t)}async trainOnBatch(e,t){let o=await this.standardizeUserData(e,t),n=o[0],s=o[1],i=this.makeTrainFunction()(n.concat(s)),l=[];for(let u of i){let c=await u.data();l.push(c[0])}return Ae(i),hr(l)}getNamedWeights(e){let t=[],o=e!=null&&e.trainableOnly,n=o?this.trainableWeights:this.weights,s=this.getWeights(o);for(let a=0;a<n.length;++a)o&&!n[a].trainable||t.push({name:n[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=jc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-jc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=jn(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>jn(t))}else{let t=Object.keys(this.loss);e={};let o=this.loss;for(let n of t)if(typeof o[n]=="string")e[n]=jn(o[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[jn(Ef(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>jn(Ef(e)));{let e={};for(let t in this.metrics)e[t]=jn(Ef(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Ju(e.optimizer_config),o=Qr(t),n;if(typeof e.loss=="string")n=La(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(a=>La(a));else if(e.loss!=null){n={};for(let a in e.loss)n[a]=La(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>La(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=La(e.metrics[a])}this.compile({loss:n,metrics:s,optimizer:o})}async save(e,t){if(typeof e=="string"){let u=Ir.getSaveHandlers(e);if(u.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new B(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let o=await Ir.encodeWeights(this.getNamedWeights(t)),n=!1,s=null,i={modelTopology:this.toJSON(s,n),format:HH,generatedBy:`TensorFlow.js tfjs-layers v${xl}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:c,specs:p}=await Ir.encodeWeights(await this.optimizer.getWeights(),u);o.specs.push(...p),o.data=Ir.concatenateArrayBuffers([o.data,c])}if(this.userDefinedMetadata!=null){let u=!0;Tw(this.userDefinedMetadata,this.name,u),i.userDefinedMetadata=this.userDefinedMetadata}return i.weightData=o.data,i.weightSpecs=o.specs,e.save(i)}setUserDefinedMetadata(e){Tw(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};No.className="Model";ee.registerClass(No);var $w=class extends No{};$w.className="Functional";ee.registerClass($w);async function N1(r,e){"modelTopology"in r||(r={modelTopology:r}),r=r;let t=r.modelTopology;t.model_config!=null&&(t=t.model_config);let o=Ju(t),n=Qr(o,e);if(r.weightsManifest!=null){let s=await Ir.loadWeights(r.weightsManifest,r.pathPrefix,n.weights.map(i=>i.originalName)),a={};for(let i of n.weights)a[i.originalName]=s[i.originalName];n.loadWeights(a),Ae(s)}return n}async function S1(r,e){if(e==null&&(e={}),typeof r=="string"){let t=Ir.getLoadHandlers(r,e);if(t.length===0)t.push(Ir.browserHTTPRequest(r,e));else if(t.length>1)throw new B(`Found more than one (${t.length}) load handlers for URL '${r}'`);r=t[0]}return KH(r,void 0,e)}async function KH(r,e,t){if(t==null&&(t={}),r.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let o=await r.load(),n=o.modelTopology;n.model_config!=null&&(n=n.model_config);let s=t.strict==null?!0:t.strict,a=o.weightData!=null&&o.weightSpecs!=null&&s,i=Qr(Ju(n),e,a),l=o.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),o.userDefinedMetadata!=null&&i.setUserDefinedMetadata(o.userDefinedMetadata),o.weightData!=null){if(o.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=XH(o.weightData,o.weightSpecs);i.loadWeights(u,s),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Ae(u),Ae(c.map(p=>p.tensor))}return i}function XH(r,e){let t=Ir.decodeWeights(r,e),o={},n=[];return e.forEach(s=>{s.group==="optimizer"?n.push({name:s.name,tensor:t[s.name]}):o[s.name]=t[s.name]}),{modelWeights:o,optimizerWeights:n}}var qi=class extends No{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:fl("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(o=>o<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof qi||e instanceof No,o;if(t){if(o=e,o.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(o.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=Tg({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=o.outputs,this.inputs=o.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Cw(this.outputs[0])}this.inboundNodes=[],new dl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Un(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(et(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new No({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,o=console.log){this.built||this.build(),super.summary(e,t,o)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,o={}){if(!this.built)throw new Lr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,o)}async evaluateDataset(e,t){if(!this.built)throw new Lr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,o={}){if(!this.built)throw new Lr("The model needs to be compiled before being used.");return this.model.fit(e,t,o)}async fitDataset(e,t){if(!this.built)throw new Lr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,o={},n=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");s=t}else y.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof qi))throw new Se(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let l of s){let c=Qr(l,void 0,n);n&&c.setFastWeightInitDuringBuild(!0),i.add(c)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let o={};o.className=t.getClassName(),o.config=t.getConfig(),e.push(o)}return{name:this.name,layers:e}}};qi.className="Sequential";ee.registerClass(qi);function T1(r){return new No(r)}function E1(r){return new qi(r)}function A1(r,e){return e==null&&(e={}),S1(r,e)}function qg(r){return Tg(r)}function D1(r,e){ao.registerCallbackConstructor(r,e)}var lo=class extends ee.Serializable{getConfig(){return{}}},Rw=class extends lo{apply(e,t=1){return ZT(e,t)}};Rw.className="elu";ee.registerClass(Rw);var Fw=class extends lo{apply(e){return Lu(e)}};Fw.className="selu";ee.registerClass(Fw);var Ow=class extends lo{apply(e){return Tr(e)}};Ow.className="relu";ee.registerClass(Ow);var Pw=class extends lo{apply(e){return V(()=>zo(6,Tr(e)))}};Pw.className="relu6";ee.registerClass(Pw);var Mw=class extends lo{apply(e){return e}};Mw.className="linear";ee.registerClass(Mw);var Lw=class extends lo{apply(e){return Hr(e)}};Lw.className="sigmoid";ee.registerClass(Lw);var zw=class extends lo{apply(e){return QT(e)}};zw.className="hardSigmoid";ee.registerClass(zw);var Bw=class extends lo{apply(e){return Es(e)}};Bw.className="softplus";ee.registerClass(Bw);var Vw=class extends lo{apply(e){return JT(e)}};Vw.className="softsign";ee.registerClass(Vw);var Ww=class extends lo{apply(e){return Mi(e)}};Ww.className="tanh";ee.registerClass(Ww);var Af=class extends lo{apply(e,t=-1){return Ra(e,t)}};Af.className="softmax";ee.registerClass(Af);var Gw=class extends lo{apply(e,t=-1){return Du(e,t)}};Gw.className="logSoftmax";ee.registerClass(Gw);var Uw=class extends lo{apply(e,t=1){return V(()=>Hr(e.mul(t)).mul(e))}};Uw.className="swish";ee.registerClass(Uw);function Ps(r){return r.getClassName()}function jw(r,e={}){return Vi(r,ee.SerializationMap.getMap().classNameMap,e,"activation")}function Ms(r){if(r==null){let e={};return e.className="linear",e.config={},jw(e)}if(typeof r=="string"){let e={};return e.className=r,e.config={},jw(e)}else return r instanceof lo?r:jw(r)}function qw(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var Hw=class extends ee.Serializable{},ec=class extends Hw{constructor(e){super();qw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return V(()=>{let t=mt([1]);return this.hasL1&&(t=Q(t,_e(O(this.l1,Tt(e))))),this.hasL2&&(t=Q(t,_e(O(this.l2,Xu(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};ec.className="L1L2";ee.registerClass(ec);function $1(r){return qw(r),new ec({l1:r!=null?r.l1:null,l2:0})}function R1(r){return qw(r),new ec({l2:r!=null?r.l2:null,l1:0})}var F1={l1l2:"L1L2"};function ut(r){return ap(r)}function O1(r,e={}){return Vi(r,ee.SerializationMap.getMap().classNameMap,e,"regularizer")}function _t(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in F1?F1[r]:r,config:{}};return O1(t)}else return r instanceof Hw?r:O1(r)}var Df=class extends Le{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Pe(e);let o=Tr(e);return this.maxValue!=null&&(o=ir(o,0,this.maxValue)),o}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Df.className="ReLU";ee.registerClass(Df);var $f=class extends Le{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Pe(e);return Sa(o,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};$f.className="LeakyReLU";ee.registerClass($f);var Rf=class extends Le{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=_t(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=et(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let o={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)o[n]=e[n];this.inputSpec=[new Et({ndim:e.length,axes:o})],this.built=!0}call(e,t){return e=Pe(e),$a(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Nt(this.alphaInitializer),alphaRegularizer:ut(this.alphaRegularizer),alphaConstraint:Mt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Rf.className="PReLU";ee.registerClass(Rf);var Ff=class extends Le{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Se(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Pe(e);return Ss(o)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Ff.className="ELU";ee.registerClass(Ff);var Of=class extends Le{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let o=Pe(e);return o.mul(za(o.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Of.className="ThresholdedReLU";ee.registerClass(Of);var Pf=class extends Le{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Af().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let o=Pe(e);return this.softmax(o,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Pf.className="Softmax";ee.registerClass(Pf);function bl(r,e,t){if(typeof r=="number")return Un(r,e);if(r.length!==e)throw new B(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${r.length} elements.`);for(let o=0;o<e;++o){let n=r[o];if(!qT(n))throw new B(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${JSON.stringify(r)} including a non-integer number ${n}`)}return r}function uo(r,e,t,o,n=1){if(r==null)return r;let s=e+(e-1)*(n-1),a;return t==="same"?a=r:a=r-s+1,Math.floor((a+o-1)/o)}function Mf(r,e,t,o){if(r==null)return null;if(o==="valid")r=r*e+Fs([t-e,0]);else if(o==="same")r=r*e;else throw new B(`Unsupport padding mode: ${o}.`);return r}function Lf(r,e){return V(()=>($t(e),e==="channelsFirst"?je(r,[0,2,3,1]):r))}function Kw(r,e){return V(()=>($t(e),e==="channelsFirst"?je(r,[0,2,3,4,1]):r))}function YH(r,e,t,o=1,n="valid",s,a=1){return V(()=>{if(s==null&&(s=Zr()),$t(s),r.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(e.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${e.shape.length} instead`);if(t!=null&&t.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s==="channelsFirst"&&(r=je(r,[0,2,1])),n==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Iu(r,e,o,n==="same"?"same":"valid","NWC",a);return t!=null&&(i=so(i,t)),i})}function P1(r,e,t,o=[1,1],n="valid",s,a,i=null){return V(()=>{if(s==null&&(s=Zr()),$t(s),r.rank!==3&&r.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let l=Lf(r,s);if(n==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Wn.conv2d({x:l,filter:e,strides:o,pad:n==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:t,activation:i}),s==="channelsFirst"&&(l=je(l,[0,3,1,2])),l})}function ZH(r,e,t,o=[1,1,1],n="valid",s,a){return V(()=>{if(s==null&&(s=Zr()),$t(s),r.rank!==4&&r.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let i=Kw(r,s);if(n==="causal")throw new Se("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=Rm(i,e,o,n==="same"?"same":"valid","NDHWC",a),t!=null&&(i=so(i,t)),s==="channelsFirst"&&(i=je(i,[0,4,1,2,3])),i})}var Ip=class extends Le{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Ip.verifyArgs(t),this.rank=e,jt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Se(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=bl(t.kernelSize,e,"kernelSize"),this.strides=bl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Jr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,$t(this.dataFormat),this.activation=Ms(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=_t(t.biasRegularizer),this.activityRegularizer=_t(t.activityRegularizer),this.dilationRate=bl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Bo("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!yg(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ps(this.activation),useBias:this.useBias,biasInitializer:Nt(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Mt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},tc=class extends Ip{constructor(e,t){super(e,t);this.kernel=null,tc.verifyArgs(t),this.filters=t.filters,jt(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=_t(t.kernelRegularizer)}build(e){e=et(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let o=e[t],n=this.kernelSize.concat([o,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:o}}],this.built=!0}call(e,t){return V(()=>{e=Pe(e);let o,n=this.bias==null?null:this.bias.read(),s=bg(this.activation.getClassName());if(s!=null&&this.rank===2)o=P1(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)o=YH(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)o=P1(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)o=ZH(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Se("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(o=this.activation.apply(o))}return o})}computeOutputShape(e){e=et(e);let t=[],o=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<o.length;++s){let a=uo(o[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){let e={filters:this.filters,kernelInitializer:Nt(this.kernelInitializer),kernelRegularizer:ut(this.kernelRegularizer),kernelConstraint:Mt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},_l=class extends tc{constructor(e){super(2,e);_l.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!yg(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};_l.className="Conv2D";ee.registerClass(_l);var rc=class extends tc{constructor(e){super(3,e);rc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};rc.className="Conv3D";ee.registerClass(rc);var zf=class extends _l{constructor(e){super(e);if(this.inputSpec=[new Et({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=et(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let o=e[t],n=this.kernelSize.concat([this.filters,o]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Et({ndim:4,axes:{[t]:o}})],this.built=!0}call(e,t){return V(()=>{let o=Pe(e);if(o.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${o.shape.length}`);let n=o.shape,s=n[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let l=n[a],u=n[i],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=Mf(l,m,c,this.padding),h=Mf(u,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(o=je(o,[0,2,3,1]));let x=Nu(o,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=je(x,[0,3,1,2])),this.bias!=null&&(x=so(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(e){e=et(e);let t=e.slice(),o,n,s;this.dataFormat==="channelsFirst"?(o=1,n=2,s=3):(o=3,n=1,s=2);let a=this.kernelSize[0],i=this.kernelSize[1],l=this.strides[0],u=this.strides[1];return t[o]=this.filters,t[n]=Mf(t[n],l,a,this.padding),t[s]=Mf(t[s],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};zf.className="Conv2DTranspose";ee.registerClass(zf);var Xw=class extends tc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=_t(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=_t(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=et(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let o=e[t],n=this.kernelSize.concat([o,this.depthMultiplier]),s=[];for(let i=0;i<this.rank;++i)s.push(1);s.push(o*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Et({ndim:this.rank+2,axes:{[t]:o}})],this.built=!0}call(e,t){return V(()=>{e=Pe(e);let o;if(this.rank===1)throw new Se("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=je(e,[0,2,3,1])),o=Hm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(o=so(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),this.dataFormat==="channelsFirst"&&(o=je(o,[0,3,1,2])),o})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.pointwiseInitializer=Nt(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Mt(this.depthwiseConstraint),e.pointwiseConstraint=Mt(this.pointwiseConstraint),e}};Xw.className="SeparableConv";var Bf=class extends Xw{constructor(e){super(2,e)}};Bf.className="SeparableConv2D";ee.registerClass(Bf);var oc=class extends tc{constructor(e){super(1,e);oc.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!yg(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};oc.className="Conv1D";ee.registerClass(oc);var Vf=class extends Le{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return V(()=>{if(e=Pe(e),this.dataFormat==="channelsLast"){let o=ff(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return ff(o,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let o=ff(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return ff(o,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Vf.className="Cropping2D";ee.registerClass(Vf);var Wf=class extends Le{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,GT(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],o=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,o]}else{let t=e[1]==null?null:this.size[0]*e[1],o=e[2]==null?null:this.size[1]*e[2];return[e[0],t,o,e[3]]}}call(e,t){return V(()=>{let o=Pe(e),n=o.shape;if(this.dataFormat==="channelsFirst"){o=je(o,[0,2,3,1]);let s=this.size[0]*n[2],a=this.size[1]*n[3],i=this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a]);return je(i,[0,3,1,2])}else{let s=this.size[0]*n[1],a=this.size[1]*n[2];return this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Wf.className="UpSampling2D";ee.registerClass(Wf);function JH(r,e,t=[1,1],o="valid",n,s){return V(()=>{n==null&&(n=Zr()),$t(n);let a=Lf(r,n);if(r.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(e.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${e.rank}-D`);return a=Mo(a,e,t,o==="same"?"same":"valid","NHWC",s),n==="channelsFirst"&&(a=je(a,[0,3,1,2])),a})}var Gf=class extends Ip{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=_t(e.depthwiseRegularizer)}build(e){if(e=et(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let o=e[t],n=[this.kernelSize[0],this.kernelSize[1],o,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[o*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{e=Pe(e);let o=JH(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(o=so(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),o})}computeOutputShape(e){e=et(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=uo(t,this.kernelSize[0],this.padding,this.strides[0]),a=uo(o,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,s,a]:[e[0],s,a,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Mt(this.depthwiseRegularizer),e}};Gf.className="DepthwiseConv2D";ee.registerClass(Gf);function Yw(r,e,t,o){if(Array.isArray(r)){if(e!=null||t!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");o!=null&&(t=r.slice(r.length-o,r.length),r=r.slice(0,r.length-o)),r.length>1&&(e=r.slice(1,r.length)),r=r[0]}function n(s){return s==null||Array.isArray(s)?s:[s]}return e=n(e),t=n(t),{inputs:r,initialState:e,constants:t}}function Zw(r,e,t,o=!1,n,s,a=!1,i=!1){return V(()=>{let l=e.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(zr(2,l));if(e=je(e,u),s!=null)throw new Se("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),n!=null&&(n=n.asType("bool").asType("float32"),n.rank===l-1&&(n=br(n,-1)),n=je(n,u)),o&&(e=Yt(e,0),n!=null&&(n=Yt(n,0)));let c=[],p,m=t,f=e.shape[0],d=cr(e),h;n!=null&&(h=cr(n));for(let x=0;x<f;++x){let b=d[x],_=V(()=>r(b,m));if(n==null)p=_[0],m=_[1];else{let w=V(()=>{let C=h[x],D=rr(C).sub(C),A=_[0].mul(C).add(m[0].mul(D)),F=m.map((M,z)=>_[1][z].mul(C).add(M.mul(D)));return{output:A,newStates:F}});p=w.output,m=w.newStates}i&&c.push(p)}let g;return i&&(g=Wt(c,1)),[p,g,m]})}var co=class extends Le{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Np({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Et({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return zr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Sg(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let o=t[0],n;if(this.returnSequences?n=[e[0],e[1],o]:n=[e[0],o],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[n].concat(s)}else return n}computeMask(e,t){return V(()=>{Array.isArray(t)&&(t=t[0]);let o=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(s=>null);return[o].concat(n)}else return o})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let o=0;o<e;++o)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Se("Constants support is not implemented in RNN yet.");Sg(e)&&(e=e[0]),e=e;let o=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new Et({shape:[o,null,...n]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new Se("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!y.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new Et({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Io("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape[0];if(o==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>mt([o,n])):this.states_=[mt([o,this.cell.stateSize])];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>mt([o,n])):this.states_[0]=mt([o,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let n=0;n<this.states_.length;++n){let s=e[n],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,i=[o,a];if(!y.arraysEqual(s.shape,i))throw new B(`State ${n} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${s.shape}`);this.states_[n]=s}}this.states_=this.states_.map(n=>At(n.clone()))})}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=Yw(e,o,n,this.numConstants);e=s.inputs,o=s.initialState,n=s.constants;let a=[],i=[];if(o!=null){t.initialState=o,a=a.concat(o),this.stateSpec=[];for(let u of o)this.stateSpec.push(new Et({shape:u.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,a=a.concat(n),this.numConstants=n.length),a[0]instanceof Vr){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;e=Pe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new B(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},u=Zw((d,h)=>{let g=this.cell.call([d].concat(h),i);return[g[0],g.slice(1)]},e,s,this.goBackwards,o,null,this.unroll,this.returnSequences),c=u[0],p=u[1],m=u[2];this.stateful&&this.resetStates(m,n);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(e){return V(()=>{let t=mt(e.shape);return t=_e(t,[1,2]),t=Ba(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(o=>o>1?vg(t,[1,o]):t):this.cell.stateSize>1?[vg(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let o=this.cell.getConfig();return this.getClassName()===co.className&&(t.cell={className:this.cell.getClassName(),config:o}),Object.assign({},o,e,t)}static fromConfig(e,t,o={}){let n=t.cell,s=Qr(n,o);return new e(Object.assign(t,{cell:s}))}};co.className="RNN";ee.registerClass(co);var wl=class extends Le{},Sp=class extends wl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,jt(this.units,"units"),this.activation=Ms(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Ku([1,Fs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ku([1,Fs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=et(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let o=e[1];e=e[0];let n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>rr(e),rate:this.dropout,training:n})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>rr(o),rate:this.recurrentDropout,training:n}));let s,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?s=Xn(O(e,a),this.kernel.read()):s=Xn(e,this.kernel.read()),this.bias!=null&&(s=so(s,this.bias.read())),i!=null&&(o=O(o,i));let l=Q(s,Xn(o,this.recurrentKernel.read()));return this.activation!=null&&(l=this.activation.apply(l)),[l,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ps(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),recurrentConstraint:Mt(this.recurrentConstraint),biasConstraint:Mt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Sp.className="SimpleRNNCell";ee.registerClass(Sp);var Uf=class extends co{constructor(e){e.cell=new Sp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return new e(t)}};Uf.className="SimpleRNN";ee.registerClass(Uf);var Tp=class extends wl{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,jt(this.units,"units"),this.activation=Ms(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ms(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Ku([1,Fs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ku([1,Fs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=et(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training==null?!1:t.training,n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>rr(e),rate:this.dropout,training:o,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>rr(n),rate:this.recurrentDropout,training:o,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,i,l,u;0<this.dropout&&this.dropout<1&&(e=O(e,s[0]));let c=Xn(e,this.kernel.read());this.useBias&&(c=so(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=O(n,a[0]));let p=this.recurrentKernel.read(),[m,f]=ur(p,[2*this.units,this.units],p.rank-1),d=Xn(n,m),[h,g,x]=ur(c,3,c.rank-1),[b,_]=ur(d,2,d.rank-1);i=this.recurrentActivation.apply(Q(h,b)),l=this.recurrentActivation.apply(Q(g,_));let w=Xn(O(l,n),f);u=this.activation.apply(Q(x,w));let C=Q(O(i,n),O(Q(1,qe(i)),u));return[C,C]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ps(this.activation),recurrentActivation:Ps(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),recurrentConstraint:Mt(this.recurrentConstraint),biasConstraint:Mt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Tp.className="GRUCell";ee.registerClass(Tp);var jf=class extends co{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Tp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};jf.className="GRU";ee.registerClass(jf);var vl=class extends wl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,jt(this.units,"units"),this.activation=Ms(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ms(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Ku([1,Fs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ku([1,Fs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=et(e);let o=e[e.length-1];this.kernel=this.addWeight("kernel",[o,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;n=new(t=class extends io{apply(l,u){let c=s.apply([a]),p=new Yu().apply([a]),m=s.apply([a*2]);return ww(ww(c,p),m)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return V(()=>{let o=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>rr(e),rate:this.dropout,training:o,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>rr(n),rate:this.recurrentDropout,training:o,count:4}));let a=this.dropoutMask,i=this.recurrentDropoutMask,l,u,c,p;0<this.dropout&&this.dropout<1&&(e=O(e,a[0]));let m=Xn(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=O(n,i[0])),m=Q(m,Xn(n,this.recurrentKernel.read())),this.useBias&&(m=so(m,this.bias.read()));let[f,d,h,g]=ur(m,4,m.rank-1);l=this.recurrentActivation.apply(f),u=this.recurrentActivation.apply(d),c=Q(O(u,s),O(l,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let x=O(p,this.activation.apply(c));return[x,x,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ps(this.activation),recurrentActivation:Ps(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),recurrentConstraint:Mt(this.recurrentConstraint),biasConstraint:Mt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};vl.className="LSTMCell";ee.registerClass(vl);var qf=class extends co{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new vl(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};qf.className="LSTM";ee.registerClass(qf);var Np=class extends wl{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return V(()=>{e=e;let o=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(o.splice(0,i.stateSize.length)):n.push(o.splice(0,1));n.reverse();let s=[],a;for(let i=0;i<this.cells.length;++i){let l=this.cells[i];o=n[i],i===0?a=[e[0]].concat(o):a=[a[0]].concat(o),a=l.call(a,t),s.push(a.slice(1))}o=[];for(let i of s.slice().reverse())o.push(...i);return[a[0]].concat(o)})}build(e){Sg(e)&&(e=e[0]),e=e;let t;this.cells.forEach((o,n)=>{Rs(`RNNCell_${n}`,()=>{o.build(e),Array.isArray(o.stateSize)?t=o.stateSize[0]:t=o.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,o={}){let n=[];for(let s of t.cells)n.push(Qr(s,o));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.cells)t.push(...o.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return vf(e)}setWeights(e){let t=[];for(let o of this.cells){let n=o.weights.length,s=e.splice(n);for(let a=0;a<o.weights.length;++a)t.push([o.weights[a],s[a]])}_p(t)}};Np.className="StackedRNNCells";ee.registerClass(Np);function Wa(r){let{ones:e,rate:t,training:o=!1,count:n=1}=r,s=()=>Cg(e(),t),a=()=>ml(s,e,o);return!n||n<=1?At(a().clone()):Array(n).fill(void 0).map(a).map(l=>At(l.clone()))}var QH=function(r,e){var t={};for(var o in r)Object.prototype.hasOwnProperty.call(r,o)&&e.indexOf(o)<0&&(t[o]=r[o]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var n=0,o=Object.getOwnPropertySymbols(r);n<o.length;n++)e.indexOf(o[n])<0&&Object.prototype.propertyIsEnumerable.call(r,o[n])&&(t[o[n]]=r[o[n]]);return t};var Jw=class extends co{constructor(e){if(e.unroll)throw new Se("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Se("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Et({ndim:5})]}call(e,t){return V(()=>{if(this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return V(()=>{let{stateSize:t}=this.cell,o=e.shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)],a=mt(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Io("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)];if(o[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>mt(s)):this.states_=[mt(s)];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>mt(s)):this.states_[0]=mt(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let i=0;i<this.states_.length;++i){let l=e[i],u=s;if(!y.arraysEqual(l.shape,u))throw new B(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${l.shape}`);this.states_[i]=l}}this.states_=this.states_.map(i=>At(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:o,kernelSize:n,padding:s,strides:a,dilationRate:i}=this.cell,l=t==="channelsFirst",u=e[l?3:2],c=e[l?4:3],p=uo(u,n[0],s,a[0],i[0]),m=uo(c,n[1],s,a[1],i[1]);return[...e.slice(0,2),...l?[o,p,m]:[p,m,o]]}};Jw.className="ConvRNN2D";var Ep=class extends vl{constructor(e){let{filters:t,kernelSize:o,strides:n,padding:s,dataFormat:a,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,jt(this.filters,"filters"),this.kernelSize=bl(o,2,"kernelSize"),this.kernelSize.forEach(l=>jt(l,"kernelSize")),this.strides=bl(n||1,2,"strides"),this.strides.forEach(l=>jt(l,"strides")),this.padding=s||"valid",Jr(this.padding),this.dataFormat=a||"channelsLast",$t(this.dataFormat),this.dilationRate=bl(i||1,2,"dilationRate"),this.dilationRate.forEach(l=>jt(l,"dilationRate"))}build(e){var t;e=et(e);let o=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[o]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[o]}`);let n=e[o],s=4,a=this.kernelSize.concat([n,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let l;if(this.unitForgetBias){let u=this.biasInitializer,c=this.filters;l=new(t=class extends io{apply(m,f){let d=u.apply([c]),h=Sr([c]),g=u.apply([c*2]);return cp([d,h,g])}},t.className="CustomInit",t)}else l=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,l,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return V(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training||!1,n=e[0],s=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>rr(n),rate:this.dropout,training:o,count:i}));let l=this.dropoutMask,u=(ae,ie,pe)=>!ie||!ie[pe]?ae:O(ie[pe],ae),c=u(n,l,0),p=u(n,l,1),m=u(n,l,2),f=u(n,l,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>rr(s),rate:this.recurrentDropout,training:o,count:i}));let d=this.recurrentDropoutMask,h=u(s,d,0),g=u(s,d,1),x=u(s,d,2),b=u(s,d,3),_=3,[w,C,D,A]=ur(this.kernel.read(),i,_),[F,M,z,G]=this.useBias?ur(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,w,F,this.padding),p=this.inputConv(p,C,M,this.padding),m=this.inputConv(m,D,z,this.padding),f=this.inputConv(f,A,G,this.padding);let[U,H,J,Y]=ur(this.recurrentKernel.read(),i,_);h=this.recurrentConv(h,U),g=this.recurrentConv(g,H),x=this.recurrentConv(x,J),b=this.recurrentConv(b,Y);let X=this.recurrentActivation.apply(Q(c,h)),re=this.recurrentActivation.apply(Q(p,g)),K=Q(O(re,a),O(X,this.activation.apply(Q(m,x)))),ne=O(this.recurrentActivation.apply(Q(f,b)),this.activation.apply(K));return[ne,ne,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,o=QH(e,["units"]),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},o,n)}inputConv(e,t,o,n){let s=Kr(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return o?so(s,o,this.dataFormat):s}recurrentConv(e,t){return Kr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Ep.className="ConvLSTM2DCell";ee.registerClass(Ep);var Hf=class extends Jw{constructor(e){let t=new Ep(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Hf.className="ConvLSTM2D";ee.registerClass(Hf);var Ap=class extends Le{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,o=[];for(let n=0;n<this.noiseShape.length;++n)o.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return o}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Pe(e);if(0<this.rate&&this.rate<1){let n=t.training==null?!1:t.training,s=this.getNoiseShape(o);return ml(()=>Cg(o,this.rate,s,this.seed),()=>o,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Ap.className="Dropout";ee.registerClass(Ap);var Kf=class extends Ap{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Kf.className="SpatialDropout1D";ee.registerClass(Kf);var Xf=class extends Le{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,jt(this.units,"units"),this.activation=Ms(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=_t(e.kernelRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=et(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=et(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Pe(e),n=bg(this.activation.getClassName()),s;return n!=null?s=Xn(o,this.kernel.read(),n,this.bias?this.bias.read():null):(s=Xn(o,this.kernel.read()),this.bias!=null&&(s=so(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:Ps(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Mt(this.kernelConstraint),biasConstraint:Mt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Xf.className="Dense";ee.registerClass(Xf);var Yf=class extends Le{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=et(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Kn(e,1)]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Pe(e);if(this.dataFormat==="channelsFirst"&&o.rank>1){let n=[0];for(let s=2;s<o.rank;++s)n.push(s);n.push(1),o=o.transpose(n)}return YT(o)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Yf.className="Flatten";ee.registerClass(Yf);var Zf=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.activation=Ms(e.activation)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Pe(e);return this.activation.apply(o)})}getConfig(){let e={activation:Ps(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Zf.className="Activation";ee.registerClass(Zf);var Jf=class extends Le{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return V(()=>(e=Pe(e),KT(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Jf.className="RepeatVector";ee.registerClass(Jf);var Qf=class extends Le{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let o="Total size of new array must be unchanged.",n=t.slice(),s=1,a=null;for(let l=0;l<n.length;++l){let u=n[l];if(this.isUnknown(u))if(a===null)a=l;else throw new B("Can only specifiy one unknown dimension.");else s*=u}let i=Kn(e);if(a!==null){if(s===0||i%s!=0)throw new B(o);n[a]=i/s}else if(i!==s)throw new B(o);return n}computeOutputShape(e){let t=!1;for(let o=0;o<e.length;++o)if(this.isUnknown(e[o])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Pe(e),n=o.shape,s=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return o.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Qf.className="Reshape";ee.registerClass(Qf);var ed=class extends Le{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=zr(1,e.dims.length+1);if(!y.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Et({ndim:this.dims.length+1})]}computeOutputShape(e){e=et(e);let t=e.slice();return this.dims.forEach((o,n)=>{t[n+1]=e[o]}),t}call(e,t){return je(Pe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};ed.className="Permute";ee.registerClass(ed);var td=class extends Le{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let o=Pe(e),n=-1;return il(ko(o,this.maskValue),n)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Pe(e),n=-1,s=!0,a=il(ko(o,this.maskValue),n,s);return o.mul(a.asType(o.dtype))})}};td.className="Masking";ee.registerClass(td);var rd=class extends Le{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(bt(e.inputLength))}this.inputDim=e.inputDim,jt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,jt(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=_t(e.embeddingsRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return V(()=>this.maskZero?(e=Pe(e),ko(e,Ne(e))):null)}computeOutputShape(e){if(e=et(e),this.inputLength==null)return[...e,this.outputDim];let t=bt(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let o=0;for(let n=0;n<t.length;++n){let s=t[n],a=e[n+1];if(s!=null&&a!=null&&s!==a)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[o]=a),o++}}return[e[0],...t,this.outputDim]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Pe(e);return o.dtype!=="int32"&&(o=za(o,"int32")),kg(this.embeddings.read(),o.as1D()).reshape(et(this.computeOutputShape(o.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Nt(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Mt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};rd.className="Embedding";ee.registerClass(rd);var kl=class extends Le{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Se}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let o=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){let s=e[e.length-t.length+n],a=t[n];if(s==null||a==null||s<0||a<0)o.push(null);else if(s===1)o.push(a);else if(a===1)o.push(s);else{if(s!==a)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));o.push(s)}}return o}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[et(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=Hn(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let o=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);o=this.computeElementwiseOpOutputShape(o,a)}let n=e.map(s=>s.length);e.indexOf(null)===-1&&Hn(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return V(()=>{if(e=e,this.reshapeRequired){let o=[],n=e.map(s=>s.rank);if(n.indexOf(null)===-1){let s=Fs(n);for(let a of e){let i=a.rank;for(let l=0;l<s-i;++l)a=Ba(a,1);o.push(a)}return this.mergeFunction(o)}else{let s=!1;for(let l of e){let u=l.rank;if(u==null){let c=l.shape,p=c[0],m=c.slice(1).concat([p]),f=l.reshape([p].concat(Kn(c.slice(1))));f=je(f,[1,0]),f=f.reshape(m),o.push(f),s=!0}else if(u>1){let c=zr(1,u).concat([0]);o.push(je(l,c)),s=!0}else o.push(l)}let a=this.mergeFunction(o),i=a.rank;if(s){if(i==null){let l=a.shape,u=l.length,c=l[u-1],p=[c].concat(l.slice(0,l.length-1));a=je(a.reshape([-1,c]),[1,0]).reshape(p)}else if(i>1){let l=[i-1].concat(zr(0,i-1));a=je(a,l)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){let s=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let o=[];for(let n of e)n!=null&&n[0]!==null&&o.push(n[0]);return o=Hn(o),o.length===1?t=o.concat(t):t=[null].concat(t),t}computeMask(e,t){return V(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:br(n,0));let o=t[0];for(let n=1;n<t.length-1;++n)o=dr(o,t[n]);return o})}},od=class extends kl{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=Q(t,e[o]);return t})}};od.className="Add";ee.registerClass(od);var nd=class extends kl{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=O(t,e[o]);return t})}};nd.className="Multiply";ee.registerClass(nd);var sd=class extends kl{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=Q(t,e[o]);return O(1/e.length,t)})}};sd.className="Average";ee.registerClass(sd);var id=class extends kl{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let o=1;o<e.length;++o)t=Nr(t,e[o]);return t})}};id.className="Maximum";ee.registerClass(id);var ad=class extends kl{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let o=1;o<e.length;++o)t=zo(t,e[o]);return t})}};ad.className="Minimum";ee.registerClass(ad);var ld=class extends kl{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let n of e)if(n!=null){t=!1;break}if(t)return;let o=[];for(let n=0;n<e.length;++n){let s=e[n].slice();s.splice(this.axis,1);let a=!1;for(let i of o)if(y.arraysEqual(i,s)){a=!0;break}a||o.push(s)}if(o.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return V(()=>cp(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,o=t[0].slice(),n=this.axis<0?o.length+this.axis:this.axis;for(let s of t.slice(1)){if(o[n]==null||s[n]==null){o[n]=null;break}o[n]+=s[n]}return o}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return V(()=>{let o=!0;if(t.forEach(a=>{if(a!=null){o=!1;return}}),o)return null;let n=[];for(let a=0;a<e.length;++a)t[a]==null?n.push(rr(e[a]).asType("bool")):t[a].rank<e[a].rank?n.push(br(t[a],-1)):n.push(t[a]);let s=Qe(n,this.axis);return vu(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ld.className="Concatenate";ee.registerClass(ld);function ud(r,e){for(;r<0;)r+=e;return r}function eK(r,e,t){if(r.shape.length>3||e.shape.length>3)throw new Se("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${e.shape.length}`),typeof t=="number"&&(t=[t,t]),r.dtype==="complex64"||e.dtype==="complex64")throw new Se("batchDot is not implemented for complex64-type Tensors yet.");let o=r.shape.length,n=e.shape.length;t==null&&(t=[o-1,n-2]);let s=t;return V(()=>{let a;if(o>n){a=o-n;let l=[];for(let u=0;u<a;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else if(n>o){a=n-o;let l=[];for(let u=0;u<a;++u)l.push(1);r=r.reshape(r.shape.concat(l))}else a=0;let i;if(r.shape.length===2&&e.shape.length===2)s[0]===s[1]?i=r.mul(e).sum(s[0]):i=r.transpose([1,0]).mul(e).sum(s[1]);else{let l=s[0]!==r.shape.length-1,u=s[1]===e.shape.length-1;i=r.matMul(e,l,u)}if(a>0){let l;o>n?l=o+n-3:l=o-1;let u=[];for(let c=l;c<l+a;++c)u.push(c);i=i.squeeze(u)}return i.shape.length===1&&(i=i.expandDims(1)),i})}var cd=class extends kl{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],o=e[1];if(t.length>3||o.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);if(t[n[0]]!==o[n[1]])throw new B(`Dimension incompatibility: ${t[n[0]]} !== ${o[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],o=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((s,a)=>ud(s,e[a].shape.length)):n=[ud(this.axes,t.shape.length),ud(this.axes,o.shape.length)],this.normalize&&(t=kf(t,n[0]),o=kf(o,n[1])),eK(t,o,n)}interpretAxes(e,t){let o;return Array.isArray(this.axes)?o=this.axes:o=[ud(this.axes,e.length),ud(this.axes,t.length)],o}computeOutputShape(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),o=e[1].slice();if(t.length>3||o.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);t.splice(n[0],1),o.splice(n[1],1),o.splice(0,1);let s=t.concat(o);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};cd.className="Dot";ee.registerClass(cd);var pd=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Pe(e);return ml(()=>pp(o.shape,0,this.stddev).add(o),()=>o,t.training||!1)})}};pd.className="GaussianNoise";ee.registerClass(pd);var md=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Pe(e);return this.rate>0&&this.rate<1?ml(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return o.mul(pp(o.shape,1,s))},()=>o,t.training||!1):o})}};md.className="GaussianDropout";ee.registerClass(md);var fd=class extends Le{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Pe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{if(this.rate<1&&this.rate>0){let o=this._getNoiseShape(e);return ml(()=>{let s=Pe(e),a=1.6732632423543772,i=1.0507009873554805,l=-a*i,u=Or(As(o),this.rate);u=za(u,"float32");let c=((1-this.rate)*(1+this.rate*l**2))**-.5,p=-c*l*this.rate;return s.mul(u).add(u.add(-1).mul(l)).mul(c).add(p)},()=>Pe(e),t.training||!1)}return e})}};fd.className="AlphaDropout";ee.registerClass(fd);function dd(r,e,t,o,n,s=.001){let a;if(r.rank===2)a=n_(r,e,t,o,n,s);else if(r.rank===3)a=s_(r,e,t,o,n,s);else if(r.rank===4)a=i_(r,e,t,o,n,s);else throw new Se(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return a}function tK(r,e,t,o,n=.001){return V(()=>{let s=Xc(r,o),a=s.mean,i=s.variance;return[dd(r,a,i,t,e,n),a,i]})}function rK(r,e,t,o,n=.001){return V(()=>{let s=Xc(r,o),a=s.mean,i=s.variance,l=[];for(let d of zr(0,r.rank))o.indexOf(d)!==-1?l.push(1):l.push(r.shape[d]);let u=a.reshape(l),c=i.reshape(l),p=e==null?null:e.reshape(l),m=t==null?null:t.reshape(l);return[dd(r,u,c,m,p,n),a,i]})}function oK(r,e,t,o,n=.001){return y.arraysEqual(o.slice().sort(),zr(0,r.rank-1))?tK(r,e,t,o,n):rK(r,e,t,o,n)}var hd=class extends Le{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer)}build(e){e=et(e);let t=this.axis>=0?this.axis:this.axis+e.length,o=e[t];if(o==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Et({ndim:e.length,axes:{[t]:o}})];let n=[o];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return V(()=>{let o=t.training==null?!1:t.training,n=Pe(e),s=n.shape,a=s.length,i=zr(0,a),l=this.axis>=0?this.axis:this.axis+a;i.splice(l,1);let u=Un(1,a);u[l]=s[l];let c=i.slice();c.sort();let p=!y.arraysEqual(c,zr(0,a).slice(0,a-1)),m=()=>{if(p){let b=this.movingMean.read().reshape(u),_=this.movingVariance.read().reshape(u),w=this.center?this.beta.read().reshape(u):null,C=this.scale?this.gamma.read().reshape(u):null;return dd(n,b,_,w,C,this.epsilon)}else return dd(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!o)return m();let[f,d,h]=oK(n,this.gamma.read(),this.beta.read(),i,this.epsilon),g=(b,_,w)=>{V(()=>{let C=1-w,D=b.read(),A=D.sub(_).mul(C);b.write(D.sub(A))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),movingMeanInitializer:Nt(this.movingMeanInitializer),movingVarianceInitializer:Nt(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Mt(this.betaConstraint),gammaConstraint:Mt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};hd.className="BatchNormalization";ee.registerClass(hd);var gd=class extends Le{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=et(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Hn(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let o=this.axis.map(s=>e[s]),n=!0;this.scale?this.gamma=this.addWeight("gamma",o,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",o,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let o=Pe(e),n=o.shape,s=n.length;return V(()=>{let a=!0,{mean:i,variance:l}=Xc(o,this.axis,a),u=Un(1,s);for(let h of this.axis)u[h]=n[h];let c=h=>h!=null&&h.shape.length!==s&&this.axis!==[s-1]?h.reshape(u):h,p=c(this.gamma.read()),m=c(this.beta.read()),f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(n[h]),d.push(1)):(f.push(1),d.push(n[h]));return i=i.tile(f),l=l.tile(f),p=p.tile(d),m=m.tile(d),dd(o,i,l,m,p,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};gd.className="LayerNormalization";ee.registerClass(gd);function nK(r,e,t){return V(()=>{if(r.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(e==null&&(e=[[1,1],[1,1]]),e.length!==2||e[0].length!==2||e[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(t==null&&(t=Zr()),t!=="channelsLast"&&t!=="channelsFirst")throw new B(`Unknown data format: ${t}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let o;return t==="channelsFirst"?o=[[0,0],[0,0],e[0],e[1]]:o=[[0,0],e[0],e[1],[0,0]],Pr(r,o)})}var xd=class extends Le{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Zr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,o;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],o=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);o=e.padding[1]}this.padding=[t,o]}this.inputSpec=[new Et({ndim:4})]}computeOutputShape(e){e=et(e);let t,o;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?o=e[3]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],e[1],t,o]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?o=e[2]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],t,o,e[3]])}call(e,t){return V(()=>nK(Pe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};xd.className="ZeroPadding2D";ee.registerClass(xd);function Hg(r,e,t,o,n,s){return V(()=>{$t(n),bw(s),Jr(o),t==null&&(t=[1,1]),o==null&&(o="valid"),n==null&&(n=Zr()),s==null&&(s="max"),r=Lf(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=Aa(r,e,t,i):a=ka(r,e,t,i),n==="channelsFirst"&&(a=je(a,[0,3,1,2])),a})}function M1(r,e,t,o,n,s){return V(()=>{$t(n),bw(s),Jr(o),t==null&&(t=[1,1,1]),o==null&&(o="valid"),n==null&&(n=Zr()),s==null&&(s="max"),r=Kw(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=Wm(r,e,t,i):a=Dm(r,e,t,i),n==="channelsFirst"&&(a=je(a,[0,4,1,2,3])),a})}var Qw=class extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(jt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Jr(this.padding),this.inputSpec=[new Et({ndim:3})]}computeOutputShape(e){e=et(e);let t=uo(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return V(()=>{this.invokeCallHook(e,t),e=Ba(Pe(e),2);let o=this.poolingFunction(Pe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Co(o,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},yd=class extends Qw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Jr(n),Hg(e,t,o,n,s,"max")}};yd.className="MaxPooling1D";ee.registerClass(yd);var bd=class extends Qw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Jr(n),Hg(e,t,o,n,s,"avg")}};bd.className="AveragePooling1D";ee.registerClass(bd);var ev=class extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];jt(this.poolSize,"poolSize"),jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),Jr(this.padding),this.inputSpec=[new Et({ndim:4})]}computeOutputShape(e){e=et(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=uo(t,this.poolSize[0],this.padding,this.strides[0]),o=uo(o,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o]:[e[0],t,o,e[3]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},_d=class extends ev{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Jr(n),Hg(e,t,o,n,s,"max")}};_d.className="MaxPooling2D";ee.registerClass(_d);var wd=class extends ev{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Jr(n),Hg(e,t,o,n,s,"avg")}};wd.className="AveragePooling2D";ee.registerClass(wd);var tv=class extends Le{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];jt(this.poolSize,"poolSize"),jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),Jr(this.padding),this.inputSpec=[new Et({ndim:5})]}computeOutputShape(e){e=et(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=uo(t,this.poolSize[0],this.padding,this.strides[0]),o=uo(o,this.poolSize[1],this.padding,this.strides[1]),n=uo(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o,n]:[e[0],t,o,n,e[4]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},vd=class extends tv{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Jr(n),M1(e,t,o,n,s,"max")}};vd.className="MaxPooling3D";ee.registerClass(vd);var kd=class extends tv{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),Jr(n),M1(e,t,o,n,s,"avg")}};kd.className="AveragePooling3D";ee.registerClass(kd);var rv=class extends Le{constructor(e){super(e);this.inputSpec=[new Et({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Se}},Cd=class extends rv{constructor(e){super(e||{})}call(e,t){return V(()=>{let o=Pe(e);return xt(o,1)})}};Cd.className="GlobalAveragePooling1D";ee.registerClass(Cd);var Id=class extends rv{constructor(e){super(e||{})}call(e,t){return V(()=>{let o=Pe(e);return lr(o,1)})}};Id.className="GlobalMaxPooling1D";ee.registerClass(Id);var ov=class extends Le{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.inputSpec=[new Et({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Se}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Nd=class extends ov{call(e,t){return V(()=>{let o=Pe(e);return this.dataFormat==="channelsLast"?xt(o,[1,2]):xt(o,[2,3])})}};Nd.className="GlobalAveragePooling2D";ee.registerClass(Nd);var Sd=class extends ov{call(e,t){return V(()=>{let o=Pe(e);return this.dataFormat==="channelsLast"?lr(o,[1,2]):lr(o,[2,3])})}};Sd.className="GlobalMaxPooling2D";ee.registerClass(Sd);var nv=class extends Le{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,o={}){let n=t.layer,s=Qr(n,o);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},Td=class extends nv{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=et(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=et(e);let t=[e[0]].concat(e.slice(2)),o=this.layer.computeOutputShape(t),n=e[1];return[o[0],n].concat(o.slice(1))}call(e,t){return V(()=>(e=Pe(e),Zw((a,i)=>[Pe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Td.className="TimeDistributed";ee.registerClass(Td);function sK(r){Wi(WT,"BidirectionalMergeMode",r)}var iK="concat",Ed=class extends nv{constructor(e){super(e);let t=e.layer.getConfig(),o={};o.className=e.layer.getClassName(),o.config=t,this.forwardLayer=Qr(o),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=Qr(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?iK:e.mergeMode,sK(this.mergeMode),e.weights)throw new Se("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,o=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,o)),this.backwardLayer.setWeights(e.slice(o))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let o,n,s;return this.returnState&&(s=t.slice(1)),o=t[0],o=o,this.mergeMode==="concat"?(o[o.length-1]*=2,n=[o]):this.mergeMode==null?n=[o,o.slice()]:n=[o],this.returnState?this.mergeMode==null?n.concat(s).concat(s.slice()):[o].concat(s).concat(s.slice()):hr(n)}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=Yw(e,o,n,this.numConstants);if(e=s.inputs,o=s.initialState,n=s.constants,Array.isArray(e)&&(o=e.slice(1),e=e[0]),(o==null||o.length===0)&&n==null)return super.apply(e,t);let a=[],i=[];if(o!=null){let u=o.length;if(u%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=o,a.push(...o);let c=o.map(p=>new Et({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,u/2),this.backwardLayer.stateSpec=c.slice(u/2),i.push(...c)}if(n!=null)throw new Se("Support for constants in Bidirectional layers is not implemented yet.");let l=a[0]instanceof Vr;for(let u of a)if(u instanceof Vr!==l)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(l){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let o=t.initialState,n,s;if(o==null)n=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let l=o.slice(0,o.length/2),u=o.slice(o.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:l})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(n)&&(a=n.slice(1).concat(s.slice(1))),n=n[0],s=s[0]),this.returnSequences&&(s=Yt(s,1));let i;return this.mergeMode==="concat"?i=cp([n,s]):this.mergeMode==="sum"?i=Q(n,s):this.mergeMode==="ave"?i=O(.5,Q(n,s)):this.mergeMode==="mul"?i=O(n,s):this.mergeMode==null&&(i=[n,s]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Rs(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Rs(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let o;if(this.returnSequences?this.mergeMode==null?o=[t,t]:o=t:this.mergeMode==null?o=[null,null]:o=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(o)?o.concat(s).concat(s):[o].concat(s).concat(s)}else return o}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let o=Qr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Se("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=o,new e(n)}};Ed.className="Bidirectional";ee.registerClass(Ed);function aK(r){return new Gi(r)}function lK(r){return new Ff(r)}function uK(r){return new Df(r)}function cK(r){return new $f(r)}function pK(r){return new Rf(r)}function mK(r){return new Pf(r)}function fK(r){return new Of(r)}function dK(r){return new oc(r)}function hK(r){return new _l(r)}function gK(r){return new zf(r)}function xK(r){return new rc(r)}function yK(r){return new Bf(r)}function bK(r){return new Vf(r)}function _K(r){return new Wf(r)}function wK(r){return new Gf(r)}function vK(r){return new Zf(r)}function kK(r){return new Xf(r)}function CK(r){return new Ap(r)}function IK(r){return new Kf(r)}function NK(r){return new Yf(r)}function SK(r){return new Jf(r)}function TK(r){return new Qf(r)}function EK(r){return new ed(r)}function AK(r){return new rd(r)}function DK(r){return new od(r)}function $K(r){return new sd(r)}function RK(r){return new ld(r)}function FK(r){return new id(r)}function OK(r){return new ad(r)}function PK(r){return new nd(r)}function MK(r){return new cd(r)}function LK(r){return new hd(r)}function zK(r){return new gd(r)}function BK(r){return new xd(r)}function iv(r){return new bd(r)}function VK(r){return iv(r)}function WK(r){return iv(r)}function av(r){return new wd(r)}function GK(r){return av(r)}function UK(r){return av(r)}function lv(r){return new kd(r)}function jK(r){return lv(r)}function qK(r){return lv(r)}function HK(r){return new Cd(r)}function KK(r){return new Nd(r)}function L1(r){return new Id(r)}function z1(r){return new Sd(r)}function B1(r){return new yd(r)}function V1(r){return new _d(r)}function XK(r){return new vd(r)}function YK(r){return new jf(r)}function ZK(r){return new Tp(r)}function JK(r){return new qf(r)}function QK(r){return new vl(r)}function e6(r){return new Uf(r)}function t6(r){return new Sp(r)}function r6(r){return new Hf(r)}function o6(r){return new Ep(r)}function n6(r){return new co(r)}function s6(r){return new Np(r)}function i6(r){return new Ed(r)}function a6(r){return new Td(r)}var l6=L1,u6=z1,c6=B1,p6=V1;function m6(r){return new pd(r)}function f6(r){return new md(r)}function d6(r){return new fd(r)}function h6(r){return new td(r)}var uv={};tt(uv,{MAPE:()=>N6,MSE:()=>E6,binaryAccuracy:()=>g6,binaryCrossentropy:()=>x6,categoricalAccuracy:()=>b6,categoricalCrossentropy:()=>_6,cosineProximity:()=>k6,mape:()=>S6,meanAbsoluteError:()=>C6,meanAbsolutePercentageError:()=>I6,meanSquaredError:()=>T6,mse:()=>A6,precision:()=>w6,recall:()=>v6,sparseCategoricalAccuracy:()=>y6});function g6(r,e){return Nf(r,e)}function x6(r,e){return Pg(r,e)}function y6(r,e){return Mg(r,e)}function b6(r,e){return Sf(r,e)}function _6(r,e){return Tf(r,e)}function w6(r,e){return Iw(r,e)}function v6(r,e){return l1(r,e)}function k6(r,e){return Cf(r,e)}function C6(r,e){return wp(r,e)}function I6(r,e){return gl(r,e)}function N6(r,e){return gl(r,e)}function S6(r,e){return gl(r,e)}function T6(r,e){return ji(r,e)}function E6(r,e){return ji(r,e)}function A6(r,e){return ji(r,e)}var cv={};tt(cv,{modelFromJSON:()=>N1});var pv={};tt(pv,{l1:()=>$6,l1l2:()=>D6,l2:()=>R6});function D6(r){return new ec(r)}function $6(r){return $1(r)}function R6(r){return R1(r)}var Kg=class extends hl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof No))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Xg(r,e){return r<e}function W1(r,e){return r>e}var Yg=class extends Kg{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Se("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Xg:this.mode==="max"?this.monitorFunc=W1:this.monitor.indexOf("acc")!==-1?this.monitorFunc=W1:this.monitorFunc=Xg,this.monitorFunc===Xg&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Xg?Infinity:-Infinity}async onEpochEnd(e,t){await Ui(t);let o=this.getMonitorValue(t);o!=null&&(this.monitorFunc(o-this.minDelta,this.best)?(this.best=o,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function F6(r){return new Yg(r)}var G1={earlyStopping:F6};var Yn;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Yn||(Yn={}));var U1;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(U1||(U1={}));var mv={};function j1(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};mv[r]=t}function Zg(r){return mv[r]}function q1(r){delete mv[r]}function k(r,e,t,o,n){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd;if(s.type==="tensor")return gr(e.inputNames[s.inputIndexStart],t,o,n);if(s.type==="tensors")return e.inputNames.slice(i,l).map(m=>gr(m,t,o,n));let u=gr(e.inputNames.slice(i)[0],t,o,n),c=u.dataSync();return s.type==="number"?c[0]:y.toNestedArray(u.shape,c)}let a=e.attrParams[r];return a&&a.value}function gr(r,e,t,o){let[n,s]=eo(r);if(o!=null){let i=o.getHashTableHandleByName(n);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[Jg(n,i)]);return a!==void 0?e[Jg(n,a)][s]:void 0}function H1(r,e,t){return e[Jg(r,t.currentContextId)]}function Ls(r,e){let[t,o]=eo(r);return[Jg(t,e&&e.currentContextId),o]}function Jg(r,e){return e?`${r}-${e}`:r}function eo(r){let e=r.split(":");return e.length===1?[r,0]:[e[0],Number(e[e.length-1])]}function Ad(r,e,t){let o=k("pad",r,e,t);if(o==="explicit"){o=k("explicitPaddings",r,e,t);let n=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)n[s][0]=o[s*2],n[s][1]=o[s*2+1];return n}return o}function zs(r){return r.kept?r:Oo(r)}var fv={};tt(fv,{json:()=>O6});var O6=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var dv={};tt(dv,{json:()=>P6});var P6=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var hv={};tt(hv,{json:()=>M6});var M6=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var gv={};tt(gv,{json:()=>L6});var L6=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var xv={};tt(xv,{json:()=>z6});var z6=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var yv={};tt(yv,{json:()=>B6});var B6=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var bv={};tt(bv,{json:()=>V6});var V6=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var _v={};tt(_v,{json:()=>W6});var W6=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var wv={};tt(wv,{json:()=>G6});var G6=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}];var vv={};tt(vv,{json:()=>U6});var U6=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var kv={};tt(kv,{json:()=>j6});var j6=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var Cv={};tt(Cv,{json:()=>q6});var q6=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var Iv={};tt(Iv,{json:()=>H6});var H6=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var Nv={};tt(Nv,{json:()=>K6});var K6=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var Sv={};tt(Sv,{json:()=>X6});var X6=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var Tv={};tt(Tv,{json:()=>Y6});var Y6=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var Ev={};tt(Ev,{json:()=>Z6});var Z6=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var Qg=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[fv,dv,hv,gv,xv,yv,bv,kv,vv,_v,Cv,Iv,Nv,Sv,Tv,Ev,wv],t=[].concat(...e.map(o=>o.json));this.opMappers=t.reduce((o,n)=>(o[n.tfOpName]=n,o),{})}transformGraph(e,t={}){let o=e.node,n=[],s=[],a=[],i=o.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?n.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),l=[],u=[],c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach(x=>{let[b]=Ls(x);g.inputs.push(i[b]),i[b].children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(p).forEach(h=>{let[g]=Ls(h),x=i[g];x!=null&&(x.signatureKey=p[h],u.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=Ls(h),x=i[g];x&&(x.signatureKey=c[h],l.push(x))}):l=n;let f={};e.library!=null&&e.library.function!=null&&(f=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:i,inputs:l,outputs:u,weights:s,placeholders:n,signature:t,functions:f};return a.length>0&&(d.initNodes=a),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,o)=>(t[e[o].name]=o,t),{})}mapNode(e){let t=Zg(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let o={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.substr(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(o.inputParams=t.inputs.reduce((n,s)=>(n[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},n),{})),t.attrs!=null&&(o.attrParams=t.attrs.reduce((n,s)=>{let a=s.type,i;switch(s.type){case"string":i=ex(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ex(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=ax(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ax(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=rx(e.attr,s.tfName,s.defaultValue||0),i===void 0&&!!s.tfDeprecatedName&&(i=rx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=ix(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ix(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=tx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=tx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=ux(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ux(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=sx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=sx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=lx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=lx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=ox(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ox(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=nx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=nx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=K1(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=K1(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return n[s.name]={value:i,type:a},n},{})),o}mapFunction(e){let t=e.nodeDef,o=[],n=[],s={};t!=null&&(s=t.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&n.push(p[m.name]),p),{}));let a=[],i=[];e.signature.inputArg.forEach(p=>{let[m]=Ls(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Av(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,a.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach(f=>{let[d]=Ls(f);m.inputs.push(s[d]),s[d].children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(p=>{let[m,f]=Ls(u[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,i.push(d))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:n,placeholders:o,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o),t),{}),outputs:e.signature.outputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o,e.ret),t),{})}}mapArgToTensorInfo(e,t){let o=e.name;return t!=null&&(o=t[o]),{name:o,dtype:e.type}}};function J6(r){let e=W().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function X1(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):J6(r);return e?t:t.toLowerCase()}function ex(r,e,t,o=!1){let n=r[e];return n!=null?X1(n.s,o):t}function tx(r,e,t){let o=r[e];return o?o.b:t}function rx(r,e,t){let o=r[e]||{},n=o.i!=null?o.i:o.f!=null?o.f:t;return typeof n=="number"?n:parseInt(n,10)}function Av(r){switch(typeof r=="string"&&(r=Yn[r]),r){case Yn.DT_FLOAT:return"float32";case Yn.DT_INT32:case Yn.DT_INT64:case Yn.DT_INT8:case Yn.DT_UINT8:return"int32";case Yn.DT_BOOL:return"bool";case Yn.DT_DOUBLE:return"float32";case Yn.DT_STRING:return"string";default:return null}}function K1(r,e,t){let o=r[e];return o&&o.func?o.func.name:t}function ox(r,e,t){let o=r[e];return o&&o.type?Av(o.type):t}function nx(r,e,t){let o=r[e];return o&&o.list&&o.list.type?o.list.type.map(n=>Av(n)):t}function Y1(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function sx(r,e,t){let o=r[e];return o&&o.shape?Y1(o.shape):t}function ix(r,e,t){let o=r[e];return o?((o.list.f&&o.list.f.length?o.list.f:o.list.i)||[]).map(n=>typeof n=="number"?n:parseInt(n,10)):t}function ax(r,e,t,o=!1){let n=r[e];return n&&n.list&&n.list.s?n.list.s.map(s=>X1(s,o)):t}function lx(r,e,t){let o=r[e];return o&&o.list&&o.list.shape?o.list.shape.map(n=>Y1(n)):t}function ux(r,e,t){let o=r[e];return o&&o.list&&o.list.b?o.list.b:t}var Dv=class{constructor(e,t,o){this.node=e,this.tensorMap=t,this.context=o,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,s)=>(n[s]=this.getAttr(s),n),{}))}getInput(e){return gr(e,this.tensorMap,this.context)}getAttr(e,t){let o=this.node.rawAttrs[e];if(o.tensor!=null)return gr(e,this.tensorMap,this.context);if(o.i!=null||o.f!=null)return rx(this.node.rawAttrs,e,t);if(o.s!=null)return ex(this.node.rawAttrs,e,t);if(o.b!=null)return tx(this.node.rawAttrs,e,t);if(o.shape!=null)return sx(this.node.rawAttrs,e,t);if(o.type!=null)return ox(this.node.rawAttrs,e,t);if(o.list!=null){if(o.list.i!=null||o.list.f!=null)return ix(this.node.rawAttrs,e,t);if(o.list.s!=null)return ax(this.node.rawAttrs,e,t);if(o.list.shape!=null)return lx(this.node.rawAttrs,e,t);if(o.list.b!=null)return ux(this.node.rawAttrs,e,t);if(o.list.type!=null)return nx(this.node.rawAttrs,e,t)}return t}};var Z1=(r,e,t)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[Q(k("a",r,e,t),k("b",r,e,t))];case"AddN":return[e_(k("tensors",r,e,t))];case"FloorMod":case"Mod":return[Ru(k("a",r,e,t),k("b",r,e,t))];case"Mul":return[O(k("a",r,e,t),k("b",r,e,t))];case"RealDiv":case"Div":return[fe(k("a",r,e,t),k("b",r,e,t))];case"DivNoNan":return[Pm(k("a",r,e,t),k("b",r,e,t))];case"FloorDiv":return[wu(k("a",r,e,t),k("b",r,e,t))];case"Sub":return[ce(k("a",r,e,t),k("b",r,e,t))];case"Minimum":return[zo(k("a",r,e,t),k("b",r,e,t))];case"Maximum":return[Nr(k("a",r,e,t),k("b",r,e,t))];case"Pow":return[_r(k("a",r,e,t),k("b",r,e,t))];case"SquaredDifference":return[Pa(k("a",r,e,t),k("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var J1=(r,e,t)=>{switch(r.op){case"Abs":case"ComplexAbs":return[Tt(k("x",r,e,t))];case"Acos":return[km(k("x",r,e,t))];case"Acosh":return[Cm(k("x",r,e,t))];case"Asin":return[Nm(k("x",r,e,t))];case"Asinh":return[Sm(k("x",r,e,t))];case"Atan":return[Tm(k("x",r,e,t))];case"Atan2":return[Em(k("x",r,e,t),k("y",r,e,t))];case"Atanh":return[Am(k("x",r,e,t))];case"Ceil":return[$m(k("x",r,e,t))];case"Complex":return[vo(k("real",r,e,t),k("imag",r,e,t))];case"Cos":return[Ia(k("x",r,e,t))];case"Cosh":return[Su(k("x",r,e,t))];case"Elu":return[Ss(k("x",r,e,t))];case"Erf":return[Mm(k("x",r,e,t))];case"Exp":return[Jt(k("x",r,e,t))];case"Expm1":return[Lm(k("x",r,e,t))];case"Floor":return[Ts(k("x",r,e,t))];case"Log":return[ar(k("x",r,e,t))];case"Log1p":return[Au(k("x",r,e,t))];case"Imag":return[Eu(k("x",r,e,t))];case"Neg":return[qe(k("x",r,e,t))];case"Reciprocal":return[jm(k("x",r,e,t))];case"Real":return[ul(k("x",r,e,t))];case"Relu":return[Tr(k("x",r,e,t))];case"Round":return[qm(k("x",r,e,t))];case"Selu":return[Lu(k("x",r,e,t))];case"Sigmoid":return[Hr(k("x",r,e,t))];case"Sin":return[zu(k("x",r,e,t))];case"Sign":return[Km(k("x",r,e,t))];case"Sinh":return[Bu(k("x",r,e,t))];case"Softplus":return[Es(k("x",r,e,t))];case"Sqrt":return[yt(k("x",r,e,t))];case"Square":return[Me(k("x",r,e,t))];case"Tanh":return[Mi(k("x",r,e,t))];case"Tan":return[Jm(k("x",r,e,t))];case"ClipByValue":return[ir(k("x",r,e,t),k("clipValueMin",r,e,t),k("clipValueMax",r,e,t))];case"Relu6":return[Pu(k("x",r,e,t))];case"Rsqrt":return[Mu(gr(r.inputNames[0],e,t))];case"Prod":return[Fu(k("x",r,e,t),k("axes",r,e,t))];case"LeakyRelu":return[Sa(k("x",r,e,t),k("alpha",r,e,t))];case"Prelu":return[$a(k("x",r,e,t),k("alpha",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function So(r,e,t=""){y.assert(Q6(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function Q6(r,e){if(r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==-1&&e[t]!==-1&&r[t]!==e[t])return!1;return!0}var $v=class{constructor(e,t,o,n,s,a,i){this.name=e,this.dtype=t,this.maxSize=o,this.elementShape=n,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ue(0),At(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let o=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),So(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),o.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(o.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);o.tensor=t,At(t),o.written=!0,this.tensors[e]=o}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((o,n)=>this.write(o,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return Fr([],[0].concat(this.elementShape));let o=this.readMany(e);return So(this.elementShape,o[0].shape,"TensorArray shape mismatch: "),Wt(o,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Fr([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let o=this.readMany(t);return So(this.elementShape,o[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${o[0].shape})`),Qe(o,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let o=Math.max(...e);if(!this.dynamicSize&&o>=this.maxSize)throw new Error(`Max index must be < array size (${o} vs. ${this.maxSize})`);this.writeMany(e,cr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let o=0,n=e.map(l=>(o+=l,o));if(o!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${o}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=o===0?0:t.size/o,a=[];V(()=>{t=L(t,[1,o,s]);for(let l=0;l<e.length;++l){let u=l===0?0:n[l-1],c=[0,u,0],p=[1,e[l],s];a[l]=L(Oe(t,c,p),this.elementShape)}return a});let i=[];for(let l=0;l<e.length;l++)i[l]=l;this.writeMany(i,a)}};var nc=class{constructor(e,t,o,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=o,e!=null&&e.forEach(s=>{if(o!==s.dtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${s.dtype}`);So(t,s.shape,"TensorList shape mismatch: "),At(s)}),this.idTensor=ue(0),this.maxNumElements=n,At(this.idTensor)}get id(){return this.idTensor.id}copy(){return new nc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,o=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(o!==-1&&this.tensors.length!==o)throw new Error(`Operation expected a list with ${o} elements but got a list with ${this.tensors.length} elements.`);return So(e,this.elementShape,"TensorList shape mismatch: "),V(()=>{let n=this.tensors.map(s=>L(s,e));return Wt(n,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let o=this.tensors.pop();return So(o.shape,e,"TensorList shape mismatch: "),L(o,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(So(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");At(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,o){if(o!==this.elementDtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return So(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);So(this.elementShape,t.shape,"TensorList shape mismatch: "),At(t),this.tensors[e]=t}gather(e,t,o){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return So(this.elementShape,o,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?Fr([],[0].concat(this.elementShape)):V(()=>{let n=e.map(s=>L(this.tensors[s],o));return Wt(n,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return So(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?Fr([],[0].concat(this.elementShape)):V(()=>{let o=this.tensors.map(n=>L(n,t));return Qe(o,0)})}};function Q1(r,e,t){let o=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let n=r.shape.slice(1);So(n,e,"TensorList shape mismatch: ");let s=cr(r);return new nc(s,e,o)}function eE(r,e,t){return new nc([],r,e,t)}function tE(r,e,t,o){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let n=Math.max(...e);if(o!=null&&o!==-1&&n>=o)throw new Error(`Max index must be < array size (${n} vs. ${o})`);let s=new nc([],t,r.dtype,o),a=cr(r,0);return e.forEach((i,l)=>{s.setItem(i,a[l])}),s}function rE(r,e,t){let o=0,n=e.map(l=>(o+=l,o));if(o!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${o}, and tensor's shape is: ${r.shape}`);let s=o===0?0:r.size/o,a=V(()=>{let l=[];r=L(r,[1,o,s]);for(let u=0;u<e.length;++u){let c=u===0?0:n[u-1],p=[0,c,0],m=[1,e[u],s];l[u]=L(Oe(r,p,m),t)}return r.dispose(),l}),i=new nc([],t,r.dtype,e.length);for(let l=0;l<a.length;l++)i.setItem(l,a[l]);return i}var oE=async(r,e,t)=>{switch(r.op){case"If":case"StatelessIf":{let o=k("thenBranch",r,e,t),n=k("elseBranch",r,e,t),s=k("cond",r,e,t),a=k("args",r,e,t);return(await s.data())[0]?t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let o=k("body",r,e,t),n=k("cond",r,e,t),s=k("args",r,e,t),a=await t.functionMap[n].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),l=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let p=u.map(f=>f.id);c.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);l=await m[0].data(),m.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return u}case"LoopCond":{let o=k("pred",r,e,t);return[zs(o)]}case"Switch":{let o=k("pred",r,e,t),n=k("data",r,e,t);return n.kept||(n=zs(n)),(await o.data())[0]?[void 0,n]:[n,void 0]}case"Merge":{let o=r.inputNames.find(n=>gr(n,e,t)!==void 0);if(o){let n=gr(o,e,t);return[zs(n)]}return}case"Enter":{let o=k("frameName",r,e,t),n=k("tensor",r,e,t);return t.enterFrame(o),[zs(n)]}case"Exit":{let o=k("tensor",r,e,t);return t.exitFrame(),[zs(o)]}case"NextIteration":{let o=k("tensor",r,e,t);return t.nextIteration(),[zs(o)]}case"TensorArrayV3":{let o=k("size",r,e,t),n=k("dtype",r,e,t),s=k("elementShape",r,e,t),a=k("dynamicSize",r,e,t),i=k("clearAfterRead",r,e,t),l=k("identicalElementShapes",r,e,t),u=k("name",r,e,t),c=new $v(u,n,o,s,l,a,i);return t.addTensorArray(c),[c.idTensor,ue(1)]}case"TensorArrayWriteV3":{let o=k("tensorArrayId",r,e,t),n=k("index",r,e,t),s=k("tensor",r,e,t),a=t.getTensorArray(o.id);return a.write(n,s),[a.idTensor]}case"TensorArrayReadV3":{let o=k("tensorArrayId",r,e,t),n=k("index",r,e,t);return[t.getTensorArray(o.id).read(n)]}case"TensorArrayGatherV3":{let o=k("tensorArrayId",r,e,t),n=k("indices",r,e,t),s=k("dtype",r,e,t);return[t.getTensorArray(o.id).gather(n,s)]}case"TensorArrayScatterV3":{let o=k("tensorArrayId",r,e,t),n=k("indices",r,e,t),s=k("tensor",r,e,t),a=t.getTensorArray(o.id);return a.scatter(n,s),[a.idTensor]}case"TensorArrayConcatV3":{let o=k("tensorArrayId",r,e,t),n=t.getTensorArray(o.id),s=k("dtype",r,e,t);return[n.concat(s)]}case"TensorArraySplitV3":{let o=k("tensorArrayId",r,e,t),n=k("tensor",r,e,t),s=k("lengths",r,e,t),a=t.getTensorArray(o.id);return a.split(s,n),[a.idTensor]}case"TensorArraySizeV3":{let o=k("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return[ue(n.size(),"int32")]}case"TensorArrayCloseV3":{let o=k("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return n.clearAndClose(),[n.idTensor]}case"TensorListSetItem":{let o=k("tensorListId",r,e,t),n=k("index",r,e,t),s=k("tensor",r,e,t),a=t.getTensorList(o.id);return a.setItem(n,s),[a.idTensor]}case"TensorListGetItem":{let o=k("tensorListId",r,e,t),n=k("index",r,e,t),s=k("elementShape",r,e,t),a=k("elementDType",r,e,t);return[t.getTensorList(o.id).getItem(n,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let o=k("indices",r,e,t),n=k("tensor",r,e,t),s=k("elementShape",r,e,t),a=k("numElements",r,e,t),i=tE(n,o,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let o=k("elementShape",r,e,t),n=k("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=k(s,r,e,t),i=eE(o,n,a);return t.addTensorList(i),[i.idTensor]}case"TensorListGather":{let o=k("tensorListId",r,e,t),n=k("indices",r,e,t),s=k("elementShape",r,e,t),a=k("elementDType",r,e,t);return[t.getTensorList(o.id).gather(n,a,s)]}case"TensorListStack":{let o=k("tensorListId",r,e,t),n=k("elementShape",r,e,t),s=k("elementDType",r,e,t),a=k("numElements",r,e,t);return[t.getTensorList(o.id).stack(n,s,a)]}case"TensorListFromTensor":{let o=k("tensor",r,e,t),n=k("elementShape",r,e,t),s=k("elementDType",r,e,t),a=Q1(o,n,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":{let o=k("tensorListId",r,e,t),n=t.getTensorList(o.id),s=k("dtype",r,e,t),a=k("elementShape",r,e,t);return[n.concat(s,a)]}case"TensorListPushBack":{let o=k("tensorListId",r,e,t),n=k("tensor",r,e,t),s=t.getTensorList(o.id);return s.pushBack(n),[s.idTensor]}case"TensorListPopBack":{let o=k("tensorListId",r,e,t),n=k("elementShape",r,e,t),s=k("elementDType",r,e,t);return[t.getTensorList(o.id).popBack(n,s)]}case"TensorListSplit":{let o=k("tensor",r,e,t),n=k("elementShape",r,e,t),s=k("lengths",r,e,t),a=rE(o,s,n);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function nE(r,e,t){let[o,n]=k("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=o==="fusedbatchnorm",l=k("numArgs",r,e,t);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(i)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=k("strides",r,e,t),c=Ad(r,e,t),p=k("dataFormat",r,e,t).toUpperCase(),m=k("dilations",r,e,t),[f,d]=k("args",r,e,t),h=k("leakyreluAlpha",r,e,t);return{stride:u,pad:c,dataFormat:p,dilations:m,biasArg:f,preluArg:d,activationFunc:n,leakyreluAlpha:h}}var sE=(r,e,t)=>{switch(r.op){case"Conv1D":{let o=k("stride",r,e,t),n=k("pad",r,e,t),s=k("dataFormat",r,e,t).toUpperCase(),a=k("dilation",r,e,t);return[Iu(k("x",r,e,t),k("filter",r,e,t),o,n,s,a)]}case"Conv2D":{let o=k("strides",r,e,t),n=Ad(r,e,t),s=k("dataFormat",r,e,t).toUpperCase(),a=k("dilations",r,e,t);return[Kr(k("x",r,e,t),k("filter",r,e,t),[o[1],o[2]],n,s,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=nE(r,e,t);return[Wn.conv2d({x:k("x",r,e,t),filter:k("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=nE(r,e,t);return[Wn.depthwiseConv2d({x:k("x",r,e,t),filter:k("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let o=k("outputShape",r,e,t),n=k("strides",r,e,t),s=Ad(r,e,t);return[Nu(k("x",r,e,t),k("filter",r,e,t),o,[n[1],n[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let o=k("strides",r,e,t),n=Ad(r,e,t),s=k("dilations",r,e,t),a=k("dataFormat",r,e,t).toUpperCase();return[Mo(k("input",r,e,t),k("filter",r,e,t),[o[1],o[2]],n,a,[s[1],s[2]])]}case"Conv3D":{let o=k("strides",r,e,t),n=k("pad",r,e,t),s=k("dataFormat",r,e,t).toUpperCase(),a=k("dilations",r,e,t);return[Rm(k("x",r,e,t),k("filter",r,e,t),[o[1],o[2],o[3]],n,s,[a[1],a[2],a[3]])]}case"AvgPool":{let o=k("strides",r,e,t),n=k("pad",r,e,t),s=k("kernelSize",r,e,t);return[ka(k("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPool":{let o=k("strides",r,e,t),n=k("pad",r,e,t),s=k("kernelSize",r,e,t);return[Aa(k("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPoolWithArgmax":{let o=k("strides",r,e,t),n=k("pad",r,e,t),s=k("kernelSize",r,e,t),a=k("includeBatchInIndex",r,e,t),{result:i,indexes:l}=k_(k("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n,a);return[i,l]}case"AvgPool3D":{let o=k("strides",r,e,t),n=k("pad",r,e,t),s=k("kernelSize",r,e,t);return[Dm(k("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"MaxPool3D":{let o=k("strides",r,e,t),n=k("pad",r,e,t),s=k("kernelSize",r,e,t);return[Wm(k("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"Dilation2D":{let o=k("strides",r,e,t),n=k("pad",r,e,t),s=k("dilations",r,e,t),a=o[1],i=o[2],l=s[1],u=s[2];return[Om(k("x",r,e,t),k("filter",r,e,t),[a,i],n,[l,u],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var iE=(r,e,t)=>{switch(r.op){case"Fill":{let o=k("shape",r,e,t),n=k("dtype",r,e,t),s=k("value",r,e,t);return[Na(o,s,n)]}case"LinSpace":{let o=k("start",r,e,t),n=k("stop",r,e,t),s=k("num",r,e,t);return[x_(o,n,s)]}case"Multinomial":{let o=k("logits",r,e,t),n=k("numSamples",r,e,t),s=k("seed",r,e,t);return[C_(o,n,s)]}case"OneHot":{let o=k("indices",r,e,t),n=k("depth",r,e,t),s=k("onValue",r,e,t),a=k("offValue",r,e,t);return[Is(o,n,s,a)]}case"Ones":return[Sr(k("shape",r,e,t),k("dtype",r,e,t))];case"OnesLike":return[rr(k("x",r,e,t))];case"RandomUniform":return[As(k("shape",r,e,t),k("minval",r,e,t),k("maxval",r,e,t),k("dtype",r,e,t))];case"Range":{let o=k("start",r,e,t),n=k("stop",r,e,t),s=k("step",r,e,t);return[Zc(o,n,s,k("dtype",r,e,t))]}case"TruncatedNormal":{let o=k("shape",r,e,t),n=k("mean",r,e,t),s=k("stdDev",r,e,t),a=k("seed",r,e,t);return[Wu(o,n,s,k("dtype",r,e,t),a)]}case"Zeros":return[mt(k("shape",r,e,t),k("dtype",r,e,t))];case"ZerosLike":return[Ne(k("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Rv(r,e,t){let o=k("boxes",r,e,t),n=k("scores",r,e,t),s=k("maxOutputSize",r,e,t),a=k("iouThreshold",r,e,t),i=k("scoreThreshold",r,e,t),l=k("softNmsSigma",r,e,t);return{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}}var aE=async(r,e,t)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}=Rv(r,e,t),u=await $s.nonMaxSuppressionWithScoreAsync(o,n,s,a,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=Rv(r,e,t),l=k("padToMaxOutputSize",r,e,t),u=await $s.nonMaxSuppressionPaddedAsync(o,n,s,a,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=Rv(r,e,t);return[await $s.nonMaxSuppressionAsync(o,n,s,a,i)]}case"Where":{let o=oe(k("condition",r,e,t),"bool"),n=[await tf(o)];return o.dispose(),n}case"ListDiff":return F_(k("x",r,e,t),k("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var lE=(r,e,t)=>{switch(r.op){case"TopKV2":{let o=k("x",r,e,t),n=k("k",r,e,t),s=k("sorted",r,e,t),a=Qm(o,n,s);return[a.values,a.indices]}case"Unique":{let o=k("x",r,e,t),n=Qc(o);return[n.values,n.indices]}case"UniqueV2":{let o=k("x",r,e,t),n=k("axis",r,e,t),s=Qc(o,n);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var uE=(r,e,t)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let o=k("default",r,e,t);return[gr(r.name,e,t)||o];case"Placeholder":return[gr(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",r,e,t);return[zs(u)]}case"IdentityN":return k("x",r,e,t).map(u=>zs(u));case"Snapshot":let n=k("x",r,e,t);return[zs(n)];case"Shape":return[Gt(k("x",r,e,t).shape,"int32")];case"ShapeN":return k("x",r,e,t).map(u=>Gt(u.shape));case"Size":return[ue(k("x",r,e,t).size,"int32")];case"Rank":return[ue(k("x",r,e,t).rank,"int32")];case"NoOp":return[ue(1)];case"Print":let s=k("x",r,e,t),a=k("data",r,e,t),i=k("message",r,e,t),l=k("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<a.length;u++)console.log(Array.prototype.slice.call(a[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Fv=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ue(0),this.tensorMap=new Map,At(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),V(()=>{let n=cr(t),s=o.length,a=n.length;y.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i<s;i++){let l=o[i],u=n[i];At(u),this.tensorMap.set(l,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return V(()=>{let n=[];for(let s=0;s<o.length;s++){let a=o[s],i=this.findWithDefault(a,t);n.push(i)}return Wt(n)})}findWithDefault(e,t){let o=this.tensorMap.get(e);return o!=null?o:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}};var cE=async(r,e,t,o)=>{switch(r.op){case"HashTable":case"HashTableV2":{let n=k("keyDType",r,e,t),s=k("valueDType",r,e,t),a=new Fv(n,s);return o.addHashTable(r.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{let n=k("tableHandle",r,e,t,o),s=k("keys",r,e,t),a=k("values",r,e,t);return[await o.getHashTableById(n.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let n=k("tableHandle",r,e,t,o),s=k("keys",r,e,t),a=k("defaultValue",r,e,t);return[await o.getHashTableById(n.id).find(s,a)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var pE=(r,e,t)=>{switch(r.op){case"ResizeBilinear":{let o=k("images",r,e,t),n=k("size",r,e,t),s=k("alignCorners",r,e,t),a=k("halfPixelCenters",r,e,t);return[$s.resizeBilinear(o,[n[0],n[1]],s,a)]}case"ResizeNearestNeighbor":{let o=k("images",r,e,t),n=k("size",r,e,t),s=k("alignCorners",r,e,t),a=k("halfPixelCenters",r,e,t);return[$s.resizeNearestNeighbor(o,[n[0],n[1]],s,a)]}case"CropAndResize":{let o=k("image",r,e,t),n=k("boxes",r,e,t),s=k("boxInd",r,e,t),a=k("cropSize",r,e,t),i=k("method",r,e,t),l=k("extrapolationValue",r,e,t);return[$s.cropAndResize(o,n,s,a,i,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var mE=(r,e,t)=>{switch(r.op){case"Equal":return[Xr(k("a",r,e,t),k("b",r,e,t))];case"NotEqual":return[ko(k("a",r,e,t),k("b",r,e,t))];case"Greater":return[Xt(k("a",r,e,t),k("b",r,e,t))];case"GreaterEqual":return[Or(k("a",r,e,t),k("b",r,e,t))];case"Less":return[Ta(k("a",r,e,t),k("b",r,e,t))];case"LessEqual":return[no(k("a",r,e,t),k("b",r,e,t))];case"LogicalAnd":return[dr(k("a",r,e,t),k("b",r,e,t))];case"LogicalNot":return[Ea(k("a",r,e,t))];case"LogicalOr":return[$u(k("a",r,e,t),k("b",r,e,t))];case"Select":case"SelectV2":return[Dt(k("condition",r,e,t),k("a",r,e,t),k("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var fE=(r,e,t)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ue(k("a",r,e,t),k("b",r,e,t),k("transposeA",r,e,t),k("transposeB",r,e,t))];case"Transpose":return[je(k("x",r,e,t),k("perm",r,e,t))];case"_FusedMatMul":let[o,n]=k("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=k("numArgs",r,e,t),l=k("leakyreluAlpha",r,e,t);if(s){if(a&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=k("args",r,e,t);return[Wn.matMul({a:k("a",r,e,t),b:k("b",r,e,t),transposeA:k("transposeA",r,e,t),transposeB:k("transposeB",r,e,t),bias:u,activation:n,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var dE=(r,e,t)=>{switch(r.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[zn(k("x",r,e,t),k("mean",r,e,t),k("variance",r,e,t),k("offset",r,e,t),k("scale",r,e,t),k("epsilon",r,e,t))];case"FusedBatchNormV3":return[zn(k("x",r,e,t),k("mean",r,e,t),k("variance",r,e,t),k("offset",r,e,t),k("scale",r,e,t),k("epsilon",r,e,t))];case"LRN":return[zm(k("x",r,e,t),k("radius",r,e,t),k("bias",r,e,t),k("alpha",r,e,t),k("beta",r,e,t))];case"Softmax":return[Ra(k("x",r,e,t))];case"LogSoftmax":return[Du(k("x",r,e,t))];case"SparseToDense":return[rf(k("sparseIndices",r,e,t),k("outputShape",r,e,t),k("sparseValues",r,e,t),k("defaultValue",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var hE=(r,e,t)=>{switch(r.op){case"Max":{let a=k("axis",r,e,t),i=k("keepDims",r,e,t);return[lr(k("x",r,e,t),a,i)]}case"Mean":{let a=k("axis",r,e,t),i=k("keepDims",r,e,t);return[xt(k("x",r,e,t),a,i)]}case"Min":{let a=k("axis",r,e,t),i=k("keepDims",r,e,t);return[Li(k("x",r,e,t),a,i)]}case"Sum":{let a=k("axis",r,e,t),i=k("keepDims",r,e,t);return[_e(k("x",r,e,t),a,i)]}case"All":{let a=k("axis",r,e,t),i=k("keepDims",r,e,t);return[vu(k("x",r,e,t),a,i)]}case"Any":{let a=k("axis",r,e,t),i=k("keepDims",r,e,t);return[il(k("x",r,e,t),a,i)]}case"ArgMax":{let a=k("axis",r,e,t);return[al(k("x",r,e,t),a)]}case"ArgMin":{let a=k("axis",r,e,t);return[Im(k("x",r,e,t),a)]}case"Prod":{let a=k("axis",r,e,t),i=k("keepDims",r,e,t);return[Fu(k("x",r,e,t),a,i)]}case"Cumsum":{let a=k("axis",r,e,t),i=k("exclusive",r,e,t),l=k("reverse",r,e,t);return[Tu(k("x",r,e,t),a,i,l)]}case"Bincount":let o=k("x",r,e,t),n=k("weights",r,e,t),s=k("size",r,e,t);return[a_(o,n,s)];case"DenseBincount":{let a=k("x",r,e,t),i=k("weights",r,e,t),l=k("size",r,e,t),u=k("binaryOutput",r,e,t);return[m_(a,i,l,u)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var gE=(r,e,t)=>{switch(r.op){case"ConcatV2":case"Concat":{let o=k("n",r,e,t),n=k("axis",r,e,t),s=k("tensors",r,e,t);return s=s.slice(0,o),[Qe(s,n)]}case"Gather":{let o=k("x",r,e,t),n=k("indices",r,e,t);return[Bn(o,oe(n,"int32"),0)]}case"GatherV2":{let o=k("axis",r,e,t),n=k("batchDims",r,e,t),s=k("x",r,e,t),a=k("indices",r,e,t);return[Bn(s,oe(a,"int32"),o,n)]}case"Reverse":{let o=k("dims",r,e,t),n=[];for(let a=0;a<o.length;a++)o[a]&&n.push(a);let s=k("x",r,e,t);return[Yt(s,n)]}case"ReverseV2":{let o=k("axis",r,e,t),n=k("x",r,e,t);return[Yt(n,o)]}case"Slice":{let o=k("begin",r,e,t),n=k("size",r,e,t);return[Oe(k("x",r,e,t),o,n)]}case"StridedSlice":{let o=k("begin",r,e,t),n=k("end",r,e,t),s=k("strides",r,e,t),a=k("beginMask",r,e,t),i=k("endMask",r,e,t),l=k("ellipsisMask",r,e,t),u=k("newAxisMask",r,e,t),c=k("shrinkAxisMask",r,e,t),p=k("x",r,e,t);return[Zm(p,o,n,s,a,i,l,u,c)]}case"Pack":return V(()=>{let o=k("axis",r,e,t),n=k("tensors",r,e,t),s=n[0].shape,a=Co(n[0]).shape,i=n.map(l=>{let u=y.arraysEqual(l.shape,s);if(!u&&!y.arraysEqual(Co(l).shape,a))throw new Error("the input tensors shape does not match");return u?l:L(l,s)});return[Wt(i,o)]});case"Unpack":{let o=k("axis",r,e,t),n=k("tensor",r,e,t);return cr(n,o)}case"Tile":{let o=k("reps",r,e,t);return[Lo(k("x",r,e,t),o)]}case"Split":case"SplitV":{let o=k("axis",r,e,t),n=k("numOrSizeSplits",r,e,t),s=k("x",r,e,t);return ur(s,n,o)}case"ScatterNd":{let o=k("indices",r,e,t),n=k("values",r,e,t),s=k("shape",r,e,t);return[J_(o,n,s)]}case"GatherNd":{let o=k("x",r,e,t),n=k("indices",r,e,t);return[Q_(o,n)]}case"SparseToDense":{let o=k("sparseIndices",r,e,t),n=k("outputShape",r,e,t),s=k("sparseValues",r,e,t),a=k("defaultValue",r,e,t);return[rf(o,s,n,s.dtype===a.dtype?a:oe(a,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var xE=(r,e,t)=>{switch(r.op){case"FFT":return[Fa(k("x",r,e,t))];case"IFFT":return[zi(k("x",r,e,t))];case"RFFT":return[Oa(k("x",r,e,t))];case"IRFFT":return[Vu(k("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var yE=(r,e,t)=>{switch(r.op){case"Cast":return[oe(k("x",r,e,t),k("dtype",r,e,t))];case"ExpandDims":{let o=k("axis",r,e,t);return[br(k("x",r,e,t),o)]}case"Squeeze":{let o=k("axis",r,e,t);return[Co(k("x",r,e,t),o)]}case"Reshape":return[L(k("x",r,e,t),k("shape",r,e,t))];case"MirrorPad":return[Gm(k("x",r,e,t),k("padding",r,e,t),k("mode",r,e,t))];case"PadV2":case"Pad":return[Pr(k("x",r,e,t),k("padding",r,e,t),k("constantValue",r,e,t))];case"SpaceToBatchND":{let o=k("blockShape",r,e,t),n=k("paddings",r,e,t);return[Da(k("x",r,e,t),o,n)]}case"BatchToSpaceND":{let o=k("blockShape",r,e,t),n=k("crops",r,e,t);return[Ca(k("x",r,e,t),o,n)]}case"DepthToSpace":{let o=k("blockSize",r,e,t),n=k("dataFormat",r,e,t).toUpperCase();return[Fm(k("x",r,e,t),o,n)]}case"BroadcastTo":return[ll(k("x",r,e,t),k("shape",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Ov(r,e,t,o){let n=((s,a,i)=>{switch(s.category){case"arithmetic":return V(()=>Z1(s,a,i));case"basic_math":return V(()=>J1(s,a,i));case"control":return oE(s,a,i);case"convolution":return V(()=>sE(s,a,i));case"creation":return V(()=>iE(s,a,i));case"dynamic":return aE(s,a,i);case"evaluation":return V(()=>lE(s,a,i));case"image":return V(()=>pE(s,a,i));case"graph":return V(()=>uE(s,a,i));case"logical":return V(()=>mE(s,a,i));case"matrices":return V(()=>fE(s,a,i));case"normalization":return V(()=>dE(s,a,i));case"reduction":return V(()=>hE(s,a,i));case"slice_join":return V(()=>gE(s,a,i));case"spectral":return V(()=>xE(s,a,i));case"transformation":return V(()=>yE(s,a,i));case"hash_table":return cE(s,a,i,o);case"custom":let l=Zg(s.op);if(l&&l.customExecutor)return l.customExecutor(new Dv(s,a,i));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return y.isPromise(n)?n.then(s=>[].concat(s)):[].concat(n)}var cx=class{constructor(e={},t={},o={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=o,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let o=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(o))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Mv(r,e,t,o){let n=new Set,s=[],a=null,i=null,l=new Set,u=Object.keys(r).map(m=>eo(m)[0]),c=[];o!=null&&(c=o.map(m=>eo(m.name)[0]));let p=[...e];for(;p.length>0;){let m=p.pop();if((Pv(m)||e5(m)||t5(m))&&a==null&&(a=m,i=a.children.map(f=>f.name).filter(f=>n.has(f))),n.add(m.name),t[m.name]==null&&u.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{l.has(f.name)||(l.add(f.name),p.push(f))})}}return{inputs:r,outputs:e,usedNodes:n,missingInputs:s,dynamicNode:a,syncInputs:i}}function bE(r,e,t){let{usedNodes:o,inputs:n}=t,s=[],a=Object.keys(n).map(c=>eo(c)[0]).map(c=>r.nodes[c]),i=r.initNodes;a.forEach(c=>{o.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{o.has(c.name)&&s.push(c)}),i!=null&&i.forEach(c=>{o.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),e[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&o.has(p.name)&&p.inputs.every(m=>l.has(m.name))&&s.push(p)})}return u}var r5=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],o5=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],n5=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function Pv(r){return r5.indexOf(r.op)>=0}function e5(r){return o5.indexOf(r.op)>=0}function t5(r){return n5.indexOf(r.op)>=0}var Dp=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(o=>{this._functionExecutorMap[o]=new Dp(e.functions[o],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(o=>e[o].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let o=e.map(s=>s.name).sort(),n=t.map(s=>s.name).sort();return o.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let o=Mv(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:s,syncInputs:a}=o;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(n.length>0){let i=t.map(u=>u.name),l=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${l}]. Missing the following inputs: [${n}]`)}return bE(this.graph,this.weightMap,o)}execute(e,t){e=this.mapInputs(e);let o=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=o.map(p=>this.graph.nodes[eo(p)[0]]),s=t.map(p=>eo(p)[0]),a=s.map(p=>this.graph.nodes[p]);a.length===0&&(a=this._outputs);let i=this.getCompilationKey(n,a),l=this.compiledMap.get(i);l==null&&(l=this.compile(e,a),this.compiledMap.set(i,l));let u={},c={};return V(()=>{let p=new cx(this.weightMap,u,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(e).forEach(h=>{let[g,x]=eo(h),b=[];b[x]=e[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<l.length;h++){let g=l[h];if(!m[g.name]){let x=Ov(g,m,p,this._resourceManager);if(y.isPromise(x))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=x,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),t.map(h=>gr(h,m,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(o=>e[o]).map(o=>o.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,o,n,s,a,i){t.category==="control"||a.indexOf(e)!==-1||(o[e].forEach(l=>{l!=null&&(i[l.id]=(i[l.id]||0)+t.children.length)}),t.inputs.forEach(l=>{if(l.category!=="control"){let u=H1(l.name,o,n);u!=null&&u.forEach(c=>{if(c&&!s.has(c.id)){let p=i[c.id];p===1?(c.dispose(),delete i[c.id]):p!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,o=!1,n={},s={}){o||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new cx(this.weightMap,n,s,this.functionExecutorMap),i=await this.executeWithControlFlow(e,a,t,o),l=t.map(m=>gr(m,i,a)),u=l.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),p=new Set([...u,...c,...this.weightIds]);return Object.keys(i).forEach(m=>{i[m].forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(p),l}async executeFunctionAsync(e,t,o){let n=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(n,this.outputNodes,!0,t,o)}async executeWithControlFlow(e,t,o,n){let s=Object.keys(e),a=s.map(_=>this.graph.nodes[eo(_)[0]]),i=o.map(_=>eo(_)[0]),l=i.map(_=>this.graph.nodes[_]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:c,dynamicNode:p,syncInputs:m}=Mv(e,l,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(_=>({node:_,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(_=>{let[w,C]=eo(_),D=[];D[C]=e[_],d[w]=D});let h={},g=this.getFrozenTensorIds(d),x={};for(;f.length>0;){let _=this.processStack(a,f,t,d,x,g,i,h,u);await Promise.all(_)}p==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=l.filter(_=>!Pv(_)&&!gr(_.name,d,t)).map(_=>_.name);if(b.length>0){let _="";throw p!=null&&(_=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${_}`)}return d}processStack(e,t,o,n,s,a,i,l,u){let c=[];for(;t.length>0;){let p=t.pop();o.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&k("isConstant",p.node,n,o)&&([m]=Ls(p.node.name,o)),n[p.node.name]==null){let f=Ov(p.node,n,o,this._resourceManager);m||([m]=Ls(p.node.name,o));let d=o.currentContext;y.isPromise(f)?c.push(f.then(h=>(n[m]=h,o.currentContext=d,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u),h))):(n[m]=f,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u))}else this.processChildNodes(p.node,t,o,n,s,u)}return c}processChildNodes(e,t,o,n,s,a){e.children.forEach(i=>{let[l]=Ls(i.name,o);s[l]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!gr(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})):i.inputNames.every(u=>!!gr(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let o=e[t],[n]=eo(t),s=this.graph.nodes[n];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===o.shape.length&&o.shape.every((l,u)=>a[u]===-1||a[u]===l);y.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${o.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(o.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${o.dtype}`)})}mapInputs(e){let t={};for(let o in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[o]!=null){let n=this._signature.inputs[o];t[n.name]=e[o]}else t[o]=e[o];return t}checkInputs(e){let t=Object.keys(e).filter(o=>{let[n]=eo(o);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[o]=eo(t);if(!this.graph.nodes[o])throw new Error(`The output '${t}' is not found in the graph`)})}};var Lv=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var s5="?tfjs-format=file",i5="model.json",px=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Lv}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Ir.browserHTTPRequest(e,this.loadOptions);else{let t=Ir.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Ir.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,o;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?o=this.artifacts.userDefinedMetadata.signature:o=this.artifacts.signature,this.signature=o,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=Ir.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Dp(Qg.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=Qg.Instance.transformGraph(e.modelInitializer);this.initializer=new Dp(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let o=Ir.getSaveHandlers(e);if(o.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(o.length>1)throw new Error(`Found more than one (${o.length}) save handlers for URL '${e}'`);e=o[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof R)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,o,n)=>(t[o]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=this.executor.execute(e,t);return o.length>1?o:o[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=await this.executor.executeAsync(e,t);return o.length>1?o:o[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,o)=>(t[o]=[e[o]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function _E(r,e={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&r.load==null&&(r.endsWith("/")||(r=r+"/"),r=`${r}${i5}${s5}`);let t=new px(r,e);return await t.load(),t}var mx="2.8.5";var qv={};tt(qv,{CSVDataset:()=>Od,Dataset:()=>Hi,FileDataSource:()=>Bd,TextLineDataset:()=>Rd,URLDataSource:()=>Vd,array:()=>WE,csv:()=>JE,func:()=>QE,generator:()=>eA,microphone:()=>rA,version_data:()=>bx,webcam:()=>tA,zip:()=>GE});var VE=Tc(Um());var NE=Tc(Um());function wE(r,e){return fx(r,e)}function fx(r,e,t=new Map,o=new Set){if(r==null)return null;if(o.has(r))throw new Error("Circular references are not supported.");if(t.has(r))return t.get(r);let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(n.recurse)if(Cl(r)){let s=Array.isArray(r)?[]:{};o.add(r);for(let a in r){let i=r[a],l=fx(i,e,t,o);s[a]=l}return o.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return t.set(r,n.value),n.value}function kE(r,e=zv){return vE(r,e)}function vE(r,e,t=new Set){let o=r[0];if(t.has(o))throw new Error("Circular references are not supported.");let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(n.recurse)if(Cl(o)){let s=Array.isArray(o)?[]:{};t.add(o);for(let a in o){let i=r.map(u=>u[a]),l=vE(i,e,t);s[a]=l}return t.delete(o),s}else throw new Error(`Can't recurse into non-iterable type: ${o}`);else return n.value}function zv(r){return r===null?null:Cl(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function dx(r,e){let t=new Map;fx(r,e,t);for(let n of Array.from(t.keys())){let s=t.get(n);if(y.isPromise(s)){let a=await s;t.set(n,a)}}return fx(r,e,t)}function Cl(r){return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof R))}function CE(r){return r==null||a5(r)||Array.isArray(r)||typeof r=="object"&&r instanceof R||y.isTypedArray(r)}function a5(r){return r===null||typeof r!="object"&&typeof r!="function"}function IE(r){return wE(r,l5)}function l5(r){return r instanceof R?{value:r.clone(),recurse:!1}:Cl(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var Dd=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),o=this.get(t);return this.set(t,this.pop()),o}};var $p=class extends Dd{constructor(){super($p.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),o=this.length();for(let n=0;n<o;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=o}};$p.INITIAL_CAPACITY=32;function Bv(r){return new SE(r)}function $d(r){return new TE(r)}function EE(r,e){return new Vv(r,e)}function DE(r,e=Ga.FAIL){return new AE(r,e)}var Zt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],o=await e.next();for(;!o.done;)t.push(o.value),o=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),o=e(t.value);for(;!t.done&&o;)t=await this.next(),o=e(t.value)}handleErrors(e){return new LE(this,e)}filter(e){return new PE(this,e)}map(e){return new ME(this,e)}mapAsync(e){return new Wv(this,e)}serialMapAsync(e){return new Wv(this,e).serial()}flatmap(e){return new zE(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new OE(this,e,t)}columnMajorBatch(e,t=!0,o=zv){return this.rowMajorBatch(e,t).map(s=>kE(s,o))}concatenate(e,t){return new Vv(Bv([this,e]),t)}take(e){return e<0||e==null?this:new FE(this,e)}skip(e){return e<0||e==null?this:new RE(this,e)}prefetch(e){return new Gv(this,e)}shuffle(e,t){return new BE(this,e,t)}serial(){return new $E(this)}},SE=class extends Zt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:IE(e),done:!1}}},TE=class extends Zt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},$E=class extends Zt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},RE=class extends Zt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ae(e.value)}return this.upstream.next()}},FE=class extends Zt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},OE=class extends Zt{constructor(e,t,o=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=o,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},PE=class extends Zt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ae(e.value)}}},ME=class extends Zt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ln.getTensorsInContainer(e.value),o=this.transform(e.value),n=Ln.getTensorsInContainer(o);for(let s of t)Ln.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},LE=class extends Zt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Wv=class extends Zt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ln.getTensorsInContainer(e.value),o=await this.transform(e.value),n=Ln.getTensorsInContainer(o);for(let s of t)Ln.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},Rp=class extends Zt{constructor(){super();this.outputQueue=new $p,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},zE=class extends Rp{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ln.getTensorsInContainer(e.value),o=this.transform(e.value),n=Ln.getTensorsInContainer(o);this.outputQueue.pushAll(o);for(let s of t)Ln.isTensorInList(s,n)||s.dispose();return!0}},Vv=class extends Zt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let o=await this.moreIterators.next();if(o.done)return{value:null,done:!0};this.iterator=o.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ga;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(Ga||(Ga={}));var AE=class extends Zt{constructor(e,t=Ga.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,o=0;function n(a){return a instanceof Zt?{value:a.next().then(l=>(t++,l.done&&o++,l.value)),recurse:!1}:{value:null,recurse:!0}}let s=await dx(this.iterators,n);if(t===o)return{value:null,done:!0};if(o>0)switch(this.mismatchMode){case Ga.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ga.SHORTEST:return{value:null,done:!0};case Ga.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Gv=class extends Zt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new Dd(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},BE=class extends Gv{constructor(e,t,o){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=NE.alea(o||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}};var Hi=class{constructor(){this.size=null}batch(e,t=!0){let o=this;y.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let n;return this.size===Infinity||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),po(async()=>(await o.iterator()).columnMajorBatch(e,t,u5),n)}concatenate(e){let t=this,o;return this.size===Infinity||e.size===Infinity?o=Infinity:this.size!=null&&e.size!=null?o=this.size+e.size:o=null,po(async()=>(await t.iterator()).concatenate(await e.iterator()),o)}filter(e){let t=this,o;return this.size===Infinity?o=Infinity:o=null,po(async()=>(await t.iterator()).filter(n=>V(()=>e(n))),o)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return po(async()=>(await t.iterator()).map(o=>V(()=>e(o))),this.size)}mapAsync(e){let t=this;return po(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return po(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,o;return this.size!=null&&e>0?o=this.size*e:e===0?o=0:this.size!=null&&(e===void 0||e<0)?o=Infinity:o=null,po(async()=>{let n=$d(async()=>({value:await t.iterator(),done:!1}));return EE(n.take(e))},o)}skip(e){let t=this,o;return this.size!=null&&e>=0&&this.size>=e?o=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?o=0:o=null,po(async()=>(await t.iterator()).skip(e),o)}shuffle(e,t,o=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,s=VE.alea(t||y.now().toString());return po(async()=>{let a=s.int32();return o&&(a+=s.int32()),(await n.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,o;return this.size!=null&&this.size>e?o=e:this.size!=null&&this.size<=e?o=this.size:o=null,po(async()=>(await t.iterator()).take(e),o)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Hi.MAX_BUFFER_SIZE=1e4;function po(r,e=null){return new class extends Hi{constructor(){super(...arguments);this.size=e}async iterator(){return r()}}}function WE(r){return po(async()=>Bv(r),r.length)}function GE(r){if(!Cl(r))throw new Error("The argument to zip() must be an object or array.");let e;if(Array.isArray(r))for(let t=0;t<r.length;t++)e=e==null?r[t].size:Math.min(e,r[t].size);else if(r instanceof Object)for(let t in r)e=e==null?r[t].size:Math.min(e,r[t].size);return po(async()=>{let t=await dx(r,o=>{if(o instanceof Hi)return{value:o.iterator(),recurse:!1};if(Cl(o))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return DE(t,Ga.SHORTEST)},e)}function u5(r){if(r===null)return null;let e=r[0];return CE(e)?{value:c5(r),recurse:!1}:{value:null,recurse:!0}}function c5(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof R?Wt(r):Fr(r)}var Rd=class extends Hi{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(n=>(n.endsWith("\r")&&(n=n.slice(0,-1)),n))}};var hx='"',Fd=Symbol("out"),UE=Symbol("field"),gx=Symbol("quote"),Uv=Symbol("quoteafterquote"),jE=Symbol("quoteinquote"),Od=class extends Hi{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Rd(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(y.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&y.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,s)=>(n[s]=n[s]+1||1,n),{}),o=Object.keys(t).filter(n=>t[n]>1);if(y.assert(o.length===0,()=>"Duplicate column names found: "+o.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let o=t.value;return this.parseRow(o,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),o={},n={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let l=t[s],u=null;if(l==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let c=Number(l);if(isNaN(c))i&&i.dtype==="bool"?u=this.getBoolean(l):u=l;else if(!i||!i.dtype)u=c;else switch(i.dtype){case"float32":u=c;break;case"int32":u=Math.floor(c);break;case"bool":u=this.getBoolean(l);break;default:u=c}}i&&i.isLabel?n[a]=u:o[a]=u}}return Object.keys(n).length===0?o:{xs:o,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let o=[],n=0,s=e.length,a=Fd;for(let i=0;i<s;i++)switch(a){case Fd:switch(e.charAt(i)){case hx:n=i+1,a=gx;break;case this.delimiter:if(n=i+1,this.delimiter===" "&&this.delimWhitespace)break;o.push(""),a=Fd;break;default:a=UE,n=i;break}break;case UE:switch(e.charAt(i)){case this.delimiter:o.push(e.substring(n,i)),a=Fd,n=i+1;break;default:}break;case gx:switch(e.charAt(i)){case hx:a=Uv;break;default:}break;case Uv:switch(e.charAt(i)){case this.delimiter:o.push(e.substring(n,i-1)),a=Fd,n=i+1;break;case hx:a=gx;break;default:a=jE;break}break;case jE:switch(e.charAt(i)){case hx:a=gx;break;default:}break;default:}if(a===Uv?o.push(e.substring(n,s-1)):o.push(e.substring(n)),t&&o.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${o}`);return o}};var Pd=class extends Zt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(W().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Pd(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(o){throw new Error(`Error thrown while initializing video stream: ${o.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,o=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(o.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(o.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],o=0;return new Promise(n=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++o===this.numFrames&&(clearInterval(s),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,o=new Float32Array(e.length*t);return e.forEach((n,s)=>o.set(n,s*t)),o}getTensorFromAudioDataArray(e,t){let o=new Float32Array(y.sizeFromShape(t));return o.set(e,o.length-e.length),Fr(o,t)}};var Md=class extends Zt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Gt([0],"int32"),this.webcamConfig.centerCrop){let o=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-o)/2,a=(1-n)/2,i=s+o,l=n+a;this.cropBox=Bi([a,s,l,i],[1,4])}else this.cropBox=Bi([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(W().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let o=new Md(e,t);return await o.start(),o}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Xh.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return V(()=>{let t=e.toFloat().expandDims(0),o;o=$s.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=o.shape;return o.reshape(n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var Ld=class{};var xx=class extends Zt{split(e){return new qE(this,e)}},qE=class extends xx{constructor(e,t){super();this.upstream=e,this.impl=new HE(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},HE=class extends Rp{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let o of t.slice(0,-1))this.outputQueue.push(o);return this.carryover=t[t.length-1],!0}};var jv=class extends Zt{decodeUTF8(){return new XE(this)}},XE=class extends xx{constructor(e){super();this.upstream=e,this.impl=new YE(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},YE=class extends Rp{constructor(e){super();if(this.upstream=e,W().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=KE();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let o;return W().get("IS_BROWSER")?o=this.decoder.decode(t,{stream:!0}):o=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(o),!0}};var zd=class extends jv{constructor(e,t={}){super();this.file=e,this.options=t,y.assert(e instanceof Uint8Array||(W().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,o)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,n)));else{let s=new FileReader;s.onload=i=>{let l=s.result;if(l instanceof ArrayBuffer&&(l=new Uint8Array(l)),!(l instanceof Uint8Array))return o(new TypeError("FileReader returned unknown type."));t(l)},s.onabort=i=>o(new Error("Aborted")),s.onerror=i=>o(new Error(i.type));let a=this.file.slice(this.offset,n);s.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function ZE(r,e={}){let t,o;typeof r=="string"?t=r:(t=r.url,o=p5(r));let n=await y.fetch(t,o);if(n.ok){let s=new Uint8Array(await n.arrayBuffer());return new zd(s,e)}else throw new Error(n.statusText)}var p5=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function yx(r){return typeof r=="string"&&r.substr(0,7)==="file://"}var Bd=class extends Ld{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(yx(this.input)&&W().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new zd(this.input,this.options)}};var Vd=class extends Ld{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return yx(this.url)?new Bd(this.url,this.fileOptions).iterator():ZE(this.url,this.fileOptions)}};function JE(r,e={}){return new Od(new Vd(r),e)}function QE(r){let e=$d(r);return po(async()=>e)}function eA(r){return po(async()=>{let e=await r();return $d(()=>e.next())})}async function tA(r,e){return Md.create(r,e)}async function rA(r){return Pd.create(r)}var bx="2.8.5";function te(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var m5=Ar.whereImpl,Hv=class extends Us{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Ja(this,Ns())}write(e,t,o){this.firstUse&&(this.firstUse=!1,W().get("IS_NODE")&&S.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let n={};return this.data.set(n,{values:e,dtype:o,refCount:1}),n}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return{dataId:n,shape:e,dtype:t}}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,o,n){this.data.set(e,{values:t,dtype:n,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:o}=this.data.get(e);if(t==="complex64"){let n=this.readSync(o.real.dataId),s=this.readSync(o.imag.dataId);return S.mergeRealAndImagArrays(n,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>y.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ie(e.shape,e.dtype,o)}makeOutput(e,t,o){let n=this.write(e,t,o);return Ns().makeTensorFromDataId(n,t,o,this)}disposeData(e){if(this.data.has(e)){let{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.data.has(t)){let o=this.data.get(t);o.refCount--,o.refCount<1&&this.disposeData(t)}}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){te([e],"where");let t=this.readSync(e.dataId);return m5(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};var ok={};tt(ok,{addImpl:()=>uA,bincountImpl:()=>Wd,bincountReduceImpl:()=>Kv,ceilImpl:()=>pA,concatImpl:()=>Gd,expImpl:()=>fA,expm1Impl:()=>hA,floorImpl:()=>xA,gatherV2Impl:()=>Yv,greaterImpl:()=>bA,lessImpl:()=>wA,linSpaceImpl:()=>Zv,logImpl:()=>kA,maxImpl:()=>Jv,maximumImpl:()=>IA,minimumImpl:()=>SA,multiplyImpl:()=>_x,negImpl:()=>AA,notEqualImpl:()=>$A,prodImpl:()=>OA,rangeImpl:()=>qd,rsqrtImpl:()=>MA,simpleAbsImpl:()=>oA,sliceImpl:()=>Hd,squaredDifferenceImpl:()=>BA,stridedSliceImpl:()=>Qv,subImpl:()=>WA,tileImpl:()=>ek,topKImpl:()=>tk,transposeImpl:()=>jd,uniqueImpl:()=>rk});function oA(r){let e=new Float32Array(r.length);for(let t=0;t<r.length;++t)e[t]=Math.abs(r[t]);return e}var f5=r=>{let{x:e}=r.inputs,t=r.backend;te(e,"abs");let o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId).values;return o=oA(n),t.makeOutput(o,e.shape,"float32")},nA={kernelName:ls,backendName:"cpu",kernelFunc:f5};function Ze(r){return(e,t,o,n,s)=>{let a=S.assertAndGetBroadcastShape(e,t),i=a.length,l=y.computeStrides(a),u=y.sizeFromShape(a),c=y.getTypedArrayFromDType(s,u),p=e.length,m=t.length,f=y.computeStrides(e),d=y.computeStrides(t),h=S.getBroadcastDims(e,a),g=S.getBroadcastDims(t,a);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(o[x%o.length],n[x%n.length]);else for(let x=0;x<c.length;++x){let b=y.indexToLoc(x,i,l),_=b.slice(-p);h.forEach(A=>_[A]=0);let w=y.locToIndex(_,p,f),C=b.slice(-m);g.forEach(A=>C[A]=0);let D=y.locToIndex(C,m,d);c[x]=r(o[w],n[D])}return[c,a]}}function pr(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,i=t.makeTensorInfo(o.shape,"complex64"),l=t.data.get(i.dataId);return l.complexTensorInfos={real:t.makeTensorInfo(o.shape,"float32",s),imag:t.makeTensorInfo(n.shape,"float32",a)},i}var sA={kernelName:Kl,backendName:"cpu",kernelFunc:pr};function Fp(r,e,t="float32"){if(t==="complex64"){let n=Fp(r,e,"float32"),s=Fp(r,e,"float32");return pr({inputs:{real:n,imag:s},backend:r})}let o=y.makeZerosTypedArray(y.sizeFromShape(e),t);return r.makeTensorInfo(e,t,o)}function Dr(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var iA={kernelName:ms,backendName:"cpu",kernelFunc:Dr};function Zn(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.real,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var aA={kernelName:mu,backendName:"cpu",kernelFunc:Zn};function Jn(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Dr({inputs:{x:n},backend:t});let a=Fp(t,n.shape,n.dtype),i=Jn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=pr({inputs:{real:i,imag:a},backend:t});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=Zn({inputs:{input:n},backend:t}),i=Jn({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=Dr({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32"){let a=t.data.get(n.dataId).values,i=Int32Array.from(a);return t.makeTensorInfo(n.shape,"int32",i)}if(s==="bool"){let a=t.data.get(n.dataId).values,i=y.toTypedArray([0],n.dtype),[l,u]=Ze((c,p)=>c!==p?1:0)(n.shape,[],a,i,"bool");return t.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var lA={kernelName:$o,backendName:"cpu",kernelFunc:Jn};function nt(r,e,t,o){return t==null?({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;te([a,i],r);let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}:({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=Jn({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=l.data.get(p.dataId).values,d=l.data.get(m.dataId).values,h=Jn({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,_=l.data.get(x.dataId).values,w=l.data.get(b.dataId).values,[C,D,A]=t(a.shape,i.shape,f,d,_,w),F=l.makeTensorInfo(A,"float32",C),M=l.makeTensorInfo(A,"float32",D),z=pr({inputs:{real:F,imag:M},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(h),l.disposeIntermediateTensorInfo(F),l.disposeIntermediateTensorInfo(M),z}else{let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}}}function Op(r){return(e,t,o,n,s,a)=>{let i=S.assertAndGetBroadcastShape(e,t),l=y.sizeFromShape(i),u=i.length,c=y.computeStrides(i),p=y.getTypedArrayFromDType("float32",l),m=y.getTypedArrayFromDType("float32",l),f=S.getBroadcastDims(e,i),d=S.getBroadcastDims(t,i),h=S.mergeRealAndImagArrays(o,n),g=S.mergeRealAndImagArrays(s,a),x=e.length,b=y.computeStrides(e),_=t.length,w=y.computeStrides(t);if(f.length+d.length===0)for(let C=0;C<p.length;C++){let D=C%h.length,A=C%g.length,F=r(h[D*2],h[D*2+1],g[A*2],g[A*2+1]);p[C]=F.real,m[C]=F.imag}else for(let C=0;C<p.length;C++){let D=y.indexToLoc(C,u,c),A=D.slice(-x);f.forEach(U=>A[U]=0);let F=y.locToIndex(A,x,b),M=D.slice(-_);d.forEach(U=>M[U]=0);let z=y.locToIndex(M,_,w),G=r(h[F*2],h[F*2+1],g[z*2],g[z*2+1]);p[C]=G.real,m[C]=G.imag}return[p,m,i]}}var uA=Ze((r,e)=>r+e),d5=Op((r,e,t,o)=>({real:r+t,imag:e+o})),Ua=nt(_o,uA,d5),cA={kernelName:_o,backendName:"cpu",kernelFunc:Ua};function Wd(r,e,t,o,n){let s=y.sizeFromShape(o),a=y.makeZerosTypedArray(n,t);for(let i=0;i<r.length;i++){let l=r[i];if(l<0)throw new Error("Input x must be non-negative!");l>=n||(s>0?a[l]+=e[i]:a[l]+=1)}return a}function Kv(r,e,t,o=!1){let n=r.shape[0],s=r.shape[1],a=Ie([n,t],e.dtype);for(let i=0;i<n;i++)for(let l=0;l<s;l++){let u=r.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=t||(o?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,l),i,u):a.set(a.get(i,u)+1,i,u))}return a}function Qn(r){return(e,t,o)=>{let n=y.getTypedArrayFromDType(t,e.length);for(let s=0;s<e.length;++s)n[s]=r(e[s],o);return n}}function Re(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=y.sizeFromShape(a.shape),c=t||a.dtype,p=y.getArrayFromDType(c,u);for(let m=0;m<u;++m)p[m]=e(l[m],n);return i.makeTensorInfo(a.shape,c,p)}}function es(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=t||a.dtype,c=e(l,u,n);return i.makeTensorInfo(a.shape,u,c)}}var pA=Qn(r=>Math.ceil(r)),h5=es(ei,pA),mA={kernelName:ei,backendName:"cpu",kernelFunc:h5};function Gd(r,e,t,o){let n=y.getArrayFromDType(t,y.sizeFromShape(e));if(o&&t!=="string"){let s=0;r.forEach(a=>{let i=y.sizeFromShape(a.shape);n.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?S.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let p=0;p<a.shape[1];++p)n[c+p]=i[l++]}s+=a.shape[1]})}return n}var fA=Qn(r=>Math.exp(r)),Xv=es(nn,fA),dA={kernelName:nn,backendName:"cpu",kernelFunc:Xv};var hA=Qn(r=>Math.expm1(r)),g5=es(ai,hA),gA={kernelName:ai,backendName:"cpu",kernelFunc:g5};var xA=Qn(r=>Math.floor(r)),x5=es(sn,xA),yA={kernelName:sn,backendName:"cpu",kernelFunc:x5};function Yv(r,e,t){let o=Ie(t,r.dtype);for(let n=0;n<o.size;++n){let a=o.indexToLoc(n).slice(),i=a[0],l=a[2],u=e.locToIndex([i,l]);a[2]=e.values[u];let c=r.locToIndex(a);o.values[n]=r.values[c]}return o}var bA=Ze((r,e)=>r>e?1:0),y5=nt(ci,bA,null,"bool"),_A={kernelName:ci,backendName:"cpu",kernelFunc:y5};var wA=Ze((r,e)=>r<e?1:0),b5=nt(di,wA,null,"bool"),vA={kernelName:di,backendName:"cpu",kernelFunc:b5};function Zv(r,e,t){let o=(e-r)/(t-1),n=y.makeZerosTypedArray(t,"float32");n[0]=r;for(let s=1;s<n.length;s++)n[s]=n[s-1]+o;return n}var kA=Qn(r=>Math.log(r)),_5=es(pn,kA),CA={kernelName:pn,backendName:"cpu",kernelFunc:_5};function Jv(r,e,t,o){let n=y.getTypedArrayFromDType(o,y.sizeFromShape(t));for(let s=0;s<n.length;++s){let a=s*e,i=r[a];for(let l=0;l<e;++l){let u=r[a+l];u>i&&(i=u)}n[s]=i}return n}var IA=Ze((r,e)=>Math.max(r,e)),w5=nt(fn,IA),NA={kernelName:fn,backendName:"cpu",kernelFunc:w5};var SA=Ze((r,e)=>Math.min(r,e)),v5=nt(xn,SA),TA={kernelName:xn,backendName:"cpu",kernelFunc:v5};var _x=Ze((r,e)=>r*e),k5=Op((r,e,t,o)=>({real:r*t-e*o,imag:r*o+e*t})),Ud=nt(yn,_x,k5),EA={kernelName:yn,backendName:"cpu",kernelFunc:Ud};function AA(r,e,t){let o=y.createScalarValue(-1,t);return _x([],e,o,r,t)}function C5(r){let{inputs:e,backend:t}=r,{x:o}=e;te(o,"neg");let n=t.data.get(o.dataId).values,[s,a]=AA(n,o.shape,o.dtype);return t.makeTensorInfo(a,o.dtype,s)}var DA={kernelName:fs,backendName:"cpu",kernelFunc:C5};var $A=Ze((r,e)=>r!==e?1:0),I5=nt(bi,$A,null,"bool"),RA={kernelName:bi,backendName:"cpu",kernelFunc:I5};function jd(r,e,t,o,n){let s=e.length,a=y.sizeFromShape(e),i=y.computeStrides(e),l=y.computeStrides(n),u=y.getTypedArrayFromDType(t,y.sizeFromShape(n));for(let c=0;c<a;++c){let p=y.indexToLoc(c,s,i),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[o[d]];let f=y.locToIndex(m,s,l);u[f]=r[c]}return u}function or(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{perm:s}=t;te(n,"transpose");let a=n.shape.length,i=new Array(a);for(let p=0;p<i.length;p++)i[p]=n.shape[s[p]];let l=o.data.get(n.dataId).values,u=jd(l,n.shape,n.dtype,s,i);return{dataId:o.write(u,i,n.dtype),shape:i,dtype:n.dtype}}var FA={kernelName:Mn,backendName:"cpu",kernelFunc:or};function OA(r,e,t,o){let[n,s]=S.computeOutAndReduceShapes(r,o),a=fr(e,"int32"),i=y.makeZerosTypedArray(y.sizeFromShape(n),a),l=y.sizeFromShape(s);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let m=0;m<l;++m)p*=t[c+m];i[u]=p}return{outVals:i,outShape:n,outDtype:a}}function N5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"prod");let i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=S.getAxesPermutation(l,i),c=l,p=n,m=[];u!=null&&(p=or({inputs:{x:n},backend:t,attrs:{perm:u}}),m.push(p),c=S.getInnerMostAxes(c.length,i));let f=t.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=OA(p.shape,p.dtype,f,c),x=h;return a&&(x=S.expandShapeToKeepDim(h,l)),m.forEach(b=>t.disposeIntermediateTensorInfo(b)),t.makeTensorInfo(x,g,d)}var PA={kernelName:ki,backendName:"cpu",kernelFunc:N5};function qd(r,e,t,o){let n=r===e,s=r<e&&t<0,a=e<r&&t>1;if(n||s||a)return y.makeZerosTypedArray(0,o);let i=Math.abs(Math.ceil((e-r)/t)),l=y.makeZerosTypedArray(i,o);e<r&&t===1&&(t=-1),l[0]=r;for(let u=1;u<l.length;u++)l[u]=l[u-1]+t;return l}var MA=Qn(r=>1/Math.sqrt(r)),S5=es(Tn,MA),LA={kernelName:Tn,backendName:"cpu",kernelFunc:S5};function Hd(r,e,t,o,n){let s=sr.isSliceContinous(o,e,t),a=y.sizeFromShape(t),i=y.computeStrides(o);if(s){let p=sr.computeFlatOffset(e,i);return n==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=n==="string"?S.fromUint8ToStringArray(r):r,u=Ie(o,n,l),c=Ie(t,n);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+e[h]);c.set(u.get(...f),...m)}return n==="string"?S.fromStringArrayToUint8(c.values):c.values}function ts(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o;te(n,"slice");let[i,l]=sr.parseSliceParams(n,s,a);sr.assertParamsValid(n,i,l);let u=t.data.get(n.dataId).values,c=Hd(u,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,c)}var zA={kernelName:ys,backendName:"cpu",kernelFunc:ts};var BA=Ze((r,e)=>{let t=r-e;return t*t}),T5=nt(Fn,BA),VA={kernelName:Fn,backendName:"cpu",kernelFunc:T5};function Qv(r,e,t,o){let n=Ie(r,e.dtype);for(let s=0;s<n.size;s++){let a=n.indexToLoc(s),i=new Array(a.length);for(let l=0;l<i.length;l++)i[l]=a[l]*t[l]+o[l];n.set(e.get(...i),...a)}return n}var WA=Ze((r,e)=>r-e),E5=Op((r,e,t,o)=>({real:r-t,imag:e-o})),Kd=nt(On,WA,E5),GA={kernelName:On,backendName:"cpu",kernelFunc:Kd};function ek(r,e){let t=new Array(r.rank);for(let n=0;n<t.length;n++)t[n]=r.shape[n]*e[n];let o=Ie(t,r.dtype);for(let n=0;n<o.values.length;++n){let s=o.indexToLoc(n),a=new Array(r.rank);for(let l=0;l<a.length;l++)a[l]=s[l]%r.shape[l];let i=r.locToIndex(a);o.values[n]=r.values[i]}return o}function tk(r,e,t,o,n){let s=e[e.length-1],[a,i]=[r.length/s,s],l=y.getTypedArrayFromDType(t,a*o),u=y.getTypedArrayFromDType("int32",a*o);for(let p=0;p<a;p++){let m=p*i,f=r.subarray(m,m+i),d=[];for(let b=0;b<f.length;b++)d.push({value:f[b],index:b});d.sort((b,_)=>_.value-b.value);let h=p*o,g=l.subarray(h,h+o),x=u.subarray(h,h+o);for(let b=0;b<o;b++)g[b]=d[b].value,x[b]=d[b].index}let c=e.slice();return c[c.length-1]=o,[Ie(c,t,l),Ie(c,"int32",u)]}function rk(r,e,t,o){let n=y.parseAxisParam(e,t)[0],s=[1,t[0],1];for(let d=0;d<n;d++)s[0]*=t[d];s[1]=t[n];for(let d=n+1;d<t.length;d++)s[2]*=t[d];let a={},i=new Int32Array(t[n]),l=new pt(s,o,r),u=[],c=s[0]===1&&s[2]===1;for(let d=0;d<t[n];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let x=0;x<s[0];x++)for(let b=0;b<s[2];b++)g.push(l.get(x,d,b));h=g.join(",")}if(a[h]!==void 0)i[d]=a[h];else{let g=Object.keys(a).length;a[h]=g,i[d]=g,u.push(d)}}let p=s.slice();p[1]=Object.keys(a).length;let m=new pt(p,o);u.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(l.get(g,d,x),g,h,x)});let f=t.slice();return f[n]=p[1],{outputValues:m.values,outputShape:f,indices:i}}var UA="2.8.5";_u("cpu",()=>new Hv,1);var nk=Re(ni,r=>r>=0?r:Math.exp(r)-1),jA={kernelName:ni,backendName:"cpu",kernelFunc:nk};function sk(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o;te([n],"leakyRelu");let a=y.sizeFromShape(n.shape),i=t.data.get(n.dataId).values,l=y.getTypedArrayFromDType("float32",a);for(let u=0;u<i.length;u++)l[u]=i[u]<0?s*i[u]:i[u];return t.makeTensorInfo(n.shape,"float32",l)}var qA={kernelName:cn,backendName:"cpu",kernelFunc:sk};var A5=Ze((r,e)=>r<0?e*r:r);function ik(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e;te([o,n],"prelu");let s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,[i,l]=A5(o.shape,n.shape,s,a,o.dtype);return t.makeTensorInfo(l,o.dtype,i)}var HA={kernelName:vn,backendName:"cpu",kernelFunc:ik};var ak=Re(kn,r=>Math.max(0,r)),KA={kernelName:kn,backendName:"cpu",kernelFunc:ak};var lk=Re(In,r=>Math.min(Math.max(0,r),6)),XA={kernelName:In,backendName:"cpu",kernelFunc:lk};function Pp(r,e,t,o,n){if(t==="linear")return Dr({inputs:{x:e},backend:r});if(t==="relu")return ak({inputs:{x:e},backend:r});if(t==="elu")return nk({inputs:{x:e},backend:r});if(t==="relu6")return lk({inputs:{x:e},backend:r});if(t==="prelu")return ik({inputs:{x:e,alpha:o},backend:r});if(t==="leakyrelu")return sk({inputs:{x:e},backend:r,attrs:{alpha:n}});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function rt(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=y.sizeFromShape(n.shape),i=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(i);y.assert(a===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${n.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(n.dataId);let u=t.data.get(n.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:n.dataId,shape:i,dtype:n.dtype}}var YA={kernelName:gs,backendName:"cpu",kernelFunc:rt};function uk(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;te([n,s],"matMul");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let w=(g>x?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let C=a?[g,c,m]:[g,m,c],D=i?[x,f,p]:[x,p,f],A=rt({inputs:{x:n},backend:t,attrs:{shape:C}}),F=rt({inputs:{x:s},backend:t,attrs:{shape:D}}),M=a?A.shape[1]:A.shape[2],z=a?A.shape[2]:A.shape[1],G=i?F.shape[1]:F.shape[2],U=Math.max(g,x),H=t.data.get(A.dataId).values,J=t.data.get(F.dataId).values,Y=y.computeStrides(A.shape),X=y.computeStrides(F.shape),[re,K,ne]=a?[Y[0],1,Y[1]]:[Y[0],Y[1],1],[ae,ie,pe]=i?[1,X[1],X[0]]:[X[1],1,X[0]],le=z*G,ge=Ie([U,z,G],A.dtype),ye=ge.values,be=t.blockSize;for(let ke=0;ke<U;ke++)for(let Ee=0;Ee<z;Ee+=be)for(let $e=0;$e<G;$e+=be)for(let Fe=0;Fe<M;Fe+=be){let He=Math.min(Ee+be,z),ct=Math.min($e+be,G),vt=Math.min(Fe+be,M);for(let kt=Ee;kt<He;kt++)for(let ft=$e;ft<ct;ft++){let Ct=0;for(let Ke=Fe;Ke<vt;Ke++){let Ft=Math.min(ke,g-1)*re,ho=Math.min(ke,x-1)*pe,er=H[Ft+kt*K+Ke*ne],go=J[Ke*ae+ft*ie+ho];Ct+=er*go}ye[ke*le+(kt*G+ft)]+=Ct}}return t.disposeIntermediateTensorInfo(A),t.disposeIntermediateTensorInfo(F),t.makeTensorInfo(w,ge.dtype,ge.values)}var ZA={kernelName:Zo,backendName:"cpu",kernelFunc:uk};function D5(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m,f,d,h=[];m=uk({inputs:{a:n,b:s},attrs:{transposeA:l,transposeB:u},backend:t}),a&&(f=Ua({inputs:{a:m,b:a},backend:t}),h.push(m),m=f),c&&(d=Pp(t,m,c,i,p),h.push(m),m=d);for(let x of h)t.disposeIntermediateTensorInfo(x);return m}var JA={kernelName:vs,backendName:"cpu",kernelFunc:D5};var $5=Re(Hs,r=>Math.acos(r)),QA={kernelName:Hs,backendName:"cpu",kernelFunc:$5};var R5=Re(Ks,r=>Math.acosh(r)),e2={kernelName:Ks,backendName:"cpu",kernelFunc:R5};function F5(r){let{inputs:e,backend:t}=r,o=e;te(e,"addN");let n=o.map(i=>t.data.get(i.dataId).values),s=Ie(o[0].shape,o[0].dtype),a=s.values;for(let i=0;i<o.length;i++){let l=n[i];for(let u=0;u<a.length;u++)a[u]+=l[u]}return t.makeTensorInfo(s.shape,s.dtype,s.values)}var t2={kernelName:Ko,backendName:"cpu",kernelFunc:F5};function O5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"all");let i=y.parseAxisParam(s,n.shape),l=i,u=S.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=or({inputs:{x:n},backend:t,attrs:{perm:u}}),l=S.getInnerMostAxes(l.length,n.shape.length)),S.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,_=h[b];for(let w=0;w<f;++w){let C=h[b+w];_=_&&C}d[x]=_}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=S.expandShapeToKeepDim(p,i),b=rt({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var r2={kernelName:Gl,backendName:"cpu",kernelFunc:O5};function P5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"any");let i=y.parseAxisParam(s,n.shape),l=i,u=S.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=or({inputs:{x:n},backend:t,attrs:{perm:u}}),l=S.getInnerMostAxes(l.length,n.shape.length)),S.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,_=h[b];for(let w=0;w<f;++w){let C=h[b+w];_=_||C}d[x]=_}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=S.expandShapeToKeepDim(p,i),b=rt({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var o2={kernelName:Ul,backendName:"cpu",kernelFunc:P5};function M5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;te(n,"argMax");let a=y.parseAxisParam(s,n.shape),i=S.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=or({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],S.assertAxesAreInnerMostDims("argMax",a,l.shape.length);let[c,p]=S.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],_=0;for(let w=0;w<d;++w){let C=h[x+w];C>b&&(b=C,_=w)}f[g]=_}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var n2={kernelName:Xo,backendName:"cpu",kernelFunc:M5};function L5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;te(n,"argMin");let a=y.parseAxisParam(s,n.shape),i=S.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=or({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],S.assertAxesAreInnerMostDims("argMin",a,l.shape.length);let[c,p]=S.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],_=0;for(let w=0;w<d;++w){let C=h[x+w];C<b&&(b=C,_=w)}f[g]=_}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var s2={kernelName:oa,backendName:"cpu",kernelFunc:L5};var z5=Re(Xs,r=>Math.asin(r)),i2={kernelName:Xs,backendName:"cpu",kernelFunc:z5};var B5=Re(Ys,r=>Math.asinh(r)),a2={kernelName:Ys,backendName:"cpu",kernelFunc:B5};var V5=Re(Zs,r=>Math.atan(r)),l2={kernelName:Zs,backendName:"cpu",kernelFunc:V5};var W5=Ze((r,e)=>Math.atan2(r,e)),G5=nt(Qs,W5),u2={kernelName:Qs,backendName:"cpu",kernelFunc:G5};var U5=Re(Js,r=>Math.atanh(r)),c2={kernelName:Js,backendName:"cpu",kernelFunc:U5};function Mp(r,e,t,o,n,s){let a=n.strideHeight,i=n.strideWidth,l=n.dilationHeight,u=n.dilationWidth,c=n.effectiveFilterHeight,p=n.effectiveFilterWidth,m=n.padInfo.top,f=n.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=Ie(n.outShape,t),g=h.values,x=n.outShape[1]*n.outShape[2]*n.outShape[3],b=n.outShape[2]*n.outShape[3],_=n.outShape[3];for(let w=0;w<n.batchSize;++w){let C=w*x,D=w*o[0];for(let A=0;A<n.inChannels;++A)for(let F=0;F<n.outHeight;++F){let M=F*a-m,z=Math.max(0,M),G=Math.min(n.inHeight,c+M),U=C+F*b;for(let H=0;H<n.outWidth;++H){let J=H*i-f,Y=Math.max(0,J),X=Math.min(n.inWidth,p+J),re=d,K=0,ne=0;for(let ie=z;ie<G;ie+=l){let pe=D+ie*o[1];for(let le=Y;le<X;le+=u){let ge=pe+le*o[2],ye=r[ge+A];s==="max"&&ye>re?re=ye:s==="avg"&&(K+=ye,ne++)}if(isNaN(re))break}let ae=U+H*_+A;g[ae]=s==="avg"?K/ne:re}}}return h}function wx(r,e,t,o,n=!1,s=!1){let a=Ie(o.outShape,"int32"),i=o.strideHeight,l=o.strideWidth,u=o.dilationHeight,c=o.dilationWidth,p=o.effectiveFilterHeight,m=o.effectiveFilterWidth,f=o.padInfo.top,d=o.padInfo.left,h=Ie(e,t,r);for(let g=0;g<o.batchSize;++g)for(let x=0;x<o.inChannels;++x)for(let b=0;b<o.outHeight;++b){let _=b*i-f,w=_;for(;w<0;)w+=u;let C=Math.min(o.inHeight,p+_);for(let D=0;D<o.outWidth;++D){let A=D*l-d,F=A;for(;F<0;)F+=c;let M=Math.min(o.inWidth,m+A),z=Number.NEGATIVE_INFINITY,G=-1;for(let U=w;U<C;U+=u){let H=U-_;for(let J=F;J<M;J+=c){let Y=J-A,X=h.get(g,U,J,x);X>z&&(z=X,n?G=s?((g*o.inHeight+U)*o.inWidth+J)*o.inChannels+x:(U*o.inWidth+J)*o.inChannels+x:G=H*m+Y)}}a.set(G,g,b,D,x)}}return a}function vx(r,e,t,o,n,s){let a=n.strideDepth,i=n.strideHeight,l=n.strideWidth,u=n.dilationDepth,c=n.dilationHeight,p=n.dilationWidth,m=n.effectiveFilterDepth,f=n.effectiveFilterHeight,d=n.effectiveFilterWidth,h=n.padInfo.front,g=n.padInfo.top,x=n.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,_=Ie(n.outShape,t),w=_.values,C=n.outShape[1]*n.outShape[2]*n.outShape[3]*n.outShape[4],D=n.outShape[2]*n.outShape[3]*n.outShape[4],A=n.outShape[3]*n.outShape[4],F=n.outShape[4];for(let M=0;M<n.batchSize;++M){let z=M*C,G=M*o[0];for(let U=0;U<n.inChannels;++U)for(let H=0;H<n.outDepth;++H){let J=H*a-h,Y=J;for(;Y<0;)Y+=u;let X=Math.min(n.inDepth,m+J),re=z+H*D;for(let K=0;K<n.outHeight;++K){let ne=K*i-g,ae=ne;for(;ae<0;)ae+=c;let ie=Math.min(n.inHeight,f+ne),pe=re+K*A;for(let le=0;le<n.outWidth;++le){let ge=le*l-x,ye=ge;for(;ye<0;)ye+=p;let be=Math.min(n.inWidth,d+ge),ke=pe+le*F,Ee=b,$e=0,Fe=0;for(let ct=Y;ct<X;ct+=u){let vt=G+ct*o[1];for(let kt=ae;kt<ie;kt+=c){let ft=vt+kt*o[2];for(let Ct=ye;Ct<be;Ct+=p){let Ke=ft+Ct*o[3],Ft=r[Ke+U];if(s==="max"&&Ft>Ee?Ee=Ft:s==="avg"&&($e+=Ft,Fe++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let He=ke+U;w[He]=s==="avg"?$e/Fe:Ee}}}}return _}function p2(r,e){let t=Ie(e.outShape,"int32"),o=e.strideDepth,n=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,m=e.padInfo.front,f=e.padInfo.top,d=e.padInfo.left;for(let h=0;h<e.batchSize;++h)for(let g=0;g<e.inChannels;++g)for(let x=0;x<e.outDepth;++x){let b=x*o-m,_=b;for(;_<0;)_+=a;let w=Math.min(e.inDepth,u+b);for(let C=0;C<e.outHeight;++C){let D=C*n-f,A=D;for(;A<0;)A+=i;let F=Math.min(e.inHeight,c+D);for(let M=0;M<e.outWidth;++M){let z=M*s-d,G=z;for(;G<0;)G+=l;let U=Math.min(e.inWidth,p+z),H=Number.NEGATIVE_INFINITY,J=-1;for(let Y=_;Y<w;Y+=a){let X=Y-b;for(let re=A;re<F;re+=i){let K=re-D;for(let ne=G;ne<U;ne+=l){let ae=ne-z,ie=r.get(h,Y,re,ne,g);ie>=H&&(H=ie,J=X*c*p+K*c+ae)}}}t.set(J,h,x,C,M,g)}}}return t}function j5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;te(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Dr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=y.computeStrides(n.shape),d=Mp(m,n.shape,n.dtype,f,c,"avg");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var m2={kernelName:Yo,backendName:"cpu",kernelFunc:j5};function q5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u,dilations:c}=o;te(n,"avgPool3d");let p=c;p==null&&(p=[1,1,1]);let m=S.computePool3DInfo(n.shape,s,a,p,i,l,u),f=t.data.get(n.dataId).values,d=vx(f,n.shape,n.dtype,y.computeStrides(n.shape),m,"avg");return t.makeTensorInfo(d.shape,"float32",d.values)}var f2={kernelName:na,backendName:"cpu",kernelFunc:q5};function H5(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dilations:u,dimRoundingMode:c}=o;te([n,s],"avgPool3DGrad");let p=S.computePool3DInfo(s.shape,a,i,u,l,c),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,b=p.dilationDepth,_=p.dilationHeight,w=p.dilationWidth,C=p.effectiveFilterDepth,D=p.effectiveFilterHeight,A=p.effectiveFilterWidth,F=C-1-p.padInfo.front,M=A-1-p.padInfo.left,z=D-1-p.padInfo.top,G=Ie(s.shape,"float32"),U=1/(h*g*x),H=t.bufferSync(n);for(let J=0;J<p.batchSize;++J)for(let Y=0;Y<p.inChannels;++Y)for(let X=0;X<p.inDepth;++X)for(let re=0;re<p.inHeight;++re)for(let K=0;K<p.inWidth;++K){let ne=X-F,ae=re-z,ie=K-M,pe=0;for(let le=0;le<C;le+=b){let ge=(ne+le)/m;if(!(ge<0||ge>=p.outDepth||Math.floor(ge)!==ge))for(let ye=0;ye<D;ye+=_){let be=(ae+ye)/f;if(!(be<0||be>=p.outHeight||Math.floor(be)!==be))for(let ke=0;ke<A;ke+=w){let Ee=(ie+ke)/d;if(Ee<0||Ee>=p.outWidth||Math.floor(Ee)!==Ee)continue;pe+=H.get(J,ge,be,Ee,Y)}}}G.set(pe*U,J,X,re,K,Y)}return t.makeTensorInfo(G.shape,G.dtype,G.values)}var d2={kernelName:ql,backendName:"cpu",kernelFunc:H5};function K5(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;te([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=S.computePool2DInfo(a.shape,i,l,1,u),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,_=b-1-c.padInfo.left,w=x-1-c.padInfo.top,C=Ie(a.shape,"float32"),D=1/(f*d),A=t.data.get(n.dataId).values,F=Ie(n.shape,"float32",A);for(let M=0;M<c.batchSize;++M)for(let z=0;z<c.inChannels;++z)for(let G=0;G<c.inHeight;++G)for(let U=0;U<c.inWidth;++U){let H=G-w,J=U-_,Y=0;for(let X=0;X<x;X+=h){let re=(H+X)/p;if(!(re<0||re>=c.outHeight||Math.floor(re)!==re))for(let K=0;K<b;K+=g){let ne=(J+K)/m;if(ne<0||ne>=c.outWidth||Math.floor(ne)!==ne)continue;Y+=F.get(M,re,ne,z)}}C.set(Y*D,M,G,U,z)}return t.makeTensorInfo(C.shape,C.dtype,C.values)}var h2={kernelName:jl,backendName:"cpu",kernelFunc:K5};function X5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,scale:s,offset:a,mean:i,variance:l}=e;y.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),te([n,i,l,s,a],"batchNorm");let{varianceEpsilon:u}=o;u==null&&(u=.001);let c=t.data.get(n.dataId).values,p=t.data.get(i.dataId).values,m=t.data.get(l.dataId).values,f=s?t.data.get(s.dataId).values:new Float32Array([1]),d=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,_=p.length,w=0,C=0,D=0,A=0;for(let F=0;F<c.length;++F)h[F]=d[w++]+(c[F]-p[C++])*f[D++]/Math.sqrt(m[A++]+u),w>=g&&(w=0),C>=_&&(C=0),D>=x&&(D=0),A>=b&&(A=0);return t.makeTensorInfo(n.shape,n.dtype,h)}var g2={kernelName:ln,backendName:"cpu",kernelFunc:X5};function Y5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;te([n],"batchToSpaceND");let i=s.reduce((x,b)=>x*b),l=S.getReshaped(n.shape,s,i),u=S.getPermuted(l.length,s.length),c=S.getReshapedPermuted(n.shape,s,i),p=S.getSliceBeginCoords(a,s.length),m=S.getSliceSize(c,a,s.length),f=rt({inputs:{x:n},backend:t,attrs:{shape:l}}),d=or({inputs:{x:f},backend:t,attrs:{perm:u}}),h=rt({inputs:{x:d},backend:t,attrs:{shape:c}}),g=ts({inputs:{x:h},backend:t,attrs:{begin:p,size:m}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var x2={kernelName:sa,backendName:"cpu",kernelFunc:Y5};function Z5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.data.get(n.dataId).values,l=t.data.get(s.dataId).values,u=Wd(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var y2={kernelName:Hl,backendName:"cpu",kernelFunc:Z5};var J5=Re(Ro,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r<t.clipValueMin?t.clipValueMin:r}),b2={kernelName:Ro,backendName:"cpu",kernelFunc:J5};var Q5=r=>{let{x:e}=r.inputs,t=r.backend,o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId),s=n.complexTensorInfos.real,a=n.complexTensorInfos.imag,i=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];o[u]=Math.hypot(c,p)}return t.makeOutput(o,e.shape,"float32")},_2={kernelName:ia,backendName:"cpu",kernelFunc:Q5};function Ki(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.imag,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var w2={kernelName:su,backendName:"cpu",kernelFunc:Ki};function Il(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=S.computeOutShape(e.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(h=>y.sizeFromShape(h.shape)>0);if(i.length===1)return Dr({inputs:{x:i[0]},backend:t});let l=i.map(h=>h.shape);if(S.assertParamsConsistent(l,s),i[0].dtype==="complex64"){let h=i.map(w=>Zn({inputs:{input:w},backend:t})),g=i.map(w=>Ki({inputs:{input:w},backend:t})),x=Il({inputs:h,backend:t,attrs:{axis:s}}),b=Il({inputs:g,backend:t,attrs:{axis:s}}),_=pr({inputs:{real:x,imag:b},backend:t});return h.forEach(w=>t.disposeIntermediateTensorInfo(w)),g.forEach(w=>t.disposeIntermediateTensorInfo(w)),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),_}let u=i.map(h=>{let g=y.sizeFromShape(h.shape.slice(s));return rt({inputs:{x:h},backend:t,attrs:{shape:[-1,g]}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));a=S.computeOutShape(u.map(h=>h.shape),1);let p=u[0].shape[0]===1,m=Gd(c,a,e[0].dtype,p),f=S.computeOutShape(i.map(h=>h.shape),s),d=t.makeTensorInfo(f,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var v2={kernelName:us,backendName:"cpu",kernelFunc:Il};function ck(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o;te([n,s],"conv2d");let p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,_=m.dataFormat==="channelsLast",w=new pt(m.outShape,n.dtype),C=y.computeStrides(n.shape),D=y.computeStrides(s.shape),A=C[0],F=_?C[1]:C[2],M=_?C[2]:1,z=_?1:C[1],G=w.strides[0],U=_?w.strides[1]:w.strides[2],H=_?w.strides[2]:1,J=_?1:w.strides[1],Y=t.data.get(n.dataId).values,X=t.data.get(s.dataId).values,re=w.values;for(let K=0;K<m.batchSize;++K){let ne=K*A,ae=K*G;for(let ie=0;ie<m.outHeight;++ie){let pe=ae+ie*U,le=ie*m.strideHeight-b;for(let ge=0;ge<f;++ge){let ye=le+ge*h;if(ye<0||ye>=m.inHeight)continue;let be=ge*D[0],ke=ne+ye*F;for(let Ee=0;Ee<m.outWidth;++Ee){let $e=pe+Ee*H,Fe=Ee*m.strideWidth-x;for(let He=0;He<d;++He){let ct=Fe+He*g;if(ct<0||ct>=m.inWidth)continue;let vt=be+He*D[1],kt=ke+ct*M,ft=vt;for(let Ct=0;Ct<m.inChannels;++Ct){let Ke=Y[kt+Ct*z];for(let Ft=0;Ft<m.outChannels;++Ft)re[$e+Ft*J]+=Ke*X[ft+Ft];ft+=m.outChannels}}}}}}return t.makeTensorInfo(w.shape,w.dtype,re)}var k2={kernelName:Jo,backendName:"cpu",kernelFunc:ck};function eX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o;te([n,s],"conv2dBackpropFilter");let p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",b=new pt(m.filterShape,"float32"),_=m.padInfo.left,w=m.padInfo.top,C=t.data.get(n.dataId).values,D=t.data.get(s.dataId).values,A=new pt(n.shape,n.dtype,C),F=new pt(s.shape,s.dtype,D);for(let M=0;M<h;++M){let z=Math.max(0,Math.ceil((w-M)/f)),G=Math.min(m.outHeight,(m.inHeight+w-M)/f);for(let U=0;U<g;++U){let H=Math.max(0,Math.ceil((_-U)/d)),J=Math.min(m.outWidth,(m.inWidth+_-U)/d);for(let Y=0;Y<m.inChannels;++Y)for(let X=0;X<m.outChannels;++X){let re=0;for(let K=0;K<m.batchSize;++K)for(let ne=z;ne<G;++ne){let ae=M+ne*f-w;for(let ie=H;ie<J;++ie){let pe=U+ie*d-_;x?re+=A.get(K,ae,pe,Y)*F.get(K,ne,ie,X):re+=A.get(K,Y,ae,pe)*F.get(K,X,ne,ie)}}b.set(re,M,U,Y,X)}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var C2={kernelName:Xl,backendName:"cpu",kernelFunc:eX};function tX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o;te([n,s],"conv2dBackpropInput");let p=y.computeStrides(s.shape),m=y.computeStrides(n.shape),f=S.convertConv2DDataFormat(u),d=S.computeConv2DInfo(a,s.shape,i,1,l,c,!1,f),h=new pt(d.inShape,"float32"),g=h.values,x=t.data.get(n.dataId).values,b=t.data.get(s.dataId).values,[_,w,C]=p,{batchSize:D,filterHeight:A,filterWidth:F,inChannels:M,inHeight:z,inWidth:G,outChannels:U,outHeight:H,outWidth:J,strideHeight:Y,strideWidth:X}=d;f=d.dataFormat;let re=A-1-d.padInfo.top,K=F-1-d.padInfo.left,ne=f==="channelsLast",ae=h.strides[0],ie=ne?h.strides[1]:h.strides[2],pe=ne?h.strides[2]:1,le=ne?1:h.strides[1],ge=m[0],ye=ne?m[1]:m[2],be=ne?m[2]:1,ke=ne?1:m[1];for(let Ee=0;Ee<D;++Ee)for(let $e=0;$e<M;++$e)for(let Fe=0;Fe<z;++Fe){let He=Fe-re,ct=Math.max(0,Math.ceil(He/Y)),vt=Math.min(H,(A+He)/Y);for(let kt=0;kt<G;++kt){let ft=kt-K,Ct=Math.max(0,Math.ceil(ft/X)),Ke=Math.min(J,(F+ft)/X),Ft=0;for(let er=ct;er<vt;++er){let go=er*Y-He;for(let vr=Ct;vr<Ke;++vr){let Uo=vr*X-ft,to=ge*Ee+ye*er+be*vr,xo=_*(A-1-go)+w*(F-1-Uo)+C*$e;for(let kr=0;kr<U;++kr){let Eo=x[to+ke*kr],jo=b[xo+kr];Ft+=Eo*jo}}}let ho=ae*Ee+ie*Fe+pe*kt+le*$e;g[ho]=Ft}}return t.makeTensorInfo(h.shape,h.dtype,h.values)}var I2={kernelName:Qo,backendName:"cpu",kernelFunc:tX};function rX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o;te([n,s],"conv3d");let u=S.computeConv3DInfo(n.shape,s.shape,a,l,i),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=u,x=g.front,b=g.left,_=g.top,w=new pt(u.outShape,n.dtype),C=t.data.get(n.dataId).values,D=t.data.get(s.dataId).values,A=w.values,F=y.computeStrides(n.shape),M=y.computeStrides(s.shape);for(let z=0;z<u.batchSize;++z){let G=z*F[0],U=z*w.strides[0];for(let H=0;H<u.outDepth;++H){let J=U+H*w.strides[1],Y=H*u.strideDepth-x;for(let X=0;X<c;++X){let re=Y+X*f;if(re<0||re>=u.inDepth)continue;let K=X*M[0],ne=G+re*F[1];for(let ae=0;ae<u.outHeight;++ae){let ie=J+ae*w.strides[2],pe=ae*u.strideHeight-_;for(let le=0;le<p;++le){let ge=pe+le*d;if(ge<0||ge>=u.inHeight)continue;let ye=K+le*M[1],be=ne+ge*F[2];for(let ke=0;ke<u.outWidth;++ke){let Ee=ie+ke*u.outChannels,$e=ke*u.strideWidth-b;for(let Fe=0;Fe<m;++Fe){let He=$e+Fe*h;if(He<0||He>=u.inWidth)continue;let ct=ye+Fe*M[2],vt=be+He*u.inChannels,kt=ct;for(let ft=0;ft<u.inChannels;++ft){let Ct=C[vt+ft];for(let Ke=0;Ke<u.outChannels;++Ke)A[Ee+Ke]+=Ct*D[kt+Ke];kt+=u.outChannels}}}}}}}}return t.makeTensorInfo(w.shape,w.dtype,w.values)}var N2={kernelName:aa,backendName:"cpu",kernelFunc:rX};function oX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o;te([n,s],"conv3dBackpropFilterV2");let u=y.computeStrides(n.shape),c=y.computeStrides(s.shape),p=S.computeConv3DInfo(n.shape,l,a,1,i),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,b=new pt(p.filterShape,"float32"),_=b.values,[w,C,D,A]=b.strides,F=t.data.get(s.dataId).values,[M,z,G,U]=c,H=t.data.get(n.dataId).values,[J,Y,X,re]=u,K=p.padInfo.front,ne=p.padInfo.left,ae=p.padInfo.top;for(let ie=0;ie<h;++ie){let pe=Math.max(0,Math.ceil((K-ie)/m)),le=Math.min(p.outDepth,(p.inDepth+K-ie)/m),ge=ie*w;for(let ye=0;ye<g;++ye){let be=Math.max(0,Math.ceil((ae-ye)/f)),ke=Math.min(p.outHeight,(p.inHeight+ae-ye)/f),Ee=ye*C+ge;for(let $e=0;$e<x;++$e){let Fe=Math.max(0,Math.ceil((ne-$e)/d)),He=Math.min(p.outWidth,(p.inWidth+ne-$e)/d),ct=$e*D+Ee;for(let vt=0;vt<p.inChannels;++vt){let kt=vt*A+ct;for(let ft=0;ft<p.outChannels;++ft){let Ct=0;for(let Ke=0;Ke<p.batchSize;++Ke){let Ft=Ke*J,ho=Ke*M;for(let er=pe;er<le;++er){let vr=(ie+er*m-K)*Y+Ft,Uo=er*z+ho;for(let to=be;to<ke;++to){let kr=(ye+to*f-ae)*X+vr,Eo=to*G+Uo;for(let jo=Fe;jo<He;++jo){let ns=($e+jo*d-ne)*re+kr,Ao=jo*U+Eo;Ct+=H[ns+vt]*F[Ao+ft]}}}}_[kt+ft]=Ct}}}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var S2={kernelName:Yl,backendName:"cpu",kernelFunc:oX};function nX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o;te([n],"conv3dBackpropInputV2");let u=y.computeStrides(n.shape),c=y.computeStrides(s.shape),p=S.computeConv3DInfo(l,s.shape,i,1,a),m=new pt(p.inShape,"float32"),f=m.values,[d,h,g,x]=m.strides,b=t.data.get(n.dataId).values,[_,w,C,D]=u,A=t.data.get(s.dataId).values,[F,M,z,G]=c,{batchSize:U,filterDepth:H,filterHeight:J,filterWidth:Y,inChannels:X,inDepth:re,inHeight:K,inWidth:ne,outChannels:ae,outDepth:ie,outHeight:pe,outWidth:le,strideDepth:ge,strideHeight:ye,strideWidth:be}=p,ke=H-1-p.padInfo.front,Ee=J-1-p.padInfo.top,$e=Y-1-p.padInfo.left;for(let Fe=0;Fe<U;++Fe)for(let He=0;He<X;++He)for(let ct=0;ct<re;++ct){let vt=ct-ke,kt=Math.max(0,Math.ceil(vt/ge)),ft=Math.min(ie,(H+vt)/ge);for(let Ct=0;Ct<K;++Ct){let Ke=Ct-Ee,Ft=Math.max(0,Math.ceil(Ke/ye)),ho=Math.min(pe,(J+Ke)/ye);for(let er=0;er<ne;++er){let go=er-$e,vr=Math.max(0,Math.ceil(go/be)),Uo=Math.min(le,(Y+go)/be),to=0;for(let xo=kt;xo<ft;++xo){let kr=xo*ge-vt;for(let Eo=Ft;Eo<ho;++Eo){let jo=Eo*ye-Ke;for(let ro=vr;ro<Uo;++ro){let ns=ro*be-go,Ao=_*Fe+w*xo+C*Eo+D*ro,xc=F*(H-1-kr)+M*(J-1-jo)+z*(Y-1-ns)+G*He;for(let ss=0;ss<ae;++ss){let Ji=b[Ao+ss],Fl=A[xc+ss];to+=Ji*Fl}}}}f[d*Fe+h*ct+g*Ct+x*er+He]=to}}}return t.makeTensorInfo(m.shape,m.dtype,m.values)}var T2={kernelName:Zl,backendName:"cpu",kernelFunc:nX};var sX=Re(en,r=>Math.cos(r)),E2={kernelName:en,backendName:"cpu",kernelFunc:sX};var iX=Re(ti,r=>Math.cosh(r)),A2={kernelName:ti,backendName:"cpu",kernelFunc:iX};function aX(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,[c,p,m,f]=n.shape,d=s.shape[0],[h,g]=i,x=Ie([d,h,g,f],"float32"),b=t.data.get(s.dataId).values,_=t.data.get(a.dataId).values,w=t.data.get(n.dataId).values,C=y.computeStrides(n.shape),D=y.computeStrides(x.shape);for(let A=0;A<d;A++){let F=A*4,M=b[F],z=b[F+1],G=b[F+2],U=b[F+3],H=_[A];if(H>=c)continue;let J=h>1?(G-M)*(p-1)/(h-1):0,Y=g>1?(U-z)*(m-1)/(g-1):0;for(let X=0;X<h;X++){let re=h>1?M*(p-1)+X*J:.5*(M+G)*(p-1);if(re<0||re>p-1){for(let K=0;K<g;K++)for(let ne=0;ne<f;ne++){let ae=ne+K*D[2]+X*D[1]+A*D[0];x.values[ae]=u}continue}if(l==="bilinear"){let K=Math.floor(re),ne=Math.ceil(re),ae=re-K;for(let ie=0;ie<g;ie++){let pe=g>1?z*(m-1)+ie*Y:.5*(z+U)*(m-1);if(pe<0||pe>m-1){for(let be=0;be<f;be++){let ke=be+ie*D[2]+X*D[1]+A*D[0];x.values[ke]=u}continue}let le=Math.floor(pe),ge=Math.ceil(pe),ye=pe-le;for(let be=0;be<f;be++){let ke=be+le*C[2]+K*C[1]+H*C[0],Ee=w[ke];ke=be+ge*C[2]+K*C[1]+H*C[0];let $e=w[ke];ke=be+le*C[2]+ne*C[1]+H*C[0];let Fe=w[ke];ke=be+ge*C[2]+ne*C[1]+H*C[0];let He=w[ke],ct=Ee+($e-Ee)*ye,vt=Fe+(He-Fe)*ye;ke=be+ie*D[2]+X*D[1]+A*D[0],x.values[ke]=ct+(vt-ct)*ae}}}else for(let K=0;K<g;++K){let ne=g>1?z*(m-1)+K*Y:.5*(z+U)*(m-1);if(ne<0||ne>m-1){for(let pe=0;pe<f;pe++){let le=pe+K*D[2]+X*D[1]+A*D[0];x.values[le]=u}continue}let ae=Math.round(ne),ie=Math.round(re);for(let pe=0;pe<f;pe++){let le=pe+ae*C[2]+ie*C[1]+H*C[0],ge=pe+K*D[2]+X*D[1]+A*D[0];x.values[ge]=w[le]}}}}return t.makeTensorInfo(x.shape,x.dtype,x.values)}var D2={kernelName:ri,backendName:"cpu",kernelFunc:aX};function lX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;te(n,"cumsum");let l=S.getAxesPermutation([s],n.shape.length),u=n;l!=null&&(u=or({inputs:{x:n},backend:t,attrs:{perm:l}}));let c=S.getInnerMostAxes(1,n.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=fr(u.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(u.shape),p),f=t.data.get(u.dataId).values,d=u.shape[u.shape.length-1],h=i?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let _=h(x,b);if(b===0)m[_]=a?0:f[_];else{let w=h(x,b-1);m[_]=a?f[w]+m[w]:f[_]+m[w]}}let g=t.makeTensorInfo(u.shape,p,m);if(l!=null){let x=S.getUndoAxesPermutation(l),b=or({inputs:{x:g},backend:t,attrs:{perm:x}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),b}return g}var $2={kernelName:tn,backendName:"cpu",kernelFunc:lX};function uX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=Wd(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=Kv(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var R2={kernelName:Jl,backendName:"cpu",kernelFunc:uX};function cX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;y.assert(a==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`),y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=n.shape[1],u=n.shape[2],c=n.shape[3],p=l*s,m=u*s,f=c/(s*s),d=t.data.get(n.dataId).values,h=new Float32Array(i*p*m*f),g=0;for(let x=0;x<i;++x)for(let b=0;b<p;++b){let _=Math.floor(b/s),w=b%s;for(let C=0;C<m;++C){let D=Math.floor(C/s),A=C%s,F=(w*s+A)*f;for(let M=0;M<f;++M){let G=M+F+c*(D+u*(_+l*x));h[g++]=d[G]}}}return t.makeTensorInfo([i,p,m,f],n.dtype,h)}var F2={kernelName:oi,backendName:"cpu",kernelFunc:cX};function pk(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=o;te([n,s],"depthwiseConv2DNative");let c=y.computeStrides(n.shape),p=y.computeStrides(s.shape),m=l;m==null&&(m=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(a,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let f=S.computeConv2DInfo(n.shape,s.shape,a,m,i,u,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,_=b.left,w=b.top,C=f.outChannels/f.inChannels,D=new pt(f.outShape,n.dtype),A=t.data.get(n.dataId).values,F=t.data.get(s.dataId).values,M=D.values;for(let z=0;z<f.batchSize;++z){let G=z*c[0],U=z*D.strides[0];for(let H=0;H<f.outHeight;++H){let J=U+H*D.strides[1],Y=H*f.strideHeight-_;for(let X=0;X<d;++X){let re=Y+X*g;if(re<0||re>=f.inHeight)continue;let K=X*p[0],ne=G+re*c[1];for(let ae=0;ae<f.outWidth;++ae){let ie=J+ae*D.strides[2],pe=ae*f.strideWidth-w;for(let le=0;le<h;++le){let ge=pe+le*x;if(ge<0||ge>=f.inWidth)continue;let ye=K+le*p[1],be=ne+ge*f.inChannels,ke=ie,Ee=ye;for(let $e=0;$e<f.inChannels;++$e){let Fe=A[be+$e];for(let He=0;He<C;++He)M[ke+He]+=Fe*F[Ee+He];ke+=C,Ee+=C}}}}}}return t.makeTensorInfo(D.shape,D.dtype,D.values)}var O2={kernelName:rn,backendName:"cpu",kernelFunc:pk};function pX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o;te([n,s],"depthwiseConv2dNativeBackpropFilter");let p=S.computeConv2DInfo(n.shape,c,a,i,l,u,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new pt(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,_=p.outChannels/p.inChannels,w=t.data.get(n.dataId).values,C=new pt(n.shape,n.dtype,w),D=t.data.get(s.dataId).values,A=new pt(s.shape,s.dtype,D);for(let F=0;F<d;++F){let M=Math.max(0,Math.ceil((b-F)/m)),z=Math.min(p.outHeight,(p.inHeight+b-F)/m);for(let G=0;G<h;++G){let U=Math.max(0,Math.ceil((x-G)/f)),H=Math.min(p.outWidth,(p.inWidth+x-G)/f);for(let J=0;J<p.outChannels;++J){let Y=Math.trunc(J/_),X=J%_,re=0;for(let K=0;K<p.batchSize;++K)for(let ne=M;ne<z;++ne){let ae=F+ne*m-b;for(let ie=U;ie<H;++ie){let pe=G+ie*f-x;re+=C.get(K,ae,pe,Y)*A.get(K,ne,ie,J)}}g.set(re,F,G,Y,X)}}}return t.makeTensorInfo(g.shape,g.dtype,g.values)}var P2={kernelName:Ql,backendName:"cpu",kernelFunc:pX};function mX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o;te([n,s],"depthwiseConv2DNativeBackpropInput");let p=y.computeStrides(n.shape),m=y.computeStrides(s.shape),f=S.computeConv2DInfo(c,s.shape,a,i,l,u,!0),d=new pt(f.inShape,"float32"),h=d.values,[g,x,b]=d.strides,_=t.data.get(n.dataId).values,[w,C,D]=p,A=t.data.get(s.dataId).values,[F,M,z]=m,{batchSize:G,filterHeight:U,filterWidth:H,inChannels:J,inHeight:Y,inWidth:X,outChannels:re,outHeight:K,outWidth:ne,strideHeight:ae,strideWidth:ie}=f,pe=U-1-f.padInfo.top,le=H-1-f.padInfo.left,ge=re/J;for(let ye=0;ye<G;++ye)for(let be=0;be<J;++be)for(let ke=0;ke<Y;++ke){let Ee=ke-pe,$e=Math.max(0,Math.ceil(Ee/ae)),Fe=Math.min(K,(U+Ee)/ae);for(let He=0;He<X;++He){let ct=He-le,vt=Math.max(0,Math.ceil(ct/ie)),kt=Math.min(ne,(H+ct)/ie),ft=0;for(let Ct=$e;Ct<Fe;++Ct){let Ke=Ct*ae-Ee;for(let Ft=vt;Ft<kt;++Ft){let ho=Ft*ie-ct,er=w*ye+C*Ct+D*Ft,go=F*(U-1-Ke)+M*(H-1-ho)+z*be;for(let vr=0;vr<ge;++vr){let Uo=be*ge+vr,to=_[er+Uo],xo=A[go+vr];ft+=to*xo}}}h[g*ye+x*ke+b*He+be]=ft}}return t.makeTensorInfo(d.shape,d.dtype,d.values)}var M2={kernelName:eu,backendName:"cpu",kernelFunc:mX};function fX(r){let{inputs:e,backend:t}=r,{x:o}=e,n=y.sizeFromShape(o.shape),s=t.data.get(o.dataId).values,a=Ie([n,n],o.dtype),i=a.values;for(let u=0;u<s.length;u++)i[u*n+u]=s[u];let l=[...o.shape,...o.shape];return t.makeTensorInfo(l,a.dtype,a.values)}var L2={kernelName:tu,backendName:"cpu",kernelFunc:fX};var z2={kernelName:la,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n}=r,{strides:s,pad:a,dilations:i}=t,l=e,u=l.data.get(o.dataId).values,c=o.shape.length,p=l.data.get(n.dataId).values,m=n.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:_,strideHeight:w,strideWidth:C,filterHeight:D,filterWidth:A,dilationHeight:F,dilationWidth:M,outShape:z}=S.computeDilation2DInfo(o.shape,n.shape,s,a,"NHWC",i),G=y.sizeFromShape(z),U=z.length,H=y.getArrayFromDType(o.dtype,G);for(let Y=0;Y<f;++Y)for(let X=0;X<x;++X){let re=X*w-_.top;for(let K=0;K<b;++K){let ne=K*C-_.left;for(let ae=0;ae<g;++ae){let ie=Number.MIN_SAFE_INTEGER;for(let le=0;le<D;++le){let ge=re+le*F;if(ge>=0&&ge<d)for(let ye=0;ye<A;++ye){let be=ne+ye*M;if(be>=0&&be<h){let ke=y.locToIndex([Y,ge,be,ae],c,y.computeStrides(o.shape)),Ee=y.locToIndex([le,ye,ae],m,y.computeStrides(n.shape)),$e=u[ke]+p[Ee];$e>ie&&(ie=$e)}}}let pe=y.locToIndex([Y,X,K,ae],U,y.computeStrides(z));H[pe]=ie}}}return{dataId:l.write(y.toTypedArray(H,o.dtype),z,o.dtype),shape:z,dtype:o.dtype}}};var B2={kernelName:Fc,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),p=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:_,strideWidth:w,filterHeight:C,filterWidth:D,dilationHeight:A,dilationWidth:F,outShape:M}=S.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);y.assert(s.rank===M.length,()=>`Error in ${Fc}, dy must have the same rank as output ${M.length}, but got ${s.rank}`);let z=y.toNestedArray(M,u.data.get(s.dataId).values),G=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let H=0;H<m;++H)for(let J=0;J<g;++J){let Y=J*_-b.top;for(let X=0;X<x;++X){let re=X*w-b.left;for(let K=0;K<h;++K){let ne=Number.MIN_SAFE_INTEGER,ae=0,ie=0;for(let pe=0;pe<C;++pe){let le=Y+pe*A;if(le>=0&&le<f)for(let ge=0;ge<D;++ge){let ye=re+ge*F;if(ye>=0&&ye<d){let be=c[H][le][ye][K]+p[pe][ge][K];be>ne&&(ne=be,ae=pe,ie=ge)}}}G[ae][ie][K]+=z[H][J][X][K]}}}return{dataId:u.write(y.toTypedArray(G,o.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var V2={kernelName:Rc,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),p=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:_,strideWidth:w,filterHeight:C,filterWidth:D,dilationHeight:A,dilationWidth:F,outShape:M}=S.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);y.assert(s.rank===M.length,()=>`Error in ${Rc}, dy must have the same rank as output ${M.length}, but got ${s.rank}`);let z=y.toNestedArray(M,u.data.get(s.dataId).values),G=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let H=0;H<m;++H)for(let J=0;J<g;++J){let Y=J*_-b.top;for(let X=0;X<x;++X){let re=X*w-b.left;for(let K=0;K<h;++K){let ne=Number.MIN_SAFE_INTEGER,ae=Y<0?0:Y,ie=re<0?0:re;for(let pe=0;pe<C;++pe){let le=Y+pe*A;if(le>=0&&le<f)for(let ge=0;ge<D;++ge){let ye=re+ge*F;if(ye>=0&&ye<d){let be=c[H][le][ye][K]+p[pe][ge][K];be>ne&&(ne=be,ae=le,ie=ye)}}}G[H][ae][ie][K]+=z[H][J][X][K]}}}return{dataId:u.write(y.toTypedArray(G,o.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};function dX(r){let{inputs:e,backend:t}=r,{dy:o,y:n}=e;te([o,n],"eluGrad");let s=new Float32Array(y.sizeFromShape(n.shape)),a=t.data.get(n.dataId).values,i=t.data.get(o.dataId).values;for(let l=0;l<a.length;++l){let u=a[l];u>=1?s[l]=i[l]:s[l]=i[l]*(u+1)}return t.makeTensorInfo(n.shape,"float32",s)}var W2={kernelName:ru,backendName:"cpu",kernelFunc:dX};var hX=Ze((r,e)=>r===e?1:0),mk=nt(ii,hX,null,"bool"),G2={kernelName:ii,backendName:"cpu",kernelFunc:mk};var gX=S.ERF_P,xX=S.ERF_A1,yX=S.ERF_A2,bX=S.ERF_A3,_X=S.ERF_A4,wX=S.ERF_A5,vX=Re(si,r=>{let e=Math.sign(r),t=Math.abs(r),o=1/(1+gX*t);return e*(1-((((wX*o+_X)*o+bX)*o+yX)*o+xX)*o*Math.exp(-t*t))}),U2={kernelName:si,backendName:"cpu",kernelFunc:vX};function Lp(r){let{inputs:e,backend:t,attrs:o}=r,{input:n}=e,{dim:s}=o,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),rt({inputs:{x:n},backend:t,attrs:{shape:i}})}var j2={kernelName:cs,backendName:"cpu",kernelFunc:Lp};var kX=Ze((r,e)=>r/e),Xd=nt(on,kX),Yd={kernelName:on,backendName:"cpu",kernelFunc:Xd};function kx(r,e,t){let o=r.shape,n=o[0],s=o[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,l=a.complexTensorInfos.imag,u=[n,s],c=y.sizeFromShape(u),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<n;g++){let x=ts({inputs:{x:i},backend:t,attrs:{begin:[g,0],size:[1,s]}}),b=ts({inputs:{x:l},backend:t,attrs:{begin:[g,0],size:[1,s]}}),_=pr({inputs:{real:x,imag:b},backend:t}),{real:w,imag:C}=CX(_,e,t),D=S.mergeRealAndImagArrays(w,C);for(let A=0;A<s;A++){let F=S.getComplexWithIndex(D,A);p[g*s+A]=F.real,m[g*s+A]=F.imag}t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(_)}let f=t.makeTensorInfo(u,"float32",p),d=t.makeTensorInfo(u,"float32",m),h=pr({inputs:{real:f,imag:d},backend:t});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),h}function CX(r,e,t){let o=y.sizeFromShape(r.shape),n=t.data.get(r.dataId),s=t.data.get(n.complexTensorInfos.real.dataId).values,a=t.data.get(n.complexTensorInfos.imag.dataId).values;if(IX(o)){let i=fk(s,a,o,e,t),l=[r.shape[0],r.shape[1]];if(e){let u=t.makeTensorInfo(l,"float32",i.real),c=t.makeTensorInfo(l,"float32",i.imag),p=t.makeTensorInfo([],"float32",y.createScalarValue(o,"float32")),m=Dr({inputs:{x:p},backend:t}),f=Yd.kernelFunc({inputs:{a:u,b:p},backend:t}),d=Yd.kernelFunc({inputs:{a:c,b:m},backend:t}),h=t.data.get(f.dataId).values,g=t.data.get(d.dataId).values;return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return i}else{let i=S.mergeRealAndImagArrays(s,a),l=NX(i,o,e);return S.splitRealAndImagArrays(l)}}function IX(r){return(r&r-1)==0}function fk(r,e,t,o,n){if(t===1)return{real:r,imag:e};let s=S.mergeRealAndImagArrays(r,e),a=t/2,i=S.complexWithEvenIndex(s),l=i.real,u=i.imag,c=[l.length],p=n.makeTensorInfo(c,"float32",l),m=n.makeTensorInfo(c,"float32",u),f=pr({inputs:{real:p,imag:m},backend:n}),d=S.complexWithOddIndex(s),h=d.real,g=d.imag,x=[h.length],b=n.makeTensorInfo(x,"float32",h),_=n.makeTensorInfo(x,"float32",g),w=pr({inputs:{real:b,imag:_},backend:n}),C=fk(l,u,a,o,n),D=C.real,A=C.imag,F=[D.length],M=n.makeTensorInfo(F,"float32",D),z=n.makeTensorInfo(F,"float32",A),G=pr({inputs:{real:M,imag:z},backend:n}),U=fk(h,g,a,o,n),H=U.real,J=U.imag,Y=[H.length],X=n.makeTensorInfo(Y,"float32",H),re=n.makeTensorInfo(Y,"float32",J),K=pr({inputs:{real:X,imag:re},backend:n}),ne=S.exponents(t,o),ae=[ne.real.length],ie=n.makeTensorInfo(ae,"float32",ne.real),pe=n.makeTensorInfo(ae,"float32",ne.imag),le=pr({inputs:{real:ie,imag:pe},backend:n}),ge=Ud({inputs:{a:le,b:K},backend:n}),ye=Ua({inputs:{a:G,b:ge},backend:n}),be=Kd({inputs:{a:G,b:ge},backend:n}),ke=Zn({inputs:{input:ye},backend:n}),Ee=Zn({inputs:{input:be},backend:n}),$e=Ki({inputs:{input:ye},backend:n}),Fe=Ki({inputs:{input:be},backend:n}),He=Il({inputs:[ke,Ee],backend:n,attrs:{axis:0}}),ct=Il({inputs:[$e,Fe],backend:n,attrs:{axis:0}}),vt=n.data.get(He.dataId).values,kt=n.data.get(ct.dataId).values;return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(M),n.disposeIntermediateTensorInfo(z),n.disposeIntermediateTensorInfo(G),n.disposeIntermediateTensorInfo(X),n.disposeIntermediateTensorInfo(re),n.disposeIntermediateTensorInfo(K),n.disposeIntermediateTensorInfo(ie),n.disposeIntermediateTensorInfo(pe),n.disposeIntermediateTensorInfo(le),n.disposeIntermediateTensorInfo(ge),n.disposeIntermediateTensorInfo(ye),n.disposeIntermediateTensorInfo(be),n.disposeIntermediateTensorInfo(ke),n.disposeIntermediateTensorInfo($e),n.disposeIntermediateTensorInfo(Ee),n.disposeIntermediateTensorInfo(Fe),n.disposeIntermediateTensorInfo(He),n.disposeIntermediateTensorInfo(ct),{real:vt,imag:kt}}function NX(r,e,t){let o=new Float32Array(e*2);for(let n=0;n<e;n++){let s=0,a=0;for(let i=0;i<e;i++){let l=S.exponent(n*i,e,t),u=S.getComplexWithIndex(r,i);s+=u.real*l.real-u.imag*l.imag,a+=u.real*l.imag+u.imag*l.real}t&&(s/=e,a/=e),S.assignToTypedArray(o,s,a,n)}return o}function SX(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=rt({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=kx(i,!1,t),u=rt({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var q2={kernelName:ou,backendName:"cpu",kernelFunc:SX};function Zd(r){let{backend:e,attrs:t}=r,{shape:o,value:n,dtype:s}=t,a=s||y.inferDtype(n),i=y.getArrayFromDType(a,y.sizeFromShape(o));return TX(i,n,a),e.makeTensorInfo(o,a,i)}var H2={kernelName:ua,backendName:"cpu",kernelFunc:Zd};function TX(r,e,t){r.fill(e)}var K2={kernelName:li,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,n=t,s=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[a,i,l,u]=o.shape,c=n.data.get(o.dataId).values;for(let m=0;m<a;m++){let f=m*l*i*u;for(let d=0;d<i;d++){let h=d*(l*u);for(let g=0;g<l;g++){let x=g*u;for(let b=0;b<u;b++){let w=[a,d,g,b][2],C=Math.round(l-w),D=f+h+x+b,A=c[D];if(C>=0&&C<l){let F=C*u,M=f+h+F+b;A=c[M]}s[D]=A}}}}return{dataId:n.write(s,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var EX=Ze((r,e)=>Math.floor(r/e)),AX=nt(an,EX,null,"int32"),X2={kernelName:an,backendName:"cpu",kernelFunc:AX};function DX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=ck({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Ua({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=Pp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var Y2={kernelName:ks,backendName:"cpu",kernelFunc:DX};function $X(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=pk({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Ua({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=Pp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var Z2={kernelName:Cs,backendName:"cpu",kernelFunc:$X};function RX(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=y.sizeFromShape(o.shape),a=n.shape,i=a[a.length-1],[l,u,c,p]=S.prepareAndValidate(o,n);if(u===0)return t.makeTensorInfo(l,o.dtype,[]);let m=Ie([u,c],o.dtype),f=t.data.get(n.dataId).values,d=t.data.get(o.dataId).values;for(let h=0;h<u;h++){let g=[],x=0;for(let b=0;b<i;b++){let _=f[h*i+b];x+=_*p[b],g.push(_)}if(x<0||x>=s/c)throw new Error(`Invalid indices: ${g} does not index into ${o.shape}`);for(let b=0;b<c;b++)m.values[h*c+b]=d[x*c+b]}return t.makeTensorInfo(l,m.dtype,m.values)}var J2={kernelName:ui,backendName:"cpu",kernelFunc:RX};function FX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o;te([n,s],"gatherV2");let l=i;i==null&&(l=0);let u=y.sizeFromShape(s.shape),c=y.parseAxisParam(a,n.shape)[0],p=S.segment_util.collectGatherOpShapeInfo(n,s,c,l),m=rt({inputs:{x:n},backend:t,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),f=rt({inputs:{x:s},backend:t,attrs:{shape:[p.batchSize,u/p.batchSize]}}),d=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],h=t.bufferSync(f),g=t.bufferSync(m),x=Yv(g,h,d);return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.makeTensorInfo(p.outputShape,x.dtype,x.values)}var Q2={kernelName:ps,backendName:"cpu",kernelFunc:FX};var OX=Ze((r,e)=>r>=e?1:0),PX=nt(un,OX,null,"bool"),eD={kernelName:un,backendName:"cpu",kernelFunc:PX};function MX(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=rt({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=kx(i,!0,t),u=rt({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var tD={kernelName:nu,backendName:"cpu",kernelFunc:MX};var LX=Re(pi,r=>Number.isFinite(r)?1:0,"bool"),rD={kernelName:pi,backendName:"cpu",kernelFunc:LX};var zX=Re(mi,r=>Math.abs(r)===Infinity?1:0,"bool"),oD={kernelName:mi,backendName:"cpu",kernelFunc:zX};var BX=Re(fi,r=>Number.isNaN(r)?1:0,"bool"),nD={kernelName:fi,backendName:"cpu",kernelFunc:BX};var VX=Ze((r,e)=>r<=e?1:0),WX=nt(hi,VX,null,"bool"),sD={kernelName:hi,backendName:"cpu",kernelFunc:WX};function GX(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=Zv(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var iD={kernelName:iu,backendName:"cpu",kernelFunc:GX};var UX=Re(gi,r=>Math.log1p(r)),aD={kernelName:gi,backendName:"cpu",kernelFunc:UX};var jX=Ze((r,e)=>r&&e),qX=nt(xi,jX,null,"bool"),lD={kernelName:xi,backendName:"cpu",kernelFunc:qX};var HX=Re(Qa,r=>r?0:1,"bool"),uD={kernelName:Qa,backendName:"cpu",kernelFunc:HX};var KX=Ze((r,e)=>r||e),XX=nt(el,KX,null,"bool"),cD={kernelName:el,backendName:"cpu",kernelFunc:XX};function YX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o;te(n,"LRN");let u=n.shape[3],c=u-1,p=t.data.get(n.dataId).values,m=y.sizeFromShape(n.shape),f=new Float32Array(m);function d(h){let g=h%u,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),_=0;for(;x<=b;x++){let w=p[x];_+=w*w}return _}for(let h=0;h<m;h++){let g=d(h),x=p[h]*Math.pow(a+i*g,-l);f[h]=x}return t.makeTensorInfo(n.shape,n.dtype,f)}var pD={kernelName:ca,backendName:"cpu",kernelFunc:YX};function ZX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o;te(a,"LRNGrad");let p=y.sizeFromShape(a.shape),m=a.shape[3],f=t.data.get(a.dataId).values,d=t.data.get(n.dataId).values,h=t.data.get(s.dataId).values,g=new Float32Array(p),x=p;for(let b=0;b<x;b++){let _=b%m,w=b-_+Math.max(0,_-i),C=b-_+Math.min(m,_+i+1),D=0;for(let A=w;A<C;A++)D+=Math.pow(d[A],2);D=u*D+l;for(let A=w;A<C;A++){let F=-2*u*c*d[A]*h[b]/D;b===A&&(F+=Math.pow(D,-c)),F*=f[b],g[A]+=F}}return t.makeTensorInfo(a.shape,n.dtype,g)}var mD={kernelName:au,backendName:"cpu",kernelFunc:ZX};function dk(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=t,l=n.shape,u=l.length,c=y.parseAxisParam(s,l),p=c,m=S.getAxesPermutation(p,u),f=i.data.get(n.dataId).values;if(m!=null){let w=new Array(u);for(let C=0;C<w.length;C++)w[C]=l[m[C]];f=jd(f,l,n.dtype,m,w),p=S.getInnerMostAxes(p.length,u),l=w}te(n,"max"),S.assertAxesAreInnerMostDims("max",p,u);let[d,h]=S.computeOutAndReduceShapes(l,p),g=y.sizeFromShape(h),x=Jv(f,g,d,n.dtype),b=i.write(x,d,n.dtype),_=d;return a&&(_=S.expandShapeToKeepDim(d,c)),{dataId:b,shape:_,dtype:n.dtype}}var fD={kernelName:mn,backendName:"cpu",kernelFunc:dk};function JX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;te(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Dr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=y.computeStrides(n.shape),d=Mp(m,n.shape,n.dtype,f,c,"max");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var dD={kernelName:dn,backendName:"cpu",kernelFunc:JX};function QX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u,dilations:c}=o;te(n,"maxPool3d");let p=c;p==null&&(p=[1,1,1]);let m=S.computePool3DInfo(n.shape,s,a,p,i,l,u),f=t.data.get(n.dataId).values,d=vx(f,n.shape,n.dtype,y.computeStrides(n.shape),m,"max");return t.makeTensorInfo(d.shape,"float32",d.values)}var hD={kernelName:pa,backendName:"cpu",kernelFunc:QX};function e8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dilations:u,dimRoundingMode:c}=o;te([n,s],"maxPool3DGrad");let p=S.computePool3DInfo(s.shape,a,i,u,l,c),m=t.bufferSync(s),f=p2(m,p),d=p.strideDepth,h=p.strideHeight,g=p.strideWidth,x=p.dilationDepth,b=p.dilationHeight,_=p.dilationWidth,w=p.effectiveFilterDepth,C=p.effectiveFilterHeight,D=p.effectiveFilterWidth,A=w-1-p.padInfo.front,F=D-1-p.padInfo.left,M=C-1-p.padInfo.top,z=Ie(s.shape,"float32"),G=t.bufferSync(n);for(let U=0;U<p.batchSize;++U)for(let H=0;H<p.inChannels;++H)for(let J=0;J<p.inDepth;++J)for(let Y=0;Y<p.inHeight;++Y)for(let X=0;X<p.inWidth;++X){let re=J-A,K=Y-M,ne=X-F,ae=0;for(let ie=0;ie<w;ie+=x){let pe=(re+ie)/d;if(!(pe<0||pe>=p.outDepth||Math.floor(pe)!==pe))for(let le=0;le<C;le+=b){let ge=(K+le)/h;if(!(ge<0||ge>=p.outHeight||Math.floor(ge)!==ge))for(let ye=0;ye<D;ye+=_){let be=(ne+ye)/g;if(be<0||be>=p.outWidth||Math.floor(be)!==be)continue;let ke=w*C*D-1-f.get(U,pe,ge,be,H),Ee=ie*C*D+le*D+ye,$e=ke===Ee?1:0;if($e===0)continue;ae+=G.get(U,pe,ge,be,H)*$e}}}z.set(ae,U,J,Y,X,H)}return t.makeTensorInfo(z.shape,z.dtype,z.values)}var gD={kernelName:uu,backendName:"cpu",kernelFunc:e8};function t8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;te([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=S.computePool2DInfo(i.shape,l,u,1,c,p),f=t.data.get(i.dataId).values,d=Ie(m.outShape,i.dtype,wx(f,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,_=m.effectiveFilterHeight,w=m.effectiveFilterWidth,C=w-1-m.padInfo.left,D=_-1-m.padInfo.top,A=Ie(i.shape,"float32"),F=t.data.get(n.dataId).values,M=Ie(n.shape,"float32",F);for(let z=0;z<m.batchSize;++z)for(let G=0;G<m.inChannels;++G)for(let U=0;U<m.inHeight;++U)for(let H=0;H<m.inWidth;++H){let J=U-D,Y=H-C,X=0;for(let re=0;re<_;re+=x){let K=(J+re)/h;if(!(K<0||K>=m.outHeight||Math.floor(K)!==K))for(let ne=0;ne<w;ne+=b){let ae=(Y+ne)/g;if(ae<0||ae>=m.outWidth||Math.floor(ae)!==ae)continue;let ie=_*w-1-d.get(z,K,ae,G),pe=re*w+ne,le=ie===pe?1:0;if(le===0)continue;X+=M.get(z,K,ae,G)*le}}A.set(X,z,U,H,G)}return t.makeTensorInfo(A.shape,A.dtype,A.values)}var xD={kernelName:lu,backendName:"cpu",kernelFunc:t8};function yD(r,e,t,o,n){let s=y.computeStrides(e),a=Mp(r,e,t,s,n,"max"),i=wx(r,e,t,n,!0,o);return[a.values,i.values]}var bD={kernelName:cu,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;te(o,"MaxPoolWithArgmax");let u=l.data.get(o.dataId).values,c=S.computePool2DInfo(o.shape,n,s,[1,1],a),[p,m]=yD(u,o.shape,o.dtype,i,c),f=l.write(p,c.outShape,o.dtype),d=l.write(m,c.outShape,o.dtype);return[{dataId:f,shape:c.outShape,dtype:o.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function sc(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"sum");let i;n.dtype==="bool"?i=Jn({inputs:{x:n},backend:t,attrs:{dtype:"int32"}}):i=Dr({inputs:{x:n},backend:t});let l=i.shape.length,u=y.parseAxisParam(s,i.shape),c=S.getAxesPermutation(u,l),p=u,m=i;c!=null&&(m=or({inputs:{x:i},backend:t,attrs:{perm:c}}),p=S.getInnerMostAxes(p.length,l)),S.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=S.computeOutAndReduceShapes(m.shape,p),h=S.upcastType(m.dtype,"int32"),g=Fp(t,f,h),x=y.sizeFromShape(d),b=t.data.get(g.dataId).values,_=t.data.get(m.dataId).values;for(let w=0;w<b.length;++w){let C=w*x,D=0;for(let A=0;A<x;++A)D+=_[C+A];b[w]=D}if(a){let w=S.expandShapeToKeepDim(g.shape,u),C=g;g=rt({inputs:{x:g},backend:t,attrs:{shape:w}}),t.disposeIntermediateTensorInfo(C)}return t.disposeIntermediateTensorInfo(i),c!=null&&t.disposeIntermediateTensorInfo(m),g}var _D={kernelName:$n,backendName:"cpu",kernelFunc:sc};function r8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=y.parseAxisParam(s,n.shape),u=S.computeOutAndReduceShapes(n.shape,i)[1],c=y.sizeFromShape(u),p=[],m=t.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=Jn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}});p.push(f);let d=Xd({inputs:{a:f,b:m},backend:t});p.push(d);let h=sc({inputs:{x:d},backend:t,attrs:{axis:s,keepDims:a}});return p.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}var wD={kernelName:hn,backendName:"cpu",kernelFunc:r8};function o8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"min");let i=y.parseAxisParam(s,n.shape),l=i,u=S.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=or({inputs:{x:n},backend:t,attrs:{perm:u}}),l=S.getInnerMostAxes(l.length,n.shape.length)),S.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,_=h[b];for(let w=0;w<f;++w){let C=h[b+w];C<_&&(_=C)}d[x]=_}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=S.expandShapeToKeepDim(p,i),b=rt({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var vD={kernelName:gn,backendName:"cpu",kernelFunc:o8};function n8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,mode:a}=o;te(n,"mirrorPad");let i=s.map((_,w)=>_[0]+n.shape[w]+_[1]),l=s.map(_=>_[0]),u=s.map((_,w)=>_[0]+n.shape[w]),c=a==="reflect"?0:1,p=t.data.get(n.dataId).values,m=n.shape.length,f=y.computeStrides(n.shape),d=y.sizeFromShape(i),h=i.length,g=y.computeStrides(i),x=y.getTypedArrayFromDType(n.dtype,d);for(let _=0;_<d;_++){let w=y.indexToLoc(_,h,g);for(let D=0;D<h;D++)w[D]<l[D]?w[D]=l[D]*2-w[D]-c:w[D]>=u[D]&&(w[D]=(u[D]-1)*2-w[D]+c);w=w.map((D,A)=>D-l[A]);let C=y.locToIndex(w,m,f);x[_]=p[C]}return{dataId:t.write(x,i,n.dtype),shape:i,dtype:n.dtype}}var kD={kernelName:ma,backendName:"cpu",kernelFunc:n8};var s8=Ze((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),i8=nt(yi,s8),CD={kernelName:yi,backendName:"cpu",kernelFunc:i8};var ND=Tc(Um());function hk(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=n.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let l=y.parseAxisParam([i],n.shape),u=dk({inputs:{x:n},backend:t,attrs:{reductionIndices:l,keepDims:!1}}),c=S.expandShapeToKeepDim(u.shape,l),p=rt({inputs:{x:u},backend:t,attrs:{shape:c}}),m=Kd({inputs:{a:n,b:p},backend:t}),f=Xv({inputs:{x:m},backend:t}),d=sc({inputs:{x:f},backend:t,attrs:{axis:l,keepDims:!1}}),h=rt({inputs:{x:d},backend:t,attrs:{shape:c}}),g=Xd({inputs:{a:f,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var ID={kernelName:Rn,backendName:"cpu",kernelFunc:hk};function a8(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o;te(n,"multinomial");let l=i?n:hk({inputs:{logits:n},backend:t,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=t.data.get(l.dataId).values,m=[u,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d<u;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let _=1;_<g.length;++_)g[_]=g[_-1]+p[h+_];let x=ND.alea(a.toString()),b=d*s;for(let _=0;_<s;++_){let w=x();f[b+_]=g.length;for(let C=0;C<g.length;C++)if(w<g[C]){f[b+_]=C;break}}}return i||t.disposeIntermediateTensorInfo(l),t.makeTensorInfo(m,"int32",f)}var SD={kernelName:pu,backendName:"cpu",kernelFunc:a8};var l8=Ar.nonMaxSuppressionV3Impl;function u8(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o;te(n,"NonMaxSuppression");let u=t.data.get(n.dataId).values,c=t.data.get(s.dataId).values,{selectedIndices:p}=l8(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var TD={kernelName:_i,backendName:"cpu",kernelFunc:u8};var c8=Ar.nonMaxSuppressionV4Impl;function p8(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o;te(n,"NonMaxSuppressionPadded");let c=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=c8(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var ED={kernelName:wi,backendName:"cpu",kernelFunc:p8};var m8=Ar.nonMaxSuppressionV5Impl;function f8(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o;te(n,"NonMaxSuppressionWithScore");let c=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=m8(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var AD={kernelName:vi,backendName:"cpu",kernelFunc:f8};function d8(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o;te(n,"oneHot");let l=y.sizeFromShape(n.shape),u=new Float32Array(l*s);u.fill(i);let c=t.data.get(n.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<s&&(u[p*s+c[p]]=a);return t.makeTensorInfo([...n.shape,s],"int32",u)}var DD={kernelName:bn,backendName:"cpu",kernelFunc:d8};function Jd(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(o.dtype==="complex64"){let n=Zn({inputs:{input:o},backend:t}),s=Jd({inputs:{x:n},backend:t}),a=Ki({inputs:{input:o},backend:t}),i=Jd({inputs:{x:a},backend:t}),l=pr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Zd({backend:t,attrs:{shape:o.shape,value:0,dtype:o.dtype}})}var $D={kernelName:ws,backendName:"cpu",kernelFunc:Jd};function RD(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(o.dtype==="complex64"){let n=Zn({inputs:{input:o},backend:t}),s=RD({inputs:{x:n},backend:t}),a=Ki({inputs:{input:o},backend:t}),i=Jd({inputs:{x:a},backend:t}),l=pr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Zd({backend:t,attrs:{shape:o.shape,value:1,dtype:o.dtype}})}var FD={kernelName:ds,backendName:"cpu",kernelFunc:RD};function gk(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Lp({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Lp({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=Il({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var OD={kernelName:hs,backendName:"cpu",kernelFunc:gk};function h8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o;te(n,"pad");let i=s.map((b,_)=>b[0]+n.shape[_]+b[1]),l=s.map(b=>b[0]),u=t.data.get(n.dataId).values,c=y.sizeFromShape(n.shape),p=n.shape.length,m=y.computeStrides(n.shape),f=y.sizeFromShape(i),d=i.length,h=y.computeStrides(i),g=y.getTypedArrayFromDType(n.dtype,f);a!==0&&g.fill(a);for(let b=0;b<c;b++){let w=y.indexToLoc(b,p,m).map((D,A)=>D+l[A]),C=y.locToIndex(w,d,h);g[C]=u[b]}return{dataId:t.write(g,i,n.dtype),shape:i,dtype:n.dtype}}var Cx={kernelName:_n,backendName:"cpu",kernelFunc:h8};var g8=Ze((r,e)=>Math.pow(r,e)),x8=nt(wn,g8),PD={kernelName:wn,backendName:"cpu",kernelFunc:x8};function y8(r){let{backend:e,attrs:t}=r,{start:o,stop:n,dtype:s,step:a}=t,i=qd(o,n,a,s);return e.makeTensorInfo([i.length],s,i)}var MD={kernelName:fa,backendName:"cpu",kernelFunc:y8};var b8=Re(Ci,r=>1/r),LD={kernelName:Ci,backendName:"cpu",kernelFunc:b8};function _8(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;te(n,"resizeBilinear");let l=y.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(y.sizeFromShape([p,u,c,d])),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=0,w=x[0]/b[0],C=x[1]/b[1];for(let D=0;D<p;D++)for(let A=0;A<u;A++){let F;a?F=w*(A+.5)-.5:F=w*A;let M=Math.max(0,Math.floor(F)),z=F-M,G=Math.min(m-1,Math.ceil(F)),U=D*l[0]+M*l[1],H=D*l[0]+G*l[1];for(let J=0;J<c;J++){let Y;a?Y=C*(J+.5)-.5:Y=C*J;let X=Math.max(0,Math.floor(Y)),re=Y-X,K=Math.min(f-1,Math.ceil(Y)),ne=U+X*l[2],ae=H+X*l[2],ie=U+K*l[2],pe=H+K*l[2];for(let le=0;le<d;le++){let ge=h[ne+le],ye=h[ae+le],be=h[ie+le],ke=h[pe+le],Ee=ge+(be-ge)*re,$e=ye+(ke-ye)*re,Fe=Ee+($e-Ee)*z;g[_++]=Fe}}}return t.makeTensorInfo([p,u,c,d],"float32",g)}var zD={kernelName:Cn,backendName:"cpu",kernelFunc:_8};function w8(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;te([s,n],"resizeBilinearGrad");let i=y.computeStrides(n.shape),[l,u,c,p]=n.shape,[,m,f]=s.shape,d=new Float32Array(l*u*c*p),h=[a&&m>1?u-1:u,a&&f>1?c-1:c],g=[a&&m>1?m-1:m,a&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],_=t.data.get(s.dataId).values,w=0;for(let C=0;C<l;C++){let D=C*i[0];for(let A=0;A<m;A++){let F=A*x,M=Math.floor(F),z=Math.min(Math.ceil(F),u-1),G=D+M*i[1],U=D+z*i[1],H=F-M,J=1-H;for(let Y=0;Y<f;Y++){let X=Y*b,re=Math.floor(X),K=Math.min(Math.ceil(X),c-1),ne=X-re,ae=1-ne,ie=G+re*i[2],pe=G+K*i[2],le=U+re*i[2],ge=U+K*i[2],ye=J*ae,be=J*ne,ke=H*ae,Ee=H*ne;for(let $e=0;$e<p;$e++){let Fe=_[w++];d[ie+$e]+=Fe*ye,d[pe+$e]+=Fe*be,d[le+$e]+=Fe*ke,d[ge+$e]+=Fe*Ee}}}}return t.makeTensorInfo([l,c,u,p],"float32",d)}var BD={kernelName:du,backendName:"cpu",kernelFunc:w8};function v8(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;te(n,"resizeNearestNeighbor");let l=y.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(p*u*c*d),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=x[0]/b[0],w=x[1]/b[1],C=0;for(let D=0;D<p;D++){let A=D*l[0];for(let F=0;F<u;F++){let M=a?_*(F+.5):_*F,z=Math.min(m-1,s?Math.round(M):Math.floor(M));a&&(z=Math.max(0,z));let G=A+z*l[1];for(let U=0;U<c;U++){let H=a?w*(U+.5):w*U,J=Math.min(f-1,s?Math.round(H):Math.floor(H));a&&(J=Math.max(0,J));let Y=G+J*l[2];for(let X=0;X<d;X++){let re=h[Y+X];g[C++]=re}}}}return t.makeTensorInfo([p,u,c,d],n.dtype,g)}var VD={kernelName:da,backendName:"cpu",kernelFunc:v8};function k8(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;te([s,n],"resizeNearestNeighborGrad");let i=y.computeStrides(n.shape),l=y.computeStrides(s.shape),[u,c,p,m]=n.shape,[,f,d]=s.shape,h=new Float32Array(u*c*p*m),g=t.data.get(s.dataId).values,x=[a&&f>1?c-1:c,a&&d>1?p-1:p],b=[a&&f>1?f-1:f,a&&d>1?d-1:d],_=x[0]/b[0],w=x[1]/b[1],C=1/_,D=1/w,A=Math.ceil(C)*2+2,F=Math.ceil(D)*2+2;for(let M=0;M<u;M++){let z=M*i[0];for(let G=0;G<c;G++){let U=z+G*i[1],H=Math.floor(G*C),J=Math.floor(H-A/2);for(let Y=0;Y<p;Y++){let X=U+Y*i[2],re=Math.floor(Y*D),K=Math.floor(re-F/2);for(let ne=0;ne<m;ne++){let ae=0;for(let ie=0;ie<A;ie++){let pe=ie+J;if(pe<0||pe>=f)continue;let le=z+pe*l[1],ge=pe*_,ye=Math.min(c-1,a?Math.round(ge):Math.floor(ge));if(G===ye)for(let be=0;be<F;be++){let ke=be+K;if(ke<0||ke>=d)continue;let Ee=le+ke*l[2],$e=ke*w,Fe=Math.min(p-1,a?Math.round($e):Math.floor($e));Y===Fe&&(ae+=g[Ee+ne])}}h[X+ne]=ae}}}}return t.makeTensorInfo(n.shape,n.dtype,h)}var WD={kernelName:fu,backendName:"cpu",kernelFunc:k8};function C8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o;te(n,"reverse");let a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return Dr({inputs:{x:n},backend:t});let l=new pt(n.shape,n.dtype),u=t.bufferSync(n);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),m=p.slice();i.forEach(f=>m[f]=n.shape[f]-1-m[f]),l.set(u.get(...m),...p)}return t.makeTensorInfo(l.shape,l.dtype,l.values)}var GD={kernelName:Nn,backendName:"cpu",kernelFunc:C8};var UD={kernelName:Ri,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[u,c,p,m]=o.shape,[f,d]=S.getImageCenter(a,c,p),h=255,g=Math.sin(n),x=Math.cos(n),b=i.data.get(o.dataId).values;for(let w=0;w<u;w++){let C=w*p*c*m;for(let D=0;D<c;D++){let A=D*(p*m);for(let F=0;F<p;F++){let M=F*m;for(let z=0;z<m;z++){let G=[u,D,F,z],U=G[2],H=G[1],J=(U-f)*x-(H-d)*g,Y=(U-f)*g+(H-d)*x;J=Math.round(J+f),Y=Math.round(Y+d);let X=s;if(typeof s!="number"&&(z===3?X=h:X=s[z]),J>=0&&J<p&&Y>=0&&Y<c){let K=Y*(p*m),ne=J*m,ae=C+K+ne+z;X=b[ae]}let re=C+A+M+z;l[re]=X}}}}return{dataId:i.write(l,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var I8=Re(Sn,r=>{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2==0?e:e+1}),jD={kernelName:Sn,backendName:"cpu",kernelFunc:I8};function Ix(r,e,t,o,n,s,a,i,l,u){let c=[o/n,n],p=r.values,m=e.values;if(o===0)return Ie(t,e.dtype);let f=Ie(c,e.dtype);f.values.fill(l);for(let d=0;d<s;d++){let h=[],g=0;for(let x=0;x<a;x++){let b=p[d*a+x];h.push(b),g+=b*i[x]}if(g<0||g>=o/n)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let x=0;x<n;x++)u?f.values[g*n+x]+=m[d*n+x]:f.values[g*n+x]=e.rank===0?m[0]:m[d*n+x]}return f}function N8(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=S.calculateShapes(s,n,a),m=!0,f=t.bufferSync(n),d=t.bufferSync(s),h=Ix(f,d,a,p,u,l,i,c,0,m);return t.makeTensorInfo(a,h.dtype,h.values)}var qD={kernelName:Ii,backendName:"cpu",kernelFunc:N8};function S8(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e;te([o,n,s],"select");let a=o.shape.length,i=t.data.get(o.dataId).values,l=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=fr(n.dtype,s.dtype),p=y.makeZerosTypedArray(y.sizeFromShape(n.shape),c),m=0,f=a===0||a>1||n.shape.length===1?1:y.sizeFromShape(n.shape.slice(1));for(let d=0;d<i.length;d++)for(let h=0;h<f;h++)i[d]===1?p[m++]=l[d]:p[m++]=u[d];return t.makeTensorInfo(n.shape,c,p)}var HD={kernelName:xs,backendName:"cpu",kernelFunc:S8};var T8=S.SELU_SCALEALPHA,E8=S.SELU_SCALE,A8=Re(Ni,r=>r>=0?E8*r:T8*(Math.exp(r)-1)),KD={kernelName:Ni,backendName:"cpu",kernelFunc:A8};var D8=Re(An,r=>1/(1+Math.exp(-r))),XD={kernelName:An,backendName:"cpu",kernelFunc:D8};var $8=Re(Ti,r=>r<0?-1:r>0?1:0),YD={kernelName:Ti,backendName:"cpu",kernelFunc:$8};var R8=Re(En,r=>Math.sin(r)),ZD={kernelName:En,backendName:"cpu",kernelFunc:R8};var F8=Re(Si,r=>Math.sinh(r)),JD={kernelName:Si,backendName:"cpu",kernelFunc:F8};var O8=11920928955078125e-23,QD=Math.log(O8)+2,P8=Re(Ei,r=>{let e=r>-QD,t=r<QD,o=Math.exp(r),n;return t?n=o:e?n=r:n=Math.log(1+o),n}),e$={kernelName:Ei,backendName:"cpu",kernelFunc:P8};function M8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;te([n],"spaceToBatchND");let i=y.sizeFromShape(s),l=[[0,0]];l.push(...a);for(let D=1+s.length;D<n.shape.length;++D)l.push([0,0]);let u=Cx.kernelFunc({inputs:{x:n},backend:t,attrs:{paddings:l,constantValue:0}}),c=S.getReshaped(u.shape,s,i,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(u.shape,s,i,!1),h=rt({inputs:{x:u},backend:t,attrs:{shape:c}}),b=or({inputs:{x:h},backend:t,attrs:{perm:p}}),C=rt({inputs:{x:b},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(b),C}var t$={kernelName:ha,backendName:"cpu",kernelFunc:M8};function L8(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,n,i),f=!1,d=t.bufferSync(n),h=t.bufferSync(s),g=t.data.get(a.dataId).values[0],x=Ix(d,h,i,m,c,u,l,p,g,f);return t.makeTensorInfo(i,x.dtype,x.values)}var r$={kernelName:hu,backendName:"cpu",kernelFunc:L8};function z8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],l=S.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=ts({inputs:{x:n},backend:t,attrs:{begin:u,size:m}});return u[i]+=p,f})}var o$={kernelName:bs,backendName:"cpu",kernelFunc:z8};var B8=Re(Dn,r=>Math.sqrt(r)),n$={kernelName:Dn,backendName:"cpu",kernelFunc:B8};var s$={kernelName:ga,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,o=e;te(t,"square");let n=o.data.get(t.dataId).values,s=new Float32Array(n.length);for(let i=0;i<n.length;++i){let l=n[i];s[i]=l*l}return{dataId:o.write(s,t.shape,t.dtype),shape:t.shape,dtype:t.dtype}}};var V8=Re(Fo,(r,e)=>{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),i$={kernelName:Fo,backendName:"cpu",kernelFunc:V8};function W8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o;te(n,"stridedSlice");let{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=sr.sliceInfo(n.shape,s,a,i,l,u,c,p,m),_=rt({inputs:{x:n},backend:t,attrs:{shape:x}}),w;if(f){let D=ts({inputs:{x:_},backend:t,attrs:{begin:d,size:g}});w=rt({inputs:{x:D},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(D)}else if(b.some(D=>D===0))w=t.makeTensorInfo(b,n.dtype,[]);else{let D=t.bufferSync(_),A=Qv(b,D,h,d);w=t.makeTensorInfo(A.shape,A.dtype,A.values)}let C=rt({inputs:{x:w},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(_),t.disposeIntermediateTensorInfo(w),C}var a$={kernelName:Ai,backendName:"cpu",kernelFunc:W8};var G8=Re(Di,r=>Math.tan(r)),l$={kernelName:Di,backendName:"cpu",kernelFunc:G8};var U8=Re(Pn,r=>Math.tanh(r)),u$={kernelName:Pn,backendName:"cpu",kernelFunc:U8};function j8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;te(n,"tile");let a=ek(t.bufferSync(n),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var c$={kernelName:wo,backendName:"cpu",kernelFunc:j8};function q8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o;te(n,"topk");let i=t.data.get(n.dataId).values,[l,u]=tk(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var p$={kernelName:$i,backendName:"cpu",kernelFunc:q8};function H8(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;te(s,"unique");let a=o.data.get(s.dataId).values,{outputValues:i,outputShape:l,indices:u}=rk(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var m$={kernelName:gu,backendName:"cpu",kernelFunc:H8};function K8(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape.length,i=n.shape[s],l=new Array(a-1),u=0;for(let f=0;f<a;f++)f!==s&&(l[u++]=n.shape[f]);let c=new Array(a).fill(0),p=n.shape.slice();p[s]=1;let m=new Array(i);for(let f=0;f<m.length;f++){c[s]=f;let d=ts({inputs:{x:n},backend:t,attrs:{begin:c,size:p}});m[f]=rt({inputs:{x:d},backend:t,attrs:{shape:l}}),t.disposeIntermediateTensorInfo(d)}return m}var f$={kernelName:_s,backendName:"cpu",kernelFunc:K8};function X8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o;te(n,"unsortedSegmentSum");let i=n.shape.length,l=s.shape.length,u=[],c=[],p=i-l,m=s;for(let d=0;d<p;++d){let h=Lp({inputs:{input:m},backend:t,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<a;++d){let h=y.createScalarValue(d,"int32"),g=t.makeTensorInfo([],"int32",h),x=mk({inputs:{a:g,b:m},backend:t}),b=Jn({inputs:{x},backend:t,attrs:{dtype:"float32"}}),_=Ud({inputs:{a:b,b:n},backend:t}),w=sc({inputs:{x:_},backend:t,attrs:{axis:0,keepDims:!1}});u.push(w),c.push(g),c.push(x),c.push(b),c.push(_),c.push(w)}let f=gk({inputs:u,backend:t,attrs:{axis:0}});return c.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var d$={kernelName:xa,backendName:"cpu",kernelFunc:X8};var Y8=[JA,nA,QA,e2,cA,t2,r2,o2,n2,s2,i2,a2,l2,u2,c2,m2,f2,d2,h2,ZA,g2,x2,y2,lA,mA,b2,sA,_2,v2,C2,I2,k2,S2,T2,N2,E2,A2,D2,$2,R2,F2,O2,P2,M2,L2,z2,V2,B2,Yd,jA,W2,G2,U2,dA,j2,gA,q2,H2,K2,yA,X2,Y2,Z2,J2,Q2,_A,eD,iA,tD,w2,rD,oD,nD,qA,vA,sD,iD,CA,aD,lD,uD,cD,pD,mD,NA,dD,hD,gD,xD,bD,fD,wD,vD,TA,kD,CD,SD,EA,DA,TD,ED,AD,RA,DD,FD,OD,Cx,PD,HA,PA,MD,aA,LD,KA,XA,YA,zD,BD,VD,WD,GD,UD,jD,LA,qD,HD,KD,XD,YD,ZD,JD,zA,ID,e$,t$,r$,o$,n$,s$,VA,i$,a$,GA,_D,l$,u$,c$,p$,FA,m$,f$,d$,$D];for(let r of Y8)tl(r);var ic={},xk={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function h$(r,e){ic[r]=e}function Wo(r){if(!(r in ic)){let t=Z8(r);if(t!==null)ic[r]=t;else return console.log("Could not get context for WebGL version",r),null}let e=ic[r];return e.isContextLost()?(delete ic[r],Wo(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),ic[r])}function J8(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Z8(r){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=J8(r);return e.addEventListener("webglcontextlost",t=>{t.preventDefault(),delete ic[r]},!1),r===1?e.getContext("webgl",xk)||e.getContext("experimental-webgl",xk):e.getContext("webgl2",xk)}var Nl;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(Nl||(Nl={}));var $r;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})($r||($r={}));var wr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(wr||(wr={}));function ac(r,e){return[e,r]}function g$(r,e){return r*e}function Sl(r){let e=y.sizeFromShape(r),t=Math.ceil(e/4);return y.sizeToSquarishShape(t)}function Xi(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function x$(r,e){let[t,o]=Xi(r,e);return t*o*4}function Qd(r,e){let t=r,o,n,s,a,i,l,u,c,p,m;return W().getNumber("WEBGL_VERSION")===2?(o=t.R32F,n=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,p=t.HALF_FLOAT,m=t.FLOAT):(o=r.RGBA,n=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,p=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT),l=r.RGBA,{internalFormatFloat:o,internalFormatHalfFloat:n,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function De(r,e){let t=e();return W().getBool("DEBUG")&&Q8(r),t}function Q8(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+eY(r,e))}var tY=596e-10,rY=65504;function y$(r){return!!(W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||tY<Math.abs(r)&&Math.abs(r)<rY)}function eY(r,e){switch(e){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${e}`}}function eh(r,e){return ja(r,()=>r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function b$(r,e){let t=ja(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(De(r,()=>r.shaderSource(t,e)),De(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function _$(r,e){let t=ja(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(De(r,()=>r.shaderSource(t,e)),De(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw oY(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var nY=/ERROR: [0-9]+:([0-9]+):/g;function oY(r,e){let t=nY.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let o=+t[1],n=r.split(`
`),s=n.length.toString().length+2,a=n.map((p,m)=>y.rightPad((m+1).toString(),s)+p),i=0;for(let p=0;p<a.length;p++)i=Math.max(a[p].length,i);let l=a.slice(0,o-1),u=a.slice(o-1,o),c=a.slice(o);console.log(l.join(`
`)),console.log(e.split(`
`)[0]),console.log(`%c ${y.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function w$(r){return ja(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function v$(r,e){if(De(r,()=>r.linkProgram(e)),r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function Nx(r,e){if(De(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function k$(r,e){let t=ja(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return De(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),De(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function C$(r,e){let t=ja(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return De(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),De(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function I$(r){return ja(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function N$(r,e){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let o=`[${r}x${e}]`;throw new Error("Requested texture size "+o+" is invalid.")}if(r>t||e>t){let o=`[${r}x${e}]`,n=`[${t}x${t}]`;throw new Error("Requested texture size "+o+" greater than WebGL maximum on this browser / GPU "+n+".")}}function S$(r){return ja(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function yk(r,e,t,o,n,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(De(r,()=>r.bindBuffer(r.ARRAY_BUFFER,o)),De(r,()=>r.vertexAttribPointer(i,n,r.FLOAT,!1,s,a)),De(r,()=>r.enableVertexAttribArray(i)),!0)}function iY(r,e,t){sY(r,t),De(r,()=>r.activeTexture(r.TEXTURE0+t)),De(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function T$(r,e,t){return ja(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function E$(r,e,t){return r.getUniformLocation(e,t)}function A$(r,e,t,o){De(r,()=>iY(r,e,o)),De(r,()=>r.uniform1i(t,o))}function Sx(r,e,t){De(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),De(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function bk(r,e){De(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),De(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function th(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+aY(r,e))}function aY(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function ja(r,e,t){let o=De(r,()=>e());if(o==null)throw new Error(t);return o}function sY(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,o=e+r.TEXTURE0;if(o<r.TEXTURE0||o>t){let n=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${n}.`)}}function Tl(r,e=2){return y.sizeFromShape(r.slice(0,r.length-e))}function El(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Tx(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[Tl(r),...El(r)]),e}function D$(r,e=!1){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");e&&(t=t*2,r=r.map((n,s)=>s>=r.length-2?y.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let o=y.sizeFromShape(r);if(r.length<=1&&o<=t)return[1,o];if(r.length===2&&r[0]<=t&&r[1]<=t)return r;if(r.length===3&&r[0]*r[1]<=t&&r[2]<=t)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=t&&r[1]*r[2]<=t)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t)return[r[0],r[1]*r[2]*r[3]];if(e){let n=Tl(r),s=2,a=2;return r.length&&([s,a]=El(r)),o=n*(s/2)*(a/2),y.sizeToSquarishShape(o).map(i=>i*2)}return y.sizeToSquarishShape(o)}function Ex(r){return r%2==0}function lc(r,e){if(r=r.slice(-2),e=e.slice(-2),y.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r.slice(-1)[0],o=e.slice(-1)[0];if(t===o||Ex(t)&&Ex(o)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&Ex(r[0])&&Ex(e[0])}var _k,wk;function $$(r){if(_k==null){let e=Wo(r);_k=e.getParameter(e.MAX_TEXTURE_SIZE)}return _k}function R$(r){if(wk==null){let e=Wo(r);wk=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,wk)}function F$(r){if(r===0)return 0;let e,t=Wo(r);return Go(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:Go(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function Go(r,e){return r.getExtension(e)!=null}function vk(r){try{if(Wo(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function O$(r){if(r===0)return!1;let e=Wo(r);if(r===1){if(!Go(e,"OES_texture_float"))return!1}else if(!Go(e,"EXT_color_buffer_float"))return!1;return kk(e)}function P$(r){if(r===0)return!1;let e=Wo(r);if(r===1){if(!Go(e,"OES_texture_float")||!Go(e,"WEBGL_color_buffer_float"))return!1}else{if(Go(e,"EXT_color_buffer_float"))return kk(e);let o="EXT_color_buffer_half_float";if(Go(e,o)){let n=e.getExtension(o);return lY(e,n)}return!1}return kk(e)}function kk(r){let e=Qd(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t);let o=1,n=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,o,n,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function lY(r,e){let t=Qd(r,e),o=r.createTexture();r.bindTexture(r.TEXTURE_2D,o);let n=1,s=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,n,s,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,o,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(o),r.deleteFramebuffer(a),i}function M$(r){return r!==2?!1:Wo(r).fenceSync!=null}function Yi(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Ve=W();Ve.registerFlag("HAS_WEBGL",()=>Ve.getNumber("WEBGL_VERSION")>0);Ve.registerFlag("WEBGL_VERSION",()=>vk(2)?2:vk(1)?1:0);Ve.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ve.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ve.get("WEBGL_VERSION")===2);Ve.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ve.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ve.registerFlag("WEBGL_PACK",()=>Ve.getBool("HAS_WEBGL"));Ve.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ve.getBool("WEBGL_PACK"));Ve.registerFlag("WEBGL_PACK_CLIP",()=>Ve.getBool("WEBGL_PACK"));Ve.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ve.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ve.getBool("WEBGL_PACK"));Ve.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ve.getBool("WEBGL_PACK"));Ve.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ve.getBool("WEBGL_PACK"));Ve.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ve.getBool("WEBGL_PACK"));Ve.registerFlag("WEBGL_PACK_REDUCE",()=>Ve.getBool("WEBGL_PACK"));Ve.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ve.getBool("WEBGL_PACK"));Ve.registerFlag("WEBGL_CONV_IM2COL",()=>Ve.getBool("WEBGL_PACK"));Ve.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>$$(Ve.getNumber("WEBGL_VERSION")));Ve.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>R$(Ve.getNumber("WEBGL_VERSION")));Ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Ve.getNumber("WEBGL_VERSION");return r===0?0:F$(r)});Ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ve.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Bc.isMobile());Ve.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>O$(Ve.getNumber("WEBGL_VERSION")));Ve.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ve.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ve.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ve.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>P$(Ve.getNumber("WEBGL_VERSION")));Ve.registerFlag("WEBGL_FENCE_API_ENABLED",()=>M$(Ve.getNumber("WEBGL_VERSION")));Ve.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ve.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ve.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});function zt(){let r,e,t,o,n,s,a,i,l,u;return W().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",o="in",n="texture",s="outputColor",a="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(r="",e="attribute",t="varying",o="varying",n="texture2D",s="gl_FragColor",a="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:r,attribute:e,varyingVs:t,varyingFs:o,texture2D:n,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Bs(r,e,t="index"){let o=y.computeStrides(e);return o.map((n,s)=>{let a=`int ${r[s]} = ${t} / ${n}`,i=s===o.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${n}`:`index -= ${r[s]} * ${n}`;return`${a}; ${i};`}).join("")}function zp(r){let e=y.computeStrides(r).map(t=>t.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z;
}
`}var Ax=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;var Ck=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Nl.DENSE;let t=Sl(e),o=zt();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Bs(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${o.output} = result;
}
`}};var Ik=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Nl.DENSE;let t=Sl(e),o=zt();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Bs(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${o.output} = result;
}
`}};var Nk=class{constructor(e){this.variableNames=["A"],this.outTexUsage=$r.DOWNLOAD;let t=zt();this.outputShape=e,this.userCode=`
${Ax}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}};var Sk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=$r.DOWNLOAD;let t=zt();this.outputShape=e,this.userCode=`
${Ax}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}};var Tk=class{constructor(e,t,o=!1){this.variableNames=["A"];let n=zt(),[s,a]=t;this.outputShape=e;let i="result";o&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${zp(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${a};
int c = imod(flatIndex, ${a});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${i}, 0., 0., 0.);
}
`}};var Ek=class{constructor(e,t,o=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let n=zt(),[s,a]=t;this.outputShape=e;let i="",l="result";o&&(l="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let c=0;c<=1;c++){let p=u*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${u} < ${e[1]}) {
localCoords[1] += ${u};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${a};
c = imod(flatIndex, ${a});
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
values = ${n.texture2D}(A, uv);
if(offset == 0) {
result[${p}] = values[0];
} else if(offset == 1) {
result[${p}] = values[1];
} else if(offset == 2) {
result[${p}] = values[2];
} else {
result[${p}] = values[3];
}
}
}
`}this.userCode=`
${zp(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${n.output} = ${l};
}
`}};function L$(r){let e=zt(),t=`${e.version}
precision highp float;
${e.attribute} vec3 clipSpacePos;
${e.attribute} vec2 uv;
${e.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return b$(r,t)}function z$(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return k$(r,e)}function B$(r){let e=new Uint16Array([0,1,2,2,1,3]);return C$(r,e)}function rh(r,e,t,o,n,s){N$(e,t);let a=I$(r),i=r.TEXTURE_2D;return De(r,()=>r.bindTexture(i,a)),De(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),De(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),De(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),De(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),De(r,()=>r.texImage2D(i,0,o,e,t,0,n,s,null)),De(r,()=>r.bindTexture(r.TEXTURE_2D,null)),a}function Ak(r){return r.internalFormatFloat}function V$(r,e,t,o){let[n,s]=ac(e,t);return rh(r,n,s,Ak(o),o.textureFormatFloat,r.FLOAT)}function Dk(r){return r.internalFormatHalfFloat}function W$(r,e,t,o){let[n,s]=ac(e,t);return rh(r,n,s,Dk(o),o.textureFormatFloat,o.textureTypeHalfFloat)}function $k(r){return r.downloadTextureFormat}function G$(r,e,t,o){let[n,s]=ac(e,t);return rh(r,n,s,$k(o),r.RGBA,r.UNSIGNED_BYTE)}function Rk(r){return r.internalFormatPackedFloat}function U$(r,e,t,o){let[n,s]=Xi(e,t);return rh(r,n,s,Rk(o),r.RGBA,r.FLOAT)}function Fk(r){return r.internalFormatPackedHalfFloat}function j$(r,e,t,o){let[n,s]=Xi(e,t);return rh(r,n,s,Fk(o),r.RGBA,o.textureTypeHalfFloat)}function q$(r,e,t){let o=0,n=3*4,s=3*4+2*4;return De(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),yk(r,e,"clipSpacePos",t,3,s,o)&&yk(r,e,"uv",t,2,s,n)}function H$(r,e,t,o,n,s){De(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,l;n instanceof Uint8Array?(a=new Uint8Array(t*o*4),i=r.UNSIGNED_BYTE,l=r.RGBA):(a=new Float32Array(t*o*4),i=r.FLOAT,l=s.internalFormatPackedFloat),a.set(n),De(r,()=>r.texImage2D(r.TEXTURE_2D,0,l,t,o,0,r.RGBA,i,a)),De(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function K$(r,e,t){De(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?De(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):De(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),De(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function X$(r,e,t,o){let n=r.createBuffer();De(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,n));let i=4*4*e*t;return De(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),De(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),De(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),n}function Y$(r,e,t){let o=r,n=new Float32Array(t);return o.bindBuffer(o.PIXEL_PACK_BUFFER,e),o.getBufferSubData(o.PIXEL_PACK_BUFFER,0,n),o.bindBuffer(o.PIXEL_PACK_BUFFER,null),n}function Z$(r,e,t,o){let[n,s]=ac(e,t),a=4,i=new Uint8Array(g$(e*t,a));return De(r,()=>r.readPixels(0,0,n,s,o.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function J$(r,e,t,o,n,s,a,i){let l=r,u=new Float32Array(x$(s,a));return l.bindBuffer(l.PIXEL_PACK_BUFFER,e),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function Q$(r,e,t){let o=new Float32Array(e*t*4);return De(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,o)),o}var Ok=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=W().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,h$(t,e)):this.gl=Wo(t);let o="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(W().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=eh(this.gl,s),Go(this.gl,a))this.textureHalfFloatExtension=eh(this.gl,a);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(o),Go(this.gl,n))this.colorBufferHalfFloatExtension=eh(this.gl,n);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(o="EXT_color_buffer_float",Go(this.gl,o))this.colorBufferFloatExtension=this.gl.getExtension(o);else if(Go(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=z$(this.gl),this.indexBuffer=B$(this.gl),this.framebuffer=S$(this.gl),this.textureConfig=Qd(this.gl,this.textureHalfFloatExtension)}get debug(){return W().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;De(e,()=>e.finish()),De(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),De(e,()=>e.deleteFramebuffer(this.framebuffer)),De(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),De(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),De(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),V$(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),W$(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),G$(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),K$(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,o,n){this.throwIfDisposed(),H$(this.gl,e,t,o,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),j$(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),U$(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(bk(this.gl,this.framebuffer),this.outputTexture=null),De(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,o){return this.downloadMatrixDriver(e,()=>Z$(this.gl,t,o,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,o,n,s,a){return J$(this.gl,e,t,o,n,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Y$(this.gl,e,t)}createBufferFromTexture(e,t,o){this.bindTextureToFrameBuffer(e);let n=X$(this.gl,t,o,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,o;if(W().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,s=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),o=()=>{let a=n.clientWaitSync(s,0,0);return a===n.ALREADY_SIGNALED||a===n.CONDITION_SATISFIED},t=s}else W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),o=()=>this.isQueryAvailable(t,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):o=()=>!0;return{query:t,isFencePassed:o}}downloadMatrixFromPackedTexture(e,t,o){return this.downloadMatrixDriver(e,()=>Q$(this.gl,t,o))}createProgram(e){this.throwIfDisposed();let t=this.gl,o=_$(t,e),n=L$(t),s=w$(t);return De(t,()=>t.attachShader(s,n)),De(t,()=>t.attachShader(s,o)),v$(t,s),this.debug&&Nx(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=q$(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&De(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Nx(this.gl,this.program),De(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,o=!0){return this.throwIfDisposed(),o?T$(this.gl,e,t):E$(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),De(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,o){this.throwIfDisposed(),this.throwIfNoProgram(),A$(this.gl,e,t,o)}setOutputMatrixTexture(e,t,o){this.setOutputMatrixTextureDriver(e,o,t)}setOutputPackedMatrixTexture(e,t,o){this.throwIfDisposed();let[n,s]=Xi(t,o);this.setOutputMatrixTextureDriver(e,n,s)}setOutputMatrixWriteRegion(e,t,o,n){this.setOutputMatrixWriteRegionDriver(o,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,o,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Nx(this.gl,this.program),th(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),De(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),De(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=eh(this.gl,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.createQuery();return o.beginQuery(n.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,o=this.getQueryTimerExtensionWebGL2();t.endQuery(o.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let o=this.gl;return o.getQueryParameter(e,o.QUERY_RESULT)/1e6}else{let o=this.getQueryTimerExtensionWebGL1();return o.getQueryObjectEXT(e,o.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.getQueryParameter(e,o.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let o=this.getQueryTimerExtensionWebGL1(),n=o.getQueryObjectEXT(e,o.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=uY(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:o}=this.itemsToPoll[t];o()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Sx(this.gl,e,this.framebuffer),this.debug&&th(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Sx(this.gl,this.outputTexture,this.framebuffer),this.debug&&th(this.gl)):bk(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let o=t();return this.unbindTextureToFrameBuffer(),o}setOutputMatrixTextureDriver(e,t,o){this.throwIfDisposed();let n=this.gl;Sx(n,e,this.framebuffer),this.debug&&th(n),this.outputTexture=e,De(n,()=>n.viewport(0,0,t,o)),De(n,()=>n.scissor(0,0,t,o))}setOutputMatrixWriteRegionDriver(e,t,o,n){this.throwIfDisposed(),De(this.gl,()=>this.gl.scissor(e,t,o,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function uY(r){let e=0;for(;e<r.length&&r[e]();++e);return e-1}var{getBroadcastDims:eR}=S;function tR(r,e,t,o){let n=[];r.forEach(d=>{let h=y.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?n.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(n.push(`uniform sampler2D ${d.name};`),n.push(`uniform int offset${d.name};`))});let s=n.join(`
`),a=r.map(d=>cY(d,e,o)).join(`
`),i=e.texShape,l=zt(),u=fY(l),c,p,m=gY(l);return e.isPacked?(c=pY(e.logicalShape,i),p=hY(l)):(c=mY(e.logicalShape,i),p=dY(l)),o&&(m+=xY),[m,u,p,s,c,a,t].join(`
`)}function Bp(r){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return yY(r);case 1:return bY(r);case 2:return _Y(r);case 3:return wY(r);case 4:return vY(r);case 5:return kY(r);case 6:return CY(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function rR(r){switch(r.shapeInfo.logicalShape.length){case 0:return IY(r);case 1:return NY(r);case 2:return SY(r);case 3:return TY(r);default:return EY(r)}}function cY(r,e,t=!1){let o="";t?o+=rR(r):o+=Bp(r);let n=r.shapeInfo.logicalShape,s=e.logicalShape;return n.length<=s.length&&(t?o+=AY(r,e):o+=DY(r,e)),o}function pY(r,e){switch(r.length){case 0:return oR();case 1:return $Y(r,e);case 2:return OY(r,e);case 3:return RY(r,e);default:return FY(r,e)}}function mY(r,e){switch(r.length){case 0:return oR();case 1:return PY(r,e);case 2:return VY(r,e);case 3:return MY(r,e);case 4:return LY(r,e);case 5:return zY(r,e);case 6:return BY(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function fY(r){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${r.texture2D}(textureSampler, uv).r;
}
`}function dY(r){return`
void setOutput(float val) {
${r.output} = vec4(val, 0, 0, 0);
}
`}function hY(r){return`
void setOutput(vec4 val) {
${r.output} = val;
}
`}function gY(r){return`${r.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${r.varyingFs} vec2 resultUV;
${r.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${r.defineSpecialNaN}
${r.defineSpecialInf}
${r.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${WY}
${GY}
${UY}
`}var WY=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,GY=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,UY=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,xY=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function oR(){return`
int getOutputCoords() {
return 0;
}
`}function $Y(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return t[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return 2 * (resTexRC.x * ${t[1]} + resTexRC.y);
}
`}function PY(r,e){return e[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${e[1]}.0);
}
`:e[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${e[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
return resTexRC.x * ${e[1]} + resTexRC.y;
}
`}function RY(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[2]/2),n=o*Math.ceil(r[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int b = index / ${n};
index -= b * ${n};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec3(b, r, c);
}
`}function MY(r,e){let t=Bs(["r","c","d"],r);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec3(r, c, d);
}
`}function FY(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[r.length-1]/2),n=o*Math.ceil(r[r.length-2]/2),s=n,a="",i="b, r, c";for(let l=2;l<r.length-1;l++)s*=r[r.length-l-1],a=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+a,i=`b${l}, `+i;return`
ivec${r.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
int b = index / ${n};
index -= b * ${n};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec${r.length}(${i});
}
`}function LY(r,e){let t=Bs(["r","c","d","d2"],r);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec4(r, c, d, d2);
}
`}function zY(r,e){let t=Bs(["r","c","d","d2","d3"],r);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]},
${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function BY(r,e){let t=Bs(["r","c","d","d2","d3","d4"],r);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function OY(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];if(y.arraysEqual(r,e))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`;let o=Math.ceil(r[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec2(r, c);
}
`}function VY(r,e){return y.arraysEqual(r,e)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]}));
}
`:r[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:r[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
int r = index / ${r[1]};
int c = index - r * ${r[1]};
return ivec2(r, c);
}
`}function uc(r){return`offset${r}`}function IY(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=zt();return`
vec4 ${t}() {
return ${o.texture2D}(${e}, halfCR);
}
`}function yY(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${t}() {return ${e};}`;let[o,n]=r.shapeInfo.texShape;if(o===1&&n===1)return`
float ${t}() {
return sampleTexture(${e}, halfCR);
}
`;let[s,a]=r.shapeInfo.texShape,i=uc(e);return`
float ${t}() {
vec2 uv = uvFromFlat(${s}, ${a}, ${i});
return sampleTexture(${e}, uv);
}
`}function NY(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=r.shapeInfo.texShape,n=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],s=zt();return`
vec4 ${t}(int index) {
vec2 uv = packedUVfrom1D(
${n[0]}, ${n[1]}, index);
return ${s.texture2D}(${e}, uv);
}
`}function bY(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
float ${t}(int index) {
${Vp(r)}
}
`;let o=r.shapeInfo.texShape,n=o[0],s=o[1];if(s===1&&n===1)return`
float ${t}(int index) {
return sampleTexture(${e}, halfCR);
}
`;let a=uc(e);return s===1?`
float ${t}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${n}.0);
return sampleTexture(${e}, uv);
}
`:n===1?`
float ${t}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${e}, uv);
}
`:`
float ${t}(int index) {
vec2 uv = uvFromFlat(${n}, ${s}, index + ${a});
return sampleTexture(${e}, uv);
}
`}function SY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=n[0],a=n[1],i=zt();if(n!=null&&y.arraysEqual(e,n))return`
vec4 ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${s}.0);
return ${i.texture2D}(${t}, uv);
}
`;let l=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)],u=Math.ceil(e[1]/2);return`
vec4 ${o}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
return ${i.texture2D}(${t}, uv);
}
`}function _Y(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape;if(n!=null&&y.arraysEqual(e,n)){let p=n[0],m=n[1];return`
float ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`}let{newShape:s,keptDims:a}=y.squeezeShape(e),i=s;if(i.length<e.length){let p=Wp(r,i),m=["row","col"];return`
${Bp(p)}
float ${o}(int row, int col) {
return ${o}(${Gp(m,a)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
${Vp(r)}
}
`;let l=n[0],u=n[1],c=uc(t);return u===1?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${t}, uv);
}
`:l===1?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${o}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${e[1]} + col + ${c};
vec2 uv = uvFromFlat(${l}, ${u}, index);
return sampleTexture(${t}, uv);
}
`}function TY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)];if(e[0]===1){let p=e.slice(1),m=[1,2],f=Wp(r,p),d=["b","row","col"];return`
${rR(f)}
vec4 ${o}(int b, int row, int col) {
return ${o}(${Gp(d,m)});
}
`}let a=s[0],i=s[1],l=Math.ceil(e[2]/2),u=l*Math.ceil(e[1]/2),c=zt();return`
vec4 ${o}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${a}, ${i}, ${u}, ${l}, b, row, col);
return ${c.texture2D}(${t}, uv);
}
`}function wY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[1]*e[2],s=e[2],{newShape:a,keptDims:i}=y.squeezeShape(e),l=a;if(l.length<e.length){let d=Wp(r,l),h=["row","col","depth"];return`
${Bp(d)}
float ${o}(int row, int col, int depth) {
return ${o}(${Gp(h,i)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${n}, ${s}, 1)));
${Vp(r)}
}
`;let u=r.shapeInfo.texShape,c=u[0],p=u[1],m=r.shapeInfo.flatOffset;if(p===n&&m==null)return`
float ${o}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;if(p===s&&m==null)return`
float ${o}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;let f=uc(t);return`
float ${o}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n} + col * ${s} + depth + ${f};
vec2 uv = uvFromFlat(${c}, ${p}, index);
return sampleTexture(${t}, uv);
}
`}function EY(r){let e=r.shapeInfo.logicalShape,t=e.length,o=r.name,n="get"+o.charAt(0).toUpperCase()+o.slice(1),s=r.shapeInfo.texShape,a=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],i=a[0],l=a[1],u=Math.ceil(e[t-1]/2),c=u*Math.ceil(e[t-2]/2),p="int b, int row, int col",m=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let d=2;d<t-1;d++)p=`int b${d}, `+p,c*=e[t-d-1],m=`b${d} * ${c} + `+m;let f=zt();return`
vec4 ${n}(${p}) {
int index = ${m};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${i});
return ${f.texture2D}(${o}, uv);
}
`}function vY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[3],s=e[2]*n,a=e[1]*s,{newShape:i,keptDims:l}=y.squeezeShape(e);if(i.length<e.length){let d=Wp(r,i),h=["row","col","depth","depth2"];return`
${Bp(d)}
float ${o}(int row, int col, int depth, int depth2) {
return ${o}(${Gp(h,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${a}, ${s}, ${n}, 1)));
${Vp(r)}
}
`;let u=r.shapeInfo.flatOffset,c=r.shapeInfo.texShape,p=c[0],m=c[1];if(m===a&&u==null)return`
float ${o}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${n}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;if(m===n&&u==null)return`
float ${o}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${e[1]*e[2]}, ${e[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;let f=uc(t);return`
float ${o}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} +
depth * ${n} + depth2;
vec2 uv = uvFromFlat(${p}, ${m}, index + ${f});
return sampleTexture(${t}, uv);
}
`}function kY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[4],s=e[3]*n,a=e[2]*s,i=e[1]*a,{newShape:l,keptDims:u}=y.squeezeShape(e);if(l.length<e.length){let h=Wp(r,l),g=["row","col","depth","depth2","depth3"];return`
${Bp(h)}
float ${o}(int row, int col, int depth, int depth2, int depth3) {
return ${o}(${Gp(g,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${a}, ${s}, ${n})) +
depth3;
${Vp(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===i&&c==null)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${a}, ${s}, ${n}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;if(f===n&&c==null)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]},
${e[2]*e[3]}, ${e[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;let d=uc(t);return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${a} + depth * ${s} +
depth2 * ${n} + depth3 + ${d};
vec2 uv = uvFromFlat(${m}, ${f}, index);
return sampleTexture(${t}, uv);
}
`}function CY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),{newShape:n,keptDims:s}=y.squeezeShape(e);if(n.length<e.length){let g=Wp(r,n),x=["row","col","depth","depth2","depth3","depth4"];return`
${Bp(g)}
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${o}(${Gp(x,s)});
}
`}let a=e[5],i=e[4]*a,l=e[3]*i,u=e[2]*l,c=e[1]*u;if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${a}, 1)));
${Vp(r)}
}
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${i}, ${a})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;if(d===a&&p==null)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]*e[4]},
${e[2]*e[3]*e[4]},
${e[3]*e[4]},
${e[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;let h=uc(t);return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${i} + depth3 * ${a} + depth4 + ${h};
vec2 uv = uvFromFlat(${f}, ${d}, index);
return sampleTexture(${t}, uv);
}
`}function Vp(r){let e=r.name,t=y.sizeFromShape(r.shapeInfo.logicalShape);return t<2?`return ${e};`:`
for (int i = 0; i < ${t}; i++) {
if (i == index) {
return ${e}[i];
}
}
`}function AY(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=r.shapeInfo.logicalShape.length,a=e.logicalShape.length,i=eR(r.shapeInfo.logicalShape,e.logicalShape),l=ze(a),u=a-s,c,p=["x","y","z","w","u","v"];s===0?c="":a<2&&i.length>=1?c="coords = 0;":c=i.map(b=>`coords.${p[b+u]} = 0;`).join(`
`);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,_)=>`coords.${p[_+u]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!x)f=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(h&&!x)a===1?f=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:f=`
return vec4(outputValue.x);
`;else if(i.length){let b=s-2,_=s-1;i.indexOf(b)>-1&&i.indexOf(_)>-1?f="return vec4(outputValue.x);":i.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(_)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${n}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${o}(${m});
${f}
}
`}function DY(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,l=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===l&&r.shapeInfo.flatOffset==null&&y.arraysEqual(a,s))return`
float ${n}() {
return sampleTexture(${t}, resultUV);
}
`;let u=ze(l),c=eR(r.shapeInfo.logicalShape,e.logicalShape),p=l-i,m,f=["x","y","z","w","u","v"];i===0?m="":l<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
`);let d="";return l<2&&i>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
float ${n}() {
${u} coords = getOutputCoords();
${m}
return get${o}(${d});
}
`}function ze(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function Wp(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function Gp(r,e){return e.map(t=>r[t]).join(", ")}function nR(r,e,t,o){let n=e.userCode,s=t.map((f,d)=>{let h={logicalShape:f.shape,texShape:f.isUniform?null:f.texData.texShape,isUniform:f.isUniform,isPacked:f.isUniform?!1:f.texData.isPacked,flatOffset:null};return f.texData!=null&&f.texData.slice!=null&&f.texData.slice.flatOffset>0&&(h.flatOffset=f.texData.slice.flatOffset),{name:e.variableNames[d],shapeInfo:h}}),a=s.map(f=>f.shapeInfo),i={logicalShape:o.shape,texShape:o.texData.texShape,isUniform:!1,isPacked:o.texData.isPacked,flatOffset:null},l=tR(s,i,n,e.packedInputs),u=r.createProgram(l),c=null,p=r.getUniformLocation(u,"NAN",!1);W().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(u,"INFINITY",!1));let m={};for(let f=0;f<e.variableNames.length;f++){let d=e.variableNames[f],h=!1;m[d]=r.getUniformLocation(u,d,h),m[`offset${d}`]=r.getUniformLocation(u,`offset${d}`,h)}return{program:e,source:l,webGLProgram:u,uniformLocations:m,inShapeInfos:a,outShapeInfo:i,infLoc:c,nanLoc:p}}function sR(r,e){if(r.length!==e.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${e.length} inputs`);r.forEach((t,o)=>{let n=t.logicalShape,s=e[o],a=s.shape;if(!y.arraysEqual(n,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${n} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,l=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function iR(r,e,t,o,n){sR(e.inShapeInfos,t),sR([e.outShapeInfo],[o]);let s=o.texData.texture,a=o.texData.texShape;o.texData.isPacked?r.setOutputPackedMatrixTexture(s,a[0],a[1]):r.setOutputMatrixTexture(s,a[0],a[1]),r.setProgram(e.webGLProgram),W().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,Infinity),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN),t.forEach((i,l)=>{let u=e.program.variableNames[l],c=e.uniformLocations[u],p=e.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(y.sizeFromShape(i.shape)<2)r.gl.uniform1f(c,i.uniformValues[0]);else{let m=i.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),r.gl.uniform1fv(c,m)}return}i.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,i.texData.slice.flatOffset),r.setInputMatrixTexture(i.texData.texture,c,l)}}),n!=null&&n(r,e.webGLProgram),r.executeProgram()}function aR(r,e,t){let o="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,l=a.isUniform?"uniform":a.texData.texShape;o+=`${a.shape}_${l}_${i}`});let n=r.userCode,s=r.constructor.name;return s+="_"+o+"_"+n,s}var{addImpl:lR,bincountImpl:Dx,bincountReduceImpl:uR,ceilImpl:cR,concatImpl:pR,expImpl:mR,expm1Impl:fR,floorImpl:dR,gatherV2Impl:hR,greaterImpl:gR,lessImpl:xR,linSpaceImpl:yR,logImpl:bR,maxImpl:_R,maximumImpl:wR,minimumImpl:vR,multiplyImpl:kR,negImpl:CR,prodImpl:IR,rangeImpl:NR,rsqrtImpl:SR,simpleAbsImpl:$x,sliceImpl:TR,stridedSliceImpl:ER,subImpl:AR,tileImpl:DR,topKImpl:$R,transposeImpl:Up,uniqueImpl:RR}=ok;function Pk(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function qt(r,e){return e===1?[r]:Pk(r,e)}function FR(r,e){if(r===1)return"rc";let t="";for(let o=0;o<r;o++)t+=e[o],o<r-1&&(t+=",");return t}var Mk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let o=qt("rc",t),n=ze(t),s=jY(t,e,o),a=qY(t,e[e.length-1],e[e.length-2],o),i=HY(e,o);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${s}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${i}));
}
}
`}}};function KY(r,e){let t=[];for(let o=0;o<=1;o++)for(let n=0;n<=1;n++){let s=`${o===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let a=2;a<r;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}function jY(r,e,t){if(r===1)return`rc > ${e[0]}`;let o="";for(let n=r-2;n<r;n++)o+=`${t[n]} >= ${e[n]}`,n<r-1&&(o+="||");return o}function qY(r,e,t,o){if(r===1)return"";let n=o.slice(-2);return`
int r = ${n[0]};
int c = ${n[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${e};
bool rEdge = rp1 >= ${t};
`}function HY(r,e){let t=r.length,o=KY(t,e);return t===1?`getA(rc),
rc + 1 >= ${r[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${o[0]}),
cEdge ? 0. : getA(${o[1]}),
rEdge ? 0. : getA(${o[2]}),
rEdge || cEdge ? 0. : getA(${o[3]})`}var oh=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let o="";for(let n=0;n<4;n++){let s="thisRC = rc;";n%2==1&&(s+="thisRC.z += 1;"),n>1&&(s+="thisRC.y += 1;"),o+=`
${s}
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${n}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${n>0?"}":""}
`}this.userCode=`
${XY(t)}
${zp(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${o}
setOutput(result);
}
`}};function XY(r){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${Bs(["r","c","d"],r)}
return ivec3(r, c, d);
}
`}var Lk=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,o){let n=PR(t,o),s=MR(e,n,o);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=OR(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,o);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let l=this.freeTextures[s].shift();return this.usedTextures[s].push(l),l}let i;return n===wr.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===wr.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===wr.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===wr.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===wr.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,o,n){if(this.freeTextures==null)return;let s=PR(o,n),a=MR(t,s,n);a in this.freeTextures||(this.freeTextures[a]=[]);let i=OR(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,n),l=W().get("WEBGL_DELETE_TEXTURE_THRESHOLD");l!==-1&&this._numBytesAllocated>l?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function YY(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;throw new Error(`Unknown internal format ${e}`)}function OR(r,e,t,o,n){let s=ZY(e,o),a;if(n){let[l,u]=Xi(r[0],r[1]);a=l*u}else{let[l,u]=ac(r[0],r[1]);a=l*u}let i=YY(t,s);return a*i}function ZY(r,e){switch(r){case wr.PACKED_2X2_FLOAT32:return Rk(e);case wr.PACKED_2X2_FLOAT16:return Fk(e);case wr.UNPACKED_FLOAT32:return Ak(e);case wr.UNPACKED_FLOAT16:return Dk(e);case wr.PACKED_4X1_UNSIGNED_BYTE:return $k(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function JY(r){return W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?wr.PACKED_2X2_FLOAT32:wr.UNPACKED_FLOAT32:r?wr.PACKED_2X2_FLOAT16:wr.UNPACKED_FLOAT16}function PR(r,e){if(r===$r.UPLOAD)return wr.PACKED_2X2_FLOAT32;if(r===$r.RENDER||r==null)return JY(e);if(r===$r.DOWNLOAD||r===$r.PIXELS)return wr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function MR(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var mo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},xr="if (isnan(x)) return x;",LR="return x;",zk="return abs(x);";var zR="return (x >= 0.0) ? x : (exp(x) - 1.0);",BR=xr+`
return (x < 0.0) ? 0.0 : x;
`,VR=xr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,nh="return x;";var WR="return x;",GR=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,UR=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,jR=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Vs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}};var Bk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,o=qt("rc",t),n=ze(t),s=FR(t,o),a=o.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${i}));
}
`}};var QY=Ar.whereImpl,e7=1e-7,t7=1e-4,Rx={};function r7(r){return r in Rx||(Rx[r]={}),Rx[r]}var o7=128,n7=600;function s7(){return W().global.screen==null?1024:W().global.screen.height*W().global.screen.width*window.devicePixelRatio*n7/1024/1024}var Vk=class extends Us{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!W().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Wo(W().getNumber("WEBGL_VERSION"));this.binaryCache=r7(W().getNumber("WEBGL_VERSION")),this.gpgpu=new Ok(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new Lk(this.gpgpu),this.numMBBeforeWarning=s7(),this.texData=new Ja(this,Ns())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,o){if((W().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||W().getBool("DEBUG"))&&this.checkNumericalProblems(e),o==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={};return this.texData.set(n,{shape:t,dtype:o,values:e,usage:$r.UPLOAD,refCount:1,complexParentRefCount:0}),n}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}decComplexRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.complexParentRefCount>0&&t.refCount--}}move(e,t,o,n){if(W().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:o,dtype:n,values:t,usage:$r.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.texData.has(t)){let o=this.texData.get(t);o.refCount--,o.refCount<1&&this.disposeData(t)}}readSync(e){let t=this.texData.get(e),{values:o,dtype:n,complexTensorInfos:s,slice:a,shape:i,isPacked:l}=t;if(a!=null){let m;l?m=new Vs(i,nh):m=new mo(i,nh);let f=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:n}],n),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(o!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return o;let u=this.activeTimers!=null,c;u&&(c=y.now());let p;if(n==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=S.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(h=>d.push(h))}let t=this.texData.get(e),{values:o,shape:n,slice:s,dtype:a,complexTensorInfos:i,isPacked:l}=t;if(s!=null){let d;l?d=new Vs(n,nh):d=new mo(n,nh);let h=this.runWebGLProgram(d,[{dataId:e,shape:n,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(o!=null)return this.convertAndCacheOnCPU(e);if(!W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&W().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&W().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(d.texture,...Sl(n))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(a==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=d[0],g=d[1];p=S.mergeRealAndImagArrays(h,g)}else if(u==null)p=this.getValuesFromTexture(e);else{let d=y.sizeFromShape(n);p=this.gpgpu.downloadFloat32MatrixFromBuffer(u,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let m=this.convertAndCacheOnCPU(e,p),f=this.pendingRead.get(e);return this.pendingRead.delete(e),f.forEach(d=>d(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),m}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>y.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ie(e.shape,e.dtype,o)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let o=e[t];if(!y$(o))throw W().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${o} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${o} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:o,isPacked:n}=this.texData.get(e),s=y.sizeFromShape(t);if(W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(e),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture,...Sl(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let a=W().getBool("WEBGL_PACK")&&n===!0,i=a?Tx(t):t,l=a?new Sk(i):new Nk(i),u=this.runWebGLProgram(l,[{shape:i,dtype:o,dataId:e}],"float32"),c=this.texData.get(u.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),p}async time(e){let t=this.activeTimers,o=[],n=!1;this.programTimersStack==null?(this.programTimersStack=o,n=!0):this.activeTimers.push(o),this.activeTimers=o,e();let s=y.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=y.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let l=await Promise.all(s);i.kernelMs=y.sum(l),i.getExtraProfileInfo=()=>l.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(e){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=y.now(),e)}async getQueryTime(e){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;if(this.texData.get(e).complexParentRefCount>0){this.texData.get(e).refCount--;return}this.releaseGPUData(e);let{complexTensorInfos:t}=this.texData.get(e);t!=null&&(this.texData.get(t.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.real),this.texData.get(t.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.imag)),this.texData.delete(e)}releaseGPUData(e){let{texture:t,dtype:o,texShape:n,usage:s,isPacked:a,slice:i}=this.texData.get(e),l=i&&i.origDataId||e,u=this.dataRefCount.get(l);u>1?this.dataRefCount.set(l,u-1):(this.dataRefCount.delete(l),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,o),this.textureManager.releaseTexture(t,n,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return W().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Ns().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=o7){let o=this.getCPUBackend();return!W().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&o==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),o!=null&&e.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){S.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return QY(e.shape,t)}packedUnaryOp(e,t,o){let n=new Vs(e.shape,t);return this.compileAndRun(n,[e],o)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let o=$x(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,o)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,zk,e.dtype);let t=new mo(e.shape,zk);return this.compileAndRun(t,[e])}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,o){let{dataId:n}=this.makeTensorInfo(e,t,o);return Ns().makeTensorFromDataId(n,e,t,this)}unpackTensor(e){let t=new Bk(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Mk(e.shape),o=!0;return this.runWebGLProgram(t,[e],e.dtype,null,o)}packedReshape(e,t){let o=[Tl(e.shape),...El(e.shape)],n={dtype:e.dtype,shape:o,dataId:e.dataId},s=[Tl(t),...El(t)],a=new oh(s,o),i=!0,l=this.runWebGLProgram(a,[n],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:o,shape:n,dtype:s}=t,a=Tx(n),i;o?i=new Ik(a):i=new Ck(a);let l=!0,u=this.runWebGLProgram(i,[{shape:a,dtype:s,dataId:e}],s,null,l);return{dtype:s,shape:n,dataId:u.dataId}}runWebGLProgram(e,t,o,n,s=!1){let a=this.makeTensorInfo(e.outputShape,o),i=this.texData.get(a.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Nl.DENSE){let h=Sl(e.outputShape);i.texShape=h.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),y.sizeFromShape(a.shape)===0)return i.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],u=t.map(h=>{if(h.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(h.dataId);if(g.texture==null){if(!e.packedInputs&&y.sizeFromShape(h.shape)<=W().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:h.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=h.shape)}else if(!!g.isPacked!=!!e.packedInputs)h=g.isPacked?this.unpackTensor(h):this.packTensor(h),l.push(h),g=this.texData.get(h.dataId);else if(g.isPacked&&!lc(g.shape,h.shape)){let x=h,b=h.shape;h.shape=g.shape,h=this.packedReshape(h,b),l.push(h),g=this.texData.get(h.dataId),x.shape=b}return this.uploadToGPU(h.dataId),{shape:h.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:i,isUniform:!1},p=aR(e,u,c),m=this.getAndSaveBinary(p,()=>nR(this.gpgpu,e,u,c)),f=this.activeTimers!=null,d;if(f&&(d=this.startTimer()),iR(this.gpgpu,m,u,c,n),l.forEach(h=>this.disposeIntermediateTensorInfo(h)),f&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)})),!W().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let h=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),h}return a}compileAndRun(e,t,o,n,s=!1){o=o||t[0].dtype;let a=this.runWebGLProgram(e,t,o,n,s);return Ns().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(W().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!W().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=W().getBool("DEBUG");W().set("DEBUG",!1);let t=this.abs(ue(1e-8)).dataSync()[0];if(W().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?e7:t7}uploadToGPU(e){let t=this.texData.get(e),{shape:o,dtype:n,values:s,texture:a,usage:i,isPacked:l}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=y.now());let p=t.texShape;if(p==null&&(p=D$(o,l),t.texShape=p),s!=null){let m=Tx(o),f,d=p[1],h=p[0],g=s instanceof Uint8Array;l?([d,h]=Xi(p[0],p[1]),f=new Ek(m,[h,d],g)):f=new Tk(m,[h,d],g);let x=this.makeTensorInfo([h,d],n);g?this.texData.get(x.dataId).usage=$r.PIXELS:this.texData.get(x.dataId).usage=$r.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(x.dataId),d,h,s);let b=!0,_=this.runWebGLProgram(f,[x],n,null,b),w=this.texData.get(_.dataId);t.texture=w.texture,t.texShape=w.texShape,t.isPacked=w.isPacked,t.usage=w.usage,this.disposeIntermediateTensorInfo(x),this.texData.delete(_.dataId),t.values=null,u&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,i,n,l);t.texture=m}}convertAndCacheOnCPU(e,t){let o=this.texData.get(e),{dtype:n}=o;return this.releaseGPUData(e),t!=null&&(o.values=i7(t,n)),o.values}acquireTexture(e,t,o,n){if(this.numBytesInGPU+=this.computeBytes(e,o),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*y.bytesPerElement(t)}};function i7(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let o=0;o<t.length;++o)t[o]=Math.round(r[o]);return t}else throw new Error(`Unknown dtype ${e}`)}var qR="2.8.5";Bc.isBrowser()&&_u("webgl",()=>new Vk,2);var Fx=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;var rs=class{constructor(e,t,o){this.variableNames=["A","B"],this.outputShape=S.assertAndGetBroadcastShape(t,o),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}};var Al=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;var Ws=class{constructor(e,t,o,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=S.assertAndGetBroadcastShape(t,o);let s=this.outputShape.length,a="";if(n)if(s===0||y.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${ze(s)} coords = getOutputCoords();
`,s===1)a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let l=qt("coords",s);a+=`
bool nextRowOutOfBounds =
(${l[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${l[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function Ht(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var HR={kernelName:ms,backendName:"webgl",kernelFunc:Ht};function fo(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.makeTensorInfo(o.shape,"complex64"),a=t.texData.get(s.dataId),i=Ht({inputs:{x:o},backend:t}),l=t.texData.get(i.dataId);l.complexParentRefCount++;let u=Ht({inputs:{x:n},backend:t}),c=t.texData.get(u.dataId);return c.complexParentRefCount++,a.complexTensorInfos={real:i,imag:u},s}var KR={kernelName:Kl,backendName:"webgl",kernelFunc:fo};var Wk="return (a < 0.) ? b * a : a;",Gk=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function a7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o,a=t.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),i=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ws(Gk,n.shape,a.shape):new rs(Wk,n.shape,a.shape),l=t.runWebGLProgram(i,[n,a],n.dtype);return t.disposeIntermediateTensorInfo(a),l}var XR={kernelName:cn,backendName:"webgl",kernelFunc:a7};var Uk="return (a < 0.) ? b * a : a;",jk=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function l7(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ws(jk,o.shape,n.shape):new rs(Uk,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)}var YR={kernelName:vn,backendName:"webgl",kernelFunc:l7};var Ox="if (isnan(x)) return x;",ZR=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,JR=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Ce({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:o}){return({inputs:n,backend:s})=>{let{x:a}=n,i=s,l=o||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let p=i.texData.get(a.dataId),m=t(p.values,l);return i.makeTensorInfo(a.shape,l,m)}let u=W().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new Vs(a.shape,e):c=new mo(a.shape,r),i.runWebGLProgram(c,[a],l)}}function at({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:o=!1,cpuKernelImpl:n,dtype:s}){return({inputs:a,backend:i})=>{let{a:l,b:u}=a,c=i;if(o&&l.dtype==="complex64"){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(_=>{let[w,C]=_,D={dataId:w.dataId,dtype:w.dtype,shape:l.shape},A={dataId:C.dataId,dtype:C.dtype,shape:u.shape},F=new rs(r,l.shape,u.shape);return c.runWebGLProgram(F,[D,A],fr(w.dtype,C.dtype))}),b=fo({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||fr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&n!=null){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=n(l.shape,u.shape,d.values,h.values,p),b=c.makeTensorInfo(x,p),_=c.texData.get(b.dataId);return _.values=g,b}let m=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,f;return m?f=new Ws(e,l.shape,u.shape,t):f=new rs(r,l.shape,u.shape),c.runWebGLProgram(f,[l,u],p)}}function Dl(r,e=!1){if(r==="linear")return e?WR:LR;if(r==="relu")return e?UR:BR;if(r==="elu")return e?GR:zR;if(r==="relu6")return e?jR:VR;if(r==="prelu")return e?jk:Uk;if(r==="leakyrelu")return e?Gk:Wk;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var sh=class{constructor(e,t,o,n=!1,s=!1,a=!1,i=null,l=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=o;let c=n?e[1]:e[2],p=Math.ceil(c/2),m=n?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";i&&(l?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:u?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:g=`vec4 activation(vec4 x) {
${i}
}`,x="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let _="rc.x",w="rc.x";e[0]<t[0]?_=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(w=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${g}
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${_};
int batchB = ${w};
vec4 a = getMatrixA(batchA, ${m});
vec4 b = getMatrixB(batchB, ${f});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${d[0]} * ${h[0]});
result += (${d[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${x}
setOutput(result);
}
`}};var qk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Px=class{constructor(e,t,o){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=S.assertAndGetBroadcastShape(t,o),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}};var QR="return a * b;";function Hk(r){let{inputs:e,backend:t}=r,{a:o,b:n}=e,s=S.upcastType(o.dtype,n.dtype);if(o.dtype==="complex64"){let i=t.texData.get(o.dataId),l=t.texData.get(n.dataId),u=new Px(qk.REAL,o.shape,n.shape),c=new Px(qk.IMAG,o.shape,n.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:o.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:n.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:n.shape}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=fo({inputs:{real:m,imag:f},backend:t});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}if(t.shouldExecuteOnCPU([o,n])){let i=t.texData.get(o.dataId),l=t.texData.get(n.dataId),[u,c]=kR(o.shape,n.shape,i.values,l.values,s),p=t.makeTensorInfo(c,s),m=t.texData.get(p.dataId);return m.values=u,p}let a;return W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new Ws(QR,o.shape,n.shape):a=new rs(QR,o.shape,n.shape),t.runWebGLProgram(a,[o,n],s)}var eF={kernelName:yn,backendName:"webgl",kernelFunc:Hk};function tF(r,e,t){let o=[Tl(r.shape),...El(r.shape)],n={dtype:r.dtype,shape:o,dataId:r.dataId},s=[Tl(e),...El(e)],a=new oh(s,o),i=!0,l=t.runWebGLProgram(a,[n],r.dtype,null,i);return{dataId:l.dataId,shape:e,dtype:l.dtype}}function me(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=t,i=y.sizeFromShape(n.shape),l=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(l);y.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${n.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(n.dataId);return c.isPacked&&!lc(n.shape,l)&&!(c.texture!==null&&lc(c.shape,l))?tF(n,l,a):(a.incRef(n.dataId),{dataId:n.dataId,shape:l,dtype:n.dtype})}var rF={kernelName:gs,backendName:"webgl",kernelFunc:me};var Mx=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i=Math.floor(o/4)*4,l=o%4,u="sumValue += dot(values, ones);";if(t!=null){let p=1/t;u=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%o>0&&(c=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${u}
}
int inIdx = inOffset + ${i};
if (${l===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${u}
} else if (${l===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${u}
} else if (${l===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${u}
}
setOutput(sumValue);
}
`}};var Kk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i="0.0",l="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",l="min"):t==="max"&&(i="-1.0 / 1e-20",l="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(o/4)*4,p=o%4,m=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${l}(values, minMaxValue);
}
`,f="vec4";t==="all"?(i="1.0",m=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,f="bvec4"):t==="any"&&(i="0.0",m=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,f="bvec4");let d="";s%o>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
${f} values = ${f}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${m}
} else if (${p===2}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${m}
} else if (${p===3}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${m}
}
setOutput(${u});
}
`}};function u7(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],o=S.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:o,outSize:Math.ceil(t/o)})}return e}function To(r,e,t,o){let n=u7(r.shape),s=r;for(let a=0;a<n.length;a++){let{inSize:i,windowSize:l,outSize:u}=n[a],c,p;t==="mean"?c=a===0?new Mx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},i):new Mx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u}):c=new Kk({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},t),p=s,s=o.runWebGLProgram(c,[s],e),p.dataId!==r.dataId&&o.disposeIntermediateTensorInfo(p)}return s}var Xk=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[t[a]];this.outputShape=o,this.rank=o.length;let n=ze(this.rank),s=c7(t);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function c7(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],o=new Array(e);for(let n=0;n<r.length;n++)o[r[n]]=t[n];return o.join()}var Yk=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let o=new Array(e.length);for(let c=0;c<o.length;c++)o[c]=e[t[c]];if(this.outputShape=o,this.rank=o.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=ze(this.rank),s=Pk("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=s[c];let i=`vec2(${a.slice(-2).join()})`,l=`++${s[this.rank-1]} < ${o[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${u};
if(${l}) {
result[1] = ${u};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${o[this.rank-2]}) {
result[2] = ${u};
if(${l}) {
result[3] = ${u};
}
}
setOutput(result);
}
`}};function $l(r,e,t){let o=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Yk(r.shape,e):new Xk(r.shape,e);return t.runWebGLProgram(o,[r],r.dtype)}function oF(r,e,t,o){let n=e,s=r.shape.length,a=y.parseAxisParam(n,r.shape),i=a,l=S.getAxesPermutation(i,s),u=l!=null,c=r;u&&(c=$l(r,l,o),i=S.getInnerMostAxes(i.length,s)),S.assertAxesAreInnerMostDims("sum",i,s);let[p,m]=S.computeOutAndReduceShapes(c.shape,i),f=p;t&&(f=S.expandShapeToKeepDim(p,a));let d=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/d,x=me({inputs:{x:c},attrs:{shape:[g,d]},backend:o}),b=xu(r.dtype),_=To(x,b,"sum",o),w=me({inputs:{x:_},attrs:{shape:f},backend:o});return o.disposeIntermediateTensorInfo(x),o.disposeIntermediateTensorInfo(_),u&&o.disposeIntermediateTensorInfo(c),w}function ih(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;return oF(n,s,a,t)}var nF={kernelName:$n,backendName:"webgl",kernelFunc:ih};function Bt(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{perm:s}=o,a=t,i=n.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=n.shape[s[c]];let u;if(a.shouldExecuteOnCPU([n])){let p=a.texData.get(n.dataId).values,m=Up(p,n.shape,n.dtype,s,l);u=a.makeTensorInfo(l,n.dtype);let f=a.texData.get(u.dataId);f.values=m}else u=$l(n,s,a);return u}var sF={kernelName:Mn,backendName:"webgl",kernelFunc:Bt};var Zk=1e3;function cc({a:r,b:e,transposeA:t,transposeB:o,backend:n,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:l=null}){let u=r.shape.length,c=e.shape.length,p=t?r.shape[u-2]:r.shape[u-1],m=o?e.shape[c-1]:e.shape[c-2],f=t?r.shape[u-1]:r.shape[u-2],d=o?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),x=y.sizeFromShape(h),b=y.sizeFromShape(g),_=x===b||x===1||b===1;y.assert(u>=2&&c>=2&&_,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${h}) and (${g}).`);let C=(x>b?r.shape.slice(0,-2):e.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${o} must match.`);let D=t?[x,p,f]:[x,f,p],A=o?[b,d,m]:[b,m,d],F=me({inputs:{x:r},backend:n,attrs:{shape:D}}),M=me({inputs:{x:e},backend:n,attrs:{shape:A}}),z=[F,M],G=Math.max(x,b),U=t?F.shape[1]:F.shape[2],H=s!=null,J=a!=null,Y=l==="leakyrelu",X=l!=null?Dl(l,!0):null,re=H||J||Y||X!=null,K;if((f===1||d===1)&&U>Zk&&re===!1){let ae=F,ie=M;t&&(ae=Bt({inputs:{x:F},backend:n,attrs:{perm:[0,2,1]}}),z.push(ae)),o&&(ie=Bt({inputs:{x:M},backend:n,attrs:{perm:[0,2,1]}}),z.push(ie));let pe=d!==1,le=d===1,ge=ae;pe&&(ge=me({inputs:{x:ae},backend:n,attrs:{shape:[G,U,1]}}),z.push(ge));let ye=d===1?2:1,be=ie;le&&(be=me({inputs:{x:ie},backend:n,attrs:{shape:[G,1,U]}}),z.push(be));let ke=Hk({inputs:{a:ge,b:be},backend:n});K=ih({inputs:{x:ke},backend:n,attrs:{axis:ye,keepDims:!0}}),z.push(ke)}else{let ae=fr(r.dtype,e.dtype),ie=new sh(D,A,[G,f,d],t,o,H,X,J,Y),pe=[F,M];if(s!=null&&pe.push(s),J&&pe.push(a),Y){let le=n.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));pe.push(le),z.push(le)}K=n.runWebGLProgram(ie,pe,ae)}let ne=me({inputs:{x:K},backend:n,attrs:{shape:C}});z.push(K);for(let ae of z)n.disposeIntermediateTensorInfo(ae);return ne}function p7(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o;return cc({a:n,b:s,transposeA:l,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var iF={kernelName:vs,backendName:"webgl",kernelFunc:p7};var aF="return abs(x);";function m7(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])&&o.dtype!=="complex64"){let s=t.texData.get(o.dataId),a=$x(s.values);return t.makeTensorInfo(o.shape,o.dtype,a)}let n;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new Vs(o.shape,aF):n=new mo(o.shape,aF),t.runWebGLProgram(n,[o],o.dtype)}var lF={kernelName:ls,backendName:"webgl",kernelFunc:m7};var f7=xr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,d7=Ce({opSnippet:f7}),uF={kernelName:Hs,backendName:"webgl",kernelFunc:d7};var h7=xr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,g7=Ce({opSnippet:h7}),cF={kernelName:Ks,backendName:"webgl",kernelFunc:g7};var pF="return a + b;",x7=at({opSnippet:pF,packedOpSnippet:pF,supportsComplex:!0,cpuKernelImpl:lR}),mF={kernelName:_o,backendName:"webgl",kernelFunc:x7};var Jk=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`float v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${o.join(`
`)}
float result = ${n};
setOutput(result);
}
`}};var Qk=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`vec4 v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${o.join(`
`)}
vec4 result = ${n};
setOutput(result);
}
`}};function Lx(r){let{inputs:e,backend:t}=r,o=e;if(o.length===1)return Ht({inputs:{x:o[0]},backend:t});if(o.length>W().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(o.length/2),u=Lx({inputs:o.slice(0,l),backend:t}),c=Lx({inputs:o.slice(l),backend:t});return Lx({inputs:[u,c],backend:t})}let n=o.map(l=>l.dtype).reduce((l,u)=>fr(l,u)),s=o.map(l=>l.shape),i=W().getBool("WEBGL_PACK")?new Qk(o[0].shape,s):new Jk(o[0].shape,s);return t.runWebGLProgram(i,o,n)}var fF={kernelName:Ko,backendName:"webgl",kernelFunc:Lx};function y7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=S.getAxesPermutation(u,i),p=n;c!=null&&(p=Bt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=S.getInnerMostAxes(u.length,i)),S.assertAxesAreInnerMostDims("all",u,i);let[m,f]=S.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=me({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"all",t),x;if(a){let b=S.expandShapeToKeepDim(m,l);x=me({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=me({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var dF={kernelName:Gl,backendName:"webgl",kernelFunc:y7};function b7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=S.getAxesPermutation(u,i),p=n;c!=null&&(p=Bt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=S.getInnerMostAxes(u.length,i)),S.assertAxesAreInnerMostDims("any",u,i);let[m,f]=S.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=me({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"any",t),x;if(a){let b=S.expandShapeToKeepDim(m,l);x=me({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=me({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var hF={kernelName:Ul,backendName:"webgl",kernelFunc:b7};var eC=class{constructor(e,t,o){this.variableNames=["A"];let{windowSize:n,batchSize:s,outSize:a}=e;o||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",l=o?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${n}; i++) {
int inIdx = ${l};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}};var tC=class{constructor(e,t,o,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(e.length>2,()=>`Packed arg${o.charAt(0).toUpperCase()+o.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,l=i.length,u=ze(l),c=qt("coords",l),p,m;if(a===1){m=l+1;let F=ze(m);p=`
${F} sourceLocR = ${F}(${c.join()}, 0);
++${c[l-1]};
${F} sourceLocG = ${F}(${c.join()}, 0);
++${c[l-2]};
${F} sourceLocA = ${F}(${c.join()}, 0);
--${c[l-1]};
${F} sourceLocB = ${F}(${c.join()}, 0);
--${c[l-2]};`}else m=l,p=`
${u} sourceLocR = coords;
++${c[l-1]};
${u} sourceLocG = coords;
++${c[l-2]};
${u} sourceLocA = coords;
--${c[l-1]};
${u} sourceLocB = coords;
--${c[l-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(F=>"int "+F),g=qt("sourceLocR",m-1).concat("inIdx.r"),x=qt("sourceLocG",m-1).concat("inIdx.g"),b=qt("sourceLocB",m-1).concat("inIdx.b"),_=qt("sourceLocA",m-1).concat("inIdx.a"),w=o==="max"?"greaterThan":"lessThan",C=n?"":`
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${x.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${_.join()})));`,D=`vec4(
getAChannel(${g.join()}),
hasNextCol ? getAChannel(${x.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${_.join()}) : 0.)`,A=n?"":`
float getBestIndicesAChannel(${h.join()}) {
return getChannel(getBestIndicesA(${f.join()}),
vec2(${f.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${h.join()}) {
return getChannel(getA(${f.join()}),
vec2(${f.slice(-2).join()}));
}
${A}
void main() {
${u} coords = getOutputCoords();
bool hasNextCol = ${c[l-1]} < ${i[l-1]-1};
bool hasNextRow = ${c[l-2]} < ${i[l-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
sourceLocB${d}, sourceLocA${d}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${D};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${C}
vec4 candidate = ${D};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${w}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function gF(r,e,t,o=null){let n=e.shape[0],s=e.shape[1];o!=null&&(n=o.shape[0],s=o.shape[1]);let a=S.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:n,outSize:Math.ceil(s/a)},l=new eC(i,t,o==null),u=[e];o!=null&&u.push(o);let c=r.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=gF(r,e,t,c);return r.disposeIntermediateTensorInfo(c),p}function xF(r,e,t,o=null){let n=o!=null?o.shape:e.shape,s=n[n.length-1],a=S.computeOptimalWindowSize(s),i=new tC(n,a,t,o==null),l=o==null?[e]:[e,o],u=r.runWebGLProgram(i,l,"int32");if(u.shape.length===e.shape.length){let c=xF(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function zx(r,e,t,o){let n=[t];if(S.assertAxesAreInnerMostDims("arg"+o.charAt(0).toUpperCase()+o.slice(1),n,e.shape.length),!W().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],[a,i]=S.computeOutAndReduceShapes(e.shape,n),l=y.sizeFromShape(i),u=me({inputs:{x:e},backend:r,attrs:{shape:[-1,l]}});s.push(u);let c=gF(r,u,o);s.push(c);let p=me({inputs:{x:c},backend:r,attrs:{shape:a}});return s.forEach(m=>r.disposeIntermediateTensorInfo(m)),p}return xF(r,e,o)}function _7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=S.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Bt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),S.assertAxesAreInnerMostDims("argMax",[a[0]],l.shape.length);let c=zx(t,l,a[0],"max");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var yF={kernelName:Xo,backendName:"webgl",kernelFunc:_7};function w7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=S.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Bt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),S.assertAxesAreInnerMostDims("argMin",[a[0]],l.shape.length);let c=zx(t,l,a[0],"min");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var bF={kernelName:oa,backendName:"webgl",kernelFunc:w7};var v7=xr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,k7=Ce({opSnippet:v7}),_F={kernelName:Xs,backendName:"webgl",kernelFunc:k7};var C7=xr+"return log(x + sqrt(x * x + 1.0));",I7=Ce({opSnippet:C7}),wF={kernelName:Ys,backendName:"webgl",kernelFunc:I7};var N7=xr+`
return atan(x);
`,S7=Ce({opSnippet:N7}),vF={kernelName:Zs,backendName:"webgl",kernelFunc:S7};var T7=ZR+`
return atan(a, b);
`,E7=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+JR+`
return result;
`,A7=at({opSnippet:T7,packedOpSnippet:E7}),kF={kernelName:Qs,backendName:"webgl",kernelFunc:A7};var D7=xr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,$7=Ce({opSnippet:D7}),CF={kernelName:Js,backendName:"webgl",kernelFunc:$7};var Zi=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,x=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),o){let F=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${F} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?s?g:x:`wR * ${m} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let _="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let C=Math.floor(a/4)*4,D=a%4,A=`
if (${h}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${_}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${C}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${A}
}
int xC = xCCorner + ${C};
if (${D===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${A}
} else if (${D===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${A}
} else if (${D===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${A}
}
}
setOutput(${w});
}
`}},pc=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,l=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,m=e.dilationWidth,f=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,x=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let _=t==="avg",w="0.0";if(_||(w="-1.0 / 1e-20"),o){let z=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${m}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${z} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${h} +
wR * ${h} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let C="max",D=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(D="avgValue / count");let A=Math.floor(a/4)*4,F=a%4,M=`
if (${_}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${C}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
const float initializationValue = ${w};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${w});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${A}; wC += 4) {
int xC = xCCorner + wC * ${m};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
);
${M}
}
int xC = xCCorner + ${A};
if (${F===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${M}
} else if (${F===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
initializationValue,
initializationValue
);
${M}
} else if (${F===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
initializationValue
);
${M}
}
}
setOutput(${D});
}
}
`}};function R7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;Yi(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Ht({inputs:{x:n},backend:t});let p=new Zi(c,"avg",!1);return t.runWebGLProgram(p,[n],"float32")}var IF={kernelName:Yo,backendName:"webgl",kernelFunc:R7};function F7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o,c=[1,1,1],p=S.computePool3DInfo(n.shape,s,a,c,i,l,u),m=new pc(p,"avg",!1);return t.runWebGLProgram(m,[n],"float32")}var NF={kernelName:na,backendName:"webgl",kernelFunc:F7};var rC=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=l-1-e.padInfo.top,p=u-1-e.padInfo.left,m=1/(t*o);this.userCode=`
const ivec2 pads = ivec2(${c}, ${p});
const float avgMultiplier = float(${m});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},oC=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,d=p-1-e.padInfo.front,h=m-1-e.padInfo.top,g=f-1-e.padInfo.left,x=1/(t*o*n);this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${g});
const float avgMultiplier = float(${x});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${l}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${m};
wR += ${u}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${f};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function O7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=S.computePool3DInfo(a.shape,i,l,p,u,c),f=new oC(m);return t.runWebGLProgram(f,[n],a.dtype)}var SF={kernelName:ql,backendName:"webgl",kernelFunc:O7};function P7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;Yi([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=S.computePool2DInfo(a.shape,i,l,1,u),p=new rC(c);return t.runWebGLProgram(p,[n],a.dtype)}var TF={kernelName:jl,backendName:"webgl",kernelFunc:P7};function M7(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;return cc({a:n,b:s,transposeA:a,transposeB:i,backend:t})}var EF={kernelName:Zo,backendName:"webgl",kernelFunc:M7};var nC=class{constructor(e,t,o,n,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(e,t),S.assertAndGetBroadcastShape(e,o);let i="0.0";n!=null&&(S.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="1.0";s!=null&&(S.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${l};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}};var sC=class{constructor(e,t,o,n,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(e,t),S.assertAndGetBroadcastShape(e,o);let i="vec4(0.0)";n!=null&&(S.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="vec4(1.0)";s!=null&&(S.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${l};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}};var L7=({inputs:r,backend:e,attrs:t})=>{let{x:o,mean:n,variance:s,offset:a,scale:i}=r;y.assert(n.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||n.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(i==null||n.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=t;l==null&&(l=.001);let u=[o,n,s],c=null;a!=null&&(c=a.shape,u.push(a));let p=null;i!=null&&(p=i.shape,u.push(i));let m=W().getBool("WEBGL_PACK_NORMALIZATION")?new sC(o.shape,n.shape,s.shape,c,p,l):new nC(o.shape,n.shape,s.shape,c,p,l);return e.runWebGLProgram(m,u,u[0].dtype)},AF={kernelName:ln,backendName:"webgl",kernelFunc:L7};var iC=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ze(this.rank),o=`uniform int start[${this.rank}];`,n=z7(this.rank),s,a=e.map((i,l)=>`sourceLoc.${aC[l]} = start[${l}] + coords.${aC[l]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${a.join(`
`)}
`,this.userCode=`
${o}
void main() {
${s}
setOutput(getSource(${n}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},aC=["x","y","z","w","u","v"];function z7(r){if(r===1)return"sourceLoc";if(r<=6)return aC.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var lC=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ze(this.rank),o=qt("coords",this.rank),n=qt("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,a=`getChannel(getSource(${n.join()}), ${s})`,i=`
result.x = ${a};
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.y = ${a};
--${n[this.rank-1]};
}
`,l=this.rank===1?"":`
--${o[this.rank-1]};
if (++${o[this.rank-2]} < ${e[this.rank-2]}) {
++${n[this.rank-2]};
result.z = ${a};
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.w = ${a};
}
}
`,u=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${n[p]} = ${o[p]} + start[${p}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${u}
vec4 result = vec4(0.);
${i}
${l}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function B7(r,e,t,o){let n=o.texData.get(r.dataId),s=o.makeTensorInfo(t,r.dtype),a=o.texData.get(s.dataId);Object.assign(a,n),a.complexParentRefCount=0,a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=sr.computeFlatOffset(e,y.computeStrides(r.shape));n.slice&&(i+=n.slice.flatOffset),a.slice={flatOffset:i,origDataId:n.slice&&n.slice.origDataId||r.dataId};let l=o.dataRefCount.get(a.slice.origDataId)||1;return o.dataRefCount.set(a.slice.origDataId,l+1),s}function qa(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o,[i,l]=sr.parseSliceParams(n,s,a);if(sr.assertParamsValid(n,i,l),y.sizeFromShape(l)===0)return t.makeTensorInfo(l,n.dtype,[]);if(t.shouldExecuteOnCPU([n])||n.dtype==="string"){let p=t.texData.get(n.dataId),m=TR(p.values,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,m)}let{isPacked:u}=t.texData.get(n.dataId),c=sr.isSliceContinous(n.shape,i,l);if(u||!c){let p=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new lC(l):new iC(l),m=p.getCustomSetupFunc(i);return t.runWebGLProgram(p,[n],n.dtype,m)}return t.uploadToGPU(n.dataId),B7(n,i,l,t)}var DF={kernelName:ys,backendName:"webgl",kernelFunc:qa};var V7=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;y.assert(n.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((b,_)=>b*_),l=S.getReshaped(n.shape,s,i),u=S.getPermuted(l.length,s.length),c=S.getReshapedPermuted(n.shape,s,i),p=S.getSliceBeginCoords(a,s.length),m=S.getSliceSize(c,a,s.length),f=[],d=me({inputs:{x:n},backend:t,attrs:{shape:l}}),h=Bt({inputs:{x:d},backend:t,attrs:{perm:u}}),g=me({inputs:{x:h},backend:t,attrs:{shape:c}}),x=qa({inputs:{x:g},backend:t,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>t.disposeIntermediateTensorInfo(b)),x},$F={kernelName:sa,backendName:"webgl",kernelFunc:V7};function W7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.readSync(n.dataId),l=t.readSync(s.dataId),u=Dx(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var RF={kernelName:Hl,backendName:"webgl",kernelFunc:W7};var G7="return float(a != b);",uC=at({opSnippet:G7,dtype:"bool"}),FF={kernelName:bi,backendName:"webgl",kernelFunc:uC};function Ha(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return Ht({inputs:{x:n.complexTensorInfos.real},backend:t})}var OF={kernelName:mu,backendName:"webgl",kernelFunc:Ha};var U7="return float(int(x));";function PF(r,e){let t=new mo(r.shape,U7),o=e.runWebGLProgram(t,[r],"int32");return{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}function cC(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Ht({inputs:{x:n},backend:t});let a=mt(n.shape),i=cC({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=fo({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=Ha({inputs:{input:n},backend:t}),i=cC({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=Ht({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32")return PF(n,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),l=uC({inputs:{a:n,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),l}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var MF={kernelName:$o,backendName:"webgl",kernelFunc:cC};var LF="return ceil(x);",j7=Ce({opSnippet:LF,packedOpSnippet:LF,cpuKernelImpl:cR}),zF={kernelName:ei,backendName:"webgl",kernelFunc:j7};var pC=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};var mC=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};function q7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i;W().getBool("WEBGL_PACK_CLIP")?i=new mC(n.shape):i=new pC(n.shape);let l=i.getCustomSetupFunc(s,a);return t.runWebGLProgram(i,[n],n.dtype,l)}var BF={kernelName:Ro,backendName:"webgl",kernelFunc:q7};var fC=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function VF(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function H7(r){let{inputs:e,backend:t}=r,{x:o}=e,n=t.texData.get(o.dataId),s=new fC(o.shape),a=[VF(o,n.complexTensorInfos.real),VF(o,n.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var WF={kernelName:ia,backendName:"webgl",kernelFunc:H7};var dC=class{constructor(e){this.outputShape=[],this.outputShape=S.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let o=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];o.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let n=t.length,s=t[t.length-1];o.push(`else setOutput(getT${n}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${o.join(`
`)}
}
`}};var hC=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=S.computeOutShape(e,t);let o=this.outputShape,n=o.length,s=ze(n),a=qt("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((h,g)=>`T${g}`);let l=new Array(e.length-1);l[0]=e[0][t];for(let h=1;h<l.length;h++)l[h]=l[h-1]+e[h][t];let u=i[t],c=i.slice(-2),p=i.join(),m=`if (${u} < ${l[0]}) {
return getChannel(
getT0(${p}), vec2(${c.join()}));
}`;for(let h=1;h<l.length;h++){let g=l[h-1];m+=`
if (${u} < ${l[h]} && ${u} >= ${l[h-1]}) {
return getChannel(
getT${h}(${Bx(i,u,g)}),
vec2(${Bx(c,u,g)}));
}`}let f=l.length,d=l[l.length-1];m+=`
return getChannel(
getT${f}(${Bx(i,u,d)}),
vec2(${Bx(c,u,d)}));`,this.userCode=`
float getValue(${i.map(h=>"int "+h)}) {
${m}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[n-1]} = ${a[n-1]} + 1;
if (${a[n-1]} < ${o[n-1]}) {
result.g = getValue(${a});
}
${a[n-2]} = ${a[n-2]} + 1;
if (${a[n-2]} < ${o[n-2]}) {
result.a = getValue(${a});
}
${a[n-1]} = ${a[n-1]} - 1;
if (${a[n-2]} < ${o[n-2]} &&
${a[n-1]} < ${o[n-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function Bx(r,e,t){let o=r.indexOf(e);return r.map((s,a)=>a===o?`${s} - ${t}`:s).join()}function mc(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return Ht({inputs:{x:n.complexTensorInfos.imag},backend:t})}var GF={kernelName:su,backendName:"webgl",kernelFunc:mc};function fc(r,e,t){let o=r[0].dtype;if(o==="complex64"){let u=r.map(d=>Ha({inputs:{input:d},backend:t})),c=r.map(d=>mc({inputs:{input:d},backend:t})),p=fc(u,e,t),m=fc(c,e,t),f=fo({inputs:{real:p,imag:m},backend:t});return u.forEach(d=>t.disposeIntermediateTensorInfo(d)),c.forEach(d=>t.disposeIntermediateTensorInfo(d)),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),f}if(o==="string"){let{tensors2D:u,outShape:c}=UF(r,e,t),p=u.map(g=>({vals:t.readSync(g.dataId),shape:g.shape})),m=u[0].shape[0]===1,f=pR(p,c,o,m),d=S.computeOutShape(r.map(g=>g.shape),e),h=t.makeTensorInfo(d,o,f);return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}if(r.length>W().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(r.length/2),c=fc(r.slice(0,u),e,t),p=fc(r.slice(u),e,t),m=fc([c,p],e,t);return t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),m}if(W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let u=new hC(r.map(c=>c.shape),e);return t.runWebGLProgram(u,r,o)}let{tensors2D:n,outShape:s}=UF(r,e,t),a=new dC(n.map(u=>u.shape)),i=t.runWebGLProgram(a,n,o);n.forEach(u=>t.disposeIntermediateTensorInfo(u));let l=me({inputs:{x:i},attrs:{shape:s},backend:t});return t.disposeIntermediateTensorInfo(i),l}function UF(r,e,t){let o=S.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>me({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:o}}function gC(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=S.computeOutShape(e.map(u=>u.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(u=>y.sizeFromShape(u.shape)>0);if(i.length===1)return Ht({inputs:{x:i[0]},backend:t});let l=i.map(u=>u.shape);return S.assertParamsConsistent(l,s),fc(i,s,t)}var jF={kernelName:us,backendName:"webgl",kernelFunc:gC};var ah=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,l=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",x=g?1:2,b=g?2:3,_=g?3:1,w="",C="";o&&(n?w=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?w=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${o}
}`:w=`
float activation(float x) {
${o}
}
`,C="result = activation(result);");let D=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${w}
const ivec2 strides = ivec2(${l}, ${u});
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${_}];
ivec2 xRCCorner =
ivec2(coords[${x}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${g}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${h===1}) {
if (${g}) {
dotProd +=
getX(batch, xR, xC, ${d}) *
getW(wR, wC, ${d}, d2);
} else {
dotProd +=
getX(batch, ${d}, xR, xC) *
getW(wR, wC, ${d}, d2);
}
} else if (${h===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2)
);
if (${g}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${h===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2),
getW(wR, wC, ${d} + 2, d2)
);
if (${g}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1),
getX(batch, xR, xC, ${d} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC),
getX(batch, ${d} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${D}
${C}
setOutput(result);
}
`}},xC=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,o=e.padInfo.top,n=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${a}, ${i});
const ivec3 pads = ivec3(${t}, ${o}, ${n});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${l};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${h===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${d}) *
getW(wF, wR, wC, ${d}, d2);
} else if (${h===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${h===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1),
getX(batch, xF, xR, xC, ${d} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2),
getW(wF, wR, wC, ${d} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}};var yC=class{constructor(e,t,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:n,inChannels:s,strideWidth:a,strideHeight:i,padInfo:l,outWidth:u,dilationWidth:c,dilationHeight:p,dataFormat:m}=o,{left:f,top:d}=l,h=s*n,g=zt(),x=m==="channelsLast",b=x?0:1,_=x?1:2,w="";for(let C=0;C<=1;C++)for(let D=0;D<=1;D++)w+=`
blockIndex = rc.y + ${D};
pos = rc.x + ${C};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${u})) * ${i} - ${d};
d0 = offsetY + ${p} * (pos / ${h});
if(d0 < ${t[b]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${u}.) * ${a}. - ${f}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${h}.) / ${s}.));
if(d1 < ${t[_]} && d1 >= 0) {
ch = int(mod(float(pos), ${s}.));
if (${x}) {
innerDims = vec2(d1, ch);
result[${C*2+D}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${C*2+D}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${w}
${g.output} = result;
}
`}};function Vx({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let l=r.shape,u=o.texData.get(r.dataId),c=t.inChannels,p=l[0]*l[1]*l[2],m=t.outChannels,f=t.dataFormat==="channelsLast",d=!1,h=!1,g,x=[],b=(p===1||m===1)&&c>Zk,_=l[2]%2!=0&&!!u.isPacked;if(b||!W().getBool("WEBGL_LAZILY_UNPACK")||!W().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!_){let w=f?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],C=me({inputs:{x:r},backend:o,attrs:{shape:[1,w,t.inChannels]}}),D=me({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}}),A=cc({a:C,b:D,transposeA:d,transposeB:h,backend:o,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=me({inputs:{x:A},backend:o,attrs:{shape:t.outShape}}),x.push(C),x.push(D),x.push(A)}else{let w=f?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),C={dataId:r.dataId,shape:[1,w,t.inChannels],dtype:r.dtype},D=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,y.assert(lc(u.shape,C.shape),()=>`packed reshape ${u.shape} to ${C.shape} isn't free`);let A=me({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}});x.push(A);let F=cc({a:C,b:A,backend:o,transposeA:d,transposeB:h,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),M=o.texData.get(F.dataId);y.assert(M.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=D,M.shape=t.outShape,g=Ht({inputs:{x:F},backend:o}),g.shape=t.outShape,x.push(F)}for(let w of x)o.disposeIntermediateTensorInfo(w);return g}function Wx({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=t,d=f==="channelsLast",h=l*u*c,g=m*p,x=[h,g],b=!0,_=!1,w=[],C=me({inputs:{x:r},backend:o,attrs:{shape:r.shape.slice(1)}}),D=me({inputs:{x:e},backend:o,attrs:{shape:[1,h,y.sizeFromShape(e.shape)/h]}});w.push(C),w.push(D);let A=new yC(x,C.shape,t),F=o.runWebGLProgram(A,[C],"float32"),M=me({inputs:{x:F},backend:o,attrs:{shape:[1,x[0],x[1]]}});w.push(F),w.push(M);let z=n!=null,G=s!=null,U=i==="leakyrelu",H=i?Dl(i,!0):null,J=new sh(M.shape,D.shape,[1,g,t.outChannels],b,_,z,H,G,U),Y=[M,D];if(n&&Y.push(n),G&&Y.push(s),U){let ne=o.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));Y.push(ne),w.push(ne)}let X=o.runWebGLProgram(J,Y,"float32"),re=d?[1,m,p,t.outChannels]:[1,t.outChannels,m,p],K=me({inputs:{x:X},backend:o,attrs:{shape:re}});w.push(X);for(let ne of w)o.disposeIntermediateTensorInfo(ne);return K}function K7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=Vx({x:n,filter:s,convInfo:m,backend:t});else if(W().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)f=Wx({x:n,filter:s,convInfo:m,backend:t});else{let h=new ah(m);f=t.runWebGLProgram(h,[n,s],"float32")}let d=me({inputs:{x:f},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(f),d}var qF={kernelName:Jo,backendName:"webgl",kernelFunc:K7};var bC=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},_C=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,l=o-1-e.padInfo.left,u=a?1:2,c=a?2:3,p=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},wC=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${s};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${o} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},vC=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=t-1-e.padInfo.front,u=o-1-e.padInfo.top,c=n-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${l}, ${u}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${o}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${o} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function X7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),f=new bC(m);return t.runWebGLProgram(f,[n,s],"float32")}var HF={kernelName:Xl,backendName:"webgl",kernelFunc:X7};function Y7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(a,s.shape,i,1,l,c,!1,p),f=new _C(m);return t.runWebGLProgram(f,[n,s],"float32")}var KF={kernelName:Qo,backendName:"webgl",kernelFunc:Y7};function Z7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=S.computeConv3DInfo(n.shape,s.shape,a,l,i),c=new xC(u);return t.runWebGLProgram(c,[n,s],"float32")}var XF={kernelName:aa,backendName:"webgl",kernelFunc:Z7};function J7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o,u=S.computeConv3DInfo(n.shape,l,a,1,i),c=new wC(u);return t.runWebGLProgram(c,[n,s],"float32")}var YF={kernelName:Yl,backendName:"webgl",kernelFunc:J7};function Q7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o,u=S.computeConv3DInfo(l,s.shape,i,1,a),c=new vC(u);return t.runWebGLProgram(c,[n,s],"float32")}var ZF={kernelName:Zl,backendName:"webgl",kernelFunc:Q7};var eZ=Ox+`
return cos(x);
`,tZ=Ce({opSnippet:eZ}),JF={kernelName:en,backendName:"webgl",kernelFunc:tZ};var rZ=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,oZ=Ce({opSnippet:rZ}),QF={kernelName:ti,backendName:"webgl",kernelFunc:oZ};var kC=class{constructor(e,t,o,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,l,u]=e,[c]=t,[p,m]=o;this.outputShape=[c,p,m,u];let f=n==="bilinear"?1:0,[d,h]=[`${i-1}.0`,`${l-1}.0`],[g,x,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[_,w,C]=m>1?[`${(l-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
const float height_ratio = float(${g});
const float width_ratio = float(${_});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${x};
float width_scale = ${w};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${d} ) {
setOutput(float(${s}));
return;
}
float in_x = ${C};
if( in_x < 0.0 || in_x > ${h} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${f} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}};var nZ=r=>{let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,c=new kC(n.shape,s.shape,i,l,u);return t.runWebGLProgram(c,[n,s,a],"float32")},eO={kernelName:ri,backendName:"webgl",kernelFunc:nZ};var Gx=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=e;let n=e.length,s=t?"0.0":`getX(${tO(n,"coords")})`,a=e[e.length-1],i="",l="";t?(i=o?`end != ${a-1}`:"end != 0",l=o?"end + 1":"end - 1"):(i=o?`end + pow2 < ${a}`:"end >= pow2",l=o?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${ze(n)} coords = getOutputCoords();
int end = ${rO(n,"coords")};
float val = ${s};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${l};
${rO(n,"coords")} = idx;
val += getX(${tO(n,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.index==null&&(this.index=t.getUniformLocation(o,"index")),t.gl.uniform1f(this.index,e)}}};function tO(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function rO(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function sZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length,u=S.getAxesPermutation([s],l),c=n;u!=null&&(c=Bt({inputs:{x:n},backend:t,attrs:{perm:u}}));let p=S.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${n.shape.length-1} but got axis=${s}`);let m=n.shape[p],f=Ht({inputs:{x:c},backend:t});for(let d=0;d<=Math.ceil(Math.log2(m))-1;d++){let h=new Gx(c.shape,!1,i),g=h.getCustomSetupFunc(d),x=f;f=t.runWebGLProgram(h,[f],f.dtype,g),t.disposeIntermediateTensorInfo(x)}if(a){let d=new Gx(c.shape,a,i),h=f;f=t.runWebGLProgram(d,[f],f.dtype),t.disposeIntermediateTensorInfo(h)}if(u!=null){let d=S.getUndoAxesPermutation(u),h=Bt({inputs:{x:f},backend:t,attrs:{perm:d}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(c),h}return f}var oO={kernelName:tn,backendName:"webgl",kernelFunc:sZ};function iZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.readSync(n.dataId),u=t.readSync(s.dataId),c=Dx(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=uR(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var nO={kernelName:Jl,backendName:"webgl",kernelFunc:iZ};var CC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=o,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function aZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=new CC(d,s,a);return t.runWebGLProgram(h,[n],n.dtype)}var sO={kernelName:oi,backendName:"webgl",kernelFunc:aZ};var lh=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=e.outChannels/e.inChannels,x="",b="";o&&(n?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${o}
}`:x=`
float activation(float x) {
${o}
}
`,b="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${g};
int q = d2 - d1 * ${g};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${m};
if (xR < 0 || xR >= ${a}) {
continue;
}
for (int wC = 0; wC < ${h}; wC++) {
int xC = xCCorner + wC * ${f};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${_}
${b}
setOutput(result);
}
`}};var uh=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=h,x="int xR; int xC; int xCOffset;";for(let C=0;C<d;C++)for(let D=0;D<h;D++)x+=`
vec4 xTexelR${C}C${D*2} = vec4(0.);
vec4 wR${C}C${D} = vec4(0.);
vec4 xR${C}C${D} = vec4(0.);`;for(let C=0;C<d;C++)for(let D=0;D<g;D++){let A=D*2;if(x+=`
xR = xRCorner + ${C*m};
xC = xCCorner + ${A*f};
`,p===1){if(A<h&&(u%2==1?x+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${C}C${A} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${C}C${A}.zw = vec2(0.);
}
} else {
xTexelR${C}C${A} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${C}C${A} = vec4(previous.zw, xTexelR${C}C${A}.xy);
} else {
xR${C}C${A} = vec4(0, 0, xTexelR${C}C${A}.xy);
}
`:x+=`
if(xR >= 0 && xR < ${a} && xC >= 0 && xC < ${i}) {
xTexelR${C}C${A} = getX(batch, xR, xC, d1);
} else {
xTexelR${C}C${A} = vec4(0.);
}
xR${C}C${A} = xTexelR${C}C${A};
`,A+1<h)){let F=u%2==0?y.nearestLargerEven(f):f;f%2==0&&u%2==1||f%2!=0&&u%2!=1?(x+=`
xCOffset = xC + ${u%2} + ${F};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${C}C${A+2} = getX(batch, xR, xCOffset, d1);
}
`,f>1&&(x+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${C}C${A} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${C}C${A} = vec4(0.);
}
`),x+=`
xR${C}C${A+1} = vec4(
xTexelR${C}C${A}.zw, xTexelR${C}C${A+2}.xy);
`):x+=`
xCOffset = xC + ${F};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${C}C${A+2} = getX(batch, xR, xCOffset, d1);
}
xR${C}C${A+1} = xTexelR${C}C${A+2};
`}}else A<h&&(x+=`
if(xR >= 0 && xR < ${a}) {
`,u%2==1?(x+=`
xCOffset = xC + 1 - ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${C}C${A} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${C}C${A} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${C}C${A+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${C}C${A+2} = vec4(0.);
}
xR${C}C${A} = vec4(
xTexelR${C}C${A}.zw, xTexelR${C}C${A+2}.zw);
`,A+1<h&&(x+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${C}C${A+1} = vec4(xTexelR${C}C${A+2}.xy, final.xy);
`)):(x+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${C}C${A} = getX(batch, xR, xC, d1);
} else {
xTexelR${C}C${A} = vec4(0.);
}
xCOffset = xC + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${C}C${A+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${C}C${A+2} = vec4(0.);
}
xR${C}C${A} = vec4(
xTexelR${C}C${A}.xy, xTexelR${C}C${A+2}.xy);
`,A+1<h&&(x+=`
xR${C}C${A+1} = vec4(
xTexelR${C}C${A}.zw, xTexelR${C}C${A+2}.zw);
`)),x+="}");A<h&&(x+=`
vec4 wTexelR${C}C${A} = getW(${C}, ${A}, d1, q);
wR${C}C${A} = vec4(wTexelR${C}C${A}.xz, wTexelR${C}C${A}.xz);
`,A+1<h&&(x+=`
vec4 wTexelR${C}C${A+1} = getW(${C}, ${A+1}, d1, q);
wR${C}C${A+1} =
vec4(wTexelR${C}C${A+1}.xz, wTexelR${C}C${A+1}.xz);`))}for(let C=0;C<d;C++)for(let D=0;D<h;D++)x+=`dotProd += xR${C}C${D} * wR${C}C${D};`;let b="",_="";o&&(n?b=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?b=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:b=`vec4 activation(vec4 x) {
${o}
}`,_="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${b}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${x}
vec4 result = dotProd;
${w}
${_}
setOutput(result);
}
`}};function lZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=o,c=l;c==null&&(c=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(a,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let p=S.computeConv2DInfo(n.shape,s.shape,a,c,i,u,!0),m;return W().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?m=new uh(p):m=new lh(p),t.runWebGLProgram(m,[n,s],"float32")}var iO={kernelName:rn,backendName:"webgl",kernelFunc:lZ};var IC=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},NC=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=o-1-e.padInfo.left,l=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${l}; dm++) {
int d2 = d1 * ${l} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function uZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o,p=S.computeConv2DInfo(n.shape,c,a,i,l,u,!0),m=new IC(p);return t.runWebGLProgram(m,[n,s],"float32")}var aO={kernelName:Ql,backendName:"webgl",kernelFunc:uZ};function cZ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o,p=S.computeConv2DInfo(c,s.shape,a,i,l,u,!0),m=new NC(p);return t.runWebGLProgram(m,[n,s],"float32")}var lO={kernelName:eu,backendName:"webgl",kernelFunc:cZ};var SC=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function pZ(r){let{inputs:e,backend:t}=r,{x:o}=e,n=[...o.shape,...o.shape],s=y.sizeFromShape(o.shape),a=me({inputs:{x:o},backend:t,attrs:{shape:[s]}}),i=new SC(s),l=t.runWebGLProgram(i,[a],a.dtype),u=me({inputs:{x:l},backend:t,attrs:{shape:n}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(l),u}var uO={kernelName:tu,backendName:"webgl",kernelFunc:pZ};var TC=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:o,padInfo:n,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:l,dilationHeight:u,dilationWidth:c}=e,{top:p,left:m}=n;this.userCode=`
const ivec2 strides = ivec2(${s}, ${a});
const ivec2 pads = ivec2(${p}, ${m});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${u};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${l}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${o}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function mZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=S.computeDilation2DInfo(n.shape,s.shape,a,i,"NHWC",l),c,p=new TC(u);c=t.runWebGLProgram(p,[n,s],"float32");let m=me({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var cO={kernelName:la,backendName:"webgl",kernelFunc:mZ};var fZ="return (x >= 0.0) ? x : (exp(x) - 1.0);",dZ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,hZ=Ce({opSnippet:fZ,packedOpSnippet:dZ}),pO={kernelName:ni,backendName:"webgl",kernelFunc:hZ};var gZ="return (b >= 1.0) ? a : a * (b + 1.0);",xZ=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,yZ=r=>{let{inputs:e,backend:t}=r,{dy:o,y:n}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ws(xZ,o.shape,n.shape):new rs(gZ,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)},mO={kernelName:ru,backendName:"webgl",kernelFunc:yZ};var bZ=`
return vec4(equal(a, b));
`,_Z="return float(a == b);",wZ=at({opSnippet:_Z,packedOpSnippet:bZ,dtype:"bool"}),fO={kernelName:ii,backendName:"webgl",kernelFunc:wZ};var vZ=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${S.ERF_P};
float a1 = ${S.ERF_A1};
float a2 = ${S.ERF_A2};
float a3 = ${S.ERF_A3};
float a4 = ${S.ERF_A4};
float a5 = ${S.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,kZ=Ce({opSnippet:vZ}),dO={kernelName:si,backendName:"webgl",kernelFunc:kZ};var hO="return exp(x);",EC=Ce({opSnippet:hO,packedOpSnippet:hO,cpuKernelImpl:mR}),gO={kernelName:nn,backendName:"webgl",kernelFunc:EC};function Ux(r){let{inputs:e,attrs:t,backend:o}=r,{dim:n}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),l=n;return n<0&&(y.assert(-(a+1)<=n,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+n+1),i.splice(l,0,1),me({inputs:{x:s},backend:o,attrs:{shape:i}})}var xO={kernelName:cs,backendName:"webgl",kernelFunc:Ux};var yO="return exp(x) - 1.0;",CZ=Ce({opSnippet:yO,packedOpSnippet:yO,cpuKernelImpl:fR}),bO={kernelName:ai,backendName:"webgl",kernelFunc:CZ};var jx=class{constructor(e,t,o){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let s=o?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=o?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${n});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${n}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function qx(r,e,t){let o=t.texData.get(r.dataId),n=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=n/s,i=me({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),l=i.shape,u=new jx("real",l,e),c=new jx("imag",l,e),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:l},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:l}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=fo({inputs:{real:m,imag:f},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f);let h=me({inputs:{x:d},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(d),h}function IZ(r){let{inputs:e,backend:t}=r,{input:o}=e;return qx(o,!1,t)}var _O={kernelName:ou,backendName:"webgl",kernelFunc:IZ};var AC=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function ch(r){let{backend:e,attrs:t}=r,{shape:o,value:n}=t,{dtype:s}=t;if(s=s||y.inferDtype(n),s==="string"){let a=y.getArrayFromDType(s,y.sizeFromShape(o));return a.fill(n),e.makeTensorInfo(o,s,a)}else{let a=new AC(o,n),i=a.getCustomSetupFunc(n);return e.runWebGLProgram(a,[],s,i)}}var wO={kernelName:ua,backendName:"webgl",kernelFunc:ch};var DC=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}};var vO={kernelName:li,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,o=e,n=new DC(t.shape);return o.runWebGLProgram(n,[t],t.dtype)}};var kO="return floor(x);",NZ=Ce({opSnippet:kO,packedOpSnippet:kO,cpuKernelImpl:dR}),CO={kernelName:sn,backendName:"webgl",kernelFunc:NZ};var SZ=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,TZ=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,EZ=at({opSnippet:SZ,packedOpSnippet:TZ,dtype:"int32"}),IO={kernelName:an,backendName:"webgl",kernelFunc:EZ};var $C=class{constructor(e){this.variableNames=["A"];let t=zt(),[o,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${o}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}};var RC=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=zt(),[o,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}.0, ${o}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}};var NO={kernelName:Oc,backendName:"webgl",kernelFunc:AZ},jp;function AZ(r){let{inputs:e,backend:t,attrs:o}=r,{pixels:n}=e,{numChannels:s}=o,a=typeof HTMLVideoElement!="undefined"&&n instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&n instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&n instanceof ImageBitmap,[u,c]=a?[n.videoWidth,n.videoHeight]:[n.width,n.height],p=[c,u],m=[c,u,s];(i||a||l)&&(jp==null&&(jp=document.createElement("canvas").getContext("2d")),jp.canvas.width=u,jp.canvas.height=c,jp.drawImage(n,0,0,u,c),n=jp.canvas);let f=t.makeTensorInfo(p,"int32");t.texData.get(f.dataId).usage=$r.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(f.dataId),n);let d=W().getBool("WEBGL_PACK")?new RC(m):new $C(m),h=t.runWebGLProgram(d,[f],"int32");return t.disposeData(f.dataId),h}function DZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(n.shape,s.shape,l,p,u,m,!1,h),x,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=Vx({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else if(W().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)x=Wx({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else{let w=a!=null,C=i!=null,D=f==="leakyrelu",A=f?Dl(f,!1):null,F=new ah(g,w,A,C,D),M=[n,s];if(a&&M.push(a),i&&M.push(i),D){let z=t.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));M.push(z),b.push(z)}x=t.runWebGLProgram(F,M,"float32")}let _=me({inputs:{x},backend:t,attrs:{shape:g.outShape}});return b.push(x),b.forEach(w=>t.disposeIntermediateTensorInfo(w)),_}var SO={kernelName:ks,backendName:"webgl",kernelFunc:DZ};function $Z(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=o,d=[],h=c;h==null&&(h=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let g=S.computeConv2DInfo(n.shape,s.shape,l,h,u,p,!0),x=W().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=m?Dl(m,x):null,_=[n,s],w=a!=null,C=i!=null,D=m==="leakyrelu";if(w&&_.push(a),C&&_.push(i),D){let M=t.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));_.push(M),d.push(M)}let A;x?A=new uh(g,w,b,C,D):A=new lh(g,w,b,C,D);let F=t.runWebGLProgram(A,_,"float32");return d.forEach(M=>t.disposeIntermediateTensorInfo(M)),F}var TO={kernelName:Cs,backendName:"webgl",kernelFunc:$Z};var FC=class{constructor(e,t,o){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=o;let n=ze(t.length),s=ze(o.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${n} strides = ${n}(${this.strides});
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function RZ(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=n.shape,a=s[s.length-1],[i,l,u,c]=S.prepareAndValidate(o,n),p=me({inputs:{x:n},backend:t,attrs:{shape:[l,a]}}),m=me({inputs:{x:o},backend:t,attrs:{shape:[y.sizeFromShape(o.shape)/u,u]}}),f=new FC(a,c,[l,u]),d=t.runWebGLProgram(f,[m,p],m.dtype),h=me({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),h}var EO={kernelName:ui,backendName:"webgl",kernelFunc:RZ};var OC=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let o=ze(this.rank),n=FZ(e,2);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${n}));
}
`}};function FZ(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[];for(let n=0;n<r.length;n++)n===2?o.push("int(getIndices(resRC.x, resRC.z))"):o.push(`${t[n]}`);return o.join()}function OZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o,l=y.parseAxisParam(a,n.shape)[0],u=S.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=y.sizeFromShape(s.shape),p=[],m=me({inputs:{x:n},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),f=me({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(m),p.push(f);let d=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([n,s])||n.dtype==="string"){let b=t.bufferSync(f),_=t.bufferSync(m),w=hR(_,b,d);return p.forEach(C=>t.disposeIntermediateTensorInfo(C)),t.makeTensorInfo(u.outputShape,w.dtype,w.values)}let h=new OC(m.shape,d),g=t.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=me({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return p.forEach(b=>t.disposeIntermediateTensorInfo(b)),x}var AO={kernelName:ps,backendName:"webgl",kernelFunc:OZ};var PZ="return float(a > b);",MZ=`
return vec4(greaterThan(a, b));
`,LZ=at({opSnippet:PZ,packedOpSnippet:MZ,cpuKernelImpl:gR,dtype:"bool"}),DO={kernelName:ci,backendName:"webgl",kernelFunc:LZ};var zZ="return float(a >= b);",BZ=`
return vec4(greaterThanEqual(a, b));
`,VZ=at({opSnippet:zZ,packedOpSnippet:BZ,dtype:"bool"}),$O={kernelName:un,backendName:"webgl",kernelFunc:VZ};function WZ(r){let{inputs:e,backend:t}=r,{input:o}=e;return qx(o,!0,t)}var RO={kernelName:nu,backendName:"webgl",kernelFunc:WZ};var GZ="return float(!isnan(x) && !isinf(x));",UZ=Ce({opSnippet:GZ,dtype:"bool"}),FO={kernelName:pi,backendName:"webgl",kernelFunc:UZ};var jZ="return float(isinf(x));",qZ=Ce({opSnippet:jZ,dtype:"bool"}),OO={kernelName:mi,backendName:"webgl",kernelFunc:qZ};var HZ="return float(isnan(x));",KZ=Ce({opSnippet:HZ,dtype:"bool"}),PO={kernelName:fi,backendName:"webgl",kernelFunc:KZ};var XZ="return float(a < b);",YZ=`
return vec4(lessThan(a, b));
`,ZZ=at({opSnippet:XZ,packedOpSnippet:YZ,cpuKernelImpl:xR,dtype:"bool"}),MO={kernelName:di,backendName:"webgl",kernelFunc:ZZ};var JZ="return float(a <= b);",QZ=`
return vec4(lessThanEqual(a, b));
`,e9=at({opSnippet:JZ,packedOpSnippet:QZ,dtype:"bool"}),LO={kernelName:hi,backendName:"webgl",kernelFunc:e9};function t9(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=yR(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var zO={kernelName:iu,backendName:"webgl",kernelFunc:t9};var r9=`if (x < 0.0) return NAN;
return log(x);`,o9=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,n9=Ce({opSnippet:r9,packedOpSnippet:o9,cpuKernelImpl:bR}),BO={kernelName:pn,backendName:"webgl",kernelFunc:n9};var s9="return log(1.0 + x);",i9=Ce({opSnippet:s9}),VO={kernelName:gi,backendName:"webgl",kernelFunc:i9};var a9="return float(a >= 1.0 && b >= 1.0);",l9=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,u9=at({opSnippet:a9,packedOpSnippet:l9,dtype:"bool"}),WO={kernelName:xi,backendName:"webgl",kernelFunc:u9};var c9="return float(!(x >= 1.0));",p9=Ce({opSnippet:c9}),GO={kernelName:Qa,backendName:"webgl",kernelFunc:p9};var m9="return float(a >= 1.0 || b >= 1.0);",f9=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,d9=at({opSnippet:m9,packedOpSnippet:f9,dtype:"bool"}),UO={kernelName:el,backendName:"webgl",kernelFunc:d9};var PC=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${l};
setOutput(val);
}
`}};var MC=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${l};
setOutput(result);
}
`}};var h9=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o,u=W().getBool("WEBGL_PACK_NORMALIZATION")?new MC(n.shape,s,a,i,l):new PC(n.shape,s,a,i,l);return t.runWebGLProgram(u,[n],n.dtype)},jO={kernelName:ca,backendName:"webgl",kernelFunc:h9};var LC=class{constructor(e,t,o,n,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=o,this.alpha=n,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${n}) * norm + float(${o});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${n})
* float(${s})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}};var g9=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o,p=new LC(n.shape,i,l,u,c);return t.runWebGLProgram(p,[n,s,a],n.dtype)},qO={kernelName:au,backendName:"webgl",kernelFunc:g9};function HO(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=me({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=To(i,r.dtype,"max",o),u=me({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}function zC(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=S.getAxesPermutation(u,i),p=c!=null,m=t.shouldExecuteOnCPU([n]),f=n;if(p){if(m){let _=t.texData.get(f.dataId).values,w=new Array(i);for(let A=0;A<w.length;A++)w[A]=n.shape[c[A]];let C=Up(_,n.shape,n.dtype,c,w);f=t.makeTensorInfo(w,n.dtype);let D=t.texData.get(f.dataId);D.values=C}else f=$l(n,c,t);u=S.getInnerMostAxes(u.length,i)}S.assertAxesAreInnerMostDims("max",u,i);let[d,h]=S.computeOutAndReduceShapes(f.shape,u),g=d;a&&(g=S.expandShapeToKeepDim(d,l));let x;if(m){let _=t.texData.get(f.dataId).values,w=_R(_,y.sizeFromShape(h),g,n.dtype);x=t.makeTensorInfo(g,n.dtype);let C=t.texData.get(x.dataId);C.values=w}else x=HO(f,h,g,t);return p&&t.disposeIntermediateTensorInfo(f),x}var KO={kernelName:mn,backendName:"webgl",kernelFunc:zC};var x9=Fx+`
return max(a, b);
`,y9=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Al+`
return result;
`,b9=at({opSnippet:x9,packedOpSnippet:y9,cpuKernelImpl:wR}),XO={kernelName:fn,backendName:"webgl",kernelFunc:b9};function _9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;Yi(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Ht({inputs:{x:n},backend:t});let p=new Zi(c,"max",!1);return t.runWebGLProgram(p,[n],n.dtype)}var YO={kernelName:dn,backendName:"webgl",kernelFunc:_9};function w9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dataFormat:l,dimRoundingMode:u}=o,c=[1,1,1],p=S.computePool3DInfo(n.shape,s,a,c,i,u,l),m=new pc(p,"max",!1);return t.runWebGLProgram(m,[n],n.dtype)}var ZO={kernelName:pa,backendName:"webgl",kernelFunc:w9};var BC=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,o=e.strideWidth,n=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,l=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${n}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},VC=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=l-1-e.padInfo.front,m=u-1-e.padInfo.top,f=c-1-e.padInfo.left,d=l*u*c-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${m}, ${f});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${l};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${u};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${d} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${u} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function v9(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=S.computePool3DInfo(a.shape,i,l,p,u,c),f=new pc(m,"max",!0),d=t.runWebGLProgram(f,[a],a.dtype),h=new VC(m),g=t.runWebGLProgram(h,[n,d],a.dtype);return t.disposeIntermediateTensorInfo(d),g}var JO={kernelName:uu,backendName:"webgl",kernelFunc:v9};function k9(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;Yi([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=S.computePool2DInfo(i.shape,l,u,1,c,p),f=!0,d=new Zi(m,"max",f),h=t.runWebGLProgram(d,[i],i.dtype),g=new BC(m),x=t.runWebGLProgram(g,[n,h],i.dtype);return t.disposeIntermediateTensorInfo(h),x}var QO={kernelName:lu,backendName:"webgl",kernelFunc:k9};function eP(r,e,t,o){let n=new Zi(t,"max",!1),s=o.runWebGLProgram(n,[r],"float32");n=new Zi(t,"max",!0,!0,e);let a=o.runWebGLProgram(n,[r],"float32");return[s,a]}var tP={kernelName:cu,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;y.assert(o.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.shape.length}.`);let u=[1,1];y.assert(S.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=S.computePool2DInfo(o.shape,n,s,u,a),[p,m]=eP(o,i,c,l);return[p,m]}};function rP(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=me({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=To(i,"float32","mean",o),u=me({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}var oP={kernelName:hn,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{keepDims:n,axis:s}=e,a=t,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=S.getAxesPermutation(u,i),p=c!=null,m=a.shouldExecuteOnCPU([o]),f=[],d=o;if(p){if(m){let w=a.texData.get(d.dataId).values,C=new Array(i);for(let F=0;F<C.length;F++)C[F]=o.shape[c[F]];let D=Up(w,o.shape,o.dtype,c,C);d=a.makeTensorInfo(C,o.dtype);let A=a.texData.get(d.dataId);A.values=D}else d=$l(o,c,a);f.push(d),u=S.getInnerMostAxes(u.length,i)}S.assertAxesAreInnerMostDims("sum",u,i);let[h,g]=S.computeOutAndReduceShapes(d.shape,u),x=h;n&&(x=S.expandShapeToKeepDim(h,l));let b=rP(d,g,x,a);for(let _ of f)a.disposeIntermediateTensorInfo(_);return b}};function C9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=S.getAxesPermutation(u,i),p=n;c!=null&&(p=Bt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=S.getInnerMostAxes(u.length,n.shape.length)),S.assertAxesAreInnerMostDims("min",u,i);let[m,f]=S.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=me({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"min",t),x;if(a){let b=S.expandShapeToKeepDim(m,l);x=me({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=me({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var nP={kernelName:gn,backendName:"webgl",kernelFunc:C9};var I9=Fx+`
return min(a, b);
`,N9=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Al+`
return result;
`,S9=at({opSnippet:I9,packedOpSnippet:N9,cpuKernelImpl:vR}),sP={kernelName:xn,backendName:"webgl",kernelFunc:S9};var WC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((c,p)=>c[0]+e[p]+c[1]);let n=e.length,s=ze(n),a=t.map(c=>c[0]).join(","),i=t.map((c,p)=>c[0]+e[p]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),u=o==="reflect"?0:1;if(n===1){this.userCode=`
int start = ${a};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${u};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${u};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${n}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${u};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
}
}
${s} coords = outC - start;
setOutput(getX(${l}));
}
`}};var GC=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,h)=>d[0]+e[h]+d[1]);let n=e.length,s=ze(n),a=t.map(d=>d[0]).join(","),i=t.map((d,h)=>d[0]+e[h]).join(","),l=qt("rc",n),u=qt("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=o==="reflect"?0:1,f="";if(n===1){let d=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${m};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${m};
}
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
`}else{let d=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${m}) +
gte * ((end - 1) * 2 - source + ${m});
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
rc = outputLoc;
${l[n-2]} += 1;
if(${l[n-2]} < ${this.outputShape[n-2]}) {
${d}
result[2] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[3] = getChannel(getX(${u.join()}), ${p});
}
}
`}this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${f}
setOutput(result);
}
`}};var T9=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{paddings:n,mode:s}=t,a=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new GC(o.shape,n,s):new WC(o.shape,n,s);return e.runWebGLProgram(a,[o],o.dtype)},iP={kernelName:ma,backendName:"webgl",kernelFunc:T9};var E9=`if (b == 0.0) return NAN;
return mod(a, b);`,A9=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Al+`
return result;
`,D9=at({opSnippet:E9,packedOpSnippet:A9}),aP={kernelName:yi,backendName:"webgl",kernelFunc:D9};var UC=class{constructor(e,t,o){this.variableNames=["probs"],this.outputShape=[e,o],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,o)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(o,"seed")),t.gl.uniform1f(this.seedLoc,e)}}};var $9=`
if (a == b) {
return 1.0;
};
return a / b;`,R9=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,jC=at({opSnippet:$9,packedOpSnippet:R9,checkOutOfBounds:!0}),lP={kernelName:on,backendName:"webgl",kernelFunc:jC};var uP="return a - b;",qC=at({opSnippet:uP,packedOpSnippet:uP,supportsComplex:!0,cpuKernelImpl:AR}),cP={kernelName:On,backendName:"webgl",kernelFunc:qC};function HC(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=y.parseAxisParam([s],n.shape),i=zC({inputs:{x:n},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),l=S.expandShapeToKeepDim(i.shape,a),u=me({inputs:{x:i},backend:t,attrs:{shape:l}}),c=qC({inputs:{a:n,b:u},backend:t}),p=EC({inputs:{x:c},backend:t}),m=ih({inputs:{x:p},backend:t,attrs:{axis:a,keepDims:!1}}),f=me({inputs:{x:m},backend:t,attrs:{shape:l}}),d=jC({inputs:{a:p,b:f},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}var pP={kernelName:Rn,backendName:"webgl",kernelFunc:HC};function F9(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o,l=i?n:HC({inputs:{logits:n},backend:t,attrs:{dim:n.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new UC(u,c,s),m=p.getCustomSetupFunc(a),f=t.runWebGLProgram(p,[l],"int32",m);return i||t.disposeIntermediateTensorInfo(l),f}var mP={kernelName:pu,backendName:"webgl",kernelFunc:F9};var fP="return -x;";function O9(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])){let s=t.texData.get(o.dataId),[a,i]=CR(s.values,o.shape,o.dtype);return t.makeTensorInfo(i,o.dtype,a)}let n;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new Vs(o.shape,fP):n=new mo(o.shape,fP),t.runWebGLProgram(n,[o],o.dtype)}var dP={kernelName:fs,backendName:"webgl",kernelFunc:O9};var P9=Ar.nonMaxSuppressionV3Impl;function M9(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o,u=t.readSync(n.dataId),c=t.readSync(s.dataId),{selectedIndices:p}=P9(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var hP={kernelName:_i,backendName:"webgl",kernelFunc:M9};var L9=Ar.nonMaxSuppressionV4Impl;function z9(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=L9(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var gP={kernelName:wi,backendName:"webgl",kernelFunc:z9};var B9=Ar.nonMaxSuppressionV5Impl;function V9(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=B9(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var xP={kernelName:vi,backendName:"webgl",kernelFunc:V9};var KC=class{constructor(e,t,o,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${n}), float(${o}),
float(index == coords.y)));
}
`}};var W9=r=>{let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=y.sizeFromShape(n.shape),u=new KC(l,s,a,i),c=me({inputs:{x:n},backend:t,attrs:{shape:[l]}}),p=t.runWebGLProgram(u,[c],n.dtype);t.disposeIntermediateTensorInfo(c);let m=[...n.shape,s],f=me({inputs:{x:p},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(p),f},yP={kernelName:bn,backendName:"webgl",kernelFunc:W9};function ph(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="complex64"){let n=Ha({inputs:{input:o},backend:t}),s=ph({inputs:{x:n},backend:t}),a=mc({inputs:{input:o},backend:t}),i=ph({inputs:{x:a},backend:t}),l=fo({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return ch({attrs:{shape:o.shape,dtype:o.dtype,value:o.dtype==="string"?"":0},backend:t})}var bP={kernelName:ws,backendName:"webgl",kernelFunc:ph};function _P(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(o.dtype==="complex64"){let n=Ha({inputs:{input:o},backend:t}),s=_P({inputs:{x:n},backend:t}),a=mc({inputs:{input:o},backend:t}),i=ph({inputs:{x:a},backend:t}),l=fo({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return ch({attrs:{shape:o.shape,dtype:o.dtype,value:1},backend:t})}var wP={kernelName:ds,backendName:"webgl",kernelFunc:_P};function G9(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Ux({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Ux({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=gC({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var vP={kernelName:hs,backendName:"webgl",kernelFunc:G9};var XC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let n=e.length,s=ze(n),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
int start = ${a};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(float(${o}));
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(float(${o}));
} else {
${s} coords = outC - start;
setOutput(getX(${l}));
}
}
`}};var YC=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let n=e.length,s=ze(n),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),l=qt("rc",n),u=qt("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${l[n-1]} += 1;
if(${c}) {
`,n===1?"":`}
rc = outputLoc;
${l[n-2]} += 1;
if(${l[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${l[n-1]} += 1;
if(${c}) {`],f=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=n===1?2:4;h<g;h++)d+=`
${m[h]}
if (${f}) {
result[${h}] = float(${o});
} else {
${s} source = rc - start;
result[${h}] = getChannel(getX(${u.join()}), ${p});
}
`;d+=n===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}};var ZC=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o,i=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new YC(n.shape,s,a):new XC(n.shape,s,a);return t.runWebGLProgram(i,[n],n.dtype)},kP={kernelName:_n,backendName:"webgl",kernelFunc:ZC};var U9=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,j9=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Al+`
return result;
`,q9=at({opSnippet:U9,packedOpSnippet:j9}),CP={kernelName:wn,backendName:"webgl",kernelFunc:q9};function H9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=[],u=y.parseAxisParam(s,n.shape),c=u,p=S.getAxesPermutation(c,i),m=n;p!=null&&(m=Bt({inputs:{x:n},backend:t,attrs:{perm:p}}),c=S.getInnerMostAxes(c.length,i),l.push(m)),S.assertAxesAreInnerMostDims("prod",c,i);let f;if(t.shouldExecuteOnCPU([m])){let d=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=IR(m.shape,m.dtype,d,c);f=t.makeTensorInfo(g,x,h)}else{let[d,h]=S.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=me({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),b=xu(n.dtype),_=To(x,b,"prod",t);f=me({inputs:{x:_},backend:t,attrs:{shape:d}}),l.push(x),l.push(_)}if(a){l.push(f);let d=S.expandShapeToKeepDim(f.shape,u);f=me({inputs:{x:f},backend:t,attrs:{shape:d}})}return l.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var IP={kernelName:ki,backendName:"webgl",kernelFunc:H9};var JC=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=NR(o,n,s,a);return e.makeTensorInfo([i.length],a,i)},NP={kernelName:fa,backendName:"webgl",kernelFunc:JC};var K9="return 1.0 / x;",X9=Ce({opSnippet:K9}),SP={kernelName:Ci,backendName:"webgl",kernelFunc:X9};var Y9=xr+`
return (x < 0.0) ? 0.0 : x;
`,Z9=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,J9=Ce({opSnippet:Y9,packedOpSnippet:Z9}),TP={kernelName:kn,backendName:"webgl",kernelFunc:J9};var Q9=xr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,eJ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,tJ=Ce({opSnippet:Q9,packedOpSnippet:eJ}),EP={kernelName:In,backendName:"webgl",kernelFunc:tJ};var QC=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}};var eI=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${l}.0,
${l}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${u-1};
bool hasNextRow = coords.z < ${o-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function rJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=W().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new eI(n.shape,l,u,s,a):new QC(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],"float32")}var AP={kernelName:Cn,backendName:"webgl",kernelFunc:rJ};var tI=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function oJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new tI(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var DP={kernelName:du,backendName:"webgl",kernelFunc:oJ};var rI=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m=n?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function nJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=new rI(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],n.dtype)}var $P={kernelName:da,backendName:"webgl",kernelFunc:nJ};var oI=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${l[0]}) *
(float(dyR) / float(${u[0]}));
float sourceFracCol =
float(${l[1]}) *
(float(dyC) / float(${u[1]}));
int sourceNearestRow = int(min(
float(int(${n}) - 1),
${o} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${o} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function sJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new oI(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var RP={kernelName:fu,backendName:"webgl",kernelFunc:sJ};var nI=class{constructor(e,t){this.variableNames=["x"];let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);if(this.outputShape=e,o===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,l)=>n(l)).join(","),a=ze(o);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}};var sI=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);this.outputShape=e;let n=qt("rc",o),s=`${n[o-1]} + 1 < ${this.outputShape[o-1]}`,a=`${n[o-2]} + 1 < ${this.outputShape[o-2]}`,i=ze(o);o===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${l(n.slice())};
if(${s}){
result.g = ${u(n.slice())};
}
if(${a}) {
result.b = ${c(n.slice())};
if(${s}) {
result.a = ${p(n.slice())};
}
}
setOutput(result);
}
`;function l(d){return m(d)}function u(d){return d[o-1]="("+d[o-1]+" + 1)",m(d)}function c(d){return d[o-2]="("+d[o-2]+" + 1)",m(d)}function p(d){return d[o-1]="("+d[o-1]+" + 1)",d[o-2]="("+d[o-2]+" + 1)",m(d)}function m(d){let h=e.map((b,_)=>f(_,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${h[d]} - 1`:`${h[d]}`}}};function iJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return Ht({inputs:{x:n},backend:t});let l=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sI(n.shape,i):new nI(n.shape,i);return t.runWebGLProgram(l,[n],n.dtype)}var FP={kernelName:Nn,backendName:"webgl",kernelFunc:iJ};var iI=class{constructor(e,t,o,n){this.variableNames=["Image"],this.outputShape=[];let s=e[1],a=e[2],i=Math.sin(t).toFixed(3),l=Math.cos(t).toFixed(3);this.outputShape=e;let[u,c]=S.getImageCenter(n,s,a),p=u.toFixed(3),m=c.toFixed(3),f="";typeof o=="number"?f=`float outputValue = ${o.toFixed(2)};`:f=`
vec3 fill = vec3(${o.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - ${p}) * ${l} - (float(y) - ${m}) * ${i};
float coordYFloat = (float(x) - ${p}) * ${i} + (float(y) - ${m}) * ${l};
int coordX = int(round(coordXFloat + ${p}));
int coordY = int(round(coordYFloat + ${m}));
${f}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${s}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}};var OP={kernelName:Ri,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=new iI(o.shape,n,s,a);return i.runWebGLProgram(l,[o],o.dtype)}};var aJ=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,lJ=Ce({opSnippet:aJ}),PP={kernelName:Sn,backendName:"webgl",kernelFunc:lJ};var uJ="return inversesqrt(x);",cJ=Ce({opSnippet:uJ,cpuKernelImpl:SR}),MP={kernelName:Tn,backendName:"webgl",kernelFunc:cJ};var mh=class{constructor(e,t,o,n,s,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let l=ze(s.length),u=ze(a.length),c="";o===1?c="i":o===2&&(c="i, j");let p=`getIndices(${c})`,m="";n===1?m="i":n===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=t>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${s});
void main() {
${u} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${d};
}
if (flattenedIndex == coords[0]) {
sum += ${f};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function pJ(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=S.calculateShapes(s,n,a),m=[p/u,u];if(p===0)return t.makeTensorInfo(a,n.dtype);let f=me({inputs:{x:n},backend:t,attrs:{shape:[l,i]}}),d=me({inputs:{x:s},backend:t,attrs:{shape:[l,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g=new mh(l,i,f.shape.length,d.shape.length,c,m),x=t.runWebGLProgram(g,[d,f,h],d.dtype),b=me({inputs:{x},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(h),b}var LP={kernelName:Ii,backendName:"webgl",kernelFunc:pJ};var aI=class{constructor(e,t,o){this.variableNames=["c","a","b"],this.outputShape=t;let n,s;if(o>4)throw Error(`Where for rank ${o} is not yet supported`);if(o===1)s="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],l=[],u=[];for(let c=0;c<t.length;c++)u.push(`${i[c]}`),c<e&&l.push(`${i[c]}`);n=l.join(),s=u.join()}let a=ze(o);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${n});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function mJ(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=new aI(o.shape.length,n.shape,n.shape.length);return t.runWebGLProgram(a,[o,n,s],fr(n.dtype,s.dtype))}var zP={kernelName:xs,backendName:"webgl",kernelFunc:mJ};var fJ=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${S.SELU_SCALEALPHA};
float scale = ${S.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,dJ=Ce({opSnippet:fJ}),BP={kernelName:Ni,backendName:"webgl",kernelFunc:dJ};var hJ="return 1.0 / (1.0 + exp(-1.0 * x));",gJ=Ce({opSnippet:hJ}),VP={kernelName:An,backendName:"webgl",kernelFunc:gJ};var xJ=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,yJ=Ce({opSnippet:xJ}),WP={kernelName:Ti,backendName:"webgl",kernelFunc:yJ};var bJ=Ox+`
return sin(x);
`,_J=Ce({opSnippet:bJ}),GP={kernelName:En,backendName:"webgl",kernelFunc:_J};var wJ=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,vJ=Ce({opSnippet:wJ}),UP={kernelName:Si,backendName:"webgl",kernelFunc:vJ};var kJ=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,CJ=Ce({opSnippet:kJ}),jP={kernelName:Ei,backendName:"webgl",kernelFunc:CJ};var IJ=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;y.assert(n.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((x,b)=>x*b),l=[[0,0]];l.push(...a);for(let x=1+s.length;x<n.shape.length;++x)l.push([0,0]);let u=[],c=ZC({inputs:{x:n},backend:t,attrs:{paddings:l,constantValue:0}}),p=S.getReshaped(c.shape,s,i,!1),m=S.getPermuted(p.length,s.length,!1),f=S.getReshapedPermuted(c.shape,s,i,!1),d=me({inputs:{x:c},backend:t,attrs:{shape:p}}),h=Bt({inputs:{x:d},backend:t,attrs:{perm:m}}),g=me({inputs:{x:h},backend:t,attrs:{shape:f}});return u.push(c),u.push(d),u.push(h),u.forEach(x=>t.disposeIntermediateTensorInfo(x)),g},qP={kernelName:ha,backendName:"webgl",kernelFunc:IJ};function NJ(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=S.calculateShapes(s,n,i),m=!1,f=new mh(u,l,n.shape.length,s.shape.length,c,[p,1],m),d=t.runWebGLProgram(f,[s,n,a],s.dtype),h=me({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(d),h}var HP={kernelName:hu,backendName:"webgl",kernelFunc:NJ};function SJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],l=S.prepareSplitSize(n,s,i),u=n.shape.length,c=new Array(u).fill(0),p=n.shape.slice();return l.map(m=>{let f=[...p];f[i]=m;let d=qa({inputs:{x:n},backend:t,attrs:{begin:c,size:f}});return c[i]+=m,d})}var KP={kernelName:bs,backendName:"webgl",kernelFunc:SJ};var TJ="return sqrt(x);",EJ=Ce({opSnippet:TJ}),XP={kernelName:Dn,backendName:"webgl",kernelFunc:EJ};var AJ="return x * x;",DJ=Ce({opSnippet:AJ}),YP={kernelName:ga,backendName:"webgl",kernelFunc:DJ};var ZP="return (a - b) * (a - b);",$J=at({opSnippet:ZP,packedOpSnippet:ZP}),JP={kernelName:Fn,backendName:"webgl",kernelFunc:$J};function RJ({inputs:r,attrs:e,backend:t}){let{x:o}=r,n=xr+`
return x > 0.0 ? 1.0 : float(${e.alpha});
`,s=new mo(o.shape,n);return t.runWebGLProgram(s,[o],o.dtype)}var QP={kernelName:Fo,backendName:"webgl",kernelFunc:RJ};var lI=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=o;let n=o.length,s=ze(o.length),a=ze(o.length),i="";if(n===1)i="coords * strides + begin";else{let l=0;i=o.map((u,c)=>(l++,o.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${l-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${e});
${s} strides = ${s}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function FJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=sr.sliceInfo(n.shape,s,a,i,l,u,c,p,m),_=me({inputs:{x:n},backend:t,attrs:{shape:x}}),w;if(f){let D=qa({inputs:{x:_},backend:t,attrs:{begin:d,size:g}});w=me({inputs:{x:D},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(D)}else if(b.some(D=>D===0))w=t.makeTensorInfo(b,n.dtype,[]);else if(t.shouldExecuteOnCPU([_])){let F=t.texData.get(_.dataId).values,M=Ie(_.shape,_.dtype,F),z=ER(b,M,h,d);w=t.makeTensorInfo(b,_.dtype,z.values)}else{let A=new lI(d,h,b);w=t.runWebGLProgram(A,[_],_.dtype)}let C=me({inputs:{x:w},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(_),t.disposeIntermediateTensorInfo(w),C}var eM={kernelName:Ai,backendName:"webgl",kernelFunc:FJ};var OJ="return tan(x);",PJ=Ce({opSnippet:OJ}),tM={kernelName:Di,backendName:"webgl",kernelFunc:PJ};var MJ=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,LJ=Ce({opSnippet:MJ}),rM={kernelName:Pn,backendName:"webgl",kernelFunc:LJ};var uI=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[a]*t[a];this.outputShape=o,this.rank=o.length;let n=ze(this.rank),s=zJ(e);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function zJ(r){let e=r.length;if(e>5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],o=[];for(let n=0;n<r.length;n++)o.push(`imod(${t[n]}, ${r[n]})`);return o.join()}function cI(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;if(n.dtype==="string"){let u=t.readSync(n.dataId).map(m=>y.decodeString(m)),c=Ie(n.shape,n.dtype,u),p=DR(c,s);return t.makeTensorInfo(p.shape,p.dtype,p.values)}let a=new uI(n.shape,s);return t.runWebGLProgram(a,[n],n.dtype)}var oM={kernelName:wo,backendName:"webgl",kernelFunc:cI};function BJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o,i=t.readSync(n.dataId),[l,u]=$R(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var nM={kernelName:$i,backendName:"webgl",kernelFunc:BJ};function VJ(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;Yi(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=o.readSync(s.dataId),{outputValues:i,outputShape:l,indices:u}=RR(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var sM={kernelName:gu,backendName:"webgl",kernelFunc:VJ};function WJ(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n,i=a.shape.length,l=n.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let p=[],m=new Array(i).fill(0),f=a.shape.slice();f[s]=1;let d=new Array(l);for(let h=0;h<d.length;h++){m[s]=h;let g=qa({inputs:{x:a},backend:t,attrs:{begin:m,size:f}}),x=me({inputs:{x:g},backend:t,attrs:{shape:u}});d[h]=x,p.push(g)}return p.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var iM={kernelName:_s,backendName:"webgl",kernelFunc:WJ};var pI=class{constructor(e,t){this.variableNames=["x","segmentIds"];let o=e.windowSize,n=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/o);this.outputShape=[n,i];let l="0.0",u="sumValue",c=Math.floor(o/4)*4,p=o%4,m=`
sumValue += dot(values, segFilter);
`,f="";s%o>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let d="";s%o>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${l};
float getValue(int batch, int inIdx) {
${f}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${d}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${o}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${m}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${m}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${m}
}
setOutput(${u});
}
`}};function GJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o,i=n.shape.length,l=[],u=0,c=S.getAxesPermutation([u],i),p=n;c!=null&&(p=Bt({inputs:{x:n},backend:t,attrs:{perm:c}}),l.push(p),u=S.getInnerMostAxes(1,i)[0]);let m=S.segment_util.computeOutShape(p.shape,u,a),f=y.sizeFromShape([p.shape[u]]),d=me({inputs:{x:p},backend:t,attrs:{shape:[-1,f]}});l.push(d);let h=xu(n.dtype),g=(w,C,D,A,F)=>{let M=w.shape[0],z=w.shape[1],G=S.segment_util.segOpComputeOptimalWindowSize(z,F),U={windowSize:G,inSize:z,batchSize:M,numSegments:F},H=new pI(U,C),J=t.compileAndRun(H,[w,D],A);if(l.push(J),J.shape[1]===F)return J;let Y=JC({backend:t,attrs:{start:0,stop:F,step:1,dtype:"float32"}}),X=cI({inputs:{x:Y},backend:t,attrs:{reps:[z/G]}});return l.push(Y),l.push(X),g(J,C,X,A,F)},x=g(d,"unsortedSegmentSum",s,h,a),b=me({inputs:{x},backend:t,attrs:{shape:m}}),_=b;if(c!=null){l.push(b);let w=S.getUndoAxesPermutation(c);_=Bt({inputs:{x:_},backend:t,attrs:{perm:w}})}return l.forEach(w=>t.disposeIntermediateTensorInfo(w)),_}var aM={kernelName:xa,backendName:"webgl",kernelFunc:GJ};var UJ=[jO,qO,iF,lF,uF,cF,mF,fF,dF,hF,yF,bF,_F,wF,kF,vF,CF,NF,IF,SF,TF,EF,AF,$F,RF,MF,zF,BF,WF,KR,jF,HF,KF,qF,YF,ZF,XF,JF,QF,eO,oO,nO,sO,aO,lO,iO,uO,cO,pO,mO,fO,dO,gO,xO,bO,_O,wO,vO,CO,IO,NO,SO,TO,EO,AO,DO,$O,HR,RO,GF,FO,OO,PO,XR,MO,LO,zO,VO,BO,WO,GO,UO,KO,ZO,YO,JO,QO,tP,XO,oP,nP,sP,iP,aP,mP,eF,dP,hP,gP,xP,FF,yP,wP,vP,kP,CP,YR,IP,NP,OF,lP,SP,EP,TP,rF,AP,DP,$P,RP,FP,OP,PP,MP,LP,zP,BP,VP,WP,GP,UP,DF,pP,jP,qP,HP,KP,XP,YP,JP,QP,eM,cP,nF,tM,rM,oM,nM,sF,sM,iM,aM,bP];for(let r of UJ)tl(r);var lM="2.8.5";var jJ={"tfjs-core":Jb,"tfjs-backend-cpu":UA,"tfjs-backend-webgl":qR,"tfjs-data":bx,"tfjs-layers":xl,"tfjs-converter":mx,tfjs:lM};var Vt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(Vt||(Vt={}));var Rl;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu"})(Rl||(Rl={}));var uM;function qJ(r){uM=r.wasm.cwrap(vs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function HJ(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m=t.dataIdMap.get(n.dataId).id,f=t.dataIdMap.get(s.dataId).id,d=0;if(a!=null){let F=t.dataIdMap.get(a.dataId);if(F.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${F.shape.length}.`);d=F.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=Rl[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=l?n.shape[2]:n.shape[1],b=u?s.shape[1]:s.shape[2],_=n.shape[0],w=t.makeOutput([_,x,b],n.dtype),C=t.dataIdMap.get(w.dataId).id,D=new Uint8Array(new Int32Array(n.shape).buffer),A=new Uint8Array(new Int32Array(s.shape).buffer);return uM(m,D,n.shape.length,f,A,s.shape.length,l,u,g,d,h,p||0,C),w}var cM={kernelName:vs,backendName:"wasm",setupFunc:qJ,kernelFunc:HJ};function Rt(r){let e;function t(n){e=n.wasm.cwrap(r,null,["number","number"])}function o(n){let{backend:s,inputs:{x:a}}=n,i=s.dataIdMap.get(a.dataId).id,l=s.makeOutput(a.shape,a.dtype),u=s.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(i,u),l}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:o}}var pM=Rt(ls);function wt(r,e,t){let o;function n(a){o=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:l}=a,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,f=t!=null?t:u.dtype,d=S.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=i.dataIdMap.get(h.dataId).id,_=()=>o(p,g,u.shape.length,m,x,c.shape.length,Vt[u.dtype],b);if(e&&u.dtype==="float32")return _(),h;let w=S.getBroadcastDims(u.shape,d),C=S.getBroadcastDims(c.shape,d),D=w.every((F,M)=>F===M),A=C.every((F,M)=>F===M);if(D&&A)return _(),h;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${r}.`)}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:s}}var KJ=!0,mM=wt(_o,KJ);var fM;function XJ(r){fM=r.wasm.cwrap(Ko,null,["array","number","number","number"])}function YJ(r){let{inputs:e,backend:t}=r,o=t.makeOutput(e[0].shape,e[0].dtype);if(y.sizeFromShape(o.shape)===0)return o;let n=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(n).buffer),a=t.dataIdMap.get(o.dataId).id;return fM(s,n.length,Vt[o.dtype],a),o}var dM={kernelName:Ko,backendName:"wasm",setupFunc:XJ,kernelFunc:YJ};function dc(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype),n=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(o).set(n),o}var hM={kernelName:ms,backendName:"wasm",kernelFunc:dc};var gM;function ZJ(r){gM=r.wasm.cwrap(Mn,null,["number","array","number","number","number","array","number"])}function qp(r){let{inputs:e,backend:t,attrs:o}=r,[n,s]=QJ(e.x.shape,o.perm),a=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(a=!1);let i=JJ(e.x.shape,o.perm),l={dataId:e.x.dataId,shape:n,dtype:e.x.dtype};if(a){let d=dc({inputs:e,backend:t});return d.shape=i,d}let u=t.makeOutput(i,l.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(l.shape).buffer);return gM(c,f,l.shape.length,Vt[l.dtype],p,m,s.length),u}function JJ(r,e){let t=new Array(r.length);for(let o=0;o<t.length;o++)t[o]=r[e[o]];return t}function QJ(r,e){let t=[],o=[];for(let n=0;n<r.length;++n)r[n]!==1&&t.push(r[n]),r[e[n]]!==1&&o.push(e[n]);for(let n=0;n<o.length;++n){let s=-1;for(let a=0;a<o.length;++a)o[a]>=n&&(s===-1||o[s]>o[a])&&(s=a);o[s]=n}return[t,o]}var xM={kernelName:Mn,backendName:"wasm",kernelFunc:qp,setupFunc:ZJ};function os(r,e,t){let o=r.shape,n=r.shape.length,s=y.parseAxisParam(e,o),a=s,i=S.getAxesPermutation(a,n),l=null,u=!1;if(i!=null){let c=new Array(n);for(let f=0;f<c.length;f++)c[f]=o[i[f]];a=S.getInnerMostAxes(a.length,n),l=qp({inputs:{x:r},attrs:{perm:i},backend:t});let p=t.dataIdMap.get(r.dataId).id;t.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:a,inputWasTransposed:u}}var yM;function eQ(r){yM=r.wasm.cwrap(Xo,null,["number","number","number","number","number"])}function tQ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=a,l=s,{transposed:u,axes:c,inputWasTransposed:p}=os(s,n,e);if(p){let x=e.dataIdMap.get(u.dataId).id;x!==a&&(l=u,i=x)}let m=l.shape.slice(0,-1),f=e.makeOutput(m,"int32"),d=e.dataIdMap.get(f.dataId).id,h=y.sizeFromShape(f.shape),g=l.shape[c[0]];return yM(i,Vt[l.dtype],h,g,d),p&&e.disposeData(u.dataId),f}var bM={kernelName:Xo,backendName:"wasm",kernelFunc:tQ,setupFunc:eQ};var _M;function rQ(r){_M=r.wasm.cwrap(Yo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oQ(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=S.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,b=c.strideWidth,_=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let w=o.makeOutput(c.outShape,"float32"),C=o.dataIdMap.get(w.dataId).id;return _M(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,x,b,_,C),w}var wM={kernelName:Yo,backendName:"wasm",setupFunc:rQ,kernelFunc:oQ};function Wr(r){let{inputs:e,attrs:t}=r,{x:o}=e,{shape:n}=t,s=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(n,s);return y.assert(s===y.sizeFromShape(a),()=>`new shape: ${a}, old shape: ${o.shape}. New shape and old shape must have the same number of elements.`),{dataId:o.dataId,shape:a,dtype:o.dtype}}var vM={kernelName:gs,backendName:"wasm",kernelFunc:Wr};var kM;function nQ(r){kM=r.wasm.cwrap(Zo,null,["number","array","number","number","array","number","number","number","number"])}function sQ(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let w=(g>x?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let C=a?[g,c,m]:[g,m,c],D=i?[x,f,p]:[x,p,f],A=Wr({inputs:{x:n},backend:t,attrs:{shape:C}}),F=Wr({inputs:{x:s},backend:t,attrs:{shape:D}}),M=t.dataIdMap.get(A.dataId).id,z=t.dataIdMap.get(F.dataId).id,G=a?A.shape[2]:A.shape[1],U=i?F.shape[1]:F.shape[2],H=Math.max(g,x),J=t.makeOutput([H,G,U],A.dtype),Y=t.dataIdMap.get(J.dataId).id,X=new Uint8Array(new Int32Array(A.shape).buffer),re=new Uint8Array(new Int32Array(F.shape).buffer);return kM(M,X,A.shape.length,z,re,F.shape.length,a,i,Y),J.shape=w,J}var CM={kernelName:Zo,backendName:"wasm",setupFunc:nQ,kernelFunc:sQ};function hc(r){let{inputs:{x:e},attrs:{dtype:t},backend:o}=r,n=o.makeOutput(e.shape,t),s=o.typedArrayFromHeap(e);return o.typedArrayFromHeap(n).set(s),n}var IM={kernelName:$o,backendName:"wasm",kernelFunc:hc};var NM;function iQ(r){NM=r.wasm.cwrap(Ro,null,["number","number","number","number"])}function aQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i=t.dataIdMap.get(n.dataId).id,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(l.dataId).id;return NM(i,s,a,u),l}var SM={kernelName:Ro,backendName:"wasm",setupFunc:iQ,kernelFunc:aQ};function mI(r){let{inputs:e,backend:t}=r,o=y.parseAxisParam(r.attrs.axis,e[0].shape)[0],n=S.computeOutShape(e.map(f=>f.shape),o),s=e.filter(f=>y.sizeFromShape(f.shape)>0);if(s.length===1)return dc({inputs:{x:s[0]},backend:t});let a=t.makeOutput(n,e[0].dtype);if(y.sizeFromShape(n)===0)return a;let i=s.map(f=>f.shape);if(S.assertParamsConsistent(i,o),s[0].dtype==="string"){let f=s.map(_=>{let w=y.sizeFromShape(_.shape.slice(o));return Wr({inputs:{x:_},backend:t,attrs:{shape:[-1,w]}})}),d=f.map(_=>({vals:t.readSync(_.dataId),shape:_.shape}));n=S.computeOutShape(f.map(_=>_.shape),1);let h=f[0].shape[0]===1,g=Gd(d,n,e[0].dtype,h),x=S.computeOutShape(s.map(_=>_.shape),o);a.shape=x;let b=t.dataIdMap.get(a.dataId);return b.stringBytes=S.fromStringArrayToUint8(g),a}let l=y.sizeFromShape(s[0].shape.slice(0,o)),u=0,c=s.map(f=>{let d=y.sizeFromShape(f.shape.slice(o));return u+=d,d}),p=s.map(f=>t.typedArrayFromHeap(f)),m=t.typedArrayFromHeap(a);for(let f=0;f<l;f++){let d=f*u;for(let h=0;h<p.length;h++){let g=c[h],x=f*g,b=p[h].subarray(x,x+g);m.set(b,d),d+=g}}return a}var TM={kernelName:us,backendName:"wasm",kernelFunc:mI};var EM;function lQ(r){EM=r.wasm.cwrap(Jo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function uQ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:m}=t,f=S.convertConv2DDataFormat(m),d=S.computeConv2DInfo(n.shape,s.shape,l,u,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,x=d.padInfo.top,b=d.padInfo.right,_=d.padInfo.bottom,w=d.padInfo.left,C=d.dilationHeight,D=d.dilationWidth,A=d.strideHeight,F=d.strideWidth,M=d.inChannels,z=d.outChannels,G=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let U=o.makeOutput(d.outShape,"float32"),H=o.dataIdMap.get(U.dataId).id;return EM(a,n.shape[0],n.shape[1],n.shape[2],i,h,g,x,b,_,w,G,C,D,A,F,M,z,H),U}var AM={kernelName:Jo,backendName:"wasm",setupFunc:lQ,kernelFunc:uQ};var DM;function cQ(r){DM=r.wasm.cwrap(Qo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function pQ(r){let{backend:e,inputs:t,attrs:o}=r,{dy:n,filter:s}=t,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=o,p=1,m=S.convertConv2DDataFormat(l),f=S.computeConv2DInfo(c,s.shape,a,p,i,u,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:x,inHeight:b,inWidth:_,outChannels:w,outHeight:C,outWidth:D,strideHeight:A,strideWidth:F}=f,M=h-1-f.padInfo.top,z=g-1-f.padInfo.left,G=f.dataFormat==="channelsLast",U=y.computeStrides(f.inShape),H=y.computeStrides(n.shape),[J,Y,X]=y.computeStrides(s.shape),re=U[0],K=G?U[1]:U[2],ne=G?U[2]:1,ae=G?1:U[1],ie=H[0],pe=G?H[1]:H[2],le=G?H[2]:1,ge=G?1:H[1],ye=e.makeOutput(f.inShape,"float32"),be=e.dataIdMap.get(ye.dataId).id,ke=e.dataIdMap.get(n.dataId).id,Ee=e.dataIdMap.get(s.dataId).id;return DM(ke,Ee,d,h,g,b,_,x,C,D,w,A,F,M,z,J,Y,X,re,K,ne,ae,ie,pe,le,ge,be),ye}var $M={kernelName:Qo,backendName:"wasm",setupFunc:cQ,kernelFunc:pQ};var RM=Rt(en);var fI;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(fI||(fI={}));var FM;function mQ(r){FM=r.wasm.cwrap(ri,null,["number","number","number","number","array","number","number","number","number","number"])}function fQ(r){let{backend:e,inputs:t,attrs:o}=r,{method:n,extrapolationValue:s,cropSize:a}=o,{image:i,boxes:l,boxInd:u}=t,c=l.shape[0],[p,m]=a,f=[c,p,m,i.shape[3]],d=e.dataIdMap.get(i.dataId),h;i.dtype!=="float32"&&(h=hc({backend:e,inputs:{x:i},attrs:{dtype:"float32"}}),d=e.dataIdMap.get(h.dataId));let g=d.id,x=e.dataIdMap.get(l.dataId).id,b=e.dataIdMap.get(u.dataId).id,_=e.makeOutput(f,"float32"),w=e.dataIdMap.get(_.dataId).id,C=new Uint8Array(new Int32Array(i.shape).buffer);return FM(g,x,b,c,C,p,m,fI[n],s,w),h!=null&&e.disposeData(h.dataId),_}var OM={kernelName:ri,backendName:"wasm",setupFunc:mQ,kernelFunc:fQ};var PM;function dQ(r){PM=r.wasm.cwrap(tn,null,["number","number","number","number","number","number"])}function hQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length;y.assert(n.dtype==="float32"||n.dtype==="int32",()=>`cumsum does not support ${n.dtype} tensors in the WASM backend`);let u=S.getAxesPermutation([s],l),c=n;u!==null&&(c=qp({inputs:{x:n},attrs:{perm:u},backend:t}));let p=S.getInnerMostAxes(1,l)[0];S.assertAxesAreInnerMostDims("cumsum",[p],l);let m=t.makeOutput(c.shape,c.dtype),f=c.shape[p],d=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;PM(d,a?1:0,i?1:0,f,h,Vt[n.dtype]);let g=m;if(u!==null){let x=S.getUndoAxesPermutation(u);g=qp({inputs:{x:m},attrs:{perm:x},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var MM={kernelName:tn,backendName:"wasm",setupFunc:dQ,kernelFunc:hQ};var LM;function gQ(r){LM=r.wasm.cwrap(oi,null,["number","number","number","array","number","array","array","number","number"])}function xQ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{blockSize:s,dataFormat:a}=o;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=e.makeOutput(d,"float32"),x=e.dataIdMap.get(n.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(n.shape)).buffer),_=new Uint8Array(new Int32Array(d).buffer),w=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),C=e.dataIdMap.get(h.dataId).id;return LM(x,s,a==="NHWC"?1:0,b,n.shape.length-1,_,w,d.length,C),h}var zM={kernelName:oi,backendName:"wasm",setupFunc:gQ,kernelFunc:xQ};var BM;function yQ(r){BM=r.wasm.cwrap(rn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bQ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=t,m=u==null?[1,1]:u,f=S.computeConv2DInfo(n.shape,s.shape,l,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,_=f.padInfo.left,w=f.dilationHeight,C=f.dilationWidth,D=f.strideHeight,A=f.strideWidth,F=f.inChannels,M=f.outChannels,z=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let G=o.makeOutput(f.outShape,"float32"),U=o.dataIdMap.get(G.dataId).id;return BM(a,n.shape[0],n.shape[1],n.shape[2],i,d,h,g,x,b,_,z,w,C,D,A,F,M,U),G}var VM={kernelName:rn,backendName:"wasm",setupFunc:yQ,kernelFunc:bQ};var _Q=!1,WM=wt(ii,_Q,"bool");var GM=Rt(nn);function Hx(r){let{inputs:e,attrs:t,backend:o}=r,{input:n}=e,{dim:s}=t,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Wr({inputs:{x:n},backend:o,attrs:{shape:i}})}var UM={kernelName:cs,backendName:"wasm",kernelFunc:Hx};function wQ(r){let{attrs:{shape:e,value:t,dtype:o},backend:n}=r,s=n.makeOutput(e,o);return n.typedArrayFromHeap(s).fill(t),s}var jM={kernelName:ua,backendName:"wasm",kernelFunc:wQ};var qM;function vQ(r){qM=r.wasm.cwrap(li,null,["number","number","number","number","number","number"])}function kQ(r){let{inputs:e,backend:t}=r,{image:o}=e,n=t.makeOutput(o.shape,o.dtype),s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,[i,l,u,c]=o.shape;return qM(s,i,l,u,c,a),n}var HM={kernelName:li,backendName:"wasm",kernelFunc:kQ,setupFunc:vQ};var KM=Rt(sn);var CQ=!1,XM=wt(an,CQ);var YM;function IQ(r){YM=r.wasm.cwrap(ln,null,["number","number","number","number","number","number","number"])}function NQ(r){let{backend:e,inputs:t,attrs:o}=r,{varianceEpsilon:n}=o,{x:s,mean:a,variance:i,offset:l,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,p=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,f=l!=null?e.dataIdMap.get(l.dataId).id:0,d=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return YM(c,p,m,f,d,n,g),h}var ZM={kernelName:ln,backendName:"wasm",setupFunc:IQ,kernelFunc:NQ};var JM;function SQ(r){JM=r.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function TQ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=S.computeConv2DInfo(n.shape,s.shape,l,c,u,m),g=Rl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,_=h.outChannels,w=0;if(a!=null){let le=o.dataIdMap.get(a.dataId);if(le.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${le.shape.length}.`);if(le.shape[0]!==_)throw new Error(`FusedConv2D bias shape (${le.shape}) does not match the number of output channels (${_})`);w=le.id}let C=h.filterHeight,D=h.filterWidth,A=h.padInfo.top,F=h.padInfo.right,M=h.padInfo.bottom,z=h.padInfo.left,G=h.dilationHeight,U=h.dilationWidth,H=h.strideHeight,J=h.strideWidth,Y=h.inChannels,X=h.padInfo.type==="SAME"?1:0,re=h.batchSize,K=h.inHeight,ne=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ae=o.makeOutput(h.outShape,"float32"),ie=o.dataIdMap.get(ae.dataId).id,pe=i==null?0:o.dataIdMap.get(i.dataId).id;return JM(x,re,K,ne,b,C,D,w,A,F,M,z,X,G,U,H,J,Y,_,g,pe,d||0,ie),ae}var QM={kernelName:ks,backendName:"wasm",setupFunc:SQ,kernelFunc:TQ};var eL;function EQ(r){eL=r.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function AQ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=S.computeConv2DInfo(n.shape,s.shape,l,c,u,m,!0),g=Rl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,_=h.outChannels,w=0;if(a!=null){let le=o.dataIdMap.get(a.dataId);if(le.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${le.shape.length}.`);if(le.shape[0]!==_)throw new Error(`FusedDepthwiseConv2D bias shape (${le.shape}) does not match the number of output channels (${_})`);w=le.id}let C=h.filterHeight,D=h.filterWidth,A=h.padInfo.top,F=h.padInfo.right,M=h.padInfo.bottom,z=h.padInfo.left,G=h.dilationHeight,U=h.dilationWidth,H=h.strideHeight,J=h.strideWidth,Y=h.inChannels,X=h.padInfo.type==="SAME"?1:0,re=h.batchSize,K=h.inHeight,ne=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ae=o.makeOutput(h.outShape,"float32"),ie=o.dataIdMap.get(ae.dataId).id,pe=i==null?0:o.dataIdMap.get(i.dataId).id;return eL(x,re,K,ne,b,C,D,w,A,F,M,z,X,G,U,H,J,Y,_,g,pe,d||0,ie),ae}var tL={kernelName:Cs,backendName:"wasm",setupFunc:EQ,kernelFunc:AQ};var rL;function DQ(r){rL=r.wasm.cwrap(ui,null,["number","number","number","number","number","number","array","number"])}function $Q(r){let{backend:e,inputs:t}=r,{params:o,indices:n}=t,[s,a,i,l]=Yh.prepareAndValidate(o,n),u=e.makeOutput(s,o.dtype);if(a===0)return u;let c=n.shape,p=c[c.length-1],f=e.dataIdMap.get(o.dataId).id,h=e.dataIdMap.get(n.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),x=e.dataIdMap.get(u.dataId).id;return rL(f,Vt[o.dtype],h,a,p,i,g,x),u}var oL={kernelName:ui,backendName:"wasm",setupFunc:DQ,kernelFunc:$Q};var nL;function RQ(r){nL=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function FQ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n,indices:s}=t,{axis:a,batchDims:i}=o,l=y.parseAxisParam(a,n.shape)[0],u=S.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=Wr({inputs:{x:n},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:e}),p=y.sizeFromShape(s.shape),m=Wr({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:e}),f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],d=e.makeOutput(f,n.dtype);if(y.sizeFromShape(n.shape)===0)return d;let h=c.shape.length-1,x=e.dataIdMap.get(c.dataId).id,_=e.dataIdMap.get(m.dataId).id,w=e.dataIdMap.get(d.dataId).id,C=new Uint8Array(new Int32Array(y.computeStrides(c.shape)).buffer),D=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer);return nL(x,Vt[n.dtype],C,h,_,u.batchSize,D,w),d.shape=u.outputShape,d}var sL={kernelName:ps,backendName:"wasm",setupFunc:RQ,kernelFunc:FQ};var OQ=!1,iL=wt(ci,OQ,"bool");var PQ=!1,aL=wt(un,PQ,"bool");var lL;function MQ(r){lL=r.wasm.cwrap(cn,null,["number","number","number"])}function LQ(r){let{inputs:{x:e},attrs:{alpha:t},backend:o}=r,n=o.dataIdMap.get(e.dataId).id,s=o.makeOutput(e.shape,e.dtype);if(y.sizeFromShape(e.shape)!==0){let a=o.dataIdMap.get(s.dataId).id;lL(n,t,a)}return s}var uL={kernelName:cn,backendName:"wasm",setupFunc:MQ,kernelFunc:LQ};var zQ=!1,cL=wt(di,zQ,"bool");var BQ=!1,pL=wt(hi,BQ,"bool");var mL=Rt(pn);var VQ=!1,fL=wt(xi,VQ,"bool");var dL;function WQ(r){dL=r.wasm.cwrap(mn,null,["number, number, number"])}function GQ(r){let{backend:e,inputs:t,attrs:o}=r,{reductionIndices:n,keepDims:s}=o,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=os(a,n,e);if(f){let _=e.dataIdMap.get(c.dataId).id;u=c,l=_}let d=u.shape.length;S.assertAxesAreInnerMostDims("max",p,d);let[h,g]=S.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(b.dataId).id;dL(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=S.expandShapeToKeepDim(b.shape,m);b.shape=_}return b}var hL={kernelName:mn,backendName:"wasm",setupFunc:WQ,kernelFunc:GQ};var UQ=!1,gL=wt(fn,UQ);var xL;function jQ(r){xL=r.wasm.cwrap(dn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qQ(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=S.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,_=c.strideHeight,w=c.strideWidth,C=c.inChannels,D=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let A=o.makeOutput(c.outShape,"float32"),F=o.dataIdMap.get(A.dataId).id;return xL(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,x,b,_,w,C,D,F),A}var yL={kernelName:dn,backendName:"wasm",setupFunc:jQ,kernelFunc:qQ};var bL;function HQ(r){bL=r.wasm.cwrap(hn,null,["number, number, number"])}function KQ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=os(a,n,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=S.getInnerMostAxes(d.length,u.shape.length))}S.assertAxesAreInnerMostDims("mean",d,u.shape.length);let[h,g]=S.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=hc({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),l=e.dataIdMap.get(b.dataId).id);let _=e.makeOutput(h,"float32");if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(_.dataId).id;bL(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(_.shape,m);_.shape=w}return u.dtype!=="float32"&&e.disposeData(b.dataId),_}var _L={kernelName:hn,backendName:"wasm",setupFunc:HQ,kernelFunc:KQ};var wL;function XQ(r){wL=r.wasm.cwrap(gn,null,["number, number, number"])}function YQ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=os(a,n,e);if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_)}let d=u.shape.length;S.assertAxesAreInnerMostDims("min",p,d);let[h,g]=S.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(b.dataId).id;wL(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=S.expandShapeToKeepDim(b.shape,m);b.shape=_}return b}var vL={kernelName:gn,backendName:"wasm",setupFunc:XQ,kernelFunc:YQ};var ZQ=!1,kL=wt(xn,ZQ);var JQ=!0,CL=wt(yn,JQ);var IL=Rt(fs);function Hp(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),o=t[0],n=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:o,selectedSize:n,pSelectedScores:s,pValidOutputs:a}}var NL;function QQ(r){NL=r.wasm.cwrap(_i,"number",["number","number","number","number","number"])}function eee(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a}=o,{boxes:i,scores:l}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(l.dataId).id,p=NL(u,c,s,n,a),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Hp(e,p);return e.wasm._free(d),e.wasm._free(h),e.makeOutput([f],"int32",m)}var SL={kernelName:_i,backendName:"wasm",setupFunc:QQ,kernelFunc:eee};var TL;function tee(r){TL=r.wasm.cwrap(wi,"number",["number","number","number","number","number","bool"])}function ree(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=TL(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Hp(e,m);e.wasm._free(h);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([],"int32",g);return[x,b]}var EL={kernelName:wi,backendName:"wasm",setupFunc:tee,kernelFunc:ree};var AL;function oee(r){AL=r.wasm.cwrap(vi,"number",["number","number","number","number","number","number"])}function nee(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=AL(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Hp(e,m);e.wasm._free(g);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([d],"float32",h);return[x,b]}var DL={kernelName:vi,backendName:"wasm",setupFunc:oee,kernelFunc:nee};var see=!1,$L=wt(bi,see,"bool");var RL;function iee(r){RL=r.wasm.cwrap(bn,null,["number","number","number","number","number"])}function aee(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=t.makeOutput([...n.shape,s],"int32"),u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(n.dataId).id;return RL(p,s,a,i,u),l}var FL={kernelName:bn,backendName:"wasm",setupFunc:iee,kernelFunc:aee};function lee(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(1),o}var OL={kernelName:ds,backendName:"wasm",kernelFunc:lee};function uee(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Hx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(l=>{y.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=e.map(l=>Hx({inputs:{input:l},backend:t,attrs:{dim:n}}));return mI({inputs:i,backend:t,attrs:{axis:n}})}var PL={kernelName:hs,backendName:"wasm",kernelFunc:uee};var ML;function cee(r){ML=r.wasm.cwrap(_n,null,["number","array","number","number","array","array","number","number"])}function pee(r){let{inputs:{x:e},backend:t,attrs:{paddings:o,constantValue:n}}=r,s=o.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=o.map(d=>d[0]),p=o.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return ML(a,u,e.shape.length,Vt[e.dtype],m,f,n,l),i}var LL={kernelName:_n,backendName:"wasm",kernelFunc:pee,setupFunc:cee};var mee=!1,zL=wt(wn,mee);var BL;function fee(r){BL=r.wasm.cwrap(vn,null,["number","number","number"])}function dee(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,i=t.makeOutput(o.shape,"float32"),l=t.dataIdMap.get(i.dataId).id;return BL(s,a,l),i}var VL={kernelName:vn,backendName:"wasm",setupFunc:fee,kernelFunc:dee};var WL;function hee(r){WL=r.wasm.cwrap(ki,null,["number","number","number","number"])}function gee(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=os(a,n,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=S.getInnerMostAxes(d.length,u.shape.length))}S.assertAxesAreInnerMostDims("prod",d,u.shape.length);let[h,g]=S.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(b.dataId).id;WL(l,x,Vt[b.dtype],_)}if(f&&e.disposeData(c.dataId),s){let _=S.expandShapeToKeepDim(b.shape,m);b.shape=_}return b}var GL={kernelName:ki,backendName:"wasm",setupFunc:hee,kernelFunc:gee};var xee=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=qd(o,n,s,a),l=e.makeOutput([i.length],a);return e.typedArrayFromHeap(l).set(i),l},UL={kernelName:fa,backendName:"wasm",kernelFunc:xee};var yee=!0,jL=wt(on,yee);var qL=Rt(kn);var HL=Rt(In);var KL;function bee(r){KL=r.wasm.cwrap(Cn,null,["number","number","number","number","number","number","number","number","number","number"])}function _ee(r){let{backend:e,inputs:t,attrs:o}=r,{images:n}=t,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,[c,p,m,f]=n.shape,d=[c,l,u,f],h=e.dataIdMap.get(n.dataId),g;h.dtype!=="float32"&&(g=hc({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let x=h.id,b=e.makeOutput(d,"float32");if(y.sizeFromShape(n.shape)===0)return b;let _=e.dataIdMap.get(b.dataId).id;return KL(x,c,p,m,f,l,u,s?1:0,a?1:0,_),g!=null&&e.disposeData(g.dataId),b}var XL={kernelName:Cn,backendName:"wasm",setupFunc:bee,kernelFunc:_ee};var YL;function wee(r){YL=r.wasm.cwrap(Nn,null,["number","array","number","array","number","number"])}function vee(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=y.parseAxisParam(s,n.shape);if(n.shape.length===0)return dc({inputs:{x:n},backend:t});let i=t.makeOutput(n.shape,n.dtype),l=t.dataIdMap.get(n.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(n.shape).buffer);return YL(l,c,a.length,p,n.shape.length,u),Wr({inputs:{x:i},attrs:{shape:n.shape},backend:t})}var ZL={kernelName:Nn,backendName:"wasm",kernelFunc:vee,setupFunc:wee};var JL;function kee(r){JL=r.wasm.cwrap(Ri,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Cee(r){let{inputs:e,backend:t,attrs:o}=r,{image:n}=e,{radians:s,fillValue:a,center:i}=o,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(l.dataId).id,[p,m,f,d]=n.shape,[h,g]=S.getImageCenter(i,m,f),x=a===0,b=255,_=typeof a=="number"?[a,a,a,x?0:b]:[...a,b],w=new Uint8Array(new Int32Array(_).buffer);return JL(u,p,m,f,d,s,h,g,w,_.length,c),l}var QL={kernelName:Ri,backendName:"wasm",kernelFunc:Cee,setupFunc:kee};var ez=Rt(Sn);var tz=Rt(Tn);var rz;function Iee(r){rz=r.wasm.cwrap(Ii,null,["number","number","number","number","number","number","array","number","number"])}function Nee(r){let{backend:e,inputs:t,attrs:o}=r,{indices:n,updates:s}=t,{shape:a}=o,i=e.makeOutput(a,s.dtype);if(y.sizeFromShape(a)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=Zh.calculateShapes(s,n,a),d=e.dataIdMap.get(n.dataId).id,g=e.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=e.dataIdMap.get(i.dataId).id;return rz(d,g,Vt[s.dtype],l,u,c,x,m,b),i}var oz={kernelName:Ii,backendName:"wasm",setupFunc:Iee,kernelFunc:Nee};var nz;function See(r){nz=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Tee(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=t.dataIdMap.get(o.dataId).id,i=t.dataIdMap.get(n.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(n.shape,n.dtype),c=t.dataIdMap.get(u.dataId).id,p=o.shape.length,m=n.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(n.shape.slice(1));return nz(a,i,l,f,c),u}var sz={kernelName:xs,backendName:"wasm",kernelFunc:Tee,setupFunc:See};var iz;function Eee(r){iz=r.wasm.cwrap(An,null,["number","number"])}function Aee(r){let{backend:e,inputs:{x:t}}=r,o=e.dataIdMap.get(t.dataId).id,n=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(n.dataId).id;return y.sizeFromShape(n.shape)===0||iz(o,s),n}var az={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Eee,kernelFunc:Aee};var lz=Rt(En);function gc(r){let{inputs:{x:e},attrs:{begin:t,size:o},backend:n}=r,[s,a]=sr.parseSliceParams(e,t,o),i=sr.isSliceContinous(e.shape,s,a),l=n.readSync(e.dataId),u=n.makeOutput(a,e.dtype),c=y.computeStrides(e.shape),p=n.dataIdMap.get(u.dataId);if(i){let d=sr.computeFlatOffset(s,c);return e.dtype==="string"?p.stringBytes=l.slice(d,d+y.sizeFromShape(a)):n.typedArrayFromHeap(u).set(l.subarray(d,d+y.sizeFromShape(a))),u}if(e.dtype==="string"){let d=Hd(l,s,a,e.shape,e.dtype);return p.stringBytes=d,u}let m=n.typedArrayFromHeap(u),f=e.shape.length;if(f===2)Dee(l,c[0],m,s,a);else if(f===3)$ee(l,c[0],c[1],m,s,a);else if(f===4)Ree(l,c[0],c[1],c[2],m,s,a);else{let d=Hd(l,s,a,e.shape,e.dtype);m.set(d)}return u}function Dee(r,e,t,o,n){let s=0,a=o[0],i=o[1],l=a+n[0];for(let u=a;u<l;u++){let c=u*e+i;t.set(r.subarray(c,c+n[1]),s),s+=n[1]}}function $ee(r,e,t,o,n,s){let a=0,i=n[0],l=n[1],u=n[2],c=i+s[0],p=l+s[1];for(let m=i;m<c;m++)for(let f=l;f<p;f++){let d=m*e+f*t+u;o.set(r.subarray(d,d+s[2]),a),a+=s[2]}}function Ree(r,e,t,o,n,s,a){let i=0,l=s[0],u=s[1],c=s[2],p=l+a[0],m=u+a[1],f=c+a[2],d=s[3];for(let h=l;h<p;h++)for(let g=u;g<m;g++)for(let x=c;x<f;x++){let b=h*e+g*t+x*o+d;n.set(r.subarray(b,b+a[3]),i),i+=a[3]}}var uz={kernelName:ys,backendName:"wasm",kernelFunc:gc};var cz;function Fee(r){cz=r.wasm.cwrap(Rn,null,["number","number","number","number"])}function Oee(r){let{backend:e,inputs:{logits:t},attrs:{dim:o}}=r,n=e.dataIdMap.get(t.dataId).id,s=e.makeOutput(t.shape,t.dtype),a=e.dataIdMap.get(s.dataId).id,i=t.shape[o],l=y.sizeFromShape(t.shape)/i;return y.sizeFromShape(s.shape)===0||cz(n,a,i,l),s}var pz={kernelName:Rn,backendName:"wasm",setupFunc:Fee,kernelFunc:Oee};function Pee(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=t,i=y.parseAxisParam(a,n.shape)[0],l=S.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=gc({inputs:{x:n},attrs:{begin:u,size:m},backend:o});return u[i]+=p,f})}var mz={kernelName:bs,backendName:"wasm",kernelFunc:Pee};var fz=Rt(Dn);var dz=Rt(ga);var Mee=!0,hz=wt(Fn,Mee);var gz;function Lee(r){gz=r.wasm.cwrap(Fo,null,["number","number","number"])}function zee(r){let{backend:e,inputs:t,attrs:o}=r,{alpha:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),l=e.dataIdMap.get(i.dataId).id;return gz(a,n,l),i}var xz={kernelName:Fo,backendName:"wasm",setupFunc:Lee,kernelFunc:zee};var yz;function Bee(r){yz=r.wasm.cwrap(Ai,null,["number","array","number","array","array","array","array","array","number","number"])}function Vee(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{begin:s,end:a,strides:i}=o;i==null&&(i=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,f=S.slice_util.maskToAxes(c);if(f.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&m!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=n.shape.length-s.length,h=S.slice_util.maskToAxes(p),g=n.shape.slice();h.forEach(z=>{s[z]=0,a[z]=1,g.splice(z,0,1)});let x=Wr({inputs:{x:n},attrs:{shape:g},backend:e}),{begin:b,end:_,strides:w}=S.slice_util.getNormalizedAxes(x.shape,f,d,s,a,i,l,u,c);s=b,a=_,i=w;let C=S.slice_util.maskToAxes(m);C.forEach(z=>{a[z]=s[z]+1,i[z]=1});let D=S.slice_util.computeOutShape(s,a,i),A=D.filter((z,G)=>C.indexOf(G)===-1);if(i.every(z=>z===1)){let z=gc({inputs:{x:n},attrs:{begin:s,size:D},backend:e});return Wr({inputs:{x:z},attrs:{shape:A},backend:e})}let M=e.makeOutput(A,"float32");if(!A.some(z=>z===0)){let z=e.dataIdMap.get(x.dataId).id,G=new Uint8Array(new Int32Array(y.computeStrides(x.shape)).buffer),U=new Uint8Array(new Int32Array(s).buffer),H=new Uint8Array(new Int32Array(a).buffer),J=new Uint8Array(new Int32Array(i).buffer),Y=new Uint8Array(new Int32Array(A).buffer),X=new Uint8Array(new Int32Array(y.computeStrides(A)).buffer),re=e.dataIdMap.get(M.dataId).id;yz(z,G,x.shape.length,U,H,J,Y,X,A.length,re)}return Wr({inputs:{x:M},attrs:{shape:A},backend:e})}var bz={kernelName:Ai,backendName:"wasm",setupFunc:Bee,kernelFunc:Vee};var Wee=!0,_z=wt(On,Wee);var wz;function Gee(r){wz=r.wasm.cwrap($n,null,["number, number, number"])}function Uee(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=os(a,n,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=S.getInnerMostAxes(d.length,u.shape.length))}S.assertAxesAreInnerMostDims("sum",d,u.shape.length);let[h,g]=S.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(b.dataId).id;wz(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=S.expandShapeToKeepDim(b.shape,m);b.shape=_}return b}var vz={kernelName:$n,backendName:"wasm",setupFunc:Gee,kernelFunc:Uee};var kz=Rt(Pn);var Cz;function jee(r){Cz=r.wasm.cwrap(wo,null,["number","array","number","array","number","number"])}function qee(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,s=t.dataIdMap.get(n.dataId).id,{reps:a}=o,i=new Array(n.shape.length);for(let m=0;m<i.length;m++)i[m]=n.shape[m]*a[m];let l=new Uint8Array(new Int32Array(n.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=t.makeOutput(i,n.dtype),p=t.dataIdMap.get(c.dataId).id;return Cz(s,l,n.shape.length,u,i.length,Vt[c.dtype],p),c}var Iz={kernelName:wo,backendName:"wasm",setupFunc:jee,kernelFunc:qee};var Nz;function Hee(r){Nz=r.wasm.cwrap($i,null,["number","array","number","number","number","bool","number","number"])}var Kee=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{k:n,sorted:s}=t,a=e.dataIdMap.get(o.dataId).id,i=new Uint8Array(new Int32Array(o.shape).buffer),l=o.shape.slice();l[l.length-1]=n;let u=e.makeOutput(l,o.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.makeOutput(l,"int32"),m=e.dataIdMap.get(p.dataId).id;return Nz(a,i,o.shape.length,Vt[o.dtype],n,s,c,m),[u,p]},Sz={kernelName:$i,backendName:"wasm",setupFunc:Hee,kernelFunc:Kee};function Xee(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape[s],i=n.shape.length,l=new Array(i-1),u=0;for(let f=0;f<i;f++)f!==s&&(l[u++]=n.shape[f]);let c=new Array(a),p=new Array(i).fill(0),m=n.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=gc({inputs:{x:n},attrs:{begin:p,size:m},backend:t});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:l}))}var Tz={kernelName:_s,backendName:"wasm",kernelFunc:Xee};function Yee(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(0),o}var Ez={kernelName:ws,backendName:"wasm",kernelFunc:Yee};var Zee=[pM,mM,dM,bM,wM,CM,IM,SM,TM,AM,$M,RM,OM,MM,zM,VM,WM,GM,UM,jM,HM,KM,XM,cM,ZM,QM,tL,oL,sL,iL,aL,hM,uL,cL,pL,mL,fL,hL,gL,yL,_L,vL,kL,CL,IL,SL,EL,DL,$L,FL,OL,PL,LL,zL,VL,GL,UL,jL,qL,HL,vM,XL,ZL,QL,tz,ez,oz,sz,az,lz,uz,pz,mz,fz,dz,hz,xz,bz,_z,vz,kz,Iz,Sz,xM,Tz,Ez];for(let r of Zee)tl(r);var dI=W();dI.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));dI.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(dI.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var bI=Tc($z());var Rz='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';var Oz=Tc(Fz());var Yx=class extends Us{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Ja(this,Ns())}write(e,t,o){let n={};return this.move(n,e,t,o),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}move(e,t,o,n){let s=this.dataIdNextNumber++;if(n==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:o,dtype:n,memoryOffset:null});return}let a=y.sizeFromShape(o),i=a*y.bytesPerElement(n),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:o,dtype:n}),this.wasm.tfjs.registerTensor(s,a,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:o,shape:n,stringBytes:s}=this.dataIdMap.get(e);if(o==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+y.sizeFromShape(n)*y.bytesPerElement(o));return Jee(a.buffer,o)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,o){let n;if(o==null)n=this.write(null,e,t);else{n={};let s=this.dataIdNextNumber++;this.dataIdMap.set(n,{id:s,memoryOffset:o,shape:e,dtype:t});let a=y.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,o)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:o}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(o),a=y.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,s,a);case"int32":return new Int32Array(n,s,a);case"bool":return new Uint8Array(n,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Qee(r){return(e,t)=>(y.fetch(r,{credentials:"same-origin"}).then(o=>{o.ok||e.env.a(`failed to load wasm binary file at '${r}'`),o.arrayBuffer().then(n=>{WebAssembly.instantiate(n,e).then(s=>{t(s.instance)})})}),{})}function Pz(r,e,t){if(Zx!=null)return Zx;let o="tfjs-backend-wasm.wasm";return r&&e?o="tfjs-backend-wasm-threaded-simd.wasm":r&&(o="tfjs-backend-wasm-simd.wasm"),fh!=null&&fh[o]!=null?fh[o]:t+o}async function Mz(){let[r,e]=await Promise.all([W().getAsync("WASM_HAS_SIMD_SUPPORT"),W().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,o)=>{let n={};n.locateFile=(l,u)=>{if(l.endsWith(".worker.js")){let c=Rz,p=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(p)}return l.endsWith(".wasm")?Pz(r,e,dh!=null?dh:u):u+l},_I&&(n.instantiateWasm=Qee(Pz(r,e,dh!=null?dh:"")));let s;e&&r&&Zx==null?(s=bI.default(n),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+bI.default.toString()],{type:"text/javascript"})):s=Oz.default(n);let a=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",a,["number"]),dispose:s.cwrap("dispose",a,[])};let i=!1;s.onRuntimeInitialized=()=>{i=!0,hh=!1,t({wasm:s})},s.onAbort=()=>{if(i||hh)return;hh=!0,o({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})}})}function Jee(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var ete=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Zx=null,dh=null,fh={},hh=!1,_I=!1;function tte(r,e=!1){if(Ot("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),hh)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Zx=r,_I=e}function rte(r,e=!1){if(hh)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")dh=r;else{fh=r;let t=ete.filter(o=>fh[o]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}_I=e}var ote="2.8.5";var nte=2;_u("wasm",async()=>{let{wasm:r}=await Mz();return new Yx(r)},nte);export{ls as Abs,Hs as Acos,Ks as Acosh,tp as AdadeltaOptimizer,rp as AdagradOptimizer,op as AdamOptimizer,np as AdamaxOptimizer,_o as Add,Ko as AddN,Gl as All,Ul as Any,Xo as ArgMax,oa as ArgMin,Xs as Asin,Ys as Asinh,Zs as Atan,Qs as Atan2,Js as Atanh,Yo as AvgPool,na as AvgPool3D,ql as AvgPool3DGrad,jl as AvgPoolGrad,Yx as BackendWasm,Zo as BatchMatMul,sa as BatchToSpaceND,Hl as Bincount,bb as BroadcastTo,Kg as Callback,Ag as CallbackList,$o as Cast,ei as Ceil,Ro as ClipByValue,Kl as Complex,ia as ComplexAbs,us as Concat,Jo as Conv2D,Xl as Conv2DBackpropFilter,Qo as Conv2DBackpropInput,aa as Conv3D,Yl as Conv3DBackpropFilterV2,Zl as Conv3DBackpropInputV2,en as Cos,ti as Cosh,ri as CropAndResize,tn as Cumsum,$g as CustomCallback,Ja as DataStorage,Jl as DenseBincount,oi as DepthToSpace,rn as DepthwiseConv2dNative,Ql as DepthwiseConv2dNativeBackpropFilter,eu as DepthwiseConv2dNativeBackpropInput,tu as Diag,la as Dilation2D,Fc as Dilation2DBackpropFilter,Rc as Dilation2DBackpropInput,hb as ENV,Yg as EarlyStopping,ni as Elu,ru as EluGrad,Lh as Environment,ii as Equal,si as Erf,nn as Exp,cs as ExpandDims,ai as Expm1,ou as FFT,ua as Fill,li as FlipLeftRight,sn as Floor,an as FloorDiv,Oc as FromPixels,ln as FusedBatchNorm,ks as FusedConv2D,Cs as FusedDepthwiseConv2D,ui as GatherNd,ps as GatherV2,px as GraphModel,ci as Greater,un as GreaterEqual,Dg as History,nu as IFFT,ms as Identity,su as Imag,Et as InputSpec,pi as IsFinite,mi as IsInf,fi as IsNan,Us as KernelBackend,ca as LRN,au as LRNGrad,wf as LayerVariable,No as LayersModel,cn as LeakyRelu,di as Less,hi as LessEqual,iu as LinSpace,pn as Log,gi as Log1p,_b as LogSoftmax,xi as LogicalAnd,Qa as LogicalNot,el as LogicalOr,mn as Max,dn as MaxPool,pa as MaxPool3D,uu as MaxPool3DGrad,lu as MaxPoolGrad,cu as MaxPoolWithArgmax,fn as Maximum,hn as Mean,gn as Min,xn as Minimum,ma as MirrorPad,yi as Mod,sp as MomentumOptimizer,pu as Multinomial,yn as Multiply,fs as Neg,_i as NonMaxSuppressionV3,wi as NonMaxSuppressionV4,vi as NonMaxSuppressionV5,bi as NotEqual,YI as OP_SCOPE_SUFFIX,bn as OneHot,ds as OnesLike,Mr as Optimizer,hs as Pack,_n as PadV2,k3 as Pool,wn as Pow,vn as Prelu,ki as Prod,ip as RMSPropOptimizer,co as RNN,fa as Range,Ib as Rank,mu as Real,on as RealDiv,Ci as Reciprocal,Ut as Reduction,kn as Relu,In as Relu6,gs as Reshape,Cn as ResizeBilinear,du as ResizeBilinearGrad,da as ResizeNearestNeighbor,fu as ResizeNearestNeighborGrad,Nn as Reverse,Ri as RotateWithOffset,Sn as Round,Tn as Rsqrt,cl as SGDOptimizer,Ii as ScatterNd,xs as Select,Ni as Selu,qi as Sequential,An as Sigmoid,Ti as Sign,En as Sin,Si as Sinh,ys as Slice,Rn as Softmax,Ei as Softplus,ha as SpaceToBatchND,hu as SparseToDense,bs as SplitV,Dn as Sqrt,ga as Square,Fn as SquaredDifference,Fo as Step,Ai as StridedSlice,On as Sub,$n as Sum,Vr as SymbolicTensor,Di as Tan,Pn as Tanh,R as Tensor,pt as TensorBuffer,wo as Tile,$i as TopK,Mn as Transpose,gu as Unique,_s as Unpack,xa as UnsortedSegmentSum,ol as Variable,ws as ZerosLike,vs as _FusedMatMul,Tt as abs,km as acos,Cm as acosh,Q as add,e_ as addN,G_ as addStrict,vu as all,il as any,al as argMax,Im as argMin,Nm as asin,Sm as asinh,Tm as atan,Em as atan2,Am as atanh,ka as avgPool,Dm as avgPool3d,Qb as backend,S as backend_util,wW as basicLSTMCell,zn as batchNorm,n_ as batchNorm2d,s_ as batchNorm3d,i_ as batchNorm4d,Ca as batchToSpaceND,a_ as bincount,EU as booleanMaskAsync,ll as broadcastTo,Xh as browser,Ie as buffer,G1 as callbacks,oe as cast,$m as ceil,ir as clipByValue,Oo as clone,vo as complex,Qe as concat,l_ as concat1d,u_ as concat2d,c_ as concat3d,p_ as concat4d,yw as constraints,Iu as conv1d,Kr as conv2d,Nu as conv2dTranspose,Rm as conv3d,WW as conv3dTranspose,N3 as copyRegisteredKernels,Ia as cos,Su as cosh,of as cosineWindow,Tu as cumsum,Yr as customGrad,qv as data,m_ as denseBincount,Ot as deprecationWarn,Fm as depthToSpace,Mo as depthwiseConv2d,q1 as deregisterOp,Bc as device_util,YW as diag,Om as dilation2d,FV as disableDeprecationWarnings,Ae as dispose,OV as disposeVariables,fe as div,Pm as divNoNan,U_ as divStrict,f_ as dot,ew as dropout,Ss as elu,RV as enableDebugMode,$V as enableProdMode,tw as enclosingPowerOfTwo,Ns as engine,W as env,Xr as equal,M_ as equalStrict,Mm as erf,Jt as exp,br as expandDims,Lm as expm1,Kc as eye,Fa as fft,Na as fill,VV as findBackend,WV as findBackendFactory,Ts as floor,wu as floorDiv,Wn as fused,Bn as gather,Q_ as gatherND,Yh as gather_util,zV as getBackend,zh as getGradient,gm as getKernel,xm as getKernelsForBackend,IG as grad,NG as grads,Xt as greater,Or as greaterEqual,L_ as greaterEqualStrict,z_ as greaterStrict,zi as ifft,Eu as imag,$s as image,QU as inTopKAsync,kw as initializers,qg as input,Ir as io,Vu as irfft,d_ as isFinite,h_ as isInf,g_ as isNaN,At as keep,Ar as kernel_impls,sv as layers,Sa as leakyRelu,Ta as less,no as lessEqual,B_ as lessEqualStrict,V_ as lessStrict,iw as linalg,x_ as linspace,_E as loadGraphModel,A1 as loadLayersModel,zm as localResponseNormalization,ar as log,Au as log1p,y_ as logSigmoid,Du as logSoftmax,Vm as logSumExp,dr as logicalAnd,Ea as logicalNot,$u as logicalOr,v_ as logicalXor,jj as losses,Ue as matMul,SN as math,lr as max,Aa as maxPool,Wm as maxPool3d,k_ as maxPoolWithArgmax,Nr as maximum,j_ as maximumStrict,xt as mean,jc as memory,uv as metrics,Li as min,zo as minimum,q_ as minimumStrict,Gm as mirrorPad,Ru as mod,H_ as modStrict,T1 as model,cv as models,Xc as moments,HU as movingAverage,O as mul,K_ as mulStrict,t4 as multiRNNCell,C_ as multinomial,qe as neg,nf as nextFrame,Gu as norm,ko as notEqual,W_ as notEqualStrict,Is as oneHot,Sr as ones,rr as onesLike,N as op,i4 as outerProduct,Pr as pad,u4 as pad1d,p4 as pad2d,f4 as pad3d,h4 as pad4d,I_ as pool,_r as pow,X_ as powStrict,$a as prelu,Wb as print,Fu as prod,PV as profile,C4 as rand,$4 as randomGamma,ag as randomNormal,As as randomUniform,Zc as range,LV as ready,ul as real,jm as reciprocal,_u as registerBackend,D1 as registerCallbackConstructor,vb as registerGradient,tl as registerKernel,j1 as registerOp,pv as regularizers,Tr as relu,Pu as relu6,BV as removeBackend,L as reshape,Yt as reverse,V4 as reverse1d,G4 as reverse2d,j4 as reverse3d,H4 as reverse4d,Oa as rfft,qm as round,Mu as rsqrt,ue as scalar,J_ as scatterND,Zh as scatter_util,Lu as selu,Hm as separableConv2d,E1 as sequential,ee as serialization,GN as setBackend,GV as setPlatform,tte as setWasmPath,rte as setWasmPaths,F_ as setdiff1dAsync,Hr as sigmoid,Km as sign,Uj as signal,zu as sin,Bu as sinh,Oe as slice,Xm as slice1d,lg as slice2d,Ym as slice3d,Jc as slice4d,sr as slice_util,Ra as softmax,Es as softplus,Da as spaceToBatchND,rf as sparseToDense,Gj as spectral,ur as split,yt as sqrt,Me as square,Pa as squaredDifference,Y_ as squaredDifferenceStrict,Co as squeeze,Wt as stack,Ds as step,Zm as stridedSlice,ce as sub,Z_ as subStrict,_e as sum,xu as sumOutType,Jm as tan,Mi as tanh,Fr as tensor,Gt as tensor1d,Bi as tensor2d,qb as tensor3d,bU as tensor4d,_U as tensor5d,wU as tensor6d,Ln as tensor_util,BN as test_util,V as tidy,Lo as tile,MV as time,Qm as topk,pl as train,je as transpose,Wu as truncatedNormal,Qc as unique,I3 as unregisterGradient,C3 as unregisterKernel,ef as unsortedSegmentSum,cr as unstack,fr as upcastType,y as util,SG as valueAndGrad,TG as valueAndGrads,O_ as variable,ng as variableGrads,jJ as version,mx as version_converter,Jb as version_core,xl as version_layers,ote as version_wasm,Dt as where,tf as whereAsync,mt as zeros,Ne as zerosLike};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=tfjs.esm.js.map