face-api/dist/face-api.js

4690 lines
1.2 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
"use strict";var faceapi=(()=>{var Nb=Object.defineProperty;var wF=Object.getOwnPropertyDescriptor;var kF=Object.getOwnPropertyNames;var IF=Object.prototype.hasOwnProperty;var SF=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var Ih=(e,t)=>{for(var n in t)Nb(e,n,{get:t[n],enumerable:!0})},NF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of kF(t))!IF.call(e,r)&&r!==n&&Nb(e,r,{get:()=>t[r],enumerable:!(a=wF(t,r))||a.enumerable});return e};var TF=e=>NF(Nb({},"__esModule",{value:!0}),e);var wce={};Ih(wce,{AgeGenderNet:()=>$d,BoundingBox:()=>Fo,Box:()=>lt,ComposableTask:()=>wa,ComputeAllFaceDescriptorsTask:()=>Gr,ComputeFaceDescriptorsTaskBase:()=>Md,ComputeSingleFaceDescriptorTask:()=>Hr,DetectAllFaceLandmarksTask:()=>Od,DetectAllFacesTask:()=>Cp,DetectFaceLandmarksTaskBase:()=>Pd,DetectFacesTaskBase:()=>zd,DetectSingleFaceLandmarksTask:()=>Ld,DetectSingleFaceTask:()=>Bd,Dimensions:()=>yn,FACE_EXPRESSION_LABELS:()=>V1,FaceDetection:()=>xt,FaceDetectionNet:()=>X1,FaceExpressionNet:()=>Ad,FaceExpressions:()=>Wr,FaceLandmark68Net:()=>Wo,FaceLandmark68TinyNet:()=>Fd,FaceLandmarkNet:()=>j1,FaceLandmarks:()=>ra,FaceLandmarks5:()=>_1,FaceLandmarks68:()=>Ro,FaceMatch:()=>hp,FaceMatcher:()=>Wd,FaceRecognitionNet:()=>Vo,Gender:()=>Rg,LabeledBox:()=>mp,LabeledFaceDescriptors:()=>xr,NetInput:()=>wr,NeuralNetwork:()=>on,ObjectDetection:()=>Lr,Point:()=>Pe,PredictedBox:()=>E1,Rect:()=>Do,SsdMobilenetv1:()=>Fs,SsdMobilenetv1Options:()=>va,TinyFaceDetector:()=>qo,TinyFaceDetectorOptions:()=>Rd,TinyYolov2:()=>Ho,TinyYolov2Options:()=>ar,allFaces:()=>bce,allFacesSsdMobilenetv1:()=>T$,allFacesTinyYolov2:()=>yce,awaitMediaLoaded:()=>P1,bufferToImage:()=>O1,computeFaceDescriptor:()=>ace,createCanvas:()=>Lo,createCanvasFromMedia:()=>Td,createFaceDetectionNet:()=>Ype,createFaceRecognitionNet:()=>zpe,createSsdMobilenetv1:()=>c$,createTinyFaceDetector:()=>xce,createTinyYolov2:()=>Qpe,detectAllFaces:()=>Ug,detectFaceLandmarks:()=>S$,detectFaceLandmarksTiny:()=>nce,detectLandmarks:()=>fce,detectSingleFace:()=>gce,draw:()=>G1,env:()=>et,euclideanDistance:()=>Z1,extendWithAge:()=>Lg,extendWithFaceDescriptor:()=>Og,extendWithFaceDetection:()=>Mo,extendWithFaceExpressions:()=>Ag,extendWithFaceLandmarks:()=>Ip,extendWithGender:()=>zg,extractFaceTensors:()=>yp,extractFaces:()=>gp,fetchImage:()=>Npe,fetchJson:()=>B1,fetchNetWeights:()=>Tpe,fetchOrThrow:()=>Br,fetchVideo:()=>Cpe,getContext2dOrThrow:()=>Kn,getMediaDimensions:()=>Oo,imageTensorToCanvas:()=>L1,imageToSquare:()=>z1,inverseSigmoid:()=>bpe,iou:()=>S1,isMediaElement:()=>kg,isMediaLoaded:()=>Nd,isWithAge:()=>Bpe,isWithFaceDetection:()=>vr,isWithFaceExpressions:()=>U1,isWithFaceLandmarks:()=>Bo,isWithGender:()=>Wpe,loadAgeGenderModel:()=>dce,loadFaceDetectionModel:()=>hce,loadFaceExpressionModel:()=>cce,loadFaceLandmarkModel:()=>lce,loadFaceLandmarkTinyModel:()=>uce,loadFaceRecognitionModel:()=>pce,loadSsdMobilenetv1Model:()=>N$,loadTinyFaceDetectorModel:()=>ice,loadTinyYolov2Model:()=>oce,loadWeightMap:()=>W1,locateFaces:()=>mce,matchDimensions:()=>_pe,minBbox:()=>N1,nets:()=>tt,nonMaxSuppression:()=>T1,normalize:()=>tr,padToSquare:()=>C1,predictAgeAndGender:()=>sce,recognizeFaceExpressions:()=>rce,resizeResults:()=>C$,resolveInput:()=>Po,shuffleArray:()=>ype,sigmoid:()=>kd,ssdMobilenetv1:()=>I$,tf:()=>Le,tinyFaceDetector:()=>ece,tinyYolov2:()=>tce,toNetInput:()=>vt,utils:()=>I1,validateConfig:()=>Y1,version:()=>vce});var Le={};Ih(Le,{Abs:()=>Wl,Acos:()=>Vl,Acosh:()=>Ul,AdadeltaOptimizer:()=>Of,AdagradOptimizer:()=>Lf,AdamOptimizer:()=>zf,AdamaxOptimizer:()=>Bf,Add:()=>ys,AddN:()=>wi,All:()=>Gl,Any:()=>Hl,ArgMax:()=>ki,ArgMin:()=>kc,Asin:()=>jl,Asinh:()=>ql,Atan:()=>Kl,Atan2:()=>Yl,Atanh:()=>Xl,AvgPool:()=>Ii,AvgPool3D:()=>Ic,AvgPool3DGrad:()=>Em,AvgPoolGrad:()=>_m,BackendWasm:()=>BA,BatchMatMul:()=>Si,BatchToSpaceND:()=>Jl,Bincount:()=>Am,BroadcastArgs:()=>$m,BroadcastTo:()=>iS,Callback:()=>vT,CallbackList:()=>S2,Cast:()=>Ni,Ceil:()=>Ti,ClipByValue:()=>bs,Complex:()=>Fm,ComplexAbs:()=>Sc,Concat:()=>Zl,Conv2D:()=>Ci,Conv2DBackpropFilter:()=>Dm,Conv2DBackpropInput:()=>_i,Conv3D:()=>Nc,Conv3DBackpropFilterV2:()=>Rm,Conv3DBackpropInputV2:()=>Mm,Cos:()=>Ei,Cosh:()=>Ai,CropAndResize:()=>eu,Cumprod:()=>Ql,Cumsum:()=>$i,CustomCallback:()=>T2,DataStorage:()=>Nm,DenseBincount:()=>Pm,DepthToSpace:()=>tu,DepthwiseConv2dNative:()=>Fi,DepthwiseConv2dNativeBackpropFilter:()=>Om,DepthwiseConv2dNativeBackpropInput:()=>Lm,Diag:()=>zm,Dilation2D:()=>Tc,Dilation2DBackpropFilter:()=>Yh,Dilation2DBackpropInput:()=>Xh,ENV:()=>Gx,EarlyStopping:()=>wT,Einsum:()=>Bm,Elu:()=>Ri,EluGrad:()=>Wm,Environment:()=>rS,Equal:()=>au,Erf:()=>nu,Exp:()=>Mi,ExpandDims:()=>ru,Expm1:()=>su,FFT:()=>Vm,Fill:()=>Cc,FlipLeftRight:()=>iu,Floor:()=>Pi,FloorDiv:()=>Oi,FromPixels:()=>Jh,FusedBatchNorm:()=>Li,FusedConv2D:()=>ii,FusedDepthwiseConv2D:()=>oi,GPGPUContext:()=>Gh,GatherNd:()=>lu,GatherV2:()=>ou,GraphModel:()=>B0,Greater:()=>uu,GreaterEqual:()=>zi,History:()=>N2,IFFT:()=>Um,Identity:()=>Bi,Imag:()=>Gm,InputSpec:()=>zt,IsFinite:()=>pu,IsInf:()=>cu,IsNan:()=>du,KernelBackend:()=>wc,LRN:()=>_c,LRNGrad:()=>jm,LayerVariable:()=>y2,LayersModel:()=>Ar,LeakyRelu:()=>Wi,Less:()=>hu,LessEqual:()=>mu,LinSpace:()=>Hm,Log:()=>Vi,Log1p:()=>fu,LogSoftmax:()=>lS,LogicalAnd:()=>gu,LogicalNot:()=>yu,LogicalOr:()=>bu,LogicalXor:()=>oS,LowerBound:()=>gD,MathBackendWebGL:()=>cg,Max:()=>Ui,MaxPool:()=>Hi,MaxPool3D:()=>Ec,MaxPool3DGrad:()=>Km,MaxPoolGrad:()=>qm,MaxPoolWithArgmax:()=>Xm,Maximum:()=>Gi,Mean:()=>ji,Min:()=>qi,Minimum:()=>Ki,MirrorPad:()=>Xi,Mod:()=>xu,MomentumOptimizer:()=>Wf,Multinomial:()=>Ym,Multiply:()=>Yi,Neg:()=>vu,NonMaxSuppressionV3:()=>ku,NonMaxSuppressionV4:()=>Iu,NonMaxSuppressionV5:()=>Su,NotEqual:()=>wu,OP_SCOPE_SUFFIX:()=>Kx,OneHot:()=>Ji,OnesLike:()=>Nu,Optimizer:()=>Rr,OptimizerConstructors:()=>Jr,Pack:()=>Tu,PadV2:()=>Zi,Pool:()=>yD,Pow:()=>Qi,Prelu:()=>eo,Prod:()=>to,RMSPropOptimizer:()=>Vf,RNN:()=>yr,Range:()=>Ac,Rank:()=>Ub,Real:()=>Jm,RealDiv:()=>Di,Reciprocal:()=>Cu,Reduction:()=>In,Relu:()=>no,Relu6:()=>so,Reshape:()=>_u,ResizeBilinear:()=>ro,ResizeBilinearGrad:()=>Qm,ResizeNearestNeighbor:()=>ao,ResizeNearestNeighborGrad:()=>Zm,Reverse:()=>io,RotateWithOffset:()=>Gu,Round:()=>oo,Rsqrt:()=>lo,SGDOptimizer:()=>rd,ScatterNd:()=>Eu,SearchSorted:()=>ef,Select:()=>Au,Selu:()=>$u,Sequential:()=>Dl,Sigmoid:()=>po,Sign:()=>Ru,Sin:()=>uo,Sinh:()=>Du,Slice:()=>Fu,Softmax:()=>mo,Softplus:()=>Mu,SpaceToBatchND:()=>Pu,SparseFillEmptyRows:()=>$c,SparseReshape:()=>Lu,SparseSegmentMean:()=>Fc,SparseSegmentSum:()=>Dc,SparseToDense:()=>tf,SplitV:()=>Ou,Sqrt:()=>co,Square:()=>Rc,SquaredDifference:()=>fo,Step:()=>vs,StridedSlice:()=>zu,StringNGrams:()=>Mc,StringSplit:()=>Pc,StringToHashBucketFast:()=>Oc,Sub:()=>go,Sum:()=>ho,SymbolicTensor:()=>Ha,Tan:()=>yo,Tanh:()=>bo,Tensor:()=>Ae,TensorBuffer:()=>jt,Tile:()=>xs,TopK:()=>Bu,Transform:()=>Wu,Transpose:()=>Er,Unique:()=>nf,Unpack:()=>Vu,UnsortedSegmentSum:()=>Lc,UpperBound:()=>bD,Variable:()=>os,ZerosLike:()=>Uu,_FusedMatMul:()=>si,abs:()=>Lt,acos:()=>lv,acosh:()=>uv,add:()=>Z,addN:()=>JS,all:()=>lf,any:()=>pc,argMax:()=>pi,argMin:()=>pv,asin:()=>cv,asinh:()=>dv,atan:()=>hv,atan2:()=>mv,atanh:()=>fv,avgPool:()=>ga,avgPool3d:()=>yv,backend:()=>DS,backend_util:()=>C,basicLSTMCell:()=>tN,batchNorm:()=>Is,batchNorm2d:()=>bv,batchNorm3d:()=>xv,batchNorm4d:()=>vv,batchToSpaceND:()=>qc,bincount:()=>wv,booleanMaskAsync:()=>MN,broadcastArgs:()=>nN,broadcastTo:()=>vl,broadcast_util:()=>Hu,browser:()=>xo,buffer:()=>ze,callbacks:()=>_H,cast:()=>le,ceil:()=>kv,clipByValue:()=>tn,clone:()=>ur,complex:()=>$r,concat:()=>Qe,concat1d:()=>Iv,concat2d:()=>Sv,concat3d:()=>Nv,concat4d:()=>Tv,constraints:()=>v2,conv1d:()=>uf,conv2d:()=>Dt,conv2dTranspose:()=>pf,conv3d:()=>_v,conv3dTranspose:()=>Ev,copyRegisteredKernels:()=>kD,cos:()=>Kc,cosh:()=>cf,cosineWindow:()=>Ff,cumprod:()=>cc,cumsum:()=>df,customGrad:()=>dr,data:()=>HT,denseBincount:()=>rN,deprecationWarn:()=>tv,depthToSpace:()=>Av,depthwiseConv2d:()=>Ss,deregisterOp:()=>$H,device_util:()=>Vc,diag:()=>sN,dilation2d:()=>$v,disableDeprecationWarnings:()=>YR,dispose:()=>Me,disposeVariables:()=>JR,div:()=>fe,divNoNan:()=>Fv,dot:()=>Dv,dropout:()=>iw,einsum:()=>iN,elu:()=>ju,enableDebugMode:()=>XR,enableProdMode:()=>KR,enclosingPowerOfTwo:()=>ow,engine:()=>sr,env:()=>X,equal:()=>ea,erf:()=>Rv,euclideanNorm:()=>Ov,exp:()=>gn,expandDims:()=>mn,expm1:()=>Lv,eye:()=>hf,fft:()=>nd,fill:()=>An,findBackend:()=>rM,findBackendFactory:()=>sM,floor:()=>Ku,floorDiv:()=>of,forceHalfFloat:()=>iE,fused:()=>Al,gather:()=>Xu,gatherND:()=>zN,gather_util:()=>nv,getBackend:()=>nM,getGradient:()=>Wb,getKernel:()=>Zh,getKernelsForBackend:()=>Qh,getThreadsCount:()=>rpe,gpgpu_util:()=>L_,grad:()=>CO,grads:()=>_O,greater:()=>Hn,greaterEqual:()=>Ns,ifft:()=>El,imag:()=>Gc,image:()=>Cr,inTopKAsync:()=>BN,initializers:()=>w2,input:()=>B2,io:()=>Tn,irfft:()=>_f,isFinite:()=>zv,isInf:()=>Bv,isNaN:()=>Wv,keep:()=>Qt,kernel_impls:()=>gr,layers:()=>k2,leakyRelu:()=>Xc,less:()=>mf,lessEqual:()=>Ts,linalg:()=>pw,linspace:()=>cN,loadGraphModel:()=>R6,loadGraphModelSync:()=>M6,loadLayersModel:()=>LU,localResponseNormalization:()=>Vv,log:()=>ta,log1p:()=>Yc,logSigmoid:()=>Uv,logSoftmax:()=>gf,logSumExp:()=>yf,logicalAnd:()=>Ea,logicalNot:()=>Jc,logicalOr:()=>bf,logicalXor:()=>Gv,losses:()=>ZN,lowerBound:()=>hN,matMul:()=>Re,math:()=>FS,max:()=>Ta,maxPool:()=>Mt,maxPool3d:()=>Hv,maxPoolWithArgmax:()=>mN,maximum:()=>fr,mean:()=>_t,memory:()=>nm,meshgrid:()=>fN,metrics:()=>yT,min:()=>dc,minimum:()=>Yu,mirrorPad:()=>jv,mod:()=>qv,model:()=>PU,models:()=>bT,moments:()=>Zc,movingAverage:()=>PN,mul:()=>B,multiRNNCell:()=>gN,multinomial:()=>yN,neg:()=>kt,nextFrame:()=>cw,norm:()=>qu,notEqual:()=>hi,oneHot:()=>Nl,ones:()=>Qn,onesLike:()=>na,op:()=>z,outerProduct:()=>bN,pad:()=>ya,pad1d:()=>xN,pad2d:()=>vN,pad3d:()=>wN,pad4d:()=>kN,pool:()=>Kv,pow:()=>Fr,prelu:()=>ed,print:()=>Zx,prod:()=>Xv,profile:()=>ZR,rand:()=>IN,randomGamma:()=>SN,randomNormal:()=>vf,randomStandardNormal:()=>NN,randomUniform:()=>Ju,range:()=>Cl,ready:()=>tM,real:()=>Tl,reciprocal:()=>Zv,registerBackend:()=>sf,registerCallbackConstructor:()=>zU,registerGradient:()=>uS,registerKernel:()=>zc,registerOp:()=>AH,regularizers:()=>xT,relu:()=>Xe,relu6:()=>wf,removeBackend:()=>aM,reshape:()=>W,reverse:()=>fa,reverse1d:()=>TN,reverse2d:()=>CN,reverse3d:()=>_N,reverse4d:()=>EN,rfft:()=>ad,round:()=>kf,rsqrt:()=>If,scalar:()=>ke,scatterND:()=>ON,scatter_util:()=>av,searchSorted:()=>xf,selu:()=>Sf,separableConv2d:()=>Cs,sequential:()=>OU,serialization:()=>se,setBackend:()=>eM,setPlatform:()=>iM,setThreadsCount:()=>ape,setWasmPath:()=>tpe,setWasmPaths:()=>npe,setWebGLContext:()=>l_,setdiff1dAsync:()=>AN,sigmoid:()=>ha,sign:()=>Qv,signal:()=>JN,sin:()=>Nf,sinh:()=>Tf,slice:()=>He,slice1d:()=>td,slice2d:()=>Cf,slice3d:()=>wo,slice4d:()=>_l,slice_util:()=>qt,softmax:()=>Za,softplus:()=>vo,spaceToBatchND:()=>Qc,sparse:()=>QN,sparseToDense:()=>LN,spectral:()=>YN,split:()=>Wn,sqrt:()=>un,square:()=>ut,squaredDifference:()=>Ef,squeeze:()=>_s,stack:()=>Rt,step:()=>ko,stridedSlice:()=>ew,string:()=>e2,sub:()=>ce,sum:()=>be,sumOutType:()=>rf,tan:()=>tw,tanh:()=>ci,tensor:()=>Bn,tensor1d:()=>Ke,tensor2d:()=>Ca,tensor3d:()=>Hc,tensor4d:()=>$a,tensor5d:()=>$N,tensor6d:()=>FN,tensor_util:()=>ja,test_util:()=>KS,tidy:()=>O,tile:()=>zn,time:()=>QR,topk:()=>nw,train:()=>qs,transpose:()=>$e,truncatedNormal:()=>Af,unique:()=>aw,unregisterGradient:()=>wD,unregisterKernel:()=>vD,unsortedSegmentSum:()=>$f,unstack:()=>mt,upcastType:()=>ma,upperBound:()=>DN,util:()=>w,valueAndGrad:()=>EO,valueAndGrads:()=>AO,variable:()=>rw,variableGrads:()=>dN,version:()=>fpe,version_converter:()=>O6,version_core:()=>PM,version_layers:()=>Dw,version_wasm:()=>spe,version_webgl:()=>ZJ,webgl:()=>QJ,webgl_util:()=>o_,where:()=>fn,whereAsync:()=>sw,zeros:()=>It,zerosLike:()=>qe});var CF=Object.create,zx=Object.defineProperty,_F=Object.getOwnPropertyDescriptor,EF=Object.getOwnPropertyNames,AF=Object.getPrototypeOf,$F=Object.prototype.hasOwnProperty,Wt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)zx(e,n,{get:t[n],enumerable:!0})},FF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of EF(t))!$F.call(e,r)&&r!==n&&zx(e,r,{get:()=>t[r],enumerable:!(a=_F(t,r))||a.enumerable});return e},fs=(e,t,n)=>(n=e!=null?CF(AF(e)):{},FF(t||!e||!e.__esModule?zx(n,"default",{value:e,enumerable:!0}):n,e)),DF=Wt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,U){this.low=S|0,this.high=M|0,this.unsigned=!!U}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var U,j,q;return M?(S>>>=0,(q=0<=S&&S<256)&&(j=i[S],j)?j:(U=u(S,(S|0)<0?-1:0,!0),q&&(i[S]=U),U)):(S|=0,(q=-128<=S&&S<128)&&(j=s[S],j)?j:(U=u(S,S<0?-1:0,!1),q&&(s[S]=U),U))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?v:x;if(M){if(S<0)return v;if(S>=g)return F}else{if(S<=-y)return P;if(S+1>=y)return A}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,U){return new a(S,M,U)}a.fromBits=u;var p=Math.pow;function d(S,M,U){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(U=M,M=!1):M=!!M,U=U||10,U<2||36<U)throw RangeError("radix");var j;if((j=S.indexOf("-"))>0)throw Error("interior hyphen");if(j===0)return d(S.substring(1),M,U).neg();for(var q=l(p(U,8)),K=x,Y=0;Y<S.length;Y+=8){var te=Math.min(8,S.length-Y),re=parseInt(S.substring(Y,Y+te),U);if(te<8){var Q=l(p(U,te));K=K.mul(Q).add(l(re))}else K=K.mul(q),K=K.add(l(re))}return K.unsigned=M,K}a.fromString=d;function c(S,M){return typeof S=="number"?l(S,M):typeof S=="string"?d(S,M):u(S.low,S.high,typeof M=="boolean"?M:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,y=g/2,b=o(m),x=o(0);a.ZERO=x;var v=o(0,!0);a.UZERO=v;var I=o(1);a.ONE=I;var T=o(1,!0);a.UONE=T;var _=o(-1);a.NEG_ONE=_;var A=u(-1,2147483647,!1);a.MAX_VALUE=A;var F=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=F;var P=u(0,-2147483648,!1);a.MIN_VALUE=P;var $=a.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var M=l(S),U=this.div(M),j=U.mul(M).sub(this);return U.toString(S)+j.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var q=l(p(S,6),this.unsigned),K=this,Y="";;){var te=K.div(q),re=K.sub(te.mul(q)).toInt()>>>0,Q=re.toString(S);if(K=te,K.isZero())return Q+Y;for(;Q.length<6;)Q="0"+Q;Y=""+Q+Y}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<<M)==0;M--);return this.high!=0?M+33:M+1},$.isZero=function(){return this.high===0&&this.low===0},$.eqz=$.isZero,$.isNegative=function(){return!this.unsigned&&this.high<0},$.isPositive=function(){return this.unsigned||this.high>=0},$.isOdd=function(){return(this.low&1)===1},$.isEven=function(){return(this.low&1)===0},$.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),U=S.isNegative();return M&&!U?-1:!M&&U?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(I)},$.neg=$.negate,$.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,U=this.high&65535,j=this.low>>>16,q=this.low&65535,K=S.high>>>16,Y=S.high&65535,te=S.low>>>16,re=S.low&65535,Q=0,ie=0,ae=0,oe=0;return oe+=q+re,ae+=oe>>>16,oe&=65535,ae+=j+te,ie+=ae>>>16,ae&=65535,ie+=U+Y,Q+=ie>>>16,ie&=65535,Q+=M+K,Q&=65535,u(ae<<16|oe,Q<<16|ie,this.unsigned)},$.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(P))return S.isOdd()?P:x;if(S.eq(P))return this.isOdd()?P:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(b)&&S.lt(b))return l(this.toNumber()*S.toNumber(),this.unsigned);var U=this.high>>>16,j=this.high&65535,q=this.low>>>16,K=this.low&65535,Y=S.high>>>16,te=S.high&65535,re=S.low>>>16,Q=S.low&65535,ie=0,ae=0,oe=0,ue=0;return ue+=K*Q,oe+=ue>>>16,ue&=65535,oe+=q*Q,ae+=oe>>>16,oe&=65535,oe+=K*re,ae+=oe>>>16,oe&=65535,ae+=j*Q,ie+=ae>>>16,ae&=65535,ae+=q*re,ie+=ae>>>16,ae&=65535,ae+=K*te,ie+=ae>>>16,ae&=65535,ie+=U*Q+j*re+q*te+K*Y,ie&=65535,u(oe<<16|ue,ie<<16|ae,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?v:x;var U,j,q;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return v;if(S.gt(this.shru(1)))return T;q=v}else{if(this.eq(P)){if(S.eq(I)||S.eq(_))return P;if(S.eq(P))return I;var K=this.shr(1);return U=K.div(S).shl(1),U.eq(x)?S.isNegative()?I:_:(j=this.sub(S.mul(U)),q=U.add(j.div(S)),q)}else if(S.eq(P))return this.unsigned?v:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();q=x}for(j=this;j.gte(S);){U=Math.max(1,Math.floor(j.toNumber()/S.toNumber()));for(var Y=Math.ceil(Math.log(U)/Math.LN2),te=Y<=48?1:p(2,Y-48),re=l(U),Q=re.mul(S);Q.isNegative()||Q.gt(j);)U-=te,re=l(U,this.unsigned),Q=re.mul(S);re.isZero()&&(re=I),q=q.add(re),j=j.sub(Q)}return q},$.div=$.divide,$.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},$.shl=$.shiftLeft,$.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var U=this.low;return u(U>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,U){return U?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),RF=Wt(()=>{}),MF=Wt(()=>{}),PF=Wt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),OF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),LF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),zF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),BF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),WF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),VF=Wt(()=>{}),UF=Wt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,T,_){var A=[];T=T==!0?{entropy:!0}:T||{};var F=b(y(T.entropy?[I,v(a)]:I==null?x():I,3),A),P=new f(A),$=function(){for(var S=P.g(i),M=u,U=0;S<p;)S=(S+U)*s,M*=s,U=P.g(1);for(;S>=d;)S/=2,M/=2,U>>>=1;return(S+U)/M};return $.int32=function(){return P.g(4)|0},$.quick=function(){return P.g(4)/4294967296},$.double=$,b(v(P.S),a),(T.pass||_||function(S,M,U,j){return j&&(j.S&&g(j,P),S.state=function(){return g(P,{})}),U?(r[l]=S,M):S})($,F,"global"in T?T.global:this==r,T.state)}function f(I){var T,_=I.length,A=this,F=0,P=A.i=A.j=0,$=A.S=[];for(_||(I=[_++]);F<s;)$[F]=F++;for(F=0;F<s;F++)$[F]=$[P=c&P+I[F%_]+(T=$[F])],$[P]=T;(A.g=function(S){for(var M,U=0,j=A.i,q=A.j,K=A.S;S--;)M=K[j=c&j+1],U=U*s+K[c&(K[j]=K[q=c&q+M])+(K[q]=M)];return A.i=j,A.j=q,U})(s)}function g(I,T){return T.i=I.i,T.j=I.j,T.S=I.S.slice(),T}function y(I,T){var _=[],A=typeof I,F;if(T&&A=="object")for(F in I)try{_.push(y(I[F],T-1))}catch(P){}return _.length?_:A=="string"?I:I+"\0"}function b(I,T){for(var _=I+"",A,F=0;F<_.length;)T[c&F]=c&(A^=T[c&F]*19)+_.charCodeAt(F++);return v(T)}function x(){try{var I;return h&&(I=h.randomBytes)?I=I(s):(I=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(I)),v(I)}catch(A){var T=n.navigator,_=T&&T.plugins;return[+new Date,n,_,n.screen,v(a)]}}function v(I){return String.fromCharCode.apply(0,I)}if(b(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=VF()}catch(I){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Sm=Wt((e,t)=>{var n=PF(),a=OF(),r=LF(),s=zF(),i=BF(),o=WF(),l=UF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),qI=Wt(()=>{}),Bx=Wt(()=>{}),jh=Wt(()=>{}),GF=Wt(()=>{}),HF=Wt(()=>{}),jF=Wt(()=>{}),qF=Wt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Te.buffer!=xn&&Pa(Te.buffer),Ud}function i(){return Te.buffer!=xn&&Pa(Te.buffer),Gd}function o(){return Te.buffer!=xn&&Pa(Te.buffer),Ep}function l(){return Te.buffer!=xn&&Pa(Te.buffer),Hd}function u(){return Te.buffer!=xn&&Pa(Te.buffer),jd}function p(){return Te.buffer!=xn&&Pa(Te.buffer),qd}function d(){return Te.buffer!=xn&&Pa(Te.buffer),Kd}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(N,D){h=N,m=D});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),y=[],b="./this.program",x=(N,D)=>{throw D},v=typeof window=="object",I=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=c.ENVIRONMENT_IS_PTHREAD||!1,A="";function F(N){return c.locateFile?c.locateFile(N,A):A+N}var P,$,S,M;function U(N){N instanceof zp||Q("exiting due to exception: "+N)}var j,q,K;if(T){I?A=jh().dirname(A)+"/":A=__dirname+"/",K=()=>{q||(j=Bx(),q=jh())},P=function(D,V){return K(),D=q.normalize(D),j.readFileSync(D,V?void 0:"utf8")},S=D=>{var V=P(D,!0);return V.buffer||(V=new Uint8Array(V)),V},$=(D,V,J)=>{K(),D=q.normalize(D),j.readFile(D,function(pe,me){pe?J(pe):V(me.buffer)})},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(D){if(!(D instanceof zp))throw D}),process.on("unhandledRejection",function(D){throw D}),x=(D,V)=>{if(zs())throw process.exitCode=D,V;U(V),process.exit(D)},c.inspect=function(){return"[Emscripten Module object]"};let N;try{N=GF()}catch(D){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),D}global.Worker=N.Worker}else(v||I)&&(I?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),typeof a!="undefined"&&a&&(A=a),A.indexOf("blob:")!==0?A=A.substr(0,A.replace(/[?#].*/,"").lastIndexOf("/")+1):A="",T||(P=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.send(null),D.responseText},I&&(S=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),$=(N,D,V)=>{var J=new XMLHttpRequest;J.open("GET",N,!0),J.responseType="arraybuffer",J.onload=()=>{if(J.status==200||J.status==0&&J.response){D(J.response);return}V()},J.onerror=V,J.send(null)}),M=N=>document.title=N);T&&typeof performance=="undefined"&&(global.performance=HF().performance);var Y=console.log.bind(console),te=console.warn.bind(console);T&&(K(),Y=N=>j.writeSync(1,N+`
`),te=N=>j.writeSync(2,N+`
`));var re=c.print||Y,Q=c.printErr||te;Object.assign(c,g),g=null,c.arguments&&(y=c.arguments),c.thisProgram&&(b=c.thisProgram),c.quit&&(x=c.quit);var ie=4;function ae(N){ae.shown||(ae.shown={}),ae.shown[N]||(ae.shown[N]=1,Q(N))}function oe(N,D){if(typeof WebAssembly.Function=="function"){for(var V={i:"i32",j:"i64",f:"f32",d:"f64"},J={parameters:[],results:D[0]=="v"?[]:[V[D[0]]]},pe=1;pe<D.length;++pe)J.parameters.push(V[D[pe]]);return new WebAssembly.Function(J,N)}var me=[1,0,1,96],ve=D.slice(0,1),Ce=D.slice(1),Ct={i:127,j:126,f:125,d:124};me.push(Ce.length);for(var pe=0;pe<Ce.length;++pe)me.push(Ct[Ce[pe]]);ve=="v"?me.push(0):me=me.concat([1,Ct[ve]]),me[1]=me.length-2;var Ba=new Uint8Array([0,97,115,109,1,0,0,0].concat(me,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Wa=new WebAssembly.Module(Ba),kh=new WebAssembly.Instance(Wa,{e:{f:N}}),Bp=kh.exports.f;return Bp}var ue=[],we;function ye(){if(ue.length)return ue.pop();try{la.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return la.length-1}function Ie(N,D){for(var V=N;V<N+D;V++){var J=al(V);J&&we.set(J,V)}}var Ee=0,De=N=>{Ee=N},We=Atomics.load,je=Atomics.store,st=Atomics.compareExchange,nt;c.wasmBinary&&(nt=c.wasmBinary);var at=c.noExitRuntime||!0;typeof WebAssembly!="object"&&el("no native wasm support detected");var Te,ft,dt=!1,bn;function Yt(N,D){N||el(D)}function Rn(N){var D=c["_"+N];return D}function Ut(N,D,V,J,pe){var me={string:function(ua){var pl=0;if(ua!=null&&ua!==0){var xk=(ua.length<<2)+1;pl=ul(xk),Os(ua,pl,xk)}return pl},array:function(ua){var pl=ul(ua.length);return kr(ua,pl),pl}};function ve(ua){return D==="string"?oa(ua):D==="boolean"?Boolean(ua):ua}var Ce=Rn(N),Ct=[],Ba=0;if(J)for(var Wa=0;Wa<J.length;Wa++){var kh=me[V[Wa]];kh?(Ba===0&&(Ba=Ib()),Ct[Wa]=kh(J[Wa])):Ct[Wa]=J[Wa]}var Bp=Ce.apply(null,Ct);function vF(ua){return Ba!==0&&bh(Ba),ve(ua)}return Bp=vF(Bp),Bp}function Jt(N,D,V,J){V=V||[];var pe=V.every(function(ve){return ve==="number"}),me=D!=="string";return me&&pe&&!J?Rn(N):function(){return Ut(N,D,V,arguments,J)}}var Ma=1;function Mn(N){var D=new TextDecoder(N);this.decode=V=>(V.buffer instanceof SharedArrayBuffer&&(V=new Uint8Array(V)),D.decode.call(D,V))}var Gt=typeof TextDecoder!="undefined"?new Mn("utf8"):void 0;function ia(N,D,V){for(var J=D+V,pe=D;N[pe]&&!(pe>=J);)++pe;if(pe-D>16&&N.subarray&&Gt)return Gt.decode(N.subarray(D,pe));for(var me="";D<pe;){var ve=N[D++];if(!(ve&128)){me+=String.fromCharCode(ve);continue}var Ce=N[D++]&63;if((ve&224)==192){me+=String.fromCharCode((ve&31)<<6|Ce);continue}var Ct=N[D++]&63;if((ve&240)==224?ve=(ve&15)<<12|Ce<<6|Ct:ve=(ve&7)<<18|Ce<<12|Ct<<6|N[D++]&63,ve<65536)me+=String.fromCharCode(ve);else{var Ba=ve-65536;me+=String.fromCharCode(55296|Ba>>10,56320|Ba&1023)}}return me}function oa(N,D){return N?ia(i(),N,D):""}function jr(N,D,V,J){if(!(J>0))return 0;for(var pe=V,me=V+J-1,ve=0;ve<N.length;++ve){var Ce=N.charCodeAt(ve);if(Ce>=55296&&Ce<=57343){var Ct=N.charCodeAt(++ve);Ce=65536+((Ce&1023)<<10)|Ct&1023}if(Ce<=127){if(V>=me)break;D[V++]=Ce}else if(Ce<=2047){if(V+1>=me)break;D[V++]=192|Ce>>6,D[V++]=128|Ce&63}else if(Ce<=65535){if(V+2>=me)break;D[V++]=224|Ce>>12,D[V++]=128|Ce>>6&63,D[V++]=128|Ce&63}else{if(V+3>=me)break;D[V++]=240|Ce>>18,D[V++]=128|Ce>>12&63,D[V++]=128|Ce>>6&63,D[V++]=128|Ce&63}}return D[V]=0,V-pe}function Os(N,D,V){return jr(N,i(),D,V)}function Vd(N){for(var D=0,V=0;V<N.length;++V){var J=N.charCodeAt(V);J>=55296&&J<=57343&&(J=65536+((J&1023)<<10)|N.charCodeAt(++V)&1023),J<=127?++D:J<=2047?D+=2:J<=65535?D+=3:D+=4}return D}var qr=typeof TextDecoder!="undefined"?new Mn("utf-16le"):void 0;function kr(N,D){s().set(N,D)}function _p(N,D,V){for(var J=0;J<N.length;++J)s()[D++>>0]=N.charCodeAt(J);V||(s()[D>>0]=0)}function Zo(N,D){return N%D>0&&(N+=D-N%D),N}var xn,Ud,Gd,Ep,Hd,jd,Q1,qd,Kd;_&&(xn=c.buffer);function Pa(N){xn=N,c.HEAP8=Ud=new Int8Array(N),c.HEAP16=Ep=new Int16Array(N),c.HEAP32=jd=new Int32Array(N),c.HEAPU8=Gd=new Uint8Array(N),c.HEAPU16=Hd=new Uint16Array(N),c.HEAPU32=Q1=new Uint32Array(N),c.HEAPF32=qd=new Float32Array(N),c.HEAPF64=Kd=new Float64Array(N)}var Xd=c.INITIAL_MEMORY||16777216;if(_)Te=c.wasmMemory,xn=c.buffer;else if(c.wasmMemory)Te=c.wasmMemory;else if(Te=new WebAssembly.Memory({initial:Xd/65536,maximum:32768,shared:!0}),!(Te.buffer instanceof SharedArrayBuffer))throw Q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Te&&(xn=Te.buffer),Xd=xn.byteLength,Pa(xn);var la,Qo=[],Kr=[],Gg=[],Yd=[],Ls=!1,Hg=!1,Jd=0;function zs(){return at||Jd>0}function vn(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)ek(c.preRun.shift());th(Qo)}function Ap(){Ls=!0,!_&&th(Kr)}function jg(){_||(_e.terminateAllThreads(),Hg=!0)}function qg(){if(!_){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)$p(c.postRun.shift());th(Yd)}}function ek(N){Qo.unshift(N)}function tk(N){Kr.unshift(N)}function $p(N){Yd.unshift(N)}var Xr=0,Zd=null,Oa=null;function Fp(N){Xr++,c.monitorRunDependencies&&c.monitorRunDependencies(Xr)}function nk(N){if(Xr--,c.monitorRunDependencies&&c.monitorRunDependencies(Xr),Xr==0&&(Zd!==null&&(clearInterval(Zd),Zd=null),Oa)){var D=Oa;Oa=null,D()}}c.preloadedImages={},c.preloadedAudios={};function el(N){_?postMessage({cmd:"onAbort",arg:N}):c.onAbort&&c.onAbort(N),N="Aborted("+N+")",Q(N),dt=!0,bn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(N);throw m(D),D}var Kg="data:application/octet-stream;base64,";function Dp(N){return N.startsWith(Kg)}function Qd(N){return N.startsWith("file://")}var wn;wn="tfjs-backend-wasm-threaded-simd.wasm",Dp(wn)||(wn=F(wn));function eh(N){try{if(N==wn&&nt)return new Uint8Array(nt);if(S)return S(N);throw"both async and sync fetching of the wasm failed"}catch(D){el(D)}}function tl(){if(!nt&&(v||I)){if(typeof fetch=="function"&&!Qd(wn))return fetch(wn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+wn+"'";return N.arrayBuffer()}).catch(function(){return eh(wn)});if($)return new Promise(function(N,D){$(wn,function(V){N(new Uint8Array(V))},D)})}return Promise.resolve().then(function(){return eh(wn)})}function Xg(){var N={env:hh,wasi_snapshot_preview1:hh};function D(ve,Ce){var Ct=ve.exports;if(c.asm=Ct,ny(c.asm.emscripten_tls_init),la=c.asm.__indirect_function_table,tk(c.asm.__wasm_call_ctors),ft=Ce,!_){var Ba=_e.unusedWorkers.length;_e.unusedWorkers.forEach(function(Wa){_e.loadWasmModuleToWorker(Wa,function(){--Ba||nk("wasm-instantiate")})})}}_||Fp("wasm-instantiate");function V(ve){D(ve.instance,ve.module)}function J(ve){return tl().then(function(Ce){return WebAssembly.instantiate(Ce,N)}).then(function(Ce){return Ce}).then(ve,function(Ce){Q("failed to asynchronously prepare wasm: "+Ce),el(Ce)})}function pe(){return!nt&&typeof WebAssembly.instantiateStreaming=="function"&&!Dp(wn)&&!Qd(wn)&&typeof fetch=="function"?fetch(wn,{credentials:"same-origin"}).then(function(ve){var Ce=WebAssembly.instantiateStreaming(ve,N);return Ce.then(V,function(Ct){return Q("wasm streaming compile failed: "+Ct),Q("falling back to ArrayBuffer instantiation"),J(V)})}):J(V)}if(c.instantiateWasm)try{var me=c.instantiateWasm(N,D);return me}catch(ve){return Q("Module.instantiateWasm callback failed with error: "+ve),!1}return pe().catch(m),{}}var ak,rk,Yg={};function th(N){for(;N.length>0;){var D=N.shift();if(typeof D=="function"){D(c);continue}var V=D.func;typeof V=="number"?D.arg===void 0?al(V)():al(V)(D.arg):V(D.arg===void 0?null:D.arg)}}function nl(N){var D=Ib(),V=N();return bh(D),V}function _$(N){return N}function sk(N){var D=/\b_Z[\w\d_]+/g;return N.replace(D,function(V){var J=V;return V===J?V:J+" ["+V+"]"})}function Jg(N){u()[N>>2]=0;var D=_e.pthreads[N];delete _e.pthreads[N],D.worker.terminate(),kb(N),_e.runningWorkers.splice(_e.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function Zg(N){var D=_e.pthreads[N];D.worker.postMessage({cmd:"cancel"})}function nh(N){var D=_e.pthreads[N];if(D){u()[N>>2]=0;var V=D.worker;_e.returnWorkerToPool(V)}}function ah(N){yF(N)}function Qg(N){if(N instanceof zp||N=="unwind")return bn;x(1,N)}var _e={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){_?_e.initWorker():_e.initMainThread()},initMainThread:function(){for(var N=8,D=0;D<N;++D)_e.allocateUnusedWorker()},initWorker:function(){at=!1},pthreads:{},setExitStatus:function(N){bn=N},terminateAllThreads:function(){for(var N in _e.pthreads){var D=_e.pthreads[N];D&&D.worker&&_e.returnWorkerToPool(D.worker)}for(var V=0;V<_e.unusedWorkers.length;++V){var J=_e.unusedWorkers[V];J.terminate()}_e.unusedWorkers=[]},returnWorkerToPool:function(N){_e.runWithoutMainThreadQueuedCalls(function(){delete _e.pthreads[N.pthread.threadInfoStruct],_e.unusedWorkers.push(N),_e.runningWorkers.splice(_e.runningWorkers.indexOf(N),1),kb(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[bk>>2]=0;try{N()}finally{u()[bk>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in _e.tlsInitFunctions)_e.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,D){N.onmessage=V=>{var J=V.data,pe=J.cmd;if(N.pthread&&(_e.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),J.targetThread&&J.targetThread!=yh()){var me=_e.pthreads[J.targetThread];me?me.worker.postMessage(J,J.transferList):Q('Internal error! Worker sent a message "'+pe+'" to target pthread '+J.targetThread+", but that thread no longer exists!"),_e.currentProxiedOperationCallerThread=void 0;return}pe==="processQueuedMainThreadWork"?hk():pe==="spawnThread"?sh(J):pe==="cleanupThread"?nh(J.thread):pe==="killThread"?Jg(J.thread):pe==="cancelThread"?Zg(J.thread):pe==="loaded"?(N.loaded=!0,D&&D(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):pe==="print"?re("Thread "+J.threadId+": "+J.text):pe==="printErr"?Q("Thread "+J.threadId+": "+J.text):pe==="alert"?alert("Thread "+J.threadId+": "+J.text):J.target==="setimmediate"?N.postMessage(J):pe==="onAbort"?c.onAbort&&c.onAbort(J.arg):Q("worker sent an unknown command "+pe),_e.currentProxiedOperationCallerThread=void 0},N.onerror=V=>{var J="worker sent an error!";throw Q(J+" "+V.filename+":"+V.lineno+": "+V.message),V},T&&(N.on("message",function(V){N.onmessage({data:V})}),N.on("error",function(V){N.onerror(V)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:Te,wasmModule:ft})},allocateUnusedWorker:function(){var N=F("tfjs-backend-wasm-threaded-simd.worker.js");_e.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return _e.unusedWorkers.length==0&&(_e.allocateUnusedWorker(),_e.loadWasmModuleToWorker(_e.unusedWorkers[0])),_e.unusedWorkers.pop()}};function ey(){var N=yh(),D=u()[N+44>>2],V=u()[N+48>>2],J=D-V;yk(D,J),bh(D)}c.establishStackSpace=ey;function rh(N){if(_)return Vs(1,0,N);try{ah(N)}catch(D){Qg(D)}}var Bs=[];function al(N){var D=Bs[N];return D||(N>=Bs.length&&(Bs.length=N+1),Bs[N]=D=la.get(N)),D}function ty(N,D){return al(N)(D)}c.invokeEntryPoint=ty;function ik(){var N=new Error;if(!N.stack){try{throw new Error}catch(D){N=D}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function ny(N,D,V){_e.tlsInitFunctions.push(N)}function ok(N,D){la.set(N,D),Bs[N]=D}var Ws;T?Ws=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:_?Ws=()=>performance.now()-c.__performance_now_clock_drift:Ws=()=>performance.now();var ay=!0;function ry(N){return u()[dk()>>2]=N,N}function sy(N,D){var V;if(N===0)V=Date.now();else if((N===1||N===4)&&ay)V=Ws();else return ry(28),-1;return u()[D>>2]=V/1e3|0,u()[D+4>>2]=V%1e3*1e3*1e3|0,0}function iy(N,D){return sy(N,D)}function oy(N){mk(N,!I,1,!v),_e.threadInit()}function ly(N){_?postMessage({cmd:"cleanupThread",thread:N}):nh(N)}function sh(N){var D=_e.getNewWorker();if(!D)return 6;_e.runningWorkers.push(D);var V=_e.pthreads[N.pthread_ptr]={worker:D,threadInfoStruct:N.pthread_ptr};D.pthread=V;var J={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return D.runPthread=()=>{J.time=performance.now(),D.postMessage(J,N.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread),0}function uy(N,D,V,J){if(typeof SharedArrayBuffer=="undefined")return Q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var pe=[],me=0;if(_&&(pe.length===0||me))return fk(687865856,N,D,V,J);if(me)return me;var ve={startRoutine:V,pthread_ptr:N,arg:J,transferList:pe};return _?(ve.cmd="spawnThread",postMessage(ve,pe),0):sh(ve)}function py(){return 2097152}function cy(N,D){if(N==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(_)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var V=_e.pthreads[N],J=V&&V.worker;if(!J)return;J.postMessage({cmd:"processThreadQueue"})}return 1}function dy(){el("")}function hy(){T||I||ae("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function ih(){return 2147483648}function my(N,D,V){i().copyWithin(N,D,D+V)}function fy(){return T?jF().cpus().length:navigator.hardwareConcurrency}function Vs(N,D){var V=arguments.length-2,J=arguments;return nl(function(){for(var pe=V,me=ul(pe*8),ve=me>>3,Ce=0;Ce<V;Ce++){var Ct=J[2+Ce];d()[ve+Ce]=Ct}return gk(N,pe,me,D)})}var Rp=[];function gy(N,D,V){Rp.length=D;for(var J=V>>3,pe=0;pe<D;pe++)Rp[pe]=d()[J+pe];var me=N<0,ve=me?Yg[-N-1]:My[N];return ve.apply(null,Rp)}function yy(N){try{return Te.grow(N-xn.byteLength+65535>>>16),Pa(Te.buffer),1}catch(D){}}function by(N){var D=i().length;if(N=N>>>0,N<=D)return!1;var V=ih();if(N>V)return!1;for(var J=1;J<=4;J*=2){var pe=D*(1+.2/J);pe=Math.min(pe,N+100663296);var me=Math.min(V,Zo(Math.max(N,pe),65536)),ve=yy(me);if(ve)return!0}return!1}var Ue={inEventHandler:0,removeAllEventListeners:function(){for(var N=Ue.eventHandlers.length-1;N>=0;--N)Ue._removeHandler(N);Ue.eventHandlers=[],Ue.deferredCalls=[]},registerRemoveEventListeners:function(){Ue.removeEventListenersRegistered||(Gg.push(Ue.removeAllEventListeners),Ue.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,D,V){function J(ve,Ce){if(ve.length!=Ce.length)return!1;for(var Ct in ve)if(ve[Ct]!=Ce[Ct])return!1;return!0}for(var pe in Ue.deferredCalls){var me=Ue.deferredCalls[pe];if(me.targetFunction==N&&J(me.argsList,V))return}Ue.deferredCalls.push({targetFunction:N,precedence:D,argsList:V}),Ue.deferredCalls.sort(function(ve,Ce){return ve.precedence<Ce.precedence})},removeDeferredCalls:function(N){for(var D=0;D<Ue.deferredCalls.length;++D)Ue.deferredCalls[D].targetFunction==N&&(Ue.deferredCalls.splice(D,1),--D)},canPerformEventHandlerRequests:function(){return Ue.inEventHandler&&Ue.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Ue.canPerformEventHandlerRequests())for(var N=0;N<Ue.deferredCalls.length;++N){var D=Ue.deferredCalls[N];Ue.deferredCalls.splice(N,1),--N,D.targetFunction.apply(null,D.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,D){for(var V=0;V<Ue.eventHandlers.length;++V)Ue.eventHandlers[V].target==N&&(!D||D==Ue.eventHandlers[V].eventTypeString)&&Ue._removeHandler(V--)},_removeHandler:function(N){var D=Ue.eventHandlers[N];D.target.removeEventListener(D.eventTypeString,D.eventListenerFunc,D.useCapture),Ue.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var D=function(J){++Ue.inEventHandler,Ue.currentEventHandler=N,Ue.runDeferredCalls(),N.handlerFunc(J),Ue.runDeferredCalls(),--Ue.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=D,N.target.addEventListener(N.eventTypeString,D,N.useCapture),Ue.eventHandlers.push(N),Ue.registerRemoveEventListeners();else for(var V=0;V<Ue.eventHandlers.length;++V)Ue.eventHandlers[V].target==N.target&&Ue.eventHandlers[V].eventTypeString==N.eventTypeString&&Ue._removeHandler(V--)},queueEventHandlerOnThread_iiii:function(N,D,V,J,pe){nl(function(){var me=ul(12);u()[me>>2]=V,u()[me+4>>2]=J,u()[me+8>>2]=pe,wb(N,637534208,D,J,me)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return _e.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function xy(N){var D=Vd(N)+1,V=vb(D);return Os(N,V,D),V}function vy(N,D,V,J){nl(function(){var pe=ul(12),me=0;D&&(me=xy(D)),u()[pe>>2]=me,u()[pe+4>>2]=V,u()[pe+8>>2]=J,wb(N,657457152,0,me,pe)})}function wy(N,D,V,J){D=D?oa(D):"",vy(N,D,V,J)}function ky(N){return N>2?oa(N):N}var Iy=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Sy(N){N=ky(N);var D=Iy[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return D}function Mp(N){return Sy(N)}function oh(N,D,V){var J=Mp(N);if(!J)return-4;if(J.canvasSharedPtr&&(u()[J.canvasSharedPtr>>2]=D,u()[J.canvasSharedPtr+4>>2]=V),J.offscreenCanvas||!J.controlTransferredOffscreen){J.offscreenCanvas&&(J=J.offscreenCanvas);var pe=!1;if(J.GLctxObject&&J.GLctxObject.GLctx){var me=J.GLctxObject.GLctx.getParameter(2978);pe=me[0]===0&&me[1]===0&&me[2]===J.width&&me[3]===J.height}J.width=D,J.height=V,pe&&J.GLctxObject.GLctx.viewport(0,0,D,V)}else if(J.canvasSharedPtr){var ve=u()[J.canvasSharedPtr+8>>2];return wy(ve,N,D,V),1}else return-4;return 0}function lh(N,D,V){return _?Vs(2,1,N,D,V):oh(N,D,V)}function Ny(N,D,V){var J=Mp(N);return J?oh(N,D,V):lh(N,D,V)}function Ty(){throw"unwind"}function Cy(N){var D=N.getExtension("ANGLE_instanced_arrays");if(D)return N.vertexAttribDivisor=function(V,J){D.vertexAttribDivisorANGLE(V,J)},N.drawArraysInstanced=function(V,J,pe,me){D.drawArraysInstancedANGLE(V,J,pe,me)},N.drawElementsInstanced=function(V,J,pe,me,ve){D.drawElementsInstancedANGLE(V,J,pe,me,ve)},1}function _y(N){var D=N.getExtension("OES_vertex_array_object");if(D)return N.createVertexArray=function(){return D.createVertexArrayOES()},N.deleteVertexArray=function(V){D.deleteVertexArrayOES(V)},N.bindVertexArray=function(V){D.bindVertexArrayOES(V)},N.isVertexArray=function(V){return D.isVertexArrayOES(V)},1}function Ey(N){var D=N.getExtension("WEBGL_draw_buffers");if(D)return N.drawBuffers=function(V,J){D.drawBuffersWEBGL(V,J)},1}function Ay(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Tt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(N){Tt.lastError||(Tt.lastError=N)},getNewId:function(N){for(var D=Tt.counter++,V=N.length;V<D;V++)N[V]=null;return D},getSource:function(N,D,V,J){for(var pe="",me=0;me<D;++me){var ve=J?u()[J+me*4>>2]:-1;pe+=oa(u()[V+me*4>>2],ve<0?void 0:ve)}return pe},createContext:function(N,D){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(pe,me){var ve=N.getContextSafariWebGL2Fixed(pe,me);return pe=="webgl"==ve instanceof WebGLRenderingContext?ve:null});var V=N.getContext("webgl",D);if(!V)return 0;var J=Tt.registerContext(V,D);return J},registerContext:function(N,D){var V=vb(8);u()[V+4>>2]=yh();var J={handle:V,attributes:D,version:D.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=J),Tt.contexts[V]=J,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&&Tt.initExtensions(J),V},makeContextCurrent:function(N){return Tt.currentContext=Tt.contexts[N],c.ctx=dh=Tt.currentContext&&Tt.currentContext.GLctx,!(N&&!dh)},getContext:function(N){return Tt.contexts[N]},deleteContext:function(N){Tt.currentContext===Tt.contexts[N]&&(Tt.currentContext=null),typeof Ue=="object"&&Ue.removeAllHandlersOnTarget(Tt.contexts[N].GLctx.canvas),Tt.contexts[N]&&Tt.contexts[N].GLctx.canvas&&(Tt.contexts[N].GLctx.canvas.GLctxObject=void 0),ck(Tt.contexts[N].handle),Tt.contexts[N]=null},initExtensions:function(N){if(N||(N=Tt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var D=N.GLctx;Cy(D),_y(D),Ey(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),Ay(D);var V=D.getSupportedExtensions()||[];V.forEach(function(J){!J.includes("lose_context")&&!J.includes("debug")&&D.getExtension(J)})}}},$y=["default","low-power","high-performance"];function Fy(N,D){var V=D>>2,J=u()[V+6],pe={alpha:!!u()[V+0],depth:!!u()[V+1],stencil:!!u()[V+2],antialias:!!u()[V+3],premultipliedAlpha:!!u()[V+4],preserveDrawingBuffer:!!u()[V+5],powerPreference:$y[J],failIfMajorPerformanceCaveat:!!u()[V+7],majorVersion:u()[V+8],minorVersion:u()[V+9],enableExtensionsByDefault:u()[V+10],explicitSwapControl:u()[V+11],proxyContextToMainThread:u()[V+12],renderViaOffscreenBackBuffer:u()[V+13]},me=Mp(N);if(!me||pe.explicitSwapControl)return 0;var ve=Tt.createContext(me,pe);return ve}function Dy(N,D){return Fy(N,D)}var rl={mappings:{},buffers:[null,[],[]],printChar:function(N,D){var V=rl.buffers[N];D===0||D===10?((N===1?re:Q)(ia(V,0)),V.length=0):V.push(D)},varargs:void 0,get:function(){rl.varargs+=4;var N=u()[rl.varargs-4>>2];return N},getStr:function(N){var D=oa(N);return D},get64:function(N,D){return N}};function uh(N){return _?Vs(3,1,N):0}function ph(N,D,V,J,pe){if(_)return Vs(4,1,N,D,V,J,pe)}function ch(N,D,V,J){if(_)return Vs(5,1,N,D,V,J);for(var pe=0,me=0;me<V;me++){var ve=u()[D>>2],Ce=u()[D+4>>2];D+=8;for(var Ct=0;Ct<Ce;Ct++)rl.printChar(N,i()[ve+Ct]);pe+=Ce}return u()[J>>2]=pe,0}function Ry(N){De(N)}_e.init();var dh,My=[null,rh,lh,uh,ph,ch],lk=!1,hh={__clock_gettime:iy,__emscripten_init_main_thread_js:oy,__emscripten_thread_cleanup:ly,__pthread_create_js:uy,_emscripten_default_pthread_stack_size:py,_emscripten_notify_thread_queue:cy,abort:dy,emscripten_check_blocking_allowed:hy,emscripten_get_heap_max:ih,emscripten_get_now:Ws,emscripten_memcpy_big:my,emscripten_num_logical_cores:fy,emscripten_receive_on_main_thread_js:gy,emscripten_resize_heap:by,emscripten_set_canvas_element_size:Ny,emscripten_unwind_to_js_event_loop:Ty,emscripten_webgl_create_context:Dy,exit:ah,fd_close:uh,fd_seek:ph,fd_write:ch,memory:Te||c.wasmMemory,setTempRet0:Ry},uk=Xg(),Py=c.___wasm_call_ctors=function(){return(Py=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},Oy=c._init=function(){return(Oy=c._init=c.asm.init).apply(null,arguments)},Ly=c._init_with_threads_count=function(){return(Ly=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},zy=c._get_threads_count=function(){return(zy=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},By=c._register_tensor=function(){return(By=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},Wy=c._dispose_data=function(){return(Wy=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},Vy=c._dispose=function(){return(Vy=c._dispose=c.asm.dispose).apply(null,arguments)},Uy=c._Abs=function(){return(Uy=c._Abs=c.asm.Abs).apply(null,arguments)},Gy=c._Add=function(){return(Gy=c._Add=c.asm.Add).apply(null,arguments)},Hy=c._AddN=function(){return(Hy=c._AddN=c.asm.AddN).apply(null,arguments)},jy=c._All=function(){return(jy=c._All=c.asm.All).apply(null,arguments)},qy=c._Any=function(){return(qy=c._Any=c.asm.Any).apply(null,arguments)},Ky=c._ArgMax=function(){return(Ky=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},Xy=c._AvgPool=function(){return(Xy=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},Yy=c._BatchMatMul=function(){return(Yy=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},Jy=c._Ceil=function(){return(Jy=c._Ceil=c.asm.Ceil).apply(null,arguments)},Zy=c._ClipByValue=function(){return(Zy=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},Qy=c._Conv2D=function(){return(Qy=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},eb=c._Conv2DBackpropInput=function(){return(eb=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},tb=c._Cos=function(){return(tb=c._Cos=c.asm.Cos).apply(null,arguments)},nb=c._Cosh=function(){return(nb=c._Cosh=c.asm.Cosh).apply(null,arguments)},ab=c._CropAndResize=function(){return(ab=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},rb=c._Cumprod=function(){return(rb=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},sb=c._Cumsum=function(){return(sb=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},ib=c._DepthToSpace=function(){return(ib=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},ob=c._DepthwiseConv2dNative=function(){return(ob=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},lb=c._Elu=function(){return(lb=c._Elu=c.asm.Elu).apply(null,arguments)},ub=c._Equal=function(){return(ub=c._Equal=c.asm.Equal).apply(null,arguments)},pb=c._Exp=function(){return(pb=c._Exp=c.asm.Exp).apply(null,arguments)},cb=c._FlipLeftRight=function(){return(cb=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},db=c._Floor=function(){return(db=c._Floor=c.asm.Floor).apply(null,arguments)},hb=c._FloorDiv=function(){return(hb=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},mb=c._FusedBatchNorm=function(){return(mb=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},fb=c._FusedConv2D=function(){return(fb=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},mh=c._FusedDepthwiseConv2D=function(){return(mh=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},fh=c._Gather=function(){return(fh=c._Gather=c.asm.Gather).apply(null,arguments)},Pp=c._GatherNd=function(){return(Pp=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},gb=c._Greater=function(){return(gb=c._Greater=c.asm.Greater).apply(null,arguments)},yb=c._GreaterEqual=function(){return(yb=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},sl=c._LeakyRelu=function(){return(sl=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},Op=c._Less=function(){return(Op=c._Less=c.asm.Less).apply(null,arguments)},Lp=c._LessEqual=function(){return(Lp=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},pk=c._Log=function(){return(pk=c._Log=c.asm.Log).apply(null,arguments)},il=c._LogicalAnd=function(){return(il=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},ol=c._LogicalNot=function(){return(ol=c._LogicalNot=c.asm.LogicalNot).apply(null,arguments)},bb=c._LogicalOr=function(){return(bb=c._LogicalOr=c.asm.LogicalOr).apply(null,arguments)},G=c._LogicalXor=function(){return(G=c._LogicalXor=c.asm.LogicalXor).apply(null,arguments)},ee=c._Max=function(){return(ee=c._Max=c.asm.Max).apply(null,arguments)},de=c._MaxPool=function(){return(de=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Se=c._Maximum=function(){return(Se=c._Maximum=c.asm.Maximum).apply(null,arguments)},Ze=c._Mean=function(){return(Ze=c._Mean=c.asm.Mean).apply(null,arguments)},rt=c._Min=function(){return(rt=c._Min=c.asm.Min).apply(null,arguments)},Ge=c._Minimum=function(){return(Ge=c._Minimum=c.asm.Minimum).apply(null,arguments)},Ve=c._MirrorPad=function(){return(Ve=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Ot=c._Multiply=function(){return(Ot=c._Multiply=c.asm.Multiply).apply(null,arguments)},La=c._Neg=function(){return(La=c._Neg=c.asm.Neg).apply(null,arguments)},za=c._NonMaxSuppressionV3=function(){return(za=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},ll=c._NonMaxSuppressionV4=function(){return(ll=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},Us=c._NonMaxSuppressionV5=function(){return(Us=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},xb=c._NotEqual=function(){return(xb=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},Pn=c._OneHot=function(){return(Pn=c._OneHot=c.asm.OneHot).apply(null,arguments)},Yr=c._PadV2=function(){return(Yr=c._PadV2=c.asm.PadV2).apply(null,arguments)},gh=c._Pow=function(){return(gh=c._Pow=c.asm.Pow).apply(null,arguments)},E$=c._Prelu=function(){return(E$=c._Prelu=c.asm.Prelu).apply(null,arguments)},A$=c._Prod=function(){return(A$=c._Prod=c.asm.Prod).apply(null,arguments)},$$=c._RealDiv=function(){return($$=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},F$=c._Relu=function(){return(F$=c._Relu=c.asm.Relu).apply(null,arguments)},D$=c._Relu6=function(){return(D$=c._Relu6=c.asm.Relu6).apply(null,arguments)},R$=c._ResizeBilinear=function(){return(R$=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},M$=c._ResizeNearestNeighbor=function(){return(M$=c._ResizeNearestNeighbor=c.asm.ResizeNearestNeighbor).apply(null,arguments)},P$=c._Reverse=function(){return(P$=c._Reverse=c.asm.Reverse).apply(null,arguments)},O$=c._RotateWithOffset=function(){return(O$=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},L$=c._Round=function(){return(L$=c._Round=c.asm.Round).apply(null,arguments)},z$=c._Rsqrt=function(){return(z$=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},B$=c._ScatterNd=function(){return(B$=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},W$=c._SelectV2=function(){return(W$=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},V$=c._Sigmoid=function(){return(V$=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},U$=c._Sin=function(){return(U$=c._Sin=c.asm.Sin).apply(null,arguments)},G$=c._Softmax=function(){return(G$=c._Softmax=c.asm.Softmax).apply(null,arguments)},H$=c._SparseFillEmptyRows=function(){return(H$=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},j$=c._SparseReshape=function(){return(j$=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},q$=c._SparseSegmentReduction=function(){return(q$=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},K$=c._Sqrt=function(){return(K$=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},X$=c._Square=function(){return(X$=c._Square=c.asm.Square).apply(null,arguments)},Y$=c._SquaredDifference=function(){return(Y$=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},J$=c._Step=function(){return(J$=c._Step=c.asm.Step).apply(null,arguments)},Z$=c._StridedSlice=function(){return(Z$=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},Q$=c._Sub=function(){return(Q$=c._Sub=c.asm.Sub).apply(null,arguments)},eF=c._Sum=function(){return(eF=c._Sum=c.asm.Sum).apply(null,arguments)},tF=c._Tan=function(){return(tF=c._Tan=c.asm.Tan).apply(null,arguments)},nF=c._Tanh=function(){return(nF=c._Tanh=c.asm.Tanh).apply(null,arguments)},aF=c._Tile=function(){return(aF=c._Tile=c.asm.Tile).apply(null,arguments)},rF=c._TopK=function(){return(rF=c._TopK=c.asm.TopK).apply(null,arguments)},sF=c._Transform=function(){return(sF=c._Transform=c.asm.Transform).apply(null,arguments)},iF=c._Transpose=function(){return(iF=c._Transpose=c.asm.Transpose).apply(null,arguments)},oF=c.__FusedMatMul=function(){return(oF=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},vb=c._malloc=function(){return(vb=c._malloc=c.asm.malloc).apply(null,arguments)},ck=c._free=function(){return(ck=c._free=c.asm.free).apply(null,arguments)},lF=c._emscripten_tls_init=function(){return(lF=c._emscripten_tls_init=c.asm.emscripten_tls_init).apply(null,arguments)},dk=c.___errno_location=function(){return(dk=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},yh=c._pthread_self=function(){return(yh=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},hk=c._emscripten_main_thread_process_queued_calls=function(){return(hk=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},uF=c.__emscripten_thread_crashed=function(){return(uF=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},mk=c.__emscripten_thread_init=function(){return(mk=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},pF=c._emscripten_current_thread_process_queued_calls=function(){return(pF=c._emscripten_current_thread_process_queued_calls=c.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},cF=c._emscripten_main_browser_thread_id=function(){return(cF=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},dF=c._emscripten_sync_run_in_main_thread_2=function(){return(dF=c._emscripten_sync_run_in_main_thread_2=c.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},fk=c._emscripten_sync_run_in_main_thread_4=function(){return(fk=c._emscripten_sync_run_in_main_thread_4=c.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},gk=c._emscripten_run_in_main_runtime_thread_js=function(){return(gk=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},wb=c._emscripten_dispatch_to_thread_=function(){return(wb=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},kb=c.__emscripten_thread_free_data=function(){return(kb=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},hF=c.__emscripten_thread_exit=function(){return(hF=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},mF=c._memalign=function(){return(mF=c._memalign=c.asm.memalign).apply(null,arguments)},yk=c._emscripten_stack_set_limits=function(){return(yk=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},Ib=c.stackSave=function(){return(Ib=c.stackSave=c.asm.stackSave).apply(null,arguments)},bh=c.stackRestore=function(){return(bh=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},ul=c.stackAlloc=function(){return(ul=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},fF=c.dynCall_iijjiiii=function(){return(fF=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},gF=c.dynCall_jiji=function(){return(gF=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)},bk=c.__emscripten_allow_main_runtime_queued_calls=21672;c.cwrap=Jt,c.keepRuntimeAlive=zs,c.PThread=_e,c.PThread=_e,c.wasmMemory=Te,c.ExitStatus=zp;var xh;function zp(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Oa=function N(){xh||Sb(),xh||(Oa=N)};function Sb(N){if(N=N||y,Xr>0)return;if(_){h(c),Ap(),postMessage({cmd:"loaded"});return}if(vn(),Xr>0)return;function D(){xh||(xh=!0,c.calledRun=!0,!dt&&(Ap(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),qg()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),D()},1)):D()}c.run=Sb;function yF(N,D){if(bn=N,!D&&_)throw rh(N),"unwind";zs()||jg(),bF(N)}function bF(N){bn=N,zs()||(_e.terminateAllThreads(),c.onExit&&c.onExit(N),dt=!0),x(N,new zp(N))}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();Sb();var vh;f&&(vh={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!f.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!f.unhandledRejection.indexOf(N)>-1})});var wh;if(typeof WasmBackendModule!="undefined")wh=WasmBackendModule;else if(typeof r!="undefined")wh=r;else throw new Error("Could not find wasm module in post.js");if(vh){var xF=wh._dispose;wh._dispose=function(){xF(),vh.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),vh.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),KF=Wt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`}),XF=Wt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(G,ee){i=G,o=ee});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(G,ee)=>{throw ee},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(G){return s.locateFile?s.locateFile(G,g):g+G}var b,x,v,I;function T(G){G instanceof Op||$("exiting due to exception: "+G)}var _,A,F;f?(m?g=jh().dirname(g)+"/":g=__dirname+"/",F=()=>{A||(_=Bx(),A=jh())},b=function(G,ee){return F(),G=A.normalize(G),_.readFileSync(G,ee?void 0:"utf8")},v=G=>{var ee=b(G,!0);return ee.buffer||(ee=new Uint8Array(ee)),ee},x=(G,ee,de)=>{F(),G=A.normalize(G),_.readFile(G,function(Se,Ze){Se?de(Se):ee(Ze.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(G){if(!(G instanceof Op))throw G}),process.on("unhandledRejection",function(G){throw G}),c=(G,ee)=>{if(Ep())throw process.exitCode=G,ee;T(ee),process.exit(G)},s.inspect=function(){return"[Emscripten Module object]"}):(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",b=G=>{var ee=new XMLHttpRequest;return ee.open("GET",G,!1),ee.send(null),ee.responseText},m&&(v=G=>{var ee=new XMLHttpRequest;return ee.open("GET",G,!1),ee.responseType="arraybuffer",ee.send(null),new Uint8Array(ee.response)}),x=(G,ee,de)=>{var Se=new XMLHttpRequest;Se.open("GET",G,!0),Se.responseType="arraybuffer",Se.onload=()=>{if(Se.status==200||Se.status==0&&Se.response){ee(Se.response);return}de()},Se.onerror=de,Se.send(null)},I=G=>document.title=G);var P=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var S=4;function M(G){M.shown||(M.shown={}),M.shown[G]||(M.shown[G]=1,$(G))}function U(G,ee){if(typeof WebAssembly.Function=="function"){for(var de={i:"i32",j:"i64",f:"f32",d:"f64"},Se={parameters:[],results:ee[0]=="v"?[]:[de[ee[0]]]},Ze=1;Ze<ee.length;++Ze)Se.parameters.push(de[ee[Ze]]);return new WebAssembly.Function(Se,G)}var rt=[1,0,1,96],Ge=ee.slice(0,1),Ve=ee.slice(1),Ot={i:127,j:126,f:125,d:124};rt.push(Ve.length);for(var Ze=0;Ze<Ve.length;++Ze)rt.push(Ot[Ve[Ze]]);Ge=="v"?rt.push(0):rt=rt.concat([1,Ot[Ge]]),rt[1]=rt.length-2;var La=new Uint8Array([0,97,115,109,1,0,0,0].concat(rt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),za=new WebAssembly.Module(La),ll=new WebAssembly.Instance(za,{e:{f:G}}),Us=ll.exports.f;return Us}var j=[],q;function K(){if(j.length)return j.pop();try{qr.grow(1)}catch(G){throw G instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":G}return qr.length-1}function Y(G,ee){for(var de=G;de<G+ee;de++){var Se=Fp(de);Se&&q.set(Se,de)}}var te=0,re=G=>{te=G},Q;s.wasmBinary&&(Q=s.wasmBinary);var ie=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ls("no native wasm support detected");var ae,oe=!1,ue;function we(G,ee){G||Ls(ee)}function ye(G){var ee=s["_"+G];return ee}function Ie(G,ee,de,Se,Ze){var rt={string:function(Pn){var Yr=0;if(Pn!=null&&Pn!==0){var gh=(Pn.length<<2)+1;Yr=Pp(gh),at(Pn,Yr,gh)}return Yr},array:function(Pn){var Yr=Pp(Pn.length);return dt(Pn,Yr),Yr}};function Ge(Pn){return ee==="string"?st(Pn):ee==="boolean"?Boolean(Pn):Pn}var Ve=ye(G),Ot=[],La=0;if(Se)for(var za=0;za<Se.length;za++){var ll=rt[de[za]];ll?(La===0&&(La=mh()),Ot[za]=ll(Se[za])):Ot[za]=Se[za]}var Us=Ve.apply(null,Ot);function xb(Pn){return La!==0&&fh(La),Ge(Pn)}return Us=xb(Us),Us}function Ee(G,ee,de,Se){de=de||[];var Ze=de.every(function(Ge){return Ge==="number"}),rt=ee!=="string";return rt&&Ze&&!Se?ye(G):function(){return Ie(G,ee,de,arguments,Se)}}var De=1,We=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function je(G,ee,de){for(var Se=ee+de,Ze=ee;G[Ze]&&!(Ze>=Se);)++Ze;if(Ze-ee>16&&G.subarray&&We)return We.decode(G.subarray(ee,Ze));for(var rt="";ee<Ze;){var Ge=G[ee++];if(!(Ge&128)){rt+=String.fromCharCode(Ge);continue}var Ve=G[ee++]&63;if((Ge&224)==192){rt+=String.fromCharCode((Ge&31)<<6|Ve);continue}var Ot=G[ee++]&63;if((Ge&240)==224?Ge=(Ge&15)<<12|Ve<<6|Ot:Ge=(Ge&7)<<18|Ve<<12|Ot<<6|G[ee++]&63,Ge<65536)rt+=String.fromCharCode(Ge);else{var La=Ge-65536;rt+=String.fromCharCode(55296|La>>10,56320|La&1023)}}return rt}function st(G,ee){return G?je(Jt,G,ee):""}function nt(G,ee,de,Se){if(!(Se>0))return 0;for(var Ze=de,rt=de+Se-1,Ge=0;Ge<G.length;++Ge){var Ve=G.charCodeAt(Ge);if(Ve>=55296&&Ve<=57343){var Ot=G.charCodeAt(++Ge);Ve=65536+((Ve&1023)<<10)|Ot&1023}if(Ve<=127){if(de>=rt)break;ee[de++]=Ve}else if(Ve<=2047){if(de+1>=rt)break;ee[de++]=192|Ve>>6,ee[de++]=128|Ve&63}else if(Ve<=65535){if(de+2>=rt)break;ee[de++]=224|Ve>>12,ee[de++]=128|Ve>>6&63,ee[de++]=128|Ve&63}else{if(de+3>=rt)break;ee[de++]=240|Ve>>18,ee[de++]=128|Ve>>12&63,ee[de++]=128|Ve>>6&63,ee[de++]=128|Ve&63}}return ee[de]=0,de-Ze}function at(G,ee,de){return nt(G,Jt,ee,de)}function Te(G){for(var ee=0,de=0;de<G.length;++de){var Se=G.charCodeAt(de);Se>=55296&&Se<=57343&&(Se=65536+((Se&1023)<<10)|G.charCodeAt(++de)&1023),Se<=127?++ee:Se<=2047?ee+=2:Se<=65535?ee+=3:ee+=4}return ee}var ft=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function dt(G,ee){Ut.set(G,ee)}function bn(G,ee,de){for(var Se=0;Se<G.length;++Se)Ut[ee++>>0]=G.charCodeAt(Se);de||(Ut[ee>>0]=0)}function Yt(G,ee){return G%ee>0&&(G+=ee-G%ee),G}var Rn,Ut,Jt,Ma,Mn,Gt,ia,oa,jr;function Os(G){Rn=G,s.HEAP8=Ut=new Int8Array(G),s.HEAP16=Ma=new Int16Array(G),s.HEAP32=Gt=new Int32Array(G),s.HEAPU8=Jt=new Uint8Array(G),s.HEAPU16=Mn=new Uint16Array(G),s.HEAPU32=ia=new Uint32Array(G),s.HEAPF32=oa=new Float32Array(G),s.HEAPF64=jr=new Float64Array(G)}var Vd=s.INITIAL_MEMORY||16777216,qr,kr=[],_p=[],Zo=[],xn=!1,Ud=!1,Gd=0;function Ep(){return ie||Gd>0}function Hd(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Kd(s.preRun.shift());$p(kr)}function jd(){xn=!0,$p(_p)}function Q1(){Ud=!0}function qd(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Xd(s.postRun.shift());$p(Zo)}function Kd(G){kr.unshift(G)}function Pa(G){_p.unshift(G)}function Xd(G){Zo.unshift(G)}var la=0,Qo=null,Kr=null;function Gg(G){la++,s.monitorRunDependencies&&s.monitorRunDependencies(la)}function Yd(G){if(la--,s.monitorRunDependencies&&s.monitorRunDependencies(la),la==0&&(Qo!==null&&(clearInterval(Qo),Qo=null),Kr)){var ee=Kr;Kr=null,ee()}}s.preloadedImages={},s.preloadedAudios={};function Ls(G){s.onAbort&&s.onAbort(G),G="Aborted("+G+")",$(G),oe=!0,ue=1,G+=". Build with -s ASSERTIONS=1 for more info.";var ee=new WebAssembly.RuntimeError(G);throw o(ee),ee}var Hg="data:application/octet-stream;base64,";function Jd(G){return G.startsWith(Hg)}function zs(G){return G.startsWith("file://")}var vn;vn="tfjs-backend-wasm.wasm",Jd(vn)||(vn=y(vn));function Ap(G){try{if(G==vn&&Q)return new Uint8Array(Q);if(v)return v(G);throw"both async and sync fetching of the wasm failed"}catch(ee){Ls(ee)}}function jg(){if(!Q&&(h||m)){if(typeof fetch=="function"&&!zs(vn))return fetch(vn,{credentials:"same-origin"}).then(function(G){if(!G.ok)throw"failed to load wasm binary file at '"+vn+"'";return G.arrayBuffer()}).catch(function(){return Ap(vn)});if(x)return new Promise(function(G,ee){x(vn,function(de){G(new Uint8Array(de))},ee)})}return Promise.resolve().then(function(){return Ap(vn)})}function qg(){var G={env:nl,wasi_snapshot_preview1:nl};function ee(Ge,Ve){var Ot=Ge.exports;s.asm=Ot,ae=s.asm.memory,Os(ae.buffer),qr=s.asm.__indirect_function_table,Pa(s.asm.__wasm_call_ctors),Yd("wasm-instantiate")}Gg("wasm-instantiate");function de(Ge){ee(Ge.instance)}function Se(Ge){return jg().then(function(Ve){return WebAssembly.instantiate(Ve,G)}).then(function(Ve){return Ve}).then(Ge,function(Ve){$("failed to asynchronously prepare wasm: "+Ve),Ls(Ve)})}function Ze(){return!Q&&typeof WebAssembly.instantiateStreaming=="function"&&!Jd(vn)&&!zs(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(Ge){var Ve=WebAssembly.instantiateStreaming(Ge,G);return Ve.then(de,function(Ot){return $("wasm streaming compile failed: "+Ot),$("falling back to ArrayBuffer instantiation"),Se(de)})}):Se(de)}if(s.instantiateWasm)try{var rt=s.instantiateWasm(G,ee);return rt}catch(Ge){return $("Module.instantiateWasm callback failed with error: "+Ge),!1}return Ze().catch(o),{}}var ek,tk;function $p(G){for(;G.length>0;){var ee=G.shift();if(typeof ee=="function"){ee(s);continue}var de=ee.func;typeof de=="number"?ee.arg===void 0?Fp(de)():Fp(de)(ee.arg):de(ee.arg===void 0?null:ee.arg)}}function Xr(G){return G}function Zd(G){var ee=/\b_Z[\w\d_]+/g;return G.replace(ee,function(de){var Se=de;return de===Se?de:Se+" ["+de+"]"})}var Oa=[];function Fp(G){var ee=Oa[G];return ee||(G>=Oa.length&&(Oa.length=G+1),Oa[G]=ee=qr.get(G)),ee}function nk(){var G=new Error;if(!G.stack){try{throw new Error}catch(ee){G=ee}if(!G.stack)return"(no stack trace available)"}return G.stack.toString()}function el(G,ee){qr.set(G,ee),Oa[G]=ee}function Kg(){Ls("")}function Dp(){return 2147483648}function Qd(G,ee,de){Jt.copyWithin(G,ee,ee+de)}function wn(G){try{return ae.grow(G-Rn.byteLength+65535>>>16),Os(ae.buffer),1}catch(ee){}}function eh(G){var ee=Jt.length;G=G>>>0;var de=Dp();if(G>de)return!1;for(var Se=1;Se<=4;Se*=2){var Ze=ee*(1+.2/Se);Ze=Math.min(Ze,G+100663296);var rt=Math.min(de,Yt(Math.max(G,Ze),65536)),Ge=wn(rt);if(Ge)return!0}return!1}var tl={mappings:{},buffers:[null,[],[]],printChar:function(G,ee){var de=tl.buffers[G];ee===0||ee===10?((G===1?P:$)(je(de,0)),de.length=0):de.push(ee)},varargs:void 0,get:function(){tl.varargs+=4;var G=Gt[tl.varargs-4>>2];return G},getStr:function(G){var ee=st(G);return ee},get64:function(G,ee){return G}};function Xg(G){return 0}function ak(G,ee,de,Se,Ze){}function rk(G,ee,de,Se){for(var Ze=0,rt=0;rt<de;rt++){var Ge=Gt[ee>>2],Ve=Gt[ee+4>>2];ee+=8;for(var Ot=0;Ot<Ve;Ot++)tl.printChar(G,Jt[Ge+Ot]);Ze+=Ve}return Gt[Se>>2]=Ze,0}function Yg(G){re(G)}var th=!1,nl={abort:Kg,emscripten_get_heap_max:Dp,emscripten_memcpy_big:Qd,emscripten_resize_heap:eh,fd_close:Xg,fd_seek:ak,fd_write:rk,setTempRet0:Yg},_$=qg(),sk=s.___wasm_call_ctors=function(){return(sk=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},Jg=s._init=function(){return(Jg=s._init=s.asm.init).apply(null,arguments)},Zg=s._init_with_threads_count=function(){return(Zg=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},nh=s._get_threads_count=function(){return(nh=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},ah=s._register_tensor=function(){return(ah=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},Qg=s._dispose_data=function(){return(Qg=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},_e=s._dispose=function(){return(_e=s._dispose=s.asm.dispose).apply(null,arguments)},ey=s._Abs=function(){return(ey=s._Abs=s.asm.Abs).apply(null,arguments)},rh=s._Add=function(){return(rh=s._Add=s.asm.Add).apply(null,arguments)},Bs=s._AddN=function(){return(Bs=s._AddN=s.asm.AddN).apply(null,arguments)},al=s._All=function(){return(al=s._All=s.asm.All).apply(null,arguments)},ty=s._Any=function(){return(ty=s._Any=s.asm.Any).apply(null,arguments)},ik=s._ArgMax=function(){return(ik=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},ny=s._AvgPool=function(){return(ny=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},ok=s._BatchMatMul=function(){return(ok=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Ws=s._Ceil=function(){return(Ws=s._Ceil=s.asm.Ceil).apply(null,arguments)},ay=s._ClipByValue=function(){return(ay=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},ry=s._Conv2D=function(){return(ry=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},sy=s._Conv2DBackpropInput=function(){return(sy=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},iy=s._Cos=function(){return(iy=s._Cos=s.asm.Cos).apply(null,arguments)},oy=s._Cosh=function(){return(oy=s._Cosh=s.asm.Cosh).apply(null,arguments)},ly=s._CropAndResize=function(){return(ly=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},sh=s._Cumprod=function(){return(sh=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},uy=s._Cumsum=function(){return(uy=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},py=s._DepthToSpace=function(){return(py=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},cy=s._DepthwiseConv2dNative=function(){return(cy=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},dy=s._Elu=function(){return(dy=s._Elu=s.asm.Elu).apply(null,arguments)},hy=s._Equal=function(){return(hy=s._Equal=s.asm.Equal).apply(null,arguments)},ih=s._Exp=function(){return(ih=s._Exp=s.asm.Exp).apply(null,arguments)},my=s._FlipLeftRight=function(){return(my=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},fy=s._Floor=function(){return(fy=s._Floor=s.asm.Floor).apply(null,arguments)},Vs=s._FloorDiv=function(){return(Vs=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},Rp=s._FusedBatchNorm=function(){return(Rp=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},gy=s._FusedConv2D=function(){return(gy=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},yy=s._FusedDepthwiseConv2D=function(){return(yy=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},by=s._Gather=function(){return(by=s._Gather=s.asm.Gather).apply(null,arguments)},Ue=s._GatherNd=function(){return(Ue=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},xy=s._Greater=function(){return(xy=s._Greater=s.asm.Greater).apply(null,arguments)},vy=s._GreaterEqual=function(){return(vy=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},wy=s._LeakyRelu=function(){return(wy=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},ky=s._Less=function(){return(ky=s._Less=s.asm.Less).apply(null,arguments)},Iy=s._LessEqual=function(){return(Iy=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Sy=s._Log=function(){return(Sy=s._Log=s.asm.Log).apply(null,arguments)},Mp=s._LogicalAnd=function(){return(Mp=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},oh=s._LogicalNot=function(){return(oh=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},lh=s._LogicalOr=function(){return(lh=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},Ny=s._LogicalXor=function(){return(Ny=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},Ty=s._Max=function(){return(Ty=s._Max=s.asm.Max).apply(null,arguments)},Cy=s._MaxPool=function(){return(Cy=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},_y=s._Maximum=function(){return(_y=s._Maximum=s.asm.Maximum).apply(null,arguments)},Ey=s._Mean=function(){return(Ey=s._Mean=s.asm.Mean).apply(null,arguments)},Ay=s._Min=function(){return(Ay=s._Min=s.asm.Min).apply(null,arguments)},Tt=s._Minimum=function(){return(Tt=s._Minimum=s.asm.Minimum).apply(null,arguments)},$y=s._MirrorPad=function(){return($y=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},Fy=s._Multiply=function(){return(Fy=s._Multiply=s.asm.Multiply).apply(null,arguments)},Dy=s._Neg=function(){return(Dy=s._Neg=s.asm.Neg).apply(null,arguments)},rl=s._NonMaxSuppressionV3=function(){return(rl=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},uh=s._NonMaxSuppressionV4=function(){return(uh=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},ph=s._NonMaxSuppressionV5=function(){return(ph=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},ch=s._NotEqual=function(){return(ch=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Ry=s._OneHot=function(){return(Ry=s._OneHot=s.asm.OneHot).apply(null,arguments)},dh=s._PadV2=function(){return(dh=s._PadV2=s.asm.PadV2).apply(null,arguments)},My=s._Pow=function(){return(My=s._Pow=s.asm.Pow).apply(null,arguments)},lk=s._Prelu=function(){return(lk=s._Prelu=s.asm.Prelu).apply(null,arguments)},hh=s._Prod=function(){return(hh=s._Prod=s.asm.Prod).apply(null,arguments)},uk=s._RealDiv=function(){return(uk=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Py=s._Relu=function(){return(Py=s._Relu=s.asm.Relu).apply(null,arguments)},Oy=s._Relu6=function(){return(Oy=s._Relu6=s.asm.Relu6).apply(null,arguments)},Ly=s._ResizeBilinear=function(){return(Ly=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},zy=s._ResizeNearestNeighbor=function(){return(zy=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},By=s._Reverse=function(){return(By=s._Reverse=s.asm.Reverse).apply(null,arguments)},Wy=s._RotateWithOffset=function(){return(Wy=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Vy=s._Round=function(){return(Vy=s._Round=s.asm.Round).apply(null,arguments)},Uy=s._Rsqrt=function(){return(Uy=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Gy=s._ScatterNd=function(){return(Gy=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Hy=s._SelectV2=function(){return(Hy=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},jy=s._Sigmoid=function(){return(jy=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},qy=s._Sin=function(){return(qy=s._Sin=s.asm.Sin).apply(null,arguments)},Ky=s._Softmax=function(){return(Ky=s._Softmax=s.asm.Softmax).apply(null,arguments)},Xy=s._SparseFillEmptyRows=function(){return(Xy=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},Yy=s._SparseReshape=function(){return(Yy=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},Jy=s._SparseSegmentReduction=function(){return(Jy=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},Zy=s._Sqrt=function(){return(Zy=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Qy=s._Square=function(){return(Qy=s._Square=s.asm.Square).apply(null,arguments)},eb=s._SquaredDifference=function(){return(eb=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},tb=s._Step=function(){return(tb=s._Step=s.asm.Step).apply(null,arguments)},nb=s._StridedSlice=function(){return(nb=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},ab=s._Sub=function(){return(ab=s._Sub=s.asm.Sub).apply(null,arguments)},rb=s._Sum=function(){return(rb=s._Sum=s.asm.Sum).apply(null,arguments)},sb=s._Tan=function(){return(sb=s._Tan=s.asm.Tan).apply(null,arguments)},ib=s._Tanh=function(){return(ib=s._Tanh=s.asm.Tanh).apply(null,arguments)},ob=s._Tile=function(){return(ob=s._Tile=s.asm.Tile).apply(null,arguments)},lb=s._TopK=function(){return(lb=s._TopK=s.asm.TopK).apply(null,arguments)},ub=s._Transform=function(){return(ub=s._Transform=s.asm.Transform).apply(null,arguments)},pb=s._Transpose=function(){return(pb=s._Transpose=s.asm.Transpose).apply(null,arguments)},cb=s.__FusedMatMul=function(){return(cb=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},db=s._malloc=function(){return(db=s._malloc=s.asm.malloc).apply(null,arguments)},hb=s._free=function(){return(hb=s._free=s.asm.free).apply(null,arguments)},mb=s.___errno_location=function(){return(mb=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},fb=s._emscripten_main_thread_process_queued_calls=function(){return(fb=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},mh=s.stackSave=function(){return(mh=s.stackSave=s.asm.stackSave).apply(null,arguments)},fh=s.stackRestore=function(){return(fh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Pp=s.stackAlloc=function(){return(Pp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},gb=s.dynCall_iijjiiii=function(){return(gb=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},yb=s.dynCall_jiji=function(){return(yb=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Ee;var sl;function Op(G){this.name="ExitStatus",this.message="Program terminated with exit("+G+")",this.status=G}Kr=function G(){sl||Lp(),sl||(Kr=G)};function Lp(G){if(G=G||p,la>0||(Hd(),la>0))return;function ee(){sl||(sl=!0,s.calledRun=!0,!oe&&(jd(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),qd()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ee()},1)):ee()}s.run=Lp;function pk(G){ue=G,Ep()||(s.onExit&&s.onExit(G),oe=!0),c(G,new Op(G))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Lp();var il;l&&(il={uncaughtException:process.listeners("uncaughtException").filter(function(G){return!l.uncaughtException.indexOf(G)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(G){return!l.unhandledRejection.indexOf(G)>-1})});var ol;if(typeof r!="undefined")ol=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")ol=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(il){var bb=ol._dispose;ol._dispose=function(){bb(),il.uncaughtException.forEach(function(G){process.removeListener("uncaughtException",G)}),il.unhandledRejection.forEach(function(G){process.removeListener("unhandledRejection",G)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Nm=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},wc=class{refCount(e){return pa("refCount")}incRef(e){return pa("incRef")}timerAvailable(){return!0}time(e){return pa("time")}read(e){return pa("read")}readSync(e){return pa("readSync")}readToGPU(e,t){return pa("readToGPU")}numDataIds(){return pa("numDataIds")}disposeData(e,t){return pa("disposeData")}write(e,t,n){return pa("write")}move(e,t,n,a,r){return pa("move")}memory(){return pa("memory")}floatPrecision(){return pa("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return pa("dispose")}};function pa(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function KI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,qh(e,t,n)}function YF(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,qh(e,n,a),qh(t,n,a)}function sc(e,t,n){return Math.max(e,Math.min(t,n))}function JF(e){return e%2===0?e:e+1}function qh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function ZF(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function QF(e,t){let n=Math.random();return t*n+(1-n)*e}function eD(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function R(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function _n(e,t,n=""){R(gs(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function vi(e){R(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ri(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let a=0;a<e.length;++a)ri(e[a],t,n);else t.push(e);return t}function yt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function tD(e){return e.length===0}function gs(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function kl(e){return e%1===0}function nD(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function aD(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function rD(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return KI(t),t}function tc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function sD(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function iD(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Aa(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),R(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),R(e.every(a=>kl(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function XI(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Aa(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function YI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function JI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function ZI(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function QI(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function oD(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function hn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Bb(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function eS(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function es(e){return typeof e=="string"||e instanceof String}function tS(e){return typeof e=="boolean"}function nS(e){return typeof e=="number"}function Tm(e){return Array.isArray(e)?Tm(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":nS(e)?"float32":es(e)?"string":tS(e)?"bool":"float32"}function is(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Kh(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function Bl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function aS(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=aS(e+l*o,i,n,a)}return r}function yl(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return aS(0,e,t,n)}function Wx(e,t){let n=Cm(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Cm(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function lD(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return yl(e,new Float32Array(n));if(t==="int32")return yl(e,new Int32Array(n));if(t==="bool")return yl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Vx(e){e.forEach(t=>{R(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function uD(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function pD(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Ux(e){return e&&e.then&&typeof e.then=="function"}var vk="tfjsflags",rS=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=cD,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Ux(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);vk in e&&e[vk].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=hD(n,a)})}};function cD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(dD(t,a[0],a[1]),a.join("="))),t}function dD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function hD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function X(){return Gx}var Gx=null;function mD(e){Gx=e}var Tb;function sS(){if(Tb==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Tb=e}return Tb}function fD(){let e=sS();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Hx(e,t){let n=fD();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Wl="Abs",Vl="Acos",Ul="Acosh",ys="Add",wi="AddN",Gl="All",Hl="Any",ki="ArgMax",kc="ArgMin",jl="Asin",ql="Asinh",Kl="Atan",Xl="Atanh",Yl="Atan2",Ii="AvgPool",_m="AvgPoolGrad",Ic="AvgPool3D",Em="AvgPool3DGrad",Si="BatchMatMul",Jl="BatchToSpaceND",Am="Bincount",iS="BroadcastTo",$m="BroadcastArgs",Ni="Cast",Ti="Ceil",bs="ClipByValue",Fm="Complex",Sc="ComplexAbs",Zl="Concat",Ci="Conv2D",Dm="Conv2DBackpropFilter",_i="Conv2DBackpropInput",Nc="Conv3D",Rm="Conv3DBackpropFilterV2",Mm="Conv3DBackpropInputV2",Ei="Cos",Ai="Cosh",Ql="Cumprod",$i="Cumsum",eu="CropAndResize",Pm="DenseBincount",tu="DepthToSpace",Fi="DepthwiseConv2dNative",Om="DepthwiseConv2dNativeBackpropFilter",Lm="DepthwiseConv2dNativeBackpropInput",zm="Diag",Tc="Dilation2D",Xh="Dilation2DBackpropInput",Yh="Dilation2DBackpropFilter",Di="RealDiv",Bm="Einsum",Ri="Elu",Wm="EluGrad",nu="Erf",au="Equal",Mi="Exp",ru="ExpandDims",su="Expm1",Vm="FFT",Cc="Fill",iu="FlipLeftRight",Pi="Floor",Oi="FloorDiv",Li="FusedBatchNorm",ou="GatherV2",lu="GatherNd",uu="Greater",zi="GreaterEqual",Bi="Identity",Um="IFFT",Gm="Imag",pu="IsFinite",cu="IsInf",du="IsNan",Wi="LeakyRelu",hu="Less",mu="LessEqual",Hm="LinSpace",Vi="Log",fu="Log1p",gu="LogicalAnd",yu="LogicalNot",bu="LogicalOr",oS="LogicalXor",lS="LogSoftmax",gD="LowerBound",_c="LRN",jm="LRNGrad",Ui="Max",Gi="Maximum",Hi="MaxPool",qm="MaxPoolGrad",Ec="MaxPool3D",Km="MaxPool3DGrad",Xm="MaxPoolWithArgmax",ji="Mean",qi="Min",Ki="Minimum",Xi="MirrorPad",xu="Mod",Ym="Multinomial",Yi="Multiply",vu="Neg",wu="NotEqual",ku="NonMaxSuppressionV3",Iu="NonMaxSuppressionV4",Su="NonMaxSuppressionV5",Nu="OnesLike",Ji="OneHot",Tu="Pack",Zi="PadV2",yD="Pool",Qi="Pow",eo="Prelu",to="Prod",Ac="Range",Jm="Real",Cu="Reciprocal",no="Relu",_u="Reshape",ao="ResizeNearestNeighbor",Zm="ResizeNearestNeighborGrad",ro="ResizeBilinear",Qm="ResizeBilinearGrad",so="Relu6",io="Reverse",oo="Round",lo="Rsqrt",Eu="ScatterNd",ef="SearchSorted",Au="Select",$u="Selu",Fu="Slice",uo="Sin",Du="Sinh",Ru="Sign",po="Sigmoid",Mu="Softplus",co="Sqrt",ho="Sum",Pu="SpaceToBatchND",Ou="SplitV",mo="Softmax",$c="SparseFillEmptyRows",Lu="SparseReshape",Fc="SparseSegmentMean",Dc="SparseSegmentSum",tf="SparseToDense",fo="SquaredDifference",Rc="Square",zu="StridedSlice",Mc="StringNGrams",Pc="StringSplit",Oc="StringToHashBucketFast",go="Sub",yo="Tan",bo="Tanh",xs="Tile",Bu="TopK",Wu="Transform",Er="Transpose",nf="Unique",Vu="Unpack",Lc="UnsortedSegmentSum",bD="UpperBound",Uu="ZerosLike",vs="Step",Jh="FromPixels",Gu="RotateWithOffset",si="_FusedMatMul",ii="FusedConv2D",oi="FusedDepthwiseConv2D";function Qr(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(...e)}function xD(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.log(...e)}var Il=Hx("kernelRegistry",()=>new Map),ic=Hx("gradRegistry",()=>new Map);function Zh(e,t){let n=jx(e,t);return Il.get(n)}function Wb(e){return ic.get(e)}function Qh(e){let t=Il.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function zc(e){let{kernelName:t,backendName:n}=e,a=jx(t,n);Il.has(a)&&Qr(`The kernel '${t}' for backend '${n}' is already registered`),Il.set(a,e)}function uS(e){let{kernelName:t}=e;ic.has(t)&&X().getBool("DEBUG")&&Qr(`Overriding the gradient for '${t}'`),ic.set(t,e)}function vD(e,t){let n=jx(e,t);if(!Il.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Il.delete(n)}function wD(e){if(!ic.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);ic.delete(e)}function kD(e,t){Qh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});zc(a)})}function jx(e,t){return`${t}_${e}`}var w={};Fe(w,{arraysEqual:()=>gs,assert:()=>R,assertNonNegativeIntegerDimensions:()=>Vx,assertNonNull:()=>vi,assertShapesMatch:()=>_n,bytesFromStringArray:()=>eS,bytesPerElement:()=>Bb,checkConversionForErrors:()=>ZI,clamp:()=>sc,computeStrides:()=>Bl,createScalarValue:()=>_D,createShuffledIndices:()=>rD,decodeString:()=>em,distSquared:()=>eD,encodeString:()=>Wc,fetch:()=>AD,fingerPrint64:()=>CD,flatten:()=>ri,getArrayFromDType:()=>JI,getTypedArrayFromDType:()=>YI,hasEncodingLoss:()=>oD,hexToLong:()=>Bc,indexToLoc:()=>pD,inferDtype:()=>Tm,inferFromImplicitShape:()=>iD,isBoolean:()=>tS,isFunction:()=>is,isInt:()=>kl,isNumber:()=>nS,isPromise:()=>Ux,isScalarShape:()=>tD,isString:()=>es,isTypedArray:()=>hn,isValidDtype:()=>QI,locToIndex:()=>uD,makeOnesTypedArray:()=>Wx,makeZerosNestedTypedArray:()=>lD,makeZerosTypedArray:()=>Cm,nearestDivisor:()=>Kh,nearestLargerEven:()=>JF,now:()=>oc,parseAxisParam:()=>Aa,randUniform:()=>QF,repeatedTry:()=>sD,rightPad:()=>tc,shuffle:()=>KI,shuffleCombo:()=>YF,sizeFromShape:()=>yt,sizeToSquarishShape:()=>aD,squeezeShape:()=>XI,sum:()=>ZF,swap:()=>qh,tanh:()=>nD,toNestedArray:()=>yl,toTypedArray:()=>af});var wk=fs(DF()),Ks=wk.default||wk;function Bc(e){return Ks.fromString(e,!0,16)}var pS=Bc("c3a5c85c97cb3127"),js=Bc("b492b66fbe98f273"),kn=Bc("9ae16a3b2f90404f");function Vb(e){return e.xor(e.shru(47))}function cS(e,t,n){let a=e.slice(t,t+n);return Ks.fromBytes(Array.from(a),!0,!0)}function gt(e,t){return cS(e,t,8)}function kk(e,t){return cS(e,t,4)}function Zt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function as(e,t,n=Bc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function ID(e,t,n,a,r,s){r=r.add(e),s=Zt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Zt(r,44)),[r.add(a),s.add(i)]}function Sh(e,t,n,a){return ID(gt(e,t),gt(e,t+8),gt(e,t+16),gt(e,t+24),n,a)}function SD(e,t=e.length){if(t>=8){let n=kn.add(t*2),a=gt(e,0).add(kn),r=gt(e,t-8),s=Zt(r,37).mul(n).add(a),i=Zt(a,25).add(r).mul(n);return as(s,i,n)}if(t>=4){let n=kn.add(t*2),a=kk(e,0);return as(a.shl(3).add(t),kk(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return Vb(kn.mul(s).xor(pS.mul(i))).mul(kn)}return kn}function ND(e,t=e.length){let n=kn.add(t*2),a=gt(e,0).mul(js),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(kn);return as(Zt(a.add(r),43).add(Zt(s,30)).add(i),a.add(Zt(r.add(kn),18)).add(s),n)}function TD(e,t=e.length){let n=kn.add(t*2),a=gt(e,0).mul(kn),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(kn),o=Zt(a.add(r),43).add(Zt(s,30)).add(i),l=as(o,a.add(Zt(r.add(kn),18)).add(s),n),u=gt(e,16).mul(n),p=gt(e,24),d=o.add(gt(e,t-32)).mul(n),c=l.add(gt(e,t-24)).mul(n);return as(Zt(u.add(p),43).add(Zt(d,30)).add(c),u.add(Zt(p.add(a),18)).add(d),n)}function CD(e,t=e.length){let n=Ks.fromNumber(81,!0);if(t<=32)return t<=16?SD(e,t):ND(e,t);if(t<=64)return TD(e,t);let a=n,r=n.mul(js).add(113),s=Vb(r.mul(kn).add(113)).mul(kn),i=[Ks.UZERO,Ks.UZERO],o=[Ks.UZERO,Ks.UZERO];a=a.mul(kn).add(gt(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Zt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(js),r=Zt(r.add(i[1]).add(gt(e,l+48)),42).mul(js),a=a.xor(o[1]),r=r.add(i[0]).add(gt(e,l+40)),s=Zt(s.add(o[0]),33).mul(js),i=Sh(e,l,i[1].mul(js),a.add(o[0])),o=Sh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=js.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Zt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(d),r=Zt(r.add(i[1]).add(gt(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(gt(e,l+40))),s=Zt(s.add(o[0]),33).mul(d),i=Sh(e,l,i[1].mul(d),a.add(o[0])),o=Sh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],as(as(i[0],o[0],d).add(Vb(r).mul(pS)).add(s),as(i[1],o[1],d).add(a),d)}function _D(e,t){return t==="string"?Wc(e):af([e],t)}function ED(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function af(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ri(e)),X().getBool("DEBUG")&&ZI(e,t),ED(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function oc(){return X().platform.now()}function AD(e,t){return X().platform.fetch(e,t)}function Wc(e,t="utf-8"){return t=t||"utf-8",X().platform.encode(e,t)}function em(e,t="utf-8"){return t=t||"utf-8",X().platform.decode(e,t)}var $D=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new DD)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=oc();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:oc()-i})}if(X().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{FD(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function FD(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var DD=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?tc(`${a}ms`,9):a.error,o=tc(e,25),l=t.rank,u=t.size,p=tc(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function RD(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function MD(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!gs(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var Ik=20,Wp=3,Cb=7;function PD(e,t,n,a){let r=Bl(t),s=OD(e,t,n,r),i=t.length,o=Ph(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function OD(e,t,n,a){let r=yt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?jp(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],Hp(l[p+d],0,n).length)}return i}function Hp(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Cb))} + ${parseFloat(e[1].toFixed(Cb))}j`:es(e)?a=`'${e}'`:n==="bool"?a=dS(e):a=parseFloat(e.toFixed(Cb)).toString(),tc(a,t)}function dS(e){return e===0?"false":"true"}function Ph(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=jp(e);return[Hp(f[0],0,n)]}return n==="bool"?[dS(e[0])]:[e[0].toString()]}if(l===1){if(o>Ik){let g=Wp*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-Wp)*i,o*i));return n==="complex64"&&(y=jp(y),b=jp(b)),["["+y.map((x,v)=>Hp(x,r[v],n)).join(", ")+", ..., "+b.map((x,v)=>Hp(x,r[o-Wp+v],n)).join(", ")+"]"]}let f=n==="complex64"?jp(e):Array.from(e);return["["+f.map((g,y)=>Hp(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>Ik){for(let f=0;f<Wp;f++){let g=f*d,y=g+d;c.push(...Ph(e.slice(g,y),u,n,p,r,!1))}c.push("...");for(let f=o-Wp;f<o;f++){let g=f*d,y=g+d;c.push(...Ph(e.slice(g,y),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,y=g+d;c.push(...Ph(e.slice(g,y),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function jp(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var jt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=yt(e),n!=null){let a=n.length;R(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||JI(t,this.size),this.strides=Bl(e)}set(e,...t){t.length===0&&(t=[0]),R(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Va().makeTensor(this.values,this.shape,this.dtype)}},Va=null,ml=null,LD=null;function zD(e){Va=e}function BD(e){ml=e}function WD(e){LD=e}var Ae=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=yt(e),this.strides=Bl(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return ml.buffer(this.shape,this.dtype,e)}bufferSync(){return ml.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return yl(this.shape,e,this.dtype==="complex64")}arraySync(){return yl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Va().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>em(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Va().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Va().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>em(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Va().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Va().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return ml.print(this,e)}clone(){return this.throwIfDisposed(),ml.clone(this)}toString(e=!1){let t=this.dataSync();return PD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),ml.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Va().makeVariable(this,e,t,n)}};Object.defineProperty(Ae,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ne(){return Hx("Tensor",()=>Ae)}ne();var os=class extends Ae{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!gs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Va().disposeTensor(this),this.dataId=e.dataId,Va().incRef(this,null)}dispose(){Va().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(os,Symbol.hasInstance,{value:e=>e instanceof Ae&&e.assign!=null&&e.assign instanceof Function});var ja={};Fe(ja,{assertTypesMatch:()=>hS,getTensorsInContainer:()=>qx,isTensorInList:()=>UD,makeTypesMatch:()=>At});var Ub;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Ub||(Ub={}));var Gb;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Gb||(Gb={}));var Hb;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Hb||(Hb={}));var jb;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(jb||(jb={}));var qb;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(qb||(qb={}));var VD={float32:jb,int32:Gb,bool:Hb,complex64:qb};function ma(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return VD[e][t]}function rf(e){return ma(e,"int32")}function At(e,t){if(e.dtype===t.dtype)return[e,t];let n=ma(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function hS(e,t){R(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function UD(e,t){return t.some(n=>n.id===e.id)}function qx(e){let t=[];return mS(e,t,new Set),t}function mS(e,t,n){if(e==null)return;if(e instanceof Ae){t.push(e);return}if(!GD(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),mS(s,t,n))}}function GD(e){return Array.isArray(e)||typeof e=="object"}function _b(e){return e.kernelName!=null}var Sk=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},lc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Sk}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Qr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new $D(this.backendInstance),!0}setupRegisteredKernels(){Qh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Qh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof wc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,Qr(`Initialization of backend ${e} failed`),Qr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Qr(`Initialization of backend ${e} failed`),Qr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return lc.nextTensorId++}nextVariableId(){return lc.nextVariableId++}clone(e){let t=L.runKernel(Bi,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return L.runKernel(Ni,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,Zh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=_b(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(_b(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=Zh(h,this.backendName);R(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(v=>v.rank!=null?v:this.makeTensorFromTensorInfo(v));if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=_b(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Wb(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(R(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&es(e[0])&&(r=e.map(o=>Wc(o)));let s=a.write(r,t,n),i=new Ae(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=eS(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,a)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new Ae(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new os(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Bb(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof os||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Bb(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Wb(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=Cm(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=qx(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(R(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));R(r instanceof Ae,()=>"The result y returned by f() must be a tensor.");let s=RD(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?HD(r.shape):n,MD(i,s,l=>this.tidy(l),jD);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return R(is(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{R(t.every(i=>i instanceof Ae),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),R(n.value instanceof Ae,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),R(is(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];R(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),R(u.every(d=>d instanceof Ae),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=oc(),n=await this.backend.time(e);return n.wallMs=oc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Sk;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};lc.nextTensorId=0;lc.nextVariableId=0;function HD(e){let t=Wx(yt(e),"float32");return L.makeTensor(t,e,"float32")}function fS(){let e=sS();if(e._tfengine==null){let t=new rS(e);e._tfengine=new lc(t)}return mD(e._tfengine.ENV),zD(()=>e._tfengine),e._tfengine}var L=fS();function jD(e,t){let n={a:e,b:t};return L.runKernel(ys,n)}var Vc={};Fe(Vc,{isBrowser:()=>gS,isMobile:()=>XD,mockIsMobile:()=>KD});function qD(){return typeof navigator!="undefined"&&navigator!=null}var Kb;function KD(e){Kb=e}function XD(e){if(Kb!==void 0)return Kb;if(e||qD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function gS(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var _a=X();_a.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});_a.registerFlag("IS_BROWSER",()=>gS());_a.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");_a.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));_a.registerFlag("PROD",()=>!1);_a.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>_a.getBool("DEBUG"));_a.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);_a.registerFlag("IS_TEST",()=>!1);_a.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);_a.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);_a.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function cr(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&X().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&yS(e,a,[]),a}function yS(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){R(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}R(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),R(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)yS(e[r],a,n.concat(r))}function Nk(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function E(e,t,n,a="numeric"){if(e instanceof Ae)return Nk(a,e.dtype,t,n),e;let r=Tm(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),Nk(a,r,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=cr(e,r);!hn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?af(e,r):ri(e,[],!0);return L.makeTensor(i,s,r)}function uc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>E(r,`${t}[${s}]`,n,a))}var Kx="__op";function z(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Kx;let r=(...s)=>{L.startScope(n);try{let i=a(...s);return Ux(i)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(i),i}catch(i){throw L.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function YD(e,t){let n=E(e,"real","complex"),a=E(t,"imag","complex");_n(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return L.runKernel(Fm,r)}var $r=z({complex_:YD});function ws(e,t,n,a){if(a==null&&(a=Tm(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Vx(t);let r=yt(t),s=yt(n);R(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==yt(t.slice(i)):!0;R(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?af(e,a):ri(e,[],!0),L.makeTensor(e,t,a)}function Bn(e,t,n){let a=cr(e,n);return ws(e,t,a,n)}var Xb={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},tm=4;async function JD(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,y)=>g+y.length,0)+tm*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let y=c[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=tm,m.set(y,f),f+=y.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:ZD(s),specs:n}}function bS(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=yt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Xb[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=rR()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=yt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+tm))[0];r+=tm;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=Xb[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let y=0;y<h.length;y++)h[y]=p[y*2],m[y]=p[y*2+1];let f=Bn(h,l,"float32"),g=Bn(m,l,"float32");n[i]=$r(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=Bn(p,l,o))}return n}function ZD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Xx=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Tk(e){return Xx?Buffer.byteLength(e):new Blob([e]).size}function QD(e){if(Xx)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function eR(e){if(Xx){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Yx(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function Ck(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function xS(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Jx(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[a,r]=await t(e.weightsManifest);n.weightSpecs=a,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Uc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Tk(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Tk(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function tR(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)===0;)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function nR(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function aR(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function rR(){let e=tR(),t=nR(),n=aR();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Ft=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ft.instance==null&&(Ft.instance=new Ft),Ft.instance}static registerSaveRouter(e){Ft.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ft.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ft.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ft.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Ft.getInstance().loadRouters:Ft.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},sR=e=>Ft.registerSaveRouter(e),iR=e=>Ft.registerLoadRouter(e),oR=e=>Ft.getSaveHandlers(e),lR=(e,t)=>Ft.getLoadHandlers(e,t),Yb="tensorflowjs",Jb=1,Zs="models_store",ts="model_info_store";function vS(){if(!X().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Zb(e){let t=e.result;t.createObjectStore(Zs,{keyPath:"modelPath"}),t.createObjectStore(ts,{keyPath:"modelPath"})}var li=class{constructor(e){if(this.indexedDB=vS(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Yb,Jb);r.onupgradeneeded=()=>Zb(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Zs,"readonly"),o=i.objectStore(Zs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Uc(t),o=s.transaction(ts,"readwrite"),l=o.objectStore(ts),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(Zs,"readwrite");let d=p.objectStore(Zs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=c=>{l=o.objectStore(ts);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(d.error)),h.onerror=m=>(s.close(),a(d.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};li.URL_SCHEME="indexeddb://";var wS=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(li.URL_SCHEME)?uR(e.slice(li.URL_SCHEME.length)):null;Ft.registerSaveRouter(wS);Ft.registerLoadRouter(wS);function uR(e){return new li(e)}function pR(e){return e.startsWith(li.URL_SCHEME)?e.slice(li.URL_SCHEME.length):e}var cR=class{constructor(){this.indexedDB=vS()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Yb,Jb);n.onupgradeneeded=()=>Zb(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(ts,"readonly"),s=r.objectStore(ts).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=pR(e),new Promise((t,n)=>{let a=this.indexedDB.open(Yb,Jb);a.onupgradeneeded=()=>Zb(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(ts,"readwrite"),i=s.objectStore(ts),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Zs,"readwrite");let d=l.objectStore(Zs).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Tr="/",fl="tensorflowjs_models",kS="info",dR="model_topology",hR="weight_specs",mR="weight_data",fR="model_metadata";function IS(e){return{info:[fl,e,kS].join(Tr),topology:[fl,e,dR].join(Tr),weightSpecs:[fl,e,hR].join(Tr),weightData:[fl,e,mR].join(Tr),modelMetadata:[fl,e,fR].join(Tr)}}function SS(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function gR(e){let t=e.split(Tr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Tr)}function yR(e){return e.startsWith(ui.URL_SCHEME)?e.slice(ui.URL_SCHEME.length):e}var ui=class{constructor(e){if(!X().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=IS(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Uc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,QD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw SS(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=eR(s),t}};ui.URL_SCHEME="localstorage://";var NS=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ui.URL_SCHEME)?bR(e.slice(ui.URL_SCHEME.length)):null;Ft.registerSaveRouter(NS);Ft.registerLoadRouter(NS);function bR(e){return new ui(e)}var xR=class{constructor(){R(X().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),R(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=fl+Tr,n=Tr+kS;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=gR(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=yR(e);let t=IS(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return SS(t),n}},bl="://",On=class{constructor(){this.managers={}}static getInstance(){return On.instance==null&&(On.instance=new On),On.instance}static registerManager(e,t){R(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(bl)&&(e=e.slice(0,e.indexOf(bl))),R(e.length>0,()=>"scheme must not be an empty string.");let n=On.getInstance();R(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=On.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(On.getInstance().managers)}};function Oh(e){if(e.indexOf(bl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${On.getSchemes().join(",")}`);return{scheme:e.split(bl)[0],path:e.split(bl)[1]}}async function TS(e,t,n=!1){R(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Ft.getLoadHandlers(e);R(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),R(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Ft.getSaveHandlers(t);R(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),R(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Oh(e).scheme,l=Oh(e).path,u=o===Oh(e).scheme,p=await r.load();n&&u&&await On.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await On.getManager(o).removeModel(l),d.modelArtifactsInfo}async function vR(){let e=On.getSchemes(),t={};for(let n of e){let a=await On.getManager(n).listModels();for(let r in a){let s=n+bl+r;t[s]=a[r]}}return t}async function wR(e){let t=Oh(e);return On.getManager(t.scheme).removeModel(t.path)}async function kR(e,t){return TS(e,t,!1)}async function IR(e,t){return TS(e,t,!0)}var SR=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(X().get("IS_BROWSER")){X().setPlatform("browser",new SR);try{On.registerManager(ui.URL_SCHEME,new xR)}catch(e){}try{On.registerManager(li.URL_SCHEME,new cR)}catch(e){}}var NR={importFetch:()=>RF()},Eb,TR=class{constructor(){this.util=MF(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return X().global.fetch!=null?X().global.fetch(e,t):(Eb==null&&(Eb=NR.importFetch()),Eb(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};X().get("IS_NODE")&&!X().get("IS_BROWSER")&&X().setPlatform("node",new TR);function ze(e,t="float32",n){return t=t||"float32",Vx(e),new jt(e,t,n)}function CR(e,t){let n=E(e,"x","cast");if(!QI(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return L.runKernel(Ni,a,r)}var le=z({cast_:CR});function _R(e){let t={x:E(e,"x","clone","string_or_numeric")};return L.runKernel(Bi,t)}var ur=z({clone_:_R});function Zx(e,t=!1){console.log(e.toString(t))}fS();var ER={buffer:ze,cast:le,clone:ur,print:Zx};BD(ER);var Tn={};Fe(Tn,{browserFiles:()=>PR,browserHTTPRequest:()=>WR,concatenateArrayBuffers:()=>Yx,copyModel:()=>kR,decodeWeights:()=>bS,encodeWeights:()=>JD,fromMemory:()=>UR,fromMemorySync:()=>$S,getLoadHandlers:()=>lR,getModelArtifactsForJSON:()=>Jx,getModelArtifactsInfoForJSON:()=>Uc,getSaveHandlers:()=>oR,http:()=>ev,isHTTPScheme:()=>Qb,listModels:()=>vR,loadWeights:()=>OR,moveModel:()=>IR,registerLoadRouter:()=>iR,registerSaveRouter:()=>sR,removeModel:()=>wR,weightsLoaderFactory:()=>_S,withSaveHandler:()=>GR,withSaveHandlerSync:()=>HR});var AR="model",$R=".json",FR=".weights.bin";function _k(e){return new Promise(t=>setTimeout(t)).then(e)}var Sl=class{constructor(e){if(!X().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Sl.URL_SCHEME)&&(e=e.slice(Sl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=AR),this.modelJsonFileName=e+$R,this.weightDataFileName=e+FR}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=xS(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await _k(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await _k(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Uc(e)}}}};Sl.URL_SCHEME="downloads://";var DR=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=Jx(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Yx(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>Ck(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=Ck(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},RR=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Sl.URL_SCHEME)?MR(e.slice(Sl.URL_SCHEME.length)):null;Ft.registerSaveRouter(RR);function MR(e="model"){return new Sl(e)}function PR(e){return new DR(e)}function Ek(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){R(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){R(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),R(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),R(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function CS(e,t){t==null&&(t={});let n=t.fetchFunc==null?X().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await Ek(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Ek(i,t.onProgress,o,l)}async function OR(e,t="",n,a){return _S(r=>CS(r,{requestInit:a}))(e,t,n)}function _S(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=Xb[y]*yt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((v,I)=>{v===g.name&&(x(),i[I]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=p[c+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let v=new Uint8Array(p[c+x]);y.set(v,b),b+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),I=bS(v,[x.manifestEntry]);for(let T in I)d[T]=I[T]}),c+=m}),d}}var LR="application/octet-stream",zR="application/json",Qx=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(R(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=X().platform.fetch,R(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&R(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=xS(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:zR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:LR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Uc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Jx(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=BR(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await CS(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Yx(l)]}};Qx.URL_SCHEME_REGEX=/^https?:\/\//;function BR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Qb(e){return e.match(Qx.URL_SCHEME_REGEX)!=null}var ES=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Qb(a)):n=Qb(e),n)return ev(e,t)}return null};Ft.registerSaveRouter(ES);Ft.registerLoadRouter(ES);function ev(e,t){return new Qx(e,t)}function WR(e,t){return ev(e,t)}var Ab=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},AS=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},VR=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function UR(e,t,n,a){let r=arguments;return new VR($S(...r))}function $S(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Ab(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ab({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ab({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function GR(e){return new AS(e)}function HR(e){return new AS(e)}var FS={};Fe(FS,{confusionMatrix:()=>dM});function jR(e,t,n=!1,a=!1){let r=E(e,"a","matMul"),s=E(t,"b","matMul");[r,s]=At(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return L.runKernel(Si,i,o)}var Re=z({matMul_:jR});function qR(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:E(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return L.runKernel(Ji,r,s)}var Nl=z({oneHot_:qR});function KR(){X().set("PROD",!0)}function XR(){X().set("DEBUG",!0)}function YR(){X().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function tv(e){X().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}WD(tv);function JR(){L.disposeVariables()}function sr(){return L}function nm(){return L.memory()}function ZR(e){return L.profile(e)}function O(e,t){return L.tidy(e,t)}function Me(e){qx(e).forEach(t=>t.dispose())}function Qt(e){return L.keep(e)}function QR(e){return L.time(e)}function eM(e){return L.setBackend(e)}function tM(){return L.ready()}function nM(){return L.backendName}function aM(e){L.removeBackend(e)}function rM(e){return L.findBackend(e)}function sM(e){return L.findBackendFactory(e)}function sf(e,t,n=1){return L.registerBackend(e,t,n)}function DS(){return L.backend}function iM(e,t){X().setPlatform(e,t)}function oM(e){let t={input:E(e,"input","imag")};return L.runKernel(Gm,t)}var Gc=z({imag_:oM});function lM(e){let t={x:E(e,"x","neg")};return L.runKernel(vu,t)}var kt=z({neg_:lM});function uM(e){let t={input:E(e,"input","real")};return L.runKernel(Jm,t)}var Tl=z({real_:uM});function pM(e,t,n){let a=E(e,"x","transpose");if(t==null&&(t=a.shape.map((i,o)=>o).reverse()),R(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of perm ${t}.`),t.forEach(i=>{R(i>=0&&i<a.rank,()=>`All entries in 'perm' must be between 0 and ${a.rank-1} but got ${t}`)}),a.rank<=1)return a.clone();let r={x:a},s={perm:t};return a.dtype==="complex64"?O(()=>{let i=Tl(a),o=Gc(a);return i=L.runKernel(Er,{x:i},s),o=L.runKernel(Er,{x:o},s),n&&(o=kt(o)),$r(i,o)}):L.runKernel(Er,r,s)}var $e=z({transpose_:pM});function cM(e,t,n){let a=E(e,"labels","confusionMatrix"),r=E(t,"predictions","confusionMatrix");R(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),R(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),R(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),R(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),R(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Nl(le(a,"int32"),n),i=Nl(le(r,"int32"),n),o=$e(s),l=Re(o,i);return le(l,"int32")}var dM=z({confusionMatrix_:cM}),Hu={};Fe(Hu,{assertAndGetBroadcastShape:()=>ct,getBroadcastDims:()=>RS,getReductionAxes:()=>Bt});function RS(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Bt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function ct(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}var xo={};Fe(xo,{fromPixels:()=>xM,fromPixelsAsync:()=>yM,toPixels:()=>bM});function Hc(e,t,n){if(vi(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=cr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}var Gs;function MS(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(Zh(Jh,L.backendName)!=null){let c={pixels:e},h={numChannels:t};return L.runKernel(Jh,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Gs==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Gs=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Gs=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Gs.canvas.width=l,Gs.canvas.height=u,Gs.drawImage(e,0,0,l,u),p=Gs.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return Hc(d,[u,l,t],"int32")}function hM(e){return e!=null&&e.data instanceof Uint8Array}function mM(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function fM(e){return e!=null&&e.width!==0&&e.height!==0}function gM(e){return mM()&&!(e instanceof ImageBitmap)&&fM(e)&&!hM(e)}async function yM(e,t=3){let n=null;if(X().getBool("WRAP_TO_IMAGEBITMAP")&&gM(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return MS(n,t)}async function bM(e,t){let n=E(e,"img","toPixels");if(!(e instanceof Ae)){let u=n;n=le(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var xM=z({fromPixels_:MS}),nv={};Fe(nv,{prepareAndValidate:()=>PS});function PS(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(yt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...Bl(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var av={};Fe(av,{calculateShapes:()=>OS,validateInput:()=>sv,validateUpdateShape:()=>rv});function rv(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function sv(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}rv(n,t,e)}function OS(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=yt(t.shape)/o,u=[...Bl(n.slice(0,r)),1],p=yt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}var qt={};Fe(qt,{assertParamsValid:()=>wM,computeFlatOffset:()=>TM,computeOutShape:()=>IM,getNormalizedAxes:()=>SM,isSliceContinous:()=>NM,maskToAxes:()=>kM,parseSliceParams:()=>jS,sliceInfo:()=>CM,startForAxis:()=>GS,startIndicesWithElidedDims:()=>WS,stopForAxis:()=>HS,stopIndicesWithElidedDims:()=>VS,stridesForAxis:()=>US,stridesWithElidedDims:()=>LS});var ex=-2,vM=-1;function wM(e,t,n){let a=e.shape.length;R(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),R(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)R(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function kM(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function IM(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function LS(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function zS(e,t,n){return n<=e?n:n-(t-1)}function BS(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function SM(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=WS(i,h,m,a,e),d=VS(o,h,m,r,e),c=LS(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=GS(i,a,s,e,h,l),d[h]=HS(o,r,s,e,h,l),c[h]=US(s,h,l);return{begin:p,end:d,strides:c}}function WS(e,t,n,a,r){let s=[...r],i=BS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=zS(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function VS(e,t,n,a,r){let s=[...r],i=BS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=zS(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=sc(0,s[o],r[o])}return s}function US(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function GS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=sc(0,i,l-1),i}function HS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=sc(0,i,l):i=sc(-1,i,l-1),i}function NM(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function TM(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function jS(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{R(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(R(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function CM(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let b=0;b<d.dims;b++)p&&(1<<b&o)!==0&&d.numAddAxisAfterEllipsis++,1<<b&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};_M(d,c);let h=!0,m=!0,f=!0,g=[],y=[];for(let b=0;b<e.length;++b){if(c.strides[b]===0)throw Error(`strides[${b}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<b),v=e[b];if(v===-1){g.push(x?1:-1);continue}let I=[c.beginMask&1<<b,c.endMask&1<<b],T=[c.strides[b]>0?0:-1,c.strides[b]>0?v:v-1];if(x&&c.strides[b]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[b]===1;let _=!!(c.beginMask&1<<b&&c.endMask&1<<b);if(c.beginValid&&c.endValid){if(x){let $=c.begin[b]<0?v+c.begin[b]:c.begin[b];if(c.begin[b]=$,c.end[b]=c.begin[b]+1,$<0||$>=v)throw Error(`slice index ${c.begin[b]} of dimension ${b} out of bounds.`)}else c.begin[b]=Ak(c.begin[b],0,c.strides[b],v,I,T),c.end[b]=Ak(c.end[b],1,c.strides[b],v,I,T);let P=c.strides[b]===1&&c.begin[b]===0&&c.end[b]===v;h=h&&P,m=m&&(b===0&&c.strides[b]===1||P)}else h=h&&c.strides[b]===1&&_,m=m&&(b===0&&c.strides[b]===1||_);let A,F=!1;if(c.beginValid&&c.endValid?(A=c.end[b]-c.begin[b],F=!0):x?(A=1,F=!0):_&&v>=0&&(c.strides[b]<0?A=-v:A=v,F=!0),F){let P;A===0||A<0!=c.strides[b]<0?P=0:P=Math.trunc(A/c.strides[b])+(A%c.strides[b]!==0?1:0),g.push(P)}else g.push(-1)}for(let b=0;b<c.finalShapeGatherIndices.length;++b){let x=c.finalShapeGatherIndices[b];x>=0?y.push(g[x]):x===ex&&y.push(1)}return{finalShapeSparse:y.filter((b,x)=>c.finalShapeGatherIndices[x]!==ex),finalShape:y,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function _M(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(ex),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(vM),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function Ak(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var se={};Fe(se,{Serializable:()=>qS,SerializationMap:()=>Xs,registerClass:()=>ks});var qS=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Xs=class{constructor(){this.classNameMap={}}static getMap(){return Xs.instance==null&&(Xs.instance=new Xs),Xs.instance}static register(e){Xs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ks(e){R(e.className!=null,()=>"Class being registered does not have the static className property defined."),R(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),R(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Xs.register(e)}var KS={};Fe(KS,{TEST_EPSILON_FLOAT16:()=>XS,encodeStrings:()=>YS,expectArrayBuffersEqual:()=>MM,expectArraysClose:()=>AM,expectArraysEqual:()=>FM,expectNumbersClose:()=>DM,expectPromiseToFail:()=>$M,expectValuesInRange:()=>RM,testEpsilon:()=>iv});var EM=.001,XS=.1;function AM(e,t,n){return n==null&&(n=iv()),tx(e,t,(a,r)=>ov(a,r,n))}function iv(){return L.backend.floatPrecision()===32?EM:XS}function tx(e,t,n){let a=!0;if((hn(e)||hn(t))&&(a=!1),hn(e)&&hn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=cr(e),o=cr(t);if(!gs(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=hn(e)?e:ri(e),s=hn(t)?t:ri(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}}function $M(e,t){e().then(()=>t.fail(),()=>t())}function FM(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return es(e)||es(e[0])||es(t)||es(t[0])?tx(e,n,(a,r)=>a==r):tx(e,t,(a,r)=>ov(a,r,0))}function DM(e,t,n){if(n==null&&(n=iv()),!ov(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function ov(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function RM(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function MM(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function YS(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?YS(n):e[t]=Wc(n)}return e}var PM="3.19.0";function OM(e,t){let n=E(e,"a","add"),a=E(t,"b","add");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(ys,r)}var Z=z({add_:OM});function LM(e,t){let n=E(e,"a","floorDiv"),a=E(t,"b","floorDiv");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Oi,r)}var of=z({floorDiv_:LM});function zM(e,t){let n=E(e,"a","div"),a=E(t,"b","div");if([n,a]=At(n,a),n.dtype==="int32"&&a.dtype==="int32")return of(n,a);let r={a:n,b:a},s={};return L.runKernel(Di,r,s)}var fe=z({div_:zM});function BM(e,t){let n=E(e,"a","mul"),a=E(t,"b","mul");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Yi,r)}var B=z({mul_:BM});function WM(e){let t=E(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(Sc,n)}else{let n={x:t};return L.runKernel(Wl,n)}}var Lt=z({abs_:WM});function VM(e){let t={x:E(e,"x","acos")};return L.runKernel(Vl,t)}var lv=z({acos_:VM});function UM(e){let t={x:E(e,"x","acosh")};return L.runKernel(Ul,t)}var uv=z({acosh_:UM});function GM(e){R(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),R(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>E(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!gs(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return L.runKernel(wi,a)}var JS=z({addN_:GM});function HM(e,t=null,n=!1){let a={x:E(e,"x","all","bool")},r={axis:t,keepDims:n};return L.runKernel(Gl,a,r)}var lf=z({all_:HM});function jM(e,t=null,n=!1){let a={x:E(e,"x","any","bool")},r={axis:t,keepDims:n};return L.runKernel(Hl,a,r)}var pc=z({any_:jM});function qM(e,t=0){let n={x:E(e,"x","argMax")},a={axis:t};return L.runKernel(ki,n,a)}var pi=z({argMax_:qM});function KM(e,t=0){let n={x:E(e,"x","argMin")},a={axis:t};return L.runKernel(kc,n,a)}var pv=z({argMin_:KM});function XM(e){let t={x:E(e,"x","asin")};return L.runKernel(jl,t)}var cv=z({asin_:XM});function YM(e){let t={x:E(e,"x","asinh")};return L.runKernel(ql,t)}var dv=z({asinh_:YM});function JM(e){let t={x:E(e,"x","atan")};return L.runKernel(Kl,t)}var hv=z({atan_:JM});function ZM(e,t){let n=E(e,"a","atan2"),a=E(t,"b","atan2");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Yl,r)}var mv=z({atan2_:ZM});function QM(e){let t={x:E(e,"x","atanh")};return L.runKernel(Xl,t)}var fv=z({atanh_:QM});function eP(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=eN(r);return jc(e,o,n,s,a,null,null,l)}function ZS(e,t,n,a,r,s,i="channelsLast"){let[o,l]=am(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return jc(e,u,n,a,r,s,!1,i)}function tP(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=nx(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return QS(e,p,n,a,r,!1,d,s)}function jc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=am(n),[y,b]=am(a),x=xl(c,y),v=xl(h,b),{padInfo:I,outHeight:T,outWidth:_}=rP(r,u,p,f,g,x,v,s,o),A=i?m*d:m,F;return o==="channelsFirst"?F=[l,A,T,_]:o==="channelsLast"&&(F=[l,T,_,A]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:_,outChannels:A,padInfo:I,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:e,outShape:F,filterShape:t}}function QS(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=nx(n),[v,I,T]=nx(a),_=xl(h,v),A=xl(m,I),F=xl(f,T),{padInfo:P,outDepth:$,outHeight:S,outWidth:M}=sP(r,u,p,d,y,b,x,_,A,F,o),U=s?g*c:g,j;return i==="channelsFirst"?j=[l,U,$,S,M]:i==="channelsLast"&&(j=[l,$,S,M,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:$,outHeight:S,outWidth:M,outChannels:U,padInfo:P,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:_,effectiveFilterHeight:A,effectiveFilterWidth:F,dilationDepth:v,dilationHeight:I,dilationWidth:T,inShape:e,outShape:j,filterShape:t}}function nP(e,t,n,a,r){a==null&&(a=gv(e,t,n));let s=e[0],i=e[1],o=ti((s-t+2*a)/n+1,r),l=ti((i-t+2*a)/n+1,r);return[o,l]}function aP(e,t,n,a,r,s){r==null&&(r=gv(e,t,a));let i=e[0],o=e[1],l=e[2],u=ti((i-t+2*r)/a+1,s),p=ti((o-t+2*r)/a+1,s),d=ti((l-t+2*r)/a+1,s);return[u,p,d,n]}function gv(e,t,n,a=1){let r=xl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function am(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function nx(e){return typeof e=="number"?[e,e,e]:e}function xl(e,t){return t<=1?e:e+(e-1)*(t-1)}function rP(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=nP([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),y=h-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=ti((t-s+c+h)/a+1,o),d=ti((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function sP(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=aP([t,n,a,1],o,1,r,e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+u-a,b=Math.floor(f/2),x=f-b,v=Math.floor(g/2),I=g-v,T=Math.floor(y/2),_=y-T;d={top:v,bottom:I,left:T,right:_,front:b,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function ti(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ls(e){let[t,n,a]=am(e);return t===1&&n===1&&a===1}function mr(e,t){return ls(e)||ls(t)}function eN(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function En(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")R(kl(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{R(kl(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function iP(e,t){let n={x:E(e,"x","reshape","string_or_numeric")},a={shape:t};return L.runKernel(_u,n,a)}var W=z({reshape_:iP});function oP(e,t,n,a,r){let s=E(e,"x","avgPool","float32"),i=1;R(mr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),En("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(Ii,u,p);return d=le(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ga=z({avgPool_:oP});function lP(e,t,n,a,r,s="NDHWC"){let i=E(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),En("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(Ic,u,p);return d=le(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var yv=z({avgPool3d_:lP});function uP(e,t=0){R(e.length>=1,()=>"Pass at least one tensor to concat");let n=uc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return ur(n[0]);let a=n,r={axis:t};return L.runKernel(Zl,a,r)}var Qe=z({concat_:uP});function pP(e){let t={x:E(e,"x","sigmoid","float32")};return L.runKernel(po,t)}var ha=z({sigmoid_:pP});function cP(e,t,n){let a=E(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return L.runKernel(Fu,r,s)}var He=z({slice_:cP});function dP(e){let t={x:E(e,"x","tanh","float32")};return L.runKernel(bo,t)}var ci=z({tanh_:dP});function hP(e,t,n,a,r,s){let i=E(e,"forgetBias","basicLSTMCell"),o=E(t,"lstmKernel","basicLSTMCell"),l=E(n,"lstmBias","basicLSTMCell"),u=E(a,"data","basicLSTMCell"),p=E(r,"c","basicLSTMCell"),d=E(s,"h","basicLSTMCell"),c=Qe([u,d],1),h=Re(c,o),m=Z(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=He(m,[0,0],y),x=He(m,[0,g],y),v=He(m,[0,g*2],y),I=He(m,[0,g*3],y),T=Z(B(ha(b),ci(x)),B(p,ha(Z(i,v)))),_=B(ci(T),ha(I));return[T,_]}var tN=z({basicLSTMCell_:hP});function mP(e,t,n){let a=E(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);R(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),R(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),R(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return L.runKernel(Jl,s,i)}var qc=z({batchToSpaceND_:mP});function fP(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function gP(e,t,n,a,r,s){s==null&&(s=.001);let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;a!=null&&(p=E(a,"offset","batchNorm")),R(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),R(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),R(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:fP(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=L.runKernel(Li,d,c);return W(h,i.shape)}var Is=z({batchNorm_:gP});function yP(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;return a!=null&&(p=E(a,"offset","batchNorm")),R(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),R(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),R(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),Is(i,o,l,p,u,s)}var bv=z({batchNorm2d_:yP});function bP(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;return a!=null&&(p=E(a,"offset","batchNorm")),R(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),R(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),R(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),Is(i,o,l,p,u,s)}var xv=z({batchNorm3d_:bP});function xP(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;return a!=null&&(p=E(a,"offset","batchNorm")),R(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),R(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),R(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),Is(i,o,l,p,u,s)}var vv=z({batchNorm4d_:xP});function vP(e,t,n){let a=E(e,"x","bincount"),r=E(t,"weights","bincount");R(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return L.runKernel(Am,s,i)}var wv=z({bincount_:vP});function wP(e,t){let n=E(e,"s0","broadcastArgs","int32"),a=E(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return L.runKernel($m,r)}var nN=z({broadcastArgs_:wP});function kP(e,t){let n=E(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=W(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return ur(n);let i={x:n},o={reps:s};return L.runKernel(xs,i,o)}var vl=z({broadcastTo_:kP});function IP(e){let t={x:E(e,"x","ceil","float32")};return L.runKernel(Ti,t)}var kv=z({ceil_:IP});function SP(e,t,n){let a=E(e,"x","clipByValue");R(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return L.runKernel(bs,r,s)}var tn=z({clipByValue_:SP});function NP(e){return Qe(e,0)}var Iv=z({concat1d_:NP});function TP(e,t){return Qe(e,t)}var Sv=z({concat2d_:TP});function CP(e,t){return Qe(e,t)}var Nv=z({concat3d_:CP});function _P(e,t){return Qe(e,t)}var Tv=z({concat4d_:_P});function EP(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","conv2d","float32"),l=E(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),En("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];R(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),R(mr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=L.runKernel(Ci,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Dt=z({conv2d_:EP});function AP(e,t,n,a,r="NWC",s=1,i){let o=E(e,"x","conv1d"),l=E(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),R(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),R(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),En("conv1d",a,i),R(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),R(mr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),R(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Dt(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var uf=z({conv1d_:AP});function $P(e,t,n,a,r,s="NHWC",i){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),R(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),R(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),R(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];R(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),R(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),En("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=L.runKernel(_i,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Cv=z({conv2DBackpropInput_:$P});function FP(e,t,n,a,r,s){let i=E(e,"x","conv2dTranspose"),o=E(t,"filter","conv2dTranspose");return Cv(n,i,o,a,r,"NHWC",s)}var pf=z({conv2dTranspose_:FP});function DP(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=E(e,"x","conv3d"),o=E(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),R(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),R(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),R(mr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),R(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=L.runKernel(Nc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var _v=z({conv3d_:DP});function RP(e,t,n,a,r){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];R(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),R(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),R(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),R(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),R(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=L.runKernel(Mm,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var aN=z({conv3DBackpropInput_:RP});function MP(e,t,n,a,r){let s=E(e,"x","conv3dTranspose"),i=E(t,"filter","conv3dTranspose");return aN(n,s,i,a,r)}var Ev=z({conv3dTranspose_:MP});function PP(e){let t={x:E(e,"x","cos","float32")};return L.runKernel(Ei,t)}var Kc=z({cos_:PP});function OP(e){let t={x:E(e,"x","cosh","float32")};return L.runKernel(Ai,t)}var cf=z({cosh_:OP});function LP(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return L.runKernel(Ql,r,s)}var cc=z({cumprod_:LP});function zP(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return L.runKernel($i,r,s)}var df=z({cumsum_:zP});function BP(e,t,n,a=!1){let r=E(e,"x","denseBincount"),s=E(t,"weights","denseBincount");R(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),R(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return L.runKernel(Pm,i,o)}var rN=z({denseBincount_:BP});function WP(e,t,n="NHWC"){let a=E(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];R(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),R(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),R(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),R(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return L.runKernel(tu,o,l)}var Av=z({depthToSpace_:WP});function VP(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","depthwiseConv2d","float32"),l=E(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];R(d===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d}) must match the inChannels dimension in filter ${l.shape[2]}.`),En("depthwiseConv2d",a,i);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=L.runKernel(Fi,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ss=z({depthwiseConv2d_:VP});function UP(e){let t={x:E(e,"x","diag")};return L.runKernel(zm,t)}var sN=z({diag_:UP});function GP(e,t,n,a,r=[1,1],s="NHWC"){let i=E(e,"x","dilation2d"),o=E(t,"filter","dilation2d");R(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),R(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),R(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=L.runKernel(Tc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var $v=z({dilation2d_:GP});function HP(e,t){let n=E(e,"a","equal","string_or_numeric"),a=E(t,"b","equal","string_or_numeric");[n,a]=At(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(au,r)}var ea=z({equal_:HP});function jP(e,t,n){let a=E(t,"a","where"),r=E(n,"b","where"),s=E(e,"condition","where","bool"),i=ct(ct(s.shape,a.shape),r.shape),o=vl(s,i),l=vl(a,i),u=vl(r,i),p={condition:o,t:l,e:u};return L.runKernel(Au,p)}var fn=z({where_:jP});function qP(e){let t={x:E(e,"x","zerosLike")};return L.runKernel(Uu,t)}var qe=z({zerosLike_:qP});function KP(e,t){let n=E(e,"a","div"),a=E(t,"b","div");[n,a]=At(n,a);let r=fe(n,a),s=qe(r),i=ea(a,s);return fn(i,s,r)}var Fv=z({divNoNan_:KP});function XP(e,t){let n=E(e,"t1","dot"),a=E(t,"t2","dot");R((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(R(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=Re(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=Re(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=Re(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return Re(n,i)}}var Dv=z({dot_:XP});function YP(e,...t){let n=t.map((r,s)=>E(r,`tensors${s}`,"einsum")),a={equation:e};return L.runKernel(Bm,n,a)}var iN=z({einsum_:YP});function JP(e){let t={x:E(e,"x","elu","float32")};return L.runKernel(Ri,t)}var ju=z({elu_:JP});function ZP(e){let t=E(e,"x","erf");R(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=le(t,"float32"));let n={x:t};return L.runKernel(nu,n)}var Rv=z({erf_:ZP});function Mv(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function oN(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function lN(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function di(e,t){let n=t.map(a=>1);return oN(e,n,t)}function QP(e,t,n){R(Mv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function uN(e,t){if(Mv(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function Pv(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function eO(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function tO(e,t=null,n=!1){let a={x:E(e,"x","max")},r={reductionIndices:t,keepDims:n};return L.runKernel(Ui,a,r)}var Ta=z({max_:tO});function nO(e,t=null,n=!1){let a={x:E(e,"x","min")},r={axis:t,keepDims:n};return L.runKernel(qi,a,r)}var dc=z({min_:nO});function aO(e,t){let n=E(e,"base","pow"),a=E(t,"exp","pow");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Qi,r)}var Fr=z({pow_:aO});function ke(e,t){if((hn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&hn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ws(e,[],[],t)}function rO(e){let t={x:E(e,"x","sqrt","float32")};return L.runKernel(co,t)}var un=z({sqrt_:rO});function sO(e){let t=E(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var ut=z({square_:sO});function iO(e,t=null,n=!1){let a=E(e,"x","sum");a.dtype==="bool"&&(a=le(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(ho,r,s)}var be=z({sum_:iO});function oO(e,t="euclidean",n=null,a=!1){e=E(e,"x","norm");let r=pN(e,t,n),s=r.shape;if(a){let i=Aa(n,e.shape);s=di(r.shape,i)}return W(r,s)}function pN(e,t,n=null){if(e.rank===0)return Lt(e);if(e.rank!==1&&n===null)return pN(W(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return be(Lt(e),n);if(t===1/0)return Ta(Lt(e),n);if(t===-1/0)return dc(Lt(e),n);if(t==="euclidean"||t===2)return un(be(Fr(Lt(e),ke(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Ta(be(Lt(e),n[0]),n[1]-1);if(t===1/0)return Ta(be(Lt(e),n[1]),n[0]);if(t===-1/0)return dc(be(Lt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return un(be(ut(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var qu=z({norm_:oO});function lO(e,t=null,n=!1){return qu(e,"euclidean",t,n)}var Ov=z({euclideanNorm_:lO});function uO(e){let t={x:E(e,"x","exp")};return L.runKernel(Mi,t)}var gn=z({exp_:uO});function pO(e,t=0){let n=E(e,"x","expandDims","string_or_numeric");R(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return L.runKernel(ru,a,r)}var mn=z({expandDims_:pO});function cO(e){let t={x:E(e,"x","expm1")};return L.runKernel(su,t)}var Lv=z({expm1_:cO});function dO(e,t){let n=E(e,"x","tile","string_or_numeric");R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return L.runKernel(xs,a,r)}var zn=z({tile_:dO});function hO(e,t,n,a="float32"){t==null&&(t=e);let r=ze([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=W(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return zn(mn(i,0),[n[0],1,1]);if(n.length===2)return zn(mn(mn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return zn(mn(mn(mn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var hf=z({eye_:hO});function An(e,t,n){let a={shape:e,value:t,dtype:n};return L.runKernel(Cc,{},a)}function mO(e){let t={x:E(e,"x","floor","float32")};return L.runKernel(Pi,t)}var Ku=z({floor_:mO});function fO(e,t,n=0,a=0){let r=E(e,"x","gather"),s=E(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return L.runKernel(ou,i,o)}var Xu=z({gather_:fO});function gO(e,t){let n=E(e,"a","greater","string_or_numeric"),a=E(t,"b","greater","string_or_numeric");[n,a]=At(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(uu,r)}var Hn=z({greater_:gO});function yO(e,t){let n=E(e,"a","greaterEqual","string_or_numeric"),a=E(t,"b","greaterEqual","string_or_numeric");[n,a]=At(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(zi,r)}var Ns=z({greaterEqual_:yO});function bO(e){let t={x:E(e,"x","isFinite")};return L.runKernel(pu,t)}var zv=z({isFinite_:bO});function xO(e){let t={x:E(e,"x","isInf")};return L.runKernel(cu,t)}var Bv=z({isInf_:xO});function vO(e){let t={x:E(e,"x","isNaN")};return L.runKernel(du,t)}var Wv=z({isNaN_:vO});function wO(e,t=.2){let n={x:E(e,"x","leakyRelu")},a={alpha:t};return L.runKernel(Wi,n,a)}var Xc=z({leakyRelu_:wO});function kO(e,t){let n=E(e,"a","less","string_or_numeric"),a=E(t,"b","less","string_or_numeric");[n,a]=At(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(hu,r)}var mf=z({less_:kO});function IO(e,t){let n=E(e,"a","lessEqual","string_or_numeric"),a=E(t,"b","lessEqual","string_or_numeric");[n,a]=At(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(mu,r)}var Ts=z({lessEqual_:IO});function cN(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return L.runKernel(Hm,{},a)}function SO(e,t=5,n=1,a=1,r=.5){let s=E(e,"x","localResponseNormalization");R(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),R(kl(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=L.runKernel(_c,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Vv=z({localResponseNormalization_:SO});function NO(e){let t={x:E(e,"x","log","float32")};return L.runKernel(Vi,t)}var ta=z({log_:NO});function TO(e){let t={x:E(e,"x","log1p")};return L.runKernel(fu,t)}var Yc=z({log1p_:TO});function CO(e){return R(is(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=E(t,"x","tf.grad","string_or_numeric"),r=n!=null?E(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(a),[a],r);return r!=null&&_n(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),ff(i),i[0]})}}function _O(e){return R(is(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{R(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=uc(t,"args","tf.grads","string_or_numeric"),r=n!=null?E(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(...a),a,r);return r!=null&&_n(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ff(i),i})}}function EO(e){return R(is(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{R(t instanceof Ae,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),R(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=L.gradients(()=>e(t),[t],n);return ff(a),{grad:a[0],value:r}}}function AO(e){return R(is(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{R(Array.isArray(t)&&t.every(r=>r instanceof Ae),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),R(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=L.gradients(()=>e(...t),t,n);return n!=null&&_n(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ff(a.grads),a}}function dN(e,t){R(is(e),()=>"The f passed in variableGrads(f) must be a function"),R(t==null||Array.isArray(t)&&t.every(u=>u instanceof os),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),R(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=L.gradients(e,t,null,s);R(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),R(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function dr(e){return L.customGrad(e)}function ff(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function $O(e){let t={x:E(e,"x","softplus")};return L.runKernel(Mu,t)}var vo=z({softplus_:$O});function FO(e){let t=E(e,"x","logSigmoid");return dr(n=>({value:kt(vo(kt(n))),gradFunc:a=>B(a,ha(kt(n)))}))(t)}var Uv=z({logSigmoid_:FO});function DO(e,t){let n=E(e,"a","sub"),a=E(t,"b","sub");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(go,r)}var ce=z({sub_:DO});function RO(e,t=-1){let n=E(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return dr((a,r)=>{let s=Ta(a,t,!0),i=ce(a,s),o=ce(le(i,"float32"),ta(be(gn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=gn(p);return ce(l,B(be(l,t,d),c))}}})(n)}var gf=z({logSoftmax_:RO});function MO(e,t=null,n=!1){let a=E(e,"x","logSumExp"),r=Aa(t,a.shape),s=Ta(a,r,!0),i=ce(a,s),o=gn(i),l=be(o,r),u=ta(l),p=Z(W(s,u.shape),u);if(n){let d=di(p.shape,r);return W(p,d)}return p}var yf=z({logSumExp_:MO});function PO(e,t){let n=E(e,"a","logicalAnd","bool"),a=E(t,"b","logicalAnd","bool");ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(gu,r)}var Ea=z({logicalAnd_:PO});function OO(e){let t={x:E(e,"x","logicalNot","bool")};return L.runKernel(yu,t)}var Jc=z({logicalNot_:OO});function LO(e,t){let n=E(e,"a","logicalOr","bool"),a=E(t,"b","logicalOr","bool");ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(bu,r)}var bf=z({logicalOr_:LO});function zO(e,t){let n=E(e,"a","logicalXor","bool"),a=E(t,"b","logicalXor","bool");return ct(n.shape,a.shape),Ea(bf(e,t),Jc(Ea(e,t)))}var Gv=z({logicalXor_:zO}),Nh=2147483648;function BO(e,t,n="left"){let a=E(e,"sortedSequence","searchSorted"),r=E(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=W(a,[-1,s]),l=W(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(yt(l.shape)>=Nh)throw new Error(`values tensor size must less than ${Nh}`);if(o.shape[1]>=Nh)throw new Error(`trailing dim_size must less than ${Nh} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return L.runKernel(ef,u,p)}var xf=z({searchSorted_:BO});function hN(e,t){return xf(e,t,"left")}function WO(e,t,n,a,r){let s=E(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),R(mr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),En("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(Hi,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Mt=z({maxPool_:WO});function VO(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=E(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),En("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(Ec,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Hv=z({maxPool3d_:VO});function UO(e,t,n,a,r=!1){let s={x:E(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=L.runKernel(Xm,s,i);return{result:o[0],indexes:o[1]}}var mN=z({maxPoolWithArgmax_:UO});function GO(e,t){let n=E(e,"a","maximum"),a=E(t,"b","maximum");[n,a]=At(n,a),n.dtype==="bool"&&(n=le(n,"int32"),a=le(a,"int32")),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Gi,r)}var fr=z({maximum_:GO});function HO(e,t=null,n=!1){let a={x:E(e,"x","mean")},r={axis:t,keepDims:n};return L.runKernel(ji,a,r)}var _t=z({mean_:HO});function It(e,t="float32"){if(t==="complex64"){let a=It(e,"float32"),r=It(e,"float32");return $r(a,r)}let n=Cm(yt(e),t);return L.makeTensor(n,e,t)}function Qn(e,t="float32"){if(t==="complex64"){let a=Qn(e,"float32"),r=It(e,"float32");return $r(a,r)}let n=Wx(yt(e),t);return L.makeTensor(n,e,t)}function fN(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=E(e,"x","meshgrid",e instanceof Ae?e.dtype:"float32");if(t===void 0)return[a];let r=E(t,"y","meshgrid",t instanceof Ae?t.dtype:"float32"),s=yt(a.shape),i=yt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[Re(Qn([i,1],a.dtype),a),Re(r,Qn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[Re(a,Qn([1,i],a.dtype)),Re(Qn([s,1],r.dtype),r)])}function jO(e,t){let n=E(e,"a","minimum"),a=E(t,"b","minimum");[n,a]=At(n,a),n.dtype==="bool"&&(n=le(n,"int32"),a=le(a,"int32")),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Ki,r)}var Yu=z({minimum_:jO});function qO(e,t,n){R(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=E(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");R(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)R(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),R(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return L.runKernel(Xi,i,s)}var jv=z({mirrorPad_:qO});function KO(e,t){let n=E(e,"a","mod"),a=E(t,"b","mod");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(xu,r)}var qv=z({mod_:KO});function XO(e,t=null,n=!1){e=E(e,"x","moments");let a=Aa(t,e.shape),r=_t(e,a,n),s=r.shape;n||(s=di(r.shape,a));let i=ut(ce(le(e,"float32"),W(r,s))),o=_t(i,a,n);return{mean:r,variance:o}}var Zc=z({moments_:XO});function YO(e,t,n,a){let r=E(t,"data","multiRNNCell"),s=uc(n,"c","multiRNNCell"),i=uc(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var gN=z({multiRNNCell_:YO});function JO(e,t,n,a=!1){let r=E(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=L.runKernel(Ym,o,l);return i===1?W(u,[u.size]):u}var yN=z({multinomial_:JO});function ZO(e,t){let n=E(e,"a","notEqual","string_or_numeric"),a=E(t,"b","notEqual","string_or_numeric");[n,a]=At(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(wu,r)}var hi=z({notEqual_:ZO});function QO(e){let t={x:E(e,"x","onesLike")};return L.runKernel(Nu,t)}var na=z({onesLike_:QO});function e3(e,t){let n=E(e,"v1","outerProduct"),a=E(t,"v2","outerProduct");R(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return Re(r,s)}var bN=z({outerProduct_:e3});function t3(e,t,n=0){let a=E(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return L.runKernel(Zi,s,r)}var ya=z({pad_:t3});function n3(e,t,n=0){return R(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ya(e,[t],n)}var xN=z({pad1d_:n3});function a3(e,t,n=0){return R(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var vN=z({pad2d_:a3});function r3(e,t,n=0){return R(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var wN=z({pad3d_:r3});function s3(e,t,n=0){return R(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var kN=z({pad4d_:s3});function i3(e,t,n){let a=E(e,"x","spaceToBatchND");R(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),R(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),R(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return L.runKernel(Pu,r,s)}var Qc=z({spaceToBatchND_:i3});function o3(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=E(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(mr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=ZS(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=u3([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=l3([p.inHeight,p.inWidth],d,c),g=h?a:"valid",y=h?l:Qc(l,d,m),b=(n==="avg"?()=>ga(y,t,s,g,i):()=>Mt(y,t,s,g,i))(),x=h?b:qc(b,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function l3(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function u3(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var Kv=z({pool_:o3});function p3(e,t){let n=E(e,"x","prelu"),a=E(t,"alpha","prelu"),r={x:n,alpha:a};return L.runKernel(eo,r)}var ed=z({prelu_:p3});function c3(e,t=null,n=!1){let a=E(e,"x","prod");a.dtype==="bool"&&(a=le(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(to,r,s)}var Xv=z({prod_:c3});function d3(e,t,n){let a=yt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return L.makeTensor(r,e,n)}var IN=z({rand_:d3}),Yv=fs(Sm()),Jv=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=Yv.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},h3=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=Yv.alea(r.toString()),this.randn=new Jv(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},m3=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Yv.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function f3(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new h3(t,n,a,r),i=ze(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var SN=z({randomGamma_:f3});function g3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new Jv(t,n,a,!1,r),i=ze(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var vf=z({randomNormal_:g3});function y3(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return vf(e,0,1,t,n)}var NN=z({randomStandardNormal_:y3});function b3(e,t=0,n=1,a="float32",r){let s=ze(e,a),i=new m3(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Ju=z({randomUniform_:b3});function Cl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return L.runKernel(Ac,{},r)}function x3(e){let t={x:E(e,"x","reciprocal")};return L.runKernel(Cu,t)}var Zv=z({reciprocal_:x3});function v3(e){let t={x:E(e,"x","relu")};return L.runKernel(no,t)}var Xe=z({relu_:v3});function w3(e){let t={x:E(e,"x","relu6")};return L.runKernel(so,t)}var wf=z({relu6_:w3});function k3(e,t){let n={x:E(e,"x","reverse")},a={dims:t};return L.runKernel(io,n,a)}var fa=z({reverse_:k3});function I3(e){let t=E(e,"x","reverse");return R(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),fa(t,0)}var TN=z({reverse1d_:I3});function S3(e,t){let n=E(e,"x","reverse");return R(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),fa(n,t)}var CN=z({reverse2d_:S3});function N3(e,t){let n=E(e,"x","reverse");return R(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),fa(n,t)}var _N=z({reverse3d_:N3});function T3(e,t){let n=E(e,"x","reverse");return R(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),fa(n,t)}var EN=z({reverse4d_:T3});function C3(e){let t={x:E(e,"x","round")};return L.runKernel(oo,t)}var kf=z({round_:C3});function _3(e){let t={x:E(e,"x","rsqrt","float32")};return L.runKernel(lo,t)}var If=z({rsqrt_:_3});function E3(e){let t={x:E(e,"x","selu")};return L.runKernel($u,t)}var Sf=z({selu_:E3});function A3(e,t,n,a,r,s=[1,1],i="NHWC"){let o=E(e,"x","separableConv2d"),l=E(t,"depthwiseFilter","separableConv2d"),u=E(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");R(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),R(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),R(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),R(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];R(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=Ss(p,l,a,r,i,s),f=Dt(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Cs=z({separableConv2d_:A3});async function $3(e,t){let n=E(e,"x","setdiff1d"),a=E(t,"y","setdiff1d");R(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),R(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),R(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new jt([o],n.dtype),u=new jt([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var AN=$3;function F3(e){let t={x:E(e,"x","sign")};return L.runKernel(Ru,t)}var Qv=z({sign_:F3});function D3(e){let t={x:E(e,"x","sin","float32")};return L.runKernel(uo,t)}var Nf=z({sin_:D3});function R3(e){let t={x:E(e,"x","sinh")};return L.runKernel(Du,t)}var Tf=z({sinh_:R3});function M3(e,t,n){let a=E(e,"x","slice1d");return R(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),He(a,[t],[n])}var td=z({slice1d_:M3});function P3(e,t,n){let a=E(e,"x","slice2d");return R(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var Cf=z({slice2d_:P3});function O3(e,t,n){let a=E(e,"x","slice3d");return R(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var wo=z({slice3d_:O3});function L3(e,t,n){let a=E(e,"x","slice4d");return R(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var _l=z({slice4d_:L3});function z3(e,t=-1){let n=E(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return L.runKernel(mo,a,r)}var Za=z({softmax_:z3});function B3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Vm,t)}var nd=z({fft_:B3});function W3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Um,t)}var El=z({ifft_:W3});function V3(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=El(r)}else{let r=[n,2*(t-1)],s=W(Tl(e),[n,t]),i=W(Gc(e),[n,t]),o=fa(He(s,[0,1],[n,t-2]),1),l=B(fa(He(i,[0,1],[n,t-2]),1),ke(-1)),u=Qe([s,o],1),p=Qe([i,l],1),d=W($r(u,p),[r[0],r[1]]);a=El(d)}if(a=Tl(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var _f=z({irfft_:V3});function U3(e,t,n=0){let a={x:E(e,"x","split")},r={numOrSizeSplits:t,axis:n};return L.runKernel(Ou,a,r)}var Wn=z({split_:U3});function G3(e,t){R(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=He(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Qe([e,It(m)],e.shape.length-1),n=t}else r=e;let s=qe(r),i=W($r(r,s),[a,n]),o=nd(i),l=Math.floor(n/2)+1,u=Tl(o),p=Gc(o),d=Wn(u,[l,n-l],u.shape.length-1),c=Wn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W($r(d[0],c[0]),h)}var ad=z({rfft_:G3});function H3(e,t){let n=E(e,"a","squaredDifference"),a=E(t,"b","squaredDifference");[n,a]=At(n,a),ct(n.shape,a.shape);let r={a:n,b:a},s={};return L.runKernel(fo,r,s)}var Ef=z({squaredDifference_:H3});function j3(e,t){let n=E(e,"x","squeeze","string_or_numeric");return W(n,XI(n.shape,t).newShape)}var _s=z({squeeze_:j3});function q3(e,t=0){let n=uc(e,"tensors","stack","string_or_numeric");R(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&R(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return L.runKernel(Tu,a,r)}var Rt=z({stack_:q3});function K3(e,t=0){let n={x:E(e,"x","step")},a={alpha:t};return L.runKernel(vs,n,a)}var ko=z({step_:K3});function X3(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:E(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return L.runKernel(zu,u,p)}var ew=z({stridedSlice_:X3});function Y3(e){let t={x:E(e,"x","tan","float32")};return L.runKernel(yo,t)}var tw=z({tan_:Y3});function Ke(e,t){vi(e);let n=cr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ws(e,null,n,t)}function Ca(e,t,n){if(vi(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=cr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ws(e,t,a,n)}function $a(e,t,n){if(vi(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=cr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}function $N(e,t,n){if(vi(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=cr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}function FN(e,t,n){if(vi(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=cr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,ws(e,t,a,n)}function J3(e,t=1,n=!0){let a=E(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=L.runKernel(Bu,s,i);return{values:o,indices:l}}var nw=z({topk_:J3});function Z3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Jv(t,n,a,!0,r),i=ze(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Af=z({truncatedNormal_:Z3});function Q3(e,t=0){let n=E(e,"x","unique","string_or_numeric");R(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=L.runKernel(nf,a,r);return{values:s,indices:i}}var aw=z({unique_:Q3});function eL(e,t,n){let a=E(e,"x","unsortedSegmentSum"),r=E(t,"segmentIds","unsortedSegmentSum","int32");R(kl(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return L.runKernel(Lc,s,i)}var $f=z({unsortedSegmentSum_:eL});function tL(e,t=0){let n=E(e,"x","unstack","string_or_numeric");R(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return L.runKernel(Vu,a,r)}var mt=z({unstack_:tL});function DN(e,t){return xf(e,t,"right")}function rw(e,t=!0,n,a){return L.makeVariable(e,t,n,a)}function RN(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=ze(e,"int32"),r=ze([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function nL(e){let t=E(e,"condition","whereAsync","bool"),n=await t.data(),a=RN(t.shape,n);return e!==t&&t.dispose(),a}var sw=nL;async function aL(e,t,n){let a=E(e,"tensor","boolMask"),r=E(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;R(i>0,()=>"mask cannot be scalar"),_n(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=W(a,u),d=W(r,[-1]),c=await sw(d),h=_s(c,[1]),m=Xu(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var MN=aL;function rL(e,t,n,a,r=!0){let s=E(e,"v","movingAverage"),i=E(t,"x","movingAverage"),o=E(n,"decay","movingAverage");hS(s,i),R(gs(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ke(1),u=ce(l,o),p=B(ce(i,s),u);if(r){R(a!=null,()=>"When using zeroDebias: true, step is required.");let d=E(a,"step","movingAverage");p=fe(p,ce(l,Fr(o,d)))}return Z(s,p)}var PN=z({movingAverage_:rL});function sL(e,t,n){let a=E(e,"indices","scatterND","int32"),r=E(t,"updates","scatterND");sv(r,a,n);let s={indices:a,updates:r},i={shape:n};return L.runKernel(Eu,s,i)}var ON=z({scatterND_:sL});function iL(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function oL(e,t,n,a=0){let r=E(e,"sparseIndices","sparseToDense","int32"),s=E(t,"sparseValues","sparseToDense","string_or_numeric"),i=E(a,"defaultValue","sparseToDense",s.dtype);iL(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return L.runKernel(tf,o,l)}var LN=z({sparseToDense_:oL});function lL(e,t){let n=E(t,"indices","gatherND","int32"),a={params:E(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(lu,a)}var zN=z({gatherND_:lL});function uL(e,t){if(t==null)return e.shape.slice();if(gs(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function pL(e,t,n,a){let r=E(e,"x","dropout");if(R(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),R(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ae?r.clone():r;let s=uL(r,n),i=1-t,o=fe(Ku(Z(Ju(s,0,1,"float32",a),i)),i);return B(r,o)}var iw=z({dropout_:pL});function ow(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Ff(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Ke(r,"float32")}async function cL(e,t,n=1){let a=E(e,"predictions","inTopK"),r=E(t,"targets","inTopK");R(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),R(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),_n(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];R(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=YI("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Bn(p,r.shape,"bool")}var BN=cL,Al={};Fe(Al,{conv2d:()=>mL,depthwiseConv2d:()=>bL,matMul:()=>vL});function dL(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),R(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),R(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),R(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];R(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),R(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),En("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return L.runKernel(Dm,d,c)}var lw=z({conv2DBackpropFilter_:dL});function Df(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,ko(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Rf(e,t){let n=t,a=Bt(e.shape,t.shape);return a.length>0&&(n=be(n,a)),W(n,e.shape)}function Mf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Xe(e);if(t==="elu")return ju(e);if(t==="relu6")return wf(e);if(t==="prelu")return ed(e,n);if(t==="leakyrelu")return Xc(e,a);if(t==="sigmoid")return ha(e);throw new Error(`Unknown fused activation ${t}.`)}var Pf=(e,t)=>!(e>0)||t==="linear";function hL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",Pf(L.state.gradientDepth,l)===!1){R(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let T=Dt(e,t,n,a,r,s,i);return o!=null&&(T=Z(T,o)),Mf(T,l,u,p)}let d=E(e,"x","conv2d","float32"),c=E(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),En("fused conv2d",a,i);let f=r==="NHWC"?h.shape[3]:h.shape[1];R(c.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${c.shape[2]}.`),R(mr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let g=jc(h.shape,c.shape,n,s,a,i),y;o!=null&&(y=E(o,"bias","fused conv2d"),[y]=At(y,d),r==="NHWC"?ct(g.outShape,y.shape):(R(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),R(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(u!=null){let T=u.shape;if(R(T.length<=1||T.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${T.length}.`),T.length===1)R(T[0]===1||T[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the number of output channels (${g.outChannels}).`);else if(T.length===3)try{ct(T,g.outShape)}catch(_){let A=`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(A)}b=E(u,"prelu weights","fused conv2d")}let x=(T,_)=>{R(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[A,F,P,$]=_,S=Df(T,P,l);R(ls(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let M=Cv(F.shape,S,A,n,a),U=lw(F,S,A.shape,n,a),j=[M,U];if($!=null){let q=Rf($,S);j.push(q)}return j},v={x:h,filter:c,bias:y,preluActivationWeights:b},I={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?dr((T,_,A)=>{let F=L.runKernel(ii,v,I);return A([_,T,F]),m&&(F=W(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:x}})(h,c):dr((T,_,A,F)=>{let P=L.runKernel(ii,v,I);return F([_,T,P,A]),m&&(P=W(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:x}})(h,c,y)}var mL=z({fusedConv2d_:hL});function fL(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return L.runKernel(Om,u,p)}var WN=z({depthwiseConv2dNativeBackpropFilter_:fL});function gL(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=L.runKernel(Lm,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var VN=z({depthwiseConv2dNativeBackpropInput_:gL});function yL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(Pf(L.state.gradientDepth,l)===!1){let I=Ss(e,t,n,a,r,s,i);return o!=null&&(I=Z(I,o)),Mf(I,l,u,p)}let d=E(e,"x","depthwiseConv2d","float32"),c=E(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),R(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),R(mr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),En("fused depthwiseConv2d",a,i);let f=jc(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=At(g,d),ct(f.outShape,g.shape));let y;u!=null&&(y=E(u,"prelu weights","fused depthwiseConv2d"));let b=(I,T)=>{R(ls(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[_,A,F,P]=T,$=Df(I,F,l),S=VN(A.shape,$,_,n,a,s,i),M=WN(A,$,_.shape,n,a,s,i);if(P!=null){let U=Rf(g,$);return[S,M,U]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?dr((I,T,_)=>{let A=L.runKernel(oi,x,v);return _([T,I,A]),m&&(A=W(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,c):dr((I,T,_,A)=>{let F=L.runKernel(oi,x,v);return A([T,I,F,_]),m&&(F=W(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,c,g)}var bL=z({fusedDepthwiseConv2d_:yL});function xL({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(Pf(L.state.gradientDepth,s)===!1){let P=Re(e,t,n,a);return r!=null&&(P=Z(P,r)),Mf(P,s,i,o)}let l=E(e,"a","fused matMul"),u=E(t,"b","fused matMul");[l,u]=At(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=yt(m),y=yt(f);R(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=ct(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),v=a?W(u,[y,h,d]):W(u,[y,d,h]),I;r!=null&&(I=E(r,"bias","fused matMul"),[I]=At(I,l),ct(b,I.shape));let T;i!=null&&(T=E(i,"prelu weights","fused matMul"));let _=(P,$)=>{let[S,M,U,j]=$,q=Df(W(P,U.shape),U,s),K,Y;if(!n&&!a?(K=Re(q,M,!1,!0),Y=Re(S,q,!0,!1)):!n&&a?(K=Re(q,M,!1,!1),Y=Re(q,S,!0,!1)):n&&!a?(K=Re(M,q,!1,!0),Y=Re(S,q,!1,!1)):(K=Re(M,q,!0,!0),Y=Re(q,S,!0,!0)),r!=null){let te=Rf(j,q);return[K,Y,te]}else return[K,Y]},A={a:x,b:v,bias:I,preluActivationWeights:T},F={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?dr((P,$,S)=>{let M=L.runKernel(si,A,F);return S([P,$,M]),{value:W(M,b),gradFunc:_}})(x,v):dr((P,$,S,M)=>{let U=L.runKernel(si,A,F);return M([P,$,U,S]),{value:W(U,b),gradFunc:_}})(x,v,I)}var vL=z({fusedMatMul_:xL});function wL(e){return Ff(e,.54,.46)}var kL=z({hammingWindow_:wL});function IL(e){return Ff(e,.5,.5)}var UN=z({hannWindow_:IL});function SL(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(He(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Qe([He(e,s,t-o),An([o],r)]);i.push(l),s+=n}return i.length===0?Ca([],[0,t]):W(Qe(i),[i.length,t])}var GN=z({frame_:SL});function NL(e,t,n,a,r=UN){a==null&&(a=ow(t));let s=GN(e,t,n),i=B(s,r(t));return ad(i,a)}var TL=z({stft_:NL});function CL(e,t,n,a,r="bilinear",s=0){let i=E(e,"image","cropAndResize"),o=E(t,"boxes","cropAndResize","float32"),l=E(n,"boxInd","cropAndResize","int32"),u=o.shape[0];R(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),R(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),R(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),R(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),R(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return L.runKernel(eu,p,d)}var _L=z({cropAndResize_:CL});function EL(e){let t=E(e,"image","flipLeftRight","float32");R(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(iu,n,{})}var AL=z({flipLeftRight_:EL});function $L(e){let t=E(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];R(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),R(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,zn(t,r)}var FL=z({grayscaleToRGB_:$L});function DL(e,t,n=0,a=.5){let r=E(e,"image","rotateWithOffset","float32");R(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return L.runKernel(Gu,s,i)}var RL=z({rotateWithOffset_:DL});function Zu(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),R(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),R(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),R(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),R(t.rank===1,()=>"scores must be a 1D tensor"),R(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),R(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function ML(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppression","float32"),i=E(t,"scores","nonMaxSuppression","float32"),o=Zu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return L.runKernel(ku,{boxes:s,scores:i},l)}var PL=z({nonMaxSuppression_:ML});function OL(e,t,n){let a=LL(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function LL(e,t,n){return BL(e,t,n||zL)}function zL(e,t){return e>t?1:e<t?-1:0}function BL(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function HN(e,t,n,a,r){return uw(e,t,n,a,r,0)}function jN(e,t,n,a,r,s){return uw(e,t,n,a,r,0,!1,s,!0)}function qN(e,t,n,a,r,s){return uw(e,t,n,a,r,s,!0)}function uw(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort($k);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let I=d.length-1;I>=x;--I){let T=WL(e,b,d[I]);if(T>=a){v=!0;break}if(g.score=g.score*VL(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,v||(g.score===y?(d.push(b),c.push(g.score)):g.score>r&&OL(u,g,$k))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function WL(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),y=Math.min(o,d),b=Math.min(l,c),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function VL(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function $k(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function UL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),o=Zu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=HN(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ke(d,"int32")}var GL=UL;function HL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Zu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=L.runKernel(Su,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var jL=z({nonMaxSuppressionWithScore_:HL});async function qL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Zu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=qN(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(c,"int32"),selectedScores:Ke(h)}}var KL=qL;function XL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Zu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=L.runKernel(Iu,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var YL=z({nonMaxSuppressionPadded_:XL});async function JL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Zu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=jN(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(m,"int32"),validOutputs:ke(f,"int32")}}var ZL=JL;function QL(e,t,n=!1,a=!1){let r=E(e,"images","resizeBilinear");R(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),R(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(ro,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var KN=z({resizeBilinear_:QL});function ez(e,t,n=!1,a=!1){let r=E(e,"images","resizeNearestNeighbor");R(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),R(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),R(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(ao,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var XN=z({resizeNearestNeighbor_:ez});function tz(e,t="binary",n=!1,a=.5){let r=E(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=B(Ke([a]),255),p,d,c,h;if(R(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),R(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),R(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),R(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=Wn(r,[1,1,1],-1);let f=B(p,s),g=B(d,i),y=B(c,o);h=Z(Z(f,g),y)}else h=e;if(t==="otsu"){let f=wv(le(kf(h),"int32"),Bn([]),256);u=nz(f,l)}let m=n?Ts(h,u):Hn(h,u);return le(B(m,255),"int32")}function nz(e,t){let n=Ke([-1]),a=Ke([0]),r=Ke([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=He(e,0,d+1),i=He(e,d+1),u=fe(be(s),t),p=fe(be(i),t);let c=be(B(s,Cl(0,s.size)));o=fe(c,be(s));let h=An(i.shape,s.size),m=Z(Cl(0,i.size),h),f=B(i,m);l=fe(be(f),be(i));let g=ce(o,l),y=ce(o,l),b=B(u,p);r=B(B(b,g),y);let x=Hn(r,a);a=fn(x,r,a),n=fn(x,Ke([d]),n)}return n}var az=z({threshold_:tz});function rz(e,t,n="nearest",a="constant",r=0,s){let i=E(e,"image","transform","float32"),o=E(t,"transforms","transform","float32");R(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),R(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return L.runKernel(Wu,l,u)}var sz=z({transform_:rz});function iz(e,t,n){R(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),R(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=E(e,"a","bandPart");R(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=W(Cl(0,s,1,"int32"),[-1,1]),l=Cl(0,i,1,"int32"),u=ce(o,l),p=Ea(Ts(u,ke(+t,"int32")),Ns(u,ke(-n,"int32"))),d=It([s,i],a.dtype);return W(Rt(mt(W(a,[-1,s,i])).map(c=>fn(p,c,d))),r)}var oz=z({bandPart_:iz});function lz(e){let t;if(Array.isArray(e)){t=!1,R(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)R(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=Wn(e,e.shape[0],0).map(r=>_s(r,[0]));R(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=B(be(B(n[i],s)),n[i]);s=ce(s,o)}return fe(s,qu(s,"euclidean"))}));return t?Rt(n,0):n}var uz=z({gramSchmidt_:lz});function pz(e,t=!1){if(R(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Fk(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=mt(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=Fk(l,t);r.push(u),s.push(p)});let i=W(Rt(r,0),e.shape),o=W(Rt(s,0),e.shape);return[i,o]}}function Fk(e,t=!1){return L.tidy(()=>{R(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=hf(n),s=ur(e),i=Ca([[1]],[1,1]),o=ur(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=L.tidy(()=>{let h=He(s,[u,u],[n-u,1]),m=qu(h),f=He(s,[u,u],[1,1]),g=fn(Hn(f,0),Ca([[-1]]),Ca([[1]])),y=ce(f,B(g,m)),b=fe(h,y);b.shape[0]===1?o=ur(i):o=Qe([i,He(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=kt(fe(Re(g,y),m)),v=He(s,[u,0],[n-u,a]),I=B(x,o),T=$e(o);if(u===0)s=ce(v,Re(I,Re(T,v)));else{let F=ce(v,Re(I,Re(T,v)));s=Qe([He(s,[0,0],[u,a]),F],0)}let _=$e(I),A=He(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ce(A,Re(Re(A,o),_));else{let F=ce(A,Re(Re(A,o),_));r=Qe([He(r,[0,0],[n,u]),F],1)}return[o,s,r]}),Me([p,d,c])}return!t&&n>a&&(r=He(r,[0,0],[n,a]),s=He(s,[0,0],[a,a])),[r,s]})}var cz=z({qr_:pz}),In;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(In||(In={}));function dz(e,t,n=In.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=E(t,"weights","computeWeightedLoss"));let s=r==null?a:B(a,r);if(n===In.NONE)return s;if(n===In.SUM)return be(s);if(n===In.MEAN){if(r==null)return _t(s);{let i=a.size/r.size,o=fe(be(s),be(r));return i>1?fe(o,ke(i)):o}}if(n===In.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(be(s),ke(a.size));{let i=B(r,Qn(a.shape)),o=le(be(hi(i,ke(0))),"float32");return fe(be(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Dr=z({computeWeightedLoss_:dz});function hz(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","absoluteDifference"),s=E(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=E(n,"weights","absoluteDifference")),_n(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(ce(r,s));return Dr(o,i,a)}var mz=z({absoluteDifference_:hz});function fz(e,t,n,a,r=In.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","cosineDistance"),i=E(t,"predictions","cosineDistance"),o=null;a!=null&&(o=E(a,"weights","cosineDistance")),_n(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),u=ce(l,be(B(s,i),n,!0));return Dr(u,o,r)}var gz=z({cosineDistance_:fz});function yz(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","hingeLoss"),s=E(t,"predictions","hingeLoss"),i=null;n!=null&&(i=E(n,"weights","hingeLoss")),_n(r.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);r=ce(B(ke(2),r),o);let l=Xe(ce(o,B(r,s)));return Dr(l,i,a)}var bz=z({hingeLoss_:yz});function xz(e,t,n,a=1,r=In.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","huberLoss"),i=E(t,"predictions","huberLoss"),o=null;n!=null&&(o=E(n,"weights","huberLoss")),_n(s.shape,i.shape,"Error in huberLoss: ");let l=ke(a),u=Lt(ce(i,s)),p=Yu(u,l),d=ce(u,p),c=Z(B(ke(.5),ut(p)),B(l,d));return Dr(c,o,r)}var vz=z({huberLoss_:xz});function wz(e,t,n,a=1e-7,r=In.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","logLoss"),i=E(t,"predictions","logLoss"),o=null;n!=null&&(o=E(n,"weights","logLoss")),_n(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),u=ke(a),p=kt(B(s,ta(Z(i,u)))),d=B(ce(l,s),ta(Z(ce(l,i),u))),c=ce(p,d);return Dr(c,o,r)}var kz=z({logLoss_:wz});function Iz(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","meanSquaredError"),s=E(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=E(n,"weights","meanSquaredError")),_n(r.shape,s.shape,"Error in meanSquaredError: ");let o=Ef(r,s);return Dr(o,i,a)}var Sz=z({meanSquaredError_:Iz});function Nz(e,t){let n=E(e,"labels","sigmoidCrossEntropyWithLogits"),a=E(t,"logits","sigmoidCrossEntropyWithLogits");_n(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xe(a),s=B(a,n),i=Yc(gn(kt(Lt(a))));return Z(ce(r,s),i)}function Tz(e,t,n,a=0,r=In.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"multiClassLabels","sigmoidCrossEntropy"),i=E(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","sigmoidCrossEntropy")),_n(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ke(a),p=ke(1),d=ke(.5);s=Z(B(s,ce(p,u)),B(d,u))}let l=Nz(s,i);return Dr(l,o,r)}var Cz=z({sigmoidCrossEntropy_:Tz});function _z(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return dr((a,r,s)=>{let i=yf(r,[n],!0),o=ce(le(r,"float32"),i);s([a,o]);let l=kt(B(o,a));return{value:be(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=di(u.shape,[n]);return[B(W(u,h),ce(le(d,"float32"),gn(c))),B(W(u,h),ce(gn(c),le(d,"float32")))]}}})(e,t)}function Ez(e,t,n,a=0,r=In.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"onehotLabels","softmaxCrossEntropy"),i=E(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","softmaxCrossEntropy")),_n(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ke(a),p=ke(1),d=ke(s.shape[1]);s=Z(B(s,ce(p,u)),fe(u,d))}let l=_z(s,i);return Dr(l,o,r)}var Az=z({softmaxCrossEntropy_:Ez});function $z(e,t,n,a){let r=E(e,"indices","sparseFillEmptyRows","int32"),s=E(t,"values","sparseFillEmptyRows"),i=E(n,"denseShape","sparseFillEmptyRows","int32"),o=E(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=L.runKernel($c,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var Fz=z({sparseFillEmptyRows_:$z});function Dz(e,t,n){let a=E(e,"inputIndices","sparseReshape","int32"),r=E(t,"inputShape","sparseReshape","int32"),s=E(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=L.runKernel(Lu,i);return{outputIndices:o[0],outputShape:o[1]}}var Rz=z({sparseReshape_:Dz});function Mz(e,t,n){let a=E(e,"data","sparseSegmentMean"),r=E(t,"indices","sparseSegmentMean","int32"),s=E(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(Fc,i)}var Pz=z({sparseSegmentMean_:Mz});function Oz(e,t,n){let a=E(e,"data","sparseSegmentSum"),r=E(t,"indices","sparseSegmentSum","int32"),s=E(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(Dc,i)}var Lz=z({sparseSegmentSum_:Oz});function zz(e,t,n,a,r,s,i,o){let l=E(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=E(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=L.runKernel(Mc,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var Bz=z({stringNGrams_:zz});function Wz(e,t,n=!0){let a=E(e,"input","stringSplit","string"),r=E(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=L.runKernel(Pc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var Vz=z({stringSplit_:Wz});function Uz(e,t){let n=E(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(Oc,r,a)}var Gz=z({stringToHashBucketFast_:Uz}),YN={fft:nd,ifft:El,rfft:ad,irfft:_f},JN={hammingWindow:kL,hannWindow:UN,frame:GN,stft:TL},Cr={flipLeftRight:AL,grayscaleToRGB:FL,resizeNearestNeighbor:XN,resizeBilinear:KN,rotateWithOffset:RL,cropAndResize:_L,nonMaxSuppression:PL,nonMaxSuppressionAsync:GL,nonMaxSuppressionWithScore:jL,nonMaxSuppressionWithScoreAsync:KL,nonMaxSuppressionPadded:YL,nonMaxSuppressionPaddedAsync:ZL,threshold:az,transform:sz},pw={bandPart:oz,gramSchmidt:uz,qr:cz},ZN={absoluteDifference:mz,computeWeightedLoss:Dr,cosineDistance:gz,hingeLoss:bz,huberLoss:vz,logLoss:kz,meanSquaredError:Sz,sigmoidCrossEntropy:Cz,softmaxCrossEntropy:Az},QN={sparseFillEmptyRows:Fz,sparseReshape:Rz,sparseSegmentMean:Pz,sparseSegmentSum:Lz},e2={stringNGrams:Bz,stringSplit:Vz,stringToHashBucketFast:Gz},Rr=class extends qS{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Me(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return dN(e,t)}dispose(){this.iterations_!=null&&Me(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Rr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Of=class extends Rr{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:O(()=>qe(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:O(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;O(()=>{let l=Z(B(i,this.rho),B(ut(s),1-this.rho)),u=B(fe(un(Z(o,this.epsilon)),un(Z(i,this.epsilon))),s),p=Z(B(o,this.rho),B(ut(u),1-this.rho));i.assign(l),o.assign(p);let d=Z(B(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Me(this.accumulatedGrads.map(e=>e.variable)),Me(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Of.className="Adadelta";ks(Of);var Lf=class extends Rr{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:O(()=>An(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;O(()=>{let i=Z(s,ut(r));s.assign(i);let o=Z(B(fe(r,un(Z(i,L.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Me(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Lf.className="Adagrad";ks(Lf);var zf=class extends Rr{constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],O(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=ce(1,this.accBeta2);t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:O(()=>qe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:O(()=>qe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=Z(B(u,this.beta1),B(l,1-this.beta1)),c=Z(B(p,this.beta2),B(ut(l),1-this.beta2)),h=fe(d,n),m=fe(c,a);u.assign(d),p.assign(c);let f=Z(B(fe(h,Z(un(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Me(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Me(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),O(()=>{this.accBeta1.assign(Fr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Fr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};zf.className="Adam";ks(zf);var Bf=class extends Rr{constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],O(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=fe(-this.learningRate,Z(B(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:qe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:qe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=Z(B(u,this.beta1),B(l,1-this.beta1)),c=B(p,this.beta2),h=Lt(l),m=fr(c,h);u.assign(d),p.assign(m);let f=Z(B(fe(a,n),fe(d,Z(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(Z(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Me(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Me(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Bf.className="Adamax";ks(Bf);var rd=class extends Rr{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=L.registeredVariables[t];O(()=>{let s=Z(B(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Qt(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};rd.className="SGD";ks(rd);var Wf=class extends rd{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:O(()=>qe(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&O(()=>{let i,o=Z(B(this.m,r),s);this.useNesterov?i=Z(B(this.c,Z(s,B(o,this.m))),a):i=Z(B(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Me(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Wf.className="Momentum";ks(Wf);var Vf=class extends Rr{constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:O(()=>qe(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:O(()=>qe(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:O(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;O(()=>{let l=Z(B(i,this.decay),B(ut(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=Z(B(u,this.decay),B(s,1-this.decay)),d=fe(B(s,this.learningRate),un(ce(l,Z(ut(p),this.epsilon)))),c=Z(B(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=ce(a,c);a.assign(h)}else{let u=Z(B(i,this.decay),B(ut(s),1-this.decay)),p=Z(B(o,this.momentum),fe(B(s,this.learningRate),un(Z(u,this.epsilon))));i.assign(u),o.assign(p);let d=ce(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Me(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Me(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Me(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Vf.className="RMSProp";ks(Vf);var Jr=class{static sgd(e){return new rd(e)}static momentum(e,t,n=!1){return new Wf(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Vf(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new zf(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Of(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Bf(e,t,n,a,r)}static adagrad(e,t=.1){return new Lf(e,t)}},qs={sgd:Jr.sgd,momentum:Jr.momentum,adadelta:Jr.adadelta,adagrad:Jr.adagrad,rmsprop:Jr.rmsprop,adamax:Jr.adamax,adam:Jr.adam},Hz=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function cw(){return new Promise(e=>Hz(()=>e()))}var C={};Fe(C,{ERF_A1:()=>nB,ERF_A2:()=>aB,ERF_A3:()=>rB,ERF_A4:()=>sB,ERF_A5:()=>iB,ERF_P:()=>tB,PARALLELIZE_THRESHOLD:()=>dw,SELU_SCALE:()=>n2,SELU_SCALEALPHA:()=>t2,applyActivation:()=>Mf,assertAndGetBroadcastShape:()=>ct,assertAxesAreInnerMostDims:()=>QP,assertParamsConsistent:()=>jz,assignToTypedArray:()=>dB,axesAreInnerMostDims:()=>Mv,calculateShapes:()=>OS,checkEinsumDimSizes:()=>bB,checkPadOnDimRoundingMode:()=>En,combineLocations:()=>oN,complexWithEvenIndex:()=>uB,complexWithOddIndex:()=>pB,computeConv2DInfo:()=>jc,computeConv3DInfo:()=>QS,computeDefaultPad:()=>gv,computeDilation2DInfo:()=>eP,computeOptimalWindowSize:()=>Kz,computeOutAndReduceShapes:()=>lN,computeOutShape:()=>qz,computePool2DInfo:()=>ZS,computePool3DInfo:()=>tP,convertConv2DDataFormat:()=>eN,decodeEinsumEquation:()=>gB,eitherStridesOrDilationsAreOne:()=>mr,expandShapeToKeepDim:()=>di,exponent:()=>mB,exponents:()=>hB,fromStringArrayToUint8:()=>zB,fromUint8ToStringArray:()=>LB,getAxesPermutation:()=>uN,getBroadcastDims:()=>RS,getComplexWithIndex:()=>cB,getEinsumComputePath:()=>xB,getEinsumPermutation:()=>yB,getFusedBiasGradient:()=>Rf,getFusedDyActivation:()=>Df,getImageCenter:()=>Xz,getInnerMostAxes:()=>eO,getPermuted:()=>Jz,getReductionAxes:()=>Bt,getReshaped:()=>Yz,getReshapedPermuted:()=>Zz,getSliceBeginCoords:()=>Qz,getSliceSize:()=>eB,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>IB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>SB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>NB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>_B,getSparseReshapeInputOutputMismatchErrorMessage:()=>AB,getSparseReshapeInputOutputMultipleErrorMessage:()=>EB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>TB,getSparseReshapeNegativeOutputDimErrorMessage:()=>CB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>RB,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>$B,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>FB,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>DB,getUndoAxesPermutation:()=>Pv,isIdentityPermutation:()=>vB,log:()=>xD,mergeRealAndImagArrays:()=>oB,prepareAndValidate:()=>PS,prepareSplitSize:()=>kB,segment_util:()=>a2,shouldFuse:()=>Pf,slice_util:()=>qt,splitRealAndImagArrays:()=>lB,tupleValuesAreOne:()=>ls,upcastType:()=>ma,validateInput:()=>sv,validateUpdateShape:()=>rv,warn:()=>Qr});function jz(e,t){let n=e[0].length;e.forEach((r,s)=>{R(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),R(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)R(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function qz(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var dw=30;function Kz(e){return e<=dw?e:Kh(e,Math.floor(Math.sqrt(e)))}function Xz(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function Yz(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function Jz(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function Zz(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function Qz(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function eB(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var t2=1.7580993408473768,n2=1.0507009873554805,tB=.3275911,nB=.254829592,aB=-.284496736,rB=1.421413741,sB=-1.453152027,iB=1.061405429;function oB(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function lB(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function uB(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function pB(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function cB(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function dB(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function hB(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function mB(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var $b="->",fB=/->/g,Dk=",",Rk="...";function gB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(fB,"").length)/$b.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${$b}").`);let[a,r]=e.split($b);R(a.indexOf(Rk)===-1,()=>`The ellipsis notation ("${Rk}") is not supported yet.`);let s=a.split(Dk),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==Dk&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function yB(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function bB(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:R(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function xB(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=wB(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function vB(e){return e.every((t,n)=>t===n)}function wB(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function kB(e,t,n=0){let a=[];if(typeof t=="number")R(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);R(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}R(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function IB(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function SB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function NB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function TB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function CB(e,t){return`size ${e} must be non-negative, not ${t}`}function _B(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function EB(e,t){let n=yt(e),a=yt(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function AB(e,t){let n=yt(e),a=yt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function $B(){return"segment ids must be >= 0"}function FB(){return"segment ids are not increasing"}function DB(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function RB(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var a2={};Fe(a2,{collectGatherOpShapeInfo:()=>OB,computeOutShape:()=>PB,segOpComputeOptimalWindowSize:()=>MB});function MB(e,t){let n=!1,a;for(e<=dw?(a=e,n=!0):a=Kh(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Kh(e,a+1);return a}function PB(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function OB(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function LB(e){try{return e.map(t=>em(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function zB(e){return e.map(t=>Wc(t))}var gr={};Fe(gr,{nonMaxSuppressionV3Impl:()=>HN,nonMaxSuppressionV4Impl:()=>jN,nonMaxSuppressionV5Impl:()=>qN,whereImpl:()=>RN});var r2={kernelName:Wl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,ko(le(n,"float32"),-1))}}},BB={kernelName:Vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ut(le(n,"float32")),r=un(ce(ke(1),a));return kt(fe(e,r))}}}},WB={kernelName:Ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=un(ce(ut(le(n,"float32")),1));return fe(e,a)}}}},VB={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=e,i=Bt(n.shape,r);return i.length>0&&(s=be(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Bt(a.shape,r);return i.length>0&&(s=be(s,i)),W(s,a.shape)}}}},UB={kernelName:wi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},GB={kernelName:ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},HB={kernelName:kc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},jB={kernelName:jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,un(ce(ke(1),ut(le(n,"float32")))))}}},qB={kernelName:ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=un(Z(ke(1),ut(le(n,"float32"))));return fe(e,a)}}}},KB={kernelName:Yl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=Z(ut(n),ut(a)),i=B(e,fe(a,s)),o=Bt(n.shape,r);return o.length>0&&(i=be(i,o)),W(i,n.shape)},b:()=>{let s=Z(ut(n),ut(a)),i=kt(B(e,fe(n,s))),o=Bt(a.shape,r);return o.length>0&&(i=be(i,o)),W(i,a.shape)}}}},XB={kernelName:Kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Z(ut(le(n,"float32")),1))}}},YB={kernelName:Xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ce(ke(1),ut(le(n,"float32"))))}}};function JB(e,t,n,a,r,s){let i=E(e,"dy","avgPool3dGrad"),o=E(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),R(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),R(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),En("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=L.runKernel(Em,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var ZB=z({avgPool3dGrad_:JB}),QB={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>ZB(e,a,r,s,i,o)}}};function eW(e,t,n,a,r){let s=E(e,"dy","avgPoolGrad"),i=E(t,"input","avgPoolGrad");R(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),R(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=L.runKernel(_m,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var tW=z({avgPoolGrad_:eW}),nW={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>tW(e,a,r,s,i)}}},aW={kernelName:Si,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Re(e,r,!1,!0),b:()=>Re(a,e,!0,!1)}:!s&&i?{a:()=>Re(e,r,!1,!1),b:()=>Re(e,a,!0,!1)}:s&&!i?{a:()=>Re(r,e,!1,!0),b:()=>Re(a,e,!1,!1)}:{a:()=>Re(r,e,!0,!0),b:()=>Re(e,a,!0,!0)}}},rW={kernelName:Jl,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Qc(e,a,r)}}},sW={kernelName:iS,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>be(e,o,!0)}}},iW={kernelName:Ni,gradFunc:e=>({x:()=>e.clone()})},oW={kernelName:Ti,gradFunc:e=>({x:()=>qe(e)})},lW={kernelName:bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>fn(Ea(Ns(a,r),Ts(a,s)),e,qe(e))}}},uW={kernelName:Sc,inputsToSave:["x"],gradFunc:r2.gradFunc},pW={kernelName:Zl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Aa(r,t[0].shape)[0],i=a.map(o=>o[s]);return Wn(e,i,s).map(o=>()=>o)}},cW={kernelName:Ci,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return R(ls(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Cv(a.shape,e,r,i,o,l),filter:()=>lw(a,e,r.shape,i,o,l)}}},dW={kernelName:_i,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Dt(e,r,s,i,o,1,l),filter:()=>lw(e,a,r.shape,s,i,o,l)}}};function hW(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),R(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),R(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),R(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),R(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),R(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return L.runKernel(Rm,o,l)}var mW=z({conv3DBackpropFilter_:hW}),fW={kernelName:Nc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;R(ls(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>aN(i.shape,e,o,r,s),filter:()=>mW(i,e,o.shape,r,s)}}},gW={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(kt(Nf(le(n,"float32"))),e)}}},yW={kernelName:Ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Tf(le(n,"float32")),e)}}},bW={kernelName:$i,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=uN([r],a.rank),l=df(e,r,s,!i);return o!=null&&(l=$e(l,o)),l}}}},xW={kernelName:Fi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;R(ls(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return R(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),R(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),R(mr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),En("depthwiseConv2d",s,i),{x:()=>VN(l.shape,e,u,r,s,o,i),filter:()=>WN(l,e,u.shape,r,s,o,i)}}},vW={kernelName:Tc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>L.runKernel(Xh,s,n),filter:()=>L.runKernel(Yh,i,n)}}},wW={kernelName:Ri,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>L.runKernel(Wm,a)}}},kW={kernelName:nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(gn(kt(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,a)}}},IW={kernelName:Mi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},SW={kernelName:ru,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},NW={kernelName:su,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,gn(n))}}},TW={kernelName:Pi,gradFunc:e=>({x:()=>qe(e)})},CW={kernelName:Oi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=fe(e,le(a,"float32")),i=Bt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,le(n,"float32")),i=Bt(a.shape,r);i.length>0&&(s=W(be(s,i),a.shape));let o=ut(a);return kt(fe(s,le(o,"float32")))}}}},_W={kernelName:Li,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ke(1):o,u=Bt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=ce(r,s),c=B(e,l),h=If(Z(i,ke(a))),m=B(B(B(h,h),h),ke(-.5));return{x:()=>s.rank===1?W(B(B(e,zn(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(B(B(e,h),l),r.shape),mean:()=>{let f=B(B(h,ke(-1)),c);return s.rank===1&&(f=be(f,u)),W(f,s.shape)},variance:()=>{let f=B(B(m,d),c);return s.rank===1&&(f=be(f,u)),W(f,s.shape)},scale:()=>{let f=B(d,h),g=B(e,f);return s.rank===1&&(g=be(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=be(f,u)),W(f,s.shape)}}}},EW={kernelName:ou,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Aa(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=Mk(0,p),m=Mk(p+1,p+1+c),f=Pk([u,[l],d]),g=W(e,f),y=W(r,[l]),b=Pk([[p],h,m]),x=$e(g,b),v=$f(x,y,a.shape[i]),I=Pv(b);return v=$e(v,I),v},indices:()=>r}}};function Mk(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Pk(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var AW={kernelName:zi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>qe(n),b:()=>qe(a)}}},$W={kernelName:Bi,gradFunc:e=>({x:()=>le(e,"float32")})},FW={kernelName:pu,gradFunc:e=>({x:()=>qe(e)})},DW={kernelName:cu,gradFunc:e=>({x:()=>qe(e)})},RW={kernelName:du,gradFunc:e=>({x:()=>qe(e)})},MW={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Hn(a,0);return{x:()=>fn(s,e,B(e,r))}}},PW={kernelName:fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Z(n,1))}}},OW={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,le(n,"float32"))}}},LW={kernelName:lS,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=gn(a);return ce(e,B(be(e,r,!0),s))}}}};function zW(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return L.runKernel(jm,o,l)}var BW=z({localResponseNormalizationBackprop_:zW}),WW={kernelName:_c,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>BW(a,r,e,s,i,o,l)}}};function s2(e,t,n,a){return t.rank<n.rank&&(t=W(t,di(t.shape,a))),e.rank<n.rank&&(e=W(e,di(e.shape,a))),{x:()=>B(e,le(ea(n,t),e.dtype))}}var Ok={kernelName:Ui,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Aa(r,s.shape),l=s2(e,i,s,o);return{x:()=>l.x()}}},VW={kernelName:Gi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,le(Ns(n,a),"float32")),b:()=>B(e,le(mf(n,a),"float32"))}}};function UW(e,t,n,a,r,s,i){let o=E(e,"dy","maxPool3dGrad"),l=E(t,"input","maxPool3dGrad"),u=E(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),R(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),R(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),R(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),En("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=L.runKernel(Km,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var GW=z({maxPool3dGrad_:UW}),HW={kernelName:Ec,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>GW(e,a,r,s,i,o,l)}}};function jW(e,t,n,a,r,s,i){let o=E(e,"dy","maxPoolGrad"),l=E(t,"input","maxPoolGrad"),u=E(n,"output","maxPoolGrad");R(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),R(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),R(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),En("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return L.runKernel(qm,p,d)}var qW=z({maxPoolGrad_:jW}),KW={kernelName:Hi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>qW(e,a,r,s,i,o)}}},XW={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Aa(r,a.shape),i=lN(a.shape,s)[1],o=yt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return fe(B(u,Qn(a.shape,"float32")),o)}}}},YW={kernelName:qi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Aa(r,s.shape),l=s2(e,i,s,o);return{x:()=>l.x()}}},JW={kernelName:Ki,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,le(Ts(n,a),"float32")),b:()=>B(e,le(Hn(n,a),"float32"))}}},ZW={kernelName:Xi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>He(e,s,a.shape)}}},QW={kernelName:xu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=Bt(n.shape,r);return s.length>0?W(be(e,s),n.shape):e},b:()=>{let s=B(e,kt(Ku(fe(n,a)))),i=Bt(a.shape,r);return i.length>0?W(be(s,i),a.shape):s}}}},e4={kernelName:Yi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=B(e,le(a,"float32")),i=Bt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,le(n,"float32")),i=Bt(a.shape,r);return i.length>0?W(be(s,i),a.shape):s}}}},t4={kernelName:vu,gradFunc:e=>({x:()=>kt(e)})},n4={kernelName:Ji,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>It(n.shape,"float32")}}},a4={kernelName:Nu,gradFunc:e=>({x:()=>qe(e)})},r4={kernelName:Tu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return mt(e,a).map(r=>()=>r)}},Lk={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>He(e,s,a.shape)}}},s4={kernelName:Qi,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=ct(s.shape,i.shape);return{a:()=>{let l=le(i,"float32"),u=B(e,B(l,Fr(s,ce(l,ke(1))))),p=Bt(s.shape,o);return p.length>0&&(u=be(u,p)),W(u,s.shape)},b:()=>{let l=Hn(s,0),u=fn(l,ta(s),qe(s)),p=B(e,B(r,u)),d=Bt(i.shape,o);return d.length>0&&(p=be(p,d)),W(p,i.shape)}}}},i4={kernelName:eo,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Hn(n,0);return{x:()=>fn(r,e,B(e,a)),alpha:()=>{let s=fn(r,qe(e),B(e,n)),i=Bt(a.shape,e.shape);return i.length>0&&(s=be(s,i)),W(s,a.shape)}}}};function o4(e,t,n){let a=e.shape.slice();a[n]=1;let r=W(t,a),s=cc(e,n,!0,!1),i=cc(e,n,!0,!0),o=B(s,i);return B(r,o)}function l4(e,t,n){let a=e.shape.length,r=a-n.length,s=C.getAxesPermutation(n,a),i=e;s!=null&&(i=$e(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=o4(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=C.getUndoAxesPermutation(s);p=$e(p,d)}return p}var u4={kernelName:to,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>l4(a,e,s)}}},p4={kernelName:Di,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=fe(e,le(a,"float32")),i=Bt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,le(n,"float32")),i=Bt(a.shape,r);i.length>0&&(s=W(be(s,i),a.shape));let o=ut(a);return kt(fe(s,le(o,"float32")))}}}},c4={kernelName:Cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,kt(ut(n)))}}},d4={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(Ts(n,6),ko(n));return{x:()=>B(e,le(a,"float32"))}}},h4={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,le(ko(n),"float32"))}}},m4={kernelName:_u,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},f4={kernelName:ro,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(Qm,r,n)}}},g4={kernelName:ao,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(Zm,r,n)}}},y4={kernelName:io,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Aa(a,e.shape);return{x:()=>fa(e,r)}}},b4={kernelName:oo,gradFunc:e=>({x:()=>qe(e)})},x4={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(fe(e,B(Fr(n,1.5),2)))}}},v4={kernelName:Au,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>le(qe(n),"float32"),t:()=>B(e,le(n,e.dtype)),e:()=>B(e,le(Jc(n),e.dtype))}}},w4={kernelName:$u,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Hn(n,ke(0)),r=ke(t2),s=ke(n2),i=B(e,s),o=B(B(e,r),gn(le(n,"float32")));return fn(a,i,o)}}}},k4={kernelName:po,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,ce(ke(1),n)))}}},I4={kernelName:Ru,gradFunc:e=>({x:()=>qe(e)})},S4={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Kc(le(n,"float32")),e)}}},N4={kernelName:Du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(cf(le(n,"float32")),e)}}},T4={kernelName:Fu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=jS(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>ya(e,u)}}},C4={kernelName:mo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=B(e,a);return{logits:()=>ce(i,B(be(i,[r],s),a))}}},_4={kernelName:Mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,ha(n))}}},zk={kernelName:Pu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>qc(e,a,r)}}},Bk={kernelName:Ou,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Qe(e,a)}}},E4={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,B(un(le(n,"float32")),2))}}},A4={kernelName:Rc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(le(n,"float32"),2))}}},$4={kernelName:fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ke(2);return{a:()=>B(e,B(r,ce(n,a))),b:()=>B(e,B(r,ce(a,n)))}}},F4={kernelName:vs,gradFunc:e=>({x:()=>qe(e)})},D4={kernelName:go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=e,i=Bt(n.shape,r);return i.length>0&&(s=be(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Bt(a.shape,r);return i.length>0&&(s=be(s,i)),W(kt(s),a.shape)}}}},R4={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Aa(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=B(i,Qn(a.shape,"float32"));return{x:()=>o}}},M4={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ut(Kc(n)))}}},P4={kernelName:bo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(ce(ke(1),ut(n)),e)}}},O4={kernelName:xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=qe(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=Z(s,He(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=Z(s,He(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=Z(s,He(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=Z(s,He(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},L4={kernelName:Er,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=Pv(r);return{x:()=>$e(e,s)}}},z4={kernelName:Vu,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Rt(e,r)}}},B4={kernelName:Lc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W4(e,n)}}};function W4(e,t){let n=fr(t,qe(t)),a=Xu(e,n),r=Ns(t,ke(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=mn(r,o+1);r=Ea(r,Qn(a.shape,"bool"));let i=qe(a);return fn(r,a,i)}var V4={kernelName:Uu,gradFunc:e=>({x:()=>qe(e)})},U4=[r2,BB,WB,VB,UB,GB,HB,jB,qB,KB,XB,YB,QB,nW,aW,rW,sW,iW,oW,lW,uW,pW,dW,cW,fW,gW,yW,bW,xW,vW,p4,wW,kW,IW,SW,NW,CW,TW,_W,EW,AW,$W,FW,DW,RW,MW,PW,OW,LW,WW,Ok,Ok,VW,HW,KW,XW,YW,JW,ZW,QW,e4,t4,n4,a4,r4,Lk,Lk,s4,i4,u4,c4,d4,h4,m4,f4,g4,y4,b4,x4,v4,w4,k4,I4,S4,N4,T4,C4,_4,zk,zk,Bk,Bk,E4,$4,A4,F4,D4,R4,M4,P4,O4,L4,z4,B4,V4];for(let e of U4)uS(e);ne().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};ne().prototype.acos=function(){return this.throwIfDisposed(),lv(this)};ne().prototype.acosh=function(){return this.throwIfDisposed(),uv(this)};ne().prototype.add=function(e){return this.throwIfDisposed(),Z(this,e)};ne().prototype.all=function(e,t){return this.throwIfDisposed(),lf(this,e,t)};ne().prototype.any=function(e,t){return this.throwIfDisposed(),pc(this,e,t)};ne().prototype.argMax=function(e){return this.throwIfDisposed(),pi(this,e)};ne().prototype.argMin=function(e){return this.throwIfDisposed(),pv(this,e)};ne().prototype.asScalar=function(){return this.throwIfDisposed(),R(this.size===1,()=>"The array must have only 1 element."),W(this,[])};ne().prototype.asType=function(e){return this.throwIfDisposed(),le(this,e)};ne().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};ne().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};ne().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};ne().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};ne().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};ne().prototype.asin=function(){return this.throwIfDisposed(),cv(this)};ne().prototype.asinh=function(){return this.throwIfDisposed(),dv(this)};ne().prototype.atan=function(){return this.throwIfDisposed(),hv(this)};ne().prototype.atan2=function(e){return this.throwIfDisposed(),mv(this,e)};ne().prototype.atanh=function(){return this.throwIfDisposed(),fv(this)};ne().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ga(this,e,t,n,a)};ne().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),qc(this,e,t)};ne().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),Is(this,e,t,n,a,r)};ne().prototype.broadcastTo=function(e){return this.throwIfDisposed(),vl(this,e)};ne().prototype.cast=function(e){return this.throwIfDisposed(),le(this,e)};ne().prototype.ceil=function(){return this.throwIfDisposed(),kv(this)};ne().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),tn(this,e,t)};ne().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ae&&(e=[e]),Qe([this,...e],t)};ne().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),uf(this,e,t,n,a,r,s)};ne().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),pf(this,e,t,n,a,r)};ne().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Dt(this,e,t,n,a,r,s)};ne().prototype.cos=function(){return this.throwIfDisposed(),Kc(this)};ne().prototype.cosh=function(){return this.throwIfDisposed(),cf(this)};ne().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),cc(this,e,t,n)};ne().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),df(this,e,t,n)};ne().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Av(this,e,t)};ne().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ss(this,e,t,n,a,r,s)};ne().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),$v(this,e,t,n,a,r)};ne().prototype.divNoNan=function(e){return this.throwIfDisposed(),Fv(this,e)};ne().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};ne().prototype.dot=function(e){return this.throwIfDisposed(),Dv(this,e)};ne().prototype.elu=function(){return this.throwIfDisposed(),ju(this)};ne().prototype.equal=function(e){return this.throwIfDisposed(),ea(this,e)};ne().prototype.erf=function(){return this.throwIfDisposed(),Rv(this)};ne().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),Ov(this,e,t)};ne().prototype.exp=function(){return this.throwIfDisposed(),gn(this)};ne().prototype.expandDims=function(e){return this.throwIfDisposed(),mn(this,e)};ne().prototype.expm1=function(){return this.throwIfDisposed(),Lv(this)};ne().prototype.fft=function(){return this.throwIfDisposed(),nd(this)};ne().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};ne().prototype.floor=function(){return this.throwIfDisposed(),Ku(this)};ne().prototype.floorDiv=function(e){return this.throwIfDisposed(),of(this,e)};ne().prototype.gather=function(e,t){return this.throwIfDisposed(),Xu(this,e,t)};ne().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Ns(this,e)};ne().prototype.greater=function(e){return this.throwIfDisposed(),Hn(this,e)};ne().prototype.ifft=function(){return this.throwIfDisposed(),El(this)};ne().prototype.irfft=function(){return this.throwIfDisposed(),_f(this)};ne().prototype.isFinite=function(){return this.throwIfDisposed(),zv(this)};ne().prototype.isInf=function(){return this.throwIfDisposed(),Bv(this)};ne().prototype.isNaN=function(){return this.throwIfDisposed(),Wv(this)};ne().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Xc(this,e)};ne().prototype.lessEqual=function(e){return this.throwIfDisposed(),Ts(this,e)};ne().prototype.less=function(e){return this.throwIfDisposed(),mf(this,e)};ne().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),Vv(this,e,t,n,a)};ne().prototype.logSigmoid=function(){return this.throwIfDisposed(),Uv(this)};ne().prototype.logSoftmax=function(e){return this.throwIfDisposed(),gf(this,e)};ne().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),yf(this,e,t)};ne().prototype.log=function(){return this.throwIfDisposed(),ta(this)};ne().prototype.log1p=function(){return this.throwIfDisposed(),Yc(this)};ne().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Ea(this,e)};ne().prototype.logicalNot=function(){return this.throwIfDisposed(),Jc(this)};ne().prototype.logicalOr=function(e){return this.throwIfDisposed(),bf(this,e)};ne().prototype.logicalXor=function(e){return this.throwIfDisposed(),Gv(this,e)};ne().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Re(this,e,t,n)};ne().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Mt(this,e,t,n,a)};ne().prototype.max=function(e,t){return this.throwIfDisposed(),Ta(this,e,t)};ne().prototype.maximum=function(e){return this.throwIfDisposed(),fr(this,e)};ne().prototype.mean=function(e,t){return this.throwIfDisposed(),_t(this,e,t)};ne().prototype.min=function(e,t){return this.throwIfDisposed(),dc(this,e,t)};ne().prototype.minimum=function(e){return this.throwIfDisposed(),Yu(this,e)};ne().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),jv(this,e,t)};ne().prototype.mod=function(e){return this.throwIfDisposed(),qv(this,e)};ne().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};ne().prototype.neg=function(){return this.throwIfDisposed(),kt(this)};ne().prototype.norm=function(e,t,n){return this.throwIfDisposed(),qu(this,e,t,n)};ne().prototype.notEqual=function(e){return this.throwIfDisposed(),hi(this,e)};ne().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Nl(this,e,t,n)};ne().prototype.onesLike=function(){return this.throwIfDisposed(),na(this)};ne().prototype.pad=function(e,t){return this.throwIfDisposed(),ya(this,e,t)};ne().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),Kv(this,e,t,n,a,r,s)};ne().prototype.pow=function(e){return this.throwIfDisposed(),Fr(this,e)};ne().prototype.prelu=function(e){return this.throwIfDisposed(),ed(this,e)};ne().prototype.prod=function(e,t){return this.throwIfDisposed(),Xv(this,e,t)};ne().prototype.reciprocal=function(){return this.throwIfDisposed(),Zv(this)};ne().prototype.relu=function(){return this.throwIfDisposed(),Xe(this)};ne().prototype.relu6=function(){return this.throwIfDisposed(),wf(this)};ne().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};ne().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};ne().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),KN(this,e,t,n)};ne().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),XN(this,e,t,n)};ne().prototype.reverse=function(e){return this.throwIfDisposed(),fa(this,e)};ne().prototype.rfft=function(){return this.throwIfDisposed(),ad(this)};ne().prototype.round=function(){return this.throwIfDisposed(),kf(this)};ne().prototype.rsqrt=function(){return this.throwIfDisposed(),If(this)};ne().prototype.selu=function(){return this.throwIfDisposed(),Sf(this)};ne().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Cs(this,e,t,n,a,r,s)};ne().prototype.sigmoid=function(){return this.throwIfDisposed(),ha(this)};ne().prototype.sign=function(){return this.throwIfDisposed(),Qv(this)};ne().prototype.sin=function(){return this.throwIfDisposed(),Nf(this)};ne().prototype.sinh=function(){return this.throwIfDisposed(),Tf(this)};ne().prototype.slice=function(e,t){return this.throwIfDisposed(),He(this,e,t)};ne().prototype.softmax=function(e){return this.throwIfDisposed(),Za(this,e)};ne().prototype.softplus=function(){return this.throwIfDisposed(),vo(this)};ne().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Qc(this,e,t)};ne().prototype.split=function(e,t){return this.throwIfDisposed(),Wn(this,e,t)};ne().prototype.sqrt=function(){return this.throwIfDisposed(),un(this)};ne().prototype.square=function(){return this.throwIfDisposed(),ut(this)};ne().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Ef(this,e)};ne().prototype.squeeze=function(e){return this.throwIfDisposed(),_s(this,e)};ne().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ae?[this,e]:[this,...e];return Rt(n,t)};ne().prototype.step=function(e){return this.throwIfDisposed(),ko(this,e)};ne().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),ew(this,e,t,n,a,r,s,i,o)};ne().prototype.sub=function(e){return this.throwIfDisposed(),ce(this,e)};ne().prototype.sum=function(e,t){return this.throwIfDisposed(),be(this,e,t)};ne().prototype.tan=function(){return this.throwIfDisposed(),tw(this)};ne().prototype.tanh=function(){return this.throwIfDisposed(),ci(this)};ne().prototype.tile=function(e){return this.throwIfDisposed(),zn(this,e)};ne().prototype.toBool=function(){return this.throwIfDisposed(),le(this,"bool")};ne().prototype.toFloat=function(){return this.throwIfDisposed(),le(this,"float32")};ne().prototype.toInt=function(){return this.throwIfDisposed(),le(this,"int32")};ne().prototype.topk=function(e,t){return this.throwIfDisposed(),nw(this,e,t)};ne().prototype.transpose=function(e){return this.throwIfDisposed(),$e(this,e)};ne().prototype.unique=function(e){return this.throwIfDisposed(),aw(this,e)};ne().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),$f(this,e,t)};ne().prototype.unstack=function(e){return this.throwIfDisposed(),mt(this,e)};ne().prototype.where=function(e,t){return this.throwIfDisposed(),fn(e,this,t)};ne().prototype.zerosLike=function(){return this.throwIfDisposed(),qe(this)};var Ir=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ir.prototype)}},Ga=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ga.prototype)}},H=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,H.prototype)}},Oe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Oe.prototype)}},i2=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,i2.prototype)}},o2=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function mi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ir(e,t){if(!e)throw new i2(t)}function Wk(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Ln(e){return e.length===1?e[0]:e}function wt(e){return Array.isArray(e)?e:[e]}function Sr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ys(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ka={};function hw(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function ax(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>ax(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:ax(a))}}}function sd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ka)i=ka[s];else if(i=t[s],i==null)throw new H(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new H(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ka?[o,l]=ka.className:i in t&&([o,l]=t[i]),o==null)throw new H(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ka))u[h]=ka[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},ka);for(let h of Object.keys(n))ka[h]=n[h];ax(s.config);let c=l(o,s.config,n,r);return ka=Object.assign({},d),c}else{let u=Object.assign({},ka);for(let d of Object.keys(n))ka[d]=n[d];let p=new o(s.config);return ka=Object.assign({},u),p}}}function G4(e,t){return e<t?-1:e>t?1:0}function Th(e,t){return-1*G4(e,t)}function rs(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function H4(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Io(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function mw(e,t,n=0,a=1/0){return ir(n>=0),ir(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function en(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>en(n,`element ${a+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${l2(e)}.`)}function l2(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>l2(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function j4(e,t,n){let a=n!=null?n():w.now(),r;return(...s)=>{let i=n!=null?n():w.now();return i-a<t||(a=i,r=e(...s)),r}}function u2(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var q4=0;function p2(){return q4++}var Ch={};function Uf(e=""){return e in Ch||(Ch[e]=0),Ch[e]+=1,e+Ch[e].toString()}var K4=["channelsFirst","channelsLast"],X4=["nearest","bilinear"],Y4=["valid","same","causal"],J4=["max","avg"],Z4=["sum","mul","concat","ave"],cl=new Map;function Pt(e){Io(K4,"DataFormat",e)}function Q4(e){Io(X4,"InterpolationFormat",e)}function ba(e){Io(Y4,"PaddingMode",e)}function c2(e){Io(J4,"PoolMode",e)}var nc=[],Vk="/";function ni(e,t){nc.push(e);try{let n=t();return nc.pop(),n}catch(n){throw nc.pop(),n}}function eV(){return nc.length===0?"":nc.join(Vk)+Vk}function d2(e){if(!m2(e))throw new Error("Not a valid tensor name: '"+e+"'");return eV()+e}function h2(e){if(!m2(e))throw new Error("Not a valid tensor name: '"+e+"'");cl.has(e)||cl.set(e,0);let t=cl.get(e);if(cl.set(e,cl.get(e)+1),t>0){let n=`${e}_${t}`;return cl.set(n,1),n}else return e}var tV=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function m2(e){return!!e.match(tV)}function nV(e){return e===parseInt(e.toString(),10)}function ss(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function $l(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function us(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function Xa(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var Fb;function Ht(){return Fb==null&&(Fb=DS().epsilon()),Fb}function Ya(){return"channelsLast"}function Gf(e,t){return le(e,t)}function id(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),W(e,n)}function aV(e,t){return O(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=id(e,1);return rx(n,[1,t,1])})}function rV(e){let t=[ss(e.shape)];return W(e,t)}function sV(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ss(e.shape,1)];return W(e,t)}function ai(e,t,n){return O(()=>{switch(e.rank){case 1:return td(e,t,n);case 2:return Cf(e,[t,0],[n,e.shape[1]]);case 3:return wo(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return _l(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return He(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return He(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Db(e,t,n){return O(()=>{switch(e.rank){case 1:return td(e,t,n);case 2:return Cf(e,[0,t],[e.shape[0],n]);case 3:return wo(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return _l(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function _h(e,t,n,a){return O(()=>{switch(e.rank){case 1:return td(e,t,n);case 2:switch(a){case 1:return ai(e,t,n);case 2:return Db(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return ai(e,t,n);case 2:return wo(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Db(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return ai(e,t,n);case 2:return _l(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return _l(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Db(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function fw(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Qe(e,t)}function Uk(e,t){switch(e.rank){case 1:return Iv([e,t]);case 2:return Sv([e,t],0);case 3:return Nv([e,t],0);case 4:return Tv([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function rx(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return zn(e,t)}function Hf(e,t=0,n=1,a,r){return vf(e,t,n,a,r)}function pr(e,t,n,a){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return Al.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?sx(e.rank,a,Ya()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W($e(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(Al.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?sx(e.rank,a,Ya()):null,activation:n}),d)}}function f2(e,t,n){return O(()=>(Array.isArray(t)?t=Ke(t,"int32"):t=le(t,"int32"),Xu(e,t,n)))}function od(e){return B(e,e)}function sx(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function Qa(e,t,n){return O(()=>(n==null&&(n=Ya()),Pt(n),Z(e,sx(e.rank,t,n))))}function iV(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return ju(e)}function oV(e){return O(()=>fe(e,Z(Lt(e),1)))}function g2(e,t,n,a){return O(()=>iw(e,t,n,a))}function lV(e){return O(()=>{let t=Z(.5,B(.2,e));return tn(t,0,1)})}function ld(e,t,n=!1){return n?e():t()}var uV=["fanIn","fanOut","fanAvg"],pV=["normal","uniform","truncatedNormal"];function cV(e){Io(uV,"FanMode",e)}function dV(e){Io(pV,"Distribution",e)}var Fa=class extends se.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},gw=class extends Fa{apply(e,t){return It(e,t)}};gw.className="Zeros";se.registerClass(gw);var jf=class extends Fa{apply(e,t){return Qn(e,t)}};jf.className="Ones";se.registerClass(jf);var yw=class extends Fa{constructor(e){if(super(),typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return O(()=>B(ke(this.value),Qn(e,t)))}getConfig(){return{value:this.value}}};yw.className="Constant";se.registerClass(yw);var bw=class extends Fa{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Ju(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};bw.className="RandomUniform";se.registerClass(bw);var xw=class extends Fa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return Hf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};xw.className="RandomNormal";se.registerClass(xw);var vw=class extends Fa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Af(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};vw.className="TruncatedNormal";se.registerClass(vw);var ww=class extends Fa{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return O(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,hf(e[0]))})}getConfig(){return{gain:this.gain}}};ww.className="Identity";se.registerClass(ww);function hV(e,t="channelsLast"){let n,a;if(Pt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ss(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=ss(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=ss(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Un=class extends Fa{constructor(e){if(super(),e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,cV(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,dV(this.distribution),this.seed=e.seed}apply(e,t){let n=hV(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Af(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Ju(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Un.className="VarianceScaling";se.registerClass(Un);var qf=class extends Un{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Un.className}};qf.className="GlorotUniform";se.registerClass(qf);var Kf=class extends Un{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Un.className}};Kf.className="GlorotNormal";se.registerClass(Kf);var Xf=class extends Un{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Un.className}};Xf.className="HeNormal";se.registerClass(Xf);var Yf=class extends Un{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Un.className}};Yf.className="HeUniform";se.registerClass(Yf);var Jf=class extends Un{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Un.className}};Jf.className="LeCunNormal";se.registerClass(Jf);var Zf=class extends Un{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Un.className}};Zf.className="LeCunNormal";se.registerClass(Zf);var kw=class extends Fa{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return O(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Hf(n,0,1,"float32"),r=pw.gramSchmidt(a);return e[0]>e[1]&&(r=$e(r)),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};kw.className="Orthogonal";se.registerClass(kw);var Gk={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Hk(e,t={}){return sd(e,se.SerializationMap.getMap().classNameMap,t,"initializer")}function Et(e){return hw(e)}function St(e){if(typeof e=="string"){let t=e in Gk?Gk[e]:e;if(t==="GlorotNormal")return new Kf;if(t==="GlorotUniform")return new qf;if(t==="HeNormal")return new Xf;if(t==="HeUniform")return new Yf;if(t==="LeCunNormal")return new Jf;if(t==="LeCunUniform")return new Zf;{let n={};return n.className=t,n.config={},Hk(n)}}else return e instanceof Fa?e:Hk(e)}function ix(e){return Array.isArray(e)&&Array.isArray(e[0])}function rm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Be(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function it(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function sm(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var jk="Variable",y2=class{constructor(e,t="float32",n=jk,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=p2(),n=n==null?jk:n,this.originalName=d2(n),this.name=h2(this.originalName),this.trainable_=a,this.constraint=r,this.val=rw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),mV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function mV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function ox(e){return e.map(t=>t.read())}function Iw(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ha=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=p2(),s!=null&&(this.originalName=d2(s),this.name=h2(this.originalName)),this.rank=t.length}},fV=0,Qf=class{constructor(e,t){this.callArgs=t,this.id=fV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},gV=0,Ye=class extends se.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=gV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Sr(n)+"_"+Uf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ga(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Ln(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Ln(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} is not connected, no input to return.`);return Ln(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Ln(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=wt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=wt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=wt(e),a=!0;for(let s of n)if(!(s instanceof Ha)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ha){r=!1;break}if(a===r)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return ni(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of wt(e))s.push(i.shape);this.build(Ln(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=wt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Ln(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=yV(e),i=this.computeOutputShape(s),o,l=bV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Ha(l,u,this,wt(e),t,this.name,p)):o=new Ha(l,i,this,wt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ir(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ir(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ga(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return sm(this.weights)}build(e){this.built=!0}getWeights(e=!1){return ox(e?this.trainableWeights:this.weights)}setWeights(e){O(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=ox(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!w.arraysEqual(s.shape,o.shape))throw new H(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Iw(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():St("zeros"));let l=a.apply(t,n),u=new y2(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=wt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=wt(e);t=wt(t),n=wt(n),a=wt(a),r=rm(r),s=rm(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new Qf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function yV(e){e=wt(e);let t=[];for(let n of e)t.push(n.shape);return Ln(t)}function bV(e){return"float32"}function b2(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=b2(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var Qu=class extends Ye{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:Uf("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ha(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Qf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Qu.className="InputLayer";se.registerClass(Qu);function x2(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Qu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function xV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return le(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Qs=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Qs)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=xV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ha){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ha){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Me(this.id2Mask)}},im=new o2,om=new o2;function vV(e){im!=null&&im.setMaxEntries(e),om!=null&&om.setMaxEntries(e)}function qp(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=im.get(p),c;if(d==null){let m=wV(i,t);d=m.sorted,c=m.recipientCounts,im.put(p,d),om.put(p,c)}c={},r||Object.assign(c,om.get(p));let h=new Qs(t);for(let m=0;m<d.length;++m){if(a!=null){let F=nm().numTensors;F>a.maxNumTensors&&(a.maxNumTensors=F),F<a.minNumTensors&&(a.minNumTensors=F)}let f=d[m],g=f.sourceLayer;if(g instanceof Qu)continue;let y=[],b=[],x=[],v=!1;for(let F of f.inputs){let P=h.getValue(F),$=h.getMask(F);y.push(P),b.push($),$!=null&&(v=!0),r||(c[F.name]--,c[F.name]===0&&!t.hasKey(F)&&o.indexOf(F.name)===-1&&!P.isDisposed&&F.sourceLayer.stateful!==!0&&x.push(P))}v&&(n=n||{},n.mask=b[0]);let I=wt(g.apply(y,n)),T=null;g.supportsMasking&&(T=g.computeMask(y,b));let _=IV(f),A=Array.isArray(_)?_:[_];for(let F=0;F<A.length;++F){h.hasKey(A[F])||h.add(A[F],I[F],Array.isArray(T)?T[0]:T);let P=o.indexOf(A[F].name);P!==-1&&(l[P]=I[F])}r||Me(x)}return h.disposeMasks(),s?l:l[0]}function wV(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=qk(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=qk(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:kV(a)}}function kV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function qk(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function IV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var SV=X();SV.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,vV);var v2={};Fe(v2,{maxNorm:()=>NV,minMaxNorm:()=>_V,nonNeg:()=>CV,unitNorm:()=>TV});function Sw(e,t){return O(()=>un(be(B(e,e),t,!0)))}var ud=class extends se.Serializable{getConfig(){return{}}},Nw=class extends ud{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=Sw(e,this.axis),n=tn(t,0,this.maxValue);return B(e,fe(n,Z(Ht(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Nw.className="MaxNorm";se.registerClass(Nw);var Tw=class extends ud{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>fe(e,Z(Ht(),Sw(e,this.axis))))}getConfig(){return{axis:this.axis}}};Tw.className="UnitNorm";se.registerClass(Tw);var Cw=class extends ud{apply(e){return Xe(e)}};Cw.className="NonNeg";se.registerClass(Cw);var _w=class extends ud{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=Sw(e,this.axis),n=Z(B(this.rate,tn(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,fe(n,Z(Ht(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};_w.className="MinMaxNorm";se.registerClass(_w);var Kk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Kt(e){return hw(e)}function Xk(e,t={}){return sd(e,se.SerializationMap.getMap().classNameMap,t,"constraint")}function Xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Kk?Kk[e]:e,config:{}};return Xk(t)}else return e instanceof ud?e:Xk(e)}function NV(e){return new Nw(e)}function TV(e){return new Tw(e)}function CV(){return new Cw}function _V(e){return new _w(e)}var w2={};Fe(w2,{constant:()=>$V,glorotNormal:()=>LV,glorotUniform:()=>OV,heNormal:()=>zV,heUniform:()=>BV,identity:()=>MV,leCunNormal:()=>WV,leCunUniform:()=>VV,ones:()=>AV,orthogonal:()=>UV,randomNormal:()=>DV,randomUniform:()=>FV,truncatedNormal:()=>RV,varianceScaling:()=>PV,zeros:()=>EV});function EV(){return new gw}function AV(){return new jf}function $V(e){return new yw(e)}function FV(e){return new bw(e)}function DV(e){return new xw(e)}function RV(e){return new vw(e)}function MV(e){return new ww(e)}function PV(e){return new Un(e)}function OV(e){return new qf(e)}function LV(e){return new Kf(e)}function zV(e){return new Xf(e)}function BV(e){return new Yf(e)}function WV(e){return new Jf(e)}function VV(e){return new Zf(e)}function UV(e){return new kw(e)}var k2={};Fe(k2,{Layer:()=>Ye,RNN:()=>yr,RNNCell:()=>md,activation:()=>fG,add:()=>SG,alphaDropout:()=>oH,average:()=>NG,averagePooling1d:()=>M0,averagePooling2d:()=>P0,averagePooling3d:()=>O0,avgPool1d:()=>RG,avgPool2d:()=>PG,avgPool3d:()=>LG,avgPooling1d:()=>MG,avgPooling2d:()=>OG,avgPooling3d:()=>zG,batchNormalization:()=>$G,bidirectional:()=>QG,concatenate:()=>TG,conv1d:()=>iG,conv2d:()=>oG,conv2dTranspose:()=>lG,conv3d:()=>uG,conv3dTranspose:()=>pG,convLstm2d:()=>XG,convLstm2dCell:()=>YG,cropping2D:()=>dG,dense:()=>gG,depthwiseConv2d:()=>mG,dot:()=>AG,dropout:()=>yG,elu:()=>eG,embedding:()=>IG,flatten:()=>xG,gaussianDropout:()=>iH,gaussianNoise:()=>sH,globalAveragePooling1d:()=>BG,globalAveragePooling2d:()=>WG,globalMaxPool1d:()=>tH,globalMaxPool2d:()=>nH,globalMaxPooling1d:()=>hT,globalMaxPooling2d:()=>mT,gru:()=>UG,gruCell:()=>GG,input:()=>B2,inputLayer:()=>QU,layerNormalization:()=>FG,leakyReLU:()=>nG,lstm:()=>HG,lstmCell:()=>jG,masking:()=>lH,maxPool1d:()=>aH,maxPool2d:()=>rH,maxPooling1d:()=>fT,maxPooling2d:()=>gT,maxPooling3d:()=>VG,maximum:()=>CG,minimum:()=>_G,multiply:()=>EG,permute:()=>kG,prelu:()=>aG,reLU:()=>tG,repeatVector:()=>vG,reshape:()=>wG,rnn:()=>JG,separableConv2d:()=>cG,simpleRNN:()=>qG,simpleRNNCell:()=>KG,softmax:()=>rG,spatialDropout1d:()=>bG,stackedRNNCells:()=>ZG,thresholdedReLU:()=>sG,timeDistributed:()=>eH,upSampling2d:()=>hG,zeroPadding2d:()=>DG});async function Zr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Me(a)}}function I2(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Yk;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Yk||(Yk={}));var GV=125,Fl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},S2=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},HV=class extends Fl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=O(()=>Z(this.totals[a],B(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:O(()=>{let a=B(fe(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Qt(t[n])}))}},N2=class extends Fl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},T2=class extends Fl{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||cw,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=GV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=j4(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Zr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Zr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Zr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Zr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Zr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Zr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Zr(e),await this.trainEnd(e))}};function C2(e,t){return e==null&&(e={}),e instanceof Fl?[e]:Array.isArray(e)&&e[0]instanceof Fl?e:wt(e).map(n=>new T2(n,t))}var Sa=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Sa.checkForDuplicate(t),Sa.constructors[e]==null&&(Sa.constructors[e]=[]),Sa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Sa.constructors)Sa.constructors[+t].forEach(n=>{if(n===e)throw new H("Duplicate callback constructor.")})}static clear(){Sa.constructors={}}static createCallbacks(e){let t=[];for(let n in Sa.constructors){let a=+n;e>=a&&t.push(...Sa.constructors[a])}return t.map(n=>new n)}};Sa.constructors={};function _2(e,t,n,a,r,s,i,o,l){let u=new N2,p=[new HV,...Sa.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new S2(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function qa(e,t={},n=!1){return sd(e,se.SerializationMap.getMap().classNameMap,t,"layer",n)}function lm(e,t){return O(()=>{e.dtype!=="float32"&&(e=le(e,"float32"));let n=be(od(e),t,!0),a=An(n.shape,Ht()),r=un(fr(n,a));return fe(e,r)})}function So(e,t){return O(()=>_t(od(ce(t,e)),-1))}function eg(e,t){return O(()=>_t(Lt(ce(t,e)),-1))}function ep(e,t){return O(()=>{let n=ce(e,t),a=tn(Lt(e),Ht(),Number.MAX_VALUE),r=Lt(fe(n,a));return B(100,_t(r,-1))})}function jV(e,t){return O(()=>{let n=tn(t,Ht(),Number.MAX_VALUE),a=ta(Z(1,n)),r=tn(e,Ht(),Number.MAX_VALUE),s=ta(Z(1,r));return _t(od(ce(a,s)),-1)})}function qV(e,t){return O(()=>{let n=fr(0,ce(1,B(e,t)));return _t(od(n),-1)})}function KV(e,t){return O(()=>{let n=fr(0,ce(1,B(e,t)));return _t(n,-1)})}function XV(e,t){return O(()=>{let n=be(B(e,t),-1),a=Ta(B(ce(1,e),t),-1);return fr(0,Z(1,ce(a,n)))})}function YV(e,t){return O(()=>{let n=Math.log(2),a=ce(t,e),r=ce(Z(a,vo(B(-2,a))),n);return _t(r,-1)})}function hc(e,t,n=!1){return O(()=>{if(n)t=Za(t);else{let a=be(t,t.shape.length-1,!0);t=fe(t,a)}return t=tn(t,Ht(),1-Ht()),kt(be(B(le(e,"float32"),ta(t)),t.shape.length-1))})}function um(e,t,n=!1){return O(()=>{let a=le(Ku(rV(e)),"int32");t=tn(t,Ht(),1-Ht());let r=t.shape,s=W(Nl(a,r[r.length-1]),r);return hc(s,t,n)})}function JV(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return O(()=>{let n=Xe(t),a=kt(Lt(t));return Z(ce(n,B(t,e)),Yc(gn(a)))})}function tg(e,t){return O(()=>{let n;return n=tn(t,Ht(),1-Ht()),n=ta(fe(n,ce(1,n))),_t(JV(e,n),-1)})}function ZV(e,t){return O(()=>{let n=tn(e,Ht(),1),a=tn(t,Ht(),1);return be(B(e,ta(fe(n,a))),-1)})}function QV(e,t){return O(()=>{let n=ta(Z(Ht(),t));return _t(ce(t,B(e,n)),-1)})}function Ew(e,t){return O(()=>{let n=lm(e,-1),a=lm(t,-1),r=B(n,a);return kt(be(r,-1))})}var pm={meanSquaredError:So,meanAbsoluteError:eg,meanAbsolutePercentageError:ep,meanSquaredLogarithmicError:jV,squaredHinge:qV,hinge:KV,categoricalHinge:XV,logcosh:YV,categoricalCrossentropy:hc,sparseCategoricalCrossentropy:um,binaryCrossentropy:tg,kullbackLeiblerDivergence:ZV,poisson:QV,cosineProximity:Ew};function Rb(e){if(typeof e=="string"){if(e in pm)return pm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function Aw(e,t){return O(()=>{let n=B(.5,na(t)),a=Gf(Hn(t,n),e.dtype);return _t(ea(e,a),-1)})}function $w(e,t){return O(()=>Gf(ea(pi(e,-1),pi(t,-1)),"float32"))}function E2(e,t){return O(()=>le(be(Ea(ea(e,1),ea(t,1))),"float32"))}function eU(e,t){return O(()=>le(be(Ea(ea(e,1),ea(t,0))),"float32"))}function tU(e,t){return O(()=>le(be(Ea(ea(e,0),ea(t,1))),"float32"))}function A2(e,t){return O(()=>{let n=E2(e,t),a=tU(e,t),r=Z(n,a);return le(fn(Hn(r,0),fe(n,r),0),"float32")})}function nU(e,t){return O(()=>{let n=E2(e,t),a=eU(e,t),r=Z(n,a);return le(fn(Hn(r,0),fe(n,r),0),"float32")})}function $2(e,t){return tg(e,t)}function F2(e,t){return e.rank===t.rank&&(e=_s(e,[e.rank-1])),t=pi(t,-1),t.dtype!==e.dtype&&(t=le(t,e.dtype)),le(ea(e,t),"float32")}var aU=So,rU=So,sU=eg,iU=eg,oU=ep,lU=ep,Fw=hc,uU=Ew,D2=um,cm={binaryAccuracy:Aw,categoricalAccuracy:$w,precision:A2,categoricalCrossentropy:Fw,sparseCategoricalCrossentropy:D2,mse:aU,MSE:rU,mae:sU,MAE:iU,mape:oU,MAPE:lU,cosine:uU};function pU(e){if(typeof e=="string"&&e in cm)return cm[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function Eh(e){if(ir(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(pm))if(pm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(cm))if(cm[n]===e){t=n;break}return t!==void 0?t:e.name}}function cU(e){let t={Adagrad:()=>qs.adagrad(.01),Adadelta:()=>qs.adadelta(1,.95,Ht()),Adam:()=>qs.adam(.001,.9,.999,Ht()),Adamax:()=>qs.adamax(.002,.9,.999,Ht(),0),RMSProp:()=>qs.rmsprop(.001,.9,0,Ht()),SGD:()=>qs.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}function Jk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!lx(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function lx(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!lx(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!lx(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function dU(e,t,n,a=console.log){let r=mU(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),dm(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?fU(o[p],n,a):gU(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=hU(e),u=sm(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function hU(e){let t;return e.collectedTrainableWeights!=null?t=sm(e.collectedTrainableWeights):t=sm(e.trainableWeights),t}function mU(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function dm(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function fU(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];dm(o,t,n)}function gU(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];dm(p,t,a);for(let d=1;d<i.length;++d)dm(["","","","",i[d]],t,a)}function R2(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function mc(e,t){if(e===null)return null;if(typeof e=="string")return Ys(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];R2(t,r,s)?n.push(s):n.push(mc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Ys(a);n[s]=mc(r,s)}}return n}}function ux(e,t){if(e==null)return null;if(typeof e=="string")return Sr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];R2(t,r,s)?n.push(s):n.push(ux(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Sr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=ux(r,a)}return n}}var Dw="3.19.0",rr=class extends Ye{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Uf(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],rs(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);rs(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;ir(x===0,"input layer has >1 nodes"),ir(v===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof Qu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,v,I,T)=>{(v==null||I==null||T==null)&&(v=y.sourceLayer,I=y.nodeIndex,T=y.tensorIndex);let _=v.inboundNodes[I];if(x.indexOf(_)!==-1)throw new Ga(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(b.indexOf(_)!==-1)return;this.containerNodes.add(rr.nodeKey(v,I)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(_)===-1&&x.push(_);let A=_.inboundLayers.length;for(let F=0;F<A;F++){let P=_.inputTensors[F],$=_.inboundLayers[F],S=_.nodeIndices[F],M=_.tensorIndices[F];o(P,b,x,$,S,M)}for(b.push(_);x.indexOf(_)>=0;)x.splice(x.indexOf(_),1);i.push(_)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let p=i.slice().reverse();for(let y of p){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let v=0;v<y.inboundLayers.length;v++){let I=y.inboundLayers[v],T=y.nodeIndices[v],_=I.inboundNodes[T],A=t[_.id]==null?0:t[_.id];t[_.id]=Math.max(b+1,A),n[_.id]=_}}let d={};for(let y in t){let b=t[y];b in d||(d[b]=[]),d[b].push(n[y])}let c={};for(let y in a){let b=a[y];b in c||(c[b]=[]),c[b].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort(Th);this.layers=[];for(let y of h){let b=c[y];b.sort((x,v)=>{let I=s[x.id],T=s[v.id];return I<T?-1:I>T?1:0});for(let x of b)x instanceof rr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(y=>parseInt(y,10)).sort(Th);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of d[y]){let x=b.outboundLayer;if(x!=null){for(let v of b.inputTensors)if(m.indexOf(v)===-1)throw new Ga(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of b.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new Ga(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Qf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new H(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new H(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new H(`${s.length} of ${a} weights are not set: ${s}`)}Iw(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Dw}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=ux(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return O(()=>{e=wt(e);let n=new Qs;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return qp(this.outputs,n,t)})}computeMask(e,t){return O(()=>{e=wt(e);let n;return t==null?n=mi(null,e.length):n=wt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=rm(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Th);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];p.push(x)}let d=u.computeOutputShape(Ln(p)),c=rm(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];ir(o in n),r.push(n[o])}return Ln(r)}runInternalGraph(e,t){t==null&&(t=mi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Th);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,y,b;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=wt(p.call(x,m)),b=wt(p.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=wt(p.call(f,m)),b=wt(p.computeMask(f,g));if(p.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let v=c[x],I=y[x],T=b[x];n[v.id]=[I,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){ir(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof rr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=rr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return O(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=rr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=rr.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],y=d.nodeIndices[f],b=d.tensorIndices[f],x=rr.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,b,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=rr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=rr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let v=x[0],I=x[1],T=x[2];if(b=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let _=r[v];if(_.inboundNodes.length<=I){i(f,g);return}let A=_.inboundNodes[I];y.push(A.outputTensors[T])}y.length>0&&f.apply(Ln(y),b)}function l(f){let g=f.name,y=qa(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!H4(s);)for(let f of p){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];ir(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];ir(g in r);let x=r[g].inboundNodes[y].outputTensors;c.push(x[b])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){O(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function yU(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function M2(e,t){return yU(e,t,"classWeight")}async function P2(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=O(()=>{if(e.shape.length===1)return ur(e);if(e.shape.length===2){if(e.shape[1]>1)return pi(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Me(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Ke(i,"float32")}else return null}function bU(e,t){return B(e,t)}var xU=32;function O2(e,t){let n,a,r=t;n=r.xs,a=r.ys,w.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=Zk("input",e.inputNames,n),i=Zk("output",e.outputNames,a),o=s[0].shape[0];w.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)w.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)w.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function Zk(e,t,n){if(n instanceof Ae)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function vU(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function wU(e,t,n){let a=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(Qk(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=vU(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=C2(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=_2(p,d,n.epochs,null,null,kU(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());!a||y<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:I}=O2(e,x.value),T={};T.batch=b,T.size=v[0].shape[0],await c.onBatchBegin(b,T);let _=[];if(n.classWeight!=null){let P=M2(n.classWeight,e.outputNames);for(let $=0;$<P.length;++$)_.push(await P2(I[$],null,P[$]))}let A=v.concat(I).concat(_),F=o(A);Me(A);for(let P=0;P<l.length;++P){let $=l[P],S=F[P];T[$]=S,Qt(S)}await c.onBatchEnd(b,T),I2(T),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;Qk(n.validationData)?v=wt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=wt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?xU:n.validationBatchSize,verbose:0}));for(let I=0;I<e.metricsNames.length;++I)g[`val_${e.metricsNames[I]}`]=v[I]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function kU(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Qk(e){return typeof e.iterator=="function"}function IU(e){return typeof e.next=="function"}async function SU(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");w.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=IU(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=O(()=>{if(u.value){let{xs:p,ys:d}=O2(e,u.value),c=p.concat(d),h=O(()=>r(c));if(Me(c),l===0)for(let f=0;f<h.length;++f)s.push(ke(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=O(()=>Z(s[f],B(m,g))),l>0&&Me(y)}Me(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=fe(s[u],o),Me(p)}return Ln(s)}function px(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Kp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>ai(a,t,n-t)):ai(e,t,n-t)}function Rw(e,t){return O(()=>e==null?null:Array.isArray(e)?e.map(n=>Rw(n,t)):f2(e,t.dtype==="int32"?t:le(t,"int32")))}function cx(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function NU(e,t,n,a,r,s,i,o,l,u,p,d,c,h,m){r==null&&(r=32),s==null&&(s=1),p==null&&(p=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Xa(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=_2(o,i,s,c,g,h,r,f,d);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let v=c;v<s;++v){await b.onEpochBegin(v);let I={};if(h!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(p==="batch")throw new Oe("batch shuffling is not implemneted yet");p&&w.shuffle(y);let T=Ke(y),_=cx(g,r);for(let A=0;A<_.length;++A){let F={};if(await b.onBatchBegin(A,F),O(()=>{let P=_[A][0],$=_[A][1],S=ai(T,P,$-P);F.batch=A,F.size=$-P;let M=Rw(n,S),U=t(M);for(let j=0;j<a.length;++j){let q=a[j],K=U[j];F[q]=K,Qt(K)}if(A===_.length-1&&f){let j=e.testLoop(l,u,r);for(let q=0;q<a.length;++q){let K=a[q],Y=j[q];Qt(Y),I["val_"+K]=Y}}}),await b.onBatchEnd(A,F),I2(F),e.stopTraining_)break}T.dispose()}if(await b.onEpochEnd(v,I),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function TU(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,p,d,c;try{let h=a.batchSize==null?32:a.batchSize;px(h);let m=!1,f=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,m,h);r=f[0],s=f[1],c=f[2];let g=!1,y;if(a.validationData!=null&&a.validationData.length>0){if(g=!0,a.validationData.length===2)l=a.validationData[0],u=a.validationData[1];else throw a.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let A=!0,F=await e.standardizeUserData(l,u,null,null,A,h);p=F[0],d=F[1],y=p.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){g=!0;let A=Math.floor(r[0].shape[0]*(1-a.validationSplit)),F=r[0].shape[0];p=Kp(r,A,F),i=r,r=Kp(r,0,A),d=Kp(s,A,F),o=s,s=Kp(s,0,A),y=p.concat(d)}else a.validationSteps!=null&&(g=!0);let b=r.concat(s).concat(c);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),v=e.getDedupedMetricsNames(),I,T;g?(e.makeTestFunction(),I=e.testFunction,T=v.slice().concat(v.map(A=>"val_"+A))):(I=null,y=[],T=v.slice());let _=C2(a.callbacks,a.yieldEvery);return await NU(e,x,b,v,h,a.epochs,a.verbose,_,I,y,a.shuffle,T,a.initialEpoch,null,null)}finally{e.isTraining=!1,Ua(r,t),Ua(s,n),Ua(i,t),Ua(o,n),Ua(p,l),Ua(d,u),c!=null&&Me(c)}}function L2(e){let t=[];e instanceof Ae&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(id(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Ua(e,t){if(e==null)return;let n=[];if(t instanceof Ae)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ae)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function CU(e){return e instanceof Ae}function dx(e){return Array.isArray(e)}function eI(e){return!CU(e)&&!dx(e)}function tI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(dx(e)&&e.length>0)i=!0;else if(eI(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new H(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(eI(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new H(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(dx(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new H(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=L2(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new H(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function _U(e,t,n){let a=rs(e.map(s=>s.shape[0]));a.sort();let r=rs(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!w.arraysEqual(a,r))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function EU(e,t,n){let a=[So,tg,hc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===hc&&s.shape[s.shape.length-1]===1)throw new H(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new H(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function nI(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new H(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function AU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var $U="layers-model",Ar=class extends rr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");dU(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=cU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Rr))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new H(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Rb(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Rb(s))}else{let s=Rb(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ni("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=AU(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};ni("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===tg?["accuracy","acc"].indexOf(c)!==-1?p=Aw:["crossentropy","ce"].indexOf(c)!==-1&&(p=$2):this.lossFunctions[s]===um?["accuracy","acc"].indexOf(c)!==-1?p=F2:["crossentropy","ce"].indexOf(c)!==-1&&(p=D2):["accuracy","acc"].indexOf(c)!==-1?p=$w:["crossentropy","ce"].indexOf(c)!==-1&&(p=Fw);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=pU(c),u=l+Eh(c);let h;ni(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;px(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Ln(l)}finally{Ua(s[0],e),Ua(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),SU(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new H(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Qs;if(e instanceof Ae&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new H(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=qp(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=mi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return O(()=>{let a=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=cx(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)O(()=>{let o=r[i][0],l=r[i][1],u=Kp(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new Qs(p);return qp(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return Ln(s.map(i=>Qe(i,0)))})}predict(e,t={}){let n=L2(e);nI(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return px(a),this.predictLoop(n,a)}finally{Ua(n,e)}}predictOnBatch(e){nI(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ga("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===um?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=tI(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=tI(t,this.feedOutputNames,r,!1,"target"),_U(e,t,null),EU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=M2(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await P2(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return O(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=cx(s,n),l=Ke(Xa(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=ai(l,p,d-p),h=Rw(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ke(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=Z(i[f],B(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=fe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;Wk(e,a)>1&&(r+=`_${Wk(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new Qs(u),d=qp(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h],f=m(a[h],d[h]);r[h]!=null&&(f=bU(f,r[h]));let g=_t(f);t.push(g),h===0?c=f:c=Z(c,f)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=_t(f(a[g],d[g]))}Qt(m),s.push(m)}return c=_t(c),this.calculateLosses().forEach(h=>{c=Z(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>O(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Qs(s),o=qp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=_t(u(r[l],o[l]));l===0?n=p:n=Z(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=_t(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){return TU(this,e,t,n)}async fitDataset(e,t){return wU(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Me(s),Ua(n[0],e),Ua(n[1],t),Ln(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=nm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-nm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Sr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Sr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Sr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Sr(Eh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Sr(Eh(e)));{let e={};for(let t in this.metrics)e[t]=Sr(Eh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=mc(e.optimizer_config),n=qa(t),a;if(typeof e.loss=="string")a=Ys(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Ys(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Ys(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Ys(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Ys(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Tn.getSaveHandlers(e);if(i.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new H(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Tn.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:$U,generatedBy:`TensorFlow.js tfjs-layers v${Dw}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Tn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Tn.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(Jk(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){Jk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Ar.className="Model";se.registerClass(Ar);var z2=class extends Ar{};z2.className="Functional";se.registerClass(z2);async function FU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=mc(n),r=qa(a,t);if(e.weightsManifest!=null){let s=await Tn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Me(s)}return r}async function DU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Tn.getLoadHandlers(e,t);if(n.length===0)n.push(Tn.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return RU(e,void 0,t)}async function RU(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=qa(mc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=MU(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),Me(u),Me(p.map(d=>d.tensor))}return o}function MU(e,t){let n=Tn.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Dl=class extends Ar{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Uf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Dl||e instanceof Ar,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=x2({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=b2(this.outputs[0])}this.inboundNodes=[],new Qf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:mi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(it(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Ar({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ga("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ga("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ga("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ga("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Dl))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=qa(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Dl.className="Sequential";se.registerClass(Dl);function PU(e){return new Ar(e)}function OU(e){return new Dl(e)}function LU(e,t){return t==null&&(t={}),DU(e,t)}function B2(e){return x2(e)}function zU(e,t){Sa.registerCallbackConstructor(e,t)}var jn=class extends se.Serializable{getConfig(){return{}}},W2=class extends jn{apply(e,t=1){return iV(e,t)}};W2.className="elu";se.registerClass(W2);var V2=class extends jn{apply(e){return Sf(e)}};V2.className="selu";se.registerClass(V2);var U2=class extends jn{apply(e){return Xe(e)}};U2.className="relu";se.registerClass(U2);var G2=class extends jn{apply(e){return O(()=>Yu(6,Xe(e)))}};G2.className="relu6";se.registerClass(G2);var H2=class extends jn{apply(e){return e}};H2.className="linear";se.registerClass(H2);var j2=class extends jn{apply(e){return ha(e)}};j2.className="sigmoid";se.registerClass(j2);var q2=class extends jn{apply(e){return lV(e)}};q2.className="hardSigmoid";se.registerClass(q2);var K2=class extends jn{apply(e){return vo(e)}};K2.className="softplus";se.registerClass(K2);var X2=class extends jn{apply(e){return oV(e)}};X2.className="softsign";se.registerClass(X2);var Y2=class extends jn{apply(e){return ci(e)}};Y2.className="tanh";se.registerClass(Y2);var Mw=class extends jn{apply(e,t=-1){return Za(e,t)}};Mw.className="softmax";se.registerClass(Mw);var J2=class extends jn{apply(e,t=-1){return gf(e,t)}};J2.className="logSoftmax";se.registerClass(J2);var Z2=class extends jn{apply(e,t=1){return O(()=>B(ha(B(e,t)),e))}};Z2.className="swish";se.registerClass(Z2);var Q2=class extends jn{apply(e){return O(()=>B(e,ci(vo(e))))}};Q2.className="mish";se.registerClass(Q2);function ps(e){return e.getClassName()}function Mb(e,t={}){return sd(e,se.SerializationMap.getMap().classNameMap,t,"activation")}function cs(e){if(e==null){let t={};return t.className="linear",t.config={},Mb(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Mb(t)}else return e instanceof jn?e:Mb(e)}function Pw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var eT=class extends se.Serializable{},pd=class extends eT{constructor(e){super(),Pw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return O(()=>{let t=It([1]);return this.hasL1&&(t=Z(t,be(B(this.l1,Lt(e))))),this.hasL2&&(t=Z(t,be(B(this.l2,od(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};pd.className="L1L2";se.registerClass(pd);function BU(e){return Pw(e),new pd({l1:e!=null?e.l1:null,l2:0})}function WU(e){return Pw(e),new pd({l2:e!=null?e.l2:null,l1:0})}var aI={l1l2:"L1L2"};function ht(e){return hw(e)}function rI(e,t={}){return sd(e,se.SerializationMap.getMap().classNameMap,t,"regularizer")}function Nt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in aI?aI[e]:e,config:{}};return rI(t)}else return e instanceof eT?e:rI(e)}var Ow=class extends Ye{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Be(e);let n=Xe(e);return this.maxValue!=null&&(n=tn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ow.className="ReLU";se.registerClass(Ow);var Lw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Be(e);return Xc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Lw.className="LeakyReLU";se.registerClass(Lw);var zw=class extends Ye{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=St(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Nt(e.alphaRegularizer),this.alphaConstraint=Xt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=it(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Be(e),ed(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Et(this.alphaInitializer),alphaRegularizer:ht(this.alphaRegularizer),alphaConstraint:Kt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};zw.className="PReLU";se.registerClass(zw);var Bw=class extends Ye{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Be(e);return ju(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Bw.className="ELU";se.registerClass(Bw);var Ww=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Be(e);return B(n,le(Hn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Ww.className="ThresholdedReLU";se.registerClass(Ww);var Vw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Mw().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Be(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Vw.className="Softmax";se.registerClass(Vw);function wl(e,t,n){if(typeof e=="number")return mi(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!nV(r))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ka(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function or(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+us([n-t,0]);else if(a==="same")e=e*t;else throw new H(`Unsupport padding mode: ${a}.`);return e}function Uw(e,t){return O(()=>(Pt(t),t==="channelsFirst"?$e(e,[0,2,3,1]):e))}function tT(e,t){return O(()=>(Pt(t),t==="channelsFirst"?$e(e,[0,2,3,4,1]):e))}function VU(e,t,n,a=1,r="valid",s,i=1){return O(()=>{if(s==null&&(s=Ya()),Pt(s),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=$e(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=uf(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Qa(o,n)),o})}function sI(e,t,n,a=[1,1],r="valid",s,i,o=null){return O(()=>{if(s==null&&(s=Ya()),Pt(s),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Uw(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Al.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=$e(l,[0,3,1,2])),l})}function UU(e,t,n,a=[1,1,1],r="valid",s,i){return O(()=>{if(s==null&&(s=Ya()),Pt(s),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=tT(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=_v(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Qa(o,n)),s==="channelsFirst"&&(o=$e(o,[0,4,1,2,3])),o})}var Gw=class extends Ye{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Gw.verifyArgs(t),this.rank=e,en(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=wl(t.kernelSize,e,"kernelSize"),this.strides=wl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ba(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Pt(this.dataFormat),this.activation=cs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=St(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Xt(t.biasConstraint),this.biasRegularizer=Nt(t.biasRegularizer),this.activityRegularizer=Nt(t.activityRegularizer),this.dilationRate=wl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ir("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!mw(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ps(this.activation),useBias:this.useBias,biasInitializer:Et(this.biasInitializer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},cd=class extends Gw{constructor(e,t){super(e,t),this.kernel=null,cd.verifyArgs(t),this.filters=t.filters,en(this.filters,"filters"),this.kernelInitializer=St(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Xt(t.kernelConstraint),this.kernelRegularizer=Nt(t.kernelRegularizer)}build(e){e=it(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return O(()=>{e=Be(e);let n,a=this.bias==null?null:this.bias.read(),r=u2(this.activation.getClassName());if(r!=null&&this.rank===2)n=sI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=VU(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=sI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=UU(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=it(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ka(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Et(this.kernelInitializer),kernelRegularizer:ht(this.kernelRegularizer),kernelConstraint:Kt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},dd=class extends cd{constructor(e){super(2,e),dd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!mw(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};dd.className="Conv2D";se.registerClass(dd);var hd=class extends cd{constructor(e){super(3,e),hd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};hd.className="Conv3D";se.registerClass(hd);var Hw=class extends dd{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=Be(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=or(o,d,u,this.padding),m=or(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=$e(n,[0,2,3,1]));let g=pf(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=$e(g,[0,3,1,2])),this.bias!=null&&(g=Qa(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=or(t[a],o,s,this.padding),t[r]=or(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Hw.className="Conv2DTranspose";se.registerClass(Hw);var jw=class extends hd{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=Be(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=or(l,m,d,this.padding),b=or(u,f,c,this.padding),x=or(p,g,h,this.padding),v=[r,y,b,x,this.filters];this.dataFormat!=="channelsLast"&&(n=$e(n,[0,2,3,4,1]));let I=Ev(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(I=$e(I,[0,4,1,2,3])),this.bias!==null&&(I=Qa(I,this.bias.read(),this.dataFormat)),this.activation!==null&&(I=this.activation.apply(I)),I})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=or(t[a],u,i,this.padding),t[r]=or(t[r],p,o,this.padding),t[s]=or(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};jw.className="Conv3DTranspose";se.registerClass(jw);var nT=class extends cd{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Nt(t.depthwiseRegularizer),this.depthwiseConstraint=Xt(t.depthwiseConstraint),this.pointwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Nt(t.pointwiseRegularizer),this.pointwiseConstraint=Xt(t.pointwiseConstraint)}build(e){if(e=it(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{e=Be(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=$e(e,[0,2,3,1])),n=Cs(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Qa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=$e(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Et(this.depthwiseInitializer),e.pointwiseInitializer=Et(this.pointwiseInitializer),e.depthwiseRegularizer=ht(this.depthwiseRegularizer),e.pointwiseRegularizer=ht(this.pointwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseConstraint),e.pointwiseConstraint=Kt(this.pointwiseConstraint),e}};nT.className="SeparableConv";var qw=class extends nT{constructor(e){super(2,e)}};qw.className="SeparableConv2D";se.registerClass(qw);var ng=class extends cd{constructor(e){super(1,e),ng.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!mw(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};ng.className="Conv1D";se.registerClass(ng);var Kw=class extends Ye{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return O(()=>{if(e=Be(e),this.dataFormat==="channelsLast"){let n=_h(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return _h(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=_h(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return _h(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Kw.className="Cropping2D";se.registerClass(Kw);var Xw=class extends Ye{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Q4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return O(()=>{let n=Be(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=$e(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?Cr.resizeNearestNeighbor(n,[r,s]):Cr.resizeBilinear(n,[r,s]);return $e(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?Cr.resizeNearestNeighbor(n,[r,s]):Cr.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};Xw.className="UpSampling2D";se.registerClass(Xw);function GU(e,t,n=[1,1],a="valid",r,s){return O(()=>{r==null&&(r=Ya()),Pt(r);let i=Uw(e,r);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Ss(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=$e(i,[0,3,1,2])),i})}var Yw=class extends Gw{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=St(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Xt(e.depthwiseConstraint),this.depthwiseRegularizer=Nt(e.depthwiseRegularizer)}build(e){if(e=it(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{e=Be(e);let n=GU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Qa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ka(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ka(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Et(this.depthwiseInitializer),e.depthwiseRegularizer=ht(this.depthwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseRegularizer),e}};Yw.className="DepthwiseConv2D";se.registerClass(Yw);function aT(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function rT(e,t,n,a=!1,r,s,i=!1,o=!1){return O(()=>{let l=t.shape.length;if(l<3)throw new H(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Xa(2,l));if(t=$e(t,u),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=le(le(r,"bool"),"float32"),r.rank===l-1&&(r=mn(r,-1)),r=$e(r,u)),a&&(t=fa(t,0),r!=null&&(r=fa(r,0)));let p=[],d,c=n,h=t.shape[0],m=mt(t),f;r!=null&&(f=mt(r));for(let y=0;y<h;++y){let b=m[y],x=O(()=>e(b,c));if(r==null)d=x[0],c=x[1];else{let v=O(()=>{let I=f[y],T=ce(na(I),I),_=Z(B(x[0],I),B(c[0],T)),A=c.map((F,P)=>Z(B(x[1][P],I),B(F,T)));return{output:_,newStates:A}});d=v.output,c=v.newStates}o&&p.push(d)}let g;return o&&(g=Rt(p,1)),[d,g,c]})}var yr=class extends Ye{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new sg({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Xa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){ix(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return O(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");ix(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new zt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new zt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_=[It([n,this.cell.stateSize])];else if(e==null)Me(this.states_),this.keptStates!=null&&(Me(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_[0]=It([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Me(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!w.arraysEqual(r.shape,i))throw new H(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Qt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=aT(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ha){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Be(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new H(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=rT((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return O(()=>{let t=It(e.shape);return t=be(t,[1,2]),t=id(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?rx(t,[1,n]):t):this.cell.stateSize>1?[rx(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===yr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=qa(a,n);return new e(Object.assign(t,{cell:r}))}};yr.className="RNN";se.registerClass(yr);var md=class extends Ye{},ag=class extends md{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,en(this.units,"units"),this.activation=cs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Nt(e.kernelRegularizer),this.recurrentRegularizer=Nt(e.recurrentRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=$l([1,us([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=$l([1,us([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ds({ones:()=>na(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ds({ones:()=>na(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=pr(B(e,s),this.kernel.read()):r=pr(e,this.kernel.read()),this.bias!=null&&(r=Qa(r,this.bias.read())),i!=null&&(n=B(n,i));let o=Z(r,pr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ps(this.activation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};ag.className="SimpleRNNCell";se.registerClass(ag);var Jw=class extends yr{constructor(e){e.cell=new ag(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Jw.className="SimpleRNN";se.registerClass(Jw);var rg=class extends md{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,en(this.units,"units"),this.activation=cs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=cs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Nt(e.kernelRegularizer),this.recurrentRegularizer=Nt(e.recurrentRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=$l([1,us([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=$l([1,us([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ds({ones:()=>na(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ds({ones:()=>na(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let u=pr(e,this.kernel.read());this.useBias&&(u=Qa(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=Wn(p,[2*this.units,this.units],p.rank-1),h=pr(a,d),[m,f,g]=Wn(u,3,u.rank-1),[y,b]=Wn(h,2,h.rank-1);i=this.recurrentActivation.apply(Z(m,y)),o=this.recurrentActivation.apply(Z(f,b));let x=pr(B(o,a),c);l=this.activation.apply(Z(g,x));let v=Z(B(i,a),B(Z(1,kt(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ps(this.activation),recurrentActivation:ps(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};rg.className="GRUCell";se.registerClass(rg);var Zw=class extends yr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new rg(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Zw.className="GRU";se.registerClass(Zw);var fd=class extends md{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,en(this.units,"units"),this.activation=cs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=cs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Nt(e.kernelRegularizer),this.recurrentRegularizer=Nt(e.recurrentRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=$l([1,us([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=$l([1,us([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=it(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Fa{apply(i,o){let l=r.apply([s]),u=new jf().apply([s]),p=r.apply([s*2]);return Uk(Uk(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ds({ones:()=>na(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ds({ones:()=>na(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=B(e,s[0]));let d=pr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,i[0])),d=Z(d,pr(a,this.recurrentKernel.read())),this.useBias&&(d=Qa(d,this.bias.read()));let[c,h,m,f]=Wn(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=Z(B(l,r),B(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=B(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ps(this.activation),recurrentActivation:ps(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};fd.className="LSTMCell";se.registerClass(fd);var Qw=class extends yr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new fd(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Qw.className="LSTM";se.registerClass(Qw);var sg=class extends md{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return O(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){ix(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{ni(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(qa(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return ox(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Iw(t)}};sg.className="StackedRNNCells";se.registerClass(sg);function ds(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):g2(t(),n),o=()=>ld(i,t,a);return!r||r<=1?Qt(o().clone()):Array(r).fill(void 0).map(o).map(l=>Qt(l.clone()))}var HU=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},sT=class extends yr{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new zt({ndim:5})]}call(e,t){return O(()=>{if(this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return O(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=It(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_=[It(r)];else if(e==null)Me(this.states_),this.keptStates!=null&&(Me(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_[0]=It(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Me(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!w.arraysEqual(i.shape,o))throw new H(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Qt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=Ka(l,a[0],r,s[0],i[0]),d=Ka(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};sT.className="ConvRNN2D";var ig=class extends fd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t})),this.filters=t,en(this.filters,"filters"),this.kernelSize=wl(n,2,"kernelSize"),this.kernelSize.forEach(o=>en(o,"kernelSize")),this.strides=wl(a||1,2,"strides"),this.strides.forEach(o=>en(o,"strides")),this.padding=r||"valid",ba(this.padding),this.dataFormat=s||"channelsLast",Pt(this.dataFormat),this.dilationRate=wl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>en(o,"dilationRate"))}build(e){var t;e=it(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Fa{apply(p,d){let c=l.apply([u]),h=Qn([u]),m=l.apply([u*2]);return fw([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return O(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ds({ones:()=>na(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(te,re,Q)=>!re||!re[Q]?te:B(re[Q],te),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ds({ones:()=>na(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,v,I,T]=Wn(this.kernel.read(),i,b),[_,A,F,P]=this.useBias?Wn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,_,this.padding),p=this.inputConv(p,v,A,this.padding),d=this.inputConv(d,I,F,this.padding),c=this.inputConv(c,T,P,this.padding);let[$,S,M,U]=Wn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,$),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),y=this.recurrentConv(y,U);let j=this.recurrentActivation.apply(Z(u,m)),q=this.recurrentActivation.apply(Z(p,f)),K=Z(B(q,s),B(j,this.activation.apply(Z(d,g)))),Y=B(this.recurrentActivation.apply(Z(c,y)),this.activation.apply(K));return[Y,Y,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=HU(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=Dt(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Qa(r,n,this.dataFormat):r}recurrentConv(e,t){return Dt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};ig.className="ConvLSTM2DCell";se.registerClass(ig);var e0=class extends sT{constructor(e){let t=new ig(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};e0.className="ConvLSTM2D";se.registerClass(e0);var og=class extends Ye{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Be(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return ld(()=>g2(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};og.className="Dropout";se.registerClass(og);var t0=class extends og{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};t0.className="SpatialDropout1D";se.registerClass(t0);var n0=class extends Ye{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,en(this.units,"units"),this.activation=cs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Xt(e.kernelConstraint),this.biasConstraint=Xt(e.biasConstraint),this.kernelRegularizer=Nt(e.kernelRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.activityRegularizer=Nt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=it(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=it(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Be(e),a=u2(this.activation.getClassName()),r;return a!=null?r=pr(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=pr(n,this.kernel.read()),this.bias!=null&&(r=Qa(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:ps(this.activation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};n0.className="Dense";se.registerClass(n0);var a0=class extends Ye{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=it(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ss(e,1)]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Be(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=$e(n,a)}return sV(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};a0.className="Flatten";se.registerClass(a0);var r0=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.activation=cs(e.activation)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Be(e);return this.activation.apply(n)})}getConfig(){let e={activation:ps(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};r0.className="Activation";se.registerClass(r0);var s0=class extends Ye{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return O(()=>(e=Be(e),aV(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};s0.className="RepeatVector";se.registerClass(s0);var i0=class extends Ye{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new H("Can only specifiy one unknown dimension.");else r*=l}let i=ss(e);if(s!==null){if(r===0||i%r!==0)throw new H(n);a[s]=i/r}else if(i!==r)throw new H(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Be(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};i0.className="Reshape";se.registerClass(i0);var o0=class extends Ye{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Xa(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=it(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return $e(Be(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};o0.className="Permute";se.registerClass(o0);var l0=class extends Ye{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Be(e),a=-1;return pc(hi(n,this.maskValue),a)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Be(e),a=-1,r=!0,s=pc(hi(n,this.maskValue),a,r);return B(n,le(s,n.dtype))})}};l0.className="Masking";se.registerClass(l0);var u0=class extends Ye{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(wt(e.inputLength))}this.inputDim=e.inputDim,en(this.inputDim,"inputDim"),this.outputDim=e.outputDim,en(this.outputDim,"outputDim"),this.embeddingsInitializer=St(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Nt(e.embeddingsRegularizer),this.activityRegularizer=Nt(e.activityRegularizer),this.embeddingsConstraint=Xt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return O(()=>this.maskZero?(e=Be(e),hi(e,qe(e))):null)}computeOutputShape(e){if(e=it(e),this.inputLength==null)return[...e,this.outputDim];let t=wt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Be(e);n.dtype!=="int32"&&(n=Gf(n,"int32"));let a=f2(this.embeddings.read(),W(n,[n.size]));return W(a,it(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Et(this.embeddingsInitializer),embeddingsRegularizer:ht(this.embeddingsRegularizer),activityRegularizer:ht(this.activityRegularizer),embeddingsConstraint:Kt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};u0.className="Embedding";se.registerClass(u0);var No=class extends Ye{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[it(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=rs(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&rs(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return O(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=us(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=id(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=W(o,[p].concat(ss(u.slice(1))));c=$e(c,[1,0]),c=W(c,d),n.push(c),r=!0}else if(l>1){let u=Xa(1,l).concat([0]);n.push($e(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W($e(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(Xa(0,i-1));s=$e(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=rs(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return O(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:mn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=Ea(n,t[a]);return n})}},p0=class extends No{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Z(t,e[n]);return t})}};p0.className="Add";se.registerClass(p0);var c0=class extends No{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};c0.className="Multiply";se.registerClass(c0);var d0=class extends No{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Z(t,e[n]);return B(1/e.length,t)})}};d0.className="Average";se.registerClass(d0);var h0=class extends No{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=fr(t,e[n]);return t})}};h0.className="Maximum";se.registerClass(h0);var m0=class extends No{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Yu(t,e[n]);return t})}};m0.className="Minimum";se.registerClass(m0);var f0=class extends No{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(w.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return O(()=>fw(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return O(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(le(na(e[s]),"bool")):t[s].rank<e[s].rank?a.push(mn(t[s],-1)):a.push(t[s]);let r=Qe(a,this.axis);return lf(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};f0.className="Concatenate";se.registerClass(f0);function Vp(e,t){for(;e<0;)e+=t;return e}function jU(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return O(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=W(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=W(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=be(B(e,t),s[0]):o=be(B($e(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Re(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=_s(o,u)}return o.shape.length===1&&(o=mn(o,1)),o})}var g0=class extends No{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new H(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Vp(r,e[s].shape.length)):a=[Vp(this.axes,t.shape.length),Vp(this.axes,n.shape.length)],this.normalize&&(t=lm(t,a[0]),n=lm(n,a[1])),jU(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Vp(this.axes,e.length),Vp(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};g0.className="Dot";se.registerClass(g0);var y0=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Be(e);return ld(()=>Z(Hf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};y0.className="GaussianNoise";se.registerClass(y0);var b0=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Be(e);return this.rate>0&&this.rate<1?ld(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return B(n,Hf(n.shape,1,a))},()=>n,t.training||!1):n})}};b0.className="GaussianDropout";se.registerClass(b0);var x0=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Be(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return ld(()=>{let a=Be(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Ns(Ju(n),this.rate);o=Gf(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=Z(B(a,o),B(Z(o,-1),i));return Z(B(p,l),u)},()=>Be(e),t.training||!1)}return e})}};x0.className="AlphaDropout";se.registerClass(x0);function fc(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=bv(e,t,n,a,r,s);else if(e.rank===3)i=xv(e,t,n,a,r,s);else if(e.rank===4)i=vv(e,t,n,a,r,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function qU(e,t,n,a,r=.001){return O(()=>{let s=Zc(e,a),i=s.mean,o=s.variance;return[fc(e,i,o,n,t,r),i,o]})}function KU(e,t,n,a,r=.001){return O(()=>{let s=Zc(e,a),i=s.mean,o=s.variance,l=[];for(let h of Xa(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[fc(e,u,p,c,d,r),i,o]})}function XU(e,t,n,a,r=.001){return w.arraysEqual(a.slice().sort(),Xa(0,e.rank-1))?qU(e,t,n,a,r):KU(e,t,n,a,r)}var v0=class extends Ye{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.movingMeanInitializer=St(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=St(e.movingVarianceInitializer||"ones"),this.betaConstraint=Xt(e.betaConstraint),this.gammaConstraint=Xt(e.gammaConstraint),this.betaRegularizer=Nt(e.betaRegularizer),this.gammaRegularizer=Nt(e.gammaRegularizer)}build(e){e=it(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training,a=Be(e),r=a.shape,s=r.length,i=Xa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=mi(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!w.arraysEqual(u,Xa(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),y=W(this.movingVariance.read(),l),b=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return fc(a,g,y,b,x,this.epsilon)}else return fc(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=XU(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{O(()=>{let x=1-b,v=g.read(),I=B(ce(v,y),x);g.write(ce(v,I))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Et(this.betaInitializer),gammaInitializer:Et(this.gammaInitializer),movingMeanInitializer:Et(this.movingMeanInitializer),movingVarianceInitializer:Et(this.movingVarianceInitializer),betaRegularizer:ht(this.betaRegularizer),gammaRegularizer:ht(this.gammaRegularizer),betaConstraint:Kt(this.betaConstraint),gammaConstraint:Kt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};v0.className="BatchNormalization";se.registerClass(v0);var w0=class extends Ye{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.betaRegularizer=Nt(e.betaRegularizer),this.gammaRegularizer=Nt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=it(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==rs(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Be(e),a=n.shape,r=a.length;return O(()=>{let{mean:s,variance:i}=Zc(n,this.axis,!0),o=mi(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=zn(s,d),i=zn(i,d),u!=null&&(u=zn(u,c)),p!=null&&(p=zn(p,c)),fc(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Et(this.betaInitializer),gammaInitializer:Et(this.gammaInitializer),betaRegularizer:ht(this.betaRegularizer),gammaRegularizer:ht(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};w0.className="LayerNormalization";se.registerClass(w0);function YU(e,t,n){return O(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Ya()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ya(e,a)})}var k0=class extends Ye{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Ya():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=it(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return O(()=>YU(Be(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};k0.className="ZeroPadding2D";se.registerClass(k0);function lg(e,t,n,a,r,s){return O(()=>{Pt(r),c2(s),ba(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Ya()),s==null&&(s="max"),e=Uw(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Mt(e,t,n,o):i=ga(e,t,n,o),r==="channelsFirst"&&(i=$e(i,[0,3,1,2])),i})}function iT(e,t,n,a,r,s){return O(()=>{Pt(r),c2(s),ba(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Ya()),s==null&&(s="max"),e=tT(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Hv(e,t,n,o):i=yv(e,t,n,o),r==="channelsFirst"&&(i=$e(i,[0,4,1,2,3])),i})}var oT=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(en(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ba(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=it(e);let t=Ka(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return O(()=>{this.invokeCallHook(e,t),e=id(Be(e),2);let n=this.poolingFunction(Be(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return _s(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},I0=class extends oT{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ba(a),lg(e,t,n,a,r,"max")}};I0.className="MaxPooling1D";se.registerClass(I0);var S0=class extends oT{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ba(a),lg(e,t,n,a,r,"avg")}};S0.className="AveragePooling1D";se.registerClass(S0);var lT=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];en(this.poolSize,"poolSize"),en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),ba(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ka(t,this.poolSize[0],this.padding,this.strides[0]),n=Ka(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(Be(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},N0=class extends lT{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ba(a),lg(e,t,n,a,r,"max")}};N0.className="MaxPooling2D";se.registerClass(N0);var T0=class extends lT{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ba(a),lg(e,t,n,a,r,"avg")}};T0.className="AveragePooling2D";se.registerClass(T0);var uT=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];en(this.poolSize,"poolSize"),en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),ba(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ka(t,this.poolSize[0],this.padding,this.strides[0]),n=Ka(n,this.poolSize[1],this.padding,this.strides[1]),a=Ka(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(Be(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},C0=class extends uT{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ba(a),iT(e,t,n,a,r,"max")}};C0.className="MaxPooling3D";se.registerClass(C0);var _0=class extends uT{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ba(a),iT(e,t,n,a,r,"avg")}};_0.className="AveragePooling3D";se.registerClass(_0);var pT=class extends Ye{constructor(e){super(e),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},E0=class extends pT{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=Be(e);return _t(n,1)})}};E0.className="GlobalAveragePooling1D";se.registerClass(E0);var A0=class extends pT{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=Be(e);return Ta(n,1)})}};A0.className="GlobalMaxPooling1D";se.registerClass(A0);var cT=class extends Ye{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},$0=class extends cT{call(e,t){return O(()=>{let n=Be(e);return this.dataFormat==="channelsLast"?_t(n,[1,2]):_t(n,[2,3])})}};$0.className="GlobalAveragePooling2D";se.registerClass($0);var F0=class extends cT{call(e,t){return O(()=>{let n=Be(e);return this.dataFormat==="channelsLast"?Ta(n,[1,2]):Ta(n,[2,3])})}};F0.className="GlobalMaxPooling2D";se.registerClass(F0);var dT=class extends Ye{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=qa(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},D0=class extends dT{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=it(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=it(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return O(()=>(e=Be(e),rT((n,a)=>[Be(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};D0.className="TimeDistributed";se.registerClass(D0);function JU(e){Io(Z4,"BidirectionalMergeMode",e)}var ZU="concat",R0=class extends dT{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=qa(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=qa(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?ZU:e.mergeMode,JU(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Ln(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=aT(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new zt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ha;for(let l of s)if(l instanceof Ha!==o)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=fa(r,1));let i;return this.mergeMode==="concat"?i=fw([a,r]):this.mergeMode==="sum"?i=Z(a,r):this.mergeMode==="ave"?i=B(.5,Z(a,r)):this.mergeMode==="mul"?i=B(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ni(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ni(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=qa(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};R0.className="Bidirectional";se.registerClass(R0);function QU(e){return new Qu(e)}function eG(e){return new Bw(e)}function tG(e){return new Ow(e)}function nG(e){return new Lw(e)}function aG(e){return new zw(e)}function rG(e){return new Vw(e)}function sG(e){return new Ww(e)}function iG(e){return new ng(e)}function oG(e){return new dd(e)}function lG(e){return new Hw(e)}function uG(e){return new hd(e)}function pG(e){return new jw(e)}function cG(e){return new qw(e)}function dG(e){return new Kw(e)}function hG(e){return new Xw(e)}function mG(e){return new Yw(e)}function fG(e){return new r0(e)}function gG(e){return new n0(e)}function yG(e){return new og(e)}function bG(e){return new t0(e)}function xG(e){return new a0(e)}function vG(e){return new s0(e)}function wG(e){return new i0(e)}function kG(e){return new o0(e)}function IG(e){return new u0(e)}function SG(e){return new p0(e)}function NG(e){return new d0(e)}function TG(e){return new f0(e)}function CG(e){return new h0(e)}function _G(e){return new m0(e)}function EG(e){return new c0(e)}function AG(e){return new g0(e)}function $G(e){return new v0(e)}function FG(e){return new w0(e)}function DG(e){return new k0(e)}function M0(e){return new S0(e)}function RG(e){return M0(e)}function MG(e){return M0(e)}function P0(e){return new T0(e)}function PG(e){return P0(e)}function OG(e){return P0(e)}function O0(e){return new _0(e)}function LG(e){return O0(e)}function zG(e){return O0(e)}function BG(e){return new E0(e)}function WG(e){return new $0(e)}function hT(e){return new A0(e)}function mT(e){return new F0(e)}function fT(e){return new I0(e)}function gT(e){return new N0(e)}function VG(e){return new C0(e)}function UG(e){return new Zw(e)}function GG(e){return new rg(e)}function HG(e){return new Qw(e)}function jG(e){return new fd(e)}function qG(e){return new Jw(e)}function KG(e){return new ag(e)}function XG(e){return new e0(e)}function YG(e){return new ig(e)}function JG(e){return new yr(e)}function ZG(e){return new sg(e)}function QG(e){return new R0(e)}function eH(e){return new D0(e)}var tH=hT,nH=mT,aH=fT,rH=gT;function sH(e){return new y0(e)}function iH(e){return new b0(e)}function oH(e){return new x0(e)}function lH(e){return new l0(e)}var yT={};Fe(yT,{MAPE:()=>xH,MSE:()=>kH,binaryAccuracy:()=>uH,binaryCrossentropy:()=>pH,categoricalAccuracy:()=>dH,categoricalCrossentropy:()=>hH,cosineProximity:()=>gH,mape:()=>vH,meanAbsoluteError:()=>yH,meanAbsolutePercentageError:()=>bH,meanSquaredError:()=>wH,mse:()=>IH,precision:()=>mH,recall:()=>fH,sparseCategoricalAccuracy:()=>cH});function uH(e,t){return Aw(e,t)}function pH(e,t){return $2(e,t)}function cH(e,t){return F2(e,t)}function dH(e,t){return $w(e,t)}function hH(e,t){return Fw(e,t)}function mH(e,t){return A2(e,t)}function fH(e,t){return nU(e,t)}function gH(e,t){return Ew(e,t)}function yH(e,t){return eg(e,t)}function bH(e,t){return ep(e,t)}function xH(e,t){return ep(e,t)}function vH(e,t){return ep(e,t)}function wH(e,t){return So(e,t)}function kH(e,t){return So(e,t)}function IH(e,t){return So(e,t)}var bT={};Fe(bT,{modelFromJSON:()=>FU});var xT={};Fe(xT,{l1:()=>NH,l1l2:()=>SH,l2:()=>TH});function SH(e){return new pd(e)}function NH(e){return BU(e)}function TH(e){return WU(e)}var vT=class extends Fl{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Ar))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Ah(e,t){return e<t}function iI(e,t){return e>t}var wT=class extends vT{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Ah:this.mode==="max"?this.monitorFunc=iI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=iI:this.monitorFunc=Ah,this.monitorFunc===Ah&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Ah?1/0:-1/0}async onEpochEnd(e,t){await Zr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function CH(e){return new wT(e)}var _H={earlyStopping:CH},EH=X();EH.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Ia;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Ia||(Ia={}));var oI;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(oI||(oI={}));var L0={};function AH(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};L0[e]=n}function kT(e){return L0[e]}function $H(e){delete L0[e]}function k(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Sn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(d=>Sn(d,n,a,r));let u=Sn(t.inputNames.slice(o)[0],n,a,r),p=u.dataSync();return s.type==="number"?p[0]:w.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function Sn(e,t,n,a){let[r,s]=Jn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[hm(r,o)]);return i!==void 0?t[hm(r,i)][s]:void 0}function FH(e,t,n){return t[hm(e,n.currentContextId)]}function lr(e,t){let[n,a,r]=Jn(e);return[hm(n,t&&t.currentContextId),a,r]}function hm(e,t){return t?`${e}-${t}`:e}function Jn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function Lh(e,t,n){let a=k("pad",e,t,n);if(a==="explicit"){a=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Nr(e){return e.kept?e:ur(e)}var IT={};Fe(IT,{json:()=>DH});var DH=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],ST={};Fe(ST,{json:()=>RH});var RH=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],NT={};Fe(NT,{json:()=>MH});var MH=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],TT={};Fe(TT,{json:()=>PH});var PH=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],CT={};Fe(CT,{json:()=>OH});var OH=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],_T={};Fe(_T,{json:()=>LH});var LH=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],ET={};Fe(ET,{json:()=>zH});var zH=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],AT={};Fe(AT,{json:()=>BH});var BH=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],$T={};Fe($T,{json:()=>WH});var WH=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],FT={};Fe(FT,{json:()=>VH});var VH=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],DT={};Fe(DT,{json:()=>UH});var UH=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],RT={};Fe(RT,{json:()=>GH});var GH=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],MT={};Fe(MT,{json:()=>HH});var HH=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],PT={};Fe(PT,{json:()=>jH});var jH=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],OT={};Fe(OT,{json:()=>qH});var qH=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],LT={};Fe(LT,{json:()=>KH});var KH=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],zT={};Fe(zT,{json:()=>XH});var XH=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],BT={};Fe(BT,{json:()=>YH});var YH=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],WT={};Fe(WT,{json:()=>JH});var JH=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],lI=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[IT,ST,NT,TT,CT,_T,ET,AT,$T,FT,DT,RT,MT,PT,OT,LT,zT,BT,WT],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[b,,x]=lr(g),v=i[b];if(v.outputs!=null){let I=v.outputs.indexOf(x);if(I!==-1){let T=`${b}:${I}`;f.inputNames[y]=T}}f.inputs.push(v),v.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=lr(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=lr(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=kT(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=hx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=hx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=vx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=vx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=fx(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=fx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=xx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=xx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=mx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=mx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=kx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=kx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=bx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=bx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=wx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=wx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=gx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=gx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=yx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=yx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=uI(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=uI(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=lr(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:z0(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=lr(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${h}:${g}`;p.inputNames[c]=y}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=lr(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function ZH(e){let t=X().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function VT(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):ZH(e);return t?n:n.toLowerCase()}function hx(e,t,n,a=!1){let r=e[t];return r!=null?VT(r.s,a):n}function mx(e,t,n){let a=e[t];return a?a.b:n}function fx(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function z0(e){switch(typeof e=="string"&&(e=Ia[e]),e){case Ia.DT_FLOAT:case Ia.DT_HALF:return"float32";case Ia.DT_INT32:case Ia.DT_INT64:case Ia.DT_INT8:case Ia.DT_UINT8:return"int32";case Ia.DT_BOOL:return"bool";case Ia.DT_DOUBLE:return"float32";case Ia.DT_STRING:return"string";default:return null}}function uI(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function gx(e,t,n){let a=e[t];return a&&a.type?z0(a.type):n}function yx(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>z0(r)):n}function UT(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function bx(e,t,n){let a=e[t];return a&&a.shape?UT(a.shape):n}function xx(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function vx(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>VT(s,a)):n}function wx(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>UT(r)):n}function kx(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var QH=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return Sn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Sn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return fx(this.node.rawAttrs,e,t);if(n.s!=null)return hx(this.node.rawAttrs,e,t);if(n.b!=null)return mx(this.node.rawAttrs,e,t);if(n.shape!=null)return bx(this.node.rawAttrs,e,t);if(n.type!=null)return gx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return xx(this.node.rawAttrs,e,t);if(n.list.s!=null)return vx(this.node.rawAttrs,e,t);if(n.list.shape!=null)return wx(this.node.rawAttrs,e,t);if(n.list.b!=null)return kx(this.node.rawAttrs,e,t);if(n.list.type!=null)return yx(this.node.rawAttrs,e,t)}return t}},pn={};Fe(pn,{OP_SCOPE_SUFFIX:()=>Kx,abs:()=>Lt,acos:()=>lv,acosh:()=>uv,add:()=>Z,addN:()=>JS,all:()=>lf,any:()=>pc,argMax:()=>pi,argMin:()=>pv,asin:()=>cv,asinh:()=>dv,atan:()=>hv,atan2:()=>mv,atanh:()=>fv,avgPool:()=>ga,avgPool3d:()=>yv,basicLSTMCell:()=>tN,batchNorm:()=>Is,batchNorm2d:()=>bv,batchNorm3d:()=>xv,batchNorm4d:()=>vv,batchToSpaceND:()=>qc,bincount:()=>wv,booleanMaskAsync:()=>MN,broadcastArgs:()=>nN,broadcastTo:()=>vl,buffer:()=>ze,cast:()=>le,ceil:()=>kv,clipByValue:()=>tn,clone:()=>ur,complex:()=>$r,concat:()=>Qe,concat1d:()=>Iv,concat2d:()=>Sv,concat3d:()=>Nv,concat4d:()=>Tv,conv1d:()=>uf,conv2d:()=>Dt,conv2dTranspose:()=>pf,conv3d:()=>_v,conv3dTranspose:()=>Ev,cos:()=>Kc,cosh:()=>cf,cosineWindow:()=>Ff,cumprod:()=>cc,cumsum:()=>df,denseBincount:()=>rN,depthToSpace:()=>Av,depthwiseConv2d:()=>Ss,diag:()=>sN,dilation2d:()=>$v,div:()=>fe,divNoNan:()=>Fv,dot:()=>Dv,dropout:()=>iw,einsum:()=>iN,elu:()=>ju,enclosingPowerOfTwo:()=>ow,equal:()=>ea,erf:()=>Rv,euclideanNorm:()=>Ov,exp:()=>gn,expandDims:()=>mn,expm1:()=>Lv,eye:()=>hf,fft:()=>nd,fill:()=>An,floor:()=>Ku,floorDiv:()=>of,fused:()=>Al,gather:()=>Xu,gatherND:()=>zN,greater:()=>Hn,greaterEqual:()=>Ns,ifft:()=>El,imag:()=>Gc,image:()=>Cr,inTopKAsync:()=>BN,irfft:()=>_f,isFinite:()=>zv,isInf:()=>Bv,isNaN:()=>Wv,leakyRelu:()=>Xc,less:()=>mf,lessEqual:()=>Ts,linalg:()=>pw,linspace:()=>cN,localResponseNormalization:()=>Vv,log:()=>ta,log1p:()=>Yc,logSigmoid:()=>Uv,logSoftmax:()=>gf,logSumExp:()=>yf,logicalAnd:()=>Ea,logicalNot:()=>Jc,logicalOr:()=>bf,logicalXor:()=>Gv,losses:()=>ZN,lowerBound:()=>hN,matMul:()=>Re,max:()=>Ta,maxPool:()=>Mt,maxPool3d:()=>Hv,maxPoolWithArgmax:()=>mN,maximum:()=>fr,mean:()=>_t,meshgrid:()=>fN,min:()=>dc,minimum:()=>Yu,mirrorPad:()=>jv,mod:()=>qv,moments:()=>Zc,movingAverage:()=>PN,mul:()=>B,multiRNNCell:()=>gN,multinomial:()=>yN,neg:()=>kt,norm:()=>qu,notEqual:()=>hi,oneHot:()=>Nl,ones:()=>Qn,onesLike:()=>na,op:()=>z,outerProduct:()=>bN,pad:()=>ya,pad1d:()=>xN,pad2d:()=>vN,pad3d:()=>wN,pad4d:()=>kN,pool:()=>Kv,pow:()=>Fr,prelu:()=>ed,print:()=>Zx,prod:()=>Xv,rand:()=>IN,randomGamma:()=>SN,randomNormal:()=>vf,randomStandardNormal:()=>NN,randomUniform:()=>Ju,range:()=>Cl,real:()=>Tl,reciprocal:()=>Zv,relu:()=>Xe,relu6:()=>wf,reshape:()=>W,reverse:()=>fa,reverse1d:()=>TN,reverse2d:()=>CN,reverse3d:()=>_N,reverse4d:()=>EN,rfft:()=>ad,round:()=>kf,rsqrt:()=>If,scalar:()=>ke,scatterND:()=>ON,searchSorted:()=>xf,selu:()=>Sf,separableConv2d:()=>Cs,setdiff1dAsync:()=>AN,sigmoid:()=>ha,sign:()=>Qv,signal:()=>JN,sin:()=>Nf,sinh:()=>Tf,slice:()=>He,slice1d:()=>td,slice2d:()=>Cf,slice3d:()=>wo,slice4d:()=>_l,softmax:()=>Za,softplus:()=>vo,spaceToBatchND:()=>Qc,sparse:()=>QN,sparseToDense:()=>LN,spectral:()=>YN,split:()=>Wn,sqrt:()=>un,square:()=>ut,squaredDifference:()=>Ef,squeeze:()=>_s,stack:()=>Rt,step:()=>ko,stridedSlice:()=>ew,string:()=>e2,sub:()=>ce,sum:()=>be,tan:()=>tw,tanh:()=>ci,tensor:()=>Bn,tensor1d:()=>Ke,tensor2d:()=>Ca,tensor3d:()=>Hc,tensor4d:()=>$a,tensor5d:()=>$N,tensor6d:()=>FN,tile:()=>zn,topk:()=>nw,transpose:()=>$e,truncatedNormal:()=>Af,unique:()=>aw,unsortedSegmentSum:()=>$f,unstack:()=>mt,upperBound:()=>DN,variable:()=>rw,where:()=>fn,whereAsync:()=>sw,zeros:()=>It,zerosLike:()=>qe});var e6=(e,t,n,a=pn)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[a.add(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[a.addN(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[a.mod(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[a.mul(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[a.div(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[a.divNoNan(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[a.floorDiv(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[a.sub(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[a.minimum(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[a.maximum(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[a.pow(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[a.squaredDifference(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},t6=(e,t,n,a=pn)=>{switch(e.op){case"Abs":case"ComplexAbs":return[a.abs(k("x",e,t,n))];case"Acos":return[a.acos(k("x",e,t,n))];case"Acosh":return[a.acosh(k("x",e,t,n))];case"Asin":return[a.asin(k("x",e,t,n))];case"Asinh":return[a.asinh(k("x",e,t,n))];case"Atan":return[a.atan(k("x",e,t,n))];case"Atan2":return[a.atan2(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[a.atanh(k("x",e,t,n))];case"Ceil":return[a.ceil(k("x",e,t,n))];case"Complex":return[a.complex(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[a.cos(k("x",e,t,n))];case"Cosh":return[a.cosh(k("x",e,t,n))];case"Elu":return[a.elu(k("x",e,t,n))];case"Erf":return[a.erf(k("x",e,t,n))];case"Exp":return[a.exp(k("x",e,t,n))];case"Expm1":return[a.expm1(k("x",e,t,n))];case"Floor":return[a.floor(k("x",e,t,n))];case"Log":return[a.log(k("x",e,t,n))];case"Log1p":return[a.log1p(k("x",e,t,n))];case"Imag":return[a.imag(k("x",e,t,n))];case"Neg":return[a.neg(k("x",e,t,n))];case"Reciprocal":return[a.reciprocal(k("x",e,t,n))];case"Real":return[a.real(k("x",e,t,n))];case"Relu":return[a.relu(k("x",e,t,n))];case"Round":return[a.round(k("x",e,t,n))];case"Selu":return[a.selu(k("x",e,t,n))];case"Sigmoid":return[a.sigmoid(k("x",e,t,n))];case"Sin":return[a.sin(k("x",e,t,n))];case"Sign":return[a.sign(k("x",e,t,n))];case"Sinh":return[a.sinh(k("x",e,t,n))];case"Softplus":return[a.softplus(k("x",e,t,n))];case"Sqrt":return[a.sqrt(k("x",e,t,n))];case"Square":return[a.square(k("x",e,t,n))];case"Tanh":return[a.tanh(k("x",e,t,n))];case"Tan":return[a.tan(k("x",e,t,n))];case"ClipByValue":return[a.clipByValue(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[a.relu6(k("x",e,t,n))];case"Rsqrt":return[a.rsqrt(Sn(e.inputNames[0],t,n))];case"Prod":return[a.prod(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[a.leakyRelu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[a.prelu(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[a.isNaN(Sn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Na(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];w.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function pI(e){return!(typeof e=="number"||e.some(t=>t<0))}function Up(e,t,n){let a=Ix(e,n),r=!pI(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=Ix(s.shape,a)}),!pI(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function Ix(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var n6=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),Qt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Na(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Qt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Bn([],[0].concat(this.elementShape));let n=this.readMany(e);return Na(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Rt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Bn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Na(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Qe(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,mt(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];O(()=>{t=W(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],p=[1,e[o],r];s[o]=W(He(t,u,p),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Rl=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Na(t,r.shape,"TensorList shape mismatch: "),Qt(r)}),this.idTensor=ke(0),this.maxNumElements=a,Qt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Rl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Na(e,this.elementShape,"TensorList shape mismatch: ");let a=Up(this.elementShape,this.tensors,e);return O(()=>{let r=this.tensors.map(s=>W(s,a));return Rt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Up(this.elementShape,this.tensors,e),a=this.tensors.pop();return Na(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Na(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Qt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new Rl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Na(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Up(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Na(this.elementShape,t.shape,"TensorList shape mismatch: "),Qt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Na(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Up(this.elementShape,this.tensors,n);return e.length===0?Bn([],[0].concat(a)):O(()=>{let r=e.map(s=>W(this.tensors[s],a));return Rt(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Na(this.elementShape,t,"TensorList shape mismatch: ");let n=Up(this.elementShape,this.tensors,t);return this.size()===0?Bn([],[0].concat(n)):O(()=>{let a=this.tensors.map(r=>W(r,n));return Qe(a,0)})}};function a6(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Na(r,t,"TensorList shape mismatch: ");let s=mt(e);return new Rl(s,t,a)}function r6(e,t,n,a){return new Rl([],e,t,a)}function s6(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Rl([],n,e.dtype,a),i=mt(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function i6(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Ix(s,n),o=a===0?0:e.size/a,l=O(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=d===0?0:r[d-1],h=[0,c,0],m=[1,t[d],o];p[d]=W(He(e,h,m),i)}return e.dispose(),p}),u=new Rl([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var o6=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=k("body",e,t,n),r=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=k("pred",e,t,n);return[Nr(a)]}case"Switch":{let a=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Nr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>Sn(r,t,n)!==void 0);if(a){let r=Sn(a,t,n);return[Nr(r)]}return}case"Enter":{let a=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(a),[Nr(r)]}case"Exit":{let a=k("tensor",e,t,n);return n.exitFrame(),[Nr(a)]}case"NextIteration":{let a=k("tensor",e,t,n);return n.nextIteration(),[Nr(a)]}case"TensorArrayV3":{let a=k("size",e,t,n),r=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),p=new n6(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,ke(1)]}case"TensorArrayWriteV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=k("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ke(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=k("indices",e,t,n),r=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=s6(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=k("elementShape",e,t,n),r=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=e.op==="TensorListReserve"?-1:i,l=r6(a,r,i,o);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let a=k("tensorListId",e,t,n),r=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=a6(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=k("tensorListId",e,t,n),r=k("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=i6(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id);return[ke(r.size(),"int32")]}case"TensorListResize":{let a=k("tensorListId",e,t,n),r=k("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function cI(e,t,n){let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=k("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=k("strides",e,t,n),d=Lh(e,t,n),c=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[m,f]=k("args",e,t,n);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var l6=(e,t,n,a=pn)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[a.conv1d(k("x",e,t,n),k("filter",e,t,n),r,s,i,o)]}case"Conv2D":{let r=k("strides",e,t,n),s=Lh(e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv2d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=cI(e,t,n);return[a.fused.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=cI(e,t,n);return[a.fused.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),s=k("strides",e,t,n),i=Lh(e,t,n);return[a.conv2dTranspose(k("x",e,t,n),k("filter",e,t,n),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),s=Lh(e,t,n),i=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[a.depthwiseConv2d(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv3d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:l,indexes:u}=a.maxPoolWithArgmax(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dilations",e,t,n),o=r[1],l=r[2],u=i[1],p=i[2];return[a.dilation2d(k("x",e,t,n),k("filter",e,t,n),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},u6=(e,t,n,a=pn)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),s=k("dtype",e,t,n),i=k("value",e,t,n);return[a.fill(r,i,s)]}case"LinSpace":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("num",e,t,n);return[a.linspace(r,s,i)]}case"Multinomial":{let r=k("logits",e,t,n),s=k("numSamples",e,t,n),i=k("seed",e,t,n);return[a.multinomial(r,s,i)]}case"OneHot":{let r=k("indices",e,t,n),s=k("depth",e,t,n),i=k("onValue",e,t,n),o=k("offValue",e,t,n);return[a.oneHot(r,s,i,o)]}case"Ones":return[a.ones(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[a.onesLike(k("x",e,t,n))];case"RandomStandardNormal":return[a.randomStandardNormal(k("shape",e,t,n),k("dtype",e,t,n),k("seed",e,t,n))];case"RandomUniform":return[a.randomUniform(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("step",e,t,n);return[a.range(r,s,i,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),s=k("mean",e,t,n),i=k("stdDev",e,t,n),o=k("seed",e,t,n);return[a.truncatedNormal(r,s,i,k("dtype",e,t,n),o)]}case"Zeros":return[a.zeros(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[a.zerosLike(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Pb(e,t,n){let a=k("boxes",e,t,n),r=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var p6=async(e,t,n,a,r=pn)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=Pb(e,t,n),d=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=Pb(e,t,n),p=k("padToMaxOutputSize",e,t,n),d=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=Pb(e,t,n);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(k("condition",e,t,n),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},c6=(e,t,n,a=pn)=>{switch(e.op){case"LowerBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.lowerBound(r,s)]}case"TopKV2":{let r=k("x",e,t,n),s=k("k",e,t,n),i=k("sorted",e,t,n),o=a.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.upperBound(r,s)]}case"Unique":{let r=k("x",e,t,n),s=a.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=k("x",e,t,n),s=k("axis",e,t,n),i=a.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},d6=(e,t,n,a=pn)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[Sn(e.name,t,n)||r];case"Placeholder":return[Sn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=k("x",e,t,n);return[Nr(p)]}case"IdentityN":return k("x",e,t,n).map(p=>Nr(p));case"Snapshot":let s=k("x",e,t,n);return[Nr(s)];case"Shape":return[a.tensor1d(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(p=>a.tensor1d(p.shape));case"Size":return[a.scalar(k("x",e,t,n).size,"int32")];case"Rank":return[a.scalar(k("x",e,t,n).rank,"int32")];case"NoOp":return[a.scalar(1)];case"Print":let i=k("x",e,t,n),o=k("data",e,t,n),l=k("message",e,t,n),u=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;p<o.length;p++)console.log(Array.prototype.slice.call(o[p].dataSync()).slice(0,u));return[i];default:throw TypeError(`Node type ${e.op} is not implemented`)}},h6=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,Qt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ke(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),O(()=>{let a=mt(t),r=n.length,s=a.length;w.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Qt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return O(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Rt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},m6=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=k("keyDType",e,t,n),s=k("valueDType",e,t,n),i=new h6(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},f6=(e,t,n,a=pn)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=k("image",e,t,n),s=k("boxes",e,t,n),i=k("boxInd",e,t,n),o=k("cropSize",e,t,n),l=k("method",e,t,n),u=k("extrapolationValue",e,t,n);return[a.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=k("images",e,t,n),s=k("transforms",e,t,n),i=k("outputShape",e,t,n),o=k("fillValue",e,t,n),l=k("interpolation",e,t,n),u=k("fillMode",e,t,n);return[a.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},g6=(e,t,n,a=pn)=>{switch(e.op){case"Equal":return[a.equal(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[a.notEqual(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[a.greater(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[a.greaterEqual(k("a",e,t,n),k("b",e,t,n))];case"Less":return[a.less(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[a.lessEqual(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[a.logicalAnd(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[a.logicalNot(k("a",e,t,n))];case"LogicalOr":return[a.logicalOr(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[a.where(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},y6=(e,t,n,a=pn)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[a.matMul(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[a.einsum(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[a.transpose(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,s]=k("fusedOps",e,t,n),i=r==="biasadd",o=s==="prelu",l=k("numArgs",e,t,n),u=k("leakyreluAlpha",e,t,n);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,d]=k("args",e,t,n);return[a.fused.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:p,activation:s,preluActivationWeights:d,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},b6=(e,t,n,a=pn)=>{switch(e.op){case"EuclideanNorm":return[a.euclideanNorm(k("x",e,t,n),k("axis",e,t,n),k("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[a.localResponseNormalization(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[a.softmax(k("x",e,t,n))];case"LogSoftmax":return[a.logSoftmax(k("x",e,t,n))];case"SparseToDense":return[a.sparseToDense(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},x6=(e,t,n,a=pn)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.max(k("x",e,t,n),o,l)]}case"Mean":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.mean(k("x",e,t,n),o,l)]}case"Min":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.min(k("x",e,t,n),o,l)]}case"Sum":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.sum(k("x",e,t,n),o,l)]}case"All":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.all(k("x",e,t,n),o,l)]}case"Any":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.any(k("x",e,t,n),o,l)]}case"ArgMax":{let o=k("axis",e,t,n);return[a.argMax(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[a.argMin(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.prod(k("x",e,t,n),o,l)]}case"Cumprod":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumprod(k("x",e,t,n),o,l,u)]}case"Cumsum":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumsum(k("x",e,t,n),o,l,u)]}case"Bincount":let r=k("x",e,t,n),s=k("weights",e,t,n),i=k("size",e,t,n);return[a.bincount(r,s,i)];case"DenseBincount":{let o=k("x",e,t,n),l=k("weights",e,t,n),u=k("size",e,t,n),p=k("binaryOutput",e,t,n);return[a.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},v6=(e,t,n,a=pn)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),s=k("axis",e,t,n),i=k("tensors",e,t,n);return i=i.slice(0,r),[a.concat(i,s)]}case"Gather":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gather(r,a.cast(s,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),s=k("batchDims",e,t,n),i=k("x",e,t,n),o=k("indices",e,t,n);return[a.gather(i,a.cast(o,"int32"),r,s)]}case"Reverse":{let r=k("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let i=k("x",e,t,n);return[a.reverse(i,s)]}case"ReverseV2":{let r=k("axis",e,t,n),s=k("x",e,t,n);return[a.reverse(s,r)]}case"Slice":{let r=k("begin",e,t,n),s=k("size",e,t,n);return[a.slice(k("x",e,t,n),r,s)]}case"StridedSlice":{let r=k("begin",e,t,n),s=k("end",e,t,n),i=k("strides",e,t,n),o=k("beginMask",e,t,n),l=k("endMask",e,t,n),u=k("ellipsisMask",e,t,n),p=k("newAxisMask",e,t,n),d=k("shrinkAxisMask",e,t,n),c=k("x",e,t,n);return[a.stridedSlice(c,r,s,i,o,l,u,p,d)]}case"Pack":return O(()=>{let r=k("axis",e,t,n),s=k("tensors",e,t,n),i=s[0].shape,o=a.squeeze(s[0]).shape,l=s.map(u=>{let p=w.arraysEqual(u.shape,i);if(!p&&!w.arraysEqual(a.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:a.reshape(u,i)});return[a.stack(l,r)]});case"Unpack":{let r=k("axis",e,t,n),s=k("tensor",e,t,n);return a.unstack(s,r)}case"Tile":{let r=k("reps",e,t,n);return[a.tile(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),s=k("numOrSizeSplits",e,t,n),i=k("x",e,t,n);return a.split(i,s,r)}case"ScatterNd":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("shape",e,t,n);return[a.scatterND(r,s,i)]}case"GatherNd":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gatherND(r,s)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),s=k("outputShape",e,t,n),i=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[a.sparseToDense(r,i,s,i.dtype===o.dtype?o:a.cast(o,i.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},w6=(e,t,n,a=pn)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=a.sparse.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=a.sparse.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[a.sparse.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[a.sparse.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},k6=(e,t,n,a=pn)=>{switch(e.op){case"FFT":return[a.fft(k("x",e,t,n))];case"IFFT":return[a.ifft(k("x",e,t,n))];case"RFFT":return[a.rfft(k("x",e,t,n))];case"IRFFT":return[a.irfft(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},I6=(e,t,n,a=pn)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=a.string.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=a.string.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[r,s,i]}case"StringToHashBucketFast":return[a.string.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},S6=(e,t,n,a=pn)=>{switch(e.op){case"Cast":return[a.cast(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[a.expandDims(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[a.squeeze(k("x",e,t,n),r)]}case"Reshape":return[a.reshape(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[a.mirrorPad(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[a.pad(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),s=k("paddings",e,t,n);return[a.spaceToBatchND(k("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),s=k("crops",e,t,n);return[a.batchToSpaceND(k("x",e,t,n),r,s)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),s=k("dataFormat",e,t,n).toUpperCase();return[a.depthToSpace(k("x",e,t,n),r,s)]}case"BroadcastTo":return[a.broadcastTo(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[a.broadcastArgs(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function dI(e,t,n,a,r=O){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>e6(i,o,l));case"basic_math":return r(()=>t6(i,o,l));case"control":return o6(i,o,l);case"convolution":return r(()=>l6(i,o,l));case"creation":return r(()=>u6(i,o,l));case"dynamic":return p6(i,o,l);case"evaluation":return r(()=>c6(i,o,l));case"image":return r(()=>f6(i,o,l));case"graph":return r(()=>d6(i,o,l));case"logical":return r(()=>g6(i,o,l));case"matrices":return r(()=>y6(i,o,l));case"normalization":return r(()=>b6(i,o,l));case"reduction":return r(()=>x6(i,o,l));case"slice_join":return r(()=>v6(i,o,l));case"sparse":return r(()=>w6(i,o,l));case"spectral":return r(()=>k6(i,o,l));case"string":return r(()=>I6(i,o,l));case"transformation":return r(()=>S6(i,o,l));case"hash_table":return m6(i,o,l,a);case"custom":let u=kT(i.op);if(u&&u.customExecutor)return u.customExecutor(new QH(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var hI=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function mI(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Jn(c)[0]),p=[];a!=null&&(p=a.map(c=>Jn(c.name)[0]));let d=[...t];for(;d.length>0;){let c=d.pop();if((GT(c)||E6(c)||A6(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&p.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function N6(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(p=>Jn(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{a.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{a.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{a.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(d=>{!l.has(d.name)&&a.has(d.name)&&d.inputs.every(c=>l.has(c.name))&&s.push(d)})}return u}var T6=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],C6=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],_6=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function GT(e){return T6.indexOf(e.op)>=0}function E6(e){return C6.indexOf(e.op)>=0}function A6(e){return _6.indexOf(e.op)>=0}var Sx=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Sx(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=mI(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return N6(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(p=>this.graph.nodes[Jn(p)[0]]),r=t.map(p=>Jn(p)[0]),s=r.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return O(()=>{let p=new hI(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Jn(m),y=[];y[g]=e[m],d[f]=y});let c=this.getFrozenTensorIds(d),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!d[f.name]){let g=dI(f,d,p,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=g,this.checkTensorForDisposal(f.name,f,d,p,c,r,h)}}return this.parent==null&&p.dispose(c),t.map(m=>Sn(m,d,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=FH(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];if(p===1){if(!this.keepTensorForDebug)u.dispose();else{let[d,c]=lr(t.name,a);this.intermediateTensors[d]?this.intermediateTensors[d][c]=u:(this.intermediateTensors[d]=[],this.intermediateTensors[d][c]=u)}delete i[u.id]}else p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=X().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new hI(this.weightMap,a,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,n);let i=t.map(u=>Sn(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Jn(b)[0]]),i=n.map(b=>Jn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:d}=mI(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,v]=Jn(b),I=[];I[v]=e[b],h[x]=I});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let b=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(b)}p==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!GT(b)&&!Sn(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw p!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&k("isConstant",p.node,a,n)&&([d]=lr(p.node.name,n)),a[p.node.name]==null){let c=dI(p.node,a,n,this._resourceManager);d||([d]=lr(p.node.name,n));let h=n.currentContext;w.isPromise(c)?u.push(c.then(m=>(a[d]=m,n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=lr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Sn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!Sn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Jn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Jn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Jn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},$6=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},F6="?tfjs-format=file",D6="model.json",B0=class{constructor(e,t={},n=Tn){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new $6}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return w.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Sx(lI.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=lI.Instance.transformGraph(e.modelInitializer);this.initializer=new Sx(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let a=n instanceof Ae?[n]:n,r={};return a.forEach((s,i)=>r[this.structuredOutputKeys[i]]=s),r}return n}normalizeInputs(e){if(!(e instanceof Ae)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function R6(e,t={},n=Tn){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=P6(e));let a=new B0(e,t,n);return await a.load(),a}function M6(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new B0(e);return t.load(),t}function P6(e){return e.endsWith("/")||(e=e+"/"),`${e}${D6}${F6}`}var O6="3.19.0",HT={};Fe(HT,{CSVDataset:()=>eC,Dataset:()=>tp,FileDataSource:()=>oC,TextLineDataset:()=>QT,URLDataSource:()=>lC,array:()=>ij,csv:()=>yj,func:()=>bj,generator:()=>xj,microphone:()=>wj,version_data:()=>kj,webcam:()=>vj,zip:()=>oj});var L6=fs(Sm()),z6=fs(Sm());function B6(e,t){return mm(e,t)}function mm(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Ml(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=mm(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function W6(e,t=qT){return jT(e,t)}function jT(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Ml(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=jT(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function qT(e){return e===null?null:Ml(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function KT(e,t){let n=new Map;mm(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(w.isPromise(r)){let s=await r;n.set(a,s)}}return mm(e,t,n)}function Ml(e){let t=!1;if(X().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=qI();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ae)&&!(e instanceof Promise)&&!t)}function V6(e){return e==null||U6(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ae||w.isTypedArray(e)}function U6(e){return e===null||typeof e!="object"&&typeof e!="function"}function G6(e){return B6(e,H6)}function H6(e){return e instanceof Ae?{value:e.clone(),recurse:!1}:Ml(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var XT=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},W0=class extends XT{constructor(){super(W0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};W0.INITIAL_CAPACITY=32;function YT(e){return new K6(e)}function V0(e){return new X6(e)}function j6(e,t){return new JT(e,t)}function q6(e,t=ns.FAIL){return new rj(e,t)}var nn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new nj(this,e)}filter(e){return new ej(this,e)}map(e){return new tj(this,e)}mapAsync(e){return new fI(this,e)}serialMapAsync(e){return new fI(this,e).serial()}flatmap(e){return new aj(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Q6(this,e,t)}columnMajorBatch(e,t=!0,n=qT){return this.rowMajorBatch(e,t).map(a=>W6(a,n))}concatenate(e,t){return new JT(YT([this,e]),t)}take(e){return e<0||e==null?this:new Z6(this,e)}skip(e){return e<0||e==null?this:new J6(this,e)}prefetch(e){return new ZT(this,e)}shuffle(e,t){return new sj(this,e,t)}serial(){return new Y6(this)}},K6=class extends nn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:G6(e),done:!1}}},X6=class extends nn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Y6=class extends nn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},J6=class extends nn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Me(e.value)}return this.upstream.next()}},Z6=class extends nn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Q6=class extends nn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},ej=class extends nn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Me(e.value)}}},tj=class extends nn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=ja.getTensorsInContainer(e.value),n=this.transform(e.value),a=ja.getTensorsInContainer(n);for(let r of t)ja.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},nj=class extends nn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},fI=class extends nn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=ja.getTensorsInContainer(e.value),n=await this.transform(e.value),a=ja.getTensorsInContainer(n);for(let r of t)ja.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},U0=class extends nn{constructor(){super(),this.outputQueue=new W0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},aj=class extends U0{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=ja.getTensorsInContainer(e.value),n=this.transform(e.value),a=ja.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)ja.isTensorInList(r,a)||r.dispose();return!0}},JT=class extends nn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ns;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ns||(ns={}));var rj=class extends nn{constructor(e,t=ns.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof nn?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await KT(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ns.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ns.SHORTEST:return{value:null,done:!0};case ns.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},ZT=class extends nn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new XT(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},sj=class extends ZT{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=z6.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},tp=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Yn(async()=>(await n.iterator()).columnMajorBatch(e,t,lj),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Yn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Yn(async()=>(await t.iterator()).filter(a=>O(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Yn(async()=>(await t.iterator()).map(n=>O(()=>e(n))),this.size)}mapAsync(e){let t=this;return Yn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Yn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Yn(async()=>{let a=V0(async()=>({value:await t.iterator(),done:!1}));return j6(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Yn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=L6.alea(t||w.now().toString());return Yn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Yn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};tp.MAX_BUFFER_SIZE=1e4;function Yn(e,t=null){return new class extends tp{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function ij(e){return Yn(async()=>YT(e),e.length)}function oj(e){if(!Ml(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Yn(async()=>{let n=await KT(e,a=>{if(a instanceof tp)return{value:a.iterator(),recurse:!1};if(Ml(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return q6(n,ns.SHORTEST)},t)}function lj(e){if(e===null)return null;let t=e[0];return V6(t)?{value:uj(e),recurse:!1}:{value:null,recurse:!0}}function uj(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ae?Rt(e):Bn(e)}var QT=class extends tp{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},$h='"',Gp=Symbol("out"),gI=Symbol("field"),Fh=Symbol("quote"),Ob=Symbol("quoteafterquote"),yI=Symbol("quoteinquote"),eC=class extends tp{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new QT(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Gp;for(let i=0;i<r;i++)switch(s){case Gp:switch(e.charAt(i)){case $h:a=i+1,s=Fh;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Gp;break;default:s=gI,a=i;break}break;case gI:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Gp,a=i+1;break;default:}break;case Fh:switch(e.charAt(i)){case $h:s=Ob;break;default:}break;case Ob:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Gp,a=i+1;break;case $h:s=Fh;break;default:s=yI;break}break;case yI:switch(e.charAt(i)){case $h:s=Fh;break;default:}break;default:}if(s===Ob?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},tC=class extends nn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!X().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new tC(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Bn(n,t)}},nC=class extends nn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ke([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ca([s,r,o,i],[1,4])}else this.cropBox=Ca([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!X().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new nC(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=xo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return O(()=>{let t=mn(le(e,"float32"),0),n;n=Cr.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},aC=class{},rC=class extends nn{split(e){return new pj(this,e)}},pj=class extends rC{constructor(e,t){super(),this.upstream=e,this.impl=new cj(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},cj=class extends U0{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},dj=class extends nn{decodeUTF8(){return new hj(this)}},hj=class extends rC{constructor(e){super(),this.upstream=e,this.impl=new mj(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},mj=class extends U0{constructor(e){if(super(),this.upstream=e,X().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=qI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return X().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},sC=class extends dj{constructor(e,t={}){super(),this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(X().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function fj(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=gj(e));let s=await(n||w.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new sC(i,t)}else throw new Error(s.statusText)}var gj=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function iC(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var oC=class extends aC{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(iC(this.input)&&X().get("IS_NODE")){let e=Bx();this.input=e.readFileSync(this.input.slice(7))}return new sC(this.input,this.options)}},lC=class extends aC{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return iC(this.url)?new oC(this.url,this.fileOptions).iterator():fj(this.url,this.fileOptions)}};function yj(e,t={}){return new eC(new lC(e),t)}function bj(e){let t=V0(e);return Yn(async()=>t)}function xj(e){return Yn(async()=>{let t=await e();return V0(()=>t.next())})}async function vj(e,t){return nC.create(e,t)}async function wj(e){return tC.create(e)}var kj="3.19.0";function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var Ij=gr.whereImpl,G0=class extends wc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Nm(this,sr())}nextDataId(){return G0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,X().get("IS_NODE")&&C.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>w.decodeString(a));return ze(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,t)}makeOutput(e,t,n){return sr().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return Ij(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};G0.nextDataId=0;var uC={};Fe(uC,{addImpl:()=>cC,bincountImpl:()=>j0,bincountReduceImpl:()=>dC,ceilImpl:()=>hC,concatImpl:()=>q0,equalImpl:()=>mC,expImpl:()=>gC,expm1Impl:()=>bC,floorImpl:()=>xC,gatherNdImpl:()=>vC,gatherV2Impl:()=>wC,greaterEqualImpl:()=>IC,greaterImpl:()=>kC,lessEqualImpl:()=>NC,lessImpl:()=>SC,linSpaceImpl:()=>TC,logImpl:()=>CC,maxImpl:()=>_C,maximumImpl:()=>EC,minimumImpl:()=>AC,multiplyImpl:()=>K0,negImpl:()=>$C,notEqualImpl:()=>FC,prodImpl:()=>DC,rangeImpl:()=>Y0,rsqrtImpl:()=>RC,scatterImpl:()=>gl,sigmoidImpl:()=>cq,simpleAbsImpl:()=>pC,sliceImpl:()=>gm,sparseFillEmptyRowsImpl:()=>PC,sparseReshapeImpl:()=>OC,sparseSegmentReductionImpl:()=>J0,sqrtImpl:()=>mq,squaredDifferenceImpl:()=>LC,stridedSliceImpl:()=>zC,stringNGramsImpl:()=>Z0,stringSplitImpl:()=>Q0,stringToHashBucketFastImpl:()=>e1,subImpl:()=>BC,tileImpl:()=>WC,topKImpl:()=>UC,transposeImpl:()=>X0,uniqueImpl:()=>GC});function pC(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var Sj=e=>{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=pC(r),n.makeOutput(a,t.shape,t.dtype)},Nj={kernelName:Wl,backendName:"cpu",kernelFunc:Sj};function Vt(e){return(t,n,a,r,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=w.computeStrides(i),u=w.sizeFromShape(i),p=w.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=w.computeStrides(t),m=w.computeStrides(n),f=C.getBroadcastDims(t,i),g=C.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<p.length;++y)p[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<p.length;++y){let b=w.indexToLoc(y,o,l),x=b.slice(-d);f.forEach(_=>x[_]=0);let v=w.locToIndex(x,d,h),I=b.slice(-c);g.forEach(_=>I[_]=0);let T=w.locToIndex(I,c,m);p[y]=e(a[v],r[T])}return[p,i]}}function Zn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var Tj={kernelName:Fm,backendName:"cpu",kernelFunc:Zn};function fm(e,t,n="float32"){if(n==="complex64"){let r=fm(e,t,"float32"),s=fm(e,t,"float32");return Zn({inputs:{real:r,imag:s},backend:e})}let a=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function hr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var Cj={kernelName:Bi,backendName:"cpu",kernelFunc:hr};function fi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var _j={kernelName:Jm,backendName:"cpu",kernelFunc:fi};function hs(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return hr({inputs:{x:r},backend:n});let i=fm(n,r.shape,r.dtype),o=hs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Zn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=fi({inputs:{input:r},backend:n}),o=hs({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=hr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[l,u]=Vt((p,d)=>p!==d?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var Ej={kernelName:Ni,backendName:"cpu",kernelFunc:hs};function an(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;xe([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?C.fromUint8ToStringArray(u):u,c=i.dtype==="string"?C.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=hs({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=hs({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(b.dataId).values,[I,T,_]=n(i.shape,o.shape,h,m,x,v),A=l.makeTensorInfo(_,"float32",I),F=l.makeTensorInfo(_,"float32",T),P=Zn({inputs:{real:A,imag:F},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(A),l.disposeIntermediateTensorInfo(F),P}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function H0(e){return(t,n,a,r,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(o),u=o.length,p=w.computeStrides(o),d=w.getTypedArrayFromDType("float32",l),c=w.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(a,r),g=C.mergeRealAndImagArrays(s,i),y=t.length,b=w.computeStrides(t),x=n.length,v=w.computeStrides(n);if(h.length+m.length===0)for(let I=0;I<d.length;I++){let T=I%f.length,_=I%g.length,A=e(f[T*2],f[T*2+1],g[_*2],g[_*2+1]);d[I]=A.real,c[I]=A.imag}else for(let I=0;I<d.length;I++){let T=w.indexToLoc(I,u,p),_=T.slice(-y);h.forEach(S=>_[S]=0);let A=w.locToIndex(_,y,b),F=T.slice(-x);m.forEach(S=>F[S]=0);let P=w.locToIndex(F,x,v),$=e(f[A*2],f[A*2+1],g[P*2],g[P*2+1]);d[I]=$.real,c[I]=$.imag}return[d,c,o]}}var cC=Vt((e,t)=>e+t),Aj=H0((e,t,n,a)=>({real:e+n,imag:t+a})),Pl=an(ys,cC,Aj),$j={kernelName:ys,backendName:"cpu",kernelFunc:Pl};function j0(e,t,n,a,r){let s=w.sizeFromShape(a),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function dC(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=ze([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Es(e){return(t,n,a)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function ot(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=w.sizeFromShape(i.shape),p=n||i.dtype,d=w.getArrayFromDType(p,u);for(let c=0;c<u;++c)d[c]=t(l[c],r);return o.makeTensorInfo(i.shape,p,d)}}function np(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var hC=Es(e=>Math.ceil(e)),Fj=np(Ti,hC),Dj={kernelName:Ti,backendName:"cpu",kernelFunc:Fj};function q0(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var mC=Vt((e,t)=>e===t?1:0),fC=an(au,mC,null,"bool"),Rj={kernelName:au,backendName:"cpu",kernelFunc:fC},gC=Es(e=>Math.exp(e)),yC=np(Mi,gC,"float32"),Mj={kernelName:Mi,backendName:"cpu",kernelFunc:yC},bC=Es(e=>Math.expm1(e)),Pj=np(su,bC),Oj={kernelName:su,backendName:"cpu",kernelFunc:Pj},xC=Es(e=>Math.floor(e)),Lj=np(Pi,xC),zj={kernelName:Pi,backendName:"cpu",kernelFunc:Lj};function vC(e,t,n,a,r,s,i,o,l){let u=ze([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function wC(e,t,n){let a=ze(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var kC=Vt((e,t)=>e>t?1:0),Bj=an(uu,kC,null,"bool"),Wj={kernelName:uu,backendName:"cpu",kernelFunc:Bj},IC=Vt((e,t)=>e>=t?1:0),Vj=an(zi,IC,null,"bool"),Uj={kernelName:zi,backendName:"cpu",kernelFunc:Vj},SC=Vt((e,t)=>e<t?1:0),Gj=an(hu,SC,null,"bool"),Hj={kernelName:hu,backendName:"cpu",kernelFunc:Gj},NC=Vt((e,t)=>e<=t?1:0),jj=an(mu,NC,null,"bool"),qj={kernelName:mu,backendName:"cpu",kernelFunc:jj};function TC(e,t,n){let a=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var CC=Es(e=>Math.log(e)),Kj=np(Vi,CC),Xj={kernelName:Vi,backendName:"cpu",kernelFunc:Kj};function _C(e,t,n,a){let r=w.getTypedArrayFromDType(a,w.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var EC=Vt((e,t)=>Math.max(e,t)),Yj=an(Gi,EC),Jj={kernelName:Gi,backendName:"cpu",kernelFunc:Yj},AC=Vt((e,t)=>Math.min(e,t)),Zj=an(Ki,AC),Qj={kernelName:Ki,backendName:"cpu",kernelFunc:Zj},K0=Vt((e,t)=>e*t),eq=H0((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),ug=an(Yi,K0,eq),tq={kernelName:Yi,backendName:"cpu",kernelFunc:ug};function $C(e,t,n){let a=w.createScalarValue(-1,n);return K0([],t,a,e,n)}function nq(e){let{inputs:t,backend:n}=e,{x:a}=t;xe(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=$C(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var aq={kernelName:vu,backendName:"cpu",kernelFunc:nq},FC=Vt((e,t)=>e!==t?1:0),rq=an(wu,FC,null,"bool"),sq={kernelName:wu,backendName:"cpu",kernelFunc:rq};function X0(e,t,n,a,r){let s=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),l=w.computeStrides(r),u=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let p=0;p<i;++p){let d=w.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=w.locToIndex(c,s,l);u[h]=e[p]}return u}function Gn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;xe(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=X0(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var iq={kernelName:Er,backendName:"cpu",kernelFunc:Gn};function DC(e,t,n,a){let[r,s]=C.computeOutAndReduceShapes(e,a),i=ma(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),l=w.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function oq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"prod");let o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=C.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Gn({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=C.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=DC(d.shape,d.dtype,h,p),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),c.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var lq={kernelName:to,backendName:"cpu",kernelFunc:oq};function Y0(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var RC=Es(e=>1/Math.sqrt(e)),uq=np(lo,RC),pq={kernelName:lo,backendName:"cpu",kernelFunc:uq};function gl(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return ze(n,t.dtype);let h=ze(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=d[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=c[m*r+y]:h.values[g*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}var cq=Es(e=>1/(1+Math.exp(-e))),MC=ot(po,e=>1/(1+Math.exp(-e))),dq={kernelName:po,backendName:"cpu",kernelFunc:MC};function gm(e,t,n,a,r){let s=qt.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let d=qt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=ze(a,r,l),p=ze(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?C.fromStringArrayToUint8(p.values):p.values}function gi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;xe(r,"slice");let[o,l]=qt.parseSliceParams(r,s,i);qt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=gm(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var hq={kernelName:Fu,backendName:"cpu",kernelFunc:gi};function PC(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=w.getArrayFromDType(n,0),y=w.getArrayFromDType(r,0);return[g,[0,d],y,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*d];if(y<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++m[y],c=c&&y>=h,h=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,y=a;for(let b=0;b<o;++b)p[b]=b;return[g,[o,d],y,u,p]}else{let g=m[l-1],y=w.getArrayFromDType(n,g*d),b=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let v=0;v<o;++v){let I=e[v*d],T=x[I],_=(I===0?0:m[I-1])+T;x[I]++;for(let A=0;A<d;++A)y[_*d+A]=e[v*d+A];b[_]=a[v],p[v]=_}for(let v=0;v<l;++v)if(x[v]===0){let I=v===0?0:m[v-1];y[I*d+0]=v;for(let T=1;T<d;++T)y[I*d+T]=0;b[I]=i}return[y,[g,d],b,u,p]}}function OC(e,t,n,a,r){let s=w.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(w.sizeFromShape(l)!==s)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=w.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let y=0;y<d;++y)g+=e[f*d+y]*c[y];for(let y=0;y<o;++y)m[f*o+y]=Math.trunc(g/h[y]),g%=h[y]}return[m,[i,o],l]}function J0(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((b,x)=>b*x,1),h=w.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,y=r[m];for(;;){let b=0;if(f<o){if(b=r[f],y===b){++f;continue}if(y>=b)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,p));y>g&&h.fill(i,g*u,y*u);for(let x=m;x<f;++x){let v=a[x];if(v<0||v>=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let I=0;I<u;I++)h[y*u+I]+=e[v*u+I]}if(s)for(let x=0;x<u;x++)h[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=b,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var mq=Es(e=>Math.sqrt(e)),fq=ot(co,e=>Math.sqrt(e)),gq={kernelName:co,backendName:"cpu",kernelFunc:fq},LC=Vt((e,t)=>{let n=e-t;return n*n}),yq=an(fo,LC),bq={kernelName:fo,backendName:"cpu",kernelFunc:yq};function zC(e,t,n,a){let r=ze(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var xq=class{constructor(e,t,n,a,r,s){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let g=0;g<p;++g)c+=e[d+g].length;c+=u*this.rightPad.length,c+=(l+u+p-1)*this.separator.length,n[a+i]=new Uint8Array(c);let h=n[a+i],m=0,f=g=>g.forEach(y=>h[m++]=y);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<p-1;++g)f(e[d+g]),f(this.separator);if(p>0){f(e[d+p-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=w.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function Z0(e,t,n,a,r,s,i,o){return new xq(n,a,r,s,i,o).compute(e,t)}function vq(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function Q0(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;vq(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=w.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function e1(e,t){let n=w.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=w.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var BC=Vt((e,t)=>e-t),wq=H0((e,t,n,a)=>({real:e-n,imag:t-a})),t1=an(go,BC,wq),kq={kernelName:go,backendName:"cpu",kernelFunc:t1};function WC(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=ze(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var Xp=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function VC(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));VC(e,t,c,h)}let r=e[t],s=n,i=a;for(w.swap(e,n,t),Xp(e[a],r)>0&&w.swap(e,n,a);s<i;){for(w.swap(e,s,i),s++,i--;Xp(e[s],r)<0;)s=s+1;for(;Xp(e[i],r)>0;)i=i-1}Xp(e[n],r)===0?w.swap(e,n,i):(i=i+1,w.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function UC(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=w.getTypedArrayFromDType(n,i*a),u=w.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((b,x)=>m[x]={value:b,index:x}),a<m.length&&(VC(m,a),m=m.slice(0,a)),r&&m.sort(Xp);let f=d*a,g=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let p=t.slice();return p[p.length-1]=a,[ze(p,n,l),ze(p,"int32",u)]}function GC(e,t,n,a){let r=w.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new jt(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let d=s.slice();d[1]=Object.keys(i).length;let c=new jt(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)c.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}sf("cpu",()=>new G0,1);var HC=ot(Ri,e=>e>=0?e:Math.exp(e)-1),Iq={kernelName:Ri,backendName:"cpu",kernelFunc:HC};function jC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;xe([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var Sq={kernelName:Wi,backendName:"cpu",kernelFunc:jC},Nq=Vt((e,t)=>e<0?t*e:e);function qC(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;xe([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=Nq(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var Tq={kernelName:eo,backendName:"cpu",kernelFunc:qC},KC=ot(no,e=>Math.max(0,e)),Cq={kernelName:no,backendName:"cpu",kernelFunc:KC},XC=ot(so,e=>Math.min(Math.max(0,e),6)),_q={kernelName:so,backendName:"cpu",kernelFunc:XC};function ym(e,t,n,a,r){if(n==="linear")return hr({inputs:{x:t},backend:e});if(n==="relu")return KC({inputs:{x:t},backend:e});if(n==="elu")return HC({inputs:{x:t},backend:e});if(n==="relu6")return XC({inputs:{x:t},backend:e});if(n==="prelu")return qC({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return jC({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return MC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function bt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,i),l=w.sizeFromShape(o);w.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var Eq={kernelName:_u,backendName:"cpu",kernelFunc:bt};function YC(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;xe([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=Hu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[y,h,d]:[y,d,h],I=bt({inputs:{x:r},backend:n,attrs:{shape:x}}),T=bt({inputs:{x:s},backend:n,attrs:{shape:v}}),_=i?I.shape[1]:I.shape[2],A=i?I.shape[2]:I.shape[1],F=o?T.shape[1]:T.shape[2],P=Math.max(g,y),$=n.data.get(I.dataId).values,S=n.data.get(T.dataId).values,M=w.computeStrides(I.shape),U=w.computeStrides(T.shape),[j,q,K]=i?[M[0],1,M[1]]:[M[0],M[1],1],[Y,te,re]=o?[1,U[1],U[0]]:[U[1],1,U[0]],Q=A*F,ie=ze([P,A,F],I.dtype),ae=ie.values,oe=n.blockSize;for(let ue=0;ue<P;ue++)for(let we=0;we<A;we+=oe)for(let ye=0;ye<F;ye+=oe)for(let Ie=0;Ie<_;Ie+=oe){let Ee=Math.min(we+oe,A),De=Math.min(ye+oe,F),We=Math.min(Ie+oe,_);for(let je=we;je<Ee;je++)for(let st=ye;st<De;st++){let nt=0;for(let at=Ie;at<We;at++){let Te=Math.min(ue,g-1)*j,ft=Math.min(ue,y-1)*re,dt=$[Te+je*q+at*K],bn=S[at*Y+st*te+ft];nt+=dt*bn}ae[ue*Q+(je*F+st)]+=nt}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(b,ie.dtype,ie.values)}var Aq={kernelName:Si,backendName:"cpu",kernelFunc:YC};function $q(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=YC({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=Pl({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=ym(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var Fq={kernelName:si,backendName:"cpu",kernelFunc:$q},Dq=ot(Vl,e=>Math.acos(e)),Rq={kernelName:Vl,backendName:"cpu",kernelFunc:Dq},Mq=ot(Ul,e=>Math.acosh(e)),Pq={kernelName:Ul,backendName:"cpu",kernelFunc:Mq};function Oq(e){let{inputs:t,backend:n}=e,a=t;xe(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=ze(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var Lq={kernelName:wi,backendName:"cpu",kernelFunc:Oq};function zq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"all");let o=w.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Gn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=C.computeOutAndReduceShapes(p.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let I=f[b+v];x=x&&I}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=C.expandShapeToKeepDim(d,o),b=bt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var Bq={kernelName:Gl,backendName:"cpu",kernelFunc:zq};function Wq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"any");let o=w.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Gn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=C.computeOutAndReduceShapes(p.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let I=f[b+v];x=x||I}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=C.expandShapeToKeepDim(d,o),b=bt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var Vq={kernelName:Hl,backendName:"cpu",kernelFunc:Wq};function Uq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMax");let i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Gn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=C.computeOutAndReduceShapes(l.shape,i),c=w.sizeFromShape(p),h=w.makeZerosTypedArray(c,"int32"),m=w.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let I=f[y+v];I>b&&(b=I,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Gq={kernelName:ki,backendName:"cpu",kernelFunc:Uq};function Hq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMin");let i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Gn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=C.computeOutAndReduceShapes(l.shape,i),c=w.sizeFromShape(p),h=w.makeZerosTypedArray(c,"int32"),m=w.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let I=f[y+v];I<b&&(b=I,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var jq={kernelName:kc,backendName:"cpu",kernelFunc:Hq},qq=ot(jl,e=>Math.asin(e)),Kq={kernelName:jl,backendName:"cpu",kernelFunc:qq},Xq=ot(ql,e=>Math.asinh(e)),Yq={kernelName:ql,backendName:"cpu",kernelFunc:Xq},Jq=ot(Kl,e=>Math.atan(e)),Zq={kernelName:Kl,backendName:"cpu",kernelFunc:Jq},Qq=Vt((e,t)=>Math.atan2(e,t)),e5=an(Yl,Qq),t5={kernelName:Yl,backendName:"cpu",kernelFunc:e5},n5=ot(Xl,e=>Math.atanh(e)),a5={kernelName:Xl,backendName:"cpu",kernelFunc:n5};function n1(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=ze(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let I=v*y,T=v*a[0];for(let _=0;_<r.inChannels;++_)for(let A=0;A<r.outHeight;++A){let F=A*i-c,P=Math.max(0,F),$=Math.min(r.inHeight,p+F),S=I+A*b;for(let M=0;M<r.outWidth;++M){let U=M*o-h,j=Math.max(0,U),q=Math.min(r.inWidth,d+U),K=m,Y=0,te=0;for(let Q=P;Q<$;Q+=l){let ie=T+Q*a[1];for(let ae=j;ae<q;ae+=u){let oe=ie+ae*a[2],ue=e[oe+_];s==="max"&&ue>K?K=ue:s==="avg"&&(Y+=ue,te++)}if(isNaN(K))break}let re=S+M*x+_;g[re]=s==="avg"?Y/te:K}}}return f}function JC(e,t,n,a,r=!1,s=!1){let i=ze(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=ze(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,v=x;for(;v<0;)v+=u;let I=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let _=T*l-m,A=_;for(;A<0;)A+=p;let F=Math.min(a.inWidth,c+_),P=Number.NEGATIVE_INFINITY,$=-1;for(let S=v;S<I;S+=u){let M=S-x;for(let U=A;U<F;U+=p){let j=U-_,q=f.get(g,S,U,y);q>P&&(P=q,r?$=s?((g*a.inHeight+S)*a.inWidth+U)*a.inChannels+y:(S*a.inWidth+U)*a.inChannels+y:$=M*c+j)}}i.set($,g,b,T,y)}}return i}function ZC(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=ze(r.outShape,n),v=x.values,I=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],_=r.outShape[3]*r.outShape[4],A=r.outShape[4];for(let F=0;F<r.batchSize;++F){let P=F*I,$=F*a[0];for(let S=0;S<r.inChannels;++S)for(let M=0;M<r.outDepth;++M){let U=M*i-f,j=U;for(;j<0;)j+=u;let q=Math.min(r.inDepth,c+U),K=P+M*T;for(let Y=0;Y<r.outHeight;++Y){let te=Y*o-g,re=te;for(;re<0;)re+=p;let Q=Math.min(r.inHeight,h+te),ie=K+Y*_;for(let ae=0;ae<r.outWidth;++ae){let oe=ae*l-y,ue=oe;for(;ue<0;)ue+=d;let we=Math.min(r.inWidth,m+oe),ye=ie+ae*A,Ie=b,Ee=0,De=0;for(let je=j;je<q;je+=u){let st=$+je*a[1];for(let nt=re;nt<Q;nt+=p){let at=st+nt*a[2];for(let Te=ue;Te<we;Te+=d){let ft=at+Te*a[3],dt=e[ft+S];if(s==="max"&&dt>Ie?Ie=dt:s==="avg"&&(Ee+=dt,De++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let We=ye+S;v[We]=s==="avg"?Ee/De:Ie}}}}return x}function r5(e,t){let n=ze(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-c,x=b;for(;x<0;)x+=i;let v=Math.min(t.inDepth,u+b);for(let I=0;I<t.outHeight;++I){let T=I*r-h,_=T;for(;_<0;)_+=o;let A=Math.min(t.inHeight,p+T);for(let F=0;F<t.outWidth;++F){let P=F*s-m,$=P;for(;$<0;)$+=l;let S=Math.min(t.inWidth,d+P),M=Number.NEGATIVE_INFINITY,U=-1;for(let j=x;j<v;j+=i){let q=j-b;for(let K=_;K<A;K+=o){let Y=K-T;for(let te=$;te<S;te+=l){let re=te-P,Q=e.get(f,j,K,te,g);Q>=M&&(M=Q,U=q*p*d+Y*p+re)}}}n.set(U,f,y,I,F,g)}}}return n}function s5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))d=hr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=n1(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var i5={kernelName:Ii,backendName:"cpu",kernelFunc:s5};function o5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;xe(r,"avgPool3d");let p=C.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=ZC(d,r.shape,r.dtype,w.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var l5={kernelName:Ic,backendName:"cpu",kernelFunc:o5};function u5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;xe([r,s],"avgPool3DGrad");let p=C.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,y=p.dilationDepth,b=p.dilationHeight,x=p.dilationWidth,v=p.effectiveFilterDepth,I=p.effectiveFilterHeight,T=p.effectiveFilterWidth,_=v-1-p.padInfo.front,A=T-1-p.padInfo.left,F=I-1-p.padInfo.top,P=ze(s.shape,"float32"),$=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let U=0;U<p.inChannels;++U)for(let j=0;j<p.inDepth;++j)for(let q=0;q<p.inHeight;++q)for(let K=0;K<p.inWidth;++K){let Y=j-_,te=q-F,re=K-A,Q=0;for(let ie=0;ie<v;ie+=y){let ae=(Y+ie)/d;if(!(ae<0||ae>=p.outDepth||Math.floor(ae)!==ae))for(let oe=0;oe<I;oe+=b){let ue=(te+oe)/c;if(!(ue<0||ue>=p.outHeight||Math.floor(ue)!==ue))for(let we=0;we<T;we+=x){let ye=(re+we)/h;ye<0||ye>=p.outWidth||Math.floor(ye)!==ye||(Q+=S.get(M,ae,ue,ye,U))}}}P.set(Q*$,M,j,q,K,U)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var p5={kernelName:Em,backendName:"cpu",kernelFunc:u5};function c5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;xe([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=C.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,x=b-1-p.padInfo.left,v=y-1-p.padInfo.top,I=ze(i.shape,"float32"),T=1/(h*m),_=n.data.get(r.dataId).values,A=ze(r.shape,"float32",_);for(let F=0;F<p.batchSize;++F)for(let P=0;P<p.inChannels;++P)for(let $=0;$<p.inHeight;++$)for(let S=0;S<p.inWidth;++S){let M=$-v,U=S-x,j=0;for(let q=0;q<y;q+=f){let K=(M+q)/d;if(!(K<0||K>=p.outHeight||Math.floor(K)!==K))for(let Y=0;Y<b;Y+=g){let te=(U+Y)/c;te<0||te>=p.outWidth||Math.floor(te)!==te||(j+=A.get(F,K,te,P))}}I.set(j*T,F,$,S,P)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var d5={kernelName:_m,backendName:"cpu",kernelFunc:c5};function h5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;w.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,y=h.length,b=c.length,x=d.length,v=0,I=0,T=0,_=0;for(let A=0;A<p.length;++A)f[A]=m[v++]+(p[A]-d[I++])*h[T++]/Math.sqrt(c[_++]+u),v>=g&&(v=0),I>=x&&(I=0),T>=y&&(T=0),_>=b&&(_=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var m5={kernelName:Li,backendName:"cpu",kernelFunc:h5};function f5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;xe([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),p=C.getReshapedPermuted(r.shape,s,o),d=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(p,i,s.length),h=bt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Gn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=bt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=gi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var g5={kernelName:Jl,backendName:"cpu",kernelFunc:f5};function y5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=j0(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var b5={kernelName:Am,backendName:"cpu",kernelFunc:y5};function x5(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=C.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var v5={kernelName:$m,backendName:"cpu",kernelFunc:x5},w5=ot(bs,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),k5={kernelName:bs,backendName:"cpu",kernelFunc:w5},I5=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},S5={kernelName:Sc,backendName:"cpu",kernelFunc:I5};function Ol(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var N5={kernelName:Gm,backendName:"cpu",kernelFunc:Ol};function Ll(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>w.sizeFromShape(f.shape)>0);if(o.length===1)return hr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>fi({inputs:{input:v},backend:n})),g=o.map(v=>Ol({inputs:{input:v},backend:n})),y=Ll({inputs:f,backend:n,attrs:{axis:s}}),b=Ll({inputs:g,backend:n,attrs:{axis:s}}),x=Zn({inputs:{real:y,imag:b},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let u=o.map(f=>{let g=w.sizeFromShape(f.shape.slice(s));return bt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=q0(p,i,t[0].dtype,d),h=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var T5={kernelName:Zl,backendName:"cpu",kernelFunc:Ll};function QC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;xe([r,s],"conv2d");let d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,y=c.padInfo.left,b=c.padInfo.top,x=c.dataFormat==="channelsLast",v=new jt(c.outShape,r.dtype),I=w.computeStrides(r.shape),T=w.computeStrides(s.shape),_=I[0],A=x?I[1]:I[2],F=x?I[2]:1,P=x?1:I[1],$=v.strides[0],S=x?v.strides[1]:v.strides[2],M=x?v.strides[2]:1,U=x?1:v.strides[1],j=n.data.get(r.dataId).values,q=n.data.get(s.dataId).values,K=v.values;for(let Y=0;Y<c.batchSize;++Y){let te=Y*_,re=Y*$;for(let Q=0;Q<c.outHeight;++Q){let ie=re+Q*S,ae=Q*c.strideHeight-b;for(let oe=0;oe<h;++oe){let ue=ae+oe*f;if(ue<0||ue>=c.inHeight)continue;let we=oe*T[0],ye=te+ue*A;for(let Ie=0;Ie<c.outWidth;++Ie){let Ee=ie+Ie*M,De=Ie*c.strideWidth-y;for(let We=0;We<m;++We){let je=De+We*g;if(je<0||je>=c.inWidth)continue;let st=we+We*T[1],nt=ye+je*F,at=st;for(let Te=0;Te<c.inChannels;++Te){let ft=j[nt+Te*P];for(let dt=0;dt<c.outChannels;++dt)K[Ee+dt*U]+=ft*q[at+dt];at+=c.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,K)}var C5={kernelName:Ci,backendName:"cpu",kernelFunc:QC};function _5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;xe([r,s],"conv2dBackpropFilter");let d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,y=c.dataFormat==="channelsLast",b=new jt(c.filterShape,"float32"),x=c.padInfo.left,v=c.padInfo.top,I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,_=new jt(r.shape,r.dtype,I),A=new jt(s.shape,s.dtype,T);for(let F=0;F<f;++F){let P=Math.max(0,Math.ceil((v-F)/h)),$=Math.min(c.outHeight,(c.inHeight+v-F)/h);for(let S=0;S<g;++S){let M=Math.max(0,Math.ceil((x-S)/m)),U=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let j=0;j<c.inChannels;++j)for(let q=0;q<c.outChannels;++q){let K=0;for(let Y=0;Y<c.batchSize;++Y)for(let te=P;te<$;++te){let re=F+te*h-v;for(let Q=M;Q<U;++Q){let ie=S+Q*m-x;y?K+=_.get(Y,re,ie,j)*A.get(Y,te,Q,q):K+=_.get(Y,j,re,ie)*A.get(Y,q,te,Q)}}b.set(K,F,S,j,q)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var E5={kernelName:Dm,backendName:"cpu",kernelFunc:_5};function A5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;xe([r,s],"conv2dBackpropInput");let d=w.computeStrides(s.shape),c=w.computeStrides(r.shape),h=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new jt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,v,I]=d,{batchSize:T,filterHeight:_,filterWidth:A,inChannels:F,inHeight:P,inWidth:$,outChannels:S,outHeight:M,outWidth:U,strideHeight:j,strideWidth:q}=m;h=m.dataFormat;let K=_-1-m.padInfo.top,Y=A-1-m.padInfo.left,te=h==="channelsLast",re=f.strides[0],Q=te?f.strides[1]:f.strides[2],ie=te?f.strides[2]:1,ae=te?1:f.strides[1],oe=c[0],ue=te?c[1]:c[2],we=te?c[2]:1,ye=te?1:c[1];for(let Ie=0;Ie<T;++Ie)for(let Ee=0;Ee<F;++Ee)for(let De=0;De<P;++De){let We=De-K,je=Math.max(0,Math.ceil(We/j)),st=Math.min(M,(_+We)/j);for(let nt=0;nt<$;++nt){let at=nt-Y,Te=Math.max(0,Math.ceil(at/q)),ft=Math.min(U,(A+at)/q),dt=0;for(let Yt=je;Yt<st;++Yt){let Rn=Yt*j-We;for(let Ut=Te;Ut<ft;++Ut){let Jt=Ut*q-at,Ma=oe*Ie+ue*Yt+we*Ut,Mn=x*(_-1-Rn)+v*(A-1-Jt)+I*Ee;for(let Gt=0;Gt<S;++Gt){let ia=y[Ma+ye*Gt],oa=b[Mn+Gt];dt+=ia*oa}}}let bn=re*Ie+Q*De+ie*nt+ae*Ee;g[bn]=dt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var $5={kernelName:_i,backendName:"cpu",kernelFunc:A5};function F5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;xe([r,s],"conv3d");let u=C.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,b=g.left,x=g.top,v=new jt(u.outShape,r.dtype),I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,_=v.values,A=w.computeStrides(r.shape),F=w.computeStrides(s.shape);for(let P=0;P<u.batchSize;++P){let $=P*A[0],S=P*v.strides[0];for(let M=0;M<u.outDepth;++M){let U=S+M*v.strides[1],j=M*u.strideDepth-y;for(let q=0;q<p;++q){let K=j+q*h;if(K<0||K>=u.inDepth)continue;let Y=q*F[0],te=$+K*A[1];for(let re=0;re<u.outHeight;++re){let Q=U+re*v.strides[2],ie=re*u.strideHeight-x;for(let ae=0;ae<d;++ae){let oe=ie+ae*m;if(oe<0||oe>=u.inHeight)continue;let ue=Y+ae*F[1],we=te+oe*A[2];for(let ye=0;ye<u.outWidth;++ye){let Ie=Q+ye*u.outChannels,Ee=ye*u.strideWidth-b;for(let De=0;De<c;++De){let We=Ee+De*f;if(We<0||We>=u.inWidth)continue;let je=ue+De*F[2],st=we+We*u.inChannels,nt=je;for(let at=0;at<u.inChannels;++at){let Te=I[st+at];for(let ft=0;ft<u.outChannels;++ft)_[Ie+ft]+=Te*T[nt+ft];nt+=u.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var D5={kernelName:Nc,backendName:"cpu",kernelFunc:F5};function R5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;xe([r,s],"conv3dBackpropFilterV2");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),d=C.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,y=d.filterWidth,b=new jt(d.filterShape,"float32"),x=b.values,[v,I,T,_]=b.strides,A=n.data.get(s.dataId).values,[F,P,$,S]=p,M=n.data.get(r.dataId).values,[U,j,q,K]=u,Y=d.padInfo.front,te=d.padInfo.left,re=d.padInfo.top;for(let Q=0;Q<f;++Q){let ie=Math.max(0,Math.ceil((Y-Q)/c)),ae=Math.min(d.outDepth,(d.inDepth+Y-Q)/c),oe=Q*v;for(let ue=0;ue<g;++ue){let we=Math.max(0,Math.ceil((re-ue)/h)),ye=Math.min(d.outHeight,(d.inHeight+re-ue)/h),Ie=ue*I+oe;for(let Ee=0;Ee<y;++Ee){let De=Math.max(0,Math.ceil((te-Ee)/m)),We=Math.min(d.outWidth,(d.inWidth+te-Ee)/m),je=Ee*T+Ie;for(let st=0;st<d.inChannels;++st){let nt=st*_+je;for(let at=0;at<d.outChannels;++at){let Te=0;for(let ft=0;ft<d.batchSize;++ft){let dt=ft*U,bn=ft*F;for(let Yt=ie;Yt<ae;++Yt){let Rn=(Q+Yt*c-Y)*j+dt,Ut=Yt*P+bn;for(let Jt=we;Jt<ye;++Jt){let Ma=(ue+Jt*h-re)*q+Rn,Mn=Jt*$+Ut;for(let Gt=De;Gt<We;++Gt){let ia=(Ee+Gt*m-te)*K+Ma,oa=Gt*S+Mn;Te+=M[ia+st]*A[oa+at]}}}}x[nt+at]=Te}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var M5={kernelName:Rm,backendName:"cpu",kernelFunc:R5};function P5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;xe([r],"conv3dBackpropInputV2");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),d=C.computeConv3DInfo(l,s.shape,o,1,i),c=new jt(d.inShape,"float32"),h=c.values,[m,f,g,y]=c.strides,b=n.data.get(r.dataId).values,[x,v,I,T]=u,_=n.data.get(s.dataId).values,[A,F,P,$]=p,{batchSize:S,filterDepth:M,filterHeight:U,filterWidth:j,inChannels:q,inDepth:K,inHeight:Y,inWidth:te,outChannels:re,outDepth:Q,outHeight:ie,outWidth:ae,strideDepth:oe,strideHeight:ue,strideWidth:we}=d,ye=M-1-d.padInfo.front,Ie=U-1-d.padInfo.top,Ee=j-1-d.padInfo.left;for(let De=0;De<S;++De)for(let We=0;We<q;++We)for(let je=0;je<K;++je){let st=je-ye,nt=Math.max(0,Math.ceil(st/oe)),at=Math.min(Q,(M+st)/oe);for(let Te=0;Te<Y;++Te){let ft=Te-Ie,dt=Math.max(0,Math.ceil(ft/ue)),bn=Math.min(ie,(U+ft)/ue);for(let Yt=0;Yt<te;++Yt){let Rn=Yt-Ee,Ut=Math.max(0,Math.ceil(Rn/we)),Jt=Math.min(ae,(j+Rn)/we),Ma=0;for(let Mn=nt;Mn<at;++Mn){let Gt=Mn*oe-st;for(let ia=dt;ia<bn;++ia){let oa=ia*ue-ft;for(let jr=Ut;jr<Jt;++jr){let Os=jr*we-Rn,Vd=x*De+v*Mn+I*ia+T*jr,qr=A*(M-1-Gt)+F*(U-1-oa)+P*(j-1-Os)+$*We;for(let kr=0;kr<re;++kr){let _p=b[Vd+kr],Zo=_[qr+kr];Ma+=_p*Zo}}}}h[m*De+f*je+g*Te+y*Yt+We]=Ma}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var O5={kernelName:Mm,backendName:"cpu",kernelFunc:P5},L5=ot(Ei,e=>Math.cos(e)),z5={kernelName:Ei,backendName:"cpu",kernelFunc:L5},B5=ot(Ai,e=>Math.cosh(e)),W5={kernelName:Ai,backendName:"cpu",kernelFunc:B5};function V5(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,y=ze([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,I=w.computeStrides(r.shape),T=w.computeStrides(y.shape);for(let _=0;_<m;_++){let A=_*4,F=b[A],P=b[A+1],$=b[A+2],S=b[A+3],M=x[_];if(M>=p)continue;let U=f>1?($-F)*(d-1)/(f-1):0,j=g>1?(S-P)*(c-1)/(g-1):0;for(let q=0;q<f;q++){let K=f>1?F*(d-1)+q*U:.5*(F+$)*(d-1);if(K<0||K>d-1){for(let Y=0;Y<g;Y++)for(let te=0;te<h;te++){let re=te+Y*T[2]+q*T[1]+_*T[0];y.values[re]=u}continue}if(l==="bilinear"){let Y=Math.floor(K),te=Math.ceil(K),re=K-Y;for(let Q=0;Q<g;Q++){let ie=g>1?P*(c-1)+Q*j:.5*(P+S)*(c-1);if(ie<0||ie>c-1){for(let we=0;we<h;we++){let ye=we+Q*T[2]+q*T[1]+_*T[0];y.values[ye]=u}continue}let ae=Math.floor(ie),oe=Math.ceil(ie),ue=ie-ae;for(let we=0;we<h;we++){let ye=we+ae*I[2]+Y*I[1]+M*I[0],Ie=v[ye];ye=we+oe*I[2]+Y*I[1]+M*I[0];let Ee=v[ye];ye=we+ae*I[2]+te*I[1]+M*I[0];let De=v[ye];ye=we+oe*I[2]+te*I[1]+M*I[0];let We=v[ye],je=Ie+(Ee-Ie)*ue,st=De+(We-De)*ue;ye=we+Q*T[2]+q*T[1]+_*T[0],y.values[ye]=je+(st-je)*re}}}else for(let Y=0;Y<g;++Y){let te=g>1?P*(c-1)+Y*j:.5*(P+S)*(c-1);if(te<0||te>c-1){for(let ie=0;ie<h;ie++){let ae=ie+Y*T[2]+q*T[1]+_*T[0];y.values[ae]=u}continue}let re=Math.round(te),Q=Math.round(K);for(let ie=0;ie<h;ie++){let ae=ie+re*I[2]+Q*I[1]+M*I[0],oe=ie+Y*T[2]+q*T[1]+_*T[0];y.values[oe]=v[ae]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var U5={kernelName:eu,backendName:"cpu",kernelFunc:V5};function G5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumprod");let l=C.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Gn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=C.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ma(u.dtype,"int32"),c=w.makeOnesTypedArray(w.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?1:h[x];else{let v=f(y,b-1);c[x]=i?h[v]*c[v]:h[x]*c[v]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=C.getUndoAxesPermutation(l),b=Gn({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var H5={kernelName:Ql,backendName:"cpu",kernelFunc:G5};function j5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumsum");let l=C.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Gn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=C.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ma(u.dtype,"int32"),c=w.makeZerosTypedArray(w.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?0:h[x];else{let v=f(y,b-1);c[x]=i?h[v]+c[v]:h[x]+c[v]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=C.getUndoAxesPermutation(l),b=Gn({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var q5={kernelName:$i,backendName:"cpu",kernelFunc:j5};function K5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=j0(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=dC(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var X5={kernelName:Pm,backendName:"cpu",kernelFunc:K5};function Y5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<d;++b){let x=Math.floor(b/s),v=b%s;for(let I=0;I<c;++I){let T=Math.floor(I/s),_=I%s,A=(v*s+_)*h;for(let F=0;F<h;++F){let P=F+A+p*(T+u*(x+l*y));f[g++]=m[P]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var J5={kernelName:tu,backendName:"cpu",kernelFunc:Y5};function e_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;xe([r,s],"depthwiseConv2DNative");let p=w.computeStrides(r.shape),d=w.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,v=b.top,I=h.outChannels/h.inChannels,T=new jt(h.outShape,r.dtype),_=n.data.get(r.dataId).values,A=n.data.get(s.dataId).values,F=T.values;for(let P=0;P<h.batchSize;++P){let $=P*p[0],S=P*T.strides[0];for(let M=0;M<h.outHeight;++M){let U=S+M*T.strides[1],j=M*h.strideHeight-v;for(let q=0;q<m;++q){let K=j+q*g;if(K<0||K>=h.inHeight)continue;let Y=q*d[0],te=$+K*p[1];for(let re=0;re<h.outWidth;++re){let Q=U+re*T.strides[2],ie=re*h.strideWidth-x;for(let ae=0;ae<f;++ae){let oe=ie+ae*y;if(oe<0||oe>=h.inWidth)continue;let ue=Y+ae*d[1],we=te+oe*h.inChannels,ye=Q,Ie=ue;for(let Ee=0;Ee<h.inChannels;++Ee){let De=_[we+Ee];for(let We=0;We<I;++We)F[ye+We]+=De*A[Ie+We];ye+=I,Ie+=I}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var Z5={kernelName:Fi,backendName:"cpu",kernelFunc:e_};function Q5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;xe([r,s],"depthwiseConv2dNativeBackpropFilter");let d=C.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new jt(d.filterShape,"float32"),y=d.padInfo.left,b=d.padInfo.top,x=d.outChannels/d.inChannels,v=n.data.get(r.dataId).values,I=new jt(r.shape,r.dtype,v),T=n.data.get(s.dataId).values,_=new jt(s.shape,s.dtype,T);for(let A=0;A<m;++A){let F=Math.max(0,Math.ceil((b-A)/c)),P=Math.min(d.outHeight,(d.inHeight+b-A)/c);for(let $=0;$<f;++$){let S=Math.max(0,Math.ceil((y-$)/h)),M=Math.min(d.outWidth,(d.inWidth+y-$)/h);for(let U=0;U<d.outChannels;++U){let j=Math.trunc(U/x),q=U%x,K=0;for(let Y=0;Y<d.batchSize;++Y)for(let te=F;te<P;++te){let re=A+te*c-b;for(let Q=S;Q<M;++Q){let ie=$+Q*h-y;K+=I.get(Y,re,ie,j)*_.get(Y,te,Q,U)}}g.set(K,A,$,j,q)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var eK={kernelName:Om,backendName:"cpu",kernelFunc:Q5};function tK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;xe([r,s],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),c=w.computeStrides(s.shape),h=C.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new jt(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[v,I,T]=d,_=n.data.get(s.dataId).values,[A,F,P]=c,{batchSize:$,filterHeight:S,filterWidth:M,inChannels:U,inHeight:j,inWidth:q,outChannels:K,outHeight:Y,outWidth:te,strideHeight:re,strideWidth:Q}=h,ie=S-1-h.padInfo.top,ae=M-1-h.padInfo.left,oe=K/U;for(let ue=0;ue<$;++ue)for(let we=0;we<U;++we)for(let ye=0;ye<j;++ye){let Ie=ye-ie,Ee=Math.max(0,Math.ceil(Ie/re)),De=Math.min(Y,(S+Ie)/re);for(let We=0;We<q;++We){let je=We-ae,st=Math.max(0,Math.ceil(je/Q)),nt=Math.min(te,(M+je)/Q),at=0;for(let Te=Ee;Te<De;++Te){let ft=Te*re-Ie;for(let dt=st;dt<nt;++dt){let bn=dt*Q-je,Yt=v*ue+I*Te+T*dt,Rn=A*(S-1-ft)+F*(M-1-bn)+P*we;for(let Ut=0;Ut<oe;++Ut){let Jt=we*oe+Ut,Ma=x[Yt+Jt],Mn=_[Rn+Ut];at+=Ma*Mn}}}f[g*ue+y*ye+b*We+we]=at}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var nK={kernelName:Lm,backendName:"cpu",kernelFunc:tK};function aK(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=ze([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var rK={kernelName:zm,backendName:"cpu",kernelFunc:aK},sK={kernelName:Tc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:v,strideWidth:I,filterHeight:T,filterWidth:_,dilationHeight:A,dilationWidth:F,outShape:P}=C.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),$=w.sizeFromShape(P),S=P.length,M=w.getArrayFromDType(a.dtype,$);for(let U=0;U<h;++U)for(let j=0;j<y;++j){let q=j*v-x.top;for(let K=0;K<b;++K){let Y=K*I-x.left;for(let te=0;te<g;++te){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<T;++ie){let ae=q+ie*A;if(ae>=0&&ae<m)for(let oe=0;oe<_;++oe){let ue=Y+oe*F;if(ue>=0&&ue<f){let we=w.locToIndex([U,ae,ue,te],p,w.computeStrides(a.shape)),ye=w.locToIndex([ie,oe,te],c,w.computeStrides(r.shape)),Ie=u[we]+d[ye];Ie>re&&(re=Ie)}}}let Q=w.locToIndex([U,j,K,te],S,w.computeStrides(P));M[Q]=re}}}return{dataId:l.write(w.toTypedArray(M,a.dtype),P,a.dtype),shape:P,dtype:a.dtype}}},iK={kernelName:Yh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=w.toNestedArray(a.shape,u.data.get(a.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:I,filterWidth:T,dilationHeight:_,dilationWidth:A,outShape:F}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===F.length,()=>`Error in ${Yh}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=w.toNestedArray(F,u.data.get(s.dataId).values),$=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let U=M*x-b.top;for(let j=0;j<y;++j){let q=j*v-b.left;for(let K=0;K<f;++K){let Y=Number.MIN_SAFE_INTEGER,te=0,re=0;for(let Q=0;Q<I;++Q){let ie=U+Q*_;if(ie>=0&&ie<h)for(let ae=0;ae<T;++ae){let oe=q+ae*A;if(oe>=0&&oe<m){let ue=p[S][ie][oe][K]+d[Q][ae][K];ue>Y&&(Y=ue,te=Q,re=ae)}}}$[te][re][K]+=P[S][M][j][K]}}}return{dataId:u.write(w.toTypedArray($,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},oK={kernelName:Xh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=w.toNestedArray(a.shape,u.data.get(a.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:I,filterWidth:T,dilationHeight:_,dilationWidth:A,outShape:F}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===F.length,()=>`Error in ${Xh}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=w.toNestedArray(F,u.data.get(s.dataId).values),$=w.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let U=M*x-b.top;for(let j=0;j<y;++j){let q=j*v-b.left;for(let K=0;K<f;++K){let Y=Number.MIN_SAFE_INTEGER,te=U<0?0:U,re=q<0?0:q;for(let Q=0;Q<I;++Q){let ie=U+Q*_;if(ie>=0&&ie<h)for(let ae=0;ae<T;++ae){let oe=q+ae*A;if(oe>=0&&oe<m){let ue=p[S][ie][oe][K]+d[Q][ae][K];ue>Y&&(Y=ue,te=ie,re=oe)}}}$[S][te][re][K]+=P[S][M][j][K]}}}return{dataId:u.write(w.toTypedArray($,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function gd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"sum");let o;r.dtype==="bool"?o=hs({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=hr({inputs:{x:r},backend:n});let l=o.shape.length,u=w.parseAxisParam(s,o.shape),p=C.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Gn({inputs:{x:o},backend:n,attrs:{perm:p}}),d=C.getInnerMostAxes(d.length,l)),C.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=C.computeOutAndReduceShapes(c.shape,d),f=C.upcastType(c.dtype,"int32"),g=fm(n,h,f),y=w.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let v=0;v<b.length;++v){let I=v*y,T=0;for(let _=0;_<y;++_)T+=x[I+_];b[v]=T}if(i){let v=C.expandShapeToKeepDim(g.shape,u),I=g;g=bt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(I)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var lK={kernelName:ho,backendName:"cpu",kernelFunc:gd};function uK(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=C.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=C.getEinsumPermutation(h,l[g]),x;C.isIdentityPermutation(y)?x=s[g]:(x=Gn({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let I=0;I<b.length;++I)v.splice(b[I],0,1);w.arraysEqual(x.shape,v)||(x=bt({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=ug({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=gd({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var pK={kernelName:Bm,backendName:"cpu",kernelFunc:uK};function cK(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;xe([a,r],"eluGrad");let s=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var dK={kernelName:Wm,backendName:"cpu",kernelFunc:cK},hK=C.ERF_P,mK=C.ERF_A1,fK=C.ERF_A2,gK=C.ERF_A3,yK=C.ERF_A4,bK=C.ERF_A5,xK=ot(nu,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+hK*n);return t*(1-((((bK*a+yK)*a+gK)*a+fK)*a+mK)*a*Math.exp(-n*n))}),vK={kernelName:nu,backendName:"cpu",kernelFunc:xK};function bm(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),bt({inputs:{x:r},backend:n,attrs:{shape:o}})}var wK={kernelName:ru,backendName:"cpu",kernelFunc:bm},kK=Vt((e,t)=>e/t),a1=an(Di,kK),Nx={kernelName:Di,backendName:"cpu",kernelFunc:a1};function t_(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=w.sizeFromShape(u),d=w.getTypedArrayFromDType("float32",p),c=w.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let y=gi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=gi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Zn({inputs:{real:y,imag:b},backend:n}),{real:v,imag:I}=IK(x,t,n),T=C.mergeRealAndImagArrays(v,I);for(let _=0;_<s;_++){let A=C.getComplexWithIndex(T,_);d[g*s+_]=A.real,c[g*s+_]=A.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Zn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function IK(e,t,n){let a=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(SK(a)){let o=Tx(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),c=hr({inputs:{x:d},backend:n}),h=Nx.kernelFunc({inputs:{a:u,b:d},backend:n}),m=Nx.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=NK(o,a,t);return C.splitRealAndImagArrays(l)}}function SK(e){return(e&e-1)===0}function Tx(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Zn({inputs:{real:d,imag:c},backend:r}),m=C.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=Zn({inputs:{real:b,imag:x},backend:r}),I=Tx(l,u,i,a,r),T=I.real,_=I.imag,A=[T.length],F=r.makeTensorInfo(A,"float32",T),P=r.makeTensorInfo(A,"float32",_),$=Zn({inputs:{real:F,imag:P},backend:r}),S=Tx(f,g,i,a,r),M=S.real,U=S.imag,j=[M.length],q=r.makeTensorInfo(j,"float32",M),K=r.makeTensorInfo(j,"float32",U),Y=Zn({inputs:{real:q,imag:K},backend:r}),te=C.exponents(n,a),re=[te.real.length],Q=r.makeTensorInfo(re,"float32",te.real),ie=r.makeTensorInfo(re,"float32",te.imag),ae=Zn({inputs:{real:Q,imag:ie},backend:r}),oe=ug({inputs:{a:ae,b:Y},backend:r}),ue=Pl({inputs:{a:$,b:oe},backend:r}),we=t1({inputs:{a:$,b:oe},backend:r}),ye=fi({inputs:{input:ue},backend:r}),Ie=fi({inputs:{input:we},backend:r}),Ee=Ol({inputs:{input:ue},backend:r}),De=Ol({inputs:{input:we},backend:r}),We=Ll({inputs:[ye,Ie],backend:r,attrs:{axis:0}}),je=Ll({inputs:[Ee,De],backend:r,attrs:{axis:0}}),st=r.data.get(We.dataId).values,nt=r.data.get(je.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(Y),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo(De),r.disposeIntermediateTensorInfo(We),r.disposeIntermediateTensorInfo(je),{real:st,imag:nt}}function NK(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(r*o,t,n),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(a,s,i,r)}return a}function TK(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=bt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=t_(o,!1,n),u=bt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var CK={kernelName:Vm,backendName:"cpu",kernelFunc:TK};function r1(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(a));return EK(o,r,i),t.makeTensorInfo(a,i,o)}var _K={kernelName:Cc,backendName:"cpu",kernelFunc:r1};function EK(e,t,n){e.fill(t)}var AK={kernelName:iu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let b=Math.round(l-f-1),x=c+m+g+y,v=p[x];if(b>=0&&b<l){let I=b*u,T=c+m+I+y;v=p[T]}s[x]=v}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},$K=Vt((e,t)=>Math.floor(e/t)),FK=an(Oi,$K,null,"int32"),DK={kernelName:Oi,backendName:"cpu",kernelFunc:FK};function RK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=QC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let y=bt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=Pl({inputs:{a:f,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else f=Pl({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let y=bt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});f=ym(n,f,h,y,m),n.disposeIntermediateTensorInfo(y)}else f=ym(n,f,h,o,m);n.disposeIntermediateTensorInfo(g)}return f}var MK={kernelName:ii,backendName:"cpu",kernelFunc:RK};function PK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=e_({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=Pl({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=ym(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var OK={kernelName:oi,backendName:"cpu",kernelFunc:PK};function LK(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=w.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=C.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=vC(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var zK={kernelName:lu,backendName:"cpu",kernelFunc:LK};function BK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;xe([r,s],"gatherV2");let l=w.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let v=0;v<u.length;++v){let I=u[v];w.assert(I<=p-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=w.sizeFromShape(s.shape),h=C.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=bt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=bt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],y=n.bufferSync(f),b=n.bufferSync(m),x=wC(b,y,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var WK={kernelName:ou,backendName:"cpu",kernelFunc:BK};function VK(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=bt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=t_(o,!0,n),u=bt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var UK={kernelName:Um,backendName:"cpu",kernelFunc:VK},GK=ot(pu,e=>Number.isFinite(e)?1:0,"bool"),HK={kernelName:pu,backendName:"cpu",kernelFunc:GK},jK=ot(cu,e=>Math.abs(e)===1/0?1:0,"bool"),qK={kernelName:cu,backendName:"cpu",kernelFunc:jK},KK=ot(du,e=>Number.isNaN(e)?1:0,"bool"),XK={kernelName:du,backendName:"cpu",kernelFunc:KK};function YK(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=TC(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var JK={kernelName:Hm,backendName:"cpu",kernelFunc:YK},ZK=ot(fu,e=>Math.log1p(e)),QK={kernelName:fu,backendName:"cpu",kernelFunc:ZK},e8=Vt((e,t)=>e&&t),t8=an(gu,e8,null,"bool"),n8={kernelName:gu,backendName:"cpu",kernelFunc:t8},a8=ot(yu,e=>e?0:1,"bool"),r8={kernelName:yu,backendName:"cpu",kernelFunc:a8},s8=Vt((e,t)=>e||t),i8=an(bu,s8,null,"bool"),o8={kernelName:bu,backendName:"cpu",kernelFunc:i8};function l8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;xe(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,p),x=0;for(;y<=b;y++){let v=d[y];x+=v*v}return x}for(let f=0;f<c;f++){let g=m(f),y=d[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var u8={kernelName:_c,backendName:"cpu",kernelFunc:l8};function p8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;xe(i,"LRNGrad");let d=w.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),y=d;for(let b=0;b<y;b++){let x=b%c,v=b-x+Math.max(0,x-o),I=b-x+Math.min(c,x+o+1),T=0;for(let _=v;_<I;_++)T+=Math.pow(m[_],2);T=u*T+l;for(let _=v;_<I;_++){let A=-2*u*p*m[_]*f[b]/T;b===_&&(A+=Math.pow(T,-p)),A*=h[b],g[_]+=A}}return n.makeTensorInfo(i.shape,r.dtype,g)}var c8={kernelName:jm,backendName:"cpu",kernelFunc:p8};function n_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=w.parseAxisParam(s,l),d=p,c=C.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let v=new Array(u);for(let I=0;I<v.length;I++)v[I]=l[c[I]];h=X0(h,l,r.dtype,c,v),d=C.getInnerMostAxes(d.length,u),l=v}xe(r,"max"),C.assertAxesAreInnerMostDims("max",d,u);let[m,f]=C.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(f),y=_C(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=C.expandShapeToKeepDim(m,p)),{dataId:b,shape:x,dtype:r.dtype}}var d8={kernelName:Ui,backendName:"cpu",kernelFunc:n_};function h8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))d=hr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=n1(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var m8={kernelName:Hi,backendName:"cpu",kernelFunc:h8};function f8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;xe(r,"maxPool3d");let p=C.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=ZC(d,r.shape,r.dtype,w.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var g8={kernelName:Ec,backendName:"cpu",kernelFunc:f8};function y8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;xe([r,s],"maxPool3DGrad");let p=C.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=r5(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,y=p.dilationHeight,b=p.dilationWidth,x=p.effectiveFilterDepth,v=p.effectiveFilterHeight,I=p.effectiveFilterWidth,T=x-1-p.padInfo.front,_=I-1-p.padInfo.left,A=v-1-p.padInfo.top,F=ze(s.shape,"float32"),P=n.bufferSync(r);for(let $=0;$<p.batchSize;++$)for(let S=0;S<p.inChannels;++S)for(let M=0;M<p.inDepth;++M)for(let U=0;U<p.inHeight;++U)for(let j=0;j<p.inWidth;++j){let q=M-T,K=U-A,Y=j-_,te=0;for(let re=0;re<x;re+=g){let Q=(q+re)/h;if(!(Q<0||Q>=p.outDepth||Math.floor(Q)!==Q))for(let ie=0;ie<v;ie+=y){let ae=(K+ie)/m;if(!(ae<0||ae>=p.outHeight||Math.floor(ae)!==ae))for(let oe=0;oe<I;oe+=b){let ue=(Y+oe)/f;if(ue<0||ue>=p.outWidth||Math.floor(ue)!==ue)continue;let we=x*v*I-1-c.get($,Q,ae,ue,S),ye=re*v*I+ie*I+oe,Ie=we===ye?1:0;Ie!==0&&(te+=P.get($,Q,ae,ue,S)*Ie)}}}F.set(te,$,M,U,j,S)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var b8={kernelName:Km,backendName:"cpu",kernelFunc:y8};function x8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=C.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=ze(c.outShape,o.dtype,JC(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,y=c.dilationHeight,b=c.dilationWidth,x=c.effectiveFilterHeight,v=c.effectiveFilterWidth,I=v-1-c.padInfo.left,T=x-1-c.padInfo.top,_=ze(o.shape,"float32"),A=n.data.get(r.dataId).values,F=ze(r.shape,"float32",A);for(let P=0;P<c.batchSize;++P)for(let $=0;$<c.inChannels;++$)for(let S=0;S<c.inHeight;++S)for(let M=0;M<c.inWidth;++M){let U=S-T,j=M-I,q=0;for(let K=0;K<x;K+=y){let Y=(U+K)/f;if(!(Y<0||Y>=c.outHeight||Math.floor(Y)!==Y))for(let te=0;te<v;te+=b){let re=(j+te)/g;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let Q=x*v-1-m.get(P,Y,re,$),ie=K*v+te,ae=Q===ie?1:0;ae!==0&&(q+=F.get(P,Y,re,$)*ae)}}_.set(q,P,S,M,$)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var v8={kernelName:qm,backendName:"cpu",kernelFunc:x8};function w8(e,t,n,a,r){let s=w.computeStrides(t),i=n1(e,t,n,s,r,"max"),o=JC(e,t,n,r,!0,a);return[i.values,o.values]}var k8={kernelName:Xm,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=C.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=w8(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function I8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=w.parseAxisParam(s,r.shape),l=C.computeOutAndReduceShapes(r.shape,o)[1],u=w.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=hs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=a1({inputs:{a:c,b:d},backend:n});p.push(h);let m=gd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var S8={kernelName:ji,backendName:"cpu",kernelFunc:I8};function N8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"min");let o=w.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Gn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=C.computeOutAndReduceShapes(p.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let I=f[b+v];(Number.isNaN(I)||I<x)&&(x=I)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=C.expandShapeToKeepDim(d,o),b=bt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var T8={kernelName:qi,backendName:"cpu",kernelFunc:N8};function C8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;xe(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),u=s.map((b,x)=>b[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=w.computeStrides(r.shape),m=w.sizeFromShape(o),f=o.length,g=w.computeStrides(o),y=w.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=w.indexToLoc(b,f,g);for(let I=0;I<f;I++)x[I]<l[I]?x[I]=l[I]*2-x[I]-p:x[I]>=u[I]&&(x[I]=(u[I]-1)*2-x[I]+p);x=x.map((I,T)=>I-l[T]);let v=w.locToIndex(x,c,h);y[b]=d[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var _8={kernelName:Xi,backendName:"cpu",kernelFunc:C8},E8=Vt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),A8=an(xu,E8),$8={kernelName:xu,backendName:"cpu",kernelFunc:A8},F8=fs(Sm());function a_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=w.parseAxisParam([o],r.shape),u=n_({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=C.expandShapeToKeepDim(u.shape,l),d=bt({inputs:{x:u},backend:n,attrs:{shape:p}}),c=t1({inputs:{a:r,b:d},backend:n}),h=yC({inputs:{x:c},backend:n}),m=gd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=bt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=a1({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var D8={kernelName:mo,backendName:"cpu",kernelFunc:a_};function R8(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;xe(r,"multinomial");let l=o?r:a_({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=w.makeZerosTypedArray(w.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let y=F8.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let v=y();h[b+x]=g.length;for(let I=0;I<g.length;I++)if(v<g[I]){h[b+x]=I;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var M8={kernelName:Ym,backendName:"cpu",kernelFunc:R8},P8=gr.nonMaxSuppressionV3Impl;function O8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;xe(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=P8(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var L8={kernelName:ku,backendName:"cpu",kernelFunc:O8},z8=gr.nonMaxSuppressionV4Impl;function B8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;xe(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=z8(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var W8={kernelName:Iu,backendName:"cpu",kernelFunc:B8},V8=gr.nonMaxSuppressionV5Impl;function U8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;xe(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=V8(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var G8={kernelName:Su,backendName:"cpu",kernelFunc:U8};function H8(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;xe(r,"oneHot");let l=w.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let p=n.data.get(r.dataId).values;for(let d=0;d<l;++d)p[d]>=0&&p[d]<s&&(u[d*s+p[d]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var j8={kernelName:Ji,backendName:"cpu",kernelFunc:H8};function xm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=fi({inputs:{input:a},backend:n}),s=xm({inputs:{x:r},backend:n}),i=Ol({inputs:{input:a},backend:n}),o=xm({inputs:{x:i},backend:n}),l=Zn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return r1({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var q8={kernelName:Uu,backendName:"cpu",kernelFunc:xm};function r_(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=fi({inputs:{input:a},backend:n}),s=r_({inputs:{x:r},backend:n}),i=Ol({inputs:{input:a},backend:n}),o=xm({inputs:{x:i},backend:n}),l=Zn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return r1({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var K8={kernelName:Nu,backendName:"cpu",kernelFunc:r_};function s_(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return bm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=bm({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=Ll({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var X8={kernelName:Tu,backendName:"cpu",kernelFunc:s_};function Y8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;xe(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,p=w.sizeFromShape(r.shape),d=r.shape.length,c=w.computeStrides(r.shape),h=w.sizeFromShape(o),m=o.length,f=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<p;y++){let b=w.indexToLoc(y,d,c).map((v,I)=>v+l[I]),x=w.locToIndex(b,m,f);g[x]=u[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var i_={kernelName:Zi,backendName:"cpu",kernelFunc:Y8},J8=Vt((e,t)=>Math.pow(e,t)),Z8=an(Qi,J8),Q8={kernelName:Qi,backendName:"cpu",kernelFunc:Z8};function eX(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=Y0(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var tX={kernelName:Ac,backendName:"cpu",kernelFunc:eX},nX=ot(Cu,e=>1/e),aX={kernelName:Cu,backendName:"cpu",kernelFunc:nX};function rX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeBilinear");let l=w.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,u,p,m])),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,v=y[0]/b[0],I=y[1]/b[1];for(let T=0;T<d;T++)for(let _=0;_<u;_++){let A;i?A=v*(_+.5)-.5:A=v*_;let F=Math.max(0,Math.floor(A)),P=A-F,$=Math.min(c-1,Math.ceil(A)),S=T*l[0]+F*l[1],M=T*l[0]+$*l[1];for(let U=0;U<p;U++){let j;i?j=I*(U+.5)-.5:j=I*U;let q=Math.max(0,Math.floor(j)),K=j-q,Y=Math.min(h-1,Math.ceil(j)),te=S+q*l[2],re=M+q*l[2],Q=S+Y*l[2],ie=M+Y*l[2];for(let ae=0;ae<m;ae++){let oe=f[te+ae],ue=f[re+ae],we=f[Q+ae],ye=f[ie+ae],Ie=oe+(we-oe)*K,Ee=ue+(ye-ue)*K,De=Ie+(Ee-Ie)*P;g[x++]=De}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var sX={kernelName:ro,backendName:"cpu",kernelFunc:rX};function iX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let I=0;I<l;I++){let T=I*o[0];for(let _=0;_<c;_++){let A=_*y,F=Math.floor(A),P=Math.min(Math.ceil(A),u-1),$=T+F*o[1],S=T+P*o[1],M=A-F,U=1-M;for(let j=0;j<h;j++){let q=j*b,K=Math.floor(q),Y=Math.min(Math.ceil(q),p-1),te=q-K,re=1-te,Q=$+K*o[2],ie=$+Y*o[2],ae=S+K*o[2],oe=S+Y*o[2],ue=U*re,we=U*te,ye=M*re,Ie=M*te;for(let Ee=0;Ee<d;Ee++){let De=x[v++];m[Q+Ee]+=De*ue,m[ie+Ee]+=De*we,m[ae+Ee]+=De*ye,m[oe+Ee]+=De*Ie}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var oX={kernelName:Qm,backendName:"cpu",kernelFunc:iX};function lX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=y[0]/b[0],v=y[1]/b[1],I=0;for(let T=0;T<d;T++){let _=T*l[0];for(let A=0;A<u;A++){let F=i?x*(A+.5):x*A,P=Math.min(c-1,s?Math.round(F):Math.floor(F));i&&(P=Math.max(0,P));let $=_+P*l[1];for(let S=0;S<p;S++){let M=i?v*(S+.5):v*S,U=Math.min(h-1,s?Math.round(M):Math.floor(M));i&&(U=Math.max(0,U));let j=$+U*l[2];for(let q=0;q<m;q++){let K=f[j+q];g[I++]=K}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var uX={kernelName:ao,backendName:"cpu",kernelFunc:lX};function pX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),l=w.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,y=[i&&h>1?p-1:p,i&&m>1?d-1:d],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],v=y[1]/b[1],I=1/x,T=1/v,_=Math.ceil(I)*2+2,A=Math.ceil(T)*2+2;for(let F=0;F<u;F++){let P=F*o[0];for(let $=0;$<p;$++){let S=P+$*o[1],M=Math.floor($*I),U=Math.floor(M-_/2);for(let j=0;j<d;j++){let q=S+j*o[2],K=Math.floor(j*T),Y=Math.floor(K-A/2);for(let te=0;te<c;te++){let re=0;for(let Q=0;Q<_;Q++){let ie=Q+U;if(ie<0||ie>=h)continue;let ae=P+ie*l[1],oe=ie*x,ue=Math.min(p-1,i?Math.round(oe):Math.floor(oe));if($===ue)for(let we=0;we<A;we++){let ye=we+Y;if(ye<0||ye>=m)continue;let Ie=ae+ye*l[2],Ee=ye*v,De=Math.min(d-1,i?Math.round(Ee):Math.floor(Ee));j===De&&(re+=g[Ie+te])}}f[q+te]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var cX={kernelName:Zm,backendName:"cpu",kernelFunc:pX};function dX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;xe(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return hr({inputs:{x:r},backend:n});let l=new jt(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var hX={kernelName:io,backendName:"cpu",kernelFunc:dX},mX={kernelName:Gu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=C.getImageCenter(i,p,d),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let v=x*d*p*c;for(let I=0;I<p;I++){let T=I*(d*c);for(let _=0;_<d;_++){let A=_*c;for(let F=0;F<c;F++){let P=[u,I,_,F],$=P[2],S=P[1],M=($-h)*y-(S-m)*g,U=($-h)*g+(S-m)*y;M=Math.round(M+h),U=Math.round(U+m);let j=s;if(typeof s!="number"&&(F===3?j=f:j=s[F]),M>=0&&M<d&&U>=0&&U<p){let K=U*(d*c),Y=M*c,te=v+K+Y+F;j=b[te]}let q=v+T+A+F;l[q]=j}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},fX=ot(oo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),gX={kernelName:oo,backendName:"cpu",kernelFunc:fX};function yX(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=C.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=gl(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var bX={kernelName:Eu,backendName:"cpu",kernelFunc:yX};function xX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<t?n=r+1:a=r;return a}function vX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<=t?n=r+1:a=r;return a}function wX(e,t,n,a,r,s){let i=w.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let l=e.slice(o*a,(o+1)*a),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?xX(l,t[p+u]):vX(l,t[p+u])}return i}function kX(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=wX(o,l,r.shape[0],r.shape[1],s.shape[1],i);return n.makeTensorInfo(s.shape,"int32",u)}var IX={kernelName:ef,backendName:"cpu",kernelFunc:kX};function SX(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;xe([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=ma(r.dtype,s.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var NX={kernelName:Au,backendName:"cpu",kernelFunc:SX},TX=C.SELU_SCALEALPHA,CX=C.SELU_SCALE,_X=ot($u,e=>e>=0?CX*e:TX*(Math.exp(e)-1)),EX={kernelName:$u,backendName:"cpu",kernelFunc:_X},AX=ot(Ru,e=>e<0?-1:e>0?1:0),$X={kernelName:Ru,backendName:"cpu",kernelFunc:AX},FX=ot(uo,e=>Math.sin(e)),DX={kernelName:uo,backendName:"cpu",kernelFunc:FX},RX=ot(Du,e=>Math.sinh(e)),MX={kernelName:Du,backendName:"cpu",kernelFunc:RX},PX=11920928955078125e-23,bI=Math.log(PX)+2,OX=ot(Mu,e=>{let t=e>-bI,n=e<bI,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),LX={kernelName:Mu,backendName:"cpu",kernelFunc:OX};function zX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;xe([r],"spaceToBatchND");let o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=i_.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(u.shape,s,o,!1),d=C.getPermuted(p.length,s.length,!1),c=C.getReshapedPermuted(u.shape,s,o,!1),h=bt({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Gn({inputs:{x:h},backend:n,attrs:{perm:d}}),f=bt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var BX={kernelName:Pu,backendName:"cpu",kernelFunc:zX};function WX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=PC(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var VX={kernelName:$c,backendName:"cpu",kernelFunc:WX};function UX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=OC(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var GX={kernelName:Lu,backendName:"cpu",kernelFunc:UX};function HX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=J0(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var jX={kernelName:Fc,backendName:"cpu",kernelFunc:HX};function qX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=J0(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var KX={kernelName:Dc,backendName:"cpu",kernelFunc:qX};function XX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=C.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),y=Boolean(n.data.get(i.dataId).values[0]);f=gl(m,g,o,c,p,u,l,d,y,h);break}case"float32":{let g=n.bufferSync(s),y=n.data.get(i.dataId).values[0];f=gl(m,g,o,c,p,u,l,d,y,h);break}case"int32":{let g=n.bufferSync(s),y=n.data.get(i.dataId).values[0];f=gl(m,g,o,c,p,u,l,d,y,h);break}case"string":{let g=n.bufferSync(s),y=w.decodeString(n.data.get(i.dataId).values[0]);f=gl(m,g,o,c,p,u,l,d,y,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var YX={kernelName:tf,backendName:"cpu",kernelFunc:XX};function JX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=gi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var ZX={kernelName:Ou,backendName:"cpu",kernelFunc:JX},QX={kernelName:Rc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;xe(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},e7=ot(vs,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),t7={kernelName:vs,backendName:"cpu",kernelFunc:e7};function n7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;xe(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=bt({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=qt.computeOutShape(b,x,v),_=gi({inputs:{x:r},backend:n,attrs:{begin:b,size:T}});I=bt({inputs:{x:_},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(_)}else{let T=n.bufferSync(r),_=zC(h,T,v,b);I=n.makeTensorInfo(m,_.dtype,_.values)}return I}var a7={kernelName:zu,backendName:"cpu",kernelFunc:n7};function r7(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=Z0(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var s7={kernelName:Mc,backendName:"cpu",kernelFunc:r7};function i7(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=Q0(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var o7={kernelName:Pc,backendName:"cpu",kernelFunc:i7};function l7(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=e1(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var u7={kernelName:Oc,backendName:"cpu",kernelFunc:l7},p7=ot(yo,e=>Math.tan(e)),c7={kernelName:yo,backendName:"cpu",kernelFunc:p7},d7=ot(bo,e=>Math.tanh(e)),h7={kernelName:bo,backendName:"cpu",kernelFunc:d7};function m7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;xe(r,"tile");let i=WC(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var f7={kernelName:xs,backendName:"cpu",kernelFunc:m7};function g7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;xe(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=UC(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var y7={kernelName:Bu,backendName:"cpu",kernelFunc:g7};function b7(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=w.computeStrides(r.shape),b=y[0],x=y[1],v=y[2],I=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));I.fill(l);let T=a.data.get(r.dataId).values,_=a.data.get(s.dataId).values;for(let A=0;A<p;++A){let F=s.shape[0]===1?_:_.subarray(A*8,A*8+8);for(let P=0;P<m;++P)for(let $=0;$<f;++$)for(let S=0;S<h;++S){let M,U=F[6]*$+F[7]*P+1;if(U===0)continue;let j=(F[0]*$+F[1]*P+F[2])/U,q=(F[3]*$+F[4]*P+F[5])/U,K=xI(j,c,o),Y=xI(q,d,o);switch(i){case"nearest":M=S7(T,d,c,b,x,v,A,Y,K,S,l);break;case"bilinear":M=N7(T,d,c,b,x,v,A,Y,K,S,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let te=A*b+P*x+$*v+S;I[te]=M}return a.makeTensorInfo(g,r.dtype,I)}return{dataId:a.write(I,g,r.dtype),shape:r.shape,dtype:r.dtype}}var x7={kernelName:Wu,backendName:"cpu",kernelFunc:b7};function xI(e,t,n){switch(n){case"reflect":return v7(e,t);case"wrap":return w7(e,t);case"nearest":return I7(e,t);case"constant":default:return k7(e,t)}}function v7(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return w.clamp(0,n,t-1)}function w7(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return w.clamp(0,n,t-1)}function k7(e,t){return e}function I7(e,t){return w.clamp(0,e,t-1)}function Yp(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function S7(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return Yp(e,t,n,a,r,s,i,d,c,u,p)}function N7(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*Yp(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*Yp(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*Yp(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*Yp(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function T7(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;xe(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=GC(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var C7={kernelName:nf,backendName:"cpu",kernelFunc:T7};function _7(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=gi({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=bt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var E7={kernelName:Vu,backendName:"cpu",kernelFunc:_7};function A7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;xe(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=bm({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=w.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=fC({inputs:{a:g,b:c},backend:n}),b=hs({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=ug({inputs:{a:b,b:r},backend:n}),v=gd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(v),p.push(g),p.push(y),p.push(b),p.push(x),p.push(v)}let h=s_({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var $7={kernelName:Lc,backendName:"cpu",kernelFunc:A7},F7=[Fq,Nj,Rq,Pq,$j,Lq,Bq,Vq,Gq,jq,Kq,Yq,Zq,t5,a5,i5,l5,p5,d5,Aq,m5,g5,b5,v5,Ej,Dj,k5,Tj,S5,T5,C5,E5,$5,D5,M5,O5,z5,W5,U5,H5,q5,X5,J5,Z5,eK,nK,rK,sK,iK,oK,pK,Iq,dK,Rj,vK,Mj,wK,Oj,CK,_K,AK,zj,DK,MK,OK,zK,WK,Wj,Uj,Cj,UK,N5,HK,qK,XK,Sq,Hj,qj,JK,Xj,QK,n8,r8,o8,u8,c8,d8,Jj,m8,g8,b8,v8,k8,S8,T8,Qj,_8,$8,M8,tq,aq,L8,W8,G8,sq,j8,K8,X8,i_,Q8,Tq,lq,tX,_j,Nx,aX,Cq,_q,Eq,sX,oX,uX,cX,hX,mX,gX,pq,bX,IX,NX,EX,dq,$X,DX,MX,hq,D8,LX,BX,VX,GX,jX,KX,YX,ZX,gq,QX,bq,t7,a7,s7,o7,u7,kq,lK,c7,h7,f7,y7,x7,iq,C7,E7,$7,q8];for(let e of F7)zc(e);var o_={};Fe(o_,{assertNotComplex:()=>rp,bindCanvasToFramebuffer:()=>U7,bindColorTextureToFramebuffer:()=>Bh,bindTextureToProgramUniformSampler:()=>I_,bindTextureUnit:()=>v_,bindVertexBufferToProgramAttribute:()=>Cx,callAndCheck:()=>ge,canBeRepresented:()=>u_,createFragmentShader:()=>d_,createFramebuffer:()=>x_,createProgram:()=>h_,createStaticIndexBuffer:()=>g_,createStaticVertexBuffer:()=>f_,createTexture:()=>y_,createVertexShader:()=>c_,getBatchDim:()=>yi,getExtensionOrThrow:()=>Jp,getFramebufferErrorMessage:()=>S_,getMaxTexturesInShader:()=>__,getNumChannels:()=>W7,getProgramUniformLocation:()=>k_,getProgramUniformLocationOrThrow:()=>w_,getRowsCols:()=>bi,getShapeAs3D:()=>Wh,getTextureShapeFromLogicalShape:()=>T_,getWebGLDisjointQueryTimerVersion:()=>E_,getWebGLErrorMessage:()=>p_,getWebGLMaxTextureSize:()=>C_,hasExtension:()=>da,isCapableOfRenderingToFloatTexture:()=>A_,isDownloadFloatTextureEnabled:()=>$_,isReshapeFree:()=>yc,isWebGLFenceEnabled:()=>F_,isWebGLVersionEnabled:()=>Ex,linkProgram:()=>m_,logShaderSourceAndInfoLog:()=>i1,resetMaxTextureSize:()=>G7,resetMaxTexturesInShader:()=>H7,unbindColorTextureFromFramebuffer:()=>_x,unbindTextureUnit:()=>V7,validateFramebuffer:()=>Zp,validateProgram:()=>zh,validateTextureSize:()=>b_});var Js={},Lb={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function l_(e,t){Js[e]=t}function Ja(e,t){if(!(e in Js)||t!=null){let a=R7(e,t);if(a!==null)Js[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Js[e];return n==null||n.isContextLost()?(delete Js[e],Ja(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Js[e])}function D7(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function R7(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?D7(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Js[e]},!1),e===1?n.getContext("webgl",Lb)||n.getContext("experimental-webgl",Lb):n.getContext("webgl2",Lb)}var gc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(gc||(gc={}));var ca;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ca||(ca={}));var ln;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(ln||(ln={}));function yd(e,t){return[t,e]}function M7(e,t){return e*t}function Dh(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function ap(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function P7(e,t){let[n,a]=ap(e,t);return n*a*4}function s1(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return X().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function ge(e,t){let n=t();return X().getBool("DEBUG")&&O7(e),n}function O7(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+p_(e,t))}var L7=596e-10,z7=65504;function u_(e){return!!(X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||L7<Math.abs(e)&&Math.abs(e)<z7)}function p_(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Jp(e,t){return Mr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function c_(e,t){let n=Mr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function d_(e,t){let n=Mr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),X().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw i1(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var B7=/ERROR: [0-9]+:([0-9]+):/g;function i1(e,t){let n=B7.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((d,c)=>w.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${w.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
`))}function h_(e){return Mr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function m_(e,t){if(ge(e,()=>e.linkProgram(t)),!X().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function zh(e,t){if(ge(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function f_(e,t){let n=Mr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function g_(e,t){let n=Mr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function W7(){return X().getNumber("WEBGL_VERSION")===2?1:4}function y_(e){return Mr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function b_(e,t){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function x_(e){return Mr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Cx(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),ge(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),ge(e,()=>e.enableVertexAttribArray(o)),!0)}function v_(e,t,n){N_(e,n),ge(e,()=>e.activeTexture(e.TEXTURE0+n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function V7(e,t){N_(e,t),ge(e,()=>e.activeTexture(e.TEXTURE0+t)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function w_(e,t,n){return Mr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function k_(e,t,n){return e.getUniformLocation(t,n)}function I_(e,t,n,a){ge(e,()=>v_(e,t,a)),ge(e,()=>e.uniform1i(n,a))}function U7(e){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ge(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Bh(e,t,n){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function _x(e,t){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Zp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+S_(e,t))}function S_(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Mr(e,t,n){let a=ge(e,()=>t());if(a==null)throw new Error(n);return a}function N_(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function yi(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function bi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Wh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[yi(e),...bi(e)]),t}function T_(e,t=!1){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?w.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let a=w.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=yi(e),s=2,i=2;return e.length&&([s,i]=bi(e)),a=r*(s/2)*(i/2),w.sizeToSquarishShape(a).map(o=>o*2)}return w.sizeToSquarishShape(a)}function Rh(e){return e%2===0}function yc(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||Rh(n)&&Rh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Rh(e[0])&&Rh(t[0])}var Vh,Uh;function C_(e){if(Vh==null){let t=Ja(e);Vh=t.getParameter(t.MAX_TEXTURE_SIZE)}return Vh}function G7(){Vh=null}function H7(){Uh=null}function __(e){if(Uh==null){let t=Ja(e);Uh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Uh)}function E_(e){if(e===0)return 0;let t,n=Ja(e);return da(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:da(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function da(e,t){return e.getExtension(t)!=null}function Ex(e){try{if(Ja(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function A_(e){if(e===0)return!1;let t=Ja(e);if(e===1){if(!da(t,"OES_texture_float"))return!1}else if(!da(t,"EXT_color_buffer_float"))return!1;return Ax(t)}function $_(e){if(e===0)return!1;let t=Ja(e);if(e===1){if(!da(t,"OES_texture_float")||!da(t,"WEBGL_color_buffer_float"))return!1}else{if(da(t,"EXT_color_buffer_float"))return Ax(t);let n="EXT_color_buffer_half_float";if(da(t,n)){let a=t.getExtension(n);return j7(t,a)}return!1}return Ax(t)}function Ax(e){let t=s1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function j7(e,t){let n=s1(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function F_(e){return e!==2?!1:Ja(e).fenceSync!=null}function rp(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=X();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>Ex(2)?2:Ex(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>C_(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>__(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:E_(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Vc.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>A_(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>$_(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>F_(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Vc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function $n(){let e,t,n,a,r,s,i,o,l,u;return X().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function To(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function pg(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function q7(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function K7(e,t,n="index"){let a=e.map((s,i)=>i),r=q7(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function o1(e){let t=w.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function l1(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var D_=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:R_}=C;function X7(e,t,n){let a=[];if(e.forEach(c=>{let h=w.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=u1(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
`),s=e.map(c=>Y7(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),i=t.texShape,o=$n(),l=Q7(o),u,p,d=nY(o);return t.isPacked?(u=J7(t.logicalShape,i,n.enableShapeUniforms),p=tY(o)):(u=Z7(t.logicalShape,i,n.enableShapeUniforms),p=eY(o)),n.packedInputs&&(d+=iY),[d,l,p,r,u,s,n.userCode].join(`
`)}function sp(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return bY(e,t);case 1:return vY(e,t);case 2:return kY(e,t);case 3:return SY(e,t);case 4:return TY(e,t);case 5:return CY(e);case 6:return _Y(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function M_(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return yY(e);case 1:return xY(e,t);case 2:return wY(e,t);case 3:return IY(e,t);default:return NY(e,t)}}function Y7(e,t,n=!1,a){let r="";n?r+=M_(e,a):r+=sp(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=EY(e,t):r+=AY(e,t)),r}function J7(e,t,n){switch(e.length){case 0:return P_();case 1:return oY(e,t,n);case 2:return fY(e,t,n);case 3:return uY(e,t,n);default:return cY(e,t,n)}}function Z7(e,t,n){switch(e.length){case 0:return P_();case 1:return lY(e,t,n);case 2:return gY(e,t,n);case 3:return pY(e,t,n);case 4:return dY(e,t,n);case 5:return hY(e,t);case 6:return mY(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Q7(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function eY(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function tY(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function nY(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${aY}
${rY}
${sY}
`}var aY=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,rY=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,sY=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,iY=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function P_(){return`
int getOutputCoords() {
return 0;
}
`}function oY(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${a[1]}.0);
}
`:a[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${a[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
}
`}function lY(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function uY(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function pY(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${pg(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let a=To(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec3(r, c, d);
}
`}function cY(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
int b${u} = index / ${i};
index -= b${u} * ${i};
`+o,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
${o}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function dY(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${pg(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let a=To(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec4(r, c, d, d2);
}
`}function hY(e,t){let n=To(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function mY(e,t){let n=To(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function fY(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function gY(e,t,n){return w.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Co(e){return`offset${e}`}function yY(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=$n();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function bY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
float ${a}() {
return sampleTexture(${n}, halfCR);
}
`;let i=Co(n);if(t)return`
float ${a}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
return sampleTexture(${n}, uv);
}
`;let[o,l]=e.shapeInfo.texShape;return`
float ${a}() {
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
return sampleTexture(${n}, uv);
}
`}function xY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=$n();if(t)return`
vec4 ${a}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${n}, uv);
}
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${a}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${n}, uv);
}
`}function vY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${a}(int index) {
${ip(e)}
}
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
float ${a}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let o=Co(n);return i===1?t?`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
return sampleTexture(${n}, uv);
}
`:s===1?t?`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${a}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
return sampleTexture(${n}, uv);
}
`}function wY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=$n();if(s!=null&&w.arraysEqual(n,s))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return ${l.texture2D}(${a}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
return ${l.texture2D}(${a}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${a}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${a}, uv);
}
`}function kY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&w.arraysEqual(n,s)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`;let c=s[0],h=s[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`}let{newShape:i,keptDims:o}=w.squeezeShape(n),l=i;if(l.length<n.length){let c=op(e,l),h=["row","col"];return`
${sp(c,t)}
float ${r}(int row, int col) {
return ${r}(${lp(h,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${ip(e)}
}
`;let u=s[0],p=s[1],d=Co(a);return p===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${a}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
return sampleTexture(${a}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${a}, uv);
}
`}function IY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=op(e,c),f=["b","row","col"];return`
${M_(m,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${lp(f,h)});
}
`}let o=$n();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${d}, ${p}, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`}function SY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=w.squeezeShape(n),u=o;if(u.length<n.length){let f=op(e,u),g=["row","col","depth"];return`
${sp(f,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${lp(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${ip(e)}
}
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${a}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;if(c===i&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;let m=Co(a);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${a}Shape[1] * ${a}Shape[2];
int stride1 = ${a}Shape[2];
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${d}, ${c}, index);
return sampleTexture(${a}, uv);
}
`}function NY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=$n();if(t)return`
vec4 ${a}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
vec4 ${a}(${h}) {
int index = ${m};
int texR = index / ${p};
int texC = index - texR * ${p};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function TY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=w.squeezeShape(n);if(l.length<n.length){let b=op(e,l),x=["row","col","depth","depth2"];return`
${sp(b,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${lp(x,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, 1)));
${ip(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${m}
${f}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;if(h===s&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;let y=Co(a);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${m}
${f}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${y});
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${c}, ${h}, index + ${y});
return sampleTexture(${a}, uv);
}
`}function CY(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=w.squeezeShape(t);if(l.length<t.length){let f=op(e,l),g=["row","col","depth","depth2","depth3"];return`
${sp(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${lp(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${ip(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let m=Co(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${c}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function _Y(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=w.squeezeShape(t);if(r.length<t.length){let g=op(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${sp(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${lp(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${p}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${ip(e)}
}
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=Co(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${p} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function ip(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function EY(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=R_(e.shapeInfo.logicalShape,t.logicalShape),l=pt(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,y)=>`coords.${d[y+u]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,f=w.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${p}
vec4 outputValue = get${a}(${c});
${h}
}
`}function AY(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=pt(l),p=R_(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${c}
return get${a}(${m});
}
`}function pt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function u1(e,t,n){let{newShape:a,keptDims:r}=w.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!w.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function op(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function lp(e,t){return t.map(n=>e[n]).join(", ")}function $Y(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=X7(r,i,t),l=d_(e.gl,o),u=e.createProgram(l);return X().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},O_(e,t,u))}function O_(e,t,n){let a={},r={},s={},i=[],o,l,u,p=null,d=null;d=e.getUniformLocation(n,"NAN",!1),X().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(n,"INFINITY",!1));let c=!1;for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h];a[m]=e.getUniformLocation(n,m,c),a[`offset${m}`]=e.getUniformLocation(n,`offset${m}`,c),t.enableShapeUniforms&&(r[`${m}Shape`]=e.getUniformLocation(n,`${m}Shape`,c),s[`${m}TexShape`]=e.getUniformLocation(n,`${m}TexShape`,c))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",c),u=e.getUniformLocation(n,"outShapeStrides",c),l=e.getUniformLocation(n,"outTexShape",c)),t.customUniforms&&t.customUniforms.forEach((h,m)=>{i[m]=e.getUniformLocation(n,h.name,c)}),{uniformLocations:a,customUniformLocations:i,infLoc:p,nanLoc:d,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function vI(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!w.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function FY(e,t,n,a,r){t.program.enableShapeUniforms||(vI(t.inShapeInfos,n),vI([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),X().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let p=t.program.variableNames[u],d=t.uniformLocations[p],c=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],m=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:f}=u1(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,d,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(p,d);else if(l.type==="vec2")e.gl.uniform2fv(p,d);else if(l.type==="vec3")e.gl.uniform3fv(p,d);else if(l.type==="vec4")e.gl.uniform4fv(p,d);else if(l.type==="int")e.gl.uniform1iv(p,d);else if(l.type==="ivec2")e.gl.uniform2iv(p,d);else if(l.type==="ivec3")e.gl.uniform3iv(p,d);else if(l.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function DY(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=u1(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let I=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${I[0]>1}_${I[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let I=w.computeStrides(p);m=`${I[0]===l[1]}_${I[I.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&w.arraysEqual(i.shape,l),y=w.sizeFromShape(i.shape)===1,b=C.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&w.arraysEqual(l,n.texData.texShape),v=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${y}_${b}_${g}_${c}_${h}_${m}_${v}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${X().getNumber("WEBGL_VERSION")}`,s}function qn(e){return X().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var RY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=gc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=$n();this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?pg(["r","c","d"],e):To(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},MY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=gc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=$n();this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?pg(["r","c","d"],e):To(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},PY=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ca.DOWNLOAD;let t=$n();this.outputShape=e,this.userCode=`
${D_}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},OY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ca.DOWNLOAD;let t=$n();this.outputShape=e,this.userCode=`
${D_}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},LY=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=$n();this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length);let a="result";t&&(a="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?l1():o1(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${a}, 0., 0., 0.);
}
`}},zY=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=$n();this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${s};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${o}] = values[0];
} else if (offset == 1) {
result[${o}] = values[1];
} else if (offset == 2) {
result[${o}] = values[2];
} else {
result[${o}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?l1():o1(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${a}
${n.output} = ${r};
}
`}},L_={};Fe(L_,{bindVertexProgramAttributeStreams:()=>q_,createBufferFromOutputTexture:()=>Y_,createFloat16MatrixTexture:()=>U_,createFloat16PackedMatrixTexture:()=>j_,createFloat32MatrixTexture:()=>V_,createIndexBuffer:()=>W_,createPackedMatrixTexture:()=>H_,createUnsignedBytesMatrixTexture:()=>G_,createVertexBuffer:()=>B_,createVertexShader:()=>z_,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Z_,downloadFloat32MatrixFromBuffer:()=>J_,downloadMatrixFromPackedOutputTexture:()=>eE,downloadPackedMatrixFromBuffer:()=>Q_,getInternalFormatForFloat16MatrixTexture:()=>c1,getInternalFormatForFloat16PackedMatrixTexture:()=>m1,getInternalFormatForFloat32MatrixTexture:()=>p1,getInternalFormatForPackedMatrixTexture:()=>h1,getInternalFormatForUnsignedBytesMatrixTexture:()=>d1,uploadDenseMatrixToTexture:()=>K_,uploadPixelDataToTexture:()=>X_});function z_(e){let t=$n(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return c_(e,n)}function B_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return f_(e,t)}function W_(e){let t=new Uint16Array([0,1,2,2,1,3]);return g_(e,t)}function bd(e,t,n,a,r,s){b_(t,n);let i=y_(e),o=e.TEXTURE_2D;return ge(e,()=>e.bindTexture(o,i)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),X().getNumber("WEBGL_VERSION")===1?ge(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):ge(e,()=>e.texStorage2D(o,1,a,t,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function p1(e){return e.internalFormatFloat}function V_(e,t,n,a){let[r,s]=yd(t,n);return bd(e,r,s,p1(a),a.textureFormatFloat,e.FLOAT)}function c1(e){return e.internalFormatHalfFloat}function U_(e,t,n,a){let[r,s]=yd(t,n);return bd(e,r,s,c1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function d1(e){return e.downloadTextureFormat}function G_(e,t,n,a){let[r,s]=yd(t,n);return bd(e,r,s,d1(a),e.RGBA,e.UNSIGNED_BYTE)}function h1(e){return e.internalFormatPackedFloat}function H_(e,t,n,a){let[r,s]=ap(t,n);return bd(e,r,s,h1(a),e.RGBA,e.FLOAT)}function m1(e){return e.internalFormatPackedHalfFloat}function j_(e,t,n,a){let[r,s]=ap(t,n);return bd(e,r,s,m1(a),e.RGBA,a.textureTypeHalfFloat)}function q_(e,t,n){return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Cx(e,t,"clipSpacePos",n,3,20,0)&&Cx(e,t,"uv",n,2,20,12)}function K_(e,t,n,a,r,s){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function X_(e,t,n){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Y_(e,t,n,a){let r=e.createBuffer();ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return ge(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function J_(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function Z_(e,t,n,a){let[r,s]=yd(t,n),i=4,o=new Uint8Array(M7(t*n,i));return ge(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function Q_(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(P7(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function eE(e,t,n){let a=new Float32Array(t*n*4);return ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Gh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=X().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,l_(t,e)):this.gl=Ja(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),X().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Jp(this.gl,r),da(this.gl,s))this.textureHalfFloatExtension=Jp(this.gl,s);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),da(this.gl,a))this.colorBufferHalfFloatExtension=Jp(this.gl,a);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",da(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(da(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=B_(this.gl),this.indexBuffer=W_(this.gl),this.framebuffer=x_(this.gl),this.textureConfig=s1(this.gl,this.textureHalfFloatExtension)}get debug(){return X().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ge(e,()=>e.finish()),ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.deleteFramebuffer(this.framebuffer)),ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ge(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),V_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),U_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),G_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),X_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),K_(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),j_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),H_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(_x(this.gl,this.framebuffer),this.outputTexture=null),ge(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Z_(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return Q_(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return J_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=Y_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(X().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>eE(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=z_(t));let n=h_(t);return ge(t,()=>t.attachShader(n,this.vertexShader)),ge(t,()=>t.attachShader(n,e)),m_(t,n),this.debug&&zh(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=q_(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ge(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&zh(this.gl,this.program),ge(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?w_(this.gl,e,t):k_(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ge(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),I_(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=ap(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&zh(this.gl,this.program),Zp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ge(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ge(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Jp(this.gl,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=BY(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Bh(this.gl,e,this.framebuffer),this.debug&&Zp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Bh(this.gl,this.outputTexture,this.framebuffer),this.debug&&Zp(this.gl)):_x(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;Bh(a,e,this.framebuffer),this.debug&&Zp(a),this.outputTexture=e,ge(a,()=>a.viewport(0,0,t,n)),ge(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),ge(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function BY(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:WY,bincountImpl:tE,bincountReduceImpl:VY,ceilImpl:UY,concatImpl:GY,equalImpl:HY,expImpl:jY,expm1Impl:qY,floorImpl:KY,gatherNdImpl:XY,gatherV2Impl:YY,greaterImpl:JY,greaterEqualImpl:ZY,lessImpl:QY,lessEqualImpl:eJ,linSpaceImpl:tJ,logImpl:nJ,maxImpl:aJ,maximumImpl:rJ,minimumImpl:sJ,multiplyImpl:iJ,negImpl:oJ,notEqualImpl:lJ,prodImpl:uJ,rangeImpl:pJ,rsqrtImpl:cJ,scatterImpl:dJ,sigmoidImpl:hJ,simpleAbsImpl:nE,sliceImpl:mJ,sparseFillEmptyRowsImpl:fJ,sparseReshapeImpl:gJ,sparseSegmentReductionImpl:aE,sqrtImpl:yJ,stridedSliceImpl:bJ,stringNGramsImpl:xJ,stringSplitImpl:vJ,stringToHashBucketFastImpl:wJ,subImpl:kJ,tileImpl:IJ,topKImpl:SJ,transposeImpl:f1,uniqueImpl:NJ}=uC;function rE(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Nn(e,t){return t===1?[e]:rE(e,t)}function TJ(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var CJ=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=qn(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=Nn("rc",this.rank),n=pt(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${s}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${a};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},sE=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${_J(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?l1():o1(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function _J(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?K7(["r","c","d"],"inputShape"):To(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var EJ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=kI(t,n),r=II(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=wI(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===ln.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===ln.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===ln.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===ln.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===ln.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=kI(n,a),s=II(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=wI(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=X().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function AJ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function wI(e,t,n,a,r){let s=$J(t,a),i;if(r){let[l,u]=ap(e[0],e[1]);i=l*u}else{let[l,u]=yd(e[0],e[1]);i=l*u}let o=AJ(n,s);return i*o}function $J(e,t){switch(e){case ln.PACKED_2X2_FLOAT32:return h1(t);case ln.PACKED_2X2_FLOAT16:return m1(t);case ln.UNPACKED_FLOAT32:return p1(t);case ln.UNPACKED_FLOAT16:return c1(t);case ln.PACKED_4X1_UNSIGNED_BYTE:return d1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function FJ(e){return X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?ln.PACKED_2X2_FLOAT32:ln.UNPACKED_FLOAT32:e?ln.PACKED_2X2_FLOAT16:ln.UNPACKED_FLOAT16}function kI(e,t){if(e===ca.UPLOAD)return ln.PACKED_2X2_FLOAT32;if(e===ca.RENDER||e==null)return FJ(t);if(e===ca.DOWNLOAD||e===ca.PIXELS)return ln.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function II(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var _r=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Da="if (isnan(x)) return x;",DJ="return x;",SI="return abs(x);",RJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",MJ=Da+`
return (x < 0.0) ? 0.0 : x;
`,PJ=Da+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,dl="return x;",OJ="return 1.0 / (1.0 + exp(-1.0 * x));",LJ="return x;",zJ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,BJ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,WJ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,VJ="return 1.0 / (1.0 + exp(-1.0 * x));",ei=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},UJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length);let t=e.length,n=Nn("rc",t),a=pt(t),r=TJ(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},GJ=gr.whereImpl,HJ=1e-7,jJ=1e-4,zb={};function qJ(e){return e in zb||(zb[e]={}),zb[e]}var KJ=X().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),XJ=600;function YJ(){return X().global.screen==null?1024:X().global.screen.height*X().global.screen.width*window.devicePixelRatio*XJ/1024/1024}var cg=class extends wc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!X().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Gh)t=e;else{let n=Ja(X().getNumber("WEBGL_VERSION"),e);t=new Gh(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ja(X().getNumber("WEBGL_VERSION"));t=new Gh(n),this.binaryCache=qJ(X().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new EJ(this.gpgpu),this.numMBBeforeWarning=YJ(),this.texData=new Nm(this,sr())}nextDataId(){return cg.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((X().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||X().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:ca.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(X().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:ca.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new ei(i,dl):d=new _r(i,dl);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=w.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=C.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new ei(a,dl):h=new _r(a,dl);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(X().getBool("DEBUG")&&!X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&X().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&X().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...Dh(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=C.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ge(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&sr().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new ei(r,dl):c=new _r(r,dl);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=sr().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>w.decodeString(a));return ze(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!u_(n))throw X().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=w.sizeFromShape(t);if(X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...Dh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=X().getBool("WEBGL_PACK")&&a===!0,i=s?Wh(t):t,o=s?new OY(i):new PY(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=KJ){return X().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return GJ(e.shape,t)}packedUnaryOp(e,t,n){let a=new ei(e.shape,t),r=this.compileAndRun(a,[e],n);return sr().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=nE(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(X().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,SI,e.dtype);let t=new _r(e.shape,SI),n=this.compileAndRun(t,[e]);return sr().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return sr().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new UJ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new CJ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[yi(e.shape),...bi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[yi(t),...bi(t)],s=new sE(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=w.sizeFromShape(r),c=t[0]*t[1]*4;w.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=Wh(r),o;a?o=new MY(i):o=new RY(i);let l=!0,u=[t!=null?t:Dh(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===gc.DENSE){let g=s!=null?s:Dh(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(i.shape)===0)return o.values=w.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&w.sizeFromShape(g.shape)<=X().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!yc(y.shape,g.shape)){let b=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),b.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=DY(e,u,p),c=this.getAndSaveBinary(d,()=>$Y(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),X().get("ENGINE_COMPILE_ONLY")||FY(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=X().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=w.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!X().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(X().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=O(()=>{if(!X().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=X().getBool("DEBUG");X().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(X().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?HJ:jJ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=w.now());let p=t.texShape;if(p==null&&(p=T_(n,o),t.texShape=p),r!=null){let d=Wh(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=ap(p[0],p[1])),o?c=new zY(d,f):c=new LY(d,f);let g=f?[m,h]:p,y=this.makeTensorInfo(g,a),b=this.texData.get(y.dataId);f?b.usage=ca.PIXELS:b.usage=ca.UPLOAD,b.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,m,r);let x=[[m,h]],v=!0,I=this.runWebGLProgram(c,[y],a,x,v),T=this.texData.get(I.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,X().get("ENGINE_COMPILE_ONLY")?this.disposeData(I.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(I.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=w.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=JJ(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await cw(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(i1(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=O_(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};cg.nextDataId=0;function JJ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var ZJ="3.19.0";function iE(){X().set("WEBGL_FORCE_F16_TEXTURES",!0)}Vc.isBrowser()&&sf("webgl",()=>new cg,2);var QJ={forceHalfFloat:iE},oE=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,zl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=qn(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},dg=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,xd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=qn(r);let s="";if(a)if(r===0||w.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${pt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?s+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Nn("coords",r);this.enableShapeUniforms?s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function aa(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var e9={kernelName:Bi,backendName:"webgl",kernelFunc:aa};function As(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=aa({inputs:{x:a},backend:n}),l=aa({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var t9={kernelName:Fm,backendName:"webgl",kernelFunc:As},lE="return (a < 0.) ? b * a : a;",uE=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function n9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),o=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new xd(uE,r.shape,i.shape):new zl(lE,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var a9={kernelName:Wi,backendName:"webgl",kernelFunc:n9},pE="return (a < 0.) ? b * a : a;",cE=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function r9(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new xd(cE,a.shape,r.shape):new zl(pE,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var s9={kernelName:eo,backendName:"webgl",kernelFunc:r9},up="if (isnan(x)) return x;",i9=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,o9=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Je({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=X().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new ei(i.shape,t):p=new _r(i.shape,e),o.runWebGLProgram(p,[i],l)}}function cn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,I]=x,T={dataId:v.dataId,dtype:v.dtype,shape:l.shape},_={dataId:I.dataId,dtype:I.dtype,shape:u.shape},A=new zl(e,l.shape,u.shape);return p.runWebGLProgram(A,[T,_],ma(v.dtype,I.dtype))}),b=As({inputs:{real:g,imag:y},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(y),b}let d=s||ma(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?C.fromUint8ToStringArray(m):m,y=l.dtype==="string"?C.fromUint8ToStringArray(f):f,[b,x]=r(l.shape,u.shape,g,y,d),v=p.makeTensorInfo(x,d),I=p.texData.get(v.dataId);return I.values=b,v}let c=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new xd(t,l.shape,u.shape,n):h=new zl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function hg(e,t=!1){if(e==="linear")return t?LJ:DJ;if(e==="relu")return t?BJ:MJ;if(e==="elu")return t?zJ:RJ;if(e==="relu6")return t?WJ:PJ;if(e==="prelu")return t?cE:pE;if(e==="leakyrelu")return t?uE:lE;if(e==="sigmoid")return t?VJ:OJ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var dE=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=qn(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${b};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${c});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},NI={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},TI=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},CI="return a * b;";function g1(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=C.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new TI(NI.REAL,a.shape,r.shape),p=new TI(NI.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=As({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=iJ(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new xd(CI,a.shape,r.shape):i=new zl(CI,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var l9={kernelName:Yi,backendName:"webgl",kernelFunc:g1};function u9(e,t,n){let a=[yi(e.shape),...bi(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[yi(t),...bi(t)],i=new sE(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function he(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(s,o),u=w.sizeFromShape(l);w.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!yc(r.shape,l)&&!(p.texture!==null&&yc(p.shape,l))?u9(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var p9={kernelName:_u,backendName:"webgl",kernelFunc:he},_I=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${w.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},c9=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${o}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,c="vec4";t==="all"?(i="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,c="bvec4"):t==="any"&&(i="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,c="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
${c} values = ${c}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${p===2}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${p===3}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function d9(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function _o(e,t,n,a){let r=d9(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new _I({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new _I({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new c9({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var h9=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=pt(this.rank),r=m9(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function m9(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var f9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=pt(this.rank),r=rE("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function mg(e,t,n){let a=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new f9(e.shape,t):new h9(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function g9(e,t,n,a){let r=t,s=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=mg(e,l,a),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=C.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=C.expandShapeToKeepDim(d,i));let m=w.sizeFromShape(c),f=w.sizeFromShape(e.shape)/m,g=he({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),y=rf(e.dtype),b=_o(g,y,"sum",a),x=he({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),u&&a.disposeIntermediateTensorInfo(p),x}function fg(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return g9(r,s,i,n)}var y9={kernelName:ho,backendName:"webgl",kernelFunc:fg};function Cn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=f1(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=mg(r,s,i);return u}var b9={kernelName:Er,backendName:"webgl",kernelFunc:Cn},hE=1e3;function vm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=w.sizeFromShape(f),b=w.sizeFromShape(g),x=Hu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);w.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let v=n?[y,d,h]:[y,h,d],I=a?[b,m,c]:[b,c,m],T=he({inputs:{x:e},backend:r,attrs:{shape:v}}),_=he({inputs:{x:t},backend:r,attrs:{shape:I}}),A=[T,_],F=Math.max(y,b),P=n?T.shape[1]:T.shape[2],$=s!=null,S=i!=null,M=l==="leakyrelu",U=l!=null?hg(l,!0):null,j=$||S||M||U!=null,q;if((h===1||m===1)&&P>hE&&j===!1){let Y=T,te=_;n&&(Y=Cn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),A.push(Y)),a&&(te=Cn({inputs:{x:_},backend:r,attrs:{perm:[0,2,1]}}),A.push(te));let re=m!==1,Q=m===1,ie=Y;re&&(ie=he({inputs:{x:Y},backend:r,attrs:{shape:[F,P,1]}}),A.push(ie));let ae=m===1?2:1,oe=te;Q&&(oe=he({inputs:{x:te},backend:r,attrs:{shape:[F,1,P]}}),A.push(oe));let ue=g1({inputs:{a:ie,b:oe},backend:r});q=fg({inputs:{x:ue},backend:r,attrs:{axis:ae,keepDims:!0}}),A.push(ue)}else{let Y=ma(e.dtype,t.dtype),te=new dE(v,I,[F,h,m],n,a,$,U,S,M),re=[T,_];if(s!=null&&re.push(s),S&&re.push(i),M){let Q=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));re.push(Q),A.push(Q)}q=r.runWebGLProgram(te,re,Y)}let K=he({inputs:{x:q},backend:r,attrs:{shape:x}});A.push(q);for(let Y of A)r.disposeIntermediateTensorInfo(Y);return K}function x9(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return vm({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var v9={kernelName:si,backendName:"webgl",kernelFunc:x9},EI="return abs(x);";function w9(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=nE(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ei(a.shape,EI):r=new _r(a.shape,EI),n.runWebGLProgram(r,[a],a.dtype)}var k9={kernelName:Wl,backendName:"webgl",kernelFunc:w9},I9=Da+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,S9=Je({opSnippet:I9}),N9={kernelName:Vl,backendName:"webgl",kernelFunc:S9},T9=Da+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,C9=Je({opSnippet:T9}),_9={kernelName:Ul,backendName:"webgl",kernelFunc:C9},AI="return a + b;",E9=cn({opSnippet:AI,packedOpSnippet:AI,supportsComplex:!0,cpuKernelImpl:WY}),A9={kernelName:ys,backendName:"webgl",kernelFunc:E9},$9=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},F9=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function Hh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return aa({inputs:{x:a[0]},backend:n});if(a.length>X().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Hh({inputs:a.slice(0,o),backend:n}),u=Hh({inputs:a.slice(o),backend:n});return Hh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ma(o,l)),s=a.map(o=>o.shape),i=X().getBool("WEBGL_PACK")?new F9(a[0].shape,s):new $9(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var D9={kernelName:wi,backendName:"webgl",kernelFunc:Hh};function R9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=r;p!=null&&(d=Cn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[c,h]=C.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=he({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=_o(f,f.dtype,"all",n),y;if(i){let b=C.expandShapeToKeepDim(c,l);y=he({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=he({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var M9={kernelName:Gl,backendName:"webgl",kernelFunc:R9};function P9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=r;p!=null&&(d=Cn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[c,h]=C.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=he({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=_o(f,f.dtype,"any",n),y;if(i){let b=C.expandShapeToKeepDim(c,l);y=he({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=he({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var O9={kernelName:Hl,backendName:"webgl",kernelFunc:P9},L9=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},z9=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=pt(o),u=Nn("coords",o),p,d;if(s===1){d=o+1;let _=pt(d);p=`
${_} sourceLocR = ${_}(${u.join()}, 0);
++${u[o-1]};
${_} sourceLocG = ${_}(${u.join()}, 0);
++${u[o-2]};
${_} sourceLocA = ${_}(${u.join()}, 0);
--${u[o-1]};
${_} sourceLocB = ${_}(${u.join()}, 0);
--${u[o-2]};`}else d=o,p=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(_=>"int "+_),f=Nn("sourceLocR",d-1).concat("inIdx.r"),g=Nn("sourceLocG",d-1).concat("inIdx.g"),y=Nn("sourceLocB",d-1).concat("inIdx.b"),b=Nn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${b.join()})));`,I=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,T=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${c.join()}),
vec2(${c.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${c.join()}),
vec2(${c.slice(-2).join()}));
}
${T}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${I};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${v}
vec4 candidate = ${I};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function mE(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new L9(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=mE(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function fE(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=C.computeOptimalWindowSize(s),o=new z9(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=fE(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function gE(e,t,n,a){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!X().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=C.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(p),c=he({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=mE(e,c,a);s.push(h);let m=he({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return fE(e,t,a)}function B9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Cn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=gE(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var W9={kernelName:ki,backendName:"webgl",kernelFunc:B9};function V9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Cn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=gE(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var U9={kernelName:kc,backendName:"webgl",kernelFunc:V9},G9=Da+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,H9=Je({opSnippet:G9}),j9={kernelName:jl,backendName:"webgl",kernelFunc:H9},q9=Da+"return log(x + sqrt(x * x + 1.0));",K9=Je({opSnippet:q9}),X9={kernelName:ql,backendName:"webgl",kernelFunc:K9},Y9=Da+`
return atan(x);
`,J9=Je({opSnippet:Y9}),Z9={kernelName:Kl,backendName:"webgl",kernelFunc:J9},Q9=i9+`
return atan(a, b);
`,eZ=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+o9+`
return result;
`,tZ=cn({opSnippet:Q9,packedOpSnippet:eZ}),nZ={kernelName:Yl,backendName:"webgl",kernelFunc:tZ},aZ=Da+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,rZ=Je({opSnippet:aZ}),sZ={kernelName:Xl,backendName:"webgl",kernelFunc:rZ},bc=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let _=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${_} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,I=s%4,T=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${v}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${T}
}
int xC = xCCorner + ${v};
if (${I===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${I===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${T}
} else if (${I===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${T}
}
}
setOutput(${x});
}
`}},y1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let F=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${F} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let v="max",I=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(I="avgValue / count");let T=Math.floor(s/4)*4,_=s%4,A=`
if (${b}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${v}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${A}
}
int xC = xCCorner + ${T};
if (${_===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${A}
} else if (${_===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${A}
} else if (${_===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${A}
}
}
setOutput(${I});
}
}
`}};function iZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;rp(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))return aa({inputs:{x:r},backend:n});let d=new bc(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var oZ={kernelName:Ii,backendName:"webgl",kernelFunc:iZ};function lZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=C.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new y1(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var uZ={kernelName:Ic,backendName:"webgl",kernelFunc:lZ},pZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${p});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},cZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function dZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,d,u,p),h=new cZ(c);return n.runWebGLProgram(h,[r],i.dtype)}var hZ={kernelName:Em,backendName:"webgl",kernelFunc:dZ};function mZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;rp([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=C.computePool2DInfo(i.shape,o,l,1,u),d=new pZ(p);return n.runWebGLProgram(d,[r],i.dtype)}var fZ={kernelName:_m,backendName:"webgl",kernelFunc:mZ};function gZ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return vm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var yZ={kernelName:Si,backendName:"webgl",kernelFunc:gZ},bZ=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},xZ=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},vZ=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;w.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=X().getBool("WEBGL_PACK_NORMALIZATION")?new xZ(a.shape,r.shape,s.shape,p,d,l):new bZ(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},wZ={kernelName:Li,backendName:"webgl",kernelFunc:vZ},kZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=pt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=IZ(this.rank),a,r=e.map((s,i)=>`sourceLoc.${$x[i]} = start[${i}] + coords.${$x[i]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${a}
setOutput(getSource(${n}));
}
`}},$x=["x","y","z","w","u","v"];function IZ(e){if(e===1)return"sourceLoc";if(e<=6)return $x.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var SZ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=pt(this.rank),n=Nn("coords",this.rank),a=Nn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}};function NZ(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=qt.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function pp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=qt.parseSliceParams(r,s,i);if(qt.assertParamsValid(r,o,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=mJ(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=qt.isSliceContinous(r.shape,o,l);if(u||!p){let d=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new SZ(l):new kZ(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),NZ(r,o,l,n)}var TZ={kernelName:Fu,backendName:"webgl",kernelFunc:pp},CZ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),p=C.getReshapedPermuted(r.shape,s,o),d=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(p,i,s.length),h=[],m=he({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Cn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=he({inputs:{x:f},backend:n,attrs:{shape:p}}),y=pp({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},_Z={kernelName:Jl,backendName:"webgl",kernelFunc:CZ};function EZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=tE(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var AZ={kernelName:Am,backendName:"webgl",kernelFunc:EZ};function $Z(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=C.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var FZ={kernelName:$m,backendName:"webgl",kernelFunc:$Z},DZ="return float(a != b);",yE=cn({opSnippet:DZ,cpuKernelImpl:lJ,dtype:"bool"}),RZ={kernelName:wu,backendName:"webgl",kernelFunc:yE};function vd(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return aa({inputs:{x:r.complexTensorInfos.real},backend:n})}var MZ={kernelName:Jm,backendName:"webgl",kernelFunc:vd},PZ="return float(int(x));";function OZ(e,t){let n=new _r(e.shape,PZ),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function Fx(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return aa({inputs:{x:r},backend:n});let i=It(r.shape),o=Fx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=As({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=vd({inputs:{input:r},backend:n}),o=Fx({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=aa({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return OZ(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=yE({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var LZ={kernelName:Ni,backendName:"webgl",kernelFunc:Fx},$I="return ceil(x);",zZ=Je({opSnippet:$I,packedOpSnippet:$I,cpuKernelImpl:UY}),BZ={kernelName:Ti,backendName:"webgl",kernelFunc:zZ},WZ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},VZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function UZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;X().getBool("WEBGL_PACK_CLIP")?o=new VZ(r.shape):o=new WZ(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var GZ={kernelName:bs,backendName:"webgl",kernelFunc:UZ},HZ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function FI(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function jZ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new HZ(a.shape),i=[FI(a,r.complexTensorInfos.real),FI(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var qZ={kernelName:Sc,backendName:"webgl",kernelFunc:jZ},KZ=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},XZ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=pt(a),s=Nn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${p}), vec2(${u.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${Mh(i,l,f)}),
vec2(${Mh(u,l,f)}));
}`}let c=o.length,h=o[o.length-1];d+=`
return getChannel(
getT${c}(${Mh(i,l,h)}),
vec2(${Mh(u,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function Mh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function gg(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return aa({inputs:{x:r.complexTensorInfos.imag},backend:n})}var YZ={kernelName:Gm,backendName:"webgl",kernelFunc:gg};function Qp(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(g=>vd({inputs:{input:g},backend:n})),c=e.map(g=>gg({inputs:{input:g},backend:n})),h=Qp(d,t,n),m=Qp(c,t,n),f=As({inputs:{real:h,imag:m},backend:n});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(b=>{let x=w.sizeFromShape(b.shape.slice(t));return he({inputs:{x:b},backend:n,attrs:{shape:[-1,x]}})}),c=d.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),h=C.computeOutShape(d.map(b=>b.shape),1),m=d[0].shape[0]===1,f=GY(c,h,a,m),g=C.computeOutShape(e.map(b=>b.shape),t),y=n.makeTensorInfo(g,a,f);return d.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}let s=X().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>s){let d=[];for(let h=0;h<e.length;h+=s){let m=e.slice(h,h+s);d.push(Qp(m,t,n))}let c=Qp(d,t,n);for(let h of d)n.disposeIntermediateTensorInfo(h);return c}if(X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new XZ(e.map(c=>c.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:i,outShape:o}=JZ(e,t,n),l=new KZ(i.map(d=>d.shape)),u=n.runWebGLProgram(l,i,a);i.forEach(d=>n.disposeIntermediateTensorInfo(d));let p=he({inputs:{x:u},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(u),p}function JZ(e,t,n){let a=C.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>he({inputs:{x:r},attrs:{shape:[-1,w.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function bE(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>w.sizeFromShape(u.shape)>0);if(o.length===1)return aa({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),Qp(o,s,n)}var ZZ={kernelName:Zl,backendName:"webgl",kernelFunc:bE},xE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,v="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${b}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${I}
${v}
setOutput(result);
}
`}},QZ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},eQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length);let{dataFormat:n}=t,a=$n(),r=n==="channelsLast",s=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.z + ${p};
pos = rc.y + ${u};
${o}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${s}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+p}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+p}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${a.output} = result;
}
`}};function wm(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function vE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[];if(s!=null){let b=wm(s.shape,h);b!=null&&(s=he({inputs:{x:s},backend:a,attrs:{shape:b}}),y.push(s))}if(r!=null){let b=wm(r.shape,h);b!=null&&(r=he({inputs:{x:r},backend:a,attrs:{shape:b}}),y.push(r))}if(!((d===1||c===1)&&p>hE)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&w.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},v=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,w.assert(yc(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let I=he({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(I);let T=vm({a:x,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),_=a.texData.get(T.dataId);w.assert(_.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=v,_.shape=n.outShape,g=aa({inputs:{x:T},backend:a}),g.shape=n.outShape,y.push(T)}else{let b=n.outHeight*n.outWidth,x=he({inputs:{x:e},backend:a,attrs:{shape:h?[n.batchSize,b,n.inChannels]:[n.batchSize,n.inChannels,b]}}),v=he({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=vm({a:h?x:v,b:h?v:x,transposeA:!h,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=he({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),y.push(x),y.push(v),y.push(I)}for(let b of y)a.disposeIntermediateTensorInfo(b);return g}function wE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,y=[n.batchSize,f,g],b=!0,x=!1,v=[];if(s!=null){let Y=wm(s.shape,m);Y!=null&&(s=he({inputs:{x:s},backend:a,attrs:{shape:Y}}),v.push(s))}if(r!=null){let Y=wm(r.shape,m);Y!=null&&(r=he({inputs:{x:r},backend:a,attrs:{shape:Y}}),v.push(r))}let I=he({inputs:{x:t},backend:a,attrs:{shape:[1,f,w.sizeFromShape(t.shape)/f]}});v.push(I);let T=new eQ(y,n),_=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],A=a.runWebGLProgram(T,[e],"float32",_),F=he({inputs:{x:A},backend:a,attrs:{shape:y}});v.push(A),v.push(F);let P=r!=null,$=s!=null,S=o==="leakyrelu",M=o?hg(o,!0):null,U=new dE(m?F.shape:I.shape,m?I.shape:F.shape,m?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],b,x,P,M,$,S),j=m?[F,I]:[I,F];if(r&&j.push(r),$&&j.push(s),S){let Y=a.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));j.push(Y),v.push(Y)}let q=a.runWebGLProgram(U,j,"float32"),K=he({inputs:{x:q},backend:a,attrs:{shape:n.outShape}});v.push(q);for(let Y of v)a.disposeIntermediateTensorInfo(Y);return K}function tQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=vE({x:r,filter:s,convInfo:c,backend:n});else if(X().getBool("WEBGL_CONV_IM2COL"))h=wE({x:r,filter:s,convInfo:c,backend:n});else{let f=new xE(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=he({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var nQ={kernelName:Ci,backendName:"webgl",kernelFunc:tQ},aQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},rQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},sQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},iQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function oQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new aQ(c);return n.runWebGLProgram(h,[r,s],"float32")}var lQ={kernelName:Dm,backendName:"webgl",kernelFunc:oQ};function uQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=C.convertConv2DDataFormat(u),c=C.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d),h=new rQ(c);return n.runWebGLProgram(h,[r,s],"float32")}var pQ={kernelName:_i,backendName:"webgl",kernelFunc:uQ};function cQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=C.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new QZ(u);return n.runWebGLProgram(p,[r,s],"float32")}var dQ={kernelName:Nc,backendName:"webgl",kernelFunc:cQ};function hQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=C.computeConv3DInfo(r.shape,l,i,1,o),p=new sQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var mQ={kernelName:Rm,backendName:"webgl",kernelFunc:hQ};function fQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=C.computeConv3DInfo(l,s.shape,o,1,i),p=new iQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var gQ={kernelName:Mm,backendName:"webgl",kernelFunc:fQ},yQ=up+`
return cos(x);
`,bQ=Je({opSnippet:yQ}),xQ={kernelName:Ei,backendName:"webgl",kernelFunc:bQ},vQ=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,wQ=Je({opSnippet:vQ}),kQ={kernelName:Ai,backendName:"webgl",kernelFunc:wQ},IQ=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,v]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${b});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${v};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${c} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},SQ=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new IQ(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},NQ={kernelName:eu,backendName:"webgl",kernelFunc:SQ},xc;(function(e){e.Prod="*",e.Sum="+"})(xc||(xc={}));var DI=class{constructor(e,t,n,a){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===xc.Prod?"1.0":"0.0",i=n?s:`getX(${RI(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${pt(r)} coords = getOutputCoords();
int end = ${MI(r,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${MI(r,"coords",this.op)} = idx;
val ${this.op}= getX(${RI(r,"coords",this.op)});
}
setOutput(val);
}
`}};function RI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function MI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function kE(e,t,n,a,r,s){let i=t.shape.length,o=C.getAxesPermutation([a],i),l=t;o!=null&&(l=Cn({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=C.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=aa({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new DI(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new DI(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=C.getUndoAxesPermutation(o),h=Cn({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function TQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return kE(xc.Prod,r,n,s,i,o)}var CQ={kernelName:Ql,backendName:"webgl",kernelFunc:TQ};function _Q(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return kE(xc.Sum,r,n,s,i,o)}var EQ={kernelName:$i,backendName:"webgl",kernelFunc:_Q};function AQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=tE(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=VY(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var $Q={kernelName:Pm,backendName:"webgl",kernelFunc:AQ},FQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function DQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new FQ(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var RQ={kernelName:tu,backendName:"webgl",kernelFunc:DQ},IE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=qn(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${o};
int q = d2 - d1 * ${o};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${s}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${u}
setOutput(result);
}
`}},SE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=qn(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;c+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<p;g++)c+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;c+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let y=g*2;if(c+=`
xC = xCCorner + ${y*l};
`,o===1){if(y<p&&(i%2===1?(c+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
`,l===1&&y>0?c+=`
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
`:c+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
} else {
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
}
`):c+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xC${y} = xTexelC${y};
`,y+1<p)){let b=i%2===0?w.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
xCOffset = xC + imod(pads[1], 2) + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
`,l>1&&(c+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
xTexelC${y}Ready = 1;
}
`),c+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
`):b===1?c+=`
xC${y+1} = xTexelC${y};
`:c+=`
xCOffset = xC + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y+1} = xTexelC${y+1};
`}}else y<p&&(i%2===1?(c+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`,y+1<p&&(c+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
`)):(c+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(
xTexelC${y}.xy, xTexelC${y+1}.xy);
`,y+1<p&&(c+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`)));y<p&&(c+=`
wTexel = getW(r, ${y}, d1, q);
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
`,y+1<p&&(c+=`
wTexel = getW(r, ${y+1}, d1, q);
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
`))}c+=`
}
`,c+=`
}
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${c}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${m}
setOutput(result);
}
`}};function MQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=C.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;X().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new SE(d):c=new IE(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var PQ={kernelName:Fi,backendName:"webgl",kernelFunc:MQ},OQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},LQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function zQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=C.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new OQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var BQ={kernelName:Om,backendName:"webgl",kernelFunc:zQ};function WQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=C.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new LQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var VQ={kernelName:Lm,backendName:"webgl",kernelFunc:WQ},UQ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function GQ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=w.sizeFromShape(a.shape),i=he({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new UQ(s),l=n.runWebGLProgram(o,[i],i.dtype),u=he({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var HQ={kernelName:zm,backendName:"webgl",kernelFunc:GQ},jQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${p}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function qQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=C.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new jQ(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=he({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var KQ={kernelName:Tc,backendName:"webgl",kernelFunc:qQ};function XQ(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=C.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=C.getEinsumPermutation(h,l[g]),x;C.isIdentityPermutation(y)?x=s[g]:(x=Cn({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let I=0;I<b.length;++I)v.splice(b[I],0,1);w.arraysEqual(x.shape,v)||(x=he({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=g1({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=fg({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var YQ={kernelName:Bm,backendName:"webgl",kernelFunc:XQ},JQ="return (x >= 0.0) ? x : (exp(x) - 1.0);",ZQ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,QQ=Je({opSnippet:JQ,packedOpSnippet:ZQ}),eee={kernelName:Ri,backendName:"webgl",kernelFunc:QQ},tee="return (b >= 1.0) ? a : a * (b + 1.0);",nee=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,aee=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new xd(nee,a.shape,r.shape):new zl(tee,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},ree={kernelName:Wm,backendName:"webgl",kernelFunc:aee},see=`
return vec4(equal(a, b));
`,iee="return float(a == b);",oee=cn({opSnippet:iee,packedOpSnippet:see,dtype:"bool",cpuKernelImpl:HY}),lee={kernelName:au,backendName:"webgl",kernelFunc:oee},uee=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${C.ERF_P};
float a1 = ${C.ERF_A1};
float a2 = ${C.ERF_A2};
float a3 = ${C.ERF_A3};
float a4 = ${C.ERF_A4};
float a5 = ${C.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,pee=Je({opSnippet:uee}),cee={kernelName:nu,backendName:"webgl",kernelFunc:pee},dee=up+`
return exp(x);
`,hee=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,NE=Je({opSnippet:dee,packedOpSnippet:hee,cpuKernelImpl:jY,dtype:"float32"}),mee={kernelName:Mi,backendName:"webgl",kernelFunc:NE};function Dx(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),he({inputs:{x:s},backend:a,attrs:{shape:o}})}var fee={kernelName:ru,backendName:"webgl",kernelFunc:Dx},PI="return exp(x) - 1.0;",gee=Je({opSnippet:PI,packedOpSnippet:PI,cpuKernelImpl:qY}),yee={kernelName:su,backendName:"webgl",kernelFunc:gee},OI=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function TE(e,t,n){let a=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=he({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new OI("real",l,t),p=new OI("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=As({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=he({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function bee(e){let{inputs:t,backend:n}=e,{input:a}=t;return TE(a,!1,n)}var xee={kernelName:Vm,backendName:"webgl",kernelFunc:bee},vee=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function wd(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||w.inferDtype(r),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new vee(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var wee={kernelName:Cc,backendName:"webgl",kernelFunc:wd},kee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},Iee={kernelName:iu,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new kee(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},LI="return floor(x);",See=Je({opSnippet:LI,packedOpSnippet:LI,cpuKernelImpl:KY}),Nee={kernelName:Pi,backendName:"webgl",kernelFunc:See},Tee=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Cee=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,_ee=cn({opSnippet:Tee,packedOpSnippet:Cee,dtype:"int32"}),Eee={kernelName:Oi,backendName:"webgl",kernelFunc:_ee},Aee=class{constructor(e){this.variableNames=["A"];let t=$n(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},$ee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=$n(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},Fee={kernelName:Jh,backendName:"webgl",kernelFunc:Dee},hl;function Dee(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];(o||i)&&(hl==null&&(hl=document.createElement("canvas").getContext("2d")),hl.canvas.width=l,hl.canvas.height=u,hl.drawImage(r,0,0,l,u),r=hl.canvas);let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=ca.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=X().getBool("WEBGL_PACK")?new $ee(d):new Aee(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function Ree(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=C.convertConv2DDataFormat(p),g=C.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=vE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(X().getBool("WEBGL_CONV_IM2COL"))y=wE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,I=o!=null,T=h==="leakyrelu",_=h?hg(h,!1):null,A=new xE(g,v,_,I,T),F=[r,s],P=($,S)=>{if(S==="NCHW"&&$.shape.length===1&&$.shape[0]!==1){let M=he({inputs:{x:$},backend:n,attrs:{shape:[$.shape[0],1,1]}});return b.push(M),M}return $};if(v&&F.push(P(i,p)),I&&F.push(P(o,p)),T){let $=n.makeTensorInfo([],"float32",w.createScalarValue(m,"float32"));F.push($),b.push($)}y=n.runWebGLProgram(A,F,"float32")}let x=he({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var Mee={kernelName:ii,backendName:"webgl",kernelFunc:Ree};function Pee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=C.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),y=X().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=c?hg(c,y):null,x=[r,s],v=i!=null,I=o!=null,T=c==="leakyrelu";if(v&&x.push(i),I&&x.push(o),T){let P=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(P),m.push(P)}let _;y?_=new SE(g,v,b,I,T):_=new IE(g,v,b,I,T);let A=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=n.runWebGLProgram(_,x,"float32",A);return m.forEach(P=>n.disposeIntermediateTensorInfo(P)),F}var Oee={kernelName:oi,backendName:"webgl",kernelFunc:Pee},Lee=class{constructor(e,t,n,a){this.sliceDim=e,this.strides=t,this.paramsShape=a,this.variableNames=["x","indices"],this.outputShape=n;let r=pt(t.length),s=pt(n.length),i=this.sliceDim>1?"strides[j]":"strides",o=pt(a.length),l=a.length>1?"paramsShape[j]":"paramsShape";this.userCode=`
${r} strides = ${r}(${this.strides});
${o} paramsShape = ${o}(${this.paramsShape});
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${l};
flattenIndex += index * ${i};
}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function zee(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=w.sizeFromShape(a.shape),[l,u,p,d]=C.prepareAndValidate(a,r),c=he({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=he({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let y=n.readSync(r.dataId),b=n.bufferSync(a),x=XY(y,b,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new Lee(i,d,[u,p],a.shape),f=n.runWebGLProgram(m,[h,c],h.dtype),g=he({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var Bee={kernelName:lu,backendName:"webgl",kernelFunc:zee},Wee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=pt(this.rank),a=Vee(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${a}));
}
`}};function Vee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function CE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0];if(X().get("DEBUG")){let b=n.readSync(s.dataId),x=r.shape[l];for(let v=0;v<b.length;++v){let I=b[v];w.assert(I<=x-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${x-1}]`)}}let u=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=w.sizeFromShape(s.shape),d=[],c=he({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=he({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(c),v=YY(x,b,m);return d.forEach(I=>n.disposeIntermediateTensorInfo(I)),n.makeTensorInfo(u.outputShape,v.dtype,v.values)}let f=new Wee(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let y=he({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Uee={kernelName:ou,backendName:"webgl",kernelFunc:CE},Gee="return float(a > b);",Hee=`
return vec4(greaterThan(a, b));
`,jee=cn({opSnippet:Gee,packedOpSnippet:Hee,cpuKernelImpl:JY,dtype:"bool"}),qee={kernelName:uu,backendName:"webgl",kernelFunc:jee},Kee="return float(a >= b);",Xee=`
return vec4(greaterThanEqual(a, b));
`,Yee=cn({opSnippet:Kee,packedOpSnippet:Xee,dtype:"bool",cpuKernelImpl:ZY}),Jee={kernelName:zi,backendName:"webgl",kernelFunc:Yee};function Zee(e){let{inputs:t,backend:n}=e,{input:a}=t;return TE(a,!0,n)}var Qee={kernelName:Um,backendName:"webgl",kernelFunc:Zee},ete="return float(!isnan(x) && !isinf(x));",tte=Je({opSnippet:ete,dtype:"bool"}),nte={kernelName:pu,backendName:"webgl",kernelFunc:tte},ate="return float(isinf(x));",rte=Je({opSnippet:ate,dtype:"bool"}),ste={kernelName:cu,backendName:"webgl",kernelFunc:rte},ite="return float(isnan(x));",ote=Je({opSnippet:ite,dtype:"bool"}),lte={kernelName:du,backendName:"webgl",kernelFunc:ote},ute="return float(a < b);",pte=`
return vec4(lessThan(a, b));
`,cte=cn({opSnippet:ute,packedOpSnippet:pte,cpuKernelImpl:QY,dtype:"bool"}),dte={kernelName:hu,backendName:"webgl",kernelFunc:cte},hte="return float(a <= b);",mte=`
return vec4(lessThanEqual(a, b));
`,fte=cn({opSnippet:hte,packedOpSnippet:mte,cpuKernelImpl:eJ,dtype:"bool"}),gte={kernelName:mu,backendName:"webgl",kernelFunc:fte};function yte(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=tJ(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var bte={kernelName:Hm,backendName:"webgl",kernelFunc:yte},xte=up+`
return x < 0.0 ? 0./0. : log(x);
`,vte=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,wte=Je({opSnippet:xte,packedOpSnippet:vte,cpuKernelImpl:nJ}),kte={kernelName:Vi,backendName:"webgl",kernelFunc:wte},Ite=up+`
return log(1.0 + x);
`,Ste=Je({opSnippet:Ite}),Nte={kernelName:fu,backendName:"webgl",kernelFunc:Ste},Tte="return float(a >= 1.0 && b >= 1.0);",Cte=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,_te=cn({opSnippet:Tte,packedOpSnippet:Cte,dtype:"bool"}),Ete={kernelName:gu,backendName:"webgl",kernelFunc:_te},Ate="return float(!(x >= 1.0));",$te=Je({opSnippet:Ate}),Fte={kernelName:yu,backendName:"webgl",kernelFunc:$te},Dte="return float(a >= 1.0 || b >= 1.0);",Rte=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Mte=cn({opSnippet:Dte,packedOpSnippet:Rte,dtype:"bool"}),Pte={kernelName:bu,backendName:"webgl",kernelFunc:Mte},Ote=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},Lte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},zte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=X().getBool("WEBGL_PACK_NORMALIZATION")?new Lte(r.shape,s,i,o,l):new Ote(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},Bte={kernelName:_c,backendName:"webgl",kernelFunc:zte},Wte=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},Vte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new Wte(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},Ute={kernelName:jm,backendName:"webgl",kernelFunc:Vte};function Gte(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=he({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=_o(i,e.dtype,"max",a),l=he({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function _E(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let v=f1(b,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let I=n.texData.get(h.dataId);I.values=v}else h=mg(r,p,n);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[m,f]=C.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=C.expandShapeToKeepDim(m,l));let y;if(c){let b=n.texData.get(h.dataId).values,x=aJ(b,w.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=Gte(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),y}var Hte={kernelName:Ui,backendName:"webgl",kernelFunc:_E},jte=oE+`
return max(a, b);
`,qte=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+dg+`
return result;
`,Kte=cn({opSnippet:jte,packedOpSnippet:qte,cpuKernelImpl:rJ}),Xte={kernelName:Gi,backendName:"webgl",kernelFunc:Kte};function Yte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;rp(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))return aa({inputs:{x:r},backend:n});let d=new bc(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Jte={kernelName:Hi,backendName:"webgl",kernelFunc:Yte};function Zte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=C.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new y1(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var Qte={kernelName:Ec,backendName:"webgl",kernelFunc:Zte},ene=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},tne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${d}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function nne(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,d,u,p),h=new y1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new tne(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var ane={kernelName:Km,backendName:"webgl",kernelFunc:nne};function rne(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;rp([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=C.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new bc(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new ene(c),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var sne={kernelName:qm,backendName:"webgl",kernelFunc:rne};function ine(e,t,n,a){let r=new bc(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new bc(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var one={kernelName:Xm,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;w.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];w.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=C.computePool2DInfo(a.shape,r,s,u,i),[d,c]=ine(a,o,p,l);return[d,c]}};function lne(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=he({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=_o(i,"float32","mean",a),l=he({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var une={kernelName:ji,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),u=l,p=C.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let _=0;_<v.length;_++)v[_]=a.shape[p[_]];let I=f1(x,a.shape,a.dtype,p,v);m=i.makeTensorInfo(v,a.dtype);let T=i.texData.get(m.dataId);T.values=I}else m=mg(a,p,i);h.push(m),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=C.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=C.expandShapeToKeepDim(f,l));let b=lne(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function pne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=r;p!=null&&(d=Cn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[c,h]=C.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=he({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=_o(f,f.dtype,"min",n),y;if(i){let b=C.expandShapeToKeepDim(c,l);y=he({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=he({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var cne={kernelName:qi,backendName:"webgl",kernelFunc:pne},dne=oE+`
return min(a, b);
`,hne=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+dg+`
return result;
`,mne=cn({opSnippet:dne,packedOpSnippet:hne,cpuKernelImpl:sJ}),fne={kernelName:Ki,backendName:"webgl",kernelFunc:mne},gne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=pt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},yne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=pt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=Nn("rc",a),l=Nn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${c}
setOutput(result);
}
`}},bne=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yne(a.shape,r,s):new gne(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},xne={kernelName:Xi,backendName:"webgl",kernelFunc:bne},vne=`if (b == 0.0) return NAN;
return mod(a, b);`,wne=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+dg+`
return result;
`,kne=cn({opSnippet:vne,packedOpSnippet:wne}),Ine={kernelName:xu,backendName:"webgl",kernelFunc:kne},Sne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Nne=`
if (a == b) {
return 1.0;
};
return a / b;`,Tne=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,EE=cn({opSnippet:Nne,packedOpSnippet:Tne,checkOutOfBounds:!0}),Cne={kernelName:Di,backendName:"webgl",kernelFunc:EE},zI="return a - b;",AE=cn({opSnippet:zI,packedOpSnippet:zI,supportsComplex:!0,cpuKernelImpl:kJ}),_ne={kernelName:go,backendName:"webgl",kernelFunc:AE};function $E(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=w.parseAxisParam([s],r.shape),o=_E({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=he({inputs:{x:o},backend:n,attrs:{shape:l}}),p=AE({inputs:{a:r,b:u},backend:n}),d=NE({inputs:{x:p},backend:n}),c=fg({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=he({inputs:{x:c},backend:n,attrs:{shape:l}}),m=EE({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var Ene={kernelName:mo,backendName:"webgl",kernelFunc:$E};function Ane(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:$E({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new Sne(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var $ne={kernelName:Ym,backendName:"webgl",kernelFunc:Ane},Fne=Da+`
return -x;
`,Dne=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Rne(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=oJ(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ei(a.shape,Dne):r=new _r(a.shape,Fne),n.runWebGLProgram(r,[a],a.dtype)}var Mne={kernelName:vu,backendName:"webgl",kernelFunc:Rne},Pne=gr.nonMaxSuppressionV3Impl;function One(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=Pne(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Lne={kernelName:ku,backendName:"webgl",kernelFunc:One},zne=gr.nonMaxSuppressionV4Impl;function Bne(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=zne(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Wne={kernelName:Iu,backendName:"webgl",kernelFunc:Bne},Vne=gr.nonMaxSuppressionV5Impl;function Une(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=Vne(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Gne={kernelName:Su,backendName:"webgl",kernelFunc:Une},Hne=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},jne=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=w.sizeFromShape(r.shape),u=new Hne(l,s,i,o),p=he({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[p],r.dtype);n.disposeIntermediateTensorInfo(p);let c=[...r.shape,s],h=he({inputs:{x:d},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(d),h},qne={kernelName:Ji,backendName:"webgl",kernelFunc:jne};function km(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=vd({inputs:{input:a},backend:n}),s=km({inputs:{x:r},backend:n}),i=gg({inputs:{input:a},backend:n}),o=km({inputs:{x:i},backend:n}),l=As({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return wd({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var Kne={kernelName:Uu,backendName:"webgl",kernelFunc:km};function FE(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=vd({inputs:{input:a},backend:n}),s=FE({inputs:{x:r},backend:n}),i=gg({inputs:{input:a},backend:n}),o=km({inputs:{x:i},backend:n}),l=As({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return wd({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var Xne={kernelName:Nu,backendName:"webgl",kernelFunc:FE};function Yne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Dx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Dx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=bE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var Jne={kernelName:Tu,backendName:"webgl",kernelFunc:Yne},Zne=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=pt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},Qne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=pt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=Nn("rc",a),l=Nn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${u}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${d[m]}
if (${c}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${p});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},DE=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(w.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return wd({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Qne(r.shape,s,i):new Zne(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},eae={kernelName:Zi,backendName:"webgl",kernelFunc:DE},tae=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,nae=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+dg+`
return result;
`,aae=cn({opSnippet:tae,packedOpSnippet:nae}),rae={kernelName:Qi,backendName:"webgl",kernelFunc:aae};function sae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=w.parseAxisParam(s,r.shape),p=u,d=C.getAxesPermutation(p,o),c=r;d!=null&&(c=Cn({inputs:{x:r},backend:n,attrs:{perm:d}}),p=C.getInnerMostAxes(p.length,o),l.push(c)),C.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:y}=uJ(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(c.shape,p),g=w.sizeFromShape(f),y=he({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),b=rf(r.dtype),x=_o(y,b,"prod",n);h=he({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=C.expandShapeToKeepDim(h.shape,u);h=he({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var iae={kernelName:to,backendName:"webgl",kernelFunc:sae},RE=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=pJ(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},oae={kernelName:Ac,backendName:"webgl",kernelFunc:RE},lae="return 1.0 / x;",uae=Je({opSnippet:lae}),pae={kernelName:Cu,backendName:"webgl",kernelFunc:uae},cae=Da+`
return (x < 0.0) ? 0.0 : x;
`,dae=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,hae=Je({opSnippet:cae,packedOpSnippet:dae}),mae={kernelName:no,backendName:"webgl",kernelFunc:hae},fae=Da+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,gae=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,yae=Je({opSnippet:fae,packedOpSnippet:gae}),bae={kernelName:so,backendName:"webgl",kernelFunc:yae},xae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},vae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function wae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new vae(r.shape,l,u,s,i):new xae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var kae={kernelName:ro,backendName:"webgl",kernelFunc:wae},Iae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Sae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Iae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Nae={kernelName:Qm,backendName:"webgl",kernelFunc:Sae},Tae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Cae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function _ae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Cae(r.shape,l,u,s,i):new Tae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var Eae={kernelName:ao,backendName:"webgl",kernelFunc:_ae},Aae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function $ae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Aae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Fae={kernelName:Zm,backendName:"webgl",kernelFunc:$ae},Dae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=pt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},Rae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=Nn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=pt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${u(a.slice())};
if(${r}) {
result.a = ${p(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((y,b)=>c(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Mae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return aa({inputs:{x:r},backend:n});let l=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Rae(r.shape,o):new Dae(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var Pae={kernelName:io,backendName:"webgl",kernelFunc:Mae},Oae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},Lae={kernelName:Gu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Oae(a.shape,s),[u,p]=C.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},zae=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Bae=Je({opSnippet:zae}),Wae={kernelName:oo,backendName:"webgl",kernelFunc:Bae},Vae="return inversesqrt(x);",Uae=Je({opSnippet:Vae,cpuKernelImpl:cJ}),Gae={kernelName:lo,backendName:"webgl",kernelFunc:Uae},ME=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=pt(r.length),l=pt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let p=`getIndices(${u})`,d="";a===1?d="i":a===2&&(d="i, coords[1]");let c=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${c};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function Hae(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=C.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=he({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=he({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new ME(l,o,h.shape.length,m.shape.length,p,c),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=he({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var jae={kernelName:Eu,backendName:"webgl",kernelFunc:Hae},qae=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=X().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${o} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function Kae(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new qae(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var Xae={kernelName:ef,backendName:"webgl",kernelFunc:Kae},Yae=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=pt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function Jae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new Yae(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ma(r.dtype,s.dtype))}var Zae={kernelName:Au,backendName:"webgl",kernelFunc:Jae},Qae=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${C.SELU_SCALEALPHA};
float scale = ${C.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,ere=Je({opSnippet:Qae}),tre={kernelName:$u,backendName:"webgl",kernelFunc:ere},nre=up+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,are=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,rre=Je({opSnippet:nre,packedOpSnippet:are,cpuKernelImpl:hJ}),sre={kernelName:po,backendName:"webgl",kernelFunc:rre},ire=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,ore=Je({opSnippet:ire}),lre={kernelName:Ru,backendName:"webgl",kernelFunc:ore},ure=up+`
return sin(x);
`,pre=Je({opSnippet:ure}),cre={kernelName:uo,backendName:"webgl",kernelFunc:pre},dre=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,hre=Je({opSnippet:dre}),mre={kernelName:Du,backendName:"webgl",kernelFunc:hre},fre=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,gre=Je({opSnippet:fre}),yre={kernelName:Mu,backendName:"webgl",kernelFunc:gre},bre=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],p=DE({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=C.getReshaped(p.shape,s,o,!1),c=C.getPermuted(d.length,s.length,!1),h=C.getReshapedPermuted(p.shape,s,o,!1),m=he({inputs:{x:p},backend:n,attrs:{shape:d}}),f=Cn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=he({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},xre={kernelName:Pu,backendName:"webgl",kernelFunc:bre};function vre(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=fJ(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var wre={kernelName:$c,backendName:"webgl",kernelFunc:vre};function kre(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=gJ(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var Ire={kernelName:Lu,backendName:"webgl",kernelFunc:kre};function Sre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=aE(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var Nre={kernelName:Fc,backendName:"webgl",kernelFunc:Sre};function Tre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=aE(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var Cre={kernelName:Dc,backendName:"webgl",kernelFunc:Tre};function _re(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=C.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let y=n.bufferSync(r),b=n.bufferSync(s),x=w.decodeString(n.readSync(i.dataId)[0]),v=dJ(y,b,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,v.dtype,v.values)}let m=new ME(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=he({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var Ere={kernelName:tf,backendName:"webgl",kernelFunc:_re};function Are(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=pp({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var $re={kernelName:Ou,backendName:"webgl",kernelFunc:Are},BI="return sqrt(x);",Fre=Je({opSnippet:BI,packedOpSnippet:BI,cpuKernelImpl:yJ}),Dre={kernelName:co,backendName:"webgl",kernelFunc:Fre},Rre="return x * x;",Mre=Je({opSnippet:Rre}),Pre={kernelName:Rc,backendName:"webgl",kernelFunc:Mre},WI="return (a - b) * (a - b);",Ore=cn({opSnippet:WI,packedOpSnippet:WI}),Lre={kernelName:fo,backendName:"webgl",kernelFunc:Ore};function zre({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Da+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new _r(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var Bre={kernelName:vs,backendName:"webgl",kernelFunc:zre},Wre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=pt(n.length),s=pt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function Vre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=he({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let _=qt.computeOutShape(b,x,v),A=pp({inputs:{x:r},backend:n,attrs:{begin:b,size:_}});I=he({inputs:{x:A},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(A)}else if(n.shouldExecuteOnCPU([r])){let _=n.readSync(r.dataId),A=ze(r.shape,r.dtype,_),F=bJ(h,A,v,b);I=n.makeTensorInfo(m,r.dtype,F.values)}else{let _=new Wre(b,v,h);I=n.runWebGLProgram(_,[r],r.dtype)}let T=he({inputs:{x:I},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(I),T}var Ure={kernelName:zu,backendName:"webgl",kernelFunc:Vre};function Gre(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=xJ(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var Hre={kernelName:Mc,backendName:"webgl",kernelFunc:Gre};function jre(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=vJ(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var qre={kernelName:Pc,backendName:"webgl",kernelFunc:jre};function Kre(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=wJ(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var Xre={kernelName:Oc,backendName:"webgl",kernelFunc:Kre},Yre="return tan(x);",Jre=Je({opSnippet:Yre}),Zre={kernelName:yo,backendName:"webgl",kernelFunc:Jre},Qre=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,ese=Je({opSnippet:Qre}),tse={kernelName:bo,backendName:"webgl",kernelFunc:ese},nse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=pt(this.rank),r=ase(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function ase(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function PE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>w.decodeString(d)):o,u=ze(r.shape,r.dtype,l),p=IJ(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new nse(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var rse={kernelName:xs,backendName:"webgl",kernelFunc:PE},sse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},ise=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Hs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function VI(e){let t=1;for(;t<e;)t*=2;return t}function ose(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=X().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=X().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let F=n.readSync(r.dataId),[P,$]=SJ(F,u,r.dtype,s,i);return[n.makeTensorInfo(P.shape,P.dtype,P.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,wd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=w.sizeFromShape(u)/p,f=he({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Hs(n,h);let g=VI(s),y=VI(p),b=null,x=()=>b===null?[f,f]:[f,b],v=(F,P,$)=>{let S=x(),M=new sse($),U=[[p],[b===null?1:0],[Number.NEGATIVE_INFINITY],[F],[P]],j=b;b=n.runWebGLProgram(M,S,"int32",U),Hs(n,j)};for(let F=1;F<g;F*=2){let P=F*2;for(let $=F;$>=1;$/=2)v(P,$,[m,y])}for(let F=y;F>g;F/=2){let P=x(),$=new ise([m,F/2]),S=[[p],[b===null?1:0],[g]],M=b;b=n.runWebGLProgram($,P,"int32",S),Hs(n,M);let U=g/2,j=U*2;for(let q=U;q>=1;q/=2)v(j,q,b.shape)}let I=b;b=pp({inputs:{x:b},backend:n,attrs:{begin:0,size:[m,s]}}),Hs(n,I);let T=CE({inputs:{x:f,indices:b},backend:n,attrs:{axis:1,batchDims:1}});Hs(n,f);let _=u.slice(0,-1);_.push(s),I=b,b=he({inputs:{x:b},attrs:{shape:_},backend:n}),Hs(n,I);let A=T;return T=he({inputs:{x:T},attrs:{shape:_},backend:n}),Hs(n,A),[T,b]}var lse={kernelName:Bu,backendName:"webgl",kernelFunc:ose},use=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function pse(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new use(d,c,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var cse={kernelName:Wu,backendName:"webgl",kernelFunc:pse};function dse(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;rp(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=NJ(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var hse={kernelName:nf,backendName:"webgl",kernelFunc:dse};function mse(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=pp({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=he({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=y,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var fse={kernelName:Vu,backendName:"webgl",kernelFunc:mse},gse=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
sumValue += dot(values, segFilter);
`,c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function yse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=C.getAxesPermutation([u],o),d=r;p!=null&&(d=Cn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=C.getInnerMostAxes(1,o)[0]);let c=C.segment_util.computeOutShape(d.shape,u,i),h=w.sizeFromShape([d.shape[u]]),m=he({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=rf(r.dtype),g=(v,I,T,_,A)=>{let F=v.shape[0],P=v.shape[1],$=C.segment_util.segOpComputeOptimalWindowSize(P,A),S={windowSize:$,inSize:P,batchSize:F,numSegments:A},M=new gse(S,I),U=n.compileAndRun(M,[v,T],_);if(l.push(U),U.shape[1]===A)return U;let j=RE({backend:n,attrs:{start:0,stop:A,step:1,dtype:"float32"}}),q=PE({inputs:{x:j},backend:n,attrs:{reps:[P/$]}});return l.push(j),l.push(q),g(U,I,q,_,A)},y=g(m,"unsortedSegmentSum",s,f,i),b=he({inputs:{x:y},backend:n,attrs:{shape:c}}),x=b;if(p!=null){l.push(b);let v=C.getUndoAxesPermutation(p);x=Cn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var bse={kernelName:Lc,backendName:"webgl",kernelFunc:yse},xse=[v9,k9,N9,_9,A9,D9,M9,O9,W9,U9,j9,X9,Z9,nZ,sZ,oZ,uZ,hZ,fZ,yZ,wZ,_Z,AZ,FZ,LZ,BZ,GZ,t9,qZ,ZZ,nQ,lQ,pQ,dQ,mQ,gQ,xQ,kQ,NQ,CQ,EQ,$Q,RQ,PQ,BQ,VQ,HQ,KQ,YQ,eee,ree,lee,cee,mee,fee,yee,xee,wee,Iee,Nee,Eee,Fee,Mee,Oee,Bee,Uee,qee,Jee,e9,Qee,YZ,nte,ste,lte,a9,dte,gte,bte,kte,Nte,Ete,Fte,Pte,Bte,Ute,Hte,Xte,Jte,Qte,ane,sne,one,une,cne,fne,xne,Ine,$ne,l9,Mne,Lne,Wne,Gne,RZ,qne,Xne,Jne,eae,rae,s9,iae,oae,MZ,Cne,pae,mae,bae,p9,kae,Nae,Eae,Fae,Pae,Lae,Wae,Gae,jae,Xae,Zae,tre,sre,lre,cre,mre,TZ,Ene,yre,xre,wre,Ire,Nre,Cre,Ere,$re,Dre,Pre,Lre,Bre,Ure,Hre,qre,Xre,_ne,y9,Zre,tse,rse,lse,cse,b9,hse,fse,bse,Kne];for(let e of xse)zc(e);var $t;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})($t||($t={}));var vc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(vc||(vc={}));var OE;function vse(e){OE=e.wasm.cwrap(si,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function wse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let A=n.dataIdMap.get(i.dataId);if(A.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${A.shape.length}.`);m=A.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=vc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=u?s.shape[1]:s.shape[2],x=Hu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),v=n.makeOutput([...x,y,b],r.dtype),I=n.dataIdMap.get(v.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),_=new Uint8Array(new Int32Array(s.shape).buffer);return OE(c,T,r.shape.length,h,_,s.shape.length,l,u,g,m,f,d||0,I),v}var kse={kernelName:si,backendName:"wasm",setupFunc:vse,kernelFunc:wse};function rn(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return w.sizeFromShape(u.shape)===0||n(l,$t[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var Ise=rn(Wl);function dn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=C.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(p.shape).buffer),b=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,y,p.shape.length,$t[u.dtype],b),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Sse=!0,Nse=dn(ys,Sse),LE;function Tse(e){LE=e.wasm.cwrap(wi,null,["array","number","number","number"])}function Cse(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return LE(s,r.length,$t[a.dtype],i),a}var _se={kernelName:wi,backendName:"wasm",setupFunc:Tse,kernelFunc:Cse};function yg(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Ese={kernelName:Bi,backendName:"wasm",kernelFunc:yg},zE;function Ase(e){zE=e.wasm.cwrap(Er,null,["number","array","number","number","number","array","number"])}function ms(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Fse(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=$se(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=yg({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return zE(p,h,l.shape.length,$t[l.dtype],d,c,s.length),u}function $se(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Fse(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Dse={kernelName:Er,backendName:"wasm",kernelFunc:ms,setupFunc:Ase};function $s(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=C.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=C.getInnerMostAxes(i.length,r),l=ms({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var BE;function Rse(e){BE=e.wasm.cwrap(Gl,null,["number, number, number"])}function Mse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=$s(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;C.assertAxesAreInnerMostDims("all",p,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;BE(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=C.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var Pse={kernelName:Gl,backendName:"wasm",setupFunc:Rse,kernelFunc:Mse},WE;function Ose(e){WE=e.wasm.cwrap(Hl,null,["number, number, number"])}function Lse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=$s(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;C.assertAxesAreInnerMostDims("any",p,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;WE(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=C.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var zse={kernelName:Hl,backendName:"wasm",setupFunc:Ose,kernelFunc:Lse},VE;function Bse(e){VE=e.wasm.cwrap(ki,null,["number","number","number","number","number"])}function Wse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:d}=$s(s,r,t);if(d){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=w.sizeFromShape(h.shape),g=l.shape[p[0]];return VE(o,$t[l.dtype],f,g,m),d&&t.disposeData(u.dataId),h}var Vse={kernelName:ki,backendName:"wasm",kernelFunc:Wse,setupFunc:Bse},UE;function Use(e){UE=e.wasm.cwrap(Ii,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Gse(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=C.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.strideHeight,b=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let v=a.makeOutput(p.outShape,"float32"),I=a.dataIdMap.get(v.dataId).id;return UE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,I),v}var Hse={kernelName:Ii,backendName:"wasm",setupFunc:Use,kernelFunc:Gse};function Vn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=w.sizeFromShape(a.shape),i=w.inferFromImplicitShape(r,s);return w.assert(s===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var jse={kernelName:_u,backendName:"wasm",kernelFunc:Vn},GE;function qse(e){GE=e.wasm.cwrap(Si,null,["number","array","number","number","array","number","number","number","number"])}function Kse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=Hu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[y,h,d]:[y,d,h],I=Vn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Vn({inputs:{x:s},backend:n,attrs:{shape:v}}),_=n.dataIdMap.get(I.dataId).id,A=n.dataIdMap.get(T.dataId).id,F=i?I.shape[2]:I.shape[1],P=o?T.shape[1]:T.shape[2],$=Math.max(g,y),S=n.makeOutput([$,F,P],I.dtype),M=n.dataIdMap.get(S.dataId).id,U=new Uint8Array(new Int32Array(I.shape).buffer),j=new Uint8Array(new Int32Array(T.shape).buffer);return GE(_,U,I.shape.length,A,j,T.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData(T.dataId),S.shape=b,S}var Xse={kernelName:Si,backendName:"wasm",setupFunc:qse,kernelFunc:Kse};function xi(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=qt.parseSliceParams(t,n,a),o=qt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=w.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=qt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+w.sizeFromShape(i))),u}if(t.dtype==="string"){let m=gm(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Yse(l,p[0],c,s,i);else if(h===3)Jse(l,p[0],p[1],c,s,i);else if(h===4)Zse(l,p[0],p[1],p[2],c,s,i);else{let m=gm(l,s,i,t.shape,t.dtype);c.set(m)}return u}function Yse(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function Jse(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Zse(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let y=p;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var Qse={kernelName:Fu,backendName:"wasm",kernelFunc:xi};function eie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((y,b)=>y*b),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),p=C.getReshapedPermuted(r.shape,s,o),d=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(p,i,s.length),h=Vn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ms({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Vn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=xi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var tie={kernelName:Jl,backendName:"wasm",kernelFunc:eie};function cp(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var nie={kernelName:Ni,backendName:"wasm",kernelFunc:cp},aie=rn(Ti),HE;function rie(e){HE=e.wasm.cwrap(bs,null,["number","number","number","number"])}function sie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return HE(o,s,i,u),l}var iie={kernelName:bs,backendName:"wasm",setupFunc:rie,kernelFunc:sie};function jE(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>w.sizeFromShape(h.shape)>0);if(s.length===1)return yg({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(C.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=w.sizeFromShape(x.shape.slice(a));return Vn({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=C.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=q0(m,r,t[0].dtype,f),y=C.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=C.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=w.sizeFromShape(s[0].shape.slice(0,a)),u=0,p=s.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],y=h*g,b=d[f].subarray(y,y+g);c.set(b,m),m+=g}}return i}var oie={kernelName:Zl,backendName:"wasm",kernelFunc:jE},qE;function lie(e){qE=e.wasm.cwrap(Ci,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function uie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=C.convertConv2DDataFormat(c),m=C.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,I=m.dilationHeight,T=m.dilationWidth,_=m.strideHeight,A=m.strideWidth,F=m.inChannels,P=m.outChannels,$=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),M=a.dataIdMap.get(S.dataId).id;return qE(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,v,$,I,T,_,A,F,P,M),S}var pie={kernelName:Ci,backendName:"wasm",setupFunc:lie,kernelFunc:uie},KE;function cie(e){KE=e.wasm.cwrap(_i,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function die(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=C.convertConv2DDataFormat(l),h=C.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:v,outHeight:I,outWidth:T,strideHeight:_,strideWidth:A}=h,F=f-1-h.padInfo.top,P=g-1-h.padInfo.left,$=h.dataFormat==="channelsLast",S=w.computeStrides(h.inShape),M=w.computeStrides(r.shape),[U,j,q]=w.computeStrides(s.shape),K=S[0],Y=$?S[1]:S[2],te=$?S[2]:1,re=$?1:S[1],Q=M[0],ie=$?M[1]:M[2],ae=$?M[2]:1,oe=$?1:M[1],ue=t.makeOutput(h.inShape,"float32"),we=t.dataIdMap.get(ue.dataId).id,ye=t.dataIdMap.get(r.dataId).id,Ie=t.dataIdMap.get(s.dataId).id;return KE(ye,Ie,m,f,g,b,x,y,I,T,v,_,A,F,P,U,j,q,K,Y,te,re,Q,ie,ae,oe,we),ue}var hie={kernelName:_i,backendName:"wasm",setupFunc:cie,kernelFunc:die},mie=rn(Ei),fie=rn(Ai),Rx;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Rx||(Rx={}));var XE;function gie(e){XE=e.wasm.cwrap(eu,null,["number","number","number","number","array","number","number","number","number","number"])}function yie(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=cp({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,I=new Uint8Array(new Int32Array(o.shape).buffer);return XE(g,y,b,p,I,d,c,Rx[r],s,v),f!=null&&t.disposeData(f.dataId),x}var bie={kernelName:eu,backendName:"wasm",setupFunc:gie,kernelFunc:yie},YE;function xie(e){YE=e.wasm.cwrap(Ql,null,["number","number","number","number","number","number"])}function vie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),p=r;u!==null&&(p=ms({inputs:{x:r},attrs:{perm:u},backend:n}));let d=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;YE(m,i?1:0,o?1:0,h,f,$t[r.dtype]);let g=c;if(u!==null){let y=C.getUndoAxesPermutation(u);g=ms({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var wie={kernelName:Ql,backendName:"wasm",setupFunc:xie,kernelFunc:vie},JE;function kie(e){JE=e.wasm.cwrap($i,null,["number","number","number","number","number","number"])}function Iie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),p=r;u!==null&&(p=ms({inputs:{x:r},attrs:{perm:u},backend:n}));let d=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;JE(m,i?1:0,o?1:0,h,f,$t[r.dtype]);let g=c;if(u!==null){let y=C.getUndoAxesPermutation(u);g=ms({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Sie={kernelName:$i,backendName:"wasm",setupFunc:kie,kernelFunc:Iie},ZE;function Nie(e){ZE=e.wasm.cwrap(tu,null,["number","number","number","array","number","array","array","number","number"])}function Tie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return ZE(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,v),f}var Cie={kernelName:tu,backendName:"wasm",setupFunc:Nie,kernelFunc:Tie},QE;function _ie(e){QE=e.wasm.cwrap(Fi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Eie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=C.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,I=h.dilationWidth,T=h.strideHeight,_=h.strideWidth,A=h.inChannels,F=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get($.dataId).id;return QE(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,P,v,I,T,_,A,F,S),$}var Aie={kernelName:Fi,backendName:"wasm",setupFunc:_ie,kernelFunc:Eie},$ie=rn(Ri),Fie=!1,Die=dn(au,Fie,"bool"),Rie=rn(Mi,"float32");function Mx(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Vn({inputs:{x:r},backend:a,attrs:{shape:o}})}var Mie={kernelName:ru,backendName:"wasm",kernelFunc:Mx};function eA(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Pie={kernelName:Cc,backendName:"wasm",kernelFunc:eA},tA;function Oie(e){tA=e.wasm.cwrap(iu,null,["number","number","number","number","number","number"])}function Lie(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return tA(s,o,l,u,p,i),r}var zie={kernelName:iu,backendName:"wasm",kernelFunc:Lie,setupFunc:Oie},Bie=rn(Pi),Wie=!1,Vie=dn(Oi,Wie),nA;function Uie(e){nA=e.wasm.cwrap(Li,null,["number","number","number","number","number","number","number"])}function Gie(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return nA(p,d,c,h,m,r,g),f}var Hie={kernelName:Li,backendName:"wasm",setupFunc:Uie,kernelFunc:Gie},aA;function jie(e){aA=e.wasm.cwrap(ii,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=vc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);v=ae.id}let I=f.filterHeight,T=f.filterWidth,_=f.padInfo.top,A=f.padInfo.right,F=f.padInfo.bottom,P=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,U=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Y=f.inHeight,te=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return aA(y,K,Y,te,b,I,T,v,_,A,F,P,q,$,S,M,U,j,x,g,ie,m||0,Q),re}var Kie={kernelName:ii,backendName:"wasm",setupFunc:jie,kernelFunc:qie},rA;function Xie(e){rA=e.wasm.cwrap(oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=vc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);v=ae.id}let I=f.filterHeight,T=f.filterWidth,_=f.padInfo.top,A=f.padInfo.right,F=f.padInfo.bottom,P=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,U=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Y=f.inHeight,te=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return rA(y,K,Y,te,b,I,T,v,_,A,F,P,q,$,S,M,U,j,x,g,ie,m||0,Q),re}var Jie={kernelName:oi,backendName:"wasm",setupFunc:Xie,kernelFunc:Yie},sA;function Zie(e){sA=e.wasm.cwrap(lu,null,["number","number","number","number","number","number","array","number"])}function Qie(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=nv.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return sA(c,$t[a.dtype],h,i,d,o,m,f),u}var eoe={kernelName:lu,backendName:"wasm",setupFunc:Zie,kernelFunc:Qie},iA;function toe(e){iA=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function noe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let _=0;_<u.length;++_){let A=u[_];w.assert(A<=p-1&&A>=0,()=>`GatherV2: the index value ${A} is not in [0, ${p-1}]`)}let d=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Vn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(s.shape),m=Vn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let y=c.shape.length-1,b=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,v=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(w.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer);return iA(b,$t[r.dtype],I,y,x,d.batchSize,T,v),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var aoe={kernelName:ou,backendName:"wasm",setupFunc:toe,kernelFunc:noe},roe=!1,soe=dn(uu,roe,"bool"),ioe=!1,ooe=dn(zi,ioe,"bool"),oA;function loe(e){oA=e.wasm.cwrap(Wi,null,["number","number","number","number"])}function uoe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;oA(r,$t[t.dtype],n,i)}return s}var poe={kernelName:Wi,backendName:"wasm",setupFunc:loe,kernelFunc:uoe},coe=!1,doe=dn(hu,coe,"bool"),hoe=!1,moe=dn(mu,hoe,"bool"),foe=rn(Vi),goe=!1,yoe=dn(gu,goe,"bool"),boe=rn(yu),xoe=!1,voe=dn(bu,xoe,"bool"),woe=!1,koe=dn(oS,woe,"bool"),lA;function Ioe(e){lA=e.wasm.cwrap(Ui,null,["number","number","number","number"])}function Soe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=$s(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;C.assertAxesAreInnerMostDims("max",p,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;lA(o,$t[i.dtype],g,b)}if(c&&t.disposeData(u.dataId),s){let b=C.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var Noe={kernelName:Ui,backendName:"wasm",setupFunc:Ioe,kernelFunc:Soe},Toe=!1,Coe=dn(Gi,Toe),uA;function _oe(e){uA=e.wasm.cwrap(Hi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Eoe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=C.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.dilationHeight,b=p.dilationWidth,x=p.strideHeight,v=p.strideWidth,I=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let _=a.makeOutput(p.outShape,"float32"),A=a.dataIdMap.get(_.dataId).id;return uA(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,v,I,T,A),_}var Aoe={kernelName:Hi,backendName:"wasm",setupFunc:_oe,kernelFunc:Eoe},pA;function $oe(e){pA=e.wasm.cwrap(ji,null,["number, number, number"])}function Foe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=$s(i,r,t),m=d;if(h){let v=t.dataIdMap.get(p.dataId).id;v!==o&&(u=p,l=v,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=w.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=cp({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;pA(l,y,v)}if(h&&t.disposeData(p.dataId),s){let v=C.expandShapeToKeepDim(x.shape,c);x.shape=v}return u.dtype!=="float32"&&t.disposeData(b.dataId),x}var Doe={kernelName:ji,backendName:"wasm",setupFunc:$oe,kernelFunc:Foe},cA;function Roe(e){cA=e.wasm.cwrap(qi,null,["number","number","number","number"])}function Moe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=$s(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;C.assertAxesAreInnerMostDims("min",d,m);let[f,g]=C.computeOutAndReduceShapes(u.shape,d),y=w.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;cA(l,$t[i.dtype],y,x)}if(h&&t.disposeData(p.dataId),s){let x=C.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var Poe={kernelName:qi,backendName:"wasm",setupFunc:Roe,kernelFunc:Moe},Ooe=!1,Loe=dn(Ki,Ooe),Px;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Px||(Px={}));var dA;function zoe(e){dA=e.wasm.cwrap(Xi,null,["number","array","number","number","array","array","number","number"])}function Boe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return dA(i,u,t.shape.length,$t[t.dtype],c,h,Px[r],l),o}var Woe={kernelName:Xi,backendName:"wasm",kernelFunc:Boe,setupFunc:zoe},Voe=!0,Uoe=dn(Yi,Voe),Goe=rn(vu);function b1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var hA;function Hoe(e){hA=e.wasm.cwrap(ku,"number",["number","number","number","number","number"])}function joe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=hA(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=b1(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var qoe={kernelName:ku,backendName:"wasm",setupFunc:Hoe,kernelFunc:joe},mA;function Koe(e){mA=e.wasm.cwrap(Iu,"number",["number","number","number","number","number","bool"])}function Xoe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=mA(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=b1(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Yoe={kernelName:Iu,backendName:"wasm",setupFunc:Koe,kernelFunc:Xoe},fA;function Joe(e){fA=e.wasm.cwrap(Su,"number",["number","number","number","number","number","number"])}function Zoe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=fA(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=b1(t,c);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var Qoe={kernelName:Su,backendName:"wasm",setupFunc:Joe,kernelFunc:Zoe},ele=!1,tle=dn(wu,ele,"bool"),gA;function nle(e){gA=e.wasm.cwrap(Ji,null,["number","number","number","number","number"])}function ale(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(r.dataId).id;return gA(p,s,i,o,u),l}var rle={kernelName:Ji,backendName:"wasm",setupFunc:nle,kernelFunc:ale};function sle(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var ile={kernelName:Nu,backendName:"wasm",kernelFunc:sle};function ole(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Mx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Mx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=jE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var lle={kernelName:Tu,backendName:"wasm",kernelFunc:ole},yA;function ule(e){yA=e.wasm.cwrap(Zi,null,["number","array","number","number","array","array","number","number"])}function ple(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(w.sizeFromShape(t.shape)===0)return eA({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return yA(i,u,t.shape.length,$t[t.dtype],c,h,r,l),o}var bA={kernelName:Zi,backendName:"wasm",kernelFunc:ple,setupFunc:ule},cle=!1,dle=dn(Qi,cle),xA;function hle(e){xA=e.wasm.cwrap(eo,null,["number","number","number"])}function mle(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=cp({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return xA(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var fle={kernelName:eo,backendName:"wasm",setupFunc:hle,kernelFunc:mle},vA;function gle(e){vA=e.wasm.cwrap(to,null,["number","number","number","number"])}function yle(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=$s(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;vA(l,y,$t[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=C.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var ble={kernelName:to,backendName:"wasm",setupFunc:gle,kernelFunc:yle},xle=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=Y0(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},vle={kernelName:Ac,backendName:"wasm",kernelFunc:xle},wle=!0,kle=dn(Di,wle),Ile=rn(no),Sle=rn(so),wA;function Nle(e){wA=e.wasm.cwrap(ro,null,["number","number","number","number","number","number","number","number","number","number"])}function Tle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=cp({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return wA(y,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var Cle={kernelName:ro,backendName:"wasm",setupFunc:Nle,kernelFunc:Tle},kA;function _le(e){kA=e.wasm.cwrap(ao,null,["number","number","number","number","number","number","number","number","number","number"])}function Ele(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),y;g.dtype!=="float32"&&(y=cp({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(y.dataId));let b=g.id,x=t.dataIdMap.get(f.dataId).id;return kA(b,p,d,c,h,l,u,s?1:0,i?1:0,x),y!=null&&t.disposeData(y.dataId),f}var Ale={kernelName:ao,backendName:"wasm",setupFunc:_le,kernelFunc:Ele},IA;function $le(e){IA=e.wasm.cwrap(io,null,["number","array","number","array","number","number"])}function Fle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return yg({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);IA(l,p,i.length,d,r.shape.length,u);let c=Vn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var Dle={kernelName:io,backendName:"wasm",kernelFunc:Fle,setupFunc:$le},SA;function Rle(e){SA=e.wasm.cwrap(Gu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Mle(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=C.getImageCenter(o,c,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(x).buffer);return SA(u,d,c,h,m,s,f,g,v,x.length,p),l}var Ple={kernelName:Gu,backendName:"wasm",kernelFunc:Mle,setupFunc:Rle},Ole=rn(oo),Lle=rn(lo),NA;function zle(e){NA=e.wasm.cwrap(Eu,null,["number","number","number","number","number","number","array","number","number"])}function Ble(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=av.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return NA(h,m,$t[s.dtype],l,u,p,f,c,g),o}var Wle={kernelName:Eu,backendName:"wasm",setupFunc:zle,kernelFunc:Ble},TA;function Vle(e){TA=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Ule(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:w.sizeFromShape(r.shape.slice(1));return TA(i,o,l,h,p),u}var Gle={kernelName:Au,backendName:"wasm",kernelFunc:Ule,setupFunc:Vle},CA;function Hle(e){CA=e.wasm.cwrap(po,null,["number","number"])}function jle(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||CA(a,s),r}var qle={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Hle,kernelFunc:jle},Kle=rn(uo),_A;function Xle(e){_A=e.wasm.cwrap(mo,null,["number","number","number","number"])}function Yle(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||_A(r,i,o,l),s}var Jle={kernelName:mo,backendName:"wasm",setupFunc:Xle,kernelFunc:Yle};function Zle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=bA.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(u.shape,s,o,!1),d=C.getPermuted(p.length,s.length,!1),c=C.getReshapedPermuted(u.shape,s,o,!1),h=Vn({inputs:{x:u},backend:n,attrs:{shape:p}}),m=ms({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Vn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var Qle={kernelName:Pu,backendName:"wasm",kernelFunc:Zle},EA;function eue(e){EA=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function tue(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([u],"bool"),x=t.dataIdMap.get(b.dataId).id,v=t.makeOutput([o],a.dtype),I=t.dataIdMap.get(v.dataId).id,T=t.makeOutput([4],"int32"),_=t.dataIdMap.get(T.dataId).id,A=EA(d,c,$t[r.dtype],o,u,l,h,f,y,x,I,_),F=t.readSync(T.dataId),P;switch(F[0]){case 1:{P=C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(F[1]);break}case 2:{P=C.getSparseFillEmptyRowsNegativeIndexErrorMessage(F[1],F[2]);break}case 3:P=C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(F[1],F[2],F[3]);break;default:P=""}if(t.disposeData(T.dataId),P)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(v.dataId),new Error(P);let $=m,S=g;return A!==p[0]&&($=xi({inputs:{x:m},attrs:{begin:0,size:[A,l]},backend:t}),S=xi({inputs:{x:g},attrs:{begin:0,size:A},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[$,S,b,v]}var nue={kernelName:$c,backendName:"wasm",setupFunc:eue,kernelFunc:tue},AA;function aue(e){AA=e.wasm.cwrap(Lu,null,["number","number","number","number","number","number","number"])}function rue(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=w.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;AA(i,o,l,u,c,m,g);let y=t.readSync(f.dataId),b;switch(y[0]){case 0:{b=C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{b=C.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:b=C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));b=C.getSparseReshapeInputOutputMultipleErrorMessage(x,v);break}case 4:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));b=C.getSparseReshapeInputOutputMismatchErrorMessage(x,v);break}default:b=""}if(t.disposeData(f.dataId),b)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(b);return[d,h]}var sue={kernelName:Lu,backendName:"wasm",setupFunc:aue,kernelFunc:rue},$A;function FA(e){$A=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function DA(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),y=n.dataIdMap.get(g.dataId).id;$A(d,$t[r.dtype],r.shape[0],c,h,f,y,t,0);let b=n.readSync(g.dataId),x;switch(b[0]){case 0:{x=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b[1],b[2]);break;case 3:x=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b[1],b[2],b[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function iue(e){return DA(e,!0)}var oue={kernelName:Fc,backendName:"wasm",setupFunc:FA,kernelFunc:iue};function lue(e){return DA(e,!1)}var uue={kernelName:Dc,backendName:"wasm",setupFunc:FA,kernelFunc:lue};function pue(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=xi({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var cue={kernelName:Ou,backendName:"wasm",kernelFunc:pue},due=rn(co),hue=rn(Rc),mue=!0,fue=dn(fo,mue),RA;function gue(e){RA=e.wasm.cwrap(vs,null,["number","number","number","number"])}function yue(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return RA(i,r,$t[s.dtype],l),o}var bue={kernelName:vs,backendName:"wasm",setupFunc:gue,kernelFunc:yue},MA;function xue(e){MA=e.wasm.cwrap(zu,null,["number","array","number","array","array","array","array","array","number","number"])}function vue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=Vn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||y){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=qt.computeOutShape(b,x,v),_=xi({inputs:{x:r},backend:t,attrs:{begin:b,size:T}});I=Vn({inputs:{x:_},backend:t,attrs:{shape:m}}),t.disposeData(_.dataId)}else{let T=t.makeOutput(h,"float32"),_=t.dataIdMap.get(r.dataId).id,A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),F=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(v).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),U=t.dataIdMap.get(T.dataId).id;MA(_,A,r.shape.length,F,P,$,S,M,h.length,U),I=Vn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return I}var wue={kernelName:zu,backendName:"wasm",setupFunc:xue,kernelFunc:vue};function kue(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=Z0(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),y=t.dataIdMap.get(g.dataId);y.stringBytes=m;let b=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(b).set(f),[g,b]}var Iue={kernelName:Mc,backendName:"wasm",kernelFunc:kue};function Sue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=Q0(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var Nue={kernelName:Pc,backendName:"wasm",kernelFunc:Sue};function Tue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=e1(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var Cue={kernelName:Oc,backendName:"wasm",kernelFunc:Tue},_ue=!0,Eue=dn(go,_ue),PA;function Aue(e){PA=e.wasm.cwrap(ho,null,["number","number","number","number"])}function $ue(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=$s(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;PA(l,y,$t[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=C.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var Fue={kernelName:ho,backendName:"wasm",setupFunc:Aue,kernelFunc:$ue},Due=rn(yo),Rue=rn(bo),OA;function Mue(e){OA=e.wasm.cwrap(xs,null,["number","array","number","array","number","number"])}function Pue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return OA(s,l,r.shape.length,u,o.length,$t[p.dtype],d),p}var Oue={kernelName:xs,backendName:"wasm",setupFunc:Mue,kernelFunc:Pue},LA;function Lue(e){LA=e.wasm.cwrap(Bu,null,["number","array","number","number","number","bool","number","number"])}var zue=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return LA(i,o,a.shape.length,$t[a.dtype],r,s,p,c),[u,d]},Bue={kernelName:Bu,backendName:"wasm",setupFunc:Lue,kernelFunc:zue},zA;function Wue(e){zA=e.wasm.cwrap(Wu,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Vue(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),b=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(b.dataId).id,v=t.dataIdMap.get(r.dataId).id,I=t.dataIdMap.get(s.dataId).id,T=i==="nearest"?1:2,_;switch(o){case"constant":_=1;break;case"reflect":_=2;break;case"wrap":_=3;break;case"nearest":_=4;break;default:_=1;break}return zA(v,I,s.shape[0]>1,p,m,f,h,c,d,y,r.shape.length-1,T,_,l,x),b}var Uue={kernelName:Wu,backendName:"wasm",setupFunc:Wue,kernelFunc:Vue};function Gue(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=xi({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var Hue={kernelName:Vu,backendName:"wasm",kernelFunc:Gue};function jue(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var que={kernelName:Uu,backendName:"wasm",kernelFunc:jue},Kue=[kse,Ise,Nse,_se,Pse,zse,Vse,Hse,Xse,tie,nie,aie,iie,oie,pie,hie,mie,fie,bie,wie,Sie,Cie,Aie,$ie,Die,Rie,Mie,Pie,zie,Bie,Vie,Hie,Kie,Jie,eoe,aoe,soe,ooe,Ese,poe,doe,moe,foe,yoe,boe,voe,koe,Noe,Coe,Aoe,Doe,Poe,Loe,Woe,Uoe,Goe,qoe,Yoe,Qoe,tle,rle,ile,lle,bA,dle,fle,ble,vle,kle,Ile,Sle,jse,Cle,Ale,Dle,Ple,Ole,Lle,Wle,Gle,qle,Kle,Qse,Jle,Qle,nue,sue,oue,uue,cue,due,hue,fue,bue,wue,Iue,Nue,Cue,Eue,Fue,Due,Rue,Oue,Bue,Uue,Dse,Hue,que];for(let e of Kue)zc(e);var Ox=X();Ox.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Ox.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Ox.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var UI=fs(qF()),Xue=fs(KF()),GI=fs(XF()),HI=UI.default||UI,Yue=GI.default||GI,BA=class extends wc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(WA),Lx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Nm(this,sr())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||w.sizeFromShape(s);let o=w.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return Que(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Jue(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function jI(e,t,n){if(Im!=null)return Im;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),ac!=null&&ac[a]!=null?ac[a]:n+a}async function Zue(){let[e,t]=await Promise.all([X().getAsync("WASM_HAS_SIMD_SUPPORT"),X().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Xue.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?jI(e,t,ec!=null?ec:l):l+o},x1&&(r.instantiateWasm=Jue(jI(e,t,ec!=null?ec:"")));let s=!1;r.onAbort=()=>{s||rc||(rc=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Im==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+HI.toString()],{type:"text/javascript"}),i=HI(r)):i=Yue(r),i.then(o=>{s=!0,rc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function Que(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var epe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Im=null,ec=null,ac={},rc=!1,x1=!1;function tpe(e,t=!1){if(tv("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),rc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Im=e,x1=t}function npe(e,t=!1){if(rc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")ec=e;else{ac=e;let n=epe.filter(a=>ac[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}x1=t}var WA=-1,Lx=-1;function ape(e){WA=e}function rpe(){if(Lx===-1)throw new Error("WASM backend not initialized.");return Lx}var spe="3.19.0",ipe=2;sf("wasm",async()=>{let{wasm:e}=await Zue();return new BA(e)},ipe);var ope="3.19.0",lpe="3.19.0",upe="3.19.0",ppe="3.19.0",cpe="3.19.0",dpe="3.19.0",hpe="3.19.0",mpe="3.19.0",fpe={tfjs:ope,"tfjs-core":lpe,"tfjs-data":upe,"tfjs-layers":ppe,"tfjs-converter":cpe,"tfjs-backend-cpu":dpe,"tfjs-backend-webgl":hpe,"tfjs-backend-wasm":mpe};var G1={};Ih(G1,{AnchorPosition:()=>M1,DrawBox:()=>Sd,DrawBoxOptions:()=>wg,DrawFaceLandmarks:()=>Fg,DrawFaceLandmarksOptions:()=>$g,DrawTextField:()=>zr,DrawTextFieldOptions:()=>fp,drawContour:()=>Pr,drawDetections:()=>Spe,drawFaceExpressions:()=>Epe,drawFaceLandmarks:()=>$pe});function Pr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var I1={};Ih(I1,{computeReshapedDimensions:()=>k1,getCenterPoint:()=>$o,isDimensions:()=>xg,isEven:()=>bg,isFloat:()=>w1,isTensor:()=>Eo,isTensor1D:()=>gpe,isTensor2D:()=>v1,isTensor3D:()=>Or,isTensor4D:()=>xa,isValidNumber:()=>er,isValidProbablitiy:()=>dp,range:()=>br,round:()=>Ao});var yn=class{constructor(t,n){if(!er(t)||!er(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new yn(1/this.width,1/this.height)}};function Eo(e,t){return e instanceof Ae&&e.shape.length===t}function gpe(e){return Eo(e,1)}function v1(e){return Eo(e,2)}function Or(e){return Eo(e,3)}function xa(e){return Eo(e,4)}function w1(e){return e%1!==0}function bg(e){return e%2===0}function Ao(e,t=2){let n=10**t;return Math.floor(e*n)/n}function xg(e){return e&&e.width&&e.height}function k1({width:e,height:t},n){let a=n/Math.max(t,e);return new yn(Math.round(e*a),Math.round(t*a))}function $o(e){return e.reduce((t,n)=>t.add(n),new Pe(0,0)).div(new Pe(e.length,e.length))}function br(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function er(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function dp(e){return er(e)&&e>=0&&e<=1}var Pe=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Pe(this.x+t.x,this.y+t.y)}sub(t){return new Pe(this.x-t.x,this.y-t.y)}mul(t){return new Pe(this.x*t.x,this.y*t.y)}div(t){return new Pe(this.x/t.x,this.y/t.y)}abs(){return new Pe(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Pe(Math.floor(this.x),Math.floor(this.y))}};var lt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(er)}static assertIsValidBox(t,n,a=!1){if(!lt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(er),s=[a.x,a.y,a.width,a.height].every(er);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];lt.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Pe(this.left,this.top)}get topRight(){return new Pe(this.right,this.top)}get bottomLeft(){return new Pe(this.left,this.bottom)}get bottomRight(){return new Pe(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new lt({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new lt({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new lt({x:t,y:n,width:a,height:r})}rescale(t){let n=xg(t)?t.width:t,a=xg(t)?t.height:t;return new lt({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new lt({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new lt({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new lt({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new lt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Fo=class extends lt{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Lr=class{constructor(t,n,a,r,s){this._imageDims=new yn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new lt(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new lt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Lr(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var xt=class extends Lr{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new xt(a,r,s)}};function S1(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function N1(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new Fo(a,r,s,i)}function T1(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(S1(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function tr(e,t){return O(()=>{let[n,a,r]=t,s=An([...e.shape.slice(0,3),1],n,"float32"),i=An([...e.shape.slice(0,3),1],a,"float32"),o=An([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return ce(e,l)})}function C1(e,t=!1){return O(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,An(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>le(c,"float32"));return Qe(d,i)})}function ype(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function kd(e){return 1/(1+Math.exp(-e))}function bpe(e){return Math.log(e/(1-e))}var Do=class extends lt{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var xpe=.5,vpe=.43,wpe=.45,ra=class{constructor(t,n,a=new Pe(0,0)){let{width:r,height:s}=n;this._imgDims=new yn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Pe(r,s)).add(a))}get shift(){return new Pe(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Pe(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Pe(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof xt?t.box.floor():new lt(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/wpe),l=$o(t),u=Math.floor(Math.max(0,l.x-xpe*o)),p=Math.floor(Math.max(0,l.y-vpe*o));return new Do(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=N1(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var _1=class extends ra{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],$o([t[3],t[4]])]}};var Ro=class extends ra{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map($o)}};var hp=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Ao(this.distance)})`:""}`}};var mp=class extends lt{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(lt.assertIsValidBox(n,a),!er(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var xr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new xr(t.label,n)}};var E1=class extends mp{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(mp.assertIsValidLabeledBox(n,a),!dp(n.score)||!dp(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function vr(e){return e.detection instanceof xt}function Mo(e,t){return{...e,...{detection:t}}}function A1(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Id(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function vg(e){let t="";if(!e&&Id())try{e=SF("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function $1(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=vg();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function F1(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var sn;function kpe(){if(!sn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return sn}function D1(e){sn=e}function R1(){return F1()?D1(A1()):Id()?D1($1()):null}function Ipe(e){if(sn||R1(),!sn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=sn.Canvas,Image:n=sn.Image}=e;sn.Canvas=t,sn.Image=n,sn.createCanvasElement=e.createCanvasElement||(()=>new t),sn.createImageElement=e.createImageElement||(()=>new n),sn.ImageData=e.ImageData||sn.ImageData,sn.Video=e.Video||sn.Video,sn.fetch=e.fetch||sn.fetch,sn.readFile=e.readFile||sn.readFile}var et={getEnv:kpe,setEnv:D1,initialize:R1,createBrowserEnv:A1,createFileSystem:vg,createNodejsEnv:$1,monkeyPatch:Ipe,isBrowser:F1,isNodejs:Id};R1();function Po(e){return!et.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Kn(e){let{Canvas:t,CanvasRenderingContext2D:n}=et.getEnv();if(e instanceof n)return e;let a=Po(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var M1=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(M1||{}),fp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},zr=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof zr?t.text:t,this.anchor=n,this.options=new fp(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=Po(t),a=Kn(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var wg=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new fp({...i,...s})}},Sd=class{constructor(t,n={}){this.box=new lt(t),this.options=new wg(n)}draw(t){let n=Kn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new zr([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Spe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof xt?a.score:vr(a)?a.detection.score:void 0,s=a instanceof xt?a.box:vr(a)?a.detection.box:new lt(a),i=r?`${Ao(r)}`:void 0;new Sd(s,{label:i}).draw(e)})}function Nd(e){let{Image:t,Video:n}=et.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function P1(e){return new Promise((t,n)=>{(e instanceof et.getEnv().Canvas||Nd(e))&&t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function O1(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=et.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Oo(e){let{Image:t,Video:n}=et.getEnv();return e instanceof t?new yn(e.naturalWidth,e.naturalHeight):e instanceof n?new yn(e.videoWidth,e.videoHeight):new yn(e.width,e.height)}function Lo({width:e,height:t}){let{createCanvasElement:n}=et.getEnv(),a=n();return a.width=e,a.height=t,a}function Td(e,t){let{ImageData:n}=et.getEnv();if(!(e instanceof n)&&!Nd(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Oo(e),s=Lo({width:a,height:r});return e instanceof n?Kn(s).putImageData(e,0,0):Kn(s).drawImage(e,0,0,a,r),s}async function L1(e,t){let n=t||et.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(xa(e)?1:0),i=O(()=>e.as3D(a,r,s).toInt());return await xo.toPixels(i,n),i.dispose(),n}function kg(e){let{Image:t,Canvas:n,Video:a}=et.getEnv();return e instanceof t||e instanceof n||e instanceof a}function z1(e,t,n=!1){let{Image:a,Canvas:r}=et.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Lo({width:1,height:1});let s=Oo(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=Lo({width:t,height:t}),p=e instanceof r?e:Td(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&Kn(u).drawImage(p,c,h,o,l),u}var wr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Or(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(xa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof et.getEnv().Canvas?a:Td(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return br(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return k1({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,O(()=>{let a=br(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ae){let o=xa(i)?i:mn(i);return o=C1(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Cr.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof et.getEnv().Canvas)return xo.fromPixels(z1(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Rt(a.map(s=>le(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function vt(e){if(e instanceof wr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Po);return a.forEach((r,s)=>{if(!kg(r)&&!Or(r)&&!xa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(xa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>kg(r)&&P1(r))),new wr(a,Array.isArray(e))}async function gp(e,t){let{Canvas:n}=et.getEnv(),a=e;if(!(e instanceof n)){let i=await vt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await L1(o)}let r=Kn(a);return t.map(i=>i instanceof xt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=Lo({width:l,height:u});return l>0&&u>0&&Kn(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function yp(e,t){if(!Or(e)&&!xa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(xa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return O(()=>{let[n,a,r]=e.shape.slice(xa(e)?1:0);return t.map(o=>o instanceof xt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>wo(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Br(e,t){let{fetch:n}=et.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function Npe(e){let t=await Br(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return O1(n)}async function B1(e){return(await Br(e)).json()}async function Tpe(e){return new Float32Array(await(await Br(e)).arrayBuffer())}function VA(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=et.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function Cpe(e){let t=await Br(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return VA(n)}function Ig(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function W1(e,t){let{manifestUri:n,modelBaseUri:a}=Ig(e,t),r=await B1(n);return Tn.loadWeights(r,a)}function _pe(e,t,n=!1){let{width:a,height:r}=n?Oo(t):t;return e.width=a,e.height=r,{width:a,height:r}}var on=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof os)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof os))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Bn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await W1(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=et.getEnv(),{manifestUri:a,modelBaseUri:r}=Ig(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=Tn.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ae))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Xn(e,t,n){return O(()=>{let a=Cs(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Z(a,t.bias),a})}function Sg(e,t,n=!1){return O(()=>{let a=Xe(n?Z(Dt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Xn(e,t.conv0,[2,2])),r=Xn(a,t.conv1,[1,1]),s=Xe(Z(a,r)),i=Xn(s,t.conv2,[1,1]);return Xe(Z(a,Z(r,i)))})}function Cd(e,t,n=!1,a=!0){return O(()=>{let r=Xe(n?Z(Dt(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Xn(e,t.conv0,a?[2,2]:[1,1])),s=Xn(r,t.conv1,[1,1]),i=Xe(Z(r,s)),o=Xn(i,t.conv2,[1,1]),l=Xe(Z(r,Z(s,o))),u=Xn(l,t.conv3,[1,1]);return Xe(Z(r,Z(s,Z(o,u))))})}function zo(e,t,n="same",a=!1){return O(()=>{let r=Z(Dt(e,t.filters,[1,1],n),t.bias);return a?Xe(r):r})}function Fn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function bp(e,t){return(n,a,r,s)=>{let i=$a(e(n*a*r*r),[r,r,n,a]),o=Ke(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Ng(e,t){return(n,a,r)=>{let s=Ca(e(n*a),[n,a]),i=Ke(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var _d=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function xp(e,t){return(n,a,r)=>{let s=$a(e(9*n),[3,3,n,1]),i=$a(e(n*a),[1,1,n,a]),o=Ke(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new _d(s,i,o)}}function vp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new _d(n,a,r)}}function sa(e,t){return(n,a,r)=>{let s=e[n];if(!Eo(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function Dn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Tg(e,t){let n=bp(e,t),a=xp(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function UA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Dn(e),{extractDenseBlock4Params:r}=Tg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Cg(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function _g(e,t){let n=sa(e,t),a=Cg(n),r=vp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function GA(e){let t=[],{extractDenseBlock4Params:n}=_g(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return Fn(e,t),{params:a,paramMappings:t}}var wp=class extends on{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return O(()=>{let a=le(t.toBatchTensor(112,!0),"float32"),s=tr(a,[122.782,117.001,104.298]).div(255),i=Cd(s,n.dense0,!0);return i=Cd(i,n.dense1),i=Cd(i,n.dense2),i=Cd(i,n.dense3),i=ga(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return GA(t)}extractParams(t){return UA(t)}};function Ed(e,t){return O(()=>Z(Re(e,t.weights),t.bias))}function HA(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=Dn(e),o=Ng(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function jA(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return Fn(e,t),{params:r,paramMappings:t}}function Eg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var kp=class extends on{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return O(()=>{let r=n instanceof wr?this.faceFeatureExtractor.forwardInput(n):n;return Ed(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return HA(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=Eg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),jA(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var V1=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Wr=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);V1.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return V1.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Ad=class extends kp{constructor(t=new wp){super("FaceExpressionNet",t)}forwardInput(t){return O(()=>Za(this.runNet(t)))}async forward(t){return this.forwardInput(await vt(t))}async predictExpressions(t){let n=await vt(t),a=await this.forwardInput(n),r=await Promise.all(mt(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Wr(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function U1(e){return e.expressions instanceof Wr}function Ag(e,t){return{...e,...{expressions:t}}}function Epe(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Wr?s:U1(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=vr(s)?s.detection.box.bottomLeft:a||new Pe(0,0);new zr(l.map(d=>`${d.expression} (${Ao(d.probability)})`),u).draw(e)})}function Bo(e){return vr(e)&&e.landmarks instanceof ra&&e.unshiftedLandmarks instanceof ra&&e.alignedRect instanceof xt}function Ape(e){let t=(o,l,u,p)=>Math.atan2(p-l,u-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,1/0),i=r.reduce((o,l)=>o>l._y?o:l._y,-1/0);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function Ip(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new xt(e.detection.score,r.rescale(s.reverse()),s),o=Ape(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var $g=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},Fg=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new $g(n)}draw(t){let n=Kn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof Ro&&(n.strokeStyle=i,n.lineWidth=s,Pr(n,this.faceLandmarks.getJawOutline()),Pr(n,this.faceLandmarks.getLeftEyeBrow()),Pr(n,this.faceLandmarks.getRightEyeBrow()),Pr(n,this.faceLandmarks.getNose()),Pr(n,this.faceLandmarks.getLeftEye(),!0),Pr(n,this.faceLandmarks.getRightEye(),!0),Pr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function $pe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ra?a:Bo(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new Fg(r).draw(e)})}var qA="1.7.2";function Rpe(e,t){let n=bp(e,t),a=xp(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function KA(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=Dn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Rpe(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};br(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function Mpe(e,t){let n=sa(e,t),a=Cg(n),r=vp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function XA(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Mpe(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};br(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return Fn(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function YA(e,t,n){return Z(Dt(e,t.filters,n,"same"),t.bias)}function H1(e,t,n=!0){let a=n?Xe(e):e;return a=Xn(a,t.separable_conv0,[1,1]),a=Xn(Xe(a),t.separable_conv1,[1,1]),a=Mt(a,[3,3],[2,2],"same"),a=Z(a,YA(e,t.expansion_conv,[2,2])),a}function Ppe(e,t){let n=Xn(Xe(e),t.separable_conv0,[1,1]);return n=Xn(Xe(n),t.separable_conv1,[1,1]),n=Xn(Xe(n),t.separable_conv2,[1,1]),n=Z(n,e),n}var Dg=class extends on{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return O(()=>{let r=le(n.toBatchTensor(112,!0),"float32"),i=tr(r,[122.782,117.001,104.298]).div(255),o=Xe(YA(i,a.entry_flow.conv_in,[2,2]));return o=H1(o,a.entry_flow.reduction_block_0,!1),o=H1(o,a.entry_flow.reduction_block_1),br(this._numMainBlocks,0,1).forEach(l=>{o=Ppe(o,a.middle_flow[`main_block_${l}`])}),o=H1(o,a.exit_flow.reduction_block),o=Xe(Xn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await vt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return XA(n,this._numMainBlocks)}extractParams(n){return KA(n,this._numMainBlocks)}};function JA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Dn(e),r=Ng(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function ZA(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return Fn(e,t),{params:r,paramMappings:t}}var Rg=(n=>(n.FEMALE="female",n.MALE="male",n))(Rg||{});var $d=class extends on{constructor(n=new Dg(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return O(()=>{let r=n instanceof wr?this.faceFeatureExtractor.forwardInput(n):n,s=ga(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=Ed(s,a.fc.age).as1D(),o=Ed(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return O(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Za(r)}})}async forward(n){return this.forwardInput(await vt(n))}async predictAgeAndGender(n){let a=await vt(n),r=await this.forwardInput(a),s=mt(r.age),i=mt(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return JA(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=Eg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),ZA(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var Sp=class extends kp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return O(()=>{let i=(d,c)=>Rt([An([68],d,"float32"),An([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(An([s,136],n,"float32")).sub(Rt(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Rt(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return O(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await vt(t))}async detectLandmarks(t){let n=await vt(t),a=O(()=>mt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>bg(d)),u=o.filter((p,d)=>!bg(d));return new Ro(Array(68).fill(0).map((p,d)=>new Pe(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var Wo=class extends Sp{constructor(t=new wp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function QA(e){let t=[],{extractDenseBlock3Params:n}=_g(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return Fn(e,t),{params:a,paramMappings:t}}function e$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Dn(e),{extractDenseBlock3Params:r}=Tg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var Mg=class extends on{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return O(()=>{let a=le(t.toBatchTensor(112,!0),"float32"),s=tr(a,[122.782,117.001,104.298]).div(255),i=Sg(s,n.dense0,!0);return i=Sg(i,n.dense1),i=Sg(i,n.dense2),i=ga(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return QA(t)}extractParams(t){return e$(t)}};var Fd=class extends Sp{constructor(t=new Mg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var j1=class extends Wo{};function t$(e,t){return Z(B(e,t.weights),t.biases)}function q1(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Dt(e,s,n,r);return o=Z(o,i),o=t$(o,t.scale),a?Xe(o):o}function n$(e,t){return q1(e,t,[1,1],!0)}function K1(e,t){return q1(e,t,[1,1],!1)}function Pg(e,t){return q1(e,t,[2,2],!0,"valid")}function Ope(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(w1(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return O(()=>$e($a(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=Ke(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=Ke(e(o)),p=Ke(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function a$(e){let{extractWeights:t,getRemainingWeights:n}=Dn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Ope(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),I=O(()=>$e(Ca(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:v,fc:I},paramMappings:a}}function Lpe(e,t){let n=sa(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function r$(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Lpe(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!v1(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return Fn(e,t),{params:v,paramMappings:t}}function nr(e,t){let n=n$(e,t.conv1);return n=K1(n,t.conv2),n=Z(n,e),n=Xe(n),n}function Dd(e,t){let n=Pg(e,t.conv1);n=K1(n,t.conv2);let a=ga(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=Qe([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=Qe([n,p],2)}return a=s?Qe([a,r],3):a,n=Z(a,n),n=Xe(n),n}var Vo=class extends on{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return O(()=>{let a=le(t.toBatchTensor(150,!0),"float32"),s=tr(a,[122.782,117.001,104.298]).div(255),i=Pg(s,n.conv32_down);i=Mt(i,3,2,"valid"),i=nr(i,n.conv32_1),i=nr(i,n.conv32_2),i=nr(i,n.conv32_3),i=Dd(i,n.conv64_down),i=nr(i,n.conv64_1),i=nr(i,n.conv64_2),i=nr(i,n.conv64_3),i=Dd(i,n.conv128_down),i=nr(i,n.conv128_1),i=nr(i,n.conv128_2),i=Dd(i,n.conv256_down),i=nr(i,n.conv256_1),i=nr(i,n.conv256_2),i=Dd(i,n.conv256_down_out);let o=i.mean([1,2]);return Re(o,n.fc)})}async forward(t){return this.forwardInput(await vt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await vt(t),a=O(()=>mt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return r$(t)}extractParams(t){return a$(t)}};function zpe(e){let t=new Vo;return t.extractWeights(e),t}function Og(e,t){return{...e,...{descriptor:t}}}function Bpe(e){return typeof e.age=="number"}function Lg(e,t){return{...e,...{age:t}}}function Wpe(e){return(e.gender==="male"||e.gender==="female")&&dp(e.genderProbability)}function zg(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Vpe(e,t){function n(l,u){let p=$a(e(9*l),[3,3,l,1]),d=Ke(e(l)),c=Ke(e(l)),h=Ke(e(l)),m=Ke(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=$a(e(l*u*p*p),[p,p,l,u]),m=Ke(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:v,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),_=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),A=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),P=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:I},box_predictor_3:{box_encoding_predictor:T,class_predictor:_},box_predictor_4:{box_encoding_predictor:A,class_predictor:F},box_predictor_5:{box_encoding_predictor:P,class_predictor:$}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function s$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Dn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Vpe(n,t),i=r(),o=s(),u={extra_dim:Hc(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function Upe(e,t){let n=sa(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),y=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),b=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function i$(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Upe(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Or(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return Fn(e,t),{params:s,paramMappings:t}}function Ra(e,t,n){return O(()=>{let a=Dt(e,t.filters,n,"same");return a=Z(a,t.batch_norm_offset),tn(a,0,6)})}var Gpe=.0010000000474974513;function Hpe(e,t,n){return O(()=>{let a=Ss(e,t.filters,n,"same");return a=Is(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Gpe),tn(a,0,6)})}function jpe(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function o$(e,t){return O(()=>{let n,a=Ra(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=jpe(o);a=Hpe(a,s.depthwise_conv,l),a=Ra(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function qpe(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),y=Math.min(o,d),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(c+h-b)}function l$(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=qpe(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function Kpe(e){let t=mt($e(e,[1,0])),n=[ce(t[2],t[0]),ce(t[3],t[1])],a=[Z(t[0],fe(n[0],2)),Z(t[1],fe(n[1],2))];return{sizes:n,centers:a}}function Xpe(e,t){let{sizes:n,centers:a}=Kpe(e),r=mt($e(t,[1,0])),s=fe(B(gn(fe(r[2],5)),n[0]),2),i=Z(B(fe(r[0],10),n[0]),a[0]),o=fe(B(gn(fe(r[3],5)),n[1]),2),l=Z(B(fe(r[1],10),n[1]),a[1]);return $e(Rt([ce(i,s),ce(l,o),Z(i,s),Z(l,o)]),[1,0])}function u$(e,t,n){return O(()=>{let a=e.shape[0],r=Xpe(W(zn(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ha(He(t,[0,0,1],[-1,-1,-1])),i=He(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=mt(r),l=mt(i);return{boxes:o,scores:l}})}function Uo(e,t){return O(()=>{let n=e.shape[0],a=W(zo(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(zo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function p$(e,t,n){return O(()=>{let a=Ra(e,n.conv_0,[1,1]),r=Ra(a,n.conv_1,[2,2]),s=Ra(r,n.conv_2,[1,1]),i=Ra(s,n.conv_3,[2,2]),o=Ra(i,n.conv_4,[1,1]),l=Ra(o,n.conv_5,[2,2]),u=Ra(l,n.conv_6,[1,1]),p=Ra(u,n.conv_7,[2,2]),d=Uo(t,n.box_predictor_0),c=Uo(e,n.box_predictor_1),h=Uo(r,n.box_predictor_2),m=Uo(i,n.box_predictor_3),f=Uo(l,n.box_predictor_4),g=Uo(p,n.box_predictor_5),y=Qe([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Qe([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var va=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Fs=class extends on{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return O(()=>{let a=le(t.toBatchTensor(512,!1),"float32"),r=ce(fe(a,127.5),1),s=o$(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=p$(s.out,s.conv11,n.prediction_layer);return u$(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await vt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new va(n),s=await vt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=l$(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=c.map(x=>{let[v,I]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(A=>A*g),[T,_]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(A=>A*f);return new xt(p[x],new Do(T,v,_-T,I-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return i$(t)}extractParams(t){return s$(t)}};function c$(e){let t=new Fs;return t.extractWeights(e),t}function Ype(e){return c$(e)}var X1=class extends Fs{};var d$=.4,h$=[new Pe(.738768,.874946),new Pe(2.42204,2.65704),new Pe(4.30971,7.04493),new Pe(10.246,4.59428),new Pe(12.6868,11.8741)],m$=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],f$=[117.001,114.697,97.404],g$="tiny_yolov2_model",y$="tiny_yolov2_separable_conv_model";var Bg=e=>typeof e=="number";function Y1(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Bg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Bg(t.x)&&Bg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Bg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Np(e){return O(()=>{let t=B(e,ke(.10000000149011612));return Z(Xe(ce(e,t)),t)})}function Vr(e,t){return O(()=>{let n=ya(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Dt(n,t.conv.filters,[1,1],"valid"),n=ce(n,t.bn.sub),n=B(n,t.bn.truediv),n=Z(n,t.conv.bias),Np(n)})}function Ur(e,t){return O(()=>{let n=ya(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Cs(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Z(n,t.bias),Np(n)})}function Jpe(e,t){let n=bp(e,t);function a(i,o){let l=Ke(e(i)),u=Ke(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=xp(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function b$(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=Dn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=Jpe(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,y,b,x]=a,v=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),T=u(h,m,"conv2"),_=u(m,f,"conv3"),A=u(f,g,"conv4"),F=u(g,y,"conv5"),P=b?u(y,b,"conv6"):void 0,$=x?u(b,x,"conv7"):void 0,S=o(x||b||y,5*n,1,"conv8");p={conv0:v,conv1:I,conv2:T,conv3:_,conv4:A,conv5:F,conv6:P,conv7:$,conv8:S}}else{let[d,c,h,m,f,g,y,b,x]=a,v=l(d,c,"conv0"),I=l(c,h,"conv1"),T=l(h,m,"conv2"),_=l(m,f,"conv3"),A=l(f,g,"conv4"),F=l(g,y,"conv5"),P=l(y,b,"conv6"),$=l(b,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:v,conv1:I,conv2:T,conv3:_,conv4:A,conv5:F,conv6:P,conv7:$,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function Zpe(e,t){let n=sa(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=vp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function x$(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Zpe(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return Fn(e,n),{params:i,paramMappings:n}}var ar=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var J1=class extends on{constructor(n){super("TinyYolov2");Y1(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=Vr(n,a.conv0);return r=Mt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv1),r=Mt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv2),r=Mt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv3),r=Mt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv4),r=Mt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv5),r=Mt(r,[2,2],[1,1],"same"),r=Vr(r,a.conv6),r=Vr(r,a.conv7),zo(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?Np(zo(n,a.conv0,"valid",!1)):Ur(n,a.conv0);return r=Mt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv1),r=Mt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv2),r=Mt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv3),r=Mt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv4),r=Mt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv5),r=Mt(r,[2,2],[1,1],"same"),r=a.conv6?Ur(r,a.conv6):r,r=a.conv7?Ur(r,a.conv7):r,zo(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return O(()=>{let s=le(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?tr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await vt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new ar(a),i=await vt(n),o=await this.forwardInput(i,r),l=O(()=>mt(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(y=>y.box),c=p.map(y=>y.score),h=p.map(y=>y.classScore),m=p.map(y=>this.config.classes[y.label]);return T1(d.map(y=>y.rescale(r)),c,this.config.iouThreshold,!0).map(y=>new Lr(c[y],h[y],m[y],d[y],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return x$(n,this.config)}extractParams(n){let a=this.config.filterSizes||J1.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return b$(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=O(()=>{let b=n.reshape([p,p,d,this.boxEncodingSize]),x=b.slice([0,0,0,0],[p,p,d,4]),v=b.slice([0,0,0,4],[p,p,d,1]),I=this.withClassScores?Za(b.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):ke(0);return[x,v,I]}),f=[],g=await h.array(),y=await c.array();for(let b=0;b<p;b++)for(let x=0;x<p;x++)for(let v=0;v<d;v++){let I=kd(g[b][x][v][0]);if(!r||I>r){let T=(x+kd(y[b][x][v][0]))/p*l,_=(b+kd(y[b][x][v][1]))/p*u,A=Math.exp(y[b][x][v][2])*this.config.anchors[v].x/p*l,F=Math.exp(y[b][x][v][3])*this.config.anchors[v].y/p*u,P=T-A/2,$=_-F/2,S={row:b,col:x,anchor:v},{classScore:M,label:U}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new Fo(P,$,P+A,$+F),score:I,classScore:I*M,label:U,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},Go=J1;Go.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Ho=class extends Go{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:d$,classes:["face"],...t?{anchors:m$,meanRgb:f$}:{anchors:h$,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new xt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?y$:g$}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Qpe(e,t=!0){let n=new Ho(t);return n.extractWeights(e),n}var Rd=class extends ar{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var wa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function jo(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>Bo(l)?r(l):l.detection),i=a||(t instanceof Ae?await yp(t,s):await gp(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ae&&l.dispose()),o}async function Tp(e,t,n,a,r){return jo([e],t,async s=>n(s[0]),a,r)}var v$=.4,w$=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],k$=[117.001,114.697,97.404];var qo=class extends Go{constructor(){let t={withSeparableConvs:!0,iouThreshold:v$,classes:["face"],anchors:w$,meanRgb:k$,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new xt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var tt={ssdMobilenetv1:new Fs,tinyFaceDetector:new qo,tinyYolov2:new Ho,faceLandmark68Net:new Wo,faceLandmark68TinyNet:new Fd,faceRecognitionNet:new Vo,faceExpressionNet:new Ad,ageGenderNet:new $d},I$=(e,t)=>tt.ssdMobilenetv1.locateFaces(e,t),ece=(e,t)=>tt.tinyFaceDetector.locateFaces(e,t),tce=(e,t)=>tt.tinyYolov2.locateFaces(e,t),S$=e=>tt.faceLandmark68Net.detectLandmarks(e),nce=e=>tt.faceLandmark68TinyNet.detectLandmarks(e),ace=e=>tt.faceRecognitionNet.computeFaceDescriptor(e),rce=e=>tt.faceExpressionNet.predictExpressions(e),sce=e=>tt.ageGenderNet.predictAgeAndGender(e),N$=e=>tt.ssdMobilenetv1.load(e),ice=e=>tt.tinyFaceDetector.load(e),oce=e=>tt.tinyYolov2.load(e),lce=e=>tt.faceLandmark68Net.load(e),uce=e=>tt.faceLandmark68TinyNet.load(e),pce=e=>tt.faceRecognitionNet.load(e),cce=e=>tt.faceExpressionNet.load(e),dce=e=>tt.ageGenderNet.load(e),hce=N$,mce=I$,fce=S$;var Wg=class extends wa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Ko=class extends Wg{async run(){let t=await this.parentTask,n=await jo(t,this.input,async a=>Promise.all(a.map(r=>tt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>Ag(a,n[r]))}withAgeAndGender(){return new Yo(this,this.input)}},Xo=class extends Wg{async run(){let t=await this.parentTask;if(!t)return;let n=await Tp(t,this.input,a=>tt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return Ag(t,n)}withAgeAndGender(){return new Jo(this,this.input)}},Ds=class extends Ko{withAgeAndGender(){return new Ms(this,this.input)}withFaceDescriptors(){return new Gr(this,this.input)}},Rs=class extends Xo{withAgeAndGender(){return new Ps(this,this.input)}withFaceDescriptor(){return new Hr(this,this.input)}};var Vg=class extends wa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Yo=class extends Vg{async run(){let t=await this.parentTask,n=await jo(t,this.input,async a=>Promise.all(a.map(r=>tt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Lg(zg(a,i,o),s)})}withFaceExpressions(){return new Ko(this,this.input)}},Jo=class extends Vg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Tp(t,this.input,s=>tt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Lg(zg(t,a,r),n)}withFaceExpressions(){return new Xo(this,this.input)}},Ms=class extends Yo{withFaceExpressions(){return new Ds(this,this.input)}withFaceDescriptors(){return new Gr(this,this.input)}},Ps=class extends Jo{withFaceExpressions(){return new Rs(this,this.input)}withFaceDescriptor(){return new Hr(this,this.input)}};var Md=class extends wa{constructor(n,a){super();this.parentTask=n;this.input=a}},Gr=class extends Md{async run(){let t=await this.parentTask;return(await jo(t,this.input,a=>Promise.all(a.map(r=>tt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Og(t[r],a))}withFaceExpressions(){return new Ds(this,this.input)}withAgeAndGender(){return new Ms(this,this.input)}},Hr=class extends Md{async run(){let t=await this.parentTask;if(!t)return;let n=await Tp(t,this.input,a=>tt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Og(t,n)}withFaceExpressions(){return new Rs(this,this.input)}withAgeAndGender(){return new Ps(this,this.input)}};var Pd=class extends wa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?tt.faceLandmark68TinyNet:tt.faceLandmark68Net}},Od=class extends Pd{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Ae?await yp(this.input,n):await gp(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Ae&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>Ip(i,r[o]))}withFaceExpressions(){return new Ds(this,this.input)}withAgeAndGender(){return new Ms(this,this.input)}withFaceDescriptors(){return new Gr(this,this.input)}},Ld=class extends Pd{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ae?await yp(this.input,[n]):await gp(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ae&&s.dispose()),Ip(t,r)}withFaceExpressions(){return new Rs(this,this.input)}withAgeAndGender(){return new Ps(this,this.input)}withFaceDescriptor(){return new Hr(this,this.input)}};var zd=class extends wa{constructor(n,a=new va){super();this.input=n;this.options=a}},Cp=class extends zd{async run(){let{input:t,options:n}=this,a;if(n instanceof Rd)a=tt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof va)a=tt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof ar)a=tt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>Mo({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new Od(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Ko(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Yo(this.runAndExtendWithFaceDetections(),this.input)}},Bd=class extends zd{async run(){let t=await new Cp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Mo({},n):void 0)})}withFaceLandmarks(t=!1){return new Ld(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Xo(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Jo(this.runAndExtendWithFaceDetection(),this.input)}};function gce(e,t=new va){return new Bd(e,t)}function Ug(e,t=new va){return new Cp(e,t)}async function T$(e,t){return Ug(e,new va(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function yce(e,t={}){return Ug(e,new ar(t)).withFaceLandmarks().withFaceDescriptors()}var bce=T$;function Z1(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var Wd=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof xr)return i;if(i instanceof Float32Array)return new xr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new xr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>Z1(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new hp(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new hp("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>xr.fromJSON(a));return new Wd(n,t.distanceThreshold)}};function xce(e){let t=new qo;return t.extractWeights(e),t}function C$(e,t){let{width:n,height:a}=new yn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>C$(r,{width:n,height:a}));if(Bo(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Ip(Mo(e,r),s)}return vr(e)?Mo(e,e.detection.forSize(n,a)):e instanceof ra||e instanceof xt?e.forSize(n,a):e}var vce=qA;return TF(wce);})();