face-api/dist/face-api.js

4224 lines
1.1 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var faceapi=(()=>{var CE=Object.create,Ad=Object.defineProperty,_E=Object.getPrototypeOf,EE=Object.prototype.hasOwnProperty,AE=Object.getOwnPropertyNames,FE=Object.getOwnPropertyDescriptor;var r0=e=>Ad(e,"__esModule",{value:!0});var $E=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),uc=(e,t)=>{for(var n in t)Ad(e,n,{get:t[n],enumerable:!0})},DE=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of AE(t))!EE.call(e,a)&&a!=="default"&&Ad(e,a,{get:()=>t[a],enumerable:!(n=FE(t,a))||n.enumerable});return e},RE=e=>e&&e.__esModule?e:DE(r0(Ad(e!=null?CE(_E(e)):{},"default",{value:e,enumerable:!0})),e);var rC=$E((Vre,aC)=>{r0(Vre);uc(Vre,{isNodejs:()=>Ure});function Ure(){return typeof global=="object"&&!0&&typeof aC!="undefined"&&typeof process!="undefined"&&!!process.version}});var cse={};uc(cse,{AgeGenderNet:()=>Hp,BoundingBox:()=>ro,Box:()=>ot,ComposableTask:()=>aa,ComputeAllFaceDescriptorsTask:()=>Mr,ComputeFaceDescriptorsTaskBase:()=>Qp,ComputeSingleFaceDescriptorTask:()=>Pr,DetectAllFaceLandmarksTask:()=>td,DetectAllFacesTask:()=>Gu,DetectFaceLandmarksTaskBase:()=>ed,DetectFacesTaskBase:()=>ad,DetectSingleFaceLandmarksTask:()=>nd,DetectSingleFaceTask:()=>rd,Dimensions:()=>ln,FACE_EXPRESSION_LABELS:()=>Gf,FaceDetection:()=>yt,FaceDetectionNet:()=>zw,FaceExpressionNet:()=>Up,FaceExpressions:()=>$r,FaceLandmark68Net:()=>ho,FaceLandmark68TinyNet:()=>qp,FaceLandmarkNet:()=>Mw,FaceLandmarks:()=>Un,FaceLandmarks5:()=>ww,FaceLandmarks68:()=>io,FaceMatch:()=>Au,FaceMatcher:()=>id,FaceRecognitionNet:()=>mo,Gender:()=>dr,LabeledBox:()=>Fu,LabeledFaceDescriptors:()=>ur,NetInput:()=>pr,NeuralNetwork:()=>Qt,ObjectDetection:()=>Fr,Point:()=>De,PredictedBox:()=>kw,Rect:()=>so,SsdMobilenetv1:()=>ks,SsdMobilenetv1Options:()=>na,TinyFaceDetector:()=>bo,TinyFaceDetectorOptions:()=>Jp,TinyYolov2:()=>go,TinyYolov2Options:()=>Wa,allFaces:()=>c_,allFacesSsdMobilenetv1:()=>jw,allFacesTinyYolov2:()=>u_,awaitMediaLoaded:()=>Af,bufferToImage:()=>Ff,computeFaceDescriptor:()=>XC,createCanvas:()=>oo,createCanvasFromMedia:()=>Du,createFaceDetectionNet:()=>DC,createFaceRecognitionNet:()=>NC,createSsdMobilenetv1:()=>Lw,createTinyFaceDetector:()=>p_,createTinyYolov2:()=>VC,detectAllFaces:()=>sd,detectFaceLandmarks:()=>Vw,detectFaceLandmarksTiny:()=>KC,detectLandmarks:()=>o_,detectSingleFace:()=>l_,draw:()=>jf,env:()=>rt,euclideanDistance:()=>Yf,extendWithAge:()=>Yp,extendWithFaceDescriptor:()=>Xp,extendWithFaceDetection:()=>gs,extendWithFaceExpressions:()=>Gp,extendWithFaceLandmarks:()=>po,extendWithGender:()=>Zp,extractFaceTensors:()=>uo,extractFaces:()=>lo,fetchImage:()=>sC,fetchJson:()=>Rf,fetchNetWeights:()=>iC,fetchOrThrow:()=>vs,getContext2dOrThrow:()=>yn,getMediaDimensions:()=>xs,imageTensorToCanvas:()=>$f,imageToSquare:()=>Df,inverseSigmoid:()=>nC,iou:()=>Nf,isMediaElement:()=>Lp,isMediaLoaded:()=>$u,isWithAge:()=>TC,isWithFaceDetection:()=>za,isWithFaceExpressions:()=>Hf,isWithFaceLandmarks:()=>ws,isWithGender:()=>SC,loadAgeGenderModel:()=>r_,loadFaceDetectionModel:()=>s_,loadFaceExpressionModel:()=>a_,loadFaceLandmarkModel:()=>e_,loadFaceLandmarkTinyModel:()=>t_,loadFaceRecognitionModel:()=>n_,loadSsdMobilenetv1Model:()=>Uw,loadTinyFaceDetectorModel:()=>JC,loadTinyYolov2Model:()=>QC,loadWeightMap:()=>Pf,locateFaces:()=>i_,matchDimensions:()=>oC,minBbox:()=>Tf,nets:()=>et,nonMaxSuppression:()=>Sf,normalize:()=>wa,padToSquare:()=>Cf,predictAgeAndGender:()=>ZC,recognizeFaceExpressions:()=>YC,resizeResults:()=>qw,resolveInput:()=>ys,shuffleArray:()=>tC,sigmoid:()=>Eu,ssdMobilenetv1:()=>Ww,tf:()=>Fd,tinyFaceDetector:()=>jC,tinyYolov2:()=>qC,toNetInput:()=>gt,utils:()=>wf,validateConfig:()=>Xf,version:()=>d_});var Fd={};uc(Fd,{Abs:()=>zo,Acos:()=>Bo,Acosh:()=>Wo,AdadeltaOptimizer:()=>sm,AdagradOptimizer:()=>im,AdamOptimizer:()=>om,AdamaxOptimizer:()=>lm,Add:()=>Ur,AddN:()=>$s,All:()=>Ld,Any:()=>zd,ArgMax:()=>Ds,ArgMin:()=>mc,Asin:()=>Vo,Asinh:()=>Uo,Atan:()=>Go,Atan2:()=>jo,Atanh:()=>Ho,AvgPool:()=>Rs,AvgPool3D:()=>fc,AvgPool3DGrad:()=>Wd,AvgPoolGrad:()=>Bd,BackendWasm:()=>Q2,BatchMatMul:()=>Ms,BatchToSpaceND:()=>gc,Bincount:()=>Vd,BroadcastTo:()=>b0,Callback:()=>JI,CallbackList:()=>Yk,Cast:()=>Ps,Ceil:()=>Os,ClipByValue:()=>Gr,Complex:()=>Ud,ComplexAbs:()=>yc,Concat:()=>qo,Conv2D:()=>Ls,Conv2DBackpropFilter:()=>Gd,Conv2DBackpropInput:()=>zs,Conv3D:()=>bc,Conv3DBackpropFilterV2:()=>Hd,Conv3DBackpropInputV2:()=>jd,Cos:()=>Bs,Cosh:()=>Ko,CropAndResize:()=>Xo,Cumsum:()=>Ws,CustomCallback:()=>Jk,DataStorage:()=>Rd,DenseBincount:()=>qd,DepthToSpace:()=>Yo,DepthwiseConv2dNative:()=>Vs,DepthwiseConv2dNativeBackpropFilter:()=>Kd,DepthwiseConv2dNativeBackpropInput:()=>Xd,Diag:()=>Yd,Dilation2D:()=>xc,Dilation2DBackpropFilter:()=>Jd,Dilation2DBackpropInput:()=>Zd,ENV:()=>cy,EarlyStopping:()=>eN,Elu:()=>Zo,EluGrad:()=>Qd,Environment:()=>g0,Equal:()=>Qo,Erf:()=>Jo,Exp:()=>Gs,ExpandDims:()=>el,Expm1:()=>tl,FFT:()=>eh,Fill:()=>vc,FlipLeftRight:()=>nl,Floor:()=>Hs,FloorDiv:()=>js,FromPixels:()=>mh,FusedBatchNorm:()=>qs,FusedConv2D:()=>Ti,FusedDepthwiseConv2D:()=>Si,GatherNd:()=>rl,GatherV2:()=>al,GraphModel:()=>AN,Greater:()=>sl,GreaterEqual:()=>Ks,History:()=>Zk,IFFT:()=>th,Identity:()=>Xs,Imag:()=>nh,InputSpec:()=>Xt,IsFinite:()=>il,IsInf:()=>ol,IsNan:()=>ll,KernelBackend:()=>pc,LRN:()=>Ic,LRNGrad:()=>rh,LayerVariable:()=>Hk,LayersModel:()=>Tr,LeakyRelu:()=>Ys,Less:()=>ul,LessEqual:()=>cl,LinSpace:()=>ah,Log:()=>Zs,Log1p:()=>pl,LogSoftmax:()=>x0,LogicalAnd:()=>dl,LogicalNot:()=>wc,LogicalOr:()=>kc,Max:()=>Js,MaxPool:()=>ei,MaxPool3D:()=>Nc,MaxPool3DGrad:()=>ih,MaxPoolGrad:()=>sh,MaxPoolWithArgmax:()=>oh,Maximum:()=>Qs,Mean:()=>ti,Min:()=>ni,Minimum:()=>ai,MirrorPad:()=>Tc,Mod:()=>hl,MomentumOptimizer:()=>um,Multinomial:()=>lh,Multiply:()=>ri,Neg:()=>ml,NonMaxSuppressionV3:()=>gl,NonMaxSuppressionV4:()=>yl,NonMaxSuppressionV5:()=>bl,NotEqual:()=>fl,OP_SCOPE_SUFFIX:()=>A0,OneHot:()=>si,OnesLike:()=>xl,Optimizer:()=>kr,Pack:()=>vl,PadV2:()=>ii,Pool:()=>NA,Pow:()=>oi,Prelu:()=>li,Prod:()=>wl,RMSPropOptimizer:()=>cm,RNN:()=>rr,Range:()=>Sc,Rank:()=>yy,Real:()=>uh,RealDiv:()=>Us,Reciprocal:()=>kl,Reduction:()=>hn,Relu:()=>ui,Relu6:()=>pi,Reshape:()=>Il,ResizeBilinear:()=>ci,ResizeBilinearGrad:()=>ph,ResizeNearestNeighbor:()=>Cc,ResizeNearestNeighborGrad:()=>ch,Reverse:()=>di,RotateWithOffset:()=>Ol,Round:()=>hi,Rsqrt:()=>mi,SGDOptimizer:()=>tp,ScatterNd:()=>Nl,Select:()=>Tl,Selu:()=>Sl,Sequential:()=>lu,Sigmoid:()=>gi,Sign:()=>El,Sin:()=>fi,Sinh:()=>_l,Slice:()=>Cl,Softmax:()=>xi,Softplus:()=>Al,SpaceToBatchND:()=>_c,SparseToDense:()=>dh,SplitV:()=>Fl,Sqrt:()=>yi,Square:()=>Ec,SquaredDifference:()=>vi,Step:()=>jr,StridedSlice:()=>$l,Sub:()=>wi,Sum:()=>bi,SymbolicTensor:()=>$a,Tan:()=>Dl,Tanh:()=>ki,Tensor:()=>Ae,TensorBuffer:()=>Ot,Tile:()=>Hr,TopK:()=>Rl,Transpose:()=>Ii,Unique:()=>hh,Unpack:()=>Ml,UnsortedSegmentSum:()=>Ac,Variable:()=>qr,ZerosLike:()=>Pl,_FusedMatMul:()=>Ni,abs:()=>Lt,acos:()=>Vy,acosh:()=>Uy,add:()=>Z,addN:()=>d1,all:()=>Eh,any:()=>Wc,argMax:()=>Vc,argMin:()=>Gy,asin:()=>Hy,asinh:()=>jy,atan:()=>qy,atan2:()=>Ky,atanh:()=>Xy,avgPool:()=>Yn,avgPool3d:()=>Jy,backend:()=>p1,backend_util:()=>_,basicLSTMCell:()=>Q$,batchNorm:()=>xr,batchNorm2d:()=>g1,batchNorm3d:()=>y1,batchNorm4d:()=>b1,batchToSpaceND:()=>Gc,bincount:()=>x1,booleanMaskAsync:()=>aP,broadcastTo:()=>Hc,browser:()=>Ai,buffer:()=>Le,callbacks:()=>H4,cast:()=>ce,ceil:()=>Qy,clipByValue:()=>qt,clone:()=>Zr,complex:()=>Kr,concat:()=>Qe,concat1d:()=>v1,concat2d:()=>w1,concat3d:()=>k1,concat4d:()=>I1,constraints:()=>bk,conv1d:()=>Fh,conv2d:()=>At,conv2dTranspose:()=>$h,conv3d:()=>tb,conv3dTranspose:()=>wD,copyRegisteredKernels:()=>CA,cos:()=>jc,cosh:()=>Dh,cosineWindow:()=>Cb,cumsum:()=>Rh,customGrad:()=>Ya,data:()=>$N,denseBincount:()=>T1,deprecationWarn:()=>Wy,depthToSpace:()=>nb,depthwiseConv2d:()=>es,deregisterOp:()=>q4,device_util:()=>wh,diag:()=>ED,dilation2d:()=>ab,disableDeprecationWarnings:()=>p$,dispose:()=>Fe,disposeVariables:()=>d$,div:()=>ve,divNoNan:()=>rb,dot:()=>S1,dropout:()=>q1,elu:()=>ql,enableDebugMode:()=>c$,enableProdMode:()=>u$,enclosingPowerOfTwo:()=>K1,engine:()=>qa,env:()=>ee,equal:()=>ts,erf:()=>sb,exp:()=>dn,expandDims:()=>$n,expm1:()=>ib,eye:()=>ob,fft:()=>Qc,fill:()=>kn,findBackend:()=>x$,findBackendFactory:()=>v$,floor:()=>Kl,floorDiv:()=>_h,fused:()=>rs,gather:()=>Di,gatherND:()=>j1,gather_util:()=>Ry,getBackend:()=>y$,getGradient:()=>my,getKernel:()=>fh,getKernelsForBackend:()=>gh,grad:()=>rR,grads:()=>sR,greater:()=>ha,greaterEqual:()=>ns,ifft:()=>eu,imag:()=>Mh,image:()=>Qa,inTopKAsync:()=>mP,initializers:()=>Tk,input:()=>Lk,io:()=>Ht,irfft:()=>Yh,isFinite:()=>C1,isInf:()=>_1,isNaN:()=>E1,keep:()=>jt,kernel_impls:()=>er,layers:()=>Ok,leakyRelu:()=>qc,less:()=>Ph,lessEqual:()=>Ri,linalg:()=>ik,linspace:()=>A1,loadGraphModel:()=>jV,loadLayersModel:()=>p4,localResponseNormalization:()=>lb,log:()=>Dn,log1p:()=>Oh,logSigmoid:()=>$1,logSoftmax:()=>zh,logSumExp:()=>pb,logicalAnd:()=>ma,logicalNot:()=>Kc,logicalOr:()=>Bh,logicalXor:()=>P1,losses:()=>EO,matMul:()=>ze,math:()=>j0,max:()=>Zn,maxPool:()=>Ft,maxPool3d:()=>db,maxPoolWithArgmax:()=>O1,maximum:()=>Za,mean:()=>St,memory:()=>Sh,metrics:()=>XI,min:()=>Yl,minimum:()=>Zl,mirrorPad:()=>hb,mod:()=>mb,model:()=>u4,models:()=>YI,moments:()=>Wh,movingAverage:()=>iP,mul:()=>L,multiRNNCell:()=>RR,multinomial:()=>L1,neg:()=>Tt,nextFrame:()=>pm,norm:()=>em,notEqual:()=>Pi,oneHot:()=>Ul,ones:()=>Ja,onesLike:()=>Rn,op:()=>O,outerProduct:()=>zR,pad:()=>Jn,pad1d:()=>VR,pad2d:()=>GR,pad3d:()=>jR,pad4d:()=>KR,pool:()=>z1,pow:()=>vr,prelu:()=>Yc,print:()=>B0,prod:()=>Vh,profile:()=>h$,rand:()=>aM,randomGamma:()=>oM,randomNormal:()=>B1,randomUniform:()=>Jl,range:()=>Uh,ready:()=>g$,real:()=>Zc,reciprocal:()=>yb,registerBackend:()=>Ch,registerCallbackConstructor:()=>d4,registerGradient:()=>v0,registerKernel:()=>$c,registerOp:()=>j4,regularizers:()=>ZI,relu:()=>Ye,relu6:()=>Gh,removeBackend:()=>b$,reshape:()=>H,reverse:()=>Mn,reverse1d:()=>gM,reverse2d:()=>bM,reverse3d:()=>vM,reverse4d:()=>kM,rfft:()=>ep,round:()=>bb,rsqrt:()=>Hh,scalar:()=>de,scatterND:()=>H1,scatter_util:()=>My,selu:()=>jh,separableConv2d:()=>Oi,sequential:()=>c4,serialization:()=>re,setBackend:()=>f$,setPlatform:()=>w$,setWasmPath:()=>Rre,setWasmPaths:()=>Mre,setdiff1dAsync:()=>W1,sigmoid:()=>da,sign:()=>xb,signal:()=>_O,sin:()=>qh,sinh:()=>Kh,slice:()=>We,slice1d:()=>Xh,slice2d:()=>vb,slice3d:()=>Ql,slice4d:()=>Jc,slice_util:()=>pn,softmax:()=>Sa,softplus:()=>Xl,spaceToBatchND:()=>Xc,sparseToDense:()=>Sb,spectral:()=>CO,split:()=>Pn,sqrt:()=>tn,square:()=>ut,squaredDifference:()=>Zh,squeeze:()=>as,stack:()=>$t,step:()=>tu,stridedSlice:()=>wb,sub:()=>fe,sum:()=>Te,sumOutType:()=>vh,tan:()=>kb,tanh:()=>jl,tensor:()=>Kn,tensor1d:()=>nt,tensor2d:()=>Ca,tensor3d:()=>Nh,tensor4d:()=>_a,tensor5d:()=>KM,tensor6d:()=>XM,tensor_util:()=>Ta,test_util:()=>o1,tidy:()=>D,tile:()=>Xa,time:()=>m$,topk:()=>Ib,train:()=>zi,transpose:()=>Ue,truncatedNormal:()=>Jh,unique:()=>Qh,unregisterGradient:()=>SA,unregisterKernel:()=>TA,unsortedSegmentSum:()=>Nb,unstack:()=>dt,upcastType:()=>pa,util:()=>k,valueAndGrad:()=>iR,valueAndGrads:()=>oR,variable:()=>V1,variableGrads:()=>F1,version:()=>Vee,version_converter:()=>FN,version_core:()=>c1,version_layers:()=>Mm,version_wasm:()=>Pre,where:()=>wn,whereAsync:()=>Tb,zeros:()=>vt,zerosLike:()=>Ge});var ME=Object.create,$d=Object.defineProperty,PE=Object.getPrototypeOf,OE=Object.prototype.hasOwnProperty,LE=Object.getOwnPropertyNames,zE=Object.getOwnPropertyDescriptor,BE=e=>$d(e,"__esModule",{value:!0}),cn=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Oe=(e,t)=>{for(var n in t)$d(e,n,{get:t[n],enumerable:!0})},WE=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of LE(t))!OE.call(e,a)&&a!=="default"&&$d(e,a,{get:()=>t[a],enumerable:!(n=zE(t,a))||n.enumerable});return e},Po=e=>e&&e.__esModule?e:WE(BE($d(e!=null?ME(PE(e)):{},"default",{value:e,enumerable:!0})),e),VE=cn(()=>{}),UE=cn((e,t)=>{(function(n,a,r){function s(c){var u=this,p=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(c),u.s0<0&&(u.s0+=1),u.s1-=p(c),u.s1<0&&(u.s1+=1),u.s2-=p(c),u.s2<0&&(u.s2+=1),p=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var p=new s(c),d=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var c=4022871197,u=function(p){p=p.toString();for(var d=0;d<p.length;d++){c+=p.charCodeAt(d);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),GE=cn((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),HE=cn((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,p==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),jE=cn((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.x,d=c.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,c.i=d+1&7,m};function u(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.x&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),qE=cn((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.w,d=c.X,h=c.i,m,f;return c.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,c.i=h,f+(p^p>>>16)|0};function u(p,d){var h,m,f,g,y,b=[],v=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,v=Math.max(v,d.length)),f=0,g=-32;g<v;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.X&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),KE=cn((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.b,h=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^h,c.c=h=h-m|0,c.d=m<<16^h>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)c.b^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),XE=cn(()=>{}),YE=cn((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),p=u*2,d=s-1,h;function m(N,T,C){var F=[];T=T==!0?{entropy:!0}:T||{};var $=b(y(T.entropy?[N,x(n)]:N==null?v():N,3),F),P=new f(F),B=function(){for(var W=P.g(i),G=c,q=0;W<u;)W=(W+q)*s,G*=s,q=P.g(1);for(;W>=p;)W/=2,G/=2,q>>>=1;return(W+q)/G};return B.int32=function(){return P.g(4)|0},B.quick=function(){return P.g(4)/4294967296},B.double=B,b(x(P.S),n),(T.pass||C||function(W,G,q,j){return j&&(j.S&&g(j,P),W.state=function(){return g(P,{})}),q?(a[l]=W,G):W})(B,$,"global"in T?T.global:this==a,T.state)}a["seed"+l]=m;function f(N){var T,C=N.length,F=this,$=0,P=F.i=F.j=0,B=F.S=[];for(C||(N=[C++]);$<s;)B[$]=$++;for($=0;$<s;$++)B[$]=B[P=d&P+N[$%C]+(T=B[$])],B[P]=T;(F.g=function(W){for(var G,q=0,j=F.i,X=F.j,K=F.S;W--;)G=K[j=d&j+1],q=q*s+K[d&(K[j]=K[X=d&X+G])+(K[X]=G)];return F.i=j,F.j=X,q})(s)}function g(N,T){return T.i=N.i,T.j=N.j,T.S=N.S.slice(),T}function y(N,T){var C=[],F=typeof N,$;if(T&&F=="object")for($ in N)try{C.push(y(N[$],T-1))}catch(P){}return C.length?C:F=="string"?N:N+"\0"}function b(N,T){for(var C=N+"",F,$=0;$<C.length;)T[d&$]=d&(F^=T[d&$]*19)+C.charCodeAt($++);return x(T)}function v(){try{var N;return h&&(N=h.randomBytes)?N=N(s):(N=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(N)),x(N)}catch(F){var T=r.navigator,C=T&&T.plugins;return[+new Date,r,C,r.screen,x(n)]}}function x(N){return String.fromCharCode.apply(0,N)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=XE()}catch(N){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),Dd=cn((e,t)=>{var n=UE(),a=GE(),r=HE(),s=jE(),i=qE(),o=KE(),l=YE();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),ZE=cn(()=>{}),cc=cn(()=>{}),JE=cn(()=>{}),QE=cn(()=>{}),eA=cn((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Q.buffer!=Je&&Fn(Q.buffer),En}function i(){return Q.buffer!=Je&&Fn(Q.buffer),en}function o(){return Q.buffer!=Je&&Fn(Q.buffer),vn}function l(){return Q.buffer!=Je&&Fn(Q.buffer),un}function c(){return Q.buffer!=Je&&Fn(Q.buffer),Va}var u=typeof r!="undefined"?r:{},p={},d;for(d in u)u.hasOwnProperty(d)&&(p[d]=u[d]);var h=[],m="./this.program",f=function(w,S){throw S},g=!1,y=!1,b=!1,v=!1;g=typeof window=="object",y=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!g&&!b&&!y;var x=u.ENVIRONMENT_IS_PTHREAD||!1;x&&(Je=u.buffer,ia=u.DYNAMIC_BASE,Na=u.DYNAMICTOP_PTR);var N="";function T(w){return u.locateFile?u.locateFile(w,N):N+w}var C,F,$,P,B,W;if(b){y?N=cc().dirname(N)+"/":N=__dirname+"/",C=function(w,S){return B||(B=require("fs")),W||(W=cc()),w=W.normalize(w),B.readFileSync(w,S?null:"utf8")},$=function(w){var S=C(w,!0);return S.buffer||(S=new Uint8Array(S)),ke(S.buffer),S},process.argv.length>1&&(m=process.argv[1].replace(/\\/g,"/")),h=process.argv.slice(2),process.on("uncaughtException",function(w){if(!(w instanceof n0))throw w}),process.on("unhandledRejection",mr),f=function(w){process.exit(w)},u.inspect=function(){return"[Emscripten Module object]"};var G;try{G=JE()}catch(w){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),w}Worker=G.Worker}else v?(typeof read!="undefined"&&(C=function(w){return read(w)}),$=function(w){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(w)):(S=read(w,"binary"),ke(typeof S=="object"),S)},typeof scriptArgs!="undefined"?h=scriptArgs:typeof arguments!="undefined"&&(h=arguments),typeof quit=="function"&&(f=function(w){quit(w)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||y)&&(y?N=self.location.href:document.currentScript&&(N=document.currentScript.src),typeof a!="undefined"&&a&&(N=a),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",b?(C=function(w,S){return B||(B=require("fs")),W||(W=cc()),w=W.normalize(w),B.readFileSync(w,S?null:"utf8")},$=function(w){var S=C(w,!0);return S.buffer||(S=new Uint8Array(S)),ke(S.buffer),S}):(C=function(w){var S=new XMLHttpRequest;return S.open("GET",w,!1),S.send(null),S.responseText},y&&($=function(w){var S=new XMLHttpRequest;return S.open("GET",w,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),F=function(w,S,R){var U=new XMLHttpRequest;U.open("GET",w,!0),U.responseType="arraybuffer",U.onload=function(){if(U.status==200||U.status==0&&U.response){S(U.response);return}R()},U.onerror=R,U.send(null)}),P=function(w){document.title=w});b&&typeof performance=="undefined"&&(performance=QE().performance);var q=u.print||console.log.bind(console),j=u.printErr||console.warn.bind(console);for(d in p)p.hasOwnProperty(d)&&(u[d]=p[d]);p=null,u.arguments&&(h=u.arguments),u.thisProgram&&(m=u.thisProgram),u.quit&&(f=u.quit);var X=Atomics.load,K=Atomics.store,ne=Atomics.compareExchange,J;u.wasmBinary&&(J=u.wasmBinary);var se;u.noExitRuntime&&(se=u.noExitRuntime),typeof WebAssembly!="object"&&j("no native wasm support detected");var Q,oe=new WebAssembly.Table({initial:171,maximum:171+0,element:"anyfunc"}),ae,pe=0,ue=0,ge=!1,ye=0;function ke(w,S){w||mr("Assertion failed: "+S)}function Se(w){var S=u["_"+w];return ke(S,"Cannot call unknown function "+w+", make sure it is exported"),S}function Ce(w,S,R,U,he){var le={string:function(qn){var Br=0;if(qn!=null&&qn!==0){var lc=(qn.length<<2)+1;Br=$o(lc),lt(qn,Br,lc)}return Br},array:function(qn){var Br=$o(qn.length);return ct(qn,Br),Br}};function ie(qn){return S==="string"?Ve(qn):S==="boolean"?Boolean(qn):qn}var xe=Se(w),tt=[],Mt=0;if(U)for(var rn=0;rn<U.length;rn++){var Ro=le[R[rn]];Ro?(Mt===0&&(Mt=sc()),tt[rn]=Ro(U[rn])):tt[rn]=U[rn]}var oc=xe.apply(null,tt);return oc=ie(oc),Mt!==0&&Do(Mt),oc}function Re(w,S,R,U){R=R||[];var he=R.every(function(ie){return ie==="number"}),le=S!=="string";return le&&he&&!U?Se(w):function(){return Ce(w,S,R,arguments,U)}}function Ke(w,S,R){for(var U=S+R,he="";!(S>=U);){var le=w[S++];if(!le)return he;if(!(le&128)){he+=String.fromCharCode(le);continue}var ie=w[S++]&63;if((le&224)==192){he+=String.fromCharCode((le&31)<<6|ie);continue}var xe=w[S++]&63;if((le&240)==224?le=(le&15)<<12|ie<<6|xe:le=(le&7)<<18|ie<<12|xe<<6|w[S++]&63,le<65536)he+=String.fromCharCode(le);else{var tt=le-65536;he+=String.fromCharCode(55296|tt>>10,56320|tt&1023)}}return he}function Ve(w,S){return w?Ke(i(),w,S):""}function st(w,S,R,U){if(!(U>0))return 0;for(var he=R,le=R+U-1,ie=0;ie<w.length;++ie){var xe=w.charCodeAt(ie);if(xe>=55296&&xe<=57343){var tt=w.charCodeAt(++ie);xe=65536+((xe&1023)<<10)|tt&1023}if(xe<=127){if(R>=le)break;S[R++]=xe}else if(xe<=2047){if(R+1>=le)break;S[R++]=192|xe>>6,S[R++]=128|xe&63}else if(xe<=65535){if(R+2>=le)break;S[R++]=224|xe>>12,S[R++]=128|xe>>6&63,S[R++]=128|xe&63}else{if(R+3>=le)break;S[R++]=240|xe>>18,S[R++]=128|xe>>12&63,S[R++]=128|xe>>6&63,S[R++]=128|xe&63}}return S[R]=0,R-he}function lt(w,S,R){return st(w,i(),S,R)}function He(w){for(var S=0,R=0;R<w.length;++R){var U=w.charCodeAt(R);U>=55296&&U<=57343&&(U=65536+((U&1023)<<10)|w.charCodeAt(++R)&1023),U<=127?++S:U<=2047?S+=2:U<=65535?S+=3:S+=4}return S}function ct(w,S){s().set(w,S)}var pt=65536;function Hn(w,S){return w%S>0&&(w+=S-w%S),w}var Je,En,en,An,ra,vn,un,sa,Va;function Fn(w){Je=w,u.HEAP8=En=new Int8Array(w),u.HEAP16=An=new Int16Array(w),u.HEAP32=vn=new Int32Array(w),u.HEAPU8=en=new Uint8Array(w),u.HEAPU16=ra=new Uint16Array(w),u.HEAPU32=un=new Uint32Array(w),u.HEAPF32=sa=new Float32Array(w),u.HEAPF64=Va=new Float64Array(w)}var Io=5256464,Hu=Io,Ia=13584,ia=5256464,Na=12656,No=u.INITIAL_MEMORY||16777216;if(x)Q=u.wasmMemory,Je=u.buffer;else if(u.wasmMemory)Q=u.wasmMemory;else if(Q=new WebAssembly.Memory({initial:No/pt,maximum:2147483648/pt,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw j("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Je=Q.buffer),No=Je.byteLength,Fn(Je),x||(o()[Na>>2]=ia);function To(w){for(;w.length>0;){var S=w.shift();if(typeof S=="function"){S(u);continue}var R=S.func;typeof R=="number"?S.arg===void 0?u.dynCall_v(R):u.dynCall_vi(R,S.arg):R(S.arg===void 0?null:S.arg)}}var Is=[],ju=[],Zf=[],qu=[],od=[],Ku=!1;x&&(Ku=!0);function oa(){if(!x){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)eg(u.preRun.shift());To(Is)}}function ld(){Ku=!0,To(ju)}function Jf(){x||To(Zf)}function Qf(){if(!x){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Ns(u.postRun.shift());To(od)}}function eg(w){Is.unshift(w)}function Ns(w){od.unshift(w)}var So=Math.ceil,tg=Math.floor,hr=0,Xu=null,Ts=null;function ng(w){ke(!x,"addRunDependency cannot be used in a pthread worker"),hr++,u.monitorRunDependencies&&u.monitorRunDependencies(hr)}function ag(w){if(hr--,u.monitorRunDependencies&&u.monitorRunDependencies(hr),hr==0&&(Xu!==null&&(clearInterval(Xu),Xu=null),Ts)){var S=Ts;Ts=null,S()}}u.preloadedImages={},u.preloadedAudios={};function mr(w){throw u.onAbort&&u.onAbort(w),x&&console.error("Pthread aborting at "+new Error().stack),w+="",q(w),j(w),ge=!0,ye=1,w="abort("+w+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(w)}function Yu(w,S){return String.prototype.startsWith?w.startsWith(S):w.indexOf(S)===0}var rg="data:application/octet-stream;base64,";function ud(w){return Yu(w,rg)}var sg="file://";function cd(w){return Yu(w,sg)}var la="tfjs-backend-wasm-threaded-simd.wasm";ud(la)||(la=T(la));function pd(){try{if(J)return new Uint8Array(J);if($)return $(la);throw"both async and sync fetching of the wasm failed"}catch(w){mr(w)}}function ig(){return!J&&(g||y)&&typeof fetch=="function"&&!cd(la)?fetch(la,{credentials:"same-origin"}).then(function(w){if(!w.ok)throw"failed to load wasm binary file at '"+la+"'";return w.arrayBuffer()}).catch(function(){return pd()}):new Promise(function(w,S){w(pd())})}function og(){var w={a:Jg};function S(ie,xe){var tt=ie.exports;if(u.asm=tt,ae=xe,!x){var Mt=me.unusedWorkers.length;me.unusedWorkers.forEach(function(rn){me.loadWasmModuleToWorker(rn,function(){--Mt||ag("wasm-instantiate")})})}}x||ng("wasm-instantiate");function R(ie){S(ie.instance,ie.module)}function U(ie){return ig().then(function(xe){return WebAssembly.instantiate(xe,w)}).then(ie,function(xe){j("failed to asynchronously prepare wasm: "+xe),mr(xe)})}function he(){if(!J&&typeof WebAssembly.instantiateStreaming=="function"&&!ud(la)&&!cd(la)&&typeof fetch=="function")fetch(la,{credentials:"same-origin"}).then(function(ie){var xe=WebAssembly.instantiateStreaming(ie,w);return xe.then(R,function(tt){j("wasm streaming compile failed: "+tt),j("falling back to ArrayBuffer instantiation"),U(R)})});else return U(R)}if(u.instantiateWasm)try{var le=u.instantiateWasm(w,S);return le}catch(ie){return j("Module.instantiateWasm callback failed with error: "+ie),!1}return he(),{}}var lg={};function ug(){me.initRuntime()}x||ju.push({func:function(){Id()}});var dd=0,hd=0,md=0;function Co(w,S,R){w=w|0,S=S|0,R=R|0,dd=w,md=S,hd=R}u.__register_pthread_ptr=Co;var Zu={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},_o=13568;function Eo(w,S){if(w<=0||w>s().length||w&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var R=Atomics.load(o(),_o>>2),U=0;if(R==w){var he=Atomics.compareExchange(o(),_o>>2,R,0);if(he==R&&(--S,U=1,S<=0))return 1}var le=Atomics.notify(o(),w>>2,S);if(le>=0)return le+U;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=Eo;function cg(w){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!w)throw"Internal Error! Null pthread_ptr in _kill_thread!";o()[w+12>>2]=0;var S=me.pthreads[w];S.worker.terminate(),me.freeThreadData(S),me.runningWorkers.splice(me.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function pg(w){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!w)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var S=me.pthreads[w];S.worker.postMessage({cmd:"cancel"})}function dg(w){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!w)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";o()[w+12>>2]=0;var S=me.pthreads[w];if(S){var R=S.worker;me.returnWorkerToPool(R)}}var me={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){Co(me.mainThreadBlock,!y,1),Jw(me.mainThreadBlock)},initMainThreadBlock:function(){for(var w=8,S=0;S<w;++S)me.allocateUnusedWorker();me.mainThreadBlock=12816;for(var S=0;S<232/4;++S)l()[me.mainThreadBlock/4+S]=0;o()[me.mainThreadBlock+12>>2]=me.mainThreadBlock;var R=me.mainThreadBlock+156;o()[R>>2]=R;for(var U=13056,S=0;S<128;++S)l()[U/4+S]=0;Atomics.store(l(),me.mainThreadBlock+104>>2,U),Atomics.store(l(),me.mainThreadBlock+40>>2,me.mainThreadBlock),Atomics.store(l(),me.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(me.exitHandlers!==null){for(;me.exitHandlers.length>0;)me.exitHandlers.pop()();me.exitHandlers=null}x&&pe&&Zw()},threadExit:function(w){var S=Ua();S&&(Atomics.store(l(),S+4>>2,w),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+60>>2,1),Atomics.store(l(),S+64>>2,0),me.runExitHandlers(),Eo(S+0,2147483647),Co(0,0,0),pe=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){me.runExitHandlers(),Atomics.store(l(),pe+4>>2,-1),Atomics.store(l(),pe+0>>2,1),Eo(pe+0,2147483647),pe=ue=0,Co(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var w in me.pthreads){var S=me.pthreads[w];S&&S.worker&&me.returnWorkerToPool(S.worker)}me.pthreads={};for(var R=0;R<me.unusedWorkers.length;++R){var U=me.unusedWorkers[R];U.terminate()}me.unusedWorkers=[];for(var R=0;R<me.runningWorkers.length;++R){var U=me.runningWorkers[R],S=U.pthread;me.freeThreadData(S),U.terminate()}me.runningWorkers=[]},freeThreadData:function(w){if(w){if(w.threadInfoStruct){var S=o()[w.threadInfoStruct+104>>2];o()[w.threadInfoStruct+104>>2]=0,rc(S),rc(w.threadInfoStruct)}w.threadInfoStruct=0,w.allocatedOwnStack&&w.stackBase&&rc(w.stackBase),w.stackBase=0,w.worker&&(w.worker.pthread=null)}},returnWorkerToPool:function(w){delete me.pthreads[w.pthread.thread],me.unusedWorkers.push(w),me.runningWorkers.splice(me.runningWorkers.indexOf(w),1),me.freeThreadData(w.pthread),w.pthread=void 0},receiveObjectTransfer:function(w){},loadWasmModuleToWorker:function(w,S){w.onmessage=function(R){var U=R.data,he=U.cmd;if(w.pthread&&(me.currentProxiedOperationCallerThread=w.pthread.threadInfoStruct),U.targetThread&&U.targetThread!=Ua()){var le=me.pthreads[U.targetThread];le?le.worker.postMessage(R.data,U.transferList):console.error('Internal error! Worker sent a message "'+he+'" to target pthread '+U.targetThread+", but that thread no longer exists!"),me.currentProxiedOperationCallerThread=void 0;return}if(he==="processQueuedMainThreadWork")ty();else if(he==="spawnThread")vd(R.data);else if(he==="cleanupThread")dg(U.thread);else if(he==="killThread")cg(U.thread);else if(he==="cancelThread")pg(U.thread);else if(he==="loaded")w.loaded=!0,S&&S(w),w.runPthread&&(w.runPthread(),delete w.runPthread);else if(he==="print")q("Thread "+U.threadId+": "+U.text);else if(he==="printErr")j("Thread "+U.threadId+": "+U.text);else if(he==="alert")alert("Thread "+U.threadId+": "+U.text);else if(he==="exit"){var ie=w.pthread&&Atomics.load(l(),w.pthread.thread+68>>2);ie&&me.returnWorkerToPool(w)}else he==="cancelDone"?me.returnWorkerToPool(w):he==="objectTransfer"?me.receiveObjectTransfer(R.data):R.data.target==="setimmediate"?w.postMessage(R.data):j("worker sent an unknown command "+he);me.currentProxiedOperationCallerThread=void 0},w.onerror=function(R){j("pthread sent an error! "+R.filename+":"+R.lineno+": "+R.message)},b&&(w.on("message",function(R){w.onmessage({data:R})}),w.on("error",function(R){w.onerror(R)}),w.on("exit",function(R){console.log("worker exited - TODO: update the worker queue?")})),w.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||a,wasmMemory:Q,wasmModule:ae,DYNAMIC_BASE:ia,DYNAMICTOP_PTR:Na})},allocateUnusedWorker:function(){var w=T("tfjs-backend-wasm-threaded-simd.worker.js");me.unusedWorkers.push(new Worker(w))},getNewWorker:function(){return me.unusedWorkers.length==0&&(me.allocateUnusedWorker(),me.loadWasmModuleToWorker(me.unusedWorkers[0])),me.unusedWorkers.length>0?me.unusedWorkers.pop():null},busySpinWait:function(w){for(var S=performance.now()+w;performance.now()<S;);}};function hg(w,S){Io=Hu=w,Ia=S,Do(w)}u.establishStackSpace=hg;function mg(){return se}u.getNoExitRuntime=mg;function fg(w,S,R,U){mr("Assertion failed: "+Ve(w)+", at: "+[S?Ve(S):"unknown filename",R,U?Ve(U):"unknown function"])}function gg(w,S){var R=_main(w,S)}var Ss;b?Ss=function(){var w=process.hrtime();return w[0]*1e3+w[1]/1e6}:x?Ss=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ss=dateNow:Ss=function(){return performance.now()};function yg(w){return o()[Kw()>>2]=w,w}function bg(w,S){if(x)return Or(1,1,w,S);qu.unshift({func:w,arg:S})}function xg(w,S){if(w==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:w,cmd:"processThreadQueue"});else{var R=me.pthreads[w],U=R&&R.worker;if(!U)return;U.postMessage({cmd:"processThreadQueue"})}return 1}function vg(){mr()}function wg(w,S){w=w|0,S=S|0}function kg(w,S,R){if(w<=0||w>s().length||w&!0)return-28;if(y){var U=Atomics.wait(o(),w>>2,S,R);if(U==="timed-out")return-73;if(U==="not-equal")return-6;if(U==="ok")return 0;throw"Atomics.wait returned an unexpected value "+U}else{var he=Atomics.load(o(),w>>2);if(S!=he)return-6;var le=performance.now(),ie=le+R;Atomics.store(o(),_o>>2,w);for(var xe=w;w==xe;){if(le=performance.now(),le>ie)return-73;ty(),w=Atomics.load(o(),_o>>2)}return 0}}function Ig(){return md|0}function Ng(){return hd|0}function Tg(w,S,R){i().copyWithin(w,S,S+R)}function Sg(){return navigator.hardwareConcurrency}function Or(w,S){for(var R=arguments.length-2,U=sc(),he=$o(R*8),le=he>>3,ie=0;ie<R;ie++)c()[le+ie]=arguments[2+ie];var xe=e0(w,R,he,S);return Do(U),xe}var Cs=[];function Ao(w,S){Ao.array||(Ao.array=[]);var R=Ao.array;R.length=0;for(var U;U=i()[w++];)U===100||U===102?(S=S+7&~7,R.push(c()[S>>3]),S+=8):(S=S+3&~3,R.push(o()[S>>2]),S+=4);return R}function Cg(w,S,R){Cs.length=S;for(var U=R>>3,he=0;he<S;he++)Cs[he]=c()[U+he];var le=w<0,ie=le?lg[-w-1]:Zg[w];if(le){var xe=Cs[1],tt=Cs[2],Mt=Ao(xe,tt);return ie.apply(null,Mt)}return ie.apply(null,Cs)}function _g(){return i().length}function Eg(w){try{return Q.grow(w-Je.byteLength+65535>>>16),Fn(Q.buffer),1}catch(S){}}function Ag(w){w=w>>>0;var S=_g();if(w<=S)return!1;var R=65536,U=2147483648;if(w>U)return!1;for(var he=16777216,le=1;le<=4;le*=2){var ie=S*(1+.2/le);ie=Math.min(ie,w+100663296);var xe=Math.min(U,Hn(Math.max(he,w,ie),R)),tt=Eg(xe);if(tt)return!0}return!1}var Pe={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var w=Pe.eventHandlers.length-1;w>=0;--w)Pe._removeHandler(w);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(qu.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(w,S,R){function U(ie,xe){if(ie.length!=xe.length)return!1;for(var tt in ie)if(ie[tt]!=xe[tt])return!1;return!0}for(var he in Pe.deferredCalls){var le=Pe.deferredCalls[he];if(le.targetFunction==w&&U(le.argsList,R))return}Pe.deferredCalls.push({targetFunction:w,precedence:S,argsList:R}),Pe.deferredCalls.sort(function(ie,xe){return ie.precedence<xe.precedence})},removeDeferredCalls:function(w){for(var S=0;S<Pe.deferredCalls.length;++S)Pe.deferredCalls[S].targetFunction==w&&(Pe.deferredCalls.splice(S,1),--S)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var w=0;w<Pe.deferredCalls.length;++w){var S=Pe.deferredCalls[w];Pe.deferredCalls.splice(w,1),--w,S.targetFunction.apply(null,S.argsList)}},inEventHandler:0,currentEventHandler:null,eventHandlers:[],removeAllHandlersOnTarget:function(w,S){for(var R=0;R<Pe.eventHandlers.length;++R)Pe.eventHandlers[R].target==w&&(!S||S==Pe.eventHandlers[R].eventTypeString)&&Pe._removeHandler(R--)},_removeHandler:function(w){var S=Pe.eventHandlers[w];S.target.removeEventListener(S.eventTypeString,S.eventListenerFunc,S.useCapture),Pe.eventHandlers.splice(w,1)},registerOrRemoveHandler:function(w){var S=function(U){++Pe.inEventHandler,Pe.currentEventHandler=w,Pe.runDeferredCalls(),w.handlerFunc(U),Pe.runDeferredCalls(),--Pe.inEventHandler};if(w.callbackfunc)w.eventListenerFunc=S,w.target.addEventListener(w.eventTypeString,S,w.useCapture),Pe.eventHandlers.push(w),Pe.registerRemoveEventListeners();else for(var R=0;R<Pe.eventHandlers.length;++R)Pe.eventHandlers[R].target==w.target&&Pe.eventHandlers[R].eventTypeString==w.eventTypeString&&Pe._removeHandler(R--)},queueEventHandlerOnThread_iiii:function(w,S,R,U,he){var le=sc(),ie=$o(12);o()[ie>>2]=R,o()[ie+4>>2]=U,o()[ie+8>>2]=he,ny(w,637534208,S,U,ie),Do(le)},getTargetThreadForEventCallback:function(w){switch(w){case 1:return 0;case 2:return me.currentProxiedOperationCallerThread;default:return w}},getNodeNameForTarget:function(w){return w?w==window?"#window":w==screen?"#screen":w&&w.nodeName?w.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Fg(w){var S=He(w)+1,R=ac(S);return lt(w,R,S),R}function $g(w,S,R,U){var he=sc(),le=$o(12),ie=0;S&&(ie=Fg(S)),o()[le>>2]=ie,o()[le+4>>2]=R,o()[le+8>>2]=U,ny(w,657457152,0,ie,le),Do(he)}function Dg(w,S,R,U){S=S?Ve(S):"",$g(w,S,R,U)}function Rg(w){return w>2?Ve(w):w}var Mg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Pg(w){w=Rg(w);var S=Mg[w]||(typeof document!="undefined"?document.querySelector(w):void 0);return S}function Ju(w){return Pg(w)}function fd(w,S,R){var U=Ju(w);if(!U)return-4;if(U.canvasSharedPtr&&(o()[U.canvasSharedPtr>>2]=S,o()[U.canvasSharedPtr+4>>2]=R),U.offscreenCanvas||!U.controlTransferredOffscreen){U.offscreenCanvas&&(U=U.offscreenCanvas);var he=!1;if(U.GLctxObject&&U.GLctxObject.GLctx){var le=U.GLctxObject.GLctx.getParameter(2978);he=le[0]===0&&le[1]===0&&le[2]===U.width&&le[3]===U.height}U.width=S,U.height=R,he&&U.GLctxObject.GLctx.viewport(0,0,S,R)}else if(U.canvasSharedPtr){var ie=o()[U.canvasSharedPtr+8>>2];return Dg(ie,w,S,R),1}else return-4;return 0}function gd(w,S,R){return x?Or(2,1,w,S,R):fd(w,S,R)}function Og(w,S,R){var U=Ju(w);return U?fd(w,S,R):gd(w,S,R)}function Lg(w){w=w|0}function zg(w,S){w=w|0,S=S|0}function Bg(w){var S=w.getExtension("ANGLE_instanced_arrays");if(S)return w.vertexAttribDivisor=function(R,U){S.vertexAttribDivisorANGLE(R,U)},w.drawArraysInstanced=function(R,U,he,le){S.drawArraysInstancedANGLE(R,U,he,le)},w.drawElementsInstanced=function(R,U,he,le,ie){S.drawElementsInstancedANGLE(R,U,he,le,ie)},1}function Wg(w){var S=w.getExtension("OES_vertex_array_object");if(S)return w.createVertexArray=function(){return S.createVertexArrayOES()},w.deleteVertexArray=function(R){S.deleteVertexArrayOES(R)},w.bindVertexArray=function(R){S.bindVertexArrayOES(R)},w.isVertexArray=function(R){return S.isVertexArrayOES(R)},1}function Vg(w){var S=w.getExtension("WEBGL_draw_buffers");if(S)return w.drawBuffers=function(R,U){S.drawBuffersWEBGL(R,U)},1}var Be={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var w=new Float32Array(Be.MINI_TEMP_BUFFER_SIZE),S=0;S<Be.MINI_TEMP_BUFFER_SIZE;S++)Be.miniTempBufferFloatViews[S]=w.subarray(0,S+1);for(var R=new Int32Array(Be.MINI_TEMP_BUFFER_SIZE),S=0;S<Be.MINI_TEMP_BUFFER_SIZE;S++)Be.miniTempBufferIntViews[S]=R.subarray(0,S+1)},recordError:function(w){Be.lastError||(Be.lastError=w)},getNewId:function(w){for(var S=Be.counter++,R=w.length;R<S;R++)w[R]=null;return S},MINI_TEMP_BUFFER_SIZE:256,miniTempBufferFloatViews:[0],miniTempBufferIntViews:[0],getSource:function(w,S,R,U){for(var he="",le=0;le<S;++le){var ie=U?o()[U+le*4>>2]:-1;he+=Ve(o()[R+le*4>>2],ie<0?void 0:ie)}return he},createContext:function(w,S){var R=w.getContext("webgl",S);if(!R)return 0;var U=Be.registerContext(R,S);return U},registerContext:function(w,S){var R=ac(8);o()[R+4>>2]=Ua();var U={handle:R,attributes:S,version:S.majorVersion,GLctx:w};return w.canvas&&(w.canvas.GLctxObject=U),Be.contexts[R]=U,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Be.initExtensions(U),R},makeContextCurrent:function(w){return Be.currentContext=Be.contexts[w],u.ctx=Lr=Be.currentContext&&Be.currentContext.GLctx,!(w&&!Lr)},getContext:function(w){return Be.contexts[w]},deleteContext:function(w){Be.currentContext===Be.contexts[w]&&(Be.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Be.contexts[w].GLctx.canvas),Be.contexts[w]&&Be.contexts[w].GLctx.canvas&&(Be.contexts[w].GLctx.canvas.GLctxObject=void 0),rc(Be.contexts[w].handle),Be.contexts[w]=null},initExtensions:function(w){if(w||(w=Be.currentContext),!w.initExtensionsDone){w.initExtensionsDone=!0;var S=w.GLctx;Bg(S),Wg(S),Vg(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query");var R=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],U=S.getSupportedExtensions()||[];U.forEach(function(he){R.indexOf(he)!=-1&&S.getExtension(he)})}},populateUniformTable:function(w){for(var S=Be.programs[w],R=Be.programInfos[w]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},U=R.uniforms,he=Lr.getProgramParameter(S,35718),le=0;le<he;++le){var ie=Lr.getActiveUniform(S,le),xe=ie.name;R.maxUniformLength=Math.max(R.maxUniformLength,xe.length+1),xe.slice(-1)=="]"&&(xe=xe.slice(0,xe.lastIndexOf("[")));var tt=Lr.getUniformLocation(S,xe);if(tt){var Mt=Be.getNewId(Be.uniforms);U[xe]=[ie.size,Mt],Be.uniforms[Mt]=tt;for(var rn=1;rn<ie.size;++rn){var Ro=xe+"["+rn+"]";tt=Lr.getUniformLocation(S,Ro),Mt=Be.getNewId(Be.uniforms),Be.uniforms[Mt]=tt}}}}},Ug=["default","low-power","high-performance"];function Gg(w,S){var R={},U=S>>2;R.alpha=!!o()[U+(0>>2)],R.depth=!!o()[U+(4>>2)],R.stencil=!!o()[U+(8>>2)],R.antialias=!!o()[U+(12>>2)],R.premultipliedAlpha=!!o()[U+(16>>2)],R.preserveDrawingBuffer=!!o()[U+(20>>2)];var he=o()[U+(24>>2)];R.powerPreference=Ug[he],R.failIfMajorPerformanceCaveat=!!o()[U+(28>>2)],R.majorVersion=o()[U+(32>>2)],R.minorVersion=o()[U+(36>>2)],R.enableExtensionsByDefault=o()[U+(40>>2)],R.explicitSwapControl=o()[U+(44>>2)],R.proxyContextToMainThread=o()[U+(48>>2)],R.renderViaOffscreenBackBuffer=o()[U+(52>>2)];var le=Ju(w);if(!le)return-4;if(R.explicitSwapControl)return-1;var ie=Be.createContext(le,R);return ie}function Hg(w,S){return Gg(w,S)}var _s={splitPath:function(w){var S=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return S.exec(w).slice(1)},normalizeArray:function(w,S){for(var R=0,U=w.length-1;U>=0;U--){var he=w[U];he==="."?w.splice(U,1):he===".."?(w.splice(U,1),R++):R&&(w.splice(U,1),R--)}if(S)for(;R;R--)w.unshift("..");return w},normalize:function(w){var S=w.charAt(0)==="/",R=w.substr(-1)==="/";return w=_s.normalizeArray(w.split("/").filter(function(U){return!!U}),!S).join("/"),!w&&!S&&(w="."),w&&R&&(w+="/"),(S?"/":"")+w},dirname:function(w){var S=_s.splitPath(w),R=S[0],U=S[1];return!R&&!U?".":(U&&(U=U.substr(0,U.length-1)),R+U)},basename:function(w){if(w==="/")return"/";var S=w.lastIndexOf("/");return S===-1?w:w.substr(S+1)},extname:function(w){return _s.splitPath(w)[3]},join:function(){var w=Array.prototype.slice.call(arguments,0);return _s.normalize(w.join("/"))},join2:function(w,S){return _s.normalize(w+"/"+S)}},Fo={mappings:{},buffers:[null,[],[]],printChar:function(w,S){var R=Fo.buffers[w];S===0||S===10?((w===1?q:j)(Ke(R,0)),R.length=0):R.push(S)},varargs:void 0,get:function(){Fo.varargs+=4;var w=o()[Fo.varargs-4>>2];return w},getStr:function(w){var S=Ve(w);return S},get64:function(w,S){return w}};function yd(w){return x?Or(3,1,w):0}function bd(w,S,R,U,he){if(x)return Or(4,1,w,S,R,U,he)}function xd(w,S,R,U){if(x)return Or(5,1,w,S,R,U);for(var he=0,le=0;le<R;le++){for(var ie=o()[S+le*8>>2],xe=o()[S+(le*8+4)>>2],tt=0;tt<xe;tt++)Fo.printChar(w,i()[ie+tt]);he+=xe}return o()[U>>2]=he,0}function jg(w){var S=me.exitHandlers.pop();w&&S()}function qg(w,S){me.exitHandlers===null&&(me.exitHandlers=[]),me.exitHandlers.push(function(){t0(w,S)})}function vd(w){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var S=me.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!w.pthread_ptr)throw"Internal error, no pthread ptr!";me.runningWorkers.push(S);for(var R=ac(128*4),U=0;U<128;++U)o()[R+U*4>>2]=0;var he=w.stackBase+w.stackSize,le=me.pthreads[w.pthread_ptr]={worker:S,stackBase:w.stackBase,stackSize:w.stackSize,allocatedOwnStack:w.allocatedOwnStack,thread:w.pthread_ptr,threadInfoStruct:w.pthread_ptr},ie=le.threadInfoStruct>>2;Atomics.store(l(),ie+(0>>2),0),Atomics.store(l(),ie+(4>>2),0),Atomics.store(l(),ie+(8>>2),0),Atomics.store(l(),ie+(68>>2),w.detached),Atomics.store(l(),ie+(104>>2),R),Atomics.store(l(),ie+(48>>2),0),Atomics.store(l(),ie+(40>>2),le.threadInfoStruct),Atomics.store(l(),ie+(44>>2),42),Atomics.store(l(),ie+(108>>2),w.stackSize),Atomics.store(l(),ie+(84>>2),w.stackSize),Atomics.store(l(),ie+(80>>2),he),Atomics.store(l(),ie+(108+8>>2),he),Atomics.store(l(),ie+(108+12>>2),w.detached),Atomics.store(l(),ie+(108+20>>2),w.schedPolicy),Atomics.store(l(),ie+(108+24>>2),w.schedPrio);var xe=Xw(),tt=xe+40;Atomics.store(l(),ie+(176>>2),tt),S.pthread=le;var Mt={cmd:"run",start_routine:w.startRoutine,arg:w.arg,threadInfoStruct:w.pthread_ptr,selfThreadId:w.pthread_ptr,parentThreadId:w.parent_pthread_ptr,stackBase:w.stackBase,stackSize:w.stackSize};S.runPthread=function(){Mt.time=performance.now(),S.postMessage(Mt,w.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function Kg(w,S,R){if(!S&&!R)return Zu.EINVAL;if(!w)return j("pthread_getschedparam called with a null thread pointer!"),Zu.ESRCH;var U=o()[w+12>>2];if(U!==w)return j("pthread_getschedparam attempted on thread "+w+", which does not point to a valid thread, or does not exist anymore!"),Zu.ESRCH;var he=Atomics.load(l(),w+108+20>>2),le=Atomics.load(l(),w+108+24>>2);return S&&(o()[S>>2]=he),R&&(o()[R>>2]=le),0}function Ua(){return dd|0}u._pthread_self=Ua;function Xg(w,S,R,U){if(typeof SharedArrayBuffer=="undefined")return j("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!w)return j("pthread_create called with a null thread pointer!"),28;var he=[],le=0;if(x&&(he.length===0||le))return Qw(687865856,w,S,R,U);if(le)return le;var ie=0,xe=0,tt=0,Mt=0,rn=0;if(S){ie=o()[S>>2],ie+=81920,xe=o()[S+8>>2],tt=o()[S+12>>2]!==0;var Ro=o()[S+16>>2]===0;if(Ro){var oc=o()[S+20>>2],qn=o()[S+24>>2],Br=me.currentProxiedOperationCallerThread?me.currentProxiedOperationCallerThread:Ua();Kg(Br,S+20,S+24),Mt=o()[S+20>>2],rn=o()[S+24>>2],o()[S+20>>2]=oc,o()[S+24>>2]=qn}else Mt=o()[S+20>>2],rn=o()[S+24>>2]}else ie=2097152;var lc=xe==0;lc?xe=Yw(16,ie):(xe-=ie,ke(xe>0));for(var Mo=ac(232),ry=0;ry<232>>2;++ry)l()[(Mo>>2)+ry]=0;o()[w>>2]=Mo,o()[Mo+12>>2]=Mo;var a0=Mo+156;o()[a0>>2]=a0;var sy={stackBase:xe,stackSize:ie,allocatedOwnStack:lc,schedPolicy:Mt,schedPrio:rn,detached:tt,startRoutine:R,pthread_ptr:Mo,parent_pthread_ptr:Ua(),arg:U,transferList:he};return x?(sy.cmd="spawnThread",postMessage(sy,he)):vd(sy),0}function Yg(w){return w=+w,w>=0?+tg(w+.5):+So(w-.5)}function wd(w){if(x)return Or(6,1,w);switch(w){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return yg(28),-1}x?me.initWorker():me.initMainThreadBlock();var Lr;Be.init();var Zg=[null,bg,gd,yd,bd,xd,wd],Jg={e:fg,r:gg,w:xg,a:vg,l:wg,d:kg,c:Eo,h:Ss,g:Ig,x:Ng,q:Tg,B:Sg,t:Cg,A:Ag,u:Og,k:Lg,s:zg,v:Hg,m:yd,o:bd,i:xd,p:ug,memory:Q||u.wasmMemory,y:jg,z:qg,j:Xg,b:Ua,f:Yg,n:wd,table:oe},kd=og();u.asm=kd;var Id=u.___wasm_call_ctors=function(){return(Id=u.___wasm_call_ctors=u.asm.C).apply(null,arguments)},Nd=u._init=function(){return(Nd=u._init=u.asm.D).apply(null,arguments)},Qu=u._register_tensor=function(){return(Qu=u._register_tensor=u.asm.E).apply(null,arguments)},Td=u._dispose_data=function(){return(Td=u._dispose_data=u.asm.F).apply(null,arguments)},Es=u._dispose=function(){return(Es=u._dispose=u.asm.G).apply(null,arguments)},ec=u._Abs=function(){return(ec=u._Abs=u.asm.H).apply(null,arguments)},Qg=u._Add=function(){return(Qg=u._Add=u.asm.I).apply(null,arguments)},ey=u._AddN=function(){return(ey=u._AddN=u.asm.J).apply(null,arguments)},tc=u._ArgMax=function(){return(tc=u._ArgMax=u.asm.K).apply(null,arguments)},Sd=u._AvgPool=function(){return(Sd=u._AvgPool=u.asm.L).apply(null,arguments)},Cd=u._BatchMatMul=function(){return(Cd=u._BatchMatMul=u.asm.M).apply(null,arguments)},V=u._Ceil=function(){return(V=u._Ceil=u.asm.N).apply(null,arguments)},te=u._ClipByValue=function(){return(te=u._ClipByValue=u.asm.O).apply(null,arguments)},Ie=u._Conv2D=function(){return(Ie=u._Conv2D=u.asm.P).apply(null,arguments)},_e=u._Conv2DBackpropInput=function(){return(_e=u._Conv2DBackpropInput=u.asm.Q).apply(null,arguments)},at=u._Cos=function(){return(at=u._Cos=u.asm.R).apply(null,arguments)},_t=u._CropAndResize=function(){return(_t=u._CropAndResize=u.asm.S).apply(null,arguments)},Xe=u._Cumsum=function(){return(Xe=u._Cumsum=u.asm.T).apply(null,arguments)},je=u._DepthToSpace=function(){return(je=u._DepthToSpace=u.asm.U).apply(null,arguments)},Ut=u._DepthwiseConv2dNative=function(){return(Ut=u._DepthwiseConv2dNative=u.asm.V).apply(null,arguments)},fr=u._Equal=function(){return(fr=u._Equal=u.asm.W).apply(null,arguments)},gr=u._Exp=function(){return(gr=u._Exp=u.asm.X).apply(null,arguments)},_d=u._FlipLeftRight=function(){return(_d=u._FlipLeftRight=u.asm.Y).apply(null,arguments)},nc=u._Floor=function(){return(nc=u._Floor=u.asm.Z).apply(null,arguments)},jn=u._FloorDiv=function(){return(jn=u._FloorDiv=u.asm._).apply(null,arguments)},zr=u._FusedBatchNorm=function(){return(zr=u._FusedBatchNorm=u.asm.$).apply(null,arguments)},Ed=u._FusedConv2D=function(){return(Ed=u._FusedConv2D=u.asm.aa).apply(null,arguments)},h_=u._FusedDepthwiseConv2D=function(){return(h_=u._FusedDepthwiseConv2D=u.asm.ba).apply(null,arguments)},m_=u._Gather=function(){return(m_=u._Gather=u.asm.ca).apply(null,arguments)},f_=u._GatherNd=function(){return(f_=u._GatherNd=u.asm.da).apply(null,arguments)},g_=u._Greater=function(){return(g_=u._Greater=u.asm.ea).apply(null,arguments)},y_=u._GreaterEqual=function(){return(y_=u._GreaterEqual=u.asm.fa).apply(null,arguments)},b_=u._LeakyRelu=function(){return(b_=u._LeakyRelu=u.asm.ga).apply(null,arguments)},x_=u._Less=function(){return(x_=u._Less=u.asm.ha).apply(null,arguments)},v_=u._LessEqual=function(){return(v_=u._LessEqual=u.asm.ia).apply(null,arguments)},w_=u._Log=function(){return(w_=u._Log=u.asm.ja).apply(null,arguments)},k_=u._LogicalAnd=function(){return(k_=u._LogicalAnd=u.asm.ka).apply(null,arguments)},I_=u._Max=function(){return(I_=u._Max=u.asm.la).apply(null,arguments)},N_=u._MaxPool=function(){return(N_=u._MaxPool=u.asm.ma).apply(null,arguments)},T_=u._Maximum=function(){return(T_=u._Maximum=u.asm.na).apply(null,arguments)},S_=u._Mean=function(){return(S_=u._Mean=u.asm.oa).apply(null,arguments)},C_=u._Min=function(){return(C_=u._Min=u.asm.pa).apply(null,arguments)},__=u._Minimum=function(){return(__=u._Minimum=u.asm.qa).apply(null,arguments)},E_=u._Multiply=function(){return(E_=u._Multiply=u.asm.ra).apply(null,arguments)},A_=u._Neg=function(){return(A_=u._Neg=u.asm.sa).apply(null,arguments)},F_=u._NonMaxSuppressionV3=function(){return(F_=u._NonMaxSuppressionV3=u.asm.ta).apply(null,arguments)},$_=u._NonMaxSuppressionV4=function(){return($_=u._NonMaxSuppressionV4=u.asm.ua).apply(null,arguments)},D_=u._NonMaxSuppressionV5=function(){return(D_=u._NonMaxSuppressionV5=u.asm.va).apply(null,arguments)},R_=u._NotEqual=function(){return(R_=u._NotEqual=u.asm.wa).apply(null,arguments)},M_=u._OneHot=function(){return(M_=u._OneHot=u.asm.xa).apply(null,arguments)},P_=u._PadV2=function(){return(P_=u._PadV2=u.asm.ya).apply(null,arguments)},O_=u._Pow=function(){return(O_=u._Pow=u.asm.za).apply(null,arguments)},L_=u._Prelu=function(){return(L_=u._Prelu=u.asm.Aa).apply(null,arguments)},z_=u._Prod=function(){return(z_=u._Prod=u.asm.Ba).apply(null,arguments)},B_=u._RealDiv=function(){return(B_=u._RealDiv=u.asm.Ca).apply(null,arguments)},W_=u._Relu=function(){return(W_=u._Relu=u.asm.Da).apply(null,arguments)},V_=u._Relu6=function(){return(V_=u._Relu6=u.asm.Ea).apply(null,arguments)},U_=u._ResizeBilinear=function(){return(U_=u._ResizeBilinear=u.asm.Fa).apply(null,arguments)},G_=u._Reverse=function(){return(G_=u._Reverse=u.asm.Ga).apply(null,arguments)},H_=u._RotateWithOffset=function(){return(H_=u._RotateWithOffset=u.asm.Ha).apply(null,arguments)},j_=u._Round=function(){return(j_=u._Round=u.asm.Ia).apply(null,arguments)},q_=u._Rsqrt=function(){return(q_=u._Rsqrt=u.asm.Ja).apply(null,arguments)},K_=u._ScatterNd=function(){return(K_=u._ScatterNd=u.asm.Ka).apply(null,arguments)},X_=u._SelectV2=function(){return(X_=u._SelectV2=u.asm.La).apply(null,arguments)},Y_=u._Sigmoid=function(){return(Y_=u._Sigmoid=u.asm.Ma).apply(null,arguments)},Z_=u._Sin=function(){return(Z_=u._Sin=u.asm.Na).apply(null,arguments)},J_=u._Softmax=function(){return(J_=u._Softmax=u.asm.Oa).apply(null,arguments)},Q_=u._Sqrt=function(){return(Q_=u._Sqrt=u.asm.Pa).apply(null,arguments)},eE=u._Square=function(){return(eE=u._Square=u.asm.Qa).apply(null,arguments)},tE=u._SquaredDifference=function(){return(tE=u._SquaredDifference=u.asm.Ra).apply(null,arguments)},nE=u._Step=function(){return(nE=u._Step=u.asm.Sa).apply(null,arguments)},aE=u._StridedSlice=function(){return(aE=u._StridedSlice=u.asm.Ta).apply(null,arguments)},rE=u._Sub=function(){return(rE=u._Sub=u.asm.Ua).apply(null,arguments)},sE=u._Sum=function(){return(sE=u._Sum=u.asm.Va).apply(null,arguments)},iE=u._Tanh=function(){return(iE=u._Tanh=u.asm.Wa).apply(null,arguments)},oE=u._Tile=function(){return(oE=u._Tile=u.asm.Xa).apply(null,arguments)},lE=u._TopK=function(){return(lE=u._TopK=u.asm.Ya).apply(null,arguments)},uE=u._Transpose=function(){return(uE=u._Transpose=u.asm.Za).apply(null,arguments)},cE=u.__FusedMatMul=function(){return(cE=u.__FusedMatMul=u.asm._a).apply(null,arguments)},ac=u._malloc=function(){return(ac=u._malloc=u.asm.$a).apply(null,arguments)},rc=u._free=function(){return(rc=u._free=u.asm.ab).apply(null,arguments)},Kw=u.___errno_location=function(){return(Kw=u.___errno_location=u.asm.bb).apply(null,arguments)},Xw=u._emscripten_get_global_libc=function(){return(Xw=u._emscripten_get_global_libc=u.asm.cb).apply(null,arguments)},pE=u.___em_js__initPthreadsJS=function(){return(pE=u.___em_js__initPthreadsJS=u.asm.db).apply(null,arguments)},Yw=u._memalign=function(){return(Yw=u._memalign=u.asm.eb).apply(null,arguments)},Zw=u.___pthread_tsd_run_dtors=function(){return(Zw=u.___pthread_tsd_run_dtors=u.asm.fb).apply(null,arguments)},ty=u._emscripten_main_thread_process_queued_calls=function(){return(ty=u._emscripten_main_thread_process_queued_calls=u.asm.gb).apply(null,arguments)},dE=u._emscripten_current_thread_process_queued_calls=function(){return(dE=u._emscripten_current_thread_process_queued_calls=u.asm.hb).apply(null,arguments)},Jw=u._emscripten_register_main_browser_thread_id=function(){return(Jw=u._emscripten_register_main_browser_thread_id=u.asm.ib).apply(null,arguments)},hE=u._emscripten_main_browser_thread_id=function(){return(hE=u._emscripten_main_browser_thread_id=u.asm.jb).apply(null,arguments)},mE=u._emscripten_async_run_in_main_thread=function(){return(mE=u._emscripten_async_run_in_main_thread=u.asm.kb).apply(null,arguments)},fE=u._emscripten_sync_run_in_main_thread=function(){return(fE=u._emscripten_sync_run_in_main_thread=u.asm.lb).apply(null,arguments)},gE=u._emscripten_sync_run_in_main_thread_0=function(){return(gE=u._emscripten_sync_run_in_main_thread_0=u.asm.mb).apply(null,arguments)},yE=u._emscripten_sync_run_in_main_thread_1=function(){return(yE=u._emscripten_sync_run_in_main_thread_1=u.asm.nb).apply(null,arguments)},bE=u._emscripten_sync_run_in_main_thread_2=function(){return(bE=u._emscripten_sync_run_in_main_thread_2=u.asm.ob).apply(null,arguments)},xE=u._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(xE=u._emscripten_sync_run_in_main_thread_xprintf_varargs=u.asm.pb).apply(null,arguments)},vE=u._emscripten_sync_run_in_main_thread_3=function(){return(vE=u._emscripten_sync_run_in_main_thread_3=u.asm.qb).apply(null,arguments)},Qw=u._emscripten_sync_run_in_main_thread_4=function(){return(Qw=u._emscripten_sync_run_in_main_thread_4=u.asm.rb).apply(null,arguments)},wE=u._emscripten_sync_run_in_main_thread_5=function(){return(wE=u._emscripten_sync_run_in_main_thread_5=u.asm.sb).apply(null,arguments)},kE=u._emscripten_sync_run_in_main_thread_6=function(){return(kE=u._emscripten_sync_run_in_main_thread_6=u.asm.tb).apply(null,arguments)},IE=u._emscripten_sync_run_in_main_thread_7=function(){return(IE=u._emscripten_sync_run_in_main_thread_7=u.asm.ub).apply(null,arguments)},e0=u._emscripten_run_in_main_runtime_thread_js=function(){return(e0=u._emscripten_run_in_main_runtime_thread_js=u.asm.vb).apply(null,arguments)},ny=u._emscripten_async_queue_on_thread_=function(){return(ny=u._emscripten_async_queue_on_thread_=u.asm.wb).apply(null,arguments)},NE=u._emscripten_tls_init=function(){return(NE=u._emscripten_tls_init=u.asm.xb).apply(null,arguments)},sc=u.stackSave=function(){return(sc=u.stackSave=u.asm.yb).apply(null,arguments)},$o=u.stackAlloc=function(){return($o=u.stackAlloc=u.asm.zb).apply(null,arguments)},Do=u.stackRestore=function(){return(Do=u.stackRestore=u.asm.Ab).apply(null,arguments)},t0=u.dynCall_vi=function(){return(t0=u.dynCall_vi=u.asm.Bb).apply(null,arguments)},TE=u.dynCall_v=function(){return(TE=u.dynCall_v=u.asm.Cb).apply(null,arguments)},SE=u.dynCall_ii=function(){return(SE=u.dynCall_ii=u.asm.Db).apply(null,arguments)};u.asm=kd,u.cwrap=Re,u.PThread=me,u.PThread=me,u._pthread_self=Ua,u.wasmMemory=Q,u.ExitStatus=n0;var ic;u.then=function(w){if(ic)w(u);else{var S=u.onRuntimeInitialized;u.onRuntimeInitialized=function(){S&&S(),w(u)}}return u};function n0(w){this.name="ExitStatus",this.message="Program terminated with exit("+w+")",this.status=w}Ts=function w(){ic||ay(),ic||(Ts=w)};function ay(w){if(w=w||h,hr>0||(oa(),hr>0))return;function S(){ic||(ic=!0,u.calledRun=!0,!ge&&(ld(),Jf(),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Qf()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),S()},1)):S()}if(u.run=ay,u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return x||(se=!0),x||ay(),r}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),tA=cn((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i={},o;for(o in s)s.hasOwnProperty(o)&&(i[o]=s[o]);var l=[],c="./this.program",u=function(V,te){throw te},p=!1,d=!1,h=!1,m=!1;p=typeof window=="object",d=typeof importScripts=="function",h=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",m=!p&&!h&&!d;var f="";function g(V){return s.locateFile?s.locateFile(V,f):f+V}var y,b,v,x,N,T;h?(d?f=cc().dirname(f)+"/":f=__dirname+"/",y=function(V,te){return N||(N=require("fs")),T||(T=cc()),V=T.normalize(V),N.readFileSync(V,te?null:"utf8")},v=function(V){var te=y(V,!0);return te.buffer||(te=new Uint8Array(te)),j(te.buffer),te},process.argv.length>1&&(c=process.argv[1].replace(/\\/g,"/")),l=process.argv.slice(2),process.on("uncaughtException",function(V){if(!(V instanceof ec))throw V}),process.on("unhandledRejection",Is),u=function(V){process.exit(V)},s.inspect=function(){return"[Emscripten Module object]"}):m?(typeof read!="undefined"&&(y=function(V){return read(V)}),v=function(V){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(V)):(te=read(V,"binary"),j(typeof te=="object"),te)},typeof scriptArgs!="undefined"?l=scriptArgs:typeof arguments!="undefined"&&(l=arguments),typeof quit=="function"&&(u=function(V){quit(V)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||d)&&(d?f=self.location.href:document.currentScript&&(f=document.currentScript.src),a&&(f=a),f.indexOf("blob:")!==0?f=f.substr(0,f.lastIndexOf("/")+1):f="",y=function(V){var te=new XMLHttpRequest;return te.open("GET",V,!1),te.send(null),te.responseText},d&&(v=function(V){var te=new XMLHttpRequest;return te.open("GET",V,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),b=function(V,te,Ie){var _e=new XMLHttpRequest;_e.open("GET",V,!0),_e.responseType="arraybuffer",_e.onload=function(){if(_e.status==200||_e.status==0&&_e.response){te(_e.response);return}Ie()},_e.onerror=Ie,_e.send(null)},x=function(V){document.title=V});var C=s.print||console.log.bind(console),F=s.printErr||console.warn.bind(console);for(o in i)i.hasOwnProperty(o)&&(s[o]=i[o]);i=null,s.arguments&&(l=s.arguments),s.thisProgram&&(c=s.thisProgram),s.quit&&(u=s.quit);var $;s.wasmBinary&&($=s.wasmBinary);var P;s.noExitRuntime&&(P=s.noExitRuntime),typeof WebAssembly!="object"&&F("no native wasm support detected");var B,W=new WebAssembly.Table({initial:153,maximum:153+0,element:"anyfunc"}),G=!1,q=0;function j(V,te){V||Is("Assertion failed: "+te)}function X(V){var te=s["_"+V];return j(te,"Cannot call unknown function "+V+", make sure it is exported"),te}function K(V,te,Ie,_e,at){var _t={string:function(jn){var zr=0;if(jn!=null&&jn!==0){var Ed=(jn.length<<2)+1;zr=Qu(Ed),ae(jn,zr,Ed)}return zr},array:function(jn){var zr=Qu(jn.length);return pe(jn,zr),zr}};function Xe(jn){return te==="string"?Q(jn):te==="boolean"?Boolean(jn):jn}var je=X(V),Ut=[],fr=0;if(_e)for(var gr=0;gr<_e.length;gr++){var _d=_t[Ie[gr]];_d?(fr===0&&(fr=Nd()),Ut[gr]=_d(_e[gr])):Ut[gr]=_e[gr]}var nc=je.apply(null,Ut);return nc=Xe(nc),fr!==0&&Td(fr),nc}function ne(V,te,Ie,_e){Ie=Ie||[];var at=Ie.every(function(Xe){return Xe==="number"}),_t=te!=="string";return _t&&at&&!_e?X(V):function(){return K(V,te,Ie,arguments,_e)}}var J=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function se(V,te,Ie){for(var _e=te+Ie,at=te;V[at]&&!(at>=_e);)++at;if(at-te>16&&V.subarray&&J)return J.decode(V.subarray(te,at));for(var _t="";te<at;){var Xe=V[te++];if(!(Xe&128)){_t+=String.fromCharCode(Xe);continue}var je=V[te++]&63;if((Xe&224)==192){_t+=String.fromCharCode((Xe&31)<<6|je);continue}var Ut=V[te++]&63;if((Xe&240)==224?Xe=(Xe&15)<<12|je<<6|Ut:Xe=(Xe&7)<<18|je<<12|Ut<<6|V[te++]&63,Xe<65536)_t+=String.fromCharCode(Xe);else{var fr=Xe-65536;_t+=String.fromCharCode(55296|fr>>10,56320|fr&1023)}}return _t}function Q(V,te){return V?se(ye,V,te):""}function oe(V,te,Ie,_e){if(!(_e>0))return 0;for(var at=Ie,_t=Ie+_e-1,Xe=0;Xe<V.length;++Xe){var je=V.charCodeAt(Xe);if(je>=55296&&je<=57343){var Ut=V.charCodeAt(++Xe);je=65536+((je&1023)<<10)|Ut&1023}if(je<=127){if(Ie>=_t)break;te[Ie++]=je}else if(je<=2047){if(Ie+1>=_t)break;te[Ie++]=192|je>>6,te[Ie++]=128|je&63}else if(je<=65535){if(Ie+2>=_t)break;te[Ie++]=224|je>>12,te[Ie++]=128|je>>6&63,te[Ie++]=128|je&63}else{if(Ie+3>=_t)break;te[Ie++]=240|je>>18,te[Ie++]=128|je>>12&63,te[Ie++]=128|je>>6&63,te[Ie++]=128|je&63}}return te[Ie]=0,Ie-at}function ae(V,te,Ie){return oe(V,ye,te,Ie)}function pe(V,te){ge.set(V,te)}var ue,ge,ye,ke,Se,Ce,Re,Ke,Ve;function st(V){ue=V,s.HEAP8=ge=new Int8Array(V),s.HEAP16=ke=new Int16Array(V),s.HEAP32=Ce=new Int32Array(V),s.HEAPU8=ye=new Uint8Array(V),s.HEAPU16=Se=new Uint16Array(V),s.HEAPU32=Re=new Uint32Array(V),s.HEAPF32=Ke=new Float32Array(V),s.HEAPF64=Ve=new Float64Array(V)}var lt=s.INITIAL_MEMORY||16777216;function He(V){for(;V.length>0;){var te=V.shift();if(typeof te=="function"){te(s);continue}var Ie=te.func;typeof Ie=="number"?te.arg===void 0?s.dynCall_v(Ie):s.dynCall_vi(Ie,te.arg):Ie(te.arg===void 0?null:te.arg)}}var ct=[],pt=[],Hn=[],Je=[],En=!1,en=!1;function An(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Va(s.preRun.shift());He(ct)}function ra(){En=!0,He(pt)}function vn(){He(Hn)}function un(){en=!0}function sa(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Fn(s.postRun.shift());He(Je)}function Va(V){ct.unshift(V)}function Fn(V){Je.unshift(V)}var Io=Math.ceil,Hu=Math.floor,Ia=0,ia=null,Na=null;function No(V){Ia++,s.monitorRunDependencies&&s.monitorRunDependencies(Ia)}function To(V){if(Ia--,s.monitorRunDependencies&&s.monitorRunDependencies(Ia),Ia==0&&(ia!==null&&(clearInterval(ia),ia=null),Na)){var te=Na;Na=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Is(V){throw s.onAbort&&s.onAbort(V),V+="",C(V),F(V),G=!0,q=1,V="abort("+V+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(V)}function ju(V,te){return String.prototype.startsWith?V.startsWith(te):V.indexOf(te)===0}var Zf="data:application/octet-stream;base64,";function qu(V){return ju(V,Zf)}var od="file://";function Ku(V){return ju(V,od)}var oa="tfjs-backend-wasm.wasm";qu(oa)||(oa=g(oa));function ld(){try{if($)return new Uint8Array($);if(v)return v(oa);throw"both async and sync fetching of the wasm failed"}catch(V){Is(V)}}function Jf(){return!$&&(p||d)&&typeof fetch=="function"&&!Ku(oa)?fetch(oa,{credentials:"same-origin"}).then(function(V){if(!V.ok)throw"failed to load wasm binary file at '"+oa+"'";return V.arrayBuffer()}).catch(function(){return ld()}):new Promise(function(V,te){V(ld())})}function Qf(){var V={env:mr,wasi_snapshot_preview1:mr};function te(Xe,je){var Ut=Xe.exports;s.asm=Ut,B=Ut.memory,st(B.buffer),To("wasm-instantiate")}No("wasm-instantiate");function Ie(Xe){te(Xe.instance)}function _e(Xe){return Jf().then(function(je){return WebAssembly.instantiate(je,V)}).then(Xe,function(je){F("failed to asynchronously prepare wasm: "+je),Is(je)})}function at(){if(!$&&typeof WebAssembly.instantiateStreaming=="function"&&!qu(oa)&&!Ku(oa)&&typeof fetch=="function")fetch(oa,{credentials:"same-origin"}).then(function(Xe){var je=WebAssembly.instantiateStreaming(Xe,V);return je.then(Ie,function(Ut){F("wasm streaming compile failed: "+Ut),F("falling back to ArrayBuffer instantiation"),_e(Ie)})});else return _e(Ie)}if(s.instantiateWasm)try{var _t=s.instantiateWasm(V,te);return _t}catch(Xe){return F("Module.instantiateWasm callback failed with error: "+Xe),!1}return at(),{}}pt.push();function eg(V){st(B.buffer)}var Ns={splitPath:function(V){var te=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return te.exec(V).slice(1)},normalizeArray:function(V,te){for(var Ie=0,_e=V.length-1;_e>=0;_e--){var at=V[_e];at==="."?V.splice(_e,1):at===".."?(V.splice(_e,1),Ie++):Ie&&(V.splice(_e,1),Ie--)}if(te)for(;Ie;Ie--)V.unshift("..");return V},normalize:function(V){var te=V.charAt(0)==="/",Ie=V.substr(-1)==="/";return V=Ns.normalizeArray(V.split("/").filter(function(_e){return!!_e}),!te).join("/"),!V&&!te&&(V="."),V&&Ie&&(V+="/"),(te?"/":"")+V},dirname:function(V){var te=Ns.splitPath(V),Ie=te[0],_e=te[1];return!Ie&&!_e?".":(_e&&(_e=_e.substr(0,_e.length-1)),Ie+_e)},basename:function(V){if(V==="/")return"/";var te=V.lastIndexOf("/");return te===-1?V:V.substr(te+1)},extname:function(V){return Ns.splitPath(V)[3]},join:function(){var V=Array.prototype.slice.call(arguments,0);return Ns.normalize(V.join("/"))},join2:function(V,te){return Ns.normalize(V+"/"+te)}},So={mappings:{},buffers:[null,[],[]],printChar:function(V,te){var Ie=So.buffers[V];te===0||te===10?((V===1?C:F)(se(Ie,0)),Ie.length=0):Ie.push(te)},varargs:void 0,get:function(){So.varargs+=4;var V=Ce[So.varargs-4>>2];return V},getStr:function(V){var te=Q(V);return te},get64:function(V,te){return V}};function tg(V){return 0}function hr(V,te,Ie,_e,at){}function Xu(V,te,Ie,_e){for(var at=0,_t=0;_t<Ie;_t++){for(var Xe=Ce[te+_t*8>>2],je=Ce[te+(_t*8+4)>>2],Ut=0;Ut<je;Ut++)So.printChar(V,ye[Xe+Ut]);at+=je}return Ce[_e>>2]=at,0}function Ts(V){Sd(V)}function ng(V){Ts(V)}function ag(V){return V=+V,V>=0?+Hu(V+.5):+Io(V-.5)}var mr={emscripten_notify_memory_growth:eg,fd_close:tg,fd_seek:hr,fd_write:Xu,proc_exit:ng,roundf:ag},Yu=Qf();s.asm=Yu;var rg=s._init=function(){return(rg=s._init=s.asm.init).apply(null,arguments)},ud=s._register_tensor=function(){return(ud=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},sg=s._dispose_data=function(){return(sg=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},cd=s._dispose=function(){return(cd=s._dispose=s.asm.dispose).apply(null,arguments)},la=s._Abs=function(){return(la=s._Abs=s.asm.Abs).apply(null,arguments)},pd=s._Add=function(){return(pd=s._Add=s.asm.Add).apply(null,arguments)},ig=s._AddN=function(){return(ig=s._AddN=s.asm.AddN).apply(null,arguments)},og=s._ArgMax=function(){return(og=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},lg=s._AvgPool=function(){return(lg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},ug=s._BatchMatMul=function(){return(ug=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},dd=s._Ceil=function(){return(dd=s._Ceil=s.asm.Ceil).apply(null,arguments)},hd=s._ClipByValue=function(){return(hd=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},md=s._Conv2D=function(){return(md=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Co=s._Conv2DBackpropInput=function(){return(Co=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Zu=s._Cos=function(){return(Zu=s._Cos=s.asm.Cos).apply(null,arguments)},_o=s._CropAndResize=function(){return(_o=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Eo=s._Cumsum=function(){return(Eo=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},cg=s._DepthToSpace=function(){return(cg=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},pg=s._DepthwiseConv2dNative=function(){return(pg=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},dg=s._Equal=function(){return(dg=s._Equal=s.asm.Equal).apply(null,arguments)},me=s._Exp=function(){return(me=s._Exp=s.asm.Exp).apply(null,arguments)},hg=s._FlipLeftRight=function(){return(hg=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},mg=s._Floor=function(){return(mg=s._Floor=s.asm.Floor).apply(null,arguments)},fg=s._FloorDiv=function(){return(fg=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},gg=s._FusedBatchNorm=function(){return(gg=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},Ss=s._FusedConv2D=function(){return(Ss=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},yg=s._FusedDepthwiseConv2D=function(){return(yg=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},bg=s._Gather=function(){return(bg=s._Gather=s.asm.Gather).apply(null,arguments)},xg=s._GatherNd=function(){return(xg=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},vg=s._Greater=function(){return(vg=s._Greater=s.asm.Greater).apply(null,arguments)},wg=s._GreaterEqual=function(){return(wg=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},kg=s._LeakyRelu=function(){return(kg=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},Ig=s._Less=function(){return(Ig=s._Less=s.asm.Less).apply(null,arguments)},Ng=s._LessEqual=function(){return(Ng=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Tg=s._Log=function(){return(Tg=s._Log=s.asm.Log).apply(null,arguments)},Sg=s._LogicalAnd=function(){return(Sg=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Or=s._Max=function(){return(Or=s._Max=s.asm.Max).apply(null,arguments)},Cs=s._MaxPool=function(){return(Cs=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Ao=s._Maximum=function(){return(Ao=s._Maximum=s.asm.Maximum).apply(null,arguments)},Cg=s._Mean=function(){return(Cg=s._Mean=s.asm.Mean).apply(null,arguments)},_g=s._Min=function(){return(_g=s._Min=s.asm.Min).apply(null,arguments)},Eg=s._Minimum=function(){return(Eg=s._Minimum=s.asm.Minimum).apply(null,arguments)},Ag=s._Multiply=function(){return(Ag=s._Multiply=s.asm.Multiply).apply(null,arguments)},Pe=s._Neg=function(){return(Pe=s._Neg=s.asm.Neg).apply(null,arguments)},Fg=s._NonMaxSuppressionV3=function(){return(Fg=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},$g=s._NonMaxSuppressionV4=function(){return($g=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Dg=s._NonMaxSuppressionV5=function(){return(Dg=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},Rg=s._NotEqual=function(){return(Rg=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Mg=s._OneHot=function(){return(Mg=s._OneHot=s.asm.OneHot).apply(null,arguments)},Pg=s._PadV2=function(){return(Pg=s._PadV2=s.asm.PadV2).apply(null,arguments)},Ju=s._Pow=function(){return(Ju=s._Pow=s.asm.Pow).apply(null,arguments)},fd=s._Prelu=function(){return(fd=s._Prelu=s.asm.Prelu).apply(null,arguments)},gd=s._Prod=function(){return(gd=s._Prod=s.asm.Prod).apply(null,arguments)},Og=s._RealDiv=function(){return(Og=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Lg=s._Relu=function(){return(Lg=s._Relu=s.asm.Relu).apply(null,arguments)},zg=s._Relu6=function(){return(zg=s._Relu6=s.asm.Relu6).apply(null,arguments)},Bg=s._ResizeBilinear=function(){return(Bg=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},Wg=s._Reverse=function(){return(Wg=s._Reverse=s.asm.Reverse).apply(null,arguments)},Vg=s._RotateWithOffset=function(){return(Vg=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Be=s._Round=function(){return(Be=s._Round=s.asm.Round).apply(null,arguments)},Ug=s._Rsqrt=function(){return(Ug=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Gg=s._ScatterNd=function(){return(Gg=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Hg=s._SelectV2=function(){return(Hg=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},_s=s._Sigmoid=function(){return(_s=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Fo=s._Sin=function(){return(Fo=s._Sin=s.asm.Sin).apply(null,arguments)},yd=s._Softmax=function(){return(yd=s._Softmax=s.asm.Softmax).apply(null,arguments)},bd=s._Sqrt=function(){return(bd=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},xd=s._Square=function(){return(xd=s._Square=s.asm.Square).apply(null,arguments)},jg=s._SquaredDifference=function(){return(jg=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},qg=s._Step=function(){return(qg=s._Step=s.asm.Step).apply(null,arguments)},vd=s._StridedSlice=function(){return(vd=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Kg=s._Sub=function(){return(Kg=s._Sub=s.asm.Sub).apply(null,arguments)},Ua=s._Sum=function(){return(Ua=s._Sum=s.asm.Sum).apply(null,arguments)},Xg=s._Tanh=function(){return(Xg=s._Tanh=s.asm.Tanh).apply(null,arguments)},Yg=s._Tile=function(){return(Yg=s._Tile=s.asm.Tile).apply(null,arguments)},wd=s._TopK=function(){return(wd=s._TopK=s.asm.TopK).apply(null,arguments)},Lr=s._Transpose=function(){return(Lr=s._Transpose=s.asm.Transpose).apply(null,arguments)},Zg=s.__FusedMatMul=function(){return(Zg=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Jg=s._malloc=function(){return(Jg=s._malloc=s.asm.malloc).apply(null,arguments)},kd=s._free=function(){return(kd=s._free=s.asm.free).apply(null,arguments)},Id=s.__start=function(){return(Id=s.__start=s.asm._start).apply(null,arguments)},Nd=s.stackSave=function(){return(Nd=s.stackSave=s.asm.stackSave).apply(null,arguments)},Qu=s.stackAlloc=function(){return(Qu=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},Td=s.stackRestore=function(){return(Td=s.stackRestore=s.asm.stackRestore).apply(null,arguments)};s.asm=Yu,s.cwrap=ne;var Es;s.then=function(V){if(Es)V(s);else{var te=s.onRuntimeInitialized;s.onRuntimeInitialized=function(){te&&te(),V(s)}}return s};function ec(V){this.name="ExitStatus",this.message="Program terminated with exit("+V+")",this.status=V}var Qg=!1;Na=function V(){Es||tc(),Es||(Na=V)};function ey(V){var te=s.__start;try{te();var Ie=0;Sd(Ie,!0)}catch(at){if(at instanceof ec)return;if(at=="unwind"){P=!0;return}else{var _e=at;at&&typeof at=="object"&&at.stack&&(_e=[at,at.stack]),F("exception thrown: "+_e),u(1,at)}}finally{Qg=!0}}function tc(V){if(V=V||l,Ia>0||(An(),Ia>0))return;function te(){Es||(Es=!0,s.calledRun=!0,!G&&(ra(),vn(),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Cd&&ey(V),sa()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=tc;function Sd(V,te){te&&P&&V===0||(P||(G=!0,q=V,un(),s.onExit&&s.onExit(V)),u(V,new ec(V)))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();var Cd=!0;return s.noInitialRun&&(Cd=!1),P=!0,tc(),r}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),nA=1e-7,aA=1e-4,Rd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},pc=class{refCount(e){return ua("refCount")}incRef(e){return ua("incRef")}timerAvailable(){return!0}time(e){return ua("time")}read(e){return ua("read")}readSync(e){return ua("readSync")}numDataIds(){return ua("numDataIds")}disposeData(e,t){return ua("disposeData")}write(e,t,n){return ua("write")}move(e,t,n,a,r){return ua("move")}memory(){return ua("memory")}floatPrecision(){return ua("floatPrecision")}epsilon(){return this.floatPrecision()===32?nA:aA}dispose(){return ua("dispose")}};function ua(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function s0(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function rA(e,t){if(e.length!==t.length)throw Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function dc(e,t,n){return Math.max(e,Math.min(t,n))}function sA(e){return e%2==0?e:e+1}function iA(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function oA(e,t){let n=Math.random();return t*n+(1-n)*e}function lA(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function A(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function sn(e,t,n=""){A(yr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function As(e){A(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Fs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||on(e)&&!n)for(let a=0;a<e.length;++a)Fs(e[a],t,n);else t.push(e);return t}function Pt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function uA(e){return e.length===0}function yr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Gt(e){return e%1==0}function cA(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function pA(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function dA(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return s0(t),t}function hc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function hA(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function mA(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function ca(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),A(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),A(e.every(a=>Gt(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function i0(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:ca(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function o0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function l0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function u0(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function c0(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function fA(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function on(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function iy(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function p0(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Wr(e){return typeof e=="string"||e instanceof String}function d0(e){return typeof e=="boolean"}function h0(e){return typeof e=="number"}function Md(e){return Array.isArray(e)?Md(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":h0(e)?"float32":Wr(e)?"string":d0(e)?"bool":"float32"}function Vr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Pd(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Oo(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function m0(e,t,n){let a=new Array;if(t.length===1){let r=t[0];for(let s=0;s<r;s++)a[s]=n[e+s]}else{let r=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<r;o++)a[o]=m0(e+o*i,s,n)}return a}function Lo(e,t){if(e.length===0)return t[0];let n=e.reduce((a,r)=>a*r);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return m0(0,e,t)}function oy(e,t){let n=Od(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Od(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function gA(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return Lo(e,new Float32Array(n));if(t==="int32")return Lo(e,new Int32Array(n));if(t==="bool")return Lo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function ly(e){e.forEach(t=>{A(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function yA(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function bA(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function uy(e){return e&&e.then&&typeof e.then=="function"}var f0="tfjsflags",g0=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(uy(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=xA(this.global.location.search);f0 in e&&e[f0].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=vA(n,a)})}};function xA(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(wA(t,a[0],a[1]),a.join("="))),t}function wA(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function vA(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ee(){return cy}var cy=null;function kA(e){cy=e}var py;function y0(){if(py==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");py=e}return py}function IA(){let e=y0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function dy(e,t){let n=IA();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var zo="Abs",Bo="Acos",Wo="Acosh",Ur="Add",$s="AddN",Ld="All",zd="Any",Ds="ArgMax",mc="ArgMin",Vo="Asin",Uo="Asinh",Go="Atan",Ho="Atanh",jo="Atan2",Rs="AvgPool",Bd="AvgPoolGrad",fc="AvgPool3D",Wd="AvgPool3DGrad",Ms="BatchMatMul",gc="BatchToSpaceND",Vd="Bincount",b0="BroadcastTo",Ps="Cast",Os="Ceil",Gr="ClipByValue",Ud="Complex",yc="ComplexAbs",qo="Concat",Ls="Conv2D",Gd="Conv2DBackpropFilter",zs="Conv2DBackpropInput",bc="Conv3D",Hd="Conv3DBackpropFilterV2",jd="Conv3DBackpropInputV2",Bs="Cos",Ko="Cosh",Ws="Cumsum",Xo="CropAndResize",qd="DenseBincount",Yo="DepthToSpace",Vs="DepthwiseConv2dNative",Kd="DepthwiseConv2dNativeBackpropFilter",Xd="DepthwiseConv2dNativeBackpropInput",Yd="Diag",xc="Dilation2D",Zd="Dilation2DBackpropInput",Jd="Dilation2DBackpropFilter",Us="RealDiv",Zo="Elu",Qd="EluGrad",Jo="Erf",Qo="Equal",Gs="Exp",el="ExpandDims",tl="Expm1",eh="FFT",vc="Fill",nl="FlipLeftRight",Hs="Floor",js="FloorDiv",qs="FusedBatchNorm",al="GatherV2",rl="GatherNd",sl="Greater",Ks="GreaterEqual",Xs="Identity",th="IFFT",nh="Imag",il="IsFinite",ol="IsInf",ll="IsNan",Ys="LeakyRelu",ul="Less",cl="LessEqual",ah="LinSpace",Zs="Log",pl="Log1p",dl="LogicalAnd",wc="LogicalNot",kc="LogicalOr",x0="LogSoftmax",Ic="LRN",rh="LRNGrad",Js="Max",Qs="Maximum",ei="MaxPool",sh="MaxPoolGrad",Nc="MaxPool3D",ih="MaxPool3DGrad",oh="MaxPoolWithArgmax",ti="Mean",ni="Min",ai="Minimum",Tc="MirrorPad",hl="Mod",lh="Multinomial",ri="Multiply",ml="Neg",fl="NotEqual",gl="NonMaxSuppressionV3",yl="NonMaxSuppressionV4",bl="NonMaxSuppressionV5",xl="OnesLike",si="OneHot",vl="Pack",ii="PadV2",NA="Pool",oi="Pow",li="Prelu",wl="Prod",Sc="Range",uh="Real",kl="Reciprocal",ui="Relu",Il="Reshape",Cc="ResizeNearestNeighbor",ch="ResizeNearestNeighborGrad",ci="ResizeBilinear",ph="ResizeBilinearGrad",pi="Relu6",di="Reverse",hi="Round",mi="Rsqrt",Nl="ScatterNd",Tl="Select",Sl="Selu",Cl="Slice",fi="Sin",_l="Sinh",El="Sign",gi="Sigmoid",Al="Softplus",yi="Sqrt",bi="Sum",_c="SpaceToBatchND",Fl="SplitV",xi="Softmax",vi="SquaredDifference",Ec="Square",wi="Sub",dh="SparseToDense",$l="StridedSlice",Dl="Tan",ki="Tanh",Hr="Tile",Rl="TopK",Ii="Transpose",hh="Unique",Ml="Unpack",Ac="UnsortedSegmentSum",Pl="ZerosLike",jr="Step",mh="FromPixels",Ol="RotateWithOffset",Ni="_FusedMatMul",Ti="FusedConv2D",Si="FusedDepthwiseConv2D",Ll=dy("kernelRegistry",()=>new Map),Fc=dy("gradRegistry",()=>new Map);function fh(e,t){let n=hy(e,t);return Ll.get(n)}function my(e){return Fc.get(e)}function gh(e){let t=Ll.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function $c(e){let{kernelName:t,backendName:n}=e,a=hy(t,n);Ll.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Ll.set(a,e)}function v0(e){let{kernelName:t}=e;Fc.has(t)&&ee().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Fc.set(t,e)}function TA(e,t){let n=hy(e,t);if(!Ll.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Ll.delete(n)}function SA(e){if(!Fc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Fc.delete(e)}function CA(e,t){gh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});$c(a)})}function hy(e,t){return`${t}_${e}`}var k={};Oe(k,{arraysEqual:()=>yr,assert:()=>A,assertNonNegativeIntegerDimensions:()=>ly,assertNonNull:()=>As,assertShapesMatch:()=>sn,bytesFromStringArray:()=>p0,bytesPerElement:()=>iy,checkConversionForErrors:()=>u0,clamp:()=>dc,computeStrides:()=>Oo,createScalarValue:()=>_A,createShuffledIndices:()=>dA,decodeString:()=>bh,distSquared:()=>lA,encodeString:()=>Rc,fetch:()=>EA,flatten:()=>Fs,getArrayFromDType:()=>l0,getTypedArrayFromDType:()=>o0,hasEncodingLoss:()=>fA,indexToLoc:()=>bA,inferDtype:()=>Md,inferFromImplicitShape:()=>mA,isBoolean:()=>d0,isFunction:()=>Vr,isInt:()=>Gt,isNumber:()=>h0,isPromise:()=>uy,isScalarShape:()=>uA,isString:()=>Wr,isTypedArray:()=>on,isValidDtype:()=>c0,locToIndex:()=>yA,makeOnesTypedArray:()=>oy,makeZerosNestedTypedArray:()=>gA,makeZerosTypedArray:()=>Od,nearestDivisor:()=>Pd,nearestLargerEven:()=>sA,now:()=>Dc,parseAxisParam:()=>ca,randUniform:()=>oA,repeatedTry:()=>hA,rightPad:()=>hc,shuffle:()=>s0,shuffleCombo:()=>rA,sizeFromShape:()=>Pt,sizeToSquarishShape:()=>pA,squeezeShape:()=>i0,sum:()=>iA,tanh:()=>cA,toNestedArray:()=>Lo,toTypedArray:()=>yh});function _A(e,t){return t==="string"?Rc(e):yh([e],t)}function AA(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function yh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Fs(e)),ee().getBool("DEBUG")&&u0(e,t),AA(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Dc(){return ee().platform.now()}function EA(e,t){return ee().platform.fetch(e,t)}function Rc(e,t="utf-8"){return t=t||"utf-8",ee().platform.encode(e,t)}function bh(e,t="utf-8"){return t=t||"utf-8",ee().platform.decode(e,t)}var DA=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new $A)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Dc();if(this.backendTimer.timerAvailable()?s=this.backendTimer.time(r):(r(),a.map(o=>o.dataSync()),s=Promise.resolve({kernelMs:Dc()-i})),ee().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(c=>{FA(c,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function FA(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var $A=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?hc(`${a}ms`,9):a.error,o=hc(e,25),l=t.rank,c=t.size,u=hc(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${d}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function RA(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let p in u){let d=u[p],h=!1;for(let m=0;m<t.length;m++)if(a[d.id]){c.outputs.forEach(f=>a[f.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let p=0;p<c.outputs.length;p++)if(s[c.outputs[p].id]){for(let d in u)s[u[d].id]=!0,i[c.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&i[c.id]){let u={};for(let d in c.inputs){let h=c.inputs[d];a[h.id]&&(u[d]=h)}let p=Object.assign({},c);p.inputs=u,p.outputs=c.outputs,o.push(p)}}return o}function MA(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!yr(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let p=e[u.id];e[u.id]=a(p,c),p.dispose()}}}}var w0=20,Mc=3,fy=7;function OA(e,t,n,a){let r=Oo(t),s=PA(e,t,n,r),i=t.length,o=xh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(`
`)),l.join(`
`)}function PA(e,t,n,a){let r=Pt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Oc(e):e;if(o>1)for(let c=0;c<r/s;c++){let u=c*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],Pc(l[u+p],0,n).length)}return i}function Pc(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(fy))} + ${parseFloat(e[1].toFixed(fy))}j`:Wr(e)?a=`'${e}'`:n==="bool"?a=k0(e):a=parseFloat(e.toFixed(fy)).toString(),hc(a,t)}function k0(e){return e===0?"false":"true"}function xh(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Oc(e);return[Pc(f[0],0,n)]}return n==="bool"?[k0(e[0])]:[e[0].toString()]}if(l===1){if(o>w0){let g=Mc*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-Mc)*i,o*i));return n==="complex64"&&(y=Oc(y),b=Oc(b)),["["+y.map((v,x)=>Pc(v,r[x],n)).join(", ")+", ..., "+b.map((v,x)=>Pc(v,r[o-Mc+x],n)).join(", ")+"]"]}let f=n==="complex64"?Oc(e):Array.from(e);return["["+f.map((g,y)=>Pc(g,r[y],n)).join(", ")+"]"]}let c=t.slice(1),u=a.slice(1),p=a[0]*i,d=[];if(o>w0){for(let f=0;f<Mc;f++){let g=f*p,y=g+p;d.push(...xh(e.slice(g,y),c,n,u,r,!1))}d.push("...");for(let f=o-Mc;f<o;f++){let g=f*p,y=g+p;d.push(...xh(e.slice(g,y),c,n,u,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*p,y=g+p;d.push(...xh(e.slice(g,y),c,n,u,r,f===o-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let f=1;f<d.length-1;f++)d[f]=" "+d[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function Oc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ot=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Pt(e),n!=null){let a=n.length;A(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||l0(t,this.size),this.strides=Oo(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ga().makeTensor(this.values,this.shape,this.dtype)}},Ga=null,zl=null,LA=null;function zA(e){Ga=e}function BA(e){zl=e}function WA(e){LA=e}var Ae=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Pt(e),this.strides=Oo(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return zl.buffer(this.shape,this.dtype,e)}bufferSync(){return zl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Lo(this.shape,e)}arraySync(){return Lo(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Ga().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>bh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ga().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>bh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ga().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ga().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return zl.print(this,e)}clone(){return this.throwIfDisposed(),zl.clone(this)}toString(e=!1){let t=this.dataSync();return OA(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),zl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ga().makeVariable(this,e,t,n)}};Object.defineProperty(Ae,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Y(){return dy("Tensor",()=>Ae)}Y();var qr=class extends Ae{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!yr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ga().disposeTensor(this),this.dataId=e.dataId,Ga().incRef(this,null)}dispose(){Ga().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(qr,Symbol.hasInstance,{value:e=>e instanceof Ae&&e.assign!=null&&e.assign instanceof Function});var Ta={};Oe(Ta,{assertTypesMatch:()=>I0,getTensorsInContainer:()=>gy,isTensorInList:()=>VA,makeTypesMatch:()=>Nt});var yy;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(yy||(yy={}));var by;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(by||(by={}));var xy;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(xy||(xy={}));var vy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(vy||(vy={}));var wy;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(wy||(wy={}));var UA={float32:vy,int32:by,bool:xy,complex64:wy};function pa(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return UA[e][t]}function vh(e){return pa(e,"int32")}function Nt(e,t){if(e.dtype===t.dtype)return[e,t];let n=pa(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function I0(e,t){A(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function VA(e,t){return t.some(n=>n.id===e.id)}function gy(e){let t=[],n=new Set;return N0(e,t,n),t}function N0(e,t,n){if(e==null)return;if(e instanceof Ae){t.push(e);return}if(!GA(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),N0(s,t,n))}}function GA(e){return Array.isArray(e)||typeof e=="object"}function ky(e){return e.kernelName!=null}var T0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Lc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new T0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new DA(this.backendInstance),!0}setupRegisteredKernels(){gh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){gh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof pc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Lc.nextTensorId++}nextVariableId(){return Lc.nextVariableId++}clone(e){let t=M.runKernel(Xs,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return M.runKernel(Ps,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(fh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=ky(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(ky(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=fh(h,this.backendName);A(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let v=b.map(x=>{if(x.rank!=null)return x;let{dataId:N,shape:T,dtype:C}=x;return this.makeTensorFromDataId(N,T,C)});if(a){let x=this.getTensorsForGradient(h,m,v);n=this.saveTensorsForBackwardMode(x)}return v}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:c,attrs:u}=e,p=ky(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),a&&this.addTapeNode(l,c,t,p,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=my(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Wr(e[0])&&(r=e.map(o=>Rc(o)));let s=a.write(r,t,n),i=new Ae(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=p0(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Ae(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new qr(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*iy(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof qr||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*iy(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=my(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let p=n[u],d=Od(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return c}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=gy(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(r instanceof Ae,()=>"The result y returned by f() must be a tensor.");let s=RA(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?HA(r.shape):n,MA(i,s,l=>this.tidy(l),jA);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return A(Vr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Ae),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),A(n.value instanceof Ae,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(Vr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];A(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(c.every(p=>p instanceof Ae),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((p,d)=>{u[d]=()=>p}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Dc(),n=await this.backend.time(e);return n.wallMs=Dc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new T0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Lc.nextTensorId=0;Lc.nextVariableId=0;function HA(e){let t=oy(Pt(e),"float32");return M.makeTensor(t,e,"float32")}function S0(){let e=y0();if(e._tfengine==null){let t=new g0(e);e._tfengine=new Lc(t)}return kA(e._tfengine.ENV),zA(()=>e._tfengine),e._tfengine}var M=S0();function jA(e,t){let n={a:e,b:t};return M.runKernel(Ur,n)}var wh={};Oe(wh,{isBrowser:()=>C0,isMobile:()=>qA});function KA(){return typeof navigator!="undefined"&&navigator!=null}function qA(){if(KA()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function C0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ha=ee();Ha.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ha.registerFlag("IS_BROWSER",()=>C0());Ha.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ha.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ha.registerFlag("PROD",()=>!1);Ha.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ha.getBool("DEBUG"));Ha.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ha.registerFlag("IS_TEST",()=>!1);Ha.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function ja(e,t){let n=e;if(on(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||on(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&ee().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&_0(e,a,[]),a}function _0(e,t,n){if(n=n||[],!Array.isArray(e)&&!on(e)){A(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}A(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),A(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)_0(e[r],a,n.concat(r))}function E0(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function E(e,t,n,a="numeric"){if(e instanceof Ae)return E0(a,e.dtype,t,n),e;let r=Md(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),E0(a,r,t,n),e==null||!on(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=ja(e,r);!on(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?yh(e,r):Fs(e,[],!0);return M.makeTensor(i,s,r)}function zc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>E(r,`${t}[${s}]`,n,a))}var A0="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+A0;let r=(...s)=>{M.startScope(n);try{let i=a(...s);return uy(i)&&console.error("Cannot return a Promise inside of tidy."),M.endScope(i),i}catch(i){throw M.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function XA(e,t){let n=E(e,"real","complex"),a=E(t,"imag","complex");sn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return M.runKernel(Ud,r)}var Kr=O({complex_:XA});function Xr(e,t,n,a){if(a==null&&(a=Md(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!on(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){ly(t);let r=Pt(t),s=Pt(n);A(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Pt(t.slice(i)):!0;A(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!on(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?yh(e,a):Fs(e,[],!0),M.makeTensor(e,t,a)}function Kn(e,t,n){let a=ja(e,n);return Xr(e,t,a,n)}var Iy={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},kh=4;async function ZA(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let c={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+kh*d.length,m=new Uint8Array(h),f=0;for(let g=0;g<d.length;g++){let y=d[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=kh,m.set(y,f),f+=y.length}p(m)});a.push(u)}else a.push(l.data());t!=null&&(c.group=t),n.push(c)}let s=await Promise.all(a);return{data:YA(s),specs:n}}function F0(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,c=Pt(l),u;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=Iy[p.dtype],h=e.slice(r,r+c*d),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){u=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];u[f]=g*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=JA()),u=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);u=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];u[f]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=c*d}else if(o==="string"){let p=Pt(s.shape);u=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+kh))[0];r+=kh;let m=new Uint8Array(e.slice(r,r+h));u.push(m),r+=h}}else{let p=Iy[o],d=e.slice(r,r+c*p);if(o==="float32")u=new Float32Array(d);else if(o==="int32")u=new Int32Array(d);else if(o==="bool")u=new Uint8Array(d);else if(o==="complex64"){u=new Float32Array(d);let h=new Float32Array(u.length/2),m=new Float32Array(u.length/2);for(let y=0;y<h.length;y++)h[y]=u[y*2],m[y]=u[y*2+1];let f=Kn(h,l,"float32"),g=Kn(m,l,"float32");n[i]=Kr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=c*p}o!=="complex64"&&(n[i]=Kn(u,l,o))}return n}function YA(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Ny=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function $0(e){return Ny?Buffer.byteLength(e):new Blob([e]).size}function QA(e){if(Ny)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function eF(e){if(Ny){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Ty(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function D0(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Bc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:$0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:$0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function tF(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function nF(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function aF(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function JA(){let e=tF(),t=nF(),n=aF();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Et=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Et.instance==null&&(Et.instance=new Et),Et.instance}static registerSaveRouter(e){Et.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Et.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Et.getHandlers(e,"save")}static getLoadHandlers(e,t){return Et.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Et.getInstance().loadRouters:Et.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},rF=e=>Et.registerSaveRouter(e),sF=e=>Et.registerLoadRouter(e),iF=e=>Et.getSaveHandlers(e),oF=(e,t)=>Et.getLoadHandlers(e,t),Sy="tensorflowjs",Cy=1,Ci="models_store",Yr="model_info_store";function R0(){if(!ee().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function _y(e){let t=e.result;t.createObjectStore(Ci,{keyPath:"modelPath"}),t.createObjectStore(Yr,{keyPath:"modelPath"})}var _i=class{constructor(e){if(this.indexedDB=R0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Sy,Cy);r.onupgradeneeded=()=>_y(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Ci,"readonly"),o=i.objectStore(Ci).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Bc(t),o=s.transaction(Yr,"readwrite"),l=o.objectStore(Yr),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(Ci,"readwrite");let p=u.objectStore(Ci).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=d=>{l=o.objectStore(Yr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},c.onerror=p=>(s.close(),a(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};_i.URL_SCHEME="indexeddb://";var M0=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(_i.URL_SCHEME)?lF(e.slice(_i.URL_SCHEME.length)):null;Et.registerSaveRouter(M0);Et.registerLoadRouter(M0);function lF(e){return new _i(e)}function uF(e){return e.startsWith(_i.URL_SCHEME)?e.slice(_i.URL_SCHEME.length):e}var cF=class{constructor(){this.indexedDB=R0()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Sy,Cy);n.onupgradeneeded=()=>_y(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Yr,"readonly"),s=r.objectStore(Yr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=uF(e),new Promise((t,n)=>{let a=this.indexedDB.open(Sy,Cy);a.onupgradeneeded=()=>_y(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Yr,"readwrite"),i=s.objectStore(Yr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=r.transaction(Ci,"readwrite");let p=l.objectStore(Ci).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=p=>(u(),r.close(),n(o.error))}},o.onerror=c=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},br="/",Bl="tensorflowjs_models",P0="info",pF="model_topology",dF="weight_specs",hF="weight_data",mF="model_metadata";function O0(e){return{info:[Bl,e,P0].join(br),topology:[Bl,e,pF].join(br),weightSpecs:[Bl,e,dF].join(br),weightData:[Bl,e,hF].join(br),modelMetadata:[Bl,e,mF].join(br)}}function fF(e){let t=e.split(br);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(br)}function gF(e){return e.startsWith(Ei.URL_SCHEME)?e.slice(Ei.URL_SCHEME.length):e}var Ei=class{constructor(e){if(!ee().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=O0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Bc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,QA(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=eF(s),t}};Ei.URL_SCHEME="localstorage://";var L0=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ei.URL_SCHEME)?yF(e.slice(Ei.URL_SCHEME.length)):null;Et.registerSaveRouter(L0);Et.registerLoadRouter(L0);function yF(e){return new Ei(e)}var bF=class{constructor(){A(ee().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Bl+br,n=br+P0;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=fF(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=gF(e);let t=O0(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},Wl="://",Xn=class{constructor(){this.managers={}}static getInstance(){return Xn.instance==null&&(Xn.instance=new Xn),Xn.instance}static registerManager(e,t){A(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Wl)&&(e=e.slice(0,e.indexOf(Wl))),A(e.length>0,()=>"scheme must not be an empty string.");let n=Xn.getInstance();A(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Ih(e){if(e.indexOf(Wl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Xn.getSchemes().join(",")}`);return{scheme:e.split(Wl)[0],path:e.split(Wl)[1]}}async function z0(e,t,n=!1){A(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Et.getLoadHandlers(e);A(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),A(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Et.getSaveHandlers(t);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),A(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Ih(e).scheme,l=Ih(e).path,c=o===Ih(e).scheme,u=await r.load();n&&c&&await Xn.getManager(o).removeModel(l);let p=await i.save(u);return n&&!c&&await Xn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function xF(){let e=Xn.getSchemes(),t={};for(let n of e){let a=await Xn.getManager(n).listModels();for(let r in a){let s=n+Wl+r;t[s]=a[r]}}return t}async function vF(e){let t=Ih(e);return Xn.getManager(t.scheme).removeModel(t.path)}async function wF(e,t){return z0(e,t,!1)}async function kF(e,t){return z0(e,t,!0)}var IF=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ee().get("IS_BROWSER")){ee().setPlatform("browser",new IF);try{Xn.registerManager(Ei.URL_SCHEME,new bF)}catch(e){}try{Xn.registerManager(_i.URL_SCHEME,new cF)}catch(e){}}var NF={importFetch:()=>VE()},Ey,TF=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ee().global.fetch!=null?ee().global.fetch(e,t):(Ey==null&&(Ey=NF.importFetch()),Ey(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ee().get("IS_NODE")&&ee().setPlatform("node",new TF);function Le(e,t="float32",n){return t=t||"float32",ly(e),new Ot(e,t,n)}function SF(e,t){let n=E(e,"x","cast");if(!c0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return M.runKernel(Ps,a,r)}var ce=O({cast_:SF});function CF(e){let t={x:E(e,"x","clone","string_or_numeric")};return M.runKernel(Xs,t)}var Zr=O({clone_:CF});function B0(e,t=!1){console.log(e.toString(t))}S0();var _F={buffer:Le,cast:ce,clone:Zr,print:B0};BA(_F);var Ht={};Oe(Ht,{browserFiles:()=>EF,browserHTTPRequest:()=>FF,concatenateArrayBuffers:()=>Ty,copyModel:()=>wF,decodeWeights:()=>F0,encodeWeights:()=>ZA,fromMemory:()=>$F,getLoadHandlers:()=>oF,getModelArtifactsInfoForJSON:()=>Bc,getSaveHandlers:()=>iF,http:()=>Fy,isHTTPScheme:()=>Ay,listModels:()=>xF,loadWeights:()=>AF,moveModel:()=>kF,registerLoadRouter:()=>sF,registerSaveRouter:()=>rF,removeModel:()=>vF,weightsLoaderFactory:()=>W0,withSaveHandler:()=>DF});var RF="model",MF=".json",PF=".weights.bin";function V0(e){return new Promise(t=>setTimeout(t)).then(e)}var Vl=class{constructor(e){if(!ee().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Vl.URL_SCHEME)&&(e=e.slice(Vl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=RF),this.modelTopologyFileName=e+MF,this.weightDataFileName=e+PF}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await V0(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await V0(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Bc(e)}}}};Vl.URL_SCHEME="downloads://";var OF=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let u=[],p=[],d=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),d.push(null)}),u.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=g=>{let y=g.target.result,b=p.indexOf(m);if(d[b]=y,d.indexOf(null)===-1){let v={modelTopology:o,weightSpecs:u,weightData:Ty(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(v.signature=i.signature),i.userDefinedMetadata!=null&&(v.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(v.modelInitializer=i.modelInitializer),n(v)}},f.onerror=g=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>D0(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=D0(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},zF=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Vl.URL_SCHEME)?LF(e.slice(Vl.URL_SCHEME.length)):null;Et.registerSaveRouter(zF);function LF(e="model"){return new Vl(e)}function EF(e){return new OF(e)}function U0(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(c=>{let u=n+ ++r/e.length*(a-n);return t(u),c}),l);function i(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),A(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function G0(e,t){t==null&&(t={});let n=t.fetchFunc==null?ee().platform.fetch:t.fetchFunc,a=e.map(c=>n(c,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await U0(a,t.onProgress,r,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await U0(i,t.onProgress,o,l)}async function AF(e,t="",n,a){return W0(r=>G0(r,{requestInit:a}))(e,t,n)}function W0(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=Iy[y]*Pt(g.shape),v=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((x,N)=>{x===g.name&&(v(),i[N]=!0)}):v(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),p={},d=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let v=0;v<m;v++)f+=u[d+v].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let v=0;v<m;v++){let x=new Uint8Array(u[d+v]);y.set(x,b),b+=x.byteLength}s[h].forEach(v=>{let x=g.slice(v.groupOffset,v.groupOffset+v.sizeBytes),N=F0(x,[v.manifestEntry]);for(let T in N)p[T]=N[T]}),d+=m}),p}}var BF="application/octet-stream",WF="application/json",$y=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ee().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:WF}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:BF}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Bc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;a!=null&&([c,u]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(p.modelInitializer=d),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=VF(t),r=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(r+u+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await G0(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Ty(l)]}};$y.URL_SCHEME_REGEX=/^https?:\/\//;function VF(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Ay(e){return e.match($y.URL_SCHEME_REGEX)!=null}var H0=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Ay(a)):n=Ay(e),n)return Fy(e,t)}return null};Et.registerSaveRouter(H0);Et.registerLoadRouter(H0);function Fy(e,t){return new $y(e,t)}function FF(e,t){return Fy(e,t)}var Dy=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},UF=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function $F(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Dy(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Dy({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Dy({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function DF(e){return new UF(e)}var j0={};Oe(j0,{confusionMatrix:()=>GF});function HF(e,t,n=!1,a=!1){let r=E(e,"a","matMul"),s=E(t,"b","matMul");[r,s]=Nt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return M.runKernel(Ms,i,o)}var ze=O({matMul_:HF});function jF(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:E(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return M.runKernel(si,r,s)}var Ul=O({oneHot_:jF});function qF(e,t){let n=E(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{A(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return M.runKernel(Ii,a,r)}var Ue=O({transpose_:qF});function KF(e,t,n){let a=E(e,"labels","confusionMatrix"),r=E(t,"predictions","confusionMatrix");A(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),A(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),A(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),A(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),A(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Ul(ce(a,"int32"),n),i=Ul(ce(r,"int32"),n),o=Ue(s),l=ze(o,i);return ce(l,"int32")}var GF=O({confusionMatrix_:KF}),Ai={};Oe(Ai,{fromPixels:()=>YF,toPixels:()=>XF});function Nh(e,t,n){if(As(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=ja(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Xr(e,t,a,n)}var Gl;function ZF(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let d=2;if(r&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(fh(mh,M.backendName)!=null){let d={pixels:e},h={numChannels:t};return M.runKernel(mh,d,h)}let[l,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:a||n?u=e.data:(s||r||o)&&(Gl==null&&(Gl=document.createElement("canvas").getContext("2d")),Gl.canvas.width=l,Gl.canvas.height=c,Gl.drawImage(e,0,0,l,c),u=Gl.getImageData(0,0,l,c).data);let p;if(t===4)p=new Int32Array(u);else{let d=l*c;p=new Int32Array(d*t);for(let h=0;h<d;h++)for(let m=0;m<t;++m)p[h*t+m]=u[h*4+m]}return Nh(p,[c,l,t],"int32")}async function XF(e,t){let n=E(e,"img","toPixels");if(!(e instanceof Ae)){let c=n;n=ce(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let c=0;c<a*r;++c){let u=[0,0,0,255];for(let d=0;d<s;d++){let h=i[c*s+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(u[0]=h*o,u[1]=h*o,u[2]=h*o):u[d]=h*o}let p=c*4;l[p+0]=Math.round(u[0]),l[p+1]=Math.round(u[1]),l[p+2]=Math.round(u[2]),l[p+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=a;let c=t.getContext("2d"),u=new ImageData(l,r,a);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var YF=O({fromPixels_:ZF}),Ry={};Oe(Ry,{prepareAndValidate:()=>q0});function q0(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Pt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let c=1;for(let p=s;p<n;++p)c*=o[p],l.push(o[p]);let u=[...Oo(e.shape).map(p=>p/c),1].slice(0,s);return[l,i,c,u]}var My={};Oe(My,{calculateShapes:()=>K0,validateInput:()=>Oy,validateUpdateShape:()=>Py});function Py(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Oy(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Py(n,t,e)}function K0(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Pt(t.shape)/o,c=[...Oo(n.slice(0,r)),1],u=Pt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:c,outputSize:u}}var pn={};Oe(pn,{assertParamsValid:()=>JF,computeFlatOffset:()=>e$,computeOutShape:()=>X0,getNormalizedAxes:()=>Z0,isSliceContinous:()=>QF,maskToAxes:()=>Th,parseSliceParams:()=>a1,sliceInfo:()=>t$,startForAxis:()=>t1,startIndicesWithElidedDims:()=>J0,stopForAxis:()=>n1,stopIndicesWithElidedDims:()=>Q0,stridesForAxis:()=>e1,stridesWithElidedDims:()=>Y0});function JF(e,t,n){let a=e.shape.length;A(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),A(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)A(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Th(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function X0(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function Y0(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function r1(e,t,n){return n<=e?n:n-(t-1)}function s1(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function Z0(e,t,n,a,r,s,i,o,l){let c=e.length,u=new Array(c),p=new Array(c),d=new Array(c);if(t.length&&n>0){let h=t[0],m=n+1;u=J0(i,h,m,a,e),p=Q0(o,h,m,r,e),d=Y0(s,h,m,e)}else for(let h=0;h<c;h++)u[h]=t1(i,a,s,e,h,l),p[h]=n1(o,r,s,e,h,l),d[h]=e1(s,h,l);return{begin:u,end:p,strides:d}}function J0(e,t,n,a,r){let s=[...r],i=s1(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=r1(t,n,o),c=a[l];e&1<<l&&(c=0),s[o]=c}return s}function Q0(e,t,n,a,r){let s=[...r],i=s1(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=r1(t,n,o),c=a[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),s[o]=c}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=dc(0,s[o],r[o])}return s}function e1(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function t1(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=dc(0,i,l-1),i}function n1(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=dc(0,i,l):i=dc(-1,i,l-1),i}function QF(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function e$(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function a1(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{A(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(A(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function t$(e,t,n,a,r,s,i,o,l){let c=t.slice(),u=n.slice(),p=a;a==null&&(p=new Array(c.length));let d=Th(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,m=Th(o),f=e.slice();m.forEach(T=>{c[T]=0,u[T]=1,f.splice(T,0,1)});let{begin:g,end:y,strides:b}=Z0(f,d,h,c,u,p,r,s,i);c=g,u=y,p=b;let v=Th(l);v.forEach(T=>{u[T]=c[T]+1,p[T]=1});let x=X0(c,u,p),N=x.filter((T,C)=>v.indexOf(C)===-1);return{nonStrided:p.every(T=>T===1),$begin:c,$end:u,$strides:p,size:x,newShape:f,outShape:N}}var re={};Oe(re,{Serializable:()=>i1,SerializationMap:()=>Fi,registerClass:()=>Jr});var i1=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Fi=class{constructor(){this.classNameMap={}}static getMap(){return Fi.instance==null&&(Fi.instance=new Fi),Fi.instance}static register(e){Fi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Jr(e){A(e.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),A(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Fi.register(e)}var o1={};Oe(o1,{TEST_EPSILON_FLOAT16:()=>l1,encodeStrings:()=>u1,expectArrayBuffersEqual:()=>o$,expectArraysClose:()=>n$,expectArraysEqual:()=>r$,expectNumbersClose:()=>s$,expectPromiseToFail:()=>a$,expectValuesInRange:()=>i$,testEpsilon:()=>Ly});var l$=.001,l1=.1;function n$(e,t,n){return n==null&&(n=Ly()),zy(e,t,(a,r)=>By(a,r,n))}function Ly(){return M.backend.floatPrecision()===32?l$:l1}function zy(e,t,n){let a=!0;if((on(e)||on(t))&&(a=!1),on(e)&&on(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=ja(e),o=ja(t);if(!yr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=on(e)?e:Fs(e),s=on(t)?t:Fs(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}}function a$(e,t){e().then(()=>t.fail(),()=>t())}function r$(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Wr(e)||Wr(e[0])||Wr(t)||Wr(t[0])?zy(e,n,(a,r)=>a==r):zy(e,t,(a,r)=>By(a,r,0))}function s$(e,t,n){if(n==null&&(n=Ly()),!By(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function By(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function i$(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function o$(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function u1(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?u1(n):e[t]=Rc(n)}return e}var c1="3.1.0";function u$(){ee().set("PROD",!0)}function c$(){ee().set("DEBUG",!0)}function p$(){ee().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Wy(e){ee().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}WA(Wy);function d$(){M.disposeVariables()}function qa(){return M}function Sh(){return M.memory()}function h$(e){return M.profile(e)}function D(e,t){return M.tidy(e,t)}function Fe(e){gy(e).forEach(t=>t.dispose())}function jt(e){return M.keep(e)}function m$(e){return M.time(e)}function f$(e){return M.setBackend(e)}function g$(){return M.ready()}function y$(){return M.backendName}function b$(e){M.removeBackend(e)}function x$(e){return M.findBackend(e)}function v$(e){return M.findBackendFactory(e)}function Ch(e,t,n=1){return M.registerBackend(e,t,n)}function p1(){return M.backend}function w$(e,t){ee().setPlatform(e,t)}function k$(e,t){let n=E(e,"a","add"),a=E(t,"b","add");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Ur,r)}var Z=O({add_:k$});function I$(e,t){let n=E(e,"a","floorDiv"),a=E(t,"b","floorDiv");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(js,r)}var _h=O({floorDiv_:I$});function N$(e,t){let n=E(e,"a","div"),a=E(t,"b","div");if([n,a]=Nt(n,a),n.dtype==="int32"&&a.dtype==="int32")return _h(n,a);let r={a:n,b:a},s={};return M.runKernel(Us,r,s)}var ve=O({div_:N$});function T$(e,t){let n=E(e,"a","mul"),a=E(t,"b","mul");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(ri,r)}var L=O({mul_:T$});function S$(e){let t=E(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return M.runKernel(yc,n)}else{let n={x:t};return M.runKernel(zo,n)}}var Lt=O({abs_:S$});function C$(e){let t={x:E(e,"x","acos")};return M.runKernel(Bo,t)}var Vy=O({acos_:C$});function _$(e){let t={x:E(e,"x","acosh")};return M.runKernel(Wo,t)}var Uy=O({acosh_:_$});function E$(e){A(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),A(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>E(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!yr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return M.runKernel($s,a)}var d1=O({addN_:E$});function A$(e,t=null,n=!1){let a={x:E(e,"x","all","bool")},r={axis:t,keepDims:n};return M.runKernel(Ld,a,r)}var Eh=O({all_:A$});function F$(e,t=null,n=!1){let a={x:E(e,"x","any","bool")},r={axis:t,keepDims:n};return M.runKernel(zd,a,r)}var Wc=O({any_:F$});function $$(e,t=0){let n={x:E(e,"x","argMax")},a={axis:t};return M.runKernel(Ds,n,a)}var Vc=O({argMax_:$$});function D$(e,t=0){let n={x:E(e,"x","argMin")},a={axis:t};return M.runKernel(mc,n,a)}var Gy=O({argMin_:D$});function R$(e){let t={x:E(e,"x","asin")};return M.runKernel(Vo,t)}var Hy=O({asin_:R$});function M$(e){let t={x:E(e,"x","asinh")};return M.runKernel(Uo,t)}var jy=O({asinh_:M$});function P$(e){let t={x:E(e,"x","atan")};return M.runKernel(Go,t)}var qy=O({atan_:P$});function O$(e,t){let n=E(e,"a","atan2"),a=E(t,"b","atan2");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(jo,r)}var Ky=O({atan2_:O$});function L$(e){let t={x:E(e,"x","atanh")};return M.runKernel(Ho,t)}var Xy=O({atanh_:L$});function z$(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=h1(r);return Uc(e,o,n,s,a,null,null,l)}function m1(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Ah(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Uc(e,c,n,a,r,s,!1,i)}function B$(e,t,n,a,r,s,i="NDHWC"){let[o,l,c]=Yy(t),u,p;if(i==="NDHWC")p="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return f1(e,u,n,a,r,!1,p,s)}function Uc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,c,u,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,p]=e;else if(o==="channelsFirst")[l,p,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,m]=t,[f,g]=Ah(n),[y,b]=Ah(a),v=Hl(d,y),x=Hl(h,b),{padInfo:N,outHeight:T,outWidth:C}=W$(r,c,u,f,g,v,x,s,o),F=i?m*p:m,$;return o==="channelsFirst"?$=[l,F,T,C]:o==="channelsLast"&&($=[l,T,C,F]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:p,outHeight:T,outWidth:C,outChannels:F,padInfo:N,strideHeight:f,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:v,effectiveFilterWidth:x,dilationHeight:y,dilationWidth:b,inShape:e,outShape:$,filterShape:t}}function f1(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,c,u,p,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,p,d]=e;else if(i==="channelsFirst")[l,d,c,u,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,v]=Yy(n),[x,N,T]=Yy(a),C=Hl(h,x),F=Hl(m,N),$=Hl(f,T),{padInfo:P,outDepth:B,outHeight:W,outWidth:G}=V$(r,c,u,p,y,b,v,C,F,$,o),q=s?g*d:g,j;return i==="channelsFirst"?j=[l,q,B,W,G]:i==="channelsLast"&&(j=[l,B,W,G,q]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:p,inChannels:d,outDepth:B,outHeight:W,outWidth:G,outChannels:q,padInfo:P,strideDepth:y,strideHeight:b,strideWidth:v,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:F,effectiveFilterWidth:$,dilationDepth:x,dilationHeight:N,dilationWidth:T,inShape:e,outShape:j,filterShape:t}}function U$(e,t,n,a,r){a==null&&(a=Zy(e,t,n));let s=e[0],i=e[1],o=$i((s-t+2*a)/n+1,r),l=$i((i-t+2*a)/n+1,r);return[o,l]}function G$(e,t,n,a,r,s){r==null&&(r=Zy(e,t,a));let i=e[0],o=e[1],l=e[2],c=$i((i-t+2*r)/a+1,s),u=$i((o-t+2*r)/a+1,s),p=$i((l-t+2*r)/a+1,s);return[c,u,p,n]}function Zy(e,t,n,a=1){let r=Hl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Ah(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Yy(e){return typeof e=="number"?[e,e,e]:e}function Hl(e,t){return t<=1?e:e+(e-1)*(t-1)}function W$(e,t,n,a,r,s,i,o,l){let c,u,p;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=U$([t,n],s,a,e,o);u=d[0],p=d[1]}else if(e==="same"){u=Math.ceil(t/a),p=Math.ceil(n/r);let d=Math.max(0,(u-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(d/2),f=d-m,g=Math.floor(h/2),y=h-g;c={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:h,left:m,right:f,type:d===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=$i((t-s+d+h)/a+1,o),p=$i((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:p}}function V$(e,t,n,a,r,s,i,o,l,c,u){let p,d,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=G$([t,n,a,1],o,1,r,e,u);d=f[0],h=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(d-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+c-a,b=Math.floor(f/2),v=f-b,x=Math.floor(g/2),N=g-x,T=Math.floor(y/2),C=y-T;p={top:x,bottom:N,left:T,right:C,front:b,back:v,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:m}}function $i(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Qr(e){let[t,n,a]=Ah(e);return t===1&&n===1&&a===1}function Ka(e,t){return Qr(e)||Qr(t)}function h1(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function H$(e,t){let n={x:E(e,"x","reshape","string_or_numeric")},a={shape:t};return M.runKernel(Il,n,a)}var H=O({reshape_:H$});function j$(e,t,n,a,r){let s=E(e,"x","avgPool","float32"),i=1;A(Ka(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&A(Gt(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(Rs,c,u);return p=ce(p,s.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Yn=O({avgPool_:j$});function q$(e,t,n,a,r,s="NDHWC"){let i=E(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&A(Gt(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(fc,c,u);return p=ce(p,o.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Jy=O({avgPool3d_:q$});function K$(e,t=0){A(e.length>=1,()=>"Pass at least one tensor to concat");let n=zc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return Zr(n[0]);let a=n,r={axis:t};return M.runKernel(qo,a,r)}var Qe=O({concat_:K$});function X$(e){let t={x:E(e,"x","sigmoid")};return M.runKernel(gi,t)}var da=O({sigmoid_:X$});function Y$(e,t,n){let a=E(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return M.runKernel(Cl,r,s)}var We=O({slice_:Y$});function Z$(e){let t={x:E(e,"x","tanh")};return M.runKernel(ki,t)}var jl=O({tanh_:Z$});function J$(e,t,n,a,r,s){let i=E(e,"forgetBias","basicLSTMCell"),o=E(t,"lstmKernel","basicLSTMCell"),l=E(n,"lstmBias","basicLSTMCell"),c=E(a,"data","basicLSTMCell"),u=E(r,"c","basicLSTMCell"),p=E(s,"h","basicLSTMCell"),d=Qe([c,p],1),h=ze(d,o),m=Z(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=We(m,[0,0],y),v=We(m,[0,g],y),x=We(m,[0,g*2],y),N=We(m,[0,g*3],y),T=Z(L(da(b),jl(v)),L(u,da(Z(i,x)))),C=L(jl(T),da(N));return[T,C]}var Q$=O({basicLSTMCell_:J$});function eD(e,t,n){let a=E(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);A(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),A(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),A(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return M.runKernel(gc,s,i)}var Gc=O({batchToSpaceND_:eD});function tD(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function nD(e,t,n,a,r,s){s==null&&(s=.001);let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;a!=null&&(u=E(a,"offset","batchNorm")),A(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:tD(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},h=M.runKernel(qs,p,d);return H(h,i.shape)}var xr=O({batchNorm_:nD});function aD(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),A(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),A(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),xr(i,o,l,u,c,s)}var g1=O({batchNorm2d_:aD});function rD(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),A(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),A(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),xr(i,o,l,u,c,s)}var y1=O({batchNorm3d_:rD});function sD(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),A(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),A(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),xr(i,o,l,u,c,s)}var b1=O({batchNorm4d_:sD});function iD(e,t,n){let a=E(e,"x","bincount"),r=E(t,"weights","bincount");A(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return M.runKernel(Vd,s,i)}var x1=O({bincount_:iD});function oD(e,t){let n=E(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=H(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Zr(n);let i={x:n},o={reps:s};return M.runKernel(Hr,i,o)}var Hc=O({broadcastTo_:oD});function lD(e){let t={x:E(e,"x","ceil")};return M.runKernel(Os,t)}var Qy=O({ceil_:lD});function uD(e,t,n){let a=E(e,"x","clipByValue");A(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return M.runKernel(Gr,r,s)}var qt=O({clipByValue_:uD});function cD(e){return Qe(e,0)}var v1=O({concat1d_:cD});function pD(e,t){return Qe(e,t)}var w1=O({concat2d_:pD});function dD(e,t){return Qe(e,t)}var k1=O({concat3d_:dD});function hD(e,t){return Qe(e,t)}var I1=O({concat4d_:hD});function mD(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","conv2d"),l=E(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&A(Gt(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?c.shape[3]:c.shape[1];A(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),A(Ka(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=M.runKernel(Ls,d,h);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var At=O({conv2d_:mD});function fD(e,t,n,a,r="NWC",s=1,i){let o=E(e,"x","conv1d"),l=E(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1]])),A(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&A(Gt(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),A(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(Ka(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),A(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),h=At(d,p,[1,n],a,"NHWC",[1,s],i);return u?H(h,[h.shape[2],h.shape[3]]):H(h,[h.shape[0],h.shape[2],h.shape[3]])}var Fh=O({conv1d_:fD});function gD(e,t,n,a,r,s="NHWC",i){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),A(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),A(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&A(Gt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let d={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=M.runKernel(zs,d,h);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var eb=O({conv2DBackpropInput_:gD});function yD(e,t,n,a,r,s){let i=E(e,"x","conv2dTranspose"),o=E(t,"filter","conv2dTranspose");return eb(n,i,o,a,r,"NHWC",s)}var $h=O({conv2dTranspose_:yD});function bD(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=E(e,"x","conv3d"),o=E(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),A(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),A(Ka(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},d=M.runKernel(bc,u,p);return c?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var tb=O({conv3d_:bD});function xD(e,t,n,a,r){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),A(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),A(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),A(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},d=M.runKernel(jd,u,p);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var N1=O({conv3DBackpropInput_:xD});function vD(e,t,n,a,r){let s=E(e,"x","conv3dTranspose"),i=E(t,"filter","conv3dTranspose");return N1(n,s,i,a,r)}var wD=O({conv3dTranspose_:vD});function kD(e){let t={x:E(e,"x","cos")};return M.runKernel(Bs,t)}var jc=O({cos_:kD});function ID(e){let t={x:E(e,"x","cosh")};return M.runKernel(Ko,t)}var Dh=O({cosh_:ID});function ND(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return M.runKernel(Ws,r,s)}var Rh=O({cumsum_:ND});function TD(e,t,n,a=!1){let r=E(e,"x","denseBincount"),s=E(t,"weights","denseBincount");A(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),A(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return M.runKernel(qd,i,o)}var T1=O({denseBincount_:TD});function SD(e,t,n="NHWC"){let a=E(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];A(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),A(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),A(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return M.runKernel(Yo,o,l)}var nb=O({depthToSpace_:SD});function CD(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","depthwiseConv2d"),l=E(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),A(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&A(Gt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:c,filter:l},d={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=M.runKernel(Vs,p,d);return u?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var es=O({depthwiseConv2d_:CD});function _D(e){let t={x:E(e,"x","diag")};return M.runKernel(Yd,t)}var ED=O({diag_:_D});function AD(e,t,n,a,r=[1,1],s="NHWC"){let i=E(e,"x","dilation2d"),o=E(t,"filter","dilation2d");A(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),A(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},p={strides:n,pad:a,dilations:r},d=M.runKernel(xc,u,p);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ab=O({dilation2d_:AD});function FD(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function zt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function xt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function $D(e,t){let n=E(e,"a","equal"),a=E(t,"b","equal");[n,a]=Nt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Qo,r)}var ts=O({equal_:$D});function DD(e,t,n){let a=E(t,"a","where"),r=E(n,"b","where"),s=E(e,"condition","where","bool"),i=xt(a.shape,r.shape),o=Hc(a,i),l=Hc(r,i);s.rank===1&&A(s.shape[0]===a.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&sn(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return M.runKernel(Tl,c)}var wn=O({where_:DD});function RD(e){let t={x:E(e,"x","zerosLike")};return M.runKernel(Pl,t)}var Ge=O({zerosLike_:RD});function MD(e,t){let n=E(e,"a","div"),a=E(t,"b","div");[n,a]=Nt(n,a);let r=ve(n,a),s=Ge(r),i=ts(a,s);return wn(i,s,r)}var rb=O({divNoNan_:MD});function PD(e,t){let n=E(e,"t1","dot"),a=E(t,"t2","dot");A((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(A(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=H(n,[1,-1]),o=H(a,[-1,1]),l=ze(i,o);return H(l,[])}else if(n.rank===1&&a.rank===2){let i=H(n,[1,-1]),o=H(a,[a.shape[0],a.shape[1]]),l=ze(i,o);return H(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=H(a,[-1,1]),o=ze(n,i);return H(o,[o.size])}else{let i=H(a,[a.shape[0],a.shape[1]]);return ze(n,i)}}var S1=O({dot_:PD});function OD(e){let t={x:E(e,"x","elu")};return M.runKernel(Zo,t)}var ql=O({elu_:OD});function LD(e){let t=E(e,"x","erf");A(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return M.runKernel(Jo,n)}var sb=O({erf_:LD});function zD(e){let t={x:E(e,"x","exp")};return M.runKernel(Gs,t)}var dn=O({exp_:zD});function BD(e,t=0){let n=E(e,"x","expandDims","string_or_numeric");A(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return M.runKernel(el,a,r)}var $n=O({expandDims_:BD});function WD(e){let t={x:E(e,"x","expm1")};return M.runKernel(tl,t)}var ib=O({expm1_:WD});function VD(e,t){let n=E(e,"x","tile","string_or_numeric");A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return M.runKernel(Hr,a,r)}var Xa=O({tile_:VD});function UD(e,t,n,a="float32"){t==null&&(t=e);let r=Le([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=H(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Xa($n(i,0),[n[0],1,1]);if(n.length===2)return Xa($n($n(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Xa($n($n($n(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var ob=O({eye_:UD});function kn(e,t,n){let a={shape:e,value:t,dtype:n};return M.runKernel(vc,{},a)}function GD(e){let t={x:E(e,"x","floor")};return M.runKernel(Hs,t)}var Kl=O({floor_:GD});function HD(e,t,n=0,a=0){let r=E(e,"x","gather"),s=E(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return M.runKernel(al,i,o)}var Di=O({gather_:HD});function jD(e,t){let n=E(e,"a","greater"),a=E(t,"b","greater");[n,a]=Nt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(sl,r)}var ha=O({greater_:jD});function qD(e,t){let n=E(e,"a","greaterEqual"),a=E(t,"b","greaterEqual");[n,a]=Nt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Ks,r)}var ns=O({greaterEqual_:qD});function KD(e){let t={input:E(e,"input","imag")};return M.runKernel(nh,t)}var Mh=O({imag_:KD});function XD(e){let t={x:E(e,"x","isFinite")};return M.runKernel(il,t)}var C1=O({isFinite_:XD});function YD(e){let t={x:E(e,"x","isInf")};return M.runKernel(ol,t)}var _1=O({isInf_:YD});function ZD(e){let t={x:E(e,"x","isNaN")};return M.runKernel(ll,t)}var E1=O({isNaN_:ZD});function JD(e,t=.2){let n={x:E(e,"x","leakyRelu")},a={alpha:t};return M.runKernel(Ys,n,a)}var qc=O({leakyRelu_:JD});function QD(e,t){let n=E(e,"a","less"),a=E(t,"b","less");[n,a]=Nt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(ul,r)}var Ph=O({less_:QD});function eR(e,t){let n=E(e,"a","lessEqual"),a=E(t,"b","lessEqual");[n,a]=Nt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(cl,r)}var Ri=O({lessEqual_:eR});function A1(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return M.runKernel(ah,{},a)}function tR(e,t=5,n=1,a=1,r=.5){let s=E(e,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),A(Gt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:a,beta:r},u=M.runKernel(Ic,l,c);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var lb=O({localResponseNormalization_:tR});function nR(e){let t={x:E(e,"x","log")};return M.runKernel(Zs,t)}var Dn=O({log_:nR});function aR(e){let t={x:E(e,"x","log1p")};return M.runKernel(pl,t)}var Oh=O({log1p_:aR});function rR(e){return A(Vr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=E(t,"x","tf.grad","string_or_numeric"),r=n!=null?E(n,"dy","tf.grad"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(a),[a],r);return r!=null&&sn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Lh(i),i[0]})}}function sR(e){return A(Vr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{A(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=zc(t,"args","tf.grads","string_or_numeric"),r=n!=null?E(n,"dy","tf.grads"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(...a),a,r);return r!=null&&sn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Lh(i),i})}}function iR(e){return A(Vr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{A(t instanceof Ae,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=M.gradients(()=>e(t),[t],n);return Lh(a),{grad:a[0],value:r}}}function oR(e){return A(Vr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{A(Array.isArray(t)&&t.every(r=>r instanceof Ae),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=M.gradients(()=>e(...t),t,n);return n!=null&&sn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Lh(a.grads),a}}function F1(e,t){A(Vr(e),()=>"The f passed in variableGrads(f) must be a function"),A(t==null||Array.isArray(t)&&t.every(c=>c instanceof qr),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in M.registeredVariables)t.push(M.registeredVariables[c])}let a=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),A(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=M.gradients(e,t,null,s);A(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),a!=null&&a.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Ya(e){return M.customGrad(e)}function Lh(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function lR(e){let t={x:E(e,"x","neg")};return M.runKernel(ml,t)}var Tt=O({neg_:lR});function uR(e){let t={x:E(e,"x","softplus")};return M.runKernel(Al,t)}var Xl=O({softplus_:uR});function cR(e){let t=E(e,"x","logSigmoid");return Ya(n=>({value:Tt(Xl(Tt(n))),gradFunc:a=>L(a,da(Tt(n)))}))(t)}var $1=O({logSigmoid_:cR});function pR(e,t=null,n=!1){let a={x:E(e,"x","max")},r={reductionIndices:t,keepDims:n};return M.runKernel(Js,a,r)}var Zn=O({max_:pR});function dR(e,t){let n=E(e,"a","sub"),a=E(t,"b","sub");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(wi,r)}var fe=O({sub_:dR});function hR(e,t=null,n=!1){let a=E(e,"x","sum");a.dtype==="bool"&&(a=ce(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(bi,r,s)}var Te=O({sum_:hR});function mR(e,t=-1){let n=E(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Ya((a,r)=>{let s=!0,i=Zn(a,t,!0),o=fe(a,i),l=fe(ce(o,"float32"),Dn(Te(dn(o),t,s)));return r([l]),{value:l,gradFunc:(c,u)=>{let[p]=u,d=!0,h=dn(p);return fe(c,L(Te(c,t,d),h))}}})(n)}var zh=O({logSoftmax_:mR});function ub(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function D1(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function R1(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function Mi(e,t){let n=t.map(a=>1);return D1(e,n,t)}function fR(e,t,n){A(ub(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function M1(e,t){if(ub(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function cb(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function gR(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function yR(e,t=null,n=!1){let a=E(e,"x","logSumExp"),r=ca(t,a.shape),s=Zn(a,r,!0),i=fe(a,s),o=dn(i),l=Te(o,r),c=Dn(l),u=Z(H(s,c.shape),c);if(n){let p=Mi(u.shape,r);return H(u,p)}return u}var pb=O({logSumExp_:yR});function bR(e,t){let n=E(e,"a","logicalAnd","bool"),a=E(t,"b","logicalAnd","bool");xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(dl,r)}var ma=O({logicalAnd_:bR});function xR(e){let t={x:E(e,"x","logicalNot","bool")};return M.runKernel(wc,t)}var Kc=O({logicalNot_:xR});function vR(e,t){let n=E(e,"a","logicalOr","bool"),a=E(t,"b","logicalOr","bool");xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(kc,r)}var Bh=O({logicalOr_:vR});function wR(e,t){let n=E(e,"a","logicalXor","bool"),a=E(t,"b","logicalXor","bool");return xt(n.shape,a.shape),ma(Bh(e,t),Kc(ma(e,t)))}var P1=O({logicalXor_:wR});function kR(e,t,n,a,r){let s=E(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),A(Ka(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&A(Gt(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(ei,c,u);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ft=O({maxPool_:kR});function IR(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=E(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&A(Gt(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(Nc,c,u);return l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var db=O({maxPool3d_:IR});function NR(e,t,n,a,r=!1){let s={x:E(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=M.runKernel(oh,s,i);return{result:o[0],indexes:o[1]}}var O1=O({maxPoolWithArgmax_:NR});function TR(e,t){let n=E(e,"a","maximum"),a=E(t,"b","maximum");[n,a]=Nt(n,a),n.dtype==="bool"&&(n=ce(n,"int32"),a=ce(a,"int32")),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Qs,r)}var Za=O({maximum_:TR});function SR(e,t=null,n=!1){let a={x:E(e,"x","mean")},r={axis:t,keepDims:n};return M.runKernel(ti,a,r)}var St=O({mean_:SR});function CR(e,t=null,n=!1){let a={x:E(e,"x","min")},r={axis:t,keepDims:n};return M.runKernel(ni,a,r)}var Yl=O({min_:CR});function _R(e,t){let n=E(e,"a","minimum"),a=E(t,"b","minimum");[n,a]=Nt(n,a),n.dtype==="bool"&&(n=ce(n,"int32"),a=ce(a,"int32")),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(ai,r)}var Zl=O({minimum_:_R});function ER(e,t,n){A(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=E(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)A(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return M.runKernel(Tc,i,s)}var hb=O({mirrorPad_:ER});function AR(e,t){let n=E(e,"a","mod"),a=E(t,"b","mod");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(hl,r)}var mb=O({mod_:AR});function FR(e){let t=E(e,"x","square"),n={};return M.runKernel("Square",{x:t},n)}var ut=O({square_:FR});function $R(e,t=null,n=!1){e=E(e,"x","moments");let a=ca(t,e.shape),r=St(e,a,n),s=r.shape;n||(s=Mi(r.shape,a));let i=ut(fe(ce(e,"float32"),H(r,s))),o=St(i,a,n);return{mean:r,variance:o}}var Wh=O({moments_:$R});function DR(e,t,n,a){let r=E(t,"data","multiRNNCell"),s=zc(n,"c","multiRNNCell"),i=zc(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](o,s[p],i[p]);l.push(d[0]),l.push(d[1]),o=d[1]}let c=[],u=[];for(let p=0;p<l.length;p+=2)c.push(l[p]),u.push(l[p+1]);return[c,u]}var RR=O({multiRNNCell_:DR});function MR(e,t,n,a=!1){let r=E(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},c=M.runKernel(lh,o,l);return i===1?H(c,[c.size]):c}var L1=O({multinomial_:MR});function PR(e,t){let n=E(e,"a","notEqual"),a=E(t,"b","notEqual");[n,a]=Nt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(fl,r)}var Pi=O({notEqual_:PR});function vt(e,t="float32"){if(t==="complex64"){let a=vt(e,"float32"),r=vt(e,"float32");return Kr(a,r)}let n=Od(Pt(e),t);return M.makeTensor(n,e,t)}function Ja(e,t="float32"){if(t==="complex64"){let a=Ja(e,"float32"),r=vt(e,"float32");return Kr(a,r)}let n=oy(Pt(e),t);return M.makeTensor(n,e,t)}function OR(e){let t={x:E(e,"x","onesLike")};return M.runKernel(xl,t)}var Rn=O({onesLike_:OR});function LR(e,t){let n=E(e,"v1","outerProduct"),a=E(t,"v2","outerProduct");A(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=H(n,[-1,1]),s=H(a,[1,-1]);return ze(r,s)}var zR=O({outerProduct_:LR});function BR(e,t,n=0){let a=E(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return M.runKernel(ii,s,r)}var Jn=O({pad_:BR});function WR(e,t,n=0){return A(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Jn(e,[t],n)}var VR=O({pad1d_:WR});function UR(e,t,n=0){return A(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jn(e,t,n)}var GR=O({pad2d_:UR});function HR(e,t,n=0){return A(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jn(e,t,n)}var jR=O({pad3d_:HR});function qR(e,t,n=0){return A(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jn(e,t,n)}var KR=O({pad4d_:qR});function XR(e,t,n){let a=E(e,"x","spaceToBatchND");A(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),A(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),A(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return M.runKernel(_c,r,s)}var Xc=O({spaceToBatchND_:XR});function JR(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=E(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),A(Ka(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let c=m1(o.shape,t,s,r,a),u=[c.dilationHeight,c.dilationWidth],p;a==="same"?p=ZR([c.filterHeight,c.filterWidth],u):p=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[h,m]=YR([c.inHeight,c.inWidth],u,p),f=d?a:"valid",g=d?o:Xc(o,u,h),y=(n==="avg"?()=>Yn(g,t,s,f):()=>Ft(g,t,s,f))(),b=d?y:Gc(y,u,m);return l?H(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function YR(e,t,n){let a=n.map(u=>u[0]),r=n.map(u=>u[1]),s=e.concat(a,r),i=t.map((u,p)=>(u-s[p]%u)%u),o=r.map((u,p)=>u+i[p]),l=t.map((u,p)=>[a[p],o[p]]),c=t.map((u,p)=>[0,i[p]]);return[l,c]}function ZR(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var z1=O({pool_:JR});function QR(e,t){let n=E(e,"base","pow"),a=E(t,"exp","pow");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(oi,r)}var vr=O({pow_:QR});function eM(e,t){let n=E(e,"x","prelu"),a=E(t,"alpha","prelu"),r={x:n,alpha:a};return M.runKernel(li,r)}var Yc=O({prelu_:eM});function tM(e,t=null,n=!1){let a=E(e,"x","prod");a.dtype==="bool"&&(a=ce(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(wl,r,s)}var Vh=O({prod_:tM});function nM(e,t,n){let a=Pt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return M.makeTensor(r,e,n)}var aM=O({rand_:nM}),fb=Po(Dd()),gb=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=fb.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},rM=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=fb.alea(r.toString()),this.randn=new gb(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},sM=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=fb.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function iM(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new rM(t,n,a,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var oM=O({randomGamma_:iM});function lM(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new gb(t,n,a,!1,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var B1=O({randomNormal_:lM});function uM(e,t=0,n=1,a="float32",r){let s=Le(e,a),i=new sM(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Jl=O({randomUniform_:uM});function Uh(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return M.runKernel(Sc,{},r)}function cM(e){let t={input:E(e,"input","real")};return M.runKernel(uh,t)}var Zc=O({real_:cM});function pM(e){let t={x:E(e,"x","reciprocal")};return M.runKernel(kl,t)}var yb=O({reciprocal_:pM});function dM(e){let t={x:E(e,"x","relu")};return M.runKernel(ui,t)}var Ye=O({relu_:dM});function hM(e){let t={x:E(e,"x","relu6")};return M.runKernel(pi,t)}var Gh=O({relu6_:hM});function mM(e,t){let n={x:E(e,"x","reverse")},a={dims:t};return M.runKernel(di,n,a)}var Mn=O({reverse_:mM});function fM(e){let t=E(e,"x","reverse");return A(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Mn(t,0)}var gM=O({reverse1d_:fM});function yM(e,t){let n=E(e,"x","reverse");return A(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Mn(n,t)}var bM=O({reverse2d_:yM});function xM(e,t){let n=E(e,"x","reverse");return A(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Mn(n,t)}var vM=O({reverse3d_:xM});function wM(e,t){let n=E(e,"x","reverse");return A(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Mn(n,t)}var kM=O({reverse4d_:wM});function IM(e){let t={x:E(e,"x","round")};return M.runKernel(hi,t)}var bb=O({round_:IM});function NM(e){let t={x:E(e,"x","rsqrt")};return M.runKernel(mi,t)}var Hh=O({rsqrt_:NM});function de(e,t){if((on(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&on(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Xr(e,[],[],t)}function TM(e){let t={x:E(e,"x","selu")};return M.runKernel(Sl,t)}var jh=O({selu_:TM});function SM(e,t,n,a,r,s=[1,1],i="NHWC"){let o=E(e,"x","separableConv2d"),l=E(t,"depthwiseFilter","separableConv2d"),c=E(n,"pointwiseFilter","separableConv2d"),u=o,p=!1;if(o.rank===3&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),A(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],h=l.shape[3];A(c.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${c.shape[2]}.`);let m=es(u,l,a,r,i,s),f=At(m,c,1,"valid",i);return p?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Oi=O({separableConv2d_:SM});async function CM(e,t){let n=E(e,"x","setdiff1d"),a=E(t,"y","setdiff1d");A(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),A(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),A(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let u=0;u<r.length;u++)i.has(r[u])||o++;let l=new Ot([o],n.dtype),c=new Ot([o],"int32");for(let u=0,p=0;u<r.length;u++)i.has(r[u])||(l.values[p]=r[u],c.values[p]=u,p++);return[l.toTensor(),c.toTensor()]}var W1=CM;function _M(e){let t={x:E(e,"x","sign")};return M.runKernel(El,t)}var xb=O({sign_:_M});function EM(e){let t={x:E(e,"x","sin")};return M.runKernel(fi,t)}var qh=O({sin_:EM});function AM(e){let t={x:E(e,"x","sinh")};return M.runKernel(_l,t)}var Kh=O({sinh_:AM});function FM(e,t,n){let a=E(e,"x","slice1d");return A(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),We(a,[t],[n])}var Xh=O({slice1d_:FM});function $M(e,t,n){let a=E(e,"x","slice2d");return A(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var vb=O({slice2d_:$M});function DM(e,t,n){let a=E(e,"x","slice3d");return A(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var Ql=O({slice3d_:DM});function RM(e,t,n){let a=E(e,"x","slice4d");return A(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var Jc=O({slice4d_:RM});function MM(e,t=-1){let n=E(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return M.runKernel(xi,a,r)}var Sa=O({softmax_:MM});function PM(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(eh,t)}var Qc=O({fft_:PM});function OM(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(th,t)}var eu=O({ifft_:OM});function LM(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=H(e,[n,t]);a=eu(r)}else{let r=[n,2*(t-1)],s=H(Zc(e),[n,t]),i=H(Mh(e),[n,t]),o=Mn(We(s,[0,1],[n,t-2]),1),l=L(Mn(We(i,[0,1],[n,t-2]),1),de(-1)),c=Qe([s,o],1),u=Qe([i,l],1),p=H(Kr(c,u),[r[0],r[1]]);a=eu(p)}if(a=Zc(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=H(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Yh=O({irfft_:LM});function zM(e,t,n=0){let a={x:E(e,"x","split")},r={numOrSizeSplits:t,axis:n};return M.runKernel(Fl,a,r)}var Pn=O({split_:zM});function BM(e,t){A(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=We(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Qe([e,vt(m)],e.shape.length-1),n=t}else r=e;let s=Ge(r),i=H(Kr(r,s),[a,n]),o=Qc(i),l=Math.floor(n/2)+1,c=Zc(o),u=Mh(o),p=Pn(c,[l,n-l],c.shape.length-1),d=Pn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,H(Kr(p[0],d[0]),h)}var ep=O({rfft_:BM});function WM(e){let t={x:E(e,"x","sqrt")};return M.runKernel(yi,t)}var tn=O({sqrt_:WM});function VM(e,t){let n=E(e,"a","squaredDifference"),a=E(t,"b","squaredDifference");[n,a]=Nt(n,a),xt(n.shape,a.shape);let r={a:n,b:a},s={};return M.runKernel(vi,r,s)}var Zh=O({squaredDifference_:VM});function UM(e,t){let n=E(e,"x","squeeze");return H(n,i0(n.shape,t).newShape)}var as=O({squeeze_:UM});function GM(e,t=0){let n=zc(e,"tensors","stack","string_or_numeric");A(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&A(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return M.runKernel(vl,a,r)}var $t=O({stack_:GM});function HM(e,t=0){let n={x:E(e,"x","step")},a={alpha:t};return M.runKernel(jr,n,a)}var tu=O({step_:HM});function jM(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let c={x:E(e,"x","stridedSlice")},u={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return M.runKernel($l,c,u)}var wb=O({stridedSlice_:jM});function qM(e){let t={x:E(e,"x","tan")};return M.runKernel(Dl,t)}var kb=O({tan_:qM});function nt(e,t){As(e);let n=ja(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Xr(e,null,n,t)}function Ca(e,t,n){if(As(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=ja(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Xr(e,t,a,n)}function _a(e,t,n){if(As(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=ja(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Xr(e,t,a,n)}function KM(e,t,n){if(As(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=ja(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Xr(e,t,a,n)}function XM(e,t,n){if(As(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=ja(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Xr(e,t,a,n)}function YM(e,t=1,n=!0){let a=E(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=M.runKernel(Rl,s,i);return{values:o,indices:l}}var Ib=O({topk_:YM});function ZM(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new gb(t,n,a,!0,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Jh=O({truncatedNormal_:ZM});function JM(e,t=0){let n=E(e,"x","unique","string_or_numeric");A(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=M.runKernel(hh,a,r);return{values:s,indices:i}}var Qh=O({unique_:JM});function QM(e,t,n){let a=E(e,"x","unsortedSegmentSum"),r=E(t,"segmentIds","unsortedSegmentSum","int32");A(Gt(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return M.runKernel(Ac,s,i)}var Nb=O({unsortedSegmentSum_:QM});function eP(e,t=0){let n=E(e,"x","unstack","string_or_numeric");A(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return M.runKernel(Ml,a,r)}var dt=O({unstack_:eP});function V1(e,t=!0,n,a){return M.makeVariable(e,t,n,a)}function U1(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Le(e,"int32"),r=Le([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function tP(e){let t=E(e,"condition","whereAsync","bool"),n=await t.data(),a=U1(t.shape,n);return e!==t&&t.dispose(),a}var Tb=tP;async function nP(e,t,n){let a=E(e,"tensor","boolMask"),r=E(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;A(i>0,()=>"mask cannot be scalar"),sn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let c=o.slice(0,s).concat([l],o.slice(s+i)),u=H(a,c),p=H(r,[-1]),d=await Tb(p),h=as(d,[1]),m=Di(u,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),p.dispose(),d.dispose(),m}var aP=nP;function rP(e,t="euclidean",n=null,a=!1){e=E(e,"x","norm");let r=G1(e,t,n),s=r.shape;if(a){let i=ca(n,e.shape);s=Mi(r.shape,i)}return H(r,s)}function G1(e,t,n=null){if(e.rank===0)return Lt(e);if(e.rank!==1&&n===null)return G1(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Te(Lt(e),n);if(t===Infinity)return Zn(Lt(e),n);if(t===-Infinity)return Yl(Lt(e),n);if(t==="euclidean"||t===2)return tn(Te(vr(Lt(e),de(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Zn(Te(Lt(e),n[0]),n[1]-1);if(t===Infinity)return Zn(Te(Lt(e),n[1]),n[0]);if(t===-Infinity)return Yl(Te(Lt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return tn(Te(ut(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var em=O({norm_:rP});function sP(e,t,n,a,r=!0){let s=E(e,"v","movingAverage"),i=E(t,"x","movingAverage"),o=E(n,"decay","movingAverage");I0(s,i),A(yr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=de(1),c=fe(l,o),u=L(fe(i,s),c);if(r){A(a!=null,()=>"When using zeroDebias: true, step is required.");let p=E(a,"step","movingAverage");u=ve(u,fe(l,vr(o,p)))}return Z(s,u)}var iP=O({movingAverage_:sP});function oP(e,t,n){let a=E(e,"indices","scatterND","int32"),r=E(t,"updates","scatterND");Oy(r,a,n);let s={indices:a,updates:r},i={shape:n};return M.runKernel(Nl,s,i)}var H1=O({scatterND_:oP});function lP(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function uP(e,t,n,a=0){let r=E(e,"sparseIndices","sparseToDense","int32"),s=E(t,"sparseValues","sparseToDense"),i=E(a,"defaultValue","sparseToDense",s.dtype);lP(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return M.runKernel(dh,o,l)}var Sb=O({sparseToDense_:uP});function cP(e,t){let n=E(t,"indices","gatherND","int32"),a={params:E(e,"x","gatherND"),indices:n};return M.runKernel(rl,a)}var j1=O({gatherND_:cP});function pP(e,t){if(t==null)return e.shape.slice();if(yr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function dP(e,t,n,a){let r=E(e,"x","dropout");if(A(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),A(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ae?r.clone():r;let s=pP(r,n),i=1-t,o=ve(Kl(Z(Jl(s,0,1,"float32",a),i)),i);return L(r,o)}var q1=O({dropout_:dP});function K1(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Cb(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return nt(r,"float32")}async function hP(e,t,n=1){let a=E(e,"predictions","inTopK"),r=E(t,"targets","inTopK");A(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),A(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),sn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];A(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,c]=[i.length/s,s],u=o0("bool",l);for(let p=0;p<l;p++){let d=p*c,h=i.subarray(d,d+c),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),u[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){u[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Kn(u,r.shape,"bool")}var mP=hP,rs={};Oe(rs,{conv2d:()=>fP,depthwiseConv2d:()=>gP,matMul:()=>yP});function bP(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),A(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];A(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),A(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&A(Gt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},d={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return M.runKernel(Gd,p,d)}var _b=O({conv2DBackpropFilter_:bP});function tm(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,tu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function nm(e,t){let n=t,a=zt(e.shape,t.shape);return a.length>0&&(n=Te(n,a)),H(n,e.shape)}function am(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Ye(e);if(t==="elu")return ql(e);if(t==="relu6")return Gh(e);if(t==="prelu")return Yc(e,n);if(t==="leakyrelu")return qc(e,a);throw new Error(`Unknown fused activation ${t}.`)}var rm=(e,t)=>!(e>0)||t==="linear";function xP({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",rm(M.state.gradientDepth,l)===!1){let N=At(e,t,n,a,r,s,i);return o!=null&&(N=Z(N,o)),am(N,l,c,u)}let p=E(e,"x","conv2d"),d=E(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),A(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&A(Gt(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),A(h.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${d.shape[2]}.`),A(Ka(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=Uc(h.shape,d.shape,n,s,a,i),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Nt(g,p),xt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused conv2d"));let b=(N,T)=>{let[C,F,$,P]=T,B=tm(N,$,l);A(Qr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=eb(F.shape,B,C,n,a),G=_b(F,B,C.shape,n,a),q=[W,G];if(P!=null){let j=nm(P,B);q.push(j)}return q},v={x:h,filter:d,bias:g,preluActivationWeights:y},x={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Ya((N,T,C)=>{let F=M.runKernel(Ti,v,x);return C([T,N,F]),m&&(F=H(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d):Ya((N,T,C,F)=>{let $=M.runKernel(Ti,v,x);return F([T,N,$,C]),m&&($=H($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,d,g)}var fP=O({fusedConv2d_:xP});function vP(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return M.runKernel(Kd,c,u)}var X1=O({depthwiseConv2dNativeBackpropFilter_:vP});function wP(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=M.runKernel(Xd,c,u);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Y1=O({depthwiseConv2dNativeBackpropInput_:wP});function kP({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(rm(M.state.gradientDepth,l)===!1){let N=es(e,t,n,a,r,s,i);return o!=null&&(N=Z(N,o)),am(N,l,c,u)}let p=E(e,"x","depthwiseConv2d"),d=E(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),A(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),A(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),A(Ka(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&A(Gt(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=Uc(h.shape,d.shape,n,s,a,i,!0),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Nt(g,p),xt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused depthwiseConv2d"));let b=(N,T)=>{A(Qr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,F,$,P]=T,B=tm(N,$,l),W=Y1(F.shape,B,C,n,a,s,i),G=X1(F,B,C.shape,n,a,s,i);if(P!=null){let q=nm(g,B);return[W,G,q]}return[W,G]},v={x:h,filter:d,bias:g,preluActivationWeights:y},x={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Ya((N,T,C)=>{let F=M.runKernel(Si,v,x);return C([T,N,F]),m&&(F=H(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d):Ya((N,T,C,F)=>{let $=M.runKernel(Si,v,x);return F([T,N,$,C]),m&&($=H($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,d,g)}var gP=O({fusedDepthwiseConv2d_:kP});function IP({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(rm(M.state.gradientDepth,s)===!1){let P=ze(e,t,n,a);return r!=null&&(P=Z(P,r)),am(P,s,i,o)}let l=E(e,"a","fused matMul"),c=E(t,"b","fused matMul");[l,c]=Nt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),g=Pt(m),y=Pt(f);A(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),A(yr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),A(u===p,()=>`Error in fused matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=l.shape.slice(0,-2).concat([d,h]),v=n?H(l,[g,u,d]):H(l,[g,d,u]),x=a?H(c,[y,h,p]):H(c,[y,p,h]),N;r!=null&&(N=E(r,"bias","fused matMul"),[N]=Nt(N,l),xt(b,N.shape));let T;i!=null&&(T=E(i,"prelu weights","fused matMul"));let C=(P,B)=>{let[W,G,q,j]=B,X=tm(H(P,q.shape),q,s),K,ne;if(!n&&!a?(K=ze(X,G,!1,!0),ne=ze(W,X,!0,!1)):!n&&a?(K=ze(X,G,!1,!1),ne=ze(X,W,!0,!1)):n&&!a?(K=ze(G,X,!1,!0),ne=ze(W,X,!1,!1)):(K=ze(G,X,!0,!0),ne=ze(X,W,!0,!0)),r!=null){let J=nm(j,X);return[K,ne,J]}else return[K,ne]},F={a:v,b:x,bias:N,preluActivationWeights:T},$={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?Ya((P,B,W)=>{let G=M.runKernel(Ni,F,$);return W([P,B,G]),{value:H(G,b),gradFunc:C}})(v,x):Ya((P,B,W,G)=>{let q=M.runKernel(Ni,F,$);return G([P,B,q,W]),{value:H(q,b),gradFunc:C}})(v,x,N)}var yP=O({fusedMatMul_:IP});function NP(e){return Cb(e,.54,.46)}var TP=O({hammingWindow_:NP});function SP(e){return Cb(e,.5,.5)}var Z1=O({hannWindow_:SP});function CP(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(We(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Qe([We(e,s,t-o),kn([o],r)]);i.push(l),s+=n}return i.length===0?Ca([],[0,t]):H(Qe(i),[i.length,t])}var J1=O({frame_:CP});function _P(e,t,n,a,r=Z1){a==null&&(a=K1(t));let s=J1(e,t,n),i=L(s,r(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(ep(We(i,[l,0],[1,t]),a));return Qe(o)}var EP=O({stft_:_P});function AP(e,t,n,a,r="bilinear",s=0){let i=E(e,"image","cropAndResize"),o=E(t,"boxes","cropAndResize","float32"),l=E(n,"boxInd","cropAndResize","int32"),c=o.shape[0];A(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),A(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),A(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),A(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),A(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return M.runKernel(Xo,u,p)}var FP=O({cropAndResize_:AP});function $P(e){let t=E(e,"image","flipLeftRight","float32");A(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return M.runKernel(nl,n,{})}var DP=O({flipLeftRight_:$P});function RP(e,t,n=0,a=.5){let r=E(e,"image","rotateWithOffset","float32");A(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return M.runKernel(Ol,s,i)}var MP=O({rotateWithOffset_:RP});function nu(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),A(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),A(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),A(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),A(t.rank===1,()=>"scores must be a 1D tensor"),A(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function PP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppression"),i=E(t,"scores","nonMaxSuppression"),o=nu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return M.runKernel(gl,{boxes:s,scores:i},l)}var OP=O({nonMaxSuppression_:PP});function zP(e,t,n){let a=LP(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function LP(e,t,n){return WP(e,t,n||BP)}function BP(e,t){return e>t?1:e<t?-1:0}function WP(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function Q1(e,t,n,a,r){return Eb(e,t,n,a,r,0)}function ek(e,t,n,a,r,s){return Eb(e,t,n,a,r,0,!1,s,!0)}function tk(e,t,n,a,r,s){return Eb(e,t,n,a,r,s,!0)}function Eb(e,t,n,a,r,s,i=!1,o=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(nk);let u=s>0?-.5/s:0,p=[],d=[];for(;p.length<n&&c.length>0;){let g=c.pop(),{score:y,boxIndex:b,suppressBeginIndex:v}=g;if(y<r)break;let x=!1;for(let N=p.length-1;N>=v;--N){let T=VP(e,b,p[N]);if(T>=a){x=!0;break}if(g.score=g.score*UP(a,u,T),g.score<=r)break}g.suppressBeginIndex=p.length,x||(g.score===y?(p.push(b),d.push(g.score)):g.score>r&&zP(c,g,nk))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=d),l&&(f.validOutputs=h),f}function VP(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-c)*(d-u);if(h<=0||m<=0)return 0;let f=Math.max(s,c),g=Math.max(i,u),y=Math.min(o,p),b=Math.min(l,d),v=Math.max(y-f,0)*Math.max(b-g,0);return v/(h+m-v)}function UP(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function nk(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function GP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),o=nu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:p}=Q1(c,u,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),nt(p,"int32")}var HP=GP;function jP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=nu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=M.runKernel(bl,c,u);return{selectedIndices:p[0],selectedScores:p[1]}}var qP=O({nonMaxSuppressionWithScore_:jP});async function KP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=nu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],p=c[1],{selectedIndices:d,selectedScores:h}=tk(u,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:nt(d,"int32"),selectedScores:nt(h)}}var XP=KP;function YP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=nu(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:p,padToMaxOutputSize:s},m=M.runKernel(yl,d,h);return{selectedIndices:m[0],validOutputs:m[1]}}var ZP=O({nonMaxSuppressionPadded_:YP});async function JP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=nu(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=ek(d,h,c,u,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:nt(m,"int32"),validOutputs:de(f,"int32")}}var QP=JP;function eO(e,t,n=!1,a=!1){let r=E(e,"images","resizeBilinear");A(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),A(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(ci,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var ak=O({resizeBilinear_:eO});function tO(e,t,n=!1,a=!1){let r=E(e,"images","resizeNearestNeighbor");A(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),A(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(Cc,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var rk=O({resizeNearestNeighbor_:tO});function nO(e,t,n){A(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),A(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=E(e,"a","bandPart");A(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(Uh(0,s,1,"int32"),[-1,1]),l=Uh(0,i,1,"int32"),c=fe(o,l),u=ma(Ri(c,de(+t,"int32")),ns(c,de(-n,"int32"))),p=vt([s,i],a.dtype);return H($t(dt(H(a,[-1,s,i])).map(d=>wn(u,d,p))),r)}var aO=O({bandPart_:nO});function rO(e){let t;if(Array.isArray(e)){t=!1,A(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)A(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=Pn(e,e.shape[0],0).map(r=>as(r,[0]));A(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(M.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=L(Te(L(n[i],s)),n[i]);s=fe(s,o)}return ve(s,em(s,"euclidean"))}));return t?$t(n,0):n}var sO=O({gramSchmidt_:rO});function iO(e,t=!1){if(A(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return sk(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),a=dt(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[c,u]=sk(l,t);r.push(c),s.push(u)});let i=H($t(r,0),e.shape),o=H($t(s,0),e.shape);return[i,o]}}function sk(e,t=!1){return M.tidy(()=>{A(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=ob(n),s=Zr(e),i=Ca([[1]],[1,1]),o=Zr(i),l=n>=a?a:n;for(let c=0;c<l;++c){let u=s,p=o,d=r;[o,s,r]=M.tidy(()=>{let h=We(s,[c,c],[n-c,1]),m=em(h),f=We(s,[c,c],[1,1]),g=wn(ha(f,0),Ca([[-1]]),Ca([[1]])),y=fe(f,L(g,m)),b=ve(h,y);b.shape[0]===1?o=Zr(i):o=Qe([i,We(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let v=Tt(ve(ze(g,y),m)),x=We(s,[c,0],[n-c,a]),N=L(v,o),T=Ue(o);if(c===0)s=fe(x,ze(N,ze(T,x)));else{let $=fe(x,ze(N,ze(T,x)));s=Qe([We(s,[0,0],[c,a]),$],0)}let C=Ue(N),F=We(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=fe(F,ze(ze(F,o),C));else{let $=fe(F,ze(ze(F,o),C));r=Qe([We(r,[0,0],[n,c]),$],1)}return[o,s,r]}),Fe([u,p,d])}return!t&&n>a&&(r=We(r,[0,0],[n,a]),s=We(s,[0,0],[a,a])),[r,s]})}var oO=O({qr_:iO}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function lO(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=E(t,"weights","computeWeightedLoss"));let s=r==null?a:L(a,r);if(n===hn.NONE)return s;if(n===hn.SUM)return Te(s);if(n===hn.MEAN){if(r==null)return St(s);{let i=a.size/r.size,o=ve(Te(s),Te(r));return i>1?ve(o,de(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return ve(Te(s),de(a.size));{let i=L(r,Ja(a.shape)),o=ce(Te(Pi(i,de(0))),"float32");return ve(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var wr=O({computeWeightedLoss_:lO});function uO(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","absoluteDifference"),s=E(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=E(n,"weights","absoluteDifference")),sn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(fe(r,s));return wr(o,i,a)}var cO=O({absoluteDifference_:uO});function pO(e,t,n,a,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","cosineDistance"),i=E(t,"predictions","cosineDistance"),o=null;a!=null&&(o=E(a,"weights","cosineDistance")),sn(s.shape,i.shape,"Error in cosineDistance: ");let l=de(1),c=fe(l,Te(L(s,i),n,!0));return wr(c,o,r)}var dO=O({cosineDistance_:pO});function hO(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","hingeLoss"),s=E(t,"predictions","hingeLoss"),i=null;n!=null&&(i=E(n,"weights","hingeLoss")),sn(r.shape,s.shape,"Error in hingeLoss: ");let o=de(1);r=fe(L(de(2),r),o);let l=Ye(fe(o,L(r,s)));return wr(l,i,a)}var mO=O({hingeLoss_:hO});function fO(e,t,n,a=1,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","huberLoss"),i=E(t,"predictions","huberLoss"),o=null;n!=null&&(o=E(n,"weights","huberLoss")),sn(s.shape,i.shape,"Error in huberLoss: ");let l=de(a),c=Lt(fe(i,s)),u=Zl(c,l),p=fe(c,u),d=Z(L(de(.5),ut(u)),L(l,p));return wr(d,o,r)}var gO=O({huberLoss_:fO});function yO(e,t,n,a=1e-7,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","logLoss"),i=E(t,"predictions","logLoss"),o=null;n!=null&&(o=E(n,"weights","logLoss")),sn(s.shape,i.shape,"Error in logLoss: ");let l=de(1),c=de(a),u=Tt(L(s,Dn(Z(i,c)))),p=L(fe(l,s),Dn(Z(fe(l,i),c))),d=fe(u,p);return wr(d,o,r)}var bO=O({logLoss_:yO});function xO(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","meanSquaredError"),s=E(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=E(n,"weights","meanSquaredError")),sn(r.shape,s.shape,"Error in meanSquaredError: ");let o=Zh(r,s);return wr(o,i,a)}var vO=O({meanSquaredError_:xO});function wO(e,t){let n=E(e,"labels","sigmoidCrossEntropyWithLogits"),a=E(t,"logits","sigmoidCrossEntropyWithLogits");sn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ye(a),s=L(a,n),i=Oh(dn(Tt(Lt(a))));return Z(fe(r,s),i)}function kO(e,t,n,a=0,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"multiClassLabels","sigmoidCrossEntropy"),i=E(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","sigmoidCrossEntropy")),sn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let c=de(a),u=de(1),p=de(.5);s=Z(L(s,fe(u,c)),L(p,c))}let l=wO(s,i);return wr(l,o,r)}var IO=O({sigmoidCrossEntropy_:kO});function NO(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Ya((a,r,s)=>{let i=pb(r,[n],!0),o=fe(ce(r,"float32"),i);s([a,o]);let l=Tt(L(o,a));return{value:Te(l,[n]),gradFunc:(c,u)=>{let[p,d]=u,h=Mi(c.shape,[n]);return[L(H(c,h),fe(ce(p,"float32"),dn(d))),L(H(c,h),fe(dn(d),ce(p,"float32")))]}}})(e,t)}function TO(e,t,n,a=0,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"onehotLabels","softmaxCrossEntropy"),i=E(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","softmaxCrossEntropy")),sn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let c=de(a),u=de(1),p=de(s.shape[1]);s=Z(L(s,fe(u,c)),ve(c,p))}let l=NO(s,i);return wr(l,o,r)}var SO=O({softmaxCrossEntropy_:TO}),CO={fft:Qc,ifft:eu,rfft:ep,irfft:Yh},_O={hammingWindow:TP,hannWindow:Z1,frame:J1,stft:EP},Qa={flipLeftRight:DP,resizeNearestNeighbor:rk,resizeBilinear:ak,rotateWithOffset:MP,cropAndResize:FP,nonMaxSuppression:OP,nonMaxSuppressionAsync:HP,nonMaxSuppressionWithScore:qP,nonMaxSuppressionWithScoreAsync:XP,nonMaxSuppressionPadded:ZP,nonMaxSuppressionPaddedAsync:QP},ik={bandPart:aO,gramSchmidt:sO,qr:oO},EO={absoluteDifference:cO,computeWeightedLoss:wr,cosineDistance:dO,hingeLoss:mO,huberLoss:gO,logLoss:bO,meanSquaredError:vO,sigmoidCrossEntropy:IO,softmaxCrossEntropy:SO},kr=class extends i1{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Fe(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return F1(e,t)}dispose(){this.iterations_!=null&&Fe(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:de(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(kr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var sm=class extends kr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;D(()=>{let l=Z(L(i,this.rho),L(ut(s),1-this.rho)),c=L(ve(tn(Z(o,this.epsilon)),tn(Z(i,this.epsilon))),s),u=Z(L(o,this.rho),L(ut(c),1-this.rho));i.assign(l),o.assign(u);let p=Z(L(c,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Fe(this.accumulatedGrads.map(e=>e.variable)),Fe(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};sm.className="Adadelta";Jr(sm);var im=class extends kr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:D(()=>kn(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;D(()=>{let i=Z(s,ut(r));s.assign(i);let o=Z(L(ve(r,tn(Z(i,M.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Fe(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};im.className="Adagrad";Jr(im);var om=class extends kr{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],D(()=>{this.accBeta1=de(t).variable(),this.accBeta2=de(n).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=fe(1,this.accBeta1),a=fe(1,this.accBeta2);t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:D(()=>Ge(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:D(()=>Ge(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,p=Z(L(c,this.beta1),L(l,1-this.beta1)),d=Z(L(u,this.beta2),L(ut(l),1-this.beta2)),h=ve(p,n),m=ve(d,a);c.assign(p),u.assign(d);let f=Z(L(ve(h,Z(tn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Fe(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Fe(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),D(()=>{this.accBeta1.assign(vr(this.beta1,this.iterations_+1)),this.accBeta2.assign(vr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};om.className="Adam";Jr(om);var lm=class extends kr{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],D(()=>{this.iteration=de(0).variable(),this.accBeta1=de(t).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=fe(1,this.accBeta1),a=ve(-this.learningRate,Z(L(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ge(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ge(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,p=Z(L(c,this.beta1),L(l,1-this.beta1)),d=L(u,this.beta2),h=Lt(l),m=Za(d,h);c.assign(p),u.assign(m);let f=Z(L(ve(a,n),ve(p,Z(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(Z(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Fe(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Fe(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};lm.className="Adamax";Jr(lm);var tp=class extends kr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=M.registeredVariables[t];D(()=>{let s=Z(L(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=jt(de(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};tp.className="SGD";Jr(tp);var um=class extends tp{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=de(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&D(()=>{let i,o=Z(L(this.m,r),s);this.useNesterov?i=Z(L(this.c,Z(s,L(o,this.m))),a):i=Z(L(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Fe(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};um.className="Momentum";Jr(um);var cm=class extends kr{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=M.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;D(()=>{let l=Z(L(i,this.decay),L(ut(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=Z(L(c,this.decay),L(s,1-this.decay)),p=ve(L(s,this.learningRate),tn(fe(l,Z(ut(u),this.epsilon)))),d=Z(L(o,this.momentum),p);i.assign(l),c.assign(u),o.assign(d);let h=fe(a,d);a.assign(h)}else{let c=Z(L(i,this.decay),L(ut(s),1-this.decay)),u=Z(L(o,this.momentum),ve(L(s,this.learningRate),tn(Z(c,this.epsilon))));i.assign(c),o.assign(u);let p=fe(a,u);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Fe(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Fe(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Fe(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};cm.className="RMSProp";Jr(cm);var Li=class{static sgd(e){return new tp(e)}static momentum(e,t,n=!1){return new um(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new cm(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new om(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new sm(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new lm(e,t,n,a,r)}static adagrad(e,t=.1){return new im(e,t)}},zi={sgd:Li.sgd,momentum:Li.momentum,adadelta:Li.adadelta,adagrad:Li.adagrad,rmsprop:Li.rmsprop,adamax:Li.adamax,adam:Li.adam},AO=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function pm(){return new Promise(e=>AO(()=>e()))}var _={};Oe(_,{ERF_A1:()=>WO,ERF_A2:()=>VO,ERF_A3:()=>UO,ERF_A4:()=>GO,ERF_A5:()=>HO,ERF_P:()=>BO,PARALLELIZE_THRESHOLD:()=>Ab,SELU_SCALE:()=>lk,SELU_SCALEALPHA:()=>ok,applyActivation:()=>am,assertAndGetBroadcastShape:()=>xt,assertAxesAreInnerMostDims:()=>fR,assertParamsConsistent:()=>FO,assignToTypedArray:()=>QO,axesAreInnerMostDims:()=>ub,calculateShapes:()=>K0,combineLocations:()=>D1,complexWithEvenIndex:()=>YO,complexWithOddIndex:()=>ZO,computeConv2DInfo:()=>Uc,computeConv3DInfo:()=>f1,computeDefaultPad:()=>Zy,computeDilation2DInfo:()=>z$,computeOptimalWindowSize:()=>DO,computeOutAndReduceShapes:()=>R1,computeOutShape:()=>$O,computePool2DInfo:()=>m1,computePool3DInfo:()=>B$,convertConv2DDataFormat:()=>h1,eitherStridesOrDilationsAreOne:()=>Ka,expandShapeToKeepDim:()=>Mi,exponent:()=>tL,exponents:()=>eL,fromStringArrayToUint8:()=>rL,fromUint8ToStringArray:()=>aL,getAxesPermutation:()=>M1,getBroadcastDims:()=>FD,getComplexWithIndex:()=>JO,getFusedBiasGradient:()=>nm,getFusedDyActivation:()=>tm,getImageCenter:()=>RO,getInnerMostAxes:()=>gR,getPermuted:()=>PO,getReductionAxes:()=>zt,getReshaped:()=>MO,getReshapedPermuted:()=>OO,getSliceBeginCoords:()=>LO,getSliceSize:()=>zO,getUndoAxesPermutation:()=>cb,log:()=>qO,mergeRealAndImagArrays:()=>KO,prepareAndValidate:()=>q0,prepareSplitSize:()=>nL,segment_util:()=>uk,shouldFuse:()=>rm,slice_util:()=>pn,splitRealAndImagArrays:()=>XO,tupleValuesAreOne:()=>Qr,upcastType:()=>pa,validateInput:()=>Oy,validateUpdateShape:()=>Py,warn:()=>jO});function FO(e,t){let n=e[0].length;e.forEach((r,s)=>{A(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),A(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)A(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function $O(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var Ab=30;function DO(e){return e<=Ab?e:Pd(e,Math.floor(Math.sqrt(e)))}function RO(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function MO(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function PO(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function OO(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function LO(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function zO(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var ok=1.7580993408473768,lk=1.0507009873554805,BO=.3275911,WO=.254829592,VO=-.284496736,UO=1.421413741,GO=-1.453152027,HO=1.061405429;function jO(...e){ee().getBool("IS_TEST")||console.warn(...e)}function qO(...e){ee().getBool("IS_TEST")||console.log(...e)}function KO(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function XO(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function YO(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function ZO(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function JO(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function QO(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function eL(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function tL(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}function nL(e,t,n=0){let a=[];if(typeof t=="number")A(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);A(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}A(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var uk={};Oe(uk,{collectGatherOpShapeInfo:()=>oL,computeOutShape:()=>iL,segOpComputeOptimalWindowSize:()=>sL});function sL(e,t){let n=!1,a;for(e<=Ab?(a=e,n=!0):a=Pd(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Pd(e,a+1);return a}function iL(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function oL(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,c=1,u=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),c*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),u*=e.shape[p];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:i,outputShape:o}}function aL(e){try{return e.map(t=>bh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function rL(e){return e.map(t=>Rc(t))}var er={};Oe(er,{nonMaxSuppressionV3Impl:()=>Q1,nonMaxSuppressionV4Impl:()=>ek,nonMaxSuppressionV5Impl:()=>tk,whereImpl:()=>U1});var ck={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,tu(ce(n,"float32"),-1))}}},lL={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ut(ce(n,"float32")),r=tn(fe(de(1),a));return Tt(ve(e,r))}}}},uL={kernelName:Wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=tn(fe(ut(ce(n,"float32")),1));return ve(e,a)}}}},cL={kernelName:Ur,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=Te(s,i)),H(s,a.shape)}}}},pL={kernelName:$s,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},dL={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},hL={kernelName:mc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},mL={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,tn(fe(de(1),ut(ce(n,"float32")))))}}},fL={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=tn(Z(de(1),ut(ce(n,"float32"))));return ve(e,a)}}}},gL={kernelName:jo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=Z(ut(n),ut(a)),i=L(e,ve(a,s)),o=zt(n.shape,r);return o.length>0&&(i=Te(i,o)),H(i,n.shape)},b:()=>{let s=Z(ut(n),ut(a)),i=Tt(L(e,ve(n,s))),o=zt(a.shape,r);return o.length>0&&(i=Te(i,o)),H(i,a.shape)}}}},yL={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,Z(ut(ce(n,"float32")),1))}}},bL={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,fe(de(1),ut(ce(n,"float32"))))}}};function xL(e,t,n,a,r,s){let i=E(e,"dy","avgPool3dGrad"),o=E(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&A(Gt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:c},d={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=M.runKernel(Wd,p,d);return u?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var vL=O({avgPool3dGrad_:xL}),wL={kernelName:fc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>vL(e,a,r,s,i,o)}}};function kL(e,t,n,a,r){let s=E(e,"dy","avgPoolGrad"),i=E(t,"input","avgPoolGrad");A(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},p={filterSize:n,strides:a,pad:r},d=M.runKernel(Bd,u,p);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var IL=O({avgPoolGrad_:kL}),NL={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>IL(e,a,r,s,i)}}},TL={kernelName:Ms,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>ze(e,r,!1,!0),b:()=>ze(a,e,!0,!1)}:!s&&i?{a:()=>ze(e,r,!1,!1),b:()=>ze(e,a,!0,!1)}:s&&!i?{a:()=>ze(r,e,!1,!0),b:()=>ze(a,e,!1,!1)}:{a:()=>ze(r,e,!0,!0),b:()=>ze(e,a,!0,!0)}}},SL={kernelName:gc,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Xc(e,a,r)}}},CL={kernelName:b0,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Te(e,o,!0)}}},_L={kernelName:Ps,gradFunc:e=>({x:()=>e.clone()})},EL={kernelName:Os,gradFunc:e=>({x:()=>Ge(e)})},AL={kernelName:Gr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>wn(ma(ns(a,r),Ri(a,s)),e,Ge(e))}}},FL={kernelName:yc,inputsToSave:["x"],gradFunc:ck.gradFunc},$L={kernelName:qo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=ca(r,t[0].shape)[0],i=a.map(o=>o[s]);return Pn(e,i,s).map(o=>()=>o)}},DL={kernelName:Ls,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return A(Qr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>eb(a.shape,e,r,i,o,l),filter:()=>_b(a,e,r.shape,i,o,l)}}},RL={kernelName:zs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>At(e,r,s,i,o,1,l),filter:()=>_b(e,a,r.shape,s,i,o,l)}}};function ML(e,t,n,a,r){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),A(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),A(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),A(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return M.runKernel(Hd,o,l)}var PL=O({conv3DBackpropFilter_:ML}),OL={kernelName:bc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;A(Qr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>N1(i.shape,e,o,r,s),filter:()=>PL(i,e,o.shape,r,s)}}},LL={kernelName:Bs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Tt(qh(ce(n,"float32"))),e)}}},zL={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Kh(ce(n,"float32")),e)}}},BL={kernelName:Ws,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=M1([r],a.rank),l=Rh(e,r,s,!i);return o!=null&&(l=Ue(l,o)),l}}}},WL={kernelName:Vs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;A(Qr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),A(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),A(Ka(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&A(Gt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Y1(l.shape,e,c,r,s,a,i),filter:()=>X1(l,e,c.shape,r,s,a,i)}}},VL={kernelName:xc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>M.runKernel(Zd,s,n),filter:()=>M.runKernel(Jd,i,n)}}},UL={kernelName:Zo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>M.runKernel(Qd,a)}}},GL={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=L(dn(Tt(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,a)}}},HL={kernelName:Gs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},jL={kernelName:el,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},qL={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,dn(n))}}},KL={kernelName:Hs,gradFunc:e=>({x:()=>Ge(e)})},XL={kernelName:js,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=ve(e,ce(a,"float32")),i=zt(n.shape,r);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=L(e,ce(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=H(Te(s,i),a.shape));let o=ut(a);return Tt(ve(s,ce(o,"float32")))}}}},YL={kernelName:qs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?de(1):o,c=zt(s.shape,r.shape),u=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)u.push(r.shape[f]);u.push(1)}let p=fe(r,s),d=L(e,l),h=Hh(Z(i,de(a))),m=L(L(L(h,h),h),de(-.5));return{x:()=>s.rank===1?H(L(L(e,Xa(H(h,[1,1,1,s.shape[0]]),u)),l),r.shape):H(L(L(e,h),l),r.shape),mean:()=>{let f=L(L(h,de(-1)),d);return s.rank===1&&(f=Te(f,c)),H(f,s.shape)},variance:()=>{let f=L(L(m,p),d);return s.rank===1&&(f=Te(f,c)),H(f,s.shape)},scale:()=>{let f=L(p,h),g=L(e,f);return s.rank===1&&(g=Te(g,c)),H(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Te(f,c)),H(f,s.shape)}}}},ZL={kernelName:al,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=ca(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,c=o.slice(0,i),u=c.length,p=o.slice(s,o.length).slice(1),d=p.length,h=pk(0,u),m=pk(u+1,u+1+d),f=dk([c,[l],p]),g=H(e,f),y=H(r,[l]),b=dk([[u],h,m]),v=Ue(g,b),x=Nb(v,y,a.shape[i]),N=cb(b);return x=Ue(x,N),x},indices:()=>r}}};function pk(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function dk(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var JL={kernelName:Ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ge(n),b:()=>Ge(a)}}},QL={kernelName:Xs,gradFunc:e=>({x:()=>ce(e,"float32")})},e3={kernelName:il,gradFunc:e=>({x:()=>Ge(e)})},t3={kernelName:ol,gradFunc:e=>({x:()=>Ge(e)})},n3={kernelName:ll,gradFunc:e=>({x:()=>Ge(e)})},a3={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=ha(a,0);return{x:()=>wn(s,e,L(e,r))}}},r3={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,Z(n,1))}}},s3={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,ce(n,"float32"))}}},i3={kernelName:x0,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=dn(a);return fe(e,L(Te(e,r,s),i))}}}};function o3(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return M.runKernel(rh,o,l)}var l3=O({localResponseNormalizationBackprop_:o3}),u3={kernelName:Ic,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>l3(a,r,e,s,i,o,l)}}};function hk(e,t,n,a){return t.rank<n.rank&&(t=H(t,Mi(t.shape,a))),e.rank<n.rank&&(e=H(e,Mi(e.shape,a))),{x:()=>L(e,ce(ts(n,t),e.dtype))}}var mk={kernelName:Js,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=ca(r,s.shape),l=hk(e,i,s,o);return{x:()=>l.x()}}},c3={kernelName:Qs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>L(e,ce(ns(n,a),"float32")),b:()=>L(e,ce(Ph(n,a),"float32"))}}};function p3(e,t,n,a,r,s,i){let o=E(e,"dy","maxPool3dGrad"),l=E(t,"input","maxPool3dGrad"),c=E(n,"output","maxPool3dGrad"),u=o,p=l,d=c,h=!1;l.rank===4&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),A(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),A(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),A(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&A(Gt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:p,output:d},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=M.runKernel(ih,m,f);return h?H(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var d3=O({maxPool3dGrad_:p3}),h3={kernelName:Nc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>d3(e,a,r,s,i,o,l)}}};function m3(e,t,n,a,r,s,i){let o=E(e,"dy","maxPoolGrad"),l=E(t,"input","maxPoolGrad"),c=E(n,"output","maxPoolGrad");A(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),A(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&A(Gt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return M.runKernel(sh,u,p)}var f3=O({maxPoolGrad_:m3}),g3={kernelName:ei,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>f3(e,a,r,s,i,o)}}},y3={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=ca(r,a.shape),i=R1(a.shape,s)[1],o=Pt(i);return{x:()=>{let l=a.shape.slice();s.forEach(u=>{l[u]=1});let c=H(e,l);return ve(L(c,Ja(a.shape,"float32")),o)}}}},b3={kernelName:ni,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=ca(r,s.shape),l=hk(e,i,s,o);return{x:()=>l.x()}}},x3={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>L(e,ce(Ri(n,a),"float32")),b:()=>L(e,ce(ha(n,a),"float32"))}}},v3={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>We(e,s,a.shape)}}},w3={kernelName:hl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=zt(n.shape,r);return s.length>0?H(Te(e,s),n.shape):e},b:()=>{let s=L(e,Tt(Kl(ve(n,a)))),i=zt(a.shape,r);return i.length>0?H(Te(s,i),a.shape):s}}}},k3={kernelName:ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=L(e,ce(a,"float32")),i=zt(n.shape,r);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=L(e,ce(n,"float32")),i=zt(a.shape,r);return i.length>0?H(Te(s,i),a.shape):s}}}},I3={kernelName:ml,gradFunc:e=>({x:()=>Tt(e)})},N3={kernelName:si,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>vt(n.shape,"float32")}}},T3={kernelName:xl,gradFunc:e=>({x:()=>Ge(e)})},S3={kernelName:vl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return dt(e,a).map(r=>()=>r)}},fk={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>We(e,s,a.shape)}}},C3={kernelName:oi,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=xt(s.shape,i.shape);return{a:()=>{let l=ce(i,"float32"),c=L(e,L(l,vr(s,fe(l,de(1))))),u=zt(s.shape,o);return u.length>0&&(c=Te(c,u)),H(c,s.shape)},b:()=>{let l=ha(s,0),c=wn(l,Dn(s),Ge(s)),u=L(e,L(r,c)),p=zt(i.shape,o);return p.length>0&&(u=Te(u,p)),H(u,i.shape)}}}},_3={kernelName:li,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=ha(n,0);return{x:()=>wn(r,e,L(e,a)),alpha:()=>{let s=wn(r,Ge(e),L(e,n)),i=zt(a.shape,e.shape);return i.length>0&&(s=Te(s,i)),H(s,a.shape)}}}},E3={kernelName:Us,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=ve(e,ce(a,"float32")),i=zt(n.shape,r);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=L(e,ce(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=H(Te(s,i),a.shape));let o=ut(a);return Tt(ve(s,ce(o,"float32")))}}}},A3={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,Tt(ut(n)))}}},F3={kernelName:pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=L(Ri(n,6),tu(n));return{x:()=>L(e,ce(a,"float32"))}}},$3={kernelName:ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ce(tu(n),"float32"))}}},D3={kernelName:Il,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},R3={kernelName:ci,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(ph,r,n)}}},M3={kernelName:Cc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(ch,r,n)}}},P3={kernelName:di,gradFunc:(e,t,n)=>{let{dims:a}=n,r=ca(a,e.shape);return{x:()=>Mn(e,r)}}},O3={kernelName:hi,gradFunc:e=>({x:()=>Ge(e)})},L3={kernelName:mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Tt(ve(e,L(vr(n,1.5),2)))}}},z3={kernelName:Tl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(Ge(n),"float32"),t:()=>L(e,ce(n,e.dtype)),e:()=>L(e,ce(Kc(n),e.dtype))}}},B3={kernelName:Sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ha(n,de(0)),r=de(ok),s=de(lk),i=L(e,s),o=L(L(e,r),dn(ce(n,"float32")));return wn(a,i,o)}}}},W3={kernelName:gi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,fe(de(1),n)))}}},V3={kernelName:El,gradFunc:e=>({x:()=>Ge(e)})},U3={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(jc(ce(n,"float32")),e)}}},G3={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Dh(ce(n,"float32")),e)}}},H3={kernelName:Cl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=a1(a,r,s),c=[];for(let u=0;u<e.rank;u++)c.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>Jn(e,c)}}},j3={kernelName:xi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=L(e,a);return{logits:()=>fe(i,L(Te(i,[r],s),a))}}},q3={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,da(n))}}},gk={kernelName:_c,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Gc(e,a,r)}}},yk={kernelName:Fl,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Qe(e,a)}}},K3={kernelName:yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,L(tn(ce(n,"float32")),2))}}},X3={kernelName:Ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(ce(n,"float32"),2))}}},Y3={kernelName:vi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=de(2);return{a:()=>L(e,L(r,fe(n,a))),b:()=>L(e,L(r,fe(a,n)))}}},Z3={kernelName:jr,gradFunc:e=>({x:()=>Ge(e)})},J3={kernelName:wi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=Te(s,i)),H(Tt(s),a.shape)}}}},Q3={kernelName:bi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;ca(s,a.shape).forEach(l=>{r[l]=1});let i=H(e,r),o=L(i,Ja(a.shape,"float32"));return{x:()=>o}}},ez={kernelName:Dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,ut(jc(n)))}}},tz={kernelName:ki,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(fe(de(1),ut(n)),e)}}},nz={kernelName:Hr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ge(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=Z(s,We(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=Z(s,We(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=Z(s,We(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let c=0;c<r[3];++c)s=Z(s,We(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],c*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},az={kernelName:Ii,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=cb(r);return{x:()=>Ue(e,s)}}},rz={kernelName:Ml,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>$t(e,r)}}},iz={kernelName:Ac,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>sz(e,n)}}};function sz(e,t){let n=Za(t,Ge(t)),a=Di(e,n),r=ns(t,de(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=$n(r,o+1);r=ma(r,Ja(a.shape,"bool"));let i=Ge(a);return wn(r,a,i)}var oz={kernelName:Pl,gradFunc:e=>({x:()=>Ge(e)})},lz=[ck,lL,uL,cL,pL,dL,hL,mL,fL,gL,yL,bL,wL,NL,TL,SL,CL,_L,EL,AL,FL,$L,RL,DL,OL,LL,zL,BL,WL,VL,E3,UL,GL,HL,jL,qL,XL,KL,YL,ZL,JL,QL,e3,t3,n3,a3,r3,s3,i3,u3,mk,mk,c3,h3,g3,y3,b3,x3,v3,w3,k3,I3,N3,T3,S3,fk,fk,C3,_3,A3,F3,$3,D3,R3,M3,P3,O3,L3,z3,B3,W3,V3,U3,G3,H3,j3,q3,gk,gk,yk,yk,K3,Y3,X3,Z3,J3,Q3,ez,tz,nz,az,rz,iz,oz];for(let e of lz)v0(e);Y().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};Y().prototype.acos=function(){return this.throwIfDisposed(),Vy(this)};Y().prototype.acosh=function(){return this.throwIfDisposed(),Uy(this)};Y().prototype.add=function(e){return this.throwIfDisposed(),Z(this,e)};Y().prototype.all=function(e,t){return this.throwIfDisposed(),Eh(this,e,t)};Y().prototype.any=function(e,t){return this.throwIfDisposed(),Wc(this,e,t)};Y().prototype.argMax=function(e){return this.throwIfDisposed(),Vc(this,e)};Y().prototype.argMin=function(e){return this.throwIfDisposed(),Gy(this,e)};Y().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Y().prototype.asType=function(e){return this.throwIfDisposed(),ce(this,e)};Y().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Y().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Y().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Y().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),H(this,[e,t,n,a])};Y().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),H(this,[e,t,n,a,r])};Y().prototype.asin=function(){return this.throwIfDisposed(),Hy(this)};Y().prototype.asinh=function(){return this.throwIfDisposed(),jy(this)};Y().prototype.atan=function(){return this.throwIfDisposed(),qy(this)};Y().prototype.atan2=function(e){return this.throwIfDisposed(),Ky(this,e)};Y().prototype.atanh=function(){return this.throwIfDisposed(),Xy(this)};Y().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),Yn(this,e,t,n,a)};Y().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Gc(this,e,t)};Y().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),xr(this,e,t,n,a,r)};Y().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Hc(this,e)};Y().prototype.cast=function(e){return this.throwIfDisposed(),ce(this,e)};Y().prototype.ceil=function(){return this.throwIfDisposed(),Qy(this)};Y().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),qt(this,e,t)};Y().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ae&&(e=[e]),Qe([this,...e],t)};Y().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Fh(this,e,t,n,a,r,s)};Y().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),$h(this,e,t,n,a,r)};Y().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),At(this,e,t,n,a,r,s)};Y().prototype.cos=function(){return this.throwIfDisposed(),jc(this)};Y().prototype.cosh=function(){return this.throwIfDisposed(),Dh(this)};Y().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Rh(this,e,t,n)};Y().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),nb(this,e,t)};Y().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),es(this,e,t,n,a,r,s)};Y().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),ab(this,e,t,n,a,r)};Y().prototype.divNoNan=function(e){return this.throwIfDisposed(),rb(this,e)};Y().prototype.div=function(e){return this.throwIfDisposed(),ve(this,e)};Y().prototype.dot=function(e){return this.throwIfDisposed(),S1(this,e)};Y().prototype.elu=function(){return this.throwIfDisposed(),ql(this)};Y().prototype.equal=function(e){return this.throwIfDisposed(),ts(this,e)};Y().prototype.erf=function(){return this.throwIfDisposed(),sb(this)};Y().prototype.exp=function(){return this.throwIfDisposed(),dn(this)};Y().prototype.expandDims=function(e){return this.throwIfDisposed(),$n(this,e)};Y().prototype.expm1=function(){return this.throwIfDisposed(),ib(this)};Y().prototype.fft=function(){return this.throwIfDisposed(),Qc(this)};Y().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Y().prototype.floor=function(){return this.throwIfDisposed(),Kl(this)};Y().prototype.floorDiv=function(e){return this.throwIfDisposed(),_h(this,e)};Y().prototype.gather=function(e,t){return this.throwIfDisposed(),Di(this,e,t)};Y().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ns(this,e)};Y().prototype.greater=function(e){return this.throwIfDisposed(),ha(this,e)};Y().prototype.ifft=function(){return this.throwIfDisposed(),eu(this)};Y().prototype.irfft=function(){return this.throwIfDisposed(),Yh(this)};Y().prototype.isFinite=function(){return this.throwIfDisposed(),C1(this)};Y().prototype.isInf=function(){return this.throwIfDisposed(),_1(this)};Y().prototype.isNaN=function(){return this.throwIfDisposed(),E1(this)};Y().prototype.leakyRelu=function(e){return this.throwIfDisposed(),qc(this,e)};Y().prototype.lessEqual=function(e){return this.throwIfDisposed(),Ri(this,e)};Y().prototype.less=function(e){return this.throwIfDisposed(),Ph(this,e)};Y().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),lb(this,e,t,n,a)};Y().prototype.logSigmoid=function(){return this.throwIfDisposed(),$1(this)};Y().prototype.logSoftmax=function(e){return this.throwIfDisposed(),zh(this,e)};Y().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),pb(this,e,t)};Y().prototype.log=function(){return this.throwIfDisposed(),Dn(this)};Y().prototype.log1p=function(){return this.throwIfDisposed(),Oh(this)};Y().prototype.logicalAnd=function(e){return this.throwIfDisposed(),ma(this,e)};Y().prototype.logicalNot=function(){return this.throwIfDisposed(),Kc(this)};Y().prototype.logicalOr=function(e){return this.throwIfDisposed(),Bh(this,e)};Y().prototype.logicalXor=function(e){return this.throwIfDisposed(),P1(this,e)};Y().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),ze(this,e,t,n)};Y().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Ft(this,e,t,n,a)};Y().prototype.max=function(e,t){return this.throwIfDisposed(),Zn(this,e,t)};Y().prototype.maximum=function(e){return this.throwIfDisposed(),Za(this,e)};Y().prototype.mean=function(e,t){return this.throwIfDisposed(),St(this,e,t)};Y().prototype.min=function(e,t){return this.throwIfDisposed(),Yl(this,e,t)};Y().prototype.minimum=function(e){return this.throwIfDisposed(),Zl(this,e)};Y().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),hb(this,e,t)};Y().prototype.mod=function(e){return this.throwIfDisposed(),mb(this,e)};Y().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};Y().prototype.neg=function(){return this.throwIfDisposed(),Tt(this)};Y().prototype.norm=function(e,t,n){return this.throwIfDisposed(),em(this,e,t,n)};Y().prototype.notEqual=function(e){return this.throwIfDisposed(),Pi(this,e)};Y().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Ul(this,e,t,n)};Y().prototype.onesLike=function(){return this.throwIfDisposed(),Rn(this)};Y().prototype.pad=function(e,t){return this.throwIfDisposed(),Jn(this,e,t)};Y().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),z1(this,e,t,n,a,r)};Y().prototype.pow=function(e){return this.throwIfDisposed(),vr(this,e)};Y().prototype.prelu=function(e){return this.throwIfDisposed(),Yc(this,e)};Y().prototype.prod=function(e,t){return this.throwIfDisposed(),Vh(this,e,t)};Y().prototype.reciprocal=function(){return this.throwIfDisposed(),yb(this)};Y().prototype.relu=function(){return this.throwIfDisposed(),Ye(this)};Y().prototype.relu6=function(){return this.throwIfDisposed(),Gh(this)};Y().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Y().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Y().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),ak(this,e,t,n)};Y().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),rk(this,e,t,n)};Y().prototype.reverse=function(e){return this.throwIfDisposed(),Mn(this,e)};Y().prototype.rfft=function(){return this.throwIfDisposed(),ep(this)};Y().prototype.round=function(){return this.throwIfDisposed(),bb(this)};Y().prototype.rsqrt=function(){return this.throwIfDisposed(),Hh(this)};Y().prototype.selu=function(){return this.throwIfDisposed(),jh(this)};Y().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Oi(this,e,t,n,a,r,s)};Y().prototype.sigmoid=function(){return this.throwIfDisposed(),da(this)};Y().prototype.sign=function(){return this.throwIfDisposed(),xb(this)};Y().prototype.sin=function(){return this.throwIfDisposed(),qh(this)};Y().prototype.sinh=function(){return this.throwIfDisposed(),Kh(this)};Y().prototype.slice=function(e,t){return this.throwIfDisposed(),We(this,e,t)};Y().prototype.softmax=function(e){return this.throwIfDisposed(),Sa(this,e)};Y().prototype.softplus=function(){return this.throwIfDisposed(),Xl(this)};Y().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Xc(this,e,t)};Y().prototype.split=function(e,t){return this.throwIfDisposed(),Pn(this,e,t)};Y().prototype.sqrt=function(){return this.throwIfDisposed(),tn(this)};Y().prototype.square=function(){return this.throwIfDisposed(),ut(this)};Y().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Zh(this,e)};Y().prototype.squeeze=function(e){return this.throwIfDisposed(),as(this,e)};Y().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ae?[this,e]:[this,...e];return $t(n,t)};Y().prototype.step=function(e){return this.throwIfDisposed(),tu(this,e)};Y().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),wb(this,e,t,n,a,r,s,i,o)};Y().prototype.sub=function(e){return this.throwIfDisposed(),fe(this,e)};Y().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Y().prototype.tan=function(){return this.throwIfDisposed(),kb(this)};Y().prototype.tanh=function(){return this.throwIfDisposed(),jl(this)};Y().prototype.tile=function(e){return this.throwIfDisposed(),Xa(this,e)};Y().prototype.toBool=function(){return this.throwIfDisposed(),ce(this,"bool")};Y().prototype.toFloat=function(){return this.throwIfDisposed(),ce(this,"float32")};Y().prototype.toInt=function(){return this.throwIfDisposed(),ce(this,"int32")};Y().prototype.topk=function(e,t){return this.throwIfDisposed(),Ib(this,e,t)};Y().prototype.transpose=function(e){return this.throwIfDisposed(),Ue(this,e)};Y().prototype.unique=function(e){return this.throwIfDisposed(),Qh(this,e)};Y().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Nb(this,e,t)};Y().prototype.unstack=function(e){return this.throwIfDisposed(),dt(this,e)};Y().prototype.where=function(e,t){return this.throwIfDisposed(),wn(e,this,t)};Y().prototype.zerosLike=function(){return this.throwIfDisposed(),Ge(this)};var bk={};Oe(bk,{maxNorm:()=>uz,minMaxNorm:()=>dz,nonNeg:()=>pz,unitNorm:()=>cz});var Fb;function Bt(){return Fb==null&&(Fb=p1().epsilon()),Fb}function Ea(){return"channelsLast"}var Ir=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ir.prototype)}},Aa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Aa.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},$e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$e.prototype)}},xk=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xk.prototype)}},hz=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,hz.prototype)}};function Bi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function tr(e,t){if(!e)throw new xk(t)}function vk(e,t){let n=0;for(let a of e)a===t&&n++;return n}function In(e){return e.length===1?e[0]:e}function bt(e){return Array.isArray(e)?e:[e]}function Nr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Wi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var fa={};function $b(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Db(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Db(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Db(a))}}}function np(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in fa)i=fa[s];else if(i=t[s],i==null)throw new z(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new z(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in fa?[o,l]=fa.className:i in t&&([o,l]=t[i]),o==null)throw new z(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(fa))c[h]=fa[h];for(let h of Object.keys(n))c[h]=n[h];let u=s.config;u.customObjects=c;let p=Object.assign({},fa);for(let h of Object.keys(n))fa[h]=n[h];Db(s.config);let d=l(o,s.config,n,r);return fa=Object.assign({},p),d}else{let c=Object.assign({},fa);for(let p of Object.keys(n))fa[p]=n[p];let u=new o(s.config);return fa=Object.assign({},c),u}}}function mz(e,t){return e<t?-1:e>t?1:0}function dm(e,t){return-1*mz(e,t)}function ss(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function fz(e){if(e==null)throw new z(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Vi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new z(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Rb(e,t,n=0,a=Infinity){return tr(n>=0),tr(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Kt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Kt(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${wk(e)}.`)}function wk(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>wk(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function gz(e,t){let n=k.now(),a;return(...r)=>{let s=k.now();return s-n<t||(n=s,a=e(...r)),a}}function kk(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function Mb(e,t){return D(()=>tn(Te(L(e,e),t,!0)))}var ap=class extends re.Serializable{getConfig(){return{}}},Pb=class extends ap{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=Mb(e,this.axis),n=qt(t,0,this.maxValue);return L(e,ve(n,Z(Bt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Pb.className="MaxNorm";re.registerClass(Pb);var Ob=class extends ap{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>ve(e,Z(Bt(),Mb(e,this.axis))))}getConfig(){return{axis:this.axis}}};Ob.className="UnitNorm";re.registerClass(Ob);var Lb=class extends ap{apply(e){return Ye(e)}};Lb.className="NonNeg";re.registerClass(Lb);var zb=class extends ap{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=Mb(e,this.axis),n=Z(L(this.rate,qt(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,ve(n,Z(Bt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};zb.className="MinMaxNorm";re.registerClass(zb);var Ik={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Wt(e){return $b(e)}function Nk(e,t={}){return np(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Ik?Ik[e]:e,config:{}};return Nk(t)}else return e instanceof ap?e:Nk(e)}function uz(e){return new Pb(e)}function cz(e){return new Ob(e)}function pz(){return new Lb}function dz(e){return new zb(e)}var Tk={};Oe(Tk,{constant:()=>xz,glorotNormal:()=>Sz,glorotUniform:()=>Tz,heNormal:()=>Cz,heUniform:()=>_z,identity:()=>Iz,leCunNormal:()=>Ez,leCunUniform:()=>Az,ones:()=>bz,orthogonal:()=>Fz,randomNormal:()=>wz,randomUniform:()=>vz,truncatedNormal:()=>kz,varianceScaling:()=>Nz,zeros:()=>yz});var $z=["channelsFirst","channelsLast"],Dz=["nearest","bilinear"],Rz=["valid","same","causal"],Mz=["max","avg"],Pz=["sum","mul","concat","ave"],au=new Map;function Dt(e){Vi($z,"DataFormat",e)}function Oz(e){Vi(Dz,"InterpolationFormat",e)}function Qn(e){Vi(Rz,"PaddingMode",e)}function Sk(e){Vi(Mz,"PoolMode",e)}var rp=[],Ck="/";function Ui(e,t){rp.push(e);try{let n=t();return rp.pop(),n}catch(n){throw rp.pop(),n}}function Lz(){return rp.length===0?"":rp.join(Ck)+Ck}function Ek(e){if(!_k(e))throw new Error("Not a valid tensor name: '"+e+"'");return Lz()+e}function Ak(e){if(!_k(e))throw new Error("Not a valid tensor name: '"+e+"'");au.has(e)||au.set(e,0);let t=au.get(e);if(au.set(e,au.get(e)+1),t>0){let n=`${e}_${t}`;return au.set(n,1),n}else return e}var zz=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function _k(e){return!!e.match(zz)}function Bz(e){return e===parseInt(e.toString(),10)}function is(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function Fk(e){return e=Array.isArray(e)?new Float32Array(e):e,nt(e)}function ru(e){return Yl(Fk(e)).dataSync()[0]}function os(e){return Zn(Fk(e)).dataSync()[0]}function Fa(e,t){if(t<e)throw new z(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function sp(e,t){return e.asType(t)}function ip(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function Wz(e,t){return D(()=>{if(e.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=ip(e,1);return Bb(n,[1,t,1])})}function Vz(e){let t=[is(e.shape)];return e.reshape(t)}function Uz(e){if(e.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],is(e.shape,1)];return e.reshape(t)}function Gi(e,t,n){return D(()=>{switch(e.rank){case 1:return Xh(e,t,n);case 2:return vb(e,[t,0],[n,e.shape[1]]);case 3:return Ql(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Jc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return We(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return We(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Wb(e,t,n){return D(()=>{switch(e.rank){case 1:return Xh(e,t,n);case 2:return vb(e,[0,t],[e.shape[0],n]);case 3:return Ql(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Jc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function hm(e,t,n,a){return D(()=>{switch(e.rank){case 1:return Xh(e,t,n);case 2:switch(a){case 1:return Gi(e,t,n);case 2:return Wb(e,t,n);default:throw new z(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Gi(e,t,n);case 2:return Ql(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Wb(e,t,n);default:throw new z(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Gi(e,t,n);case 2:return Jc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Jc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Wb(e,t,n);default:throw new z(`The axis is not within the rank of the tensor ${a}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Vb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Qe(e,t)}function $k(e,t){switch(e.rank){case 1:return v1([e,t]);case 2:return w1([e,t],0);case 3:return k1([e,t],0);case 4:return I1([e,t],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Bb(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new z(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Xa(e,t)}function mm(e,t=0,n=1,a,r){return B1(e,t,n,a,r)}function nr(e,t,n,a){if(e.rank<2||t.rank<2)throw new $e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new $e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return rs.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?Ub(e.rank,a,Ea()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let p=[...r,...c],d=!1,h=!1;return rs.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:a?Ub(e.rank,a,Ea()):null,activation:n}).reshape(p)}}function Dk(e,t,n){return D(()=>(Array.isArray(t)?t=nt(t,"int32"):t=t.toInt(),Di(e,t,n)))}function op(e){return L(e,e)}function Ub(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new z(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new z(`Unsupported input rank by biasAdd: ${t.rank}`)}function ar(e,t,n){return D(()=>(n==null&&(n=Ea()),Dt(n),e.add(Ub(e.rank,t,n))))}function Gz(e,t=1){if(t!==1)throw new $e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return ql(e)}function Hz(e){return D(()=>ve(e,Lt(e).add(1)))}function Rk(e,t,n,a){return D(()=>q1(e,t,n,a))}function jz(e){return D(()=>{let t=Z(.5,L(.2,e));return qt(t,0,1)})}function lp(e,t,n=!1){return n?e():t()}var qz=["fanIn","fanOut","fanAvg"],Kz=["normal","uniform","truncatedNormal"];function Xz(e){Vi(qz,"FanMode",e)}function Yz(e){Vi(Kz,"Distribution",e)}var ga=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Gb=class extends ga{apply(e,t){return vt(e,t)}};Gb.className="Zeros";re.registerClass(Gb);var fm=class extends ga{apply(e,t){return Ja(e,t)}};fm.className="Ones";re.registerClass(fm);var Hb=class extends ga{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return D(()=>L(de(this.value),Ja(e,t)))}getConfig(){return{value:this.value}}};Hb.className="Constant";re.registerClass(Hb);var jb=class extends ga{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Jl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};jb.className="RandomUniform";re.registerClass(jb);var qb=class extends ga{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`randomNormal does not support dType ${t}.`);return mm(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};qb.className="RandomNormal";re.registerClass(qb);var Kb=class extends ga{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`truncatedNormal does not support dType ${t}.`);return Jh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Kb.className="TruncatedNormal";re.registerClass(Kb);var Xb=class extends ga{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return D(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,ob(e[0]))})}getConfig(){return{gain:this.gain}}};Xb.className="Identity";re.registerClass(Xb);function Zz(e,t="channelsLast"){let n,a;if(Dt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=is(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=is(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=is(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Nn=class extends ga{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Xz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Yz(this.distribution),this.seed=e.seed}apply(e,t){let n=Zz(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`${this.getClassName()} does not support dType ${t}.`);return Jh(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Jl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Nn.className="VarianceScaling";re.registerClass(Nn);var gm=class extends Nn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};gm.className="GlorotUniform";re.registerClass(gm);var ym=class extends Nn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};ym.className="GlorotNormal";re.registerClass(ym);var bm=class extends Nn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};bm.className="HeNormal";re.registerClass(bm);var xm=class extends Nn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};xm.className="HeUniform";re.registerClass(xm);var vm=class extends Nn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};vm.className="LeCunNormal";re.registerClass(vm);var wm=class extends Nn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};wm.className="LeCunNormal";re.registerClass(wm);var Yb=class extends ga{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new $e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return D(()=>{if(e.length<2)throw new $e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=mm(n,0,1,"float32"),r=ik.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Yb.className="Orthogonal";re.registerClass(Yb);var Mk={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Pk(e,t={}){return np(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return $b(e)}function wt(e){if(typeof e=="string"){let t=e in Mk?Mk[e]:e;if(t==="GlorotNormal")return new ym;if(t==="GlorotUniform")return new gm;if(t==="HeNormal")return new bm;if(t==="HeUniform")return new xm;if(t==="LeCunNormal")return new vm;if(t==="LeCunUniform")return new wm;{let n={};return n.className=t,n.config={},Pk(n)}}else return e instanceof ga?e:Pk(e)}function yz(){return new Gb}function bz(){return new fm}function xz(e){return new Hb(e)}function vz(e){return new jb(e)}function wz(e){return new qb(e)}function kz(e){return new Kb(e)}function Iz(e){return new Xb(e)}function Nz(e){return new Nn(e)}function Tz(e){return new gm(e)}function Sz(e){return new ym(e)}function Cz(e){return new bm(e)}function _z(e){return new xm(e)}function Ez(e){return new vm(e)}function Az(e){return new wm(e)}function Fz(e){return new Yb(e)}var Ok={};Oe(Ok,{Layer:()=>qe,RNN:()=>rr,RNNCell:()=>up,activation:()=>hB,add:()=>kB,alphaDropout:()=>sW,average:()=>IB,averagePooling1d:()=>Zb,averagePooling2d:()=>Jb,averagePooling3d:()=>Qb,avgPool1d:()=>$B,avgPool2d:()=>RB,avgPool3d:()=>PB,avgPooling1d:()=>DB,avgPooling2d:()=>MB,avgPooling3d:()=>OB,batchNormalization:()=>EB,bidirectional:()=>ZB,concatenate:()=>NB,conv1d:()=>sB,conv2d:()=>iB,conv2dTranspose:()=>oB,conv3d:()=>lB,convLstm2d:()=>qB,convLstm2dCell:()=>KB,cropping2D:()=>cB,dense:()=>mB,depthwiseConv2d:()=>dB,dot:()=>_B,dropout:()=>fB,elu:()=>Qz,embedding:()=>wB,flatten:()=>yB,gaussianDropout:()=>rW,gaussianNoise:()=>aW,globalAveragePooling1d:()=>LB,globalAveragePooling2d:()=>zB,globalMaxPool1d:()=>QB,globalMaxPool2d:()=>eW,globalMaxPooling1d:()=>zk,globalMaxPooling2d:()=>Bk,gru:()=>WB,gruCell:()=>VB,input:()=>Lk,inputLayer:()=>Jz,layerNormalization:()=>AB,leakyReLU:()=>tB,lstm:()=>UB,lstmCell:()=>GB,masking:()=>iW,maxPool1d:()=>tW,maxPool2d:()=>nW,maxPooling1d:()=>Wk,maxPooling2d:()=>Vk,maxPooling3d:()=>BB,maximum:()=>TB,minimum:()=>SB,multiply:()=>CB,permute:()=>vB,prelu:()=>nB,reLU:()=>eB,repeatVector:()=>bB,reshape:()=>xB,rnn:()=>XB,separableConv2d:()=>uB,simpleRNN:()=>HB,simpleRNNCell:()=>jB,softmax:()=>aB,spatialDropout1d:()=>gB,stackedRNNCells:()=>YB,thresholdedReLU:()=>rB,timeDistributed:()=>JB,upSampling2d:()=>pB,zeroPadding2d:()=>FB});var oW=0;function Uk(){return oW++}var km={};function Im(e=""){return e in km||(km[e]=0),km[e]+=1,e+km[e].toString()}function ex(e){return Array.isArray(e)&&Array.isArray(e[0])}function Nm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Me(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new z(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ht(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new z(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Tm(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var Gk="Variable",Hk=class{constructor(e,t="float32",n=Gk,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Uk(),n=n==null?Gk:n,this.originalName=Ek(n),this.name=Ak(this.originalName),this.trainable_=a,this.constraint=r,this.val=V1(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),lW(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function lW(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function tx(e){return e.map(t=>t.read())}function nx(e){e.forEach(t=>{t[0].write(t[1])})}var Xt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},$a=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=Uk(),s!=null&&(this.originalName=Ek(s),this.name=Ak(this.originalName)),this.rank=t.length}},uW=0,Sm=class{constructor(e,t){this.callArgs=t,this.id=uW++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},cW=0,qe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=cW++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Nr(n)+"_"+Im(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Aa(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return In(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return In(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} is not connected, no input to return.`);return In(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return In(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=bt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=bt(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new z(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),c=r.axes[o],u=l>=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=bt(e),a=!0;for(let s of n)if(!(s instanceof $a)){a=!1;break}let r=!0;for(let s of n)if(s instanceof $a){r=!1;break}if(a===r)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ui(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of bt(e))s.push(i.shape);this.build(In(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=bt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=In(o),this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=pW(e),i=this.computeOutputShape(s),o,l=dW(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new $a(l,c,this,bt(e),t,this.name,u)):o=new $a(l,i,this,bt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ir(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ir(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Aa(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Tm(this.weights)}build(e){this.built=!0}getWeights(e=!1){return tx(e?this.trainableWeights:this.weights)}setWeights(e){D(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=tx(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!k.arraysEqual(s.shape,o.shape))throw new z(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}nx(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new z(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=wt("zeros"));let o=a.apply(t,n),l=new Hk(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=bt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=bt(e);t=bt(t),n=bt(n),a=bt(a),r=Nm(r),s=Nm(s);let l=[],c=[],u=[];for(let p of o)l.push(p.sourceLayer),c.push(p.nodeIndex),u.push(p.tensorIndex);new Sm({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function pW(e){e=bt(e);let t=[];for(let n of e)t.push(n.shape);return In(t)}function dW(e){return"float32"}function jk(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],c=jk(i,o,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var su=class extends qe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Im("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new $a(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Sm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};su.className="InputLayer";re.registerClass(su);function qk(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new su({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function ls(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Fe(a)}}function Kk(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Xk;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Xk||(Xk={}));var hW=125,iu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Yk=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},mW=class extends iu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=D(()=>Z(this.totals[a],L(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:D(()=>{let a=L(ve(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),jt(t[n])}))}},Zk=class extends iu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},Jk=class extends iu{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=hW),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=gz(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await ls(n),a.push(this.yield(e,t,n))),a.push(pm()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await ls(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await ls(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(pm()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await ls(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await ls(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(pm()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await ls(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await ls(e),await this.trainEnd(e))}};function Qk(e,t){return e==null&&(e={}),e instanceof iu?[e]:Array.isArray(e)&&e[0]instanceof iu?e:bt(e).map(n=>new Jk(n,t))}var ya=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ya.checkForDuplicate(t),ya.constructors[e]==null&&(ya.constructors[e]=[]),ya.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ya.constructors)ya.constructors[+t].forEach(n=>{if(n===e)throw new z("Duplicate callback constructor.")})}static clear(){ya.constructors={}}static createCallbacks(e){let t=[];for(let n in ya.constructors){let a=+n;e>=a&&t.push(...ya.constructors[a])}return t.map(n=>new n)}};ya.constructors={};function eI(e,t,n,a,r,s,i,o,l){let c=new Zk,u=[new mW,...ya.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let p=new Yk(u);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:c}}function Da(e,t={},n=!1){return np(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Cm(e,t){return D(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te(op(e),t,!0),a=kn(n.shape,Bt()),r=tn(Za(n,a));return ve(e,r)})}function Hi(e,t){return D(()=>St(op(fe(t,e)),-1))}function _m(e,t){return D(()=>St(Lt(fe(t,e)),-1))}function ou(e,t){return D(()=>{let n=fe(e,t),a=qt(Lt(e),Bt(),Number.MAX_VALUE),r=Lt(ve(n,a));return L(100,St(r,-1))})}function fW(e,t){return D(()=>{let n=qt(t,Bt(),Number.MAX_VALUE),a=Dn(Z(1,n)),r=qt(e,Bt(),Number.MAX_VALUE),s=Dn(Z(1,r));return St(op(fe(a,s)),-1)})}function gW(e,t){return D(()=>{let n=Za(0,fe(1,L(e,t)));return St(op(n),-1)})}function yW(e,t){return D(()=>{let n=Za(0,fe(1,L(e,t)));return St(n,-1)})}function bW(e,t){return D(()=>{let n=Te(L(e,t),-1),a=Zn(L(fe(1,e),t),-1);return Za(0,Z(1,fe(a,n)))})}function xW(e,t){return D(()=>{let n=Math.log(2),a=fe(t,e),r=fe(Z(a,Xl(L(-2,a))),n);return St(r,-1)})}function cp(e,t,n=!1){return D(()=>{if(n)t=Sa(t);else{let a=Te(t,t.shape.length-1,!0);t=ve(t,a)}return t=qt(t,Bt(),1-Bt()),Tt(Te(L(e.toFloat(),Dn(t)),t.shape.length-1))})}function Em(e,t,n=!1){return D(()=>{let a=Kl(Vz(e)).toInt();t=qt(t,Bt(),1-Bt());let r=t.shape,s=Ul(a,r[r.length-1]).reshape(r);return cp(s,t,n)})}function vW(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return D(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function Am(e,t){return D(()=>{let n;return n=qt(t,Bt(),1-Bt()),n=Dn(ve(n,fe(1,n))),St(vW(e,n),-1)})}function wW(e,t){return D(()=>{let n=qt(e,Bt(),1),a=qt(t,Bt(),1);return Te(L(e,Dn(ve(n,a))),-1)})}function kW(e,t){return D(()=>{let n=Dn(Z(Bt(),t));return St(fe(t,L(e,n)),-1)})}function ax(e,t){return D(()=>{let n=Cm(e,-1),a=Cm(t,-1),r=L(n,a);return Tt(Te(r,-1))})}var Fm={meanSquaredError:Hi,meanAbsoluteError:_m,meanAbsolutePercentageError:ou,meanSquaredLogarithmicError:fW,squaredHinge:gW,hinge:yW,categoricalHinge:bW,logcosh:xW,categoricalCrossentropy:cp,sparseCategoricalCrossentropy:Em,binaryCrossentropy:Am,kullbackLeiblerDivergence:wW,poisson:kW,cosineProximity:ax};function rx(e){if(typeof e=="string"){if(e in Fm)return Fm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(t)}else return e}function sx(e,t){return D(()=>{let n=L(.5,Rn(t)),a=sp(ha(t,n),e.dtype);return St(ts(e,a),-1)})}function ix(e,t){return D(()=>sp(ts(Vc(e,-1),Vc(t,-1)),"float32"))}function tI(e,t){return D(()=>ma(e.equal(1),t.equal(1)).sum().cast("float32"))}function IW(e,t){return D(()=>ma(e.equal(1),t.equal(0)).sum().cast("float32"))}function NW(e,t){return D(()=>ma(e.equal(0),t.equal(1)).sum().cast("float32"))}function nI(e,t){return D(()=>{let n=tI(e,t),a=NW(e,t),r=n.add(a);return wn(ha(r,0),n.div(r),0).cast("float32")})}function TW(e,t){return D(()=>{let n=tI(e,t),a=IW(e,t),r=n.add(a);return wn(ha(r,0),n.div(r),0).cast("float32")})}function aI(e,t){return Am(e,t)}function rI(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),ts(e,t).asType("float32")}var SW=Hi,CW=Hi,_W=_m,EW=_m,AW=ou,FW=ou,ox=cp,$W=ax,sI=Em,$m={binaryAccuracy:sx,categoricalAccuracy:ix,precision:nI,categoricalCrossentropy:ox,sparseCategoricalCrossentropy:sI,mse:SW,MSE:CW,mae:_W,MAE:EW,mape:AW,MAPE:FW,cosine:$W};function DW(e){if(typeof e=="string"&&e in $m)return $m[e];if(typeof e!="string"&&e!=null)return e;throw new z(`Unknown metric ${e}`)}function Dm(e){if(tr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Fm))if(Fm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys($m))if($m[n]===e){t=n;break}return t!==void 0?t:e.name}}function RW(e){let t={Adagrad:()=>zi.adagrad(.01),Adadelta:()=>zi.adadelta(1,.95,Bt()),Adam:()=>zi.adam(.001,.9,.999,Bt()),Adamax:()=>zi.adamax(.002,.9,.999,Bt(),0),RMSProp:()=>zi.rmsprop(.001,.9,0,Bt()),SGD:()=>zi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new z(`Unknown Optimizer ${e}`)}var iI=1*1024*1024;function oI(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!lx(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>iI&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${iI}.`)}}function lx(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!lx(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!lx(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function zW(e,t,n,a=console.log){let r=PW(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!r){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}a("_".repeat(t)),Rm(s,n,a),a("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)r?OW(o[u],n,a):LW(o[u],n,i,a),a((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=MW(e),c=Tm(e.nonTrainableWeights);a(`Total params: ${l+c}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${c}`),a("_".repeat(t))}function MW(e){let t;return e.collectedTrainableWeights!=null?t=Tm(e.collectedTrainableWeights):t=Tm(e.trainableWeights),t}function PW(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Rm(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function OW(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];Rm(i,t,n)}function LW(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let p=0;p<u.inboundLayers.length;++p){let d=u.inboundLayers[p].name,h=u.nodeIndices[p],m=u.tensorIndices[p];s.push(`${d}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],c=[`${i} (${o})`,r,e.countParams().toString(),l];Rm(c,t,a);for(let u=1;u<s.length;++u)Rm(["","","",s[u]],t,a)}function lI(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function pp(e,t){if(e===null)return null;if(typeof e=="string")return Wi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];lI(t,r,s)?n.push(s):n.push(pp(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Wi(a);n[s]=pp(r,s)}}return n}}function ux(e,t){if(e==null)return null;if(typeof e=="string")return Nr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];lI(t,r,s)?n.push(s):n.push(ux(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Nr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=ux(r,a)}return n}}var Mm="3.1.0";function BW(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ce(t,e.dtype)}catch(n){throw new z(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var ji=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ji)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=BW(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new z(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof $a){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof $a){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Fe(this.id2Mask)}},cx={},uI={};function dp(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),p,d;if(cx[u]==null){let m=WW(i,t);p=m.sorted,d=m.recipientCounts,cx[u]=p,uI[u]=d}p=cx[u],d={},r||Object.assign(d,uI[u]);let h=new ji(t);for(let m=0;m<p.length;++m){if(a!=null){let $=Sh().numTensors;$>a.maxNumTensors&&(a.maxNumTensors=$),$<a.minNumTensors&&(a.minNumTensors=$)}let f=p[m],g=f.sourceLayer;if(g instanceof su)continue;let y=[],b=[],v=[],x=!1;for(let $ of f.inputs){let P=h.getValue($),B=h.getMask($);y.push(P),b.push(B),B!=null&&(x=!0),r||(d[$.name]--,d[$.name]===0&&!t.hasKey($)&&o.indexOf($.name)===-1&&!P.isDisposed&&$.sourceLayer.stateful!==!0&&v.push(P))}x&&(n=n||{},n.mask=b[0]);let N=bt(g.apply(y,n)),T=null;g.supportsMasking&&(T=g.computeMask(y,b));let C=VW(f),F=Array.isArray(C)?C:[C];for(let $=0;$<F.length;++$){h.hasKey(F[$])||h.add(F[$],N[$],Array.isArray(T)?T[0]:T);let P=o.indexOf(F[$].name);P!==-1&&(l[P]=N[$])}r||Fe(v)}return h.disposeMasks(),s?l:l[0]}function WW(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=cI(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=cI(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(c=>a[l].add(c))}}return{sorted:n,recipientCounts:UW(a)}}function UW(e){let t={};for(let n in e)t[n]=e[n].size;return t}function cI(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:a,recipientMap:r}}function VW(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var sr=class extends qe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Im(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],ss(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);ss(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,v=y.nodeIndex,x=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(v),this.outputLayersTensorIndices.push(x)}for(let y of this.inputs){let b=y.sourceLayer,v=y.nodeIndex,x=y.tensorIndex;tr(v===0,"input layer has >1 nodes"),tr(x===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(v),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof su))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,v,x,N,T)=>{(x==null||N==null||T==null)&&(x=y.sourceLayer,N=y.nodeIndex,T=y.tensorIndex);let C=x.inboundNodes[N];if(v.indexOf(C)!==-1)throw new Aa(`The tensor ${y.name} at layer "${x.name}" is part of a cycle.`);if(b.indexOf(C)!==-1)return;this.containerNodes.add(sr.nodeKey(x,N)),x.id in s||(s[x.id]=Object.keys(s).length),v.indexOf(C)===-1&&v.push(C);let F=C.inboundLayers.length;for(let $=0;$<F;$++){let P=C.inputTensors[$],B=C.inboundLayers[$],W=C.nodeIndices[$],G=C.tensorIndices[$];o(P,b,v,B,W,G)}for(b.push(C);v.indexOf(C)>=0;)v.splice(v.indexOf(C),1);i.push(C)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],v=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,v),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let x=0;x<y.inboundLayers.length;x++){let N=y.inboundLayers[x],T=y.nodeIndices[x],C=N.inboundNodes[T],F=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(b+1,F),n[C.id]=C}}let p={};for(let y in t){let b=t[y];b in p||(p[b]=[]),p[b].push(n[y])}let d={};for(let y in a){let b=a[y];b in d||(d[b]=[]),d[b].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(dm);this.layers=[];for(let y of h){let b=d[y];b.sort((v,x)=>{let N=s[v.id],T=s[x.id];return N<T?-1:N>T?1:0});for(let v of b)v instanceof sr&&this.internalContainerRefs.push(v),this.layers.push(v)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(dm);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of p[y]){let v=b.outboundLayer;if(v!=null){for(let x of b.inputTensors)if(m.indexOf(x)===-1)throw new Aa(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${v.name}". The following previous layers were accessed without issue: ${f}`);for(let x of b.outputTensors)m.push(x);f.push(v.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(v=>v===y).length;if(b!==1)throw new Aa(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Sm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new z(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new z(`${s.length} of ${a} weights are not set: ${s}`)}nx(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Mm}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=ux(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return D(()=>{e=bt(e);let n=new ji;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return dp(this.outputs,n,t)})}computeMask(e,t){return D(()=>{e=bt(e);let n;return t==null?n=Bi(null,e.length):n=bt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Nm(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],c=o.name+"_0_0";n[c]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(dm);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,v=n[b];u.push(v)}let p=c.computeOutputShape(In(u)),d=Nm(p),h=c.inboundNodes.indexOf(l);for(let m=0;m<d.length;m++){let f=`${c.name}_${h}_${m}`;n[f]=d[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${c}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];tr(o in n),r.push(n[o])}return In(r)}runInternalGraph(e,t){t==null&&(t=Bi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],c=e[o],u=t[o];n[l.id]=[c,u]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(dm);for(let o of a){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,p=c.inputTensors,d=c.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,g,y,b;if(c.callArgs!=null&&(m=c.callArgs),h.length===1){let[v,x]=h[0];m.mask==null&&(m.mask=x),y=bt(u.call(v,m)),b=bt(u.computeMask(v,x)),f=[v],g=[x]}else f=h.map(v=>v[0]),g=h.map(v=>v[1]),m.mask==null&&(m.mask=g),y=bt(u.call(f,m)),b=bt(u.computeMask(f,g));if(u.activityRegularizer)throw new $e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let v=0;v<d.length;++v){let x=d[v],N=y[v],T=b[v];n[x.id]=[N,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){tr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,c]=n[o.id];i.push(l.shape),r.push(l),s.push(c)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof sr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=sr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new z(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new z("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new z(`No such layer: ${e}`)}calculateLosses(){return D(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=sr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let p=s.inboundNodes[u],d=sr.nodeKey(s,u),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let g=p.inboundLayers[f],y=p.nodeIndices[f],b=p.tensorIndices[f],v=sr.nodeKey(g,y),x=t[v];x==null&&(x=0),m.push([g.name,x,b,h])}l.push(m)}}}let c={};c.name=s.name,c.className=i,c.config=o,c.inboundNodes=l,n.push(c)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=sr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[s];a.push([i.name,c,u])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=sr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[s];r.push([i.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let v of g){let x=v[0],N=v[1],T=v[2];if(b=v[3]==null?{}:v[3],!(x in r)){i(f,g);return}let C=r[x];if(C.inboundNodes.length<=N){i(f,g);return}let F=C.inboundNodes[N];y.push(F.outputTensors[T])}y.length>0&&f.apply(In(y),b)}function l(f){let g=f.name,y=Da(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!fz(s);)for(let f of u){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let p=[],d=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];tr(g in r);let v=r[g].inboundNodes[y].outputTensors;p.push(v[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];tr(g in r);let v=r[g].inboundNodes[y].outputTensors;d.push(v[b])}return new e({inputs:p,outputs:d,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){D(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function GW(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function pI(e,t){return GW(e,t,"classWeight")}async function dI(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=D(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Fe(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),nt(i,"float32")}else return null}function HW(e,t){return L(e,t)}var jW=32;function mI(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=hI("input",e.inputNames,n),i=hI("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function hI(e,t,n){if(n instanceof Ae)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new z(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function qW(e){if(e.length===3)throw new $e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function XW(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(fI(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=qW(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=Qk(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=eI(u,p,n.epochs,null,null,KW(t,n),null,r,c);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await d.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let v=await f.next();if(a&&v.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(v.value!=null){let{xs:x,ys:N}=mI(e,v.value),T={};T.batch=b,T.size=x[0].shape[0],await d.onBatchBegin(b,T);let C=[];if(n.classWeight!=null){let P=pI(n.classWeight,e.outputNames);for(let B=0;B<P.length;++B)C.push(await dI(N[B],null,P[B]))}let F=x.concat(N).concat(C),$=o(F);Fe(F);for(let P=0;P<l.length;++P){let B=l[P],W=$[P];T[B]=W,jt(W)}await d.onBatchEnd(b,T),Kk(T),b++,y++}if(a?y>=n.batchesPerEpoch:v.done){if(r){let x;fI(n.validationData)?x=bt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=bt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?jW:n.validationBatchSize,verbose:0}));for(let N=0;N<e.metricsNames.length;++N)g[`val_${e.metricsNames[N]}`]=x[N]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(m,g),m++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function KW(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function fI(e){return typeof e.iterator=="function"}function YW(e){return typeof e.next=="function"}async function ZW(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new $e("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=YW(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let c=await i.next();if(s=D(()=>{if(c.value){let{xs:u,ys:p}=mI(e,c.value),d=u.concat(p),h=D(()=>r(d));if(Fe(d),l===0)for(let f=0;f<h.length;++f)s.push(de(0));let m=d[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=D(()=>Z(s[f],L(m,g))),l>0&&Fe(y)}Fe(h),o+=m,++l}return s}),c.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<s.length;++c){let u=s[c];s[c]=ve(s[c],o),Fe(u)}return In(s)}function px(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function hp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Gi(a,t,n-t)):Gi(e,t,n-t)}function dx(e,t){return D(()=>e==null?null:Array.isArray(e)?e.map(n=>dx(n,t)):Dk(e,t.dtype==="int32"?t:t.toInt()))}function hx(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function JW(e,t,n,a,r,s,i,o,l,c,u,p,d,h,m){r==null&&(r=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Fa(0,g)),i==null&&(i=1);let{callbackList:b,history:v}=eI(o,i,s,d,g,h,r,f,p);b.setModel(e),e.history=v,await b.onTrainBegin(),e.stopTraining_=!1;for(let x=d;x<s;++x){await b.onEpochBegin(x);let N={};if(h!=null)throw new $e("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new $e("batch shuffling is not implemneted yet");u&&k.shuffle(y);let T=nt(y),C=hx(g,r);for(let F=0;F<C.length;++F){let $={};if(await b.onBatchBegin(F,$),D(()=>{let P=C[F][0],B=C[F][1],W=Gi(T,P,B-P);$.batch=F,$.size=B-P;let G=dx(n,W),q=t(G);for(let j=0;j<a.length;++j){let X=a[j],K=q[j];$[X]=K,jt(K)}if(F===C.length-1&&f){let j=e.testLoop(l,c,r);for(let X=0;X<a.length;++X){let K=a[X],ne=j[X];jt(ne),N["val_"+K]=ne}}}),await b.onBatchEnd(F,$),Kk($),e.stopTraining_)break}T.dispose()}if(await b.onEpochEnd(x,N),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function QW(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,c,u;try{let p=a.batchSize==null?32:a.batchSize;px(p);let d=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,d,p);r=h[0],s=h[1],u=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new $e("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let T=!0,C=await e.standardizeUserData(i,o,null,null,T,p);l=C[0],c=C[1],f=l.concat(c)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let T=Math.floor(r[0].shape[0]*(1-a.validationSplit)),C=r[0].shape[0];l=hp(r,T,C),r=hp(r,0,T),c=hp(s,T,C),s=hp(s,0,T),f=l.concat(c)}else a.validationSteps!=null&&(m=!0);let g=r.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),v,x;m?(e.makeTestFunction(),v=e.testFunction,x=b.slice().concat(b.map(T=>"val_"+T))):(v=null,f=[],x=b.slice());let N=Qk(a.callbacks,a.yieldEvery);return await JW(e,y,g,b,p,a.epochs,a.verbose,N,v,f,a.shuffle,x,a.initialEpoch,null,null)}finally{e.isTraining=!1,qi(r,t),qi(s,n),qi(l,i),qi(c,o),u!=null&&Fe(u)}}function gI(e){let t=[];e instanceof Ae&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(ip(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function qi(e,t){if(e==null)return;let n=[];if(t instanceof Ae)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ae)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function e4(e){return e instanceof Ae}function mx(e){return Array.isArray(e)}function yI(e){return!e4(e)&&!mx(e)}function bI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(mx(e)&&e.length>0)i=!0;else if(yI(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new z(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(yI(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new z(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(mx(e)){if(e=e,e.length!==t.length)throw new z(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new z(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=gI(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new z(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&c!==u)throw new z(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function t4(e,t,n){let a=ss(e.map(s=>s.shape[0]));a.sort();let r=ss(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function n4(e,t,n){let a=[Hi,Am,cp];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===cp&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),c=o.slice(1);for(let u=0;u<l.length;++u){let p=l[u],d=c[u];if(d!=null&&p!==d)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function xI(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new z(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new z(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new z(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u!==c)throw new z(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function a4(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var r4="layers-model",Tr=class extends sr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");zW(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=RW(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof kr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new z(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(rx(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>rx(s))}else{let s=rx(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ui("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=a4(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ui("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",c,u,p;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Am?["accuracy","acc"].indexOf(d)!==-1?u=sx:["crossentropy","ce"].indexOf(d)!==-1&&(u=aI):this.lossFunctions[s]===Em?["accuracy","acc"].indexOf(d)!==-1?u=rI:["crossentropy","ce"].indexOf(d)!==-1&&(u=sI):["accuracy","acc"].indexOf(d)!==-1?u=ix:["crossentropy","ce"].indexOf(d)!==-1&&(u=ox);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),p=u,c=l+f}else p=DW(d),c=l+Dm(d);let h;Ui(c,()=>{h=p}),r(s,c,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;px(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return In(l)}finally{qi(s[0],e),qi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),ZW(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new z(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new ji;if(e instanceof Ae&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new z(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=dp(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Bi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return D(()=>{let a=this.checkNumSamples(e);if(n)throw new $e("Verbose predictLoop() is not implemented yet.");let r=hx(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)D(()=>{let o=r[i][0],l=r[i][1],c=hp(e,o,l),u=[];if(Array.isArray(c))for(let d=0;d<c.length;++d)u.push({key:this.inputs[d],value:c[d]});else u.push({key:this.inputs[0],value:c});let p=new ji(u);return dp(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return In(s.map(i=>Qe(i,0)))})}predict(e,t={}){let n=gI(e);xI(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return px(a),this.predictLoop(n,a)}finally{qi(n,e)}}predictOnBatch(e){xI(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Aa("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Em?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=bI(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=bI(t,this.feedOutputNames,r,!1,"target"),t4(e,t,null),n4(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let c=pI(a,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await dI(o[u],null,c[u]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return D(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new $e("Verbose mode is not implemented yet.");if(r!=null)throw new $e("steps mode in testLoop() is not implemented yet");{let o=hx(s,n),l=nt(Fa(0,s));for(let c=0;c<o.length;++c){let u=o[c][0],p=o[c][1],d=Gi(l,u,p-u),h=dx(t,d),m=e(h);if(c===0)for(let f=0;f<m.length;++f)i.push(de(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=Z(i[f],L(p-u,g))}}for(let c=0;c<i.length;++c)i[c]=ve(i[c],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;vk(e,a)>1&&(r+=`_${vk(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let h=0;h<this.inputs.length;++h)c.push({key:this.inputs[h],value:n[h]});let u=new ji(c),p=dp(this.outputs,u,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=HW(m,r[h]));let f=St(m);t.push(f),h===0?d=m:d=Z(d,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=St(f(a[g],p[g]))}jt(m),s.push(m)}return d=St(d),this.calculateLosses().forEach(h=>{d=Z(d,h)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>D(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new ji(s),o=dp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=St(c(r[l],o[l]));l===0?n=u:n=Z(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],p=St(c(r[u],o[u]));t.push(p)}return t})}async fit(e,t,n={}){return QW(this,e,t,n)}async fitDataset(e,t){return XW(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Fe(s),In(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Sh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Sh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Nr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Nr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Nr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Nr(Dm(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Nr(Dm(e)));{let e={};for(let t in this.metrics)e[t]=Nr(Dm(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=pp(e.optimizer_config),n=Da(t),a;if(typeof e.loss=="string")a=Wi(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Wi(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Wi(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Wi(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Wi(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Ht.getSaveHandlers(e);if(i.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new z(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ht.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:r4,generatedBy:`TensorFlow.js tfjs-layers v${Mm}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Ht.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Ht.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;oI(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){oI(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Tr.className="Model";re.registerClass(Tr);var vI=class extends Tr{};vI.className="Functional";re.registerClass(vI);async function s4(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=pp(n),r=Da(a,t);if(e.weightsManifest!=null){let s=await Ht.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Fe(s)}return r}async function o4(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ht.getLoadHandlers(e,t);if(n.length===0)n.push(Ht.browserHTTPRequest(e,t));else if(n.length>1)throw new z(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return i4(e,void 0,t)}async function i4(e,t,n){if(n==null&&(n={}),e.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Da(pp(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=l4(a.weightData,a.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Fe(c),Fe(u.map(p=>p.tensor))}return o}function l4(e,t){let n=Ht.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var lu=class extends Tr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Im("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof lu||e instanceof Tr,n;if(t){if(n=e,n.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=qk({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=jk(this.outputs[0])}this.inboundNodes=[],new Sm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Bi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ht(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Tr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Aa("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Aa("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Aa("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Aa("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof lu))throw new $e(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Da(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};lu.className="Sequential";re.registerClass(lu);function u4(e){return new Tr(e)}function c4(e){return new lu(e)}function p4(e,t){return t==null&&(t={}),o4(e,t)}function Lk(e){return qk(e)}function d4(e,t){ya.registerCallbackConstructor(e,t)}var On=class extends re.Serializable{getConfig(){return{}}},wI=class extends On{apply(e,t=1){return Gz(e,t)}};wI.className="elu";re.registerClass(wI);var kI=class extends On{apply(e){return jh(e)}};kI.className="selu";re.registerClass(kI);var II=class extends On{apply(e){return Ye(e)}};II.className="relu";re.registerClass(II);var NI=class extends On{apply(e){return D(()=>Zl(6,Ye(e)))}};NI.className="relu6";re.registerClass(NI);var TI=class extends On{apply(e){return e}};TI.className="linear";re.registerClass(TI);var SI=class extends On{apply(e){return da(e)}};SI.className="sigmoid";re.registerClass(SI);var CI=class extends On{apply(e){return jz(e)}};CI.className="hardSigmoid";re.registerClass(CI);var _I=class extends On{apply(e){return Xl(e)}};_I.className="softplus";re.registerClass(_I);var EI=class extends On{apply(e){return Hz(e)}};EI.className="softsign";re.registerClass(EI);var AI=class extends On{apply(e){return jl(e)}};AI.className="tanh";re.registerClass(AI);var fx=class extends On{apply(e,t=-1){return Sa(e,t)}};fx.className="softmax";re.registerClass(fx);var FI=class extends On{apply(e,t=-1){return zh(e,t)}};FI.className="logSoftmax";re.registerClass(FI);var $I=class extends On{apply(e,t=1){return D(()=>da(e.mul(t)).mul(e))}};$I.className="swish";re.registerClass($I);function us(e){return e.getClassName()}function gx(e,t={}){return np(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function cs(e){if(e==null){let t={};return t.className="linear",t.config={},gx(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},gx(t)}else return e instanceof On?e:gx(e)}function yx(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var DI=class extends re.Serializable{},mp=class extends DI{constructor(e){super();yx(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return D(()=>{let t=vt([1]);return this.hasL1&&(t=Z(t,Te(L(this.l1,Lt(e))))),this.hasL2&&(t=Z(t,Te(L(this.l2,op(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};mp.className="L1L2";re.registerClass(mp);function h4(e){return yx(e),new mp({l1:e!=null?e.l1:null,l2:0})}function m4(e){return yx(e),new mp({l2:e!=null?e.l2:null,l1:0})}var RI={l1l2:"L1L2"};function mt(e){return $b(e)}function MI(e,t={}){return np(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function kt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in RI?RI[e]:e,config:{}};return MI(t)}else return e instanceof DI?e:MI(e)}var bx=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Me(e);let n=Ye(e);return this.maxValue!=null&&(n=qt(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};bx.className="ReLU";re.registerClass(bx);var xx=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return qc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};xx.className="LeakyReLU";re.registerClass(xx);var vx=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=wt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=kt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ht(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Xt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Me(e),Yc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ct(this.alphaInitializer),alphaRegularizer:mt(this.alphaRegularizer),alphaConstraint:Wt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};vx.className="PReLU";re.registerClass(vx);var wx=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new $e(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return ql(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};wx.className="ELU";re.registerClass(wx);var kx=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Me(e);return n.mul(sp(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};kx.className="ThresholdedReLU";re.registerClass(kx);var Ix=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new fx().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Me(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ix.className="Softmax";re.registerClass(Ix);function uu(e,t,n){if(typeof e=="number")return Bi(e,t);if(e.length!==t)throw new z(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!Bz(r))throw new z(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ra(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function Pm(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+os([n-t,0]);else if(a==="same")e=e*t;else throw new z(`Unsupport padding mode: ${a}.`);return e}function Nx(e,t){return D(()=>(Dt(t),t==="channelsFirst"?Ue(e,[0,2,3,1]):e))}function PI(e,t){return D(()=>(Dt(t),t==="channelsFirst"?Ue(e,[0,2,3,4,1]):e))}function f4(e,t,n,a=1,r="valid",s,i=1){return D(()=>{if(s==null&&(s=Ea()),Dt(s),e.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ue(e,[0,2,1])),r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Fh(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=ar(o,n)),o})}function OI(e,t,n,a=[1,1],r="valid",s,i,o=null){return D(()=>{if(s==null&&(s=Ea()),Dt(s),e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Nx(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=rs.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ue(l,[0,3,1,2])),l})}function g4(e,t,n,a=[1,1,1],r="valid",s,i){return D(()=>{if(s==null&&(s=Ea()),Dt(s),e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=PI(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=tb(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=ar(o,n)),s==="channelsFirst"&&(o=Ue(o,[0,4,1,2,3])),o})}var Tx=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Tx.verifyArgs(t),this.rank=e,Kt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new $e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=uu(t.kernelSize,e,"kernelSize"),this.strides=uu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Qn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Dt(this.dataFormat),this.activation=cs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=wt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=kt(t.biasRegularizer),this.activityRegularizer=kt(t.activityRegularizer),this.dilationRate=uu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(tr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Rb(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:us(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),biasConstraint:Wt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},fp=class extends Tx{constructor(e,t){super(e,t);this.kernel=null,fp.verifyArgs(t),this.filters=t.filters,Kt(this.filters,"filters"),this.kernelInitializer=wt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=kt(t.kernelRegularizer)}build(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return D(()=>{e=Me(e);let n,a=this.bias==null?null:this.bias.read(),r=kk(this.activation.getClassName());if(r!=null&&this.rank===2)n=OI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=f4(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=OI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=g4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new $e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ht(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ra(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Ct(this.kernelInitializer),kernelRegularizer:mt(this.kernelRegularizer),kernelConstraint:Wt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},gp=class extends fp{constructor(e){super(2,e);gp.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Rb(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};gp.className="Conv2D";re.registerClass(gp);var Om=class extends fp{constructor(e){super(3,e);Om.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Om.className="Conv3D";re.registerClass(Om);var Sx=class extends gp{constructor(e){super(e);if(this.inputSpec=[new Xt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ht(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Xt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{let n=Me(e);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],c=this.kernelSize[0],u=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Pm(o,p,c,this.padding),m=Pm(l,d,u,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ue(n,[0,2,3,1]));let g=$h(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ue(g,[0,3,1,2])),this.bias!=null&&(g=ar(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ht(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=Pm(t[a],o,s,this.padding),t[r]=Pm(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Sx.className="Conv2DTranspose";re.registerClass(Sx);var LI=class extends fp{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=kt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=kt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=ht(e),e.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Xt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{e=Me(e);let n;if(this.rank===1)throw new $e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ue(e,[0,2,3,1])),n=Oi(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=ar(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ue(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.pointwiseRegularizer=mt(this.pointwiseRegularizer),e.depthwiseConstraint=Wt(this.depthwiseConstraint),e.pointwiseConstraint=Wt(this.pointwiseConstraint),e}};LI.className="SeparableConv";var Cx=class extends LI{constructor(e){super(2,e)}};Cx.className="SeparableConv2D";re.registerClass(Cx);var Lm=class extends fp{constructor(e){super(1,e);Lm.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Rb(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Lm.className="Conv1D";re.registerClass(Lm);var _x=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return D(()=>{if(e=Me(e),this.dataFormat==="channelsLast"){let n=hm(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return hm(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=hm(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return hm(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_x.className="Cropping2D";re.registerClass(_x);var Ex=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Oz(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return D(()=>{let n=Me(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ue(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ue(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ex.className="UpSampling2D";re.registerClass(Ex);function y4(e,t,n=[1,1],a="valid",r,s){return D(()=>{r==null&&(r=Ea()),Dt(r);let i=Nx(e,r);if(e.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=es(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ue(i,[0,3,1,2])),i})}var Ax=class extends Tx{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=wt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=kt(e.depthwiseRegularizer)}build(e){if(e=ht(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{e=Me(e);let n=y4(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=ar(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ra(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ra(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.depthwiseConstraint=Wt(this.depthwiseRegularizer),e}};Ax.className="DepthwiseConv2D";re.registerClass(Ax);function zI(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function BI(e,t,n,a=!1,r,s,i=!1,o=!1){return D(()=>{let l=t.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Fa(2,l));if(t=Ue(t,c),s!=null)throw new $e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=$n(r,-1)),r=Ue(r,c)),a&&(t=Mn(t,0),r!=null&&(r=Mn(r,0)));let u=[],p,d=n,h=t.shape[0],m=dt(t),f;r!=null&&(f=dt(r));for(let y=0;y<h;++y){let b=m[y],v=D(()=>e(b,d));if(r==null)p=v[0],d=v[1];else{let x=D(()=>{let N=f[y],T=Rn(N).sub(N),C=v[0].mul(N).add(d[0].mul(T)),F=d.map(($,P)=>v[1][P].mul(N).add($.mul(T)));return{output:C,newStates:F}});p=x.output,d=x.newStates}o&&u.push(p)}let g;return o&&(g=$t(u,1)),[p,g,d]})}var rr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new zm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Xt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Fa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){ex(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return D(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new $e("Constants support is not implemented in RNN yet.");ex(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Xt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new $e("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Xt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>vt([n,a])):this.states_=[vt([n,this.cell.stateSize])];else if(e==null)Fe(this.states_),this.keptStates!=null&&(Fe(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>vt([n,a])):this.states_[0]=vt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Fe(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(r.shape,i))throw new z(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>jt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=zI(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Xt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof $a){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Me(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new z(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=BI((d,h)=>{let m=this.cell.call([d].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,a);let p=this.returnSequences?c:l;return this.returnState?[p].concat(u):p})}getInitialState(e){return D(()=>{let t=vt(e.shape);return t=Te(t,[1,2]),t=ip(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Bb(t,[1,n]):t):this.cell.stateSize>1?[Bb(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===rr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Da(a,n);return new e(Object.assign(t,{cell:r}))}};rr.className="RNN";re.registerClass(rr);var up=class extends qe{},Bm=class extends up{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=cs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=ru([1,os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ru([1,os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ht(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ps({ones:()=>Rn(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ps({ones:()=>Rn(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=nr(L(e,s),this.kernel.read()):r=nr(e,this.kernel.read()),this.bias!=null&&(r=ar(r,this.bias.read())),i!=null&&(n=L(n,i));let o=Z(r,nr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:us(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Wt(this.kernelConstraint),recurrentConstraint:Wt(this.recurrentConstraint),biasConstraint:Wt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Bm.className="SimpleRNNCell";re.registerClass(Bm);var Fx=class extends rr{constructor(e){e.cell=new Bm(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Fx.className="SimpleRNN";re.registerClass(Fx);var Wm=class extends up{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Kt(this.units,"units"),this.activation=cs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=cs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=ru([1,os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ru([1,os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ht(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ps({ones:()=>Rn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ps({ones:()=>Rn(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let c=nr(e,this.kernel.read());this.useBias&&(c=ar(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=L(a,s[0]));let u=this.recurrentKernel.read(),[p,d]=Pn(u,[2*this.units,this.units],u.rank-1),h=nr(a,p),[m,f,g]=Pn(c,3,c.rank-1),[y,b]=Pn(h,2,h.rank-1);i=this.recurrentActivation.apply(Z(m,y)),o=this.recurrentActivation.apply(Z(f,b));let v=nr(L(o,a),d);l=this.activation.apply(Z(g,v));let x=Z(L(i,a),L(Z(1,Tt(i)),l));return[x,x]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:us(this.activation),recurrentActivation:us(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Wt(this.kernelConstraint),recurrentConstraint:Wt(this.recurrentConstraint),biasConstraint:Wt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Wm.className="GRUCell";re.registerClass(Wm);var $x=class extends rr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Wm(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};$x.className="GRU";re.registerClass($x);var yp=class extends up{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=cs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=cs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=ru([1,os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ru([1,os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ht(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends ga{apply(i,o){let l=r.apply([s]),c=new fm().apply([s]),u=r.apply([s*2]);return $k($k(l,c),u)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ps({ones:()=>Rn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ps({ones:()=>Rn(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let p=nr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=L(a,i[0])),p=Z(p,nr(a,this.recurrentKernel.read())),this.useBias&&(p=ar(p,this.bias.read()));let[d,h,m,f]=Pn(p,4,p.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),c=Z(L(l,r),L(o,this.activation.apply(m))),u=this.recurrentActivation.apply(f);let g=L(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:us(this.activation),recurrentActivation:us(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Wt(this.kernelConstraint),recurrentConstraint:Wt(this.recurrentConstraint),biasConstraint:Wt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};yp.className="LSTMCell";re.registerClass(yp);var Dx=class extends rr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new yp(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Dx.className="LSTM";re.registerClass(Dx);var zm=class extends up{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return D(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){ex(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Ui(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Da(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return tx(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}nx(t)}};zm.className="StackedRNNCells";re.registerClass(zm);function ps(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>Rk(t(),n),i=()=>lp(s,t,a);return!r||r<=1?jt(i().clone()):Array(r).fill(void 0).map(i).map(o=>jt(o.clone()))}var b4=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},WI=class extends rr{constructor(e){if(e.unroll)throw new $e("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new $e("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Xt({ndim:5})]}call(e,t){return D(()=>{if(this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return D(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=vt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>vt(r)):this.states_=[vt(r)];else if(e==null)Fe(this.states_),this.keptStates!=null&&(Fe(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>vt(r)):this.states_[0]=vt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Fe(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!k.arraysEqual(i.shape,o))throw new z(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>jt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Ra(l,a[0],r,s[0],i[0]),p=Ra(c,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,p]:[u,p,n]]}};WI.className="ConvRNN2D";var Vm=class extends yp{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Kt(this.filters,"filters"),this.kernelSize=uu(n,2,"kernelSize"),this.kernelSize.forEach(o=>Kt(o,"kernelSize")),this.strides=uu(a||1,2,"strides"),this.strides.forEach(o=>Kt(o,"strides")),this.padding=r||"valid",Qn(this.padding),this.dataFormat=s||"channelsLast",Dt(this.dataFormat),this.dilationRate=uu(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Kt(o,"dilationRate"))}build(e){var t;e=ht(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends ga{apply(u,p){let d=l.apply([c]),h=Ja([c]),m=l.apply([c*2]);return Vb([d,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return D(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ps({ones:()=>Rn(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(J,se,Q)=>!se||!se[Q]?J:L(se[Q],J),c=l(a,o,0),u=l(a,o,1),p=l(a,o,2),d=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ps({ones:()=>Rn(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[v,x,N,T]=Pn(this.kernel.read(),i,b),[C,F,$,P]=this.useBias?Pn(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,v,C,this.padding),u=this.inputConv(u,x,F,this.padding),p=this.inputConv(p,N,$,this.padding),d=this.inputConv(d,T,P,this.padding);let[B,W,G,q]=Pn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,B),f=this.recurrentConv(f,W),g=this.recurrentConv(g,G),y=this.recurrentConv(y,q);let j=this.recurrentActivation.apply(Z(c,m)),X=this.recurrentActivation.apply(Z(u,f)),K=Z(L(X,s),L(j,this.activation.apply(Z(p,g)))),ne=L(this.recurrentActivation.apply(Z(d,y)),this.activation.apply(K));return[ne,ne,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=b4(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=At(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?ar(r,n,this.dataFormat):r}recurrentConv(e,t){return At(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Vm.className="ConvLSTM2DCell";re.registerClass(Vm);var Rx=class extends WI{constructor(e){let t=new Vm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Rx.className="ConvLSTM2D";re.registerClass(Rx);var Um=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return lp(()=>Rk(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Um.className="Dropout";re.registerClass(Um);var Mx=class extends Um{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Mx.className="SpatialDropout1D";re.registerClass(Mx);var Px=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Kt(this.units,"units"),this.activation=cs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=kt(e.kernelRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ht(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ht(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e),a=kk(this.activation.getClassName()),r;return a!=null?r=nr(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=nr(n,this.kernel.read()),this.bias!=null&&(r=ar(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:us(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Wt(this.kernelConstraint),biasConstraint:Wt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Px.className="Dense";re.registerClass(Px);var Ox=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ht(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],is(e,1)]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return Uz(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Ox.className="Flatten";re.registerClass(Ox);var Lx=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.activation=cs(e.activation)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.activation.apply(n)})}getConfig(){let e={activation:us(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Lx.className="Activation";re.registerClass(Lx);var zx=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return D(()=>(e=Me(e),Wz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};zx.className="RepeatVector";re.registerClass(zx);var Bx=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new z("Can only specifiy one unknown dimension.");else r*=l}let i=is(e);if(s!==null){if(r===0||i%r!=0)throw new z(n);a[s]=i/r}else if(i!==r)throw new z(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Bx.className="Reshape";re.registerClass(Bx);var Wx=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Fa(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Xt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ht(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ue(Me(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Wx.className="Permute";re.registerClass(Wx);var Vx=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Me(e),a=-1;return Wc(Pi(n,this.maskValue),a)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e),a=-1,r=!0,s=Wc(Pi(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};Vx.className="Masking";re.registerClass(Vx);var Ux=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(bt(e.inputLength))}this.inputDim=e.inputDim,Kt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Kt(this.outputDim,"outputDim"),this.embeddingsInitializer=wt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=kt(e.embeddingsRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return D(()=>this.maskZero?(e=Me(e),Pi(e,Ge(e))):null)}computeOutputShape(e){if(e=ht(e),this.inputLength==null)return[...e,this.outputDim];let t=bt(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);return n.dtype!=="int32"&&(n=sp(n,"int32")),Dk(this.embeddings.read(),n.as1D()).reshape(ht(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:mt(this.embeddingsRegularizer),activityRegularizer:mt(this.activityRegularizer),embeddingsConstraint:Wt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Ux.className="Embedding";re.registerClass(Ux);var Ki=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new $e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ht(e)]),e=e,e.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=ss(t),t.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&ss(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return D(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=os(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=ip(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let c=o.shape,u=c[0],p=c.slice(1).concat([u]),d=o.reshape([u].concat(is(c.slice(1))));d=Ue(d,[1,0]),d=d.reshape(p),n.push(d),r=!0}else if(l>1){let c=Fa(1,l).concat([0]);n.push(Ue(o,c)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Ue(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Fa(0,i-1));s=Ue(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=ss(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return D(()=>{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:$n(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=ma(n,t[a]);return n})}},Gx=class extends Ki{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Z(t,e[n]);return t})}};Gx.className="Add";re.registerClass(Gx);var Hx=class extends Ki{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};Hx.className="Multiply";re.registerClass(Hx);var jx=class extends Ki{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Z(t,e[n]);return L(1/e.length,t)})}};jx.className="Average";re.registerClass(jx);var qx=class extends Ki{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Za(t,e[n]);return t})}};qx.className="Maximum";re.registerClass(qx);var Kx=class extends Ki{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Zl(t,e[n]);return t})}};Kx.className="Minimum";re.registerClass(Kx);var Xx=class extends Ki{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return D(()=>Vb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return D(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(Rn(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push($n(t[s],-1)):a.push(t[s]);let r=Qe(a,this.axis);return Eh(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Xx.className="Concatenate";re.registerClass(Xx);function bp(e,t){for(;e<0;)e+=t;return e}function x4(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new $e("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new $e("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return D(()=>{let i;if(a>r){i=a-r;let l=[];for(let c=0;c<i;++c)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let c=0;c<i;++c)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,c=s[1]===t.shape.length-1;o=e.matMul(t,l,c)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let c=[];for(let u=l;u<l+i;++u)c.push(u);o=o.squeeze(c)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var Yx=class extends Ki{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new z(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>bp(r,e[s].shape.length)):a=[bp(this.axes,t.shape.length),bp(this.axes,n.shape.length)],this.normalize&&(t=Cm(t,a[0]),n=Cm(n,a[1])),x4(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[bp(this.axes,e.length),bp(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Yx.className="Dot";re.registerClass(Yx);var Zx=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);return lp(()=>mm(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Zx.className="GaussianNoise";re.registerClass(Zx);var Jx=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.rate>0&&this.rate<1?lp(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(mm(n.shape,1,a))},()=>n,t.training||!1):n})}};Jx.className="GaussianDropout";re.registerClass(Jx);var Qx=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Me(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return lp(()=>{let a=Me(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=ns(Jl(n),this.rate);o=sp(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>Me(e),t.training||!1)}return e})}};Qx.className="AlphaDropout";re.registerClass(Qx);function xp(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=g1(e,t,n,a,r,s);else if(e.rank===3)i=y1(e,t,n,a,r,s);else if(e.rank===4)i=b1(e,t,n,a,r,s);else throw new $e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function v4(e,t,n,a,r=.001){return D(()=>{let s=Wh(e,a),i=s.mean,o=s.variance;return[xp(e,i,o,n,t,r),i,o]})}function w4(e,t,n,a,r=.001){return D(()=>{let s=Wh(e,a),i=s.mean,o=s.variance,l=[];for(let h of Fa(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let c=i.reshape(l),u=o.reshape(l),p=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[xp(e,c,u,d,p,r),i,o]})}function k4(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),Fa(0,e.rank-1))?v4(e,t,n,a,r):w4(e,t,n,a,r)}var ev=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.movingMeanInitializer=wt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=wt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer)}build(e){e=ht(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Xt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training,a=Me(e),r=a.shape,s=r.length,i=Fa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Bi(1,s);l[o]=r[o];let c=i.slice();c.sort();let u=!k.arraysEqual(c,Fa(0,s).slice(0,s-1)),p=()=>{if(u){let g=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),b=this.center?this.beta.read().reshape(l):null,v=this.scale?this.gamma.read().reshape(l):null;return xp(a,g,y,b,v,this.epsilon)}else return xp(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,m]=k4(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{D(()=>{let v=1-b,x=g.read(),N=x.sub(y).mul(v);g.write(x.sub(N))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer),betaConstraint:Wt(this.betaConstraint),gammaConstraint:Wt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};ev.className="BatchNormalization";re.registerClass(ev);var tv=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ht(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==ss(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Me(e),a=n.shape,r=a.length;return D(()=>{let s=!0,{mean:i,variance:o}=Wh(n,this.axis,s),l=Bi(1,r);for(let m of this.axis)l[m]=a[m];let c=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,u=c(this.gamma.read()),p=c(this.beta.read()),d=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(d.push(a[m]),h.push(1)):(d.push(1),h.push(a[m]));return i=i.tile(d),o=o.tile(d),u=u.tile(h),p=p.tile(h),xp(n,i,o,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};tv.className="LayerNormalization";re.registerClass(tv);function I4(e,t,n){return D(()=>{if(e.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Ea()),n!=="channelsLast"&&n!=="channelsFirst")throw new z(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],Jn(e,a)})}var nv=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Ea():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){e=ht(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return D(()=>I4(Me(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};nv.className="ZeroPadding2D";re.registerClass(nv);function Gm(e,t,n,a,r,s){return D(()=>{Dt(r),Sk(s),Qn(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Ea()),s==null&&(s="max"),e=Nx(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Ft(e,t,n,o):i=Yn(e,t,n,o),r==="channelsFirst"&&(i=Ue(i,[0,3,1,2])),i})}function VI(e,t,n,a,r,s){return D(()=>{Dt(r),Sk(s),Qn(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Ea()),s==null&&(s="max"),e=PI(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=db(e,t,n,o):i=Jy(e,t,n,o),r==="channelsFirst"&&(i=Ue(i,[0,4,1,2,3])),i})}var UI=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Kt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Qn(this.padding),this.inputSpec=[new Xt({ndim:3})]}computeOutputShape(e){e=ht(e);let t=Ra(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return D(()=>{this.invokeCallHook(e,t),e=ip(Me(e),2);let n=this.poolingFunction(Me(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return as(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},av=class extends UI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),Gm(e,t,n,a,r,"max")}};av.className="MaxPooling1D";re.registerClass(av);var rv=class extends UI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),Gm(e,t,n,a,r,"avg")}};rv.className="AveragePooling1D";re.registerClass(rv);var GI=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),Qn(this.padding),this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ra(t,this.poolSize[0],this.padding,this.strides[0]),n=Ra(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},sv=class extends GI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),Gm(e,t,n,a,r,"max")}};sv.className="MaxPooling2D";re.registerClass(sv);var iv=class extends GI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),Gm(e,t,n,a,r,"avg")}};iv.className="AveragePooling2D";re.registerClass(iv);var HI=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),Qn(this.padding),this.inputSpec=[new Xt({ndim:5})]}computeOutputShape(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ra(t,this.poolSize[0],this.padding,this.strides[0]),n=Ra(n,this.poolSize[1],this.padding,this.strides[1]),a=Ra(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ov=class extends HI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),VI(e,t,n,a,r,"max")}};ov.className="MaxPooling3D";re.registerClass(ov);var lv=class extends HI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),VI(e,t,n,a,r,"avg")}};lv.className="AveragePooling3D";re.registerClass(lv);var jI=class extends qe{constructor(e){super(e);this.inputSpec=[new Xt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new $e}},uv=class extends jI{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Me(e);return St(n,1)})}};uv.className="GlobalAveragePooling1D";re.registerClass(uv);var cv=class extends jI{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Me(e);return Zn(n,1)})}};cv.className="GlobalMaxPooling1D";re.registerClass(cv);var qI=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new $e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},pv=class extends qI{call(e,t){return D(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?St(n,[1,2]):St(n,[2,3])})}};pv.className="GlobalAveragePooling2D";re.registerClass(pv);var dv=class extends qI{call(e,t){return D(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?Zn(n,[1,2]):Zn(n,[2,3])})}};dv.className="GlobalMaxPooling2D";re.registerClass(dv);var KI=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Da(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},hv=class extends KI{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ht(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ht(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return D(()=>(e=Me(e),BI((n,a)=>[Me(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};hv.className="TimeDistributed";re.registerClass(hv);function N4(e){Vi(Pz,"BidirectionalMergeMode",e)}var T4="concat",mv=class extends KI{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Da(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Da(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?T4:e.mergeMode,N4(this.mergeMode),e.weights)throw new $e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):In(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=zI(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Xt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(a!=null)throw new $e("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof $a;for(let l of s)if(l instanceof $a!==o)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let p=super.apply(l,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=Mn(r,1));let i;return this.mergeMode==="concat"?i=Vb([a,r]):this.mergeMode==="sum"?i=Z(a,r):this.mergeMode==="ave"?i=L(.5,Z(a,r)):this.mergeMode==="mul"?i=L(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ui(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ui(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Da(t.layer);if(delete t.layer,t.numConstants!=null)throw new $e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};mv.className="Bidirectional";re.registerClass(mv);function Jz(e){return new su(e)}function Qz(e){return new wx(e)}function eB(e){return new bx(e)}function tB(e){return new xx(e)}function nB(e){return new vx(e)}function aB(e){return new Ix(e)}function rB(e){return new kx(e)}function sB(e){return new Lm(e)}function iB(e){return new gp(e)}function oB(e){return new Sx(e)}function lB(e){return new Om(e)}function uB(e){return new Cx(e)}function cB(e){return new _x(e)}function pB(e){return new Ex(e)}function dB(e){return new Ax(e)}function hB(e){return new Lx(e)}function mB(e){return new Px(e)}function fB(e){return new Um(e)}function gB(e){return new Mx(e)}function yB(e){return new Ox(e)}function bB(e){return new zx(e)}function xB(e){return new Bx(e)}function vB(e){return new Wx(e)}function wB(e){return new Ux(e)}function kB(e){return new Gx(e)}function IB(e){return new jx(e)}function NB(e){return new Xx(e)}function TB(e){return new qx(e)}function SB(e){return new Kx(e)}function CB(e){return new Hx(e)}function _B(e){return new Yx(e)}function EB(e){return new ev(e)}function AB(e){return new tv(e)}function FB(e){return new nv(e)}function Zb(e){return new rv(e)}function $B(e){return Zb(e)}function DB(e){return Zb(e)}function Jb(e){return new iv(e)}function RB(e){return Jb(e)}function MB(e){return Jb(e)}function Qb(e){return new lv(e)}function PB(e){return Qb(e)}function OB(e){return Qb(e)}function LB(e){return new uv(e)}function zB(e){return new pv(e)}function zk(e){return new cv(e)}function Bk(e){return new dv(e)}function Wk(e){return new av(e)}function Vk(e){return new sv(e)}function BB(e){return new ov(e)}function WB(e){return new $x(e)}function VB(e){return new Wm(e)}function UB(e){return new Dx(e)}function GB(e){return new yp(e)}function HB(e){return new Fx(e)}function jB(e){return new Bm(e)}function qB(e){return new Rx(e)}function KB(e){return new Vm(e)}function XB(e){return new rr(e)}function YB(e){return new zm(e)}function ZB(e){return new mv(e)}function JB(e){return new hv(e)}var QB=zk,eW=Bk,tW=Wk,nW=Vk;function aW(e){return new Zx(e)}function rW(e){return new Jx(e)}function sW(e){return new Qx(e)}function iW(e){return new Vx(e)}var XI={};Oe(XI,{MAPE:()=>P4,MSE:()=>z4,binaryAccuracy:()=>S4,binaryCrossentropy:()=>C4,categoricalAccuracy:()=>E4,categoricalCrossentropy:()=>A4,cosineProximity:()=>D4,mape:()=>O4,meanAbsoluteError:()=>R4,meanAbsolutePercentageError:()=>M4,meanSquaredError:()=>L4,mse:()=>B4,precision:()=>F4,recall:()=>$4,sparseCategoricalAccuracy:()=>_4});function S4(e,t){return sx(e,t)}function C4(e,t){return aI(e,t)}function _4(e,t){return rI(e,t)}function E4(e,t){return ix(e,t)}function A4(e,t){return ox(e,t)}function F4(e,t){return nI(e,t)}function $4(e,t){return TW(e,t)}function D4(e,t){return ax(e,t)}function R4(e,t){return _m(e,t)}function M4(e,t){return ou(e,t)}function P4(e,t){return ou(e,t)}function O4(e,t){return ou(e,t)}function L4(e,t){return Hi(e,t)}function z4(e,t){return Hi(e,t)}function B4(e,t){return Hi(e,t)}var YI={};Oe(YI,{modelFromJSON:()=>s4});var ZI={};Oe(ZI,{l1:()=>V4,l1l2:()=>W4,l2:()=>U4});function W4(e){return new mp(e)}function V4(e){return h4(e)}function U4(e){return m4(e)}var JI=class extends iu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Tr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Hm(e,t){return e<t}function QI(e,t){return e>t}var eN=class extends JI{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new $e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Hm:this.mode==="max"?this.monitorFunc=QI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=QI:this.monitorFunc=Hm,this.monitorFunc===Hm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Hm?Infinity:-Infinity}async onEpochEnd(e,t){await ls(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function G4(e){return new eN(e)}var H4={earlyStopping:G4},Ma;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ma||(Ma={}));var tN;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(tN||(tN={}));var fv={};function j4(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};fv[e]=n}function nN(e){return fv[e]}function q4(e){delete fv[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Tn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>Tn(p,n,a,r));let c=Tn(t.inputNames.slice(o)[0],n,a,r),u=c.dataSync();return s.type==="number"?u[0]:k.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function Tn(e,t,n,a){let[r,s]=Ln(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[jm(r,o)]);return i!==void 0?t[jm(r,i)][s]:void 0}function K4(e,t,n){return t[jm(e,n.currentContextId)]}function Sr(e,t){let[n,a]=Ln(e);return[jm(n,t&&t.currentContextId),a]}function jm(e,t){return t?`${e}-${t}`:e}function Ln(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function qm(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Cr(e){return e.kept?e:Zr(e)}var aN={};Oe(aN,{json:()=>X4});var X4=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],rN={};Oe(rN,{json:()=>Y4});var Y4=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],sN={};Oe(sN,{json:()=>Z4});var Z4=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],iN={};Oe(iN,{json:()=>J4});var J4=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],oN={};Oe(oN,{json:()=>Q4});var Q4=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],lN={};Oe(lN,{json:()=>eV});var eV=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],uN={};Oe(uN,{json:()=>tV});var tV=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],cN={};Oe(cN,{json:()=>nV});var nV=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],pN={};Oe(pN,{json:()=>aV});var aV=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],dN={};Oe(dN,{json:()=>rV});var rV=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],hN={};Oe(hN,{json:()=>sV});var sV=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],mN={};Oe(mN,{json:()=>iV});var iV=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],fN={};Oe(fN,{json:()=>oV});var oV=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],gN={};Oe(gN,{json:()=>lV});var lV=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],yN={};Oe(yN,{json:()=>uV});var uV=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],bN={};Oe(bN,{json:()=>cV});var cV=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],xN={};Oe(xN,{json:()=>pV});var pV=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],wN=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[aN,rN,sN,iN,oN,lN,uN,hN,dN,cN,mN,fN,gN,yN,bN,xN,pN],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(g=>{let[y]=Sr(g);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=Sr(m),g=i[f];g!=null&&(g.signatureKey=u[m],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=Sr(m),g=i[f];g&&(g.signatureKey=c[m],o.push(g))}):o=a;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:d};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=nN(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=gv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=gv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Nv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Nv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=bv(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=bv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=Iv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Iv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=yv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=yv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=Sv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Sv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=kv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=kv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=Tv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Tv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=vv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=vv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=wv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=wv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=vN(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=vN(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&a.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=Sr(c.name),p={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:xv(c.type),type:"dtype"}},children:[]};p.signatureKey=c.name,s.push(p),r[u]=p}),Object.keys(r).forEach(c=>{let u=r[c];u.inputNames.forEach(p=>{let[d]=Sr(p);u.inputs.push(r[d]),r[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,p]=Sr(o[c.name]),d=r[u];d!=null&&(d.defaultOutput=p,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function dV(e){let t=ee().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function kN(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):dV(e);return t?n:n.toLowerCase()}function gv(e,t,n,a=!1){let r=e[t];return r!=null?kN(r.s,a):n}function yv(e,t,n){let a=e[t];return a?a.b:n}function bv(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function xv(e){switch(typeof e=="string"&&(e=Ma[e]),e){case Ma.DT_FLOAT:return"float32";case Ma.DT_INT32:case Ma.DT_INT64:case Ma.DT_INT8:case Ma.DT_UINT8:return"int32";case Ma.DT_BOOL:return"bool";case Ma.DT_DOUBLE:return"float32";case Ma.DT_STRING:return"string";default:return null}}function vN(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function vv(e,t,n){let a=e[t];return a&&a.type?xv(a.type):n}function wv(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>xv(r)):n}function IN(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function kv(e,t,n){let a=e[t];return a&&a.shape?IN(a.shape):n}function Iv(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Nv(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>kN(s,a)):n}function Tv(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>IN(r)):n}function Sv(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var hV=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return Tn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Tn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return bv(this.node.rawAttrs,e,t);if(n.s!=null)return gv(this.node.rawAttrs,e,t);if(n.b!=null)return yv(this.node.rawAttrs,e,t);if(n.shape!=null)return kv(this.node.rawAttrs,e,t);if(n.type!=null)return vv(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Iv(this.node.rawAttrs,e,t);if(n.list.s!=null)return Nv(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Tv(this.node.rawAttrs,e,t);if(n.list.b!=null)return Sv(this.node.rawAttrs,e,t);if(n.list.type!=null)return wv(this.node.rawAttrs,e,t)}return t}},mV=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[Z(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[d1(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[mb(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[ve(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[rb(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[_h(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[fe(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Zl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Za(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[vr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Zh(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},fV=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Lt(I("x",e,t,n))];case"Acos":return[Vy(I("x",e,t,n))];case"Acosh":return[Uy(I("x",e,t,n))];case"Asin":return[Hy(I("x",e,t,n))];case"Asinh":return[jy(I("x",e,t,n))];case"Atan":return[qy(I("x",e,t,n))];case"Atan2":return[Ky(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Xy(I("x",e,t,n))];case"Ceil":return[Qy(I("x",e,t,n))];case"Complex":return[Kr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[jc(I("x",e,t,n))];case"Cosh":return[Dh(I("x",e,t,n))];case"Elu":return[ql(I("x",e,t,n))];case"Erf":return[sb(I("x",e,t,n))];case"Exp":return[dn(I("x",e,t,n))];case"Expm1":return[ib(I("x",e,t,n))];case"Floor":return[Kl(I("x",e,t,n))];case"Log":return[Dn(I("x",e,t,n))];case"Log1p":return[Oh(I("x",e,t,n))];case"Imag":return[Mh(I("x",e,t,n))];case"Neg":return[Tt(I("x",e,t,n))];case"Reciprocal":return[yb(I("x",e,t,n))];case"Real":return[Zc(I("x",e,t,n))];case"Relu":return[Ye(I("x",e,t,n))];case"Round":return[bb(I("x",e,t,n))];case"Selu":return[jh(I("x",e,t,n))];case"Sigmoid":return[da(I("x",e,t,n))];case"Sin":return[qh(I("x",e,t,n))];case"Sign":return[xb(I("x",e,t,n))];case"Sinh":return[Kh(I("x",e,t,n))];case"Softplus":return[Xl(I("x",e,t,n))];case"Sqrt":return[tn(I("x",e,t,n))];case"Square":return[ut(I("x",e,t,n))];case"Tanh":return[jl(I("x",e,t,n))];case"Tan":return[kb(I("x",e,t,n))];case"ClipByValue":return[qt(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Gh(I("x",e,t,n))];case"Rsqrt":return[Hh(Tn(e.inputNames[0],t,n))];case"Prod":return[Vh(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[qc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Yc(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ba(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];k.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function NN(e){return!(typeof e=="number"||e.some(t=>t<0))}function vp(e,t,n){let a=Cv(e,n),r=!NN(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=Cv(s.shape,a)}),!NN(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function Cv(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var gV=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=de(0),jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ba(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Kn([],[0].concat(this.elementShape));let n=this.readMany(e);return ba(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),$t(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Kn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ba(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Qe(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,dt(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];D(()=>{t=H(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],c=[0,l,0],u=[1,e[o],r];s[o]=H(We(t,c,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},wp=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ba(t,r.shape,"TensorList shape mismatch: "),jt(r)}),this.idTensor=de(0),this.maxNumElements=a,jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new wp([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ba(e,this.elementShape,"TensorList shape mismatch: ");let a=vp(this.elementShape,this.tensors,e);return D(()=>{let r=this.tensors.map(s=>H(s,a));return $t(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=vp(this.elementShape,this.tensors,e),a=this.tensors.pop();return ba(a.shape,e,"TensorList shape mismatch: "),H(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ba(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ba(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=vp(this.elementShape,this.tensors,t);return H(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ba(this.elementShape,t.shape,"TensorList shape mismatch: "),jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ba(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=vp(this.elementShape,this.tensors,n);return e.length===0?Kn([],[0].concat(a)):D(()=>{let r=e.map(s=>H(this.tensors[s],a));return $t(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ba(this.elementShape,t,"TensorList shape mismatch: ");let n=vp(this.elementShape,this.tensors,t);return this.size()===0?Kn([],[0].concat(n)):D(()=>{let a=this.tensors.map(r=>H(r,n));return Qe(a,0)})}};function yV(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ba(r,t,"TensorList shape mismatch: ");let s=dt(e);return new wp(s,t,a)}function bV(e,t,n){return new wp([],e,t,n)}function xV(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new wp([],n,e.dtype,a),i=dt(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function vV(e,t,n){let a=0,r=t.map(u=>(a+=u,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Cv(s,n),o=a===0?0:e.size/a,l=D(()=>{let u=[];e=H(e,[1,a,o]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],m=[1,t[p],o];u[p]=H(We(e,h,m),i)}return e.dispose(),u}),c=new wp([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var wV=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let p=c.map(h=>h.id);u.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let a=I("pred",e,t,n);return[Cr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Cr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>Tn(r,t,n)!==void 0);if(a){let r=Tn(a,t,n);return[Cr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[Cr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[Cr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[Cr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new gV(c,r,a,s,l,i,o);return n.addTensorArray(u),[u.idTensor,de(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[de(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=xV(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=bV(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=yV(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=vV(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function TN(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=I("strides",e,t,n),u=qm(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[h,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:p,dilations:d,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var kV=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Fh(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=qm(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[At(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=TN(e,t,n);return[rs.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=TN(e,t,n);return[rs.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=qm(e,t,n);return[$h(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=qm(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[es(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[tb(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Yn(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Ft(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=O1(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Jy(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[db(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],c=s[2];return[ab(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},IV=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[kn(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[A1(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[L1(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Ul(a,r,s,i)]}case"Ones":return[Ja(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Rn(I("x",e,t,n))];case"RandomUniform":return[Jl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[Uh(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Jh(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[vt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ge(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function _v(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var NV=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=_v(e,t,n),c=await Qa.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=_v(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Qa.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=_v(e,t,n);return[await Qa.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=ce(I("condition",e,t,n),"bool"),r=[await Tb(a)];return a.dispose(),r}case"ListDiff":return W1(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},TV=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=Ib(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=Qh(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Qh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},SV=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[Tn(e.name,t,n)||a];case"Placeholder":return[Tn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[Cr(c)]}case"IdentityN":return I("x",e,t,n).map(c=>Cr(c));case"Snapshot":let r=I("x",e,t,n);return[Cr(r)];case"Shape":return[nt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>nt(c.shape));case"Size":return[de(I("x",e,t,n).size,"int32")];case"Rank":return[de(I("x",e,t,n).rank,"int32")];case"NoOp":return[de(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},CV=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=de(0),this.tensorMap=new Map,jt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),D(()=>{let a=dt(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];jt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return D(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return $t(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},_V=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new CV(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},EV=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Qa.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Qa.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Qa.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},AV=(e,t,n)=>{switch(e.op){case"Equal":return[ts(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Pi(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[ha(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ns(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Ph(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Ri(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[ma(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Kc(I("a",e,t,n))];case"LogicalOr":return[Bh(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[wn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FV=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ze(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[Ue(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[rs.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$V=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[xr(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[xr(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[lb(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Sa(I("x",e,t,n))];case"LogSoftmax":return[zh(I("x",e,t,n))];case"SparseToDense":return[Sb(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},DV=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Zn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[St(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Yl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Te(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Eh(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Wc(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Vc(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[Gy(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Vh(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Rh(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[x1(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[T1(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},RV=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[Qe(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[Di(a,ce(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[Di(s,ce(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[Mn(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[Mn(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[We(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[wb(p,a,r,s,i,o,l,c,u)]}case"Pack":return D(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=as(r[0]).shape,o=r.map(l=>{let c=k.arraysEqual(l.shape,s);if(!c&&!k.arraysEqual(as(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:H(l,s)});return[$t(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return dt(r,a)}case"Tile":{let a=I("reps",e,t,n);return[Xa(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Pn(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[H1(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[j1(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Sb(a,s,r,s.dtype===i.dtype?i:ce(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},MV=(e,t,n)=>{switch(e.op){case"FFT":return[Qc(I("x",e,t,n))];case"IFFT":return[eu(I("x",e,t,n))];case"RFFT":return[ep(I("x",e,t,n))];case"IRFFT":return[Yh(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},PV=(e,t,n)=>{switch(e.op){case"Cast":return[ce(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[$n(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[as(I("x",e,t,n),a)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[hb(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Jn(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Xc(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Gc(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[nb(I("x",e,t,n),a,r)]}case"BroadcastTo":return[Hc(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function SN(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return D(()=>mV(s,i,o));case"basic_math":return D(()=>fV(s,i,o));case"control":return wV(s,i,o);case"convolution":return D(()=>kV(s,i,o));case"creation":return D(()=>IV(s,i,o));case"dynamic":return NV(s,i,o);case"evaluation":return D(()=>TV(s,i,o));case"image":return D(()=>EV(s,i,o));case"graph":return D(()=>SV(s,i,o));case"logical":return D(()=>AV(s,i,o));case"matrices":return D(()=>FV(s,i,o));case"normalization":return D(()=>$V(s,i,o));case"reduction":return D(()=>DV(s,i,o));case"slice_join":return D(()=>RV(s,i,o));case"spectral":return D(()=>MV(s,i,o));case"transformation":return D(()=>PV(s,i,o));case"hash_table":return _V(s,i,o,a);case"custom":let l=nN(s.op);if(l&&l.customExecutor)return l.customExecutor(new hV(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var CN=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function EN(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Ln(d)[0]),u=[];a!=null&&(u=a.map(d=>Ln(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((_N(d)||OV(d)||LV(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function zV(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(u=>Ln(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{a.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{a.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{a.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&s.push(p)})}return c}var BV=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],WV=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],VV=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function _N(e){return BV.indexOf(e.op)>=0}function OV(e){return WV.indexOf(e.op)>=0}function LV(e){return VV.indexOf(e.op)>=0}var Ev=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Ev(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=EN(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return zV(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(u=>this.graph.nodes[Ln(u)[0]]),r=t.map(u=>Ln(u)[0]),s=r.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return D(()=>{let u=new CN(this.weightMap,l,c,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Ln(m),y=[];y[g]=e[m],p[f]=y});let d=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let g=SN(f,p,u,this._resourceManager);if(k.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=g,this.checkTensorForDisposal(f.name,f,p,u,d,r,h)}}return this.parent==null&&u.dispose(d),t.map(m=>Tn(m,p,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=K4(o.name,n,a);l!=null&&l.forEach(c=>{if(c&&!r.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new CN(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>Tn(p,i,s)),l=o.map(p=>p.id),c=Object.keys(e).map(p=>e[p].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(d=>{d&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Ln(b)[0]]),i=n.map(b=>Ln(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:p}=EN(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[v,x]=Ln(b),N=[];N[x]=e[b],h[v]=N});let m={},f=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let b=this.processStack(s,d,t,h,g,f,i,m,l);await Promise.all(b)}u==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!_N(b)&&!Tn(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw u!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let p="";if(u.node.op==="Enter"&&I("isConstant",u.node,a,n)&&([p]=Sr(u.node.name,n)),a[u.node.name]==null){let d=SN(u.node,a,n,this._resourceManager);p||([p]=Sr(u.node.name,n));let h=n.currentContext;k.isPromise(d)?c.push(d.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l),m))):(a[p]=d,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l))}else this.processChildNodes(u.node,t,n,a,r,l)}return c}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=Sr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Tn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!Tn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Ln(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Ln(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Ln(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},UV=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},GV="?tfjs-format=file",HV="model.json",AN=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new UV}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Ht.browserHTTPRequest(e,this.loadOptions);else{let t=Ht.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Ht.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=Ht.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Ev(wN.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=wN.Instance.transformGraph(e.modelInitializer);this.initializer=new Ev(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Ht.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ae)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function jV(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${HV}${GV}`);let n=new AN(e,t);return await n.load(),n}var FN="3.1.0",$N={};Oe($N,{CSVDataset:()=>RN,Dataset:()=>cu,FileDataSource:()=>MN,TextLineDataset:()=>DN,URLDataSource:()=>PN,array:()=>qV,csv:()=>XV,func:()=>YV,generator:()=>ZV,microphone:()=>QV,version_data:()=>ON,webcam:()=>JV,zip:()=>KV});var eU=Po(Dd()),tU=Po(Dd());function nU(e,t){return Km(e,t)}function Km(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(pu(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=Km(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function aU(e,t=zN){return LN(e,t)}function LN(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(pu(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(c=>c[i]),l=LN(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function zN(e){return e===null?null:pu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function BN(e,t){let n=new Map;Km(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return Km(e,t,n)}function pu(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ae))}function sU(e){return e==null||rU(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ae||k.isTypedArray(e)}function rU(e){return e===null||typeof e!="object"&&typeof e!="function"}function oU(e){return nU(e,iU)}function iU(e){return e instanceof Ae?{value:e.clone(),recurse:!1}:pu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var WN=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Av=class extends WN{constructor(){super(Av.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Av.INITIAL_CAPACITY=32;function VN(e){return new lU(e)}function Fv(e){return new uU(e)}function cU(e,t){return new UN(e,t)}function dU(e,t=ds.FAIL){return new pU(e,t)}var Yt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new xU(this,e)}filter(e){return new yU(this,e)}map(e){return new bU(this,e)}mapAsync(e){return new GN(this,e)}serialMapAsync(e){return new GN(this,e).serial()}flatmap(e){return new vU(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new gU(this,e,t)}columnMajorBatch(e,t=!0,n=zN){return this.rowMajorBatch(e,t).map(a=>aU(a,n))}concatenate(e,t){return new UN(VN([this,e]),t)}take(e){return e<0||e==null?this:new fU(this,e)}skip(e){return e<0||e==null?this:new mU(this,e)}prefetch(e){return new HN(this,e)}shuffle(e,t){return new wU(this,e,t)}serial(){return new hU(this)}},lU=class extends Yt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:oU(e),done:!1}}},uU=class extends Yt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},hU=class extends Yt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},mU=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Fe(e.value)}return this.upstream.next()}},fU=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},gU=class extends Yt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},yU=class extends Yt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Fe(e.value)}}},bU=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ta.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ta.getTensorsInContainer(n);for(let r of t)Ta.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},xU=class extends Yt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},GN=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ta.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ta.getTensorsInContainer(n);for(let r of t)Ta.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},$v=class extends Yt{constructor(){super();this.outputQueue=new Av,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},vU=class extends $v{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ta.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ta.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ta.isTensorInList(r,a)||r.dispose();return!0}},UN=class extends Yt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ds;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ds||(ds={}));var pU=class extends Yt{constructor(e,t=ds.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Yt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await BN(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ds.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ds.SHORTEST:return{value:null,done:!0};case ds.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},HN=class extends Yt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new WN(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},wU=class extends HN{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=tU.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},cu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),zn(async()=>(await n.iterator()).columnMajorBatch(e,t,kU),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,zn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,zn(async()=>(await t.iterator()).filter(a=>D(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return zn(async()=>(await t.iterator()).map(n=>D(()=>e(n))),this.size)}mapAsync(e){let t=this;return zn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return zn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,zn(async()=>{let a=Fv(async()=>({value:await t.iterator(),done:!1}));return cU(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,zn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=eU.alea(t||k.now().toString());return zn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,zn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};cu.MAX_BUFFER_SIZE=1e4;function zn(e,t=null){return new class extends cu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function qV(e){return zn(async()=>VN(e),e.length)}function KV(e){if(!pu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return zn(async()=>{let n=await BN(e,a=>{if(a instanceof cu)return{value:a.iterator(),recurse:!1};if(pu(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return dU(n,ds.SHORTEST)},t)}function kU(e){if(e===null)return null;let t=e[0];return sU(t)?{value:IU(e),recurse:!1}:{value:null,recurse:!0}}function IU(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ae?$t(e):Kn(e)}var DN=class extends cu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Xm='"',kp=Symbol("out"),jN=Symbol("field"),Ym=Symbol("quote"),Dv=Symbol("quoteafterquote"),qN=Symbol("quoteinquote"),RN=class extends cu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new DN(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let c=Number(o);if(isNaN(c))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=c;else switch(i.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(o);break;default:l=c}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=kp;for(let i=0;i<r;i++)switch(s){case kp:switch(e.charAt(i)){case Xm:a=i+1,s=Ym;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=kp;break;default:s=jN,a=i;break}break;case jN:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=kp,a=i+1;break;default:}break;case Ym:switch(e.charAt(i)){case Xm:s=Dv;break;default:}break;case Dv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=kp,a=i+1;break;case Xm:s=Ym;break;default:s=qN;break}break;case qN:switch(e.charAt(i)){case Xm:s=Ym;break;default:}break;default:}if(s===Dv?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},KN=class extends Yt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ee().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new KN(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),Kn(n,t)}},XN=class extends Yt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=nt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ca([s,r,o,i],[1,4])}else this.cropBox=Ca([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ee().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new XN(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ai.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return D(()=>{let t=$n(ce(e,"float32"),0),n;n=Qa.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return H(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},YN=class{},ZN=class extends Yt{split(e){return new NU(this,e)}},NU=class extends ZN{constructor(e,t){super();this.upstream=e,this.impl=new TU(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},TU=class extends $v{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},CU=class extends Yt{decodeUTF8(){return new SU(this)}},SU=class extends ZN{constructor(e){super();this.upstream=e,this.impl=new _U(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},_U=class extends $v{constructor(e){super();if(this.upstream=e,ee().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=ZE();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ee().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},JN=class extends CU{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(ee().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function AU(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=EU(e));let r=await k.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new JN(s,t)}else throw new Error(r.statusText)}var EU=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function QN(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var MN=class extends YN{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(QN(this.input)&&ee().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new JN(this.input,this.options)}},PN=class extends YN{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return QN(this.url)?new MN(this.url,this.fileOptions).iterator():AU(this.url,this.fileOptions)}};function XV(e,t={}){return new RN(new PN(e),t)}function YV(e){let t=Fv(e);return zn(async()=>t)}function ZV(e){return zn(async()=>{let t=await e();return Fv(()=>t.next())})}async function JV(e,t){return XN.create(e,t)}async function QV(e){return KN.create(e)}var ON="3.1.0";function we(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var FU=er.whereImpl,Rv=class extends pc{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Rd(this,qa())}nextDataId(){return Rv.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,ee().get("IS_NODE")&&_.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return qa().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){we([e],"where");let t=this.readSync(e.dataId);return FU(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Rv.nextDataId=0;var eT={};Oe(eT,{addImpl:()=>nT,bincountImpl:()=>Mv,bincountReduceImpl:()=>aT,ceilImpl:()=>rT,concatImpl:()=>Pv,expImpl:()=>sT,expm1Impl:()=>iT,floorImpl:()=>oT,gatherV2Impl:()=>lT,greaterImpl:()=>uT,lessImpl:()=>cT,linSpaceImpl:()=>pT,logImpl:()=>dT,maxImpl:()=>hT,maximumImpl:()=>mT,minimumImpl:()=>fT,multiplyImpl:()=>Ov,negImpl:()=>gT,notEqualImpl:()=>yT,prodImpl:()=>bT,rangeImpl:()=>zv,rsqrtImpl:()=>xT,simpleAbsImpl:()=>tT,sliceImpl:()=>Zm,squaredDifferenceImpl:()=>vT,stridedSliceImpl:()=>wT,subImpl:()=>kT,tileImpl:()=>IT,topKImpl:()=>NT,transposeImpl:()=>Lv,uniqueImpl:()=>TT});function tT(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var $U=e=>{let{x:t}=e.inputs,n=e.backend;we(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=tT(r),n.makeOutput(a,t.shape,"float32")},DU={kernelName:zo,backendName:"cpu",kernelFunc:$U};function Rt(e){return(t,n,a,r,s)=>{let i=_.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),c=k.sizeFromShape(i),u=k.getTypedArrayFromDType(s,c),p=t.length,d=n.length,h=k.computeStrides(t),m=k.computeStrides(n),f=_.getBroadcastDims(t,i),g=_.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<u.length;++y)u[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<u.length;++y){let b=k.indexToLoc(y,o,l),v=b.slice(-p);f.forEach(C=>v[C]=0);let x=k.locToIndex(v,p,h),N=b.slice(-d);g.forEach(C=>N[C]=0);let T=k.locToIndex(N,d,m);u[y]=e(a[x],r[T])}return[u,i]}}function Bn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var RU={kernelName:Ud,backendName:"cpu",kernelFunc:Bn};function Jm(e,t,n="float32"){if(n==="complex64"){let r=Jm(e,t,"float32"),s=Jm(e,t,"float32");return Bn({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function ir(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var MU={kernelName:Xs,backendName:"cpu",kernelFunc:ir};function Xi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var PU={kernelName:uh,backendName:"cpu",kernelFunc:Xi};function hs(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return ir({inputs:{x:r},backend:n});let i=Jm(n,r.shape,r.dtype),o=hs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Bn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Xi({inputs:{input:r},backend:n}),o=hs({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=ir({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,c]=Rt((u,p)=>u!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var OU={kernelName:Ps,backendName:"cpu",kernelFunc:hs};function Zt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;we([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=hs({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(d.dataId).values,f=hs({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,v=l.data.get(y.dataId).values,x=l.data.get(b.dataId).values,[N,T,C]=n(i.shape,o.shape,h,m,v,x),F=l.makeTensorInfo(C,"float32",N),$=l.makeTensorInfo(C,"float32",T),P=Bn({inputs:{real:F,imag:$},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(F),l.disposeIntermediateTensorInfo($),P}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}}}function Bv(e){return(t,n,a,r,s,i)=>{let o=_.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),c=o.length,u=k.computeStrides(o),p=k.getTypedArrayFromDType("float32",l),d=k.getTypedArrayFromDType("float32",l),h=_.getBroadcastDims(t,o),m=_.getBroadcastDims(n,o),f=_.mergeRealAndImagArrays(a,r),g=_.mergeRealAndImagArrays(s,i),y=t.length,b=k.computeStrides(t),v=n.length,x=k.computeStrides(n);if(h.length+m.length===0)for(let N=0;N<p.length;N++){let T=N%f.length,C=N%g.length,F=e(f[T*2],f[T*2+1],g[C*2],g[C*2+1]);p[N]=F.real,d[N]=F.imag}else for(let N=0;N<p.length;N++){let T=k.indexToLoc(N,c,u),C=T.slice(-y);h.forEach(W=>C[W]=0);let F=k.locToIndex(C,y,b),$=T.slice(-v);m.forEach(W=>$[W]=0);let P=k.locToIndex($,v,x),B=e(f[F*2],f[F*2+1],g[P*2],g[P*2+1]);p[N]=B.real,d[N]=B.imag}return[p,d,o]}}var nT=Rt((e,t)=>e+t),LU=Bv((e,t,n,a)=>({real:e+n,imag:t+a})),Ip=Zt(Ur,nT,LU),zU={kernelName:Ur,backendName:"cpu",kernelFunc:Ip};function Mv(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function aT(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Le([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let c=e.get(o,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(a?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function du(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function it(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(we(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=k.sizeFromShape(i.shape),u=n||i.dtype,p=k.getArrayFromDType(u,c);for(let d=0;d<c;++d)p[d]=t(l[d],r);return o.makeTensorInfo(i.shape,u,p)}}function hu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(we(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,r);return o.makeTensorInfo(i.shape,c,u)}}var rT=du(e=>Math.ceil(e)),BU=hu(Os,rT),WU={kernelName:Os,backendName:"cpu",kernelFunc:BU};function Pv(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let p=0;p<i.shape[1];++p)r[u+p]=o[l++]}s+=i.shape[1]})}return r}var sT=du(e=>Math.exp(e)),ST=hu(Gs,sT),VU={kernelName:Gs,backendName:"cpu",kernelFunc:ST},iT=du(e=>Math.expm1(e)),UU=hu(tl,iT),GU={kernelName:tl,backendName:"cpu",kernelFunc:UU},oT=du(e=>Math.floor(e)),HU=hu(Hs,oT),jU={kernelName:Hs,backendName:"cpu",kernelFunc:HU};function lT(e,t,n){let a=Le(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let c=e.locToIndex(s);a.values[r]=e.values[c]}return a}var uT=Rt((e,t)=>e>t?1:0),qU=Zt(sl,uT,null,"bool"),KU={kernelName:sl,backendName:"cpu",kernelFunc:qU},cT=Rt((e,t)=>e<t?1:0),XU=Zt(ul,cT,null,"bool"),YU={kernelName:ul,backendName:"cpu",kernelFunc:XU};function pT(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var dT=du(e=>Math.log(e)),ZU=hu(Zs,dT),JU={kernelName:Zs,backendName:"cpu",kernelFunc:ZU};function hT(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let c=e[i+l];c>o&&(o=c)}r[s]=o}return r}var mT=Rt((e,t)=>Math.max(e,t)),QU=Zt(Qs,mT),eG={kernelName:Qs,backendName:"cpu",kernelFunc:QU},fT=Rt((e,t)=>Math.min(e,t)),tG=Zt(ai,fT),nG={kernelName:ai,backendName:"cpu",kernelFunc:tG},Ov=Rt((e,t)=>e*t),aG=Bv((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Wv=Zt(ri,Ov,aG),rG={kernelName:ri,backendName:"cpu",kernelFunc:Wv};function gT(e,t,n){let a=k.createScalarValue(-1,n);return Ov([],t,a,e,n)}function sG(e){let{inputs:t,backend:n}=e,{x:a}=t;we(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=gT(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var iG={kernelName:ml,backendName:"cpu",kernelFunc:sG},yT=Rt((e,t)=>e!==t?1:0),oG=Zt(fl,yT,null,"bool"),lG={kernelName:fl,backendName:"cpu",kernelFunc:oG};function Lv(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),c=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let u=0;u<i;++u){let p=k.indexToLoc(u,s,o),d=new Array(p.length);for(let m=0;m<d.length;m++)d[m]=p[a[m]];let h=k.locToIndex(d,s,l);c[h]=e[u]}return c}function xa(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;we(r,"transpose");let i=r.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=r.shape[s[u]];let l=a.data.get(r.dataId).values,c=Lv(l,r.shape,r.dtype,s,o);return{dataId:a.write(c,o,r.dtype),shape:o,dtype:r.dtype}}var uG={kernelName:Ii,backendName:"cpu",kernelFunc:xa};function bT(e,t,n,a){let[r,s]=_.computeOutAndReduceShapes(e,a),i=pa(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),l=k.sizeFromShape(s);for(let c=0;c<o.length;++c){let u=c*l,p=1;for(let d=0;d<l;++d)p*=n[u+d];o[c]=p}return{outVals:o,outShape:r,outDtype:i}}function cG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"prod");let o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=_.getAxesPermutation(l,o),u=l,p=r,d=[];c!=null&&(p=xa({inputs:{x:r},backend:n,attrs:{perm:c}}),d.push(p),u=_.getInnerMostAxes(u.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:g}=bT(p.shape,p.dtype,h,u),y=f;return i&&(y=_.expandShapeToKeepDim(f,l)),d.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var pG={kernelName:wl,backendName:"cpu",kernelFunc:cG};function zv(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var xT=du(e=>1/Math.sqrt(e)),dG=hu(mi,xT),hG={kernelName:mi,backendName:"cpu",kernelFunc:dG};function Zm(e,t,n,a,r){let s=pn.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let p=pn.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,c=Le(a,r,l),u=Le(n,r);for(let p=0;p<u.size;++p){let d=u.indexToLoc(p),h=d.map((m,f)=>m+t[f]);u.set(c.get(...h),...d)}return r==="string"?_.fromStringArrayToUint8(u.values):u.values}function Yi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;we(r,"slice");let[o,l]=pn.parseSliceParams(r,s,i);pn.assertParamsValid(r,o,l);let c=n.data.get(r.dataId).values,u=Zm(c,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var mG={kernelName:Cl,backendName:"cpu",kernelFunc:Yi},vT=Rt((e,t)=>{let n=e-t;return n*n}),fG=Zt(vi,vT),gG={kernelName:vi,backendName:"cpu",kernelFunc:fG};function wT(e,t,n,a){let r=Le(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var kT=Rt((e,t)=>e-t),yG=Bv((e,t,n,a)=>({real:e-n,imag:t-a})),Vv=Zt(wi,kT,yG),bG={kernelName:wi,backendName:"cpu",kernelFunc:Vv};function IT(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Le(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function NT(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*a),c=k.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let d=p*o,h=e.subarray(d,d+o),m=[];for(let b=0;b<h.length;b++)m.push({value:h[b],index:b});m.sort((b,v)=>v.value-b.value);let f=p*a,g=l.subarray(f,f+a),y=c.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let u=t.slice();return u[u.length-1]=a,[Le(u,n,l),Le(u,"int32",c)]}function TT(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Ot(s,a,e),c=[],u=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(u)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,c.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let d=new Ot(p,a);c.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)d.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:o}}var xG="3.1.0";Ch("cpu",()=>new Rv,1);var CT=it(Zo,e=>e>=0?e:Math.exp(e)-1),vG={kernelName:Zo,backendName:"cpu",kernelFunc:CT};function _T(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;we([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let c=0;c<o.length;c++)l[c]=o[c]<0?s*o[c]:o[c];return n.makeTensorInfo(r.shape,"float32",l)}var wG={kernelName:Ys,backendName:"cpu",kernelFunc:_T},kG=Rt((e,t)=>e<0?t*e:e);function ET(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;we([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=kG(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var IG={kernelName:li,backendName:"cpu",kernelFunc:ET},AT=it(ui,e=>Math.max(0,e)),NG={kernelName:ui,backendName:"cpu",kernelFunc:AT},FT=it(pi,e=>Math.min(Math.max(0,e),6)),TG={kernelName:pi,backendName:"cpu",kernelFunc:FT};function Uv(e,t,n,a,r){if(n==="linear")return ir({inputs:{x:t},backend:e});if(n==="relu")return AT({inputs:{x:t},backend:e});if(n==="elu")return CT({inputs:{x:t},backend:e});if(n==="relu6")return FT({inputs:{x:t},backend:e});if(n==="prelu")return ET({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return _T({inputs:{x:t},backend:e,attrs:{alpha:r}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function It(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,p=c.complexTensorInfos.imag;u.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var SG={kernelName:Il,backendName:"cpu",kernelFunc:It};function $T(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;we([r,s],"matMul");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=g===y||g===1||y===1;k.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let v=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);k.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,u,d]:[g,d,u],N=o?[y,h,p]:[y,p,h],T=It({inputs:{x:r},backend:n,attrs:{shape:x}}),C=It({inputs:{x:s},backend:n,attrs:{shape:N}}),F=i?T.shape[1]:T.shape[2],$=i?T.shape[2]:T.shape[1],P=o?C.shape[1]:C.shape[2],B=Math.max(g,y),W=n.data.get(T.dataId).values,G=n.data.get(C.dataId).values,q=k.computeStrides(T.shape),j=k.computeStrides(C.shape),[X,K,ne]=i?[q[0],1,q[1]]:[q[0],q[1],1],[J,se,Q]=o?[1,j[1],j[0]]:[j[1],1,j[0]],oe=$*P,ae=Le([B,$,P],T.dtype),pe=ae.values,ue=n.blockSize;for(let ge=0;ge<B;ge++)for(let ye=0;ye<$;ye+=ue)for(let ke=0;ke<P;ke+=ue)for(let Se=0;Se<F;Se+=ue){let Ce=Math.min(ye+ue,$),Re=Math.min(ke+ue,P),Ke=Math.min(Se+ue,F);for(let Ve=ye;Ve<Ce;Ve++)for(let st=ke;st<Re;st++){let lt=0;for(let He=Se;He<Ke;He++){let ct=Math.min(ge,g-1)*X,pt=Math.min(ge,y-1)*Q,Hn=W[ct+Ve*K+He*ne],Je=G[He*J+st*se+pt];lt+=Hn*Je}pe[ge*oe+(Ve*P+st)]+=lt}}return n.disposeIntermediateTensorInfo(T),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(v,ae.dtype,ae.values)}var CG={kernelName:Ms,backendName:"cpu",kernelFunc:$T};function _G(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d,h,m,f=[];d=$T({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:c},backend:n}),i&&(h=Ip({inputs:{a:d,b:i},backend:n}),f.push(d),d=h),u&&(m=Uv(n,d,u,o,p),f.push(d),d=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return d}var EG={kernelName:Ni,backendName:"cpu",kernelFunc:_G},AG=it(Bo,e=>Math.acos(e)),FG={kernelName:Bo,backendName:"cpu",kernelFunc:AG},$G=it(Wo,e=>Math.acosh(e)),DG={kernelName:Wo,backendName:"cpu",kernelFunc:$G};function RG(e){let{inputs:t,backend:n}=e,a=t;we(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Le(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let c=0;c<i.length;c++)i[c]+=l[c]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var MG={kernelName:$s,backendName:"cpu",kernelFunc:RG};function PG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"all");let o=k.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=xa({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("all",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=k.sizeFromShape(d),m=k.makeZerosTypedArray(k.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,v=f[b];for(let x=0;x<h;++x){let N=f[b+x];v=v&&N}m[y]=v}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=It({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var OG={kernelName:Ld,backendName:"cpu",kernelFunc:PG};function LG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"any");let o=k.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=xa({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("any",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=k.sizeFromShape(d),m=k.makeZerosTypedArray(k.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,v=f[b];for(let x=0;x<h;++x){let N=f[b+x];v=v||N}m[y]=v}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=It({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var zG={kernelName:zd,backendName:"cpu",kernelFunc:LG};function BG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;we(r,"argMax");let i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=xa({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(u),h=k.makeZerosTypedArray(d,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],v=0;for(let x=0;x<m;++x){let N=f[y+x];N>b&&(b=N,v=x)}h[g]=v}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var WG={kernelName:Ds,backendName:"cpu",kernelFunc:BG};function VG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;we(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=xa({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(u),h=k.makeZerosTypedArray(d,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],v=0;for(let x=0;x<m;++x){let N=f[y+x];N<b&&(b=N,v=x)}h[g]=v}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var UG={kernelName:mc,backendName:"cpu",kernelFunc:VG},GG=it(Vo,e=>Math.asin(e)),HG={kernelName:Vo,backendName:"cpu",kernelFunc:GG},jG=it(Uo,e=>Math.asinh(e)),qG={kernelName:Uo,backendName:"cpu",kernelFunc:jG},KG=it(Go,e=>Math.atan(e)),XG={kernelName:Go,backendName:"cpu",kernelFunc:KG},YG=Rt((e,t)=>Math.atan2(e,t)),ZG=Zt(jo,YG),JG={kernelName:jo,backendName:"cpu",kernelFunc:ZG},QG=it(Ho,e=>Math.atanh(e)),eH={kernelName:Ho,backendName:"cpu",kernelFunc:QG};function Gv(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Le(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],v=r.outShape[3];for(let x=0;x<r.batchSize;++x){let N=x*y,T=x*a[0];for(let C=0;C<r.inChannels;++C)for(let F=0;F<r.outHeight;++F){let $=F*i-d,P=Math.max(0,$),B=Math.min(r.inHeight,u+$),W=N+F*b;for(let G=0;G<r.outWidth;++G){let q=G*o-h,j=Math.max(0,q),X=Math.min(r.inWidth,p+q),K=m,ne=0,J=0;for(let Q=P;Q<B;Q+=l){let oe=T+Q*a[1];for(let ae=j;ae<X;ae+=c){let pe=oe+ae*a[2],ue=e[pe+C];s==="max"&&ue>K?K=ue:s==="avg"&&(ne+=ue,J++)}if(isNaN(K))break}let se=W+G*v+C;g[se]=s==="avg"?ne/J:K}}}return f}function DT(e,t,n,a,r=!1,s=!1){let i=Le(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,c=a.dilationHeight,u=a.dilationWidth,p=a.effectiveFilterHeight,d=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Le(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let v=b*o-h,x=v;for(;x<0;)x+=c;let N=Math.min(a.inHeight,p+v);for(let T=0;T<a.outWidth;++T){let C=T*l-m,F=C;for(;F<0;)F+=u;let $=Math.min(a.inWidth,d+C),P=Number.NEGATIVE_INFINITY,B=-1;for(let W=x;W<N;W+=c){let G=W-v;for(let q=F;q<$;q+=u){let j=q-C,X=f.get(g,W,q,y);X>P&&(P=X,r?B=s?((g*a.inHeight+W)*a.inWidth+q)*a.inChannels+y:(W*a.inWidth+q)*a.inChannels+y:B=G*d+j)}}i.set(B,g,b,T,y)}}return i}function RT(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,v=Le(r.outShape,n),x=v.values,N=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],F=r.outShape[4];for(let $=0;$<r.batchSize;++$){let P=$*N,B=$*a[0];for(let W=0;W<r.inChannels;++W)for(let G=0;G<r.outDepth;++G){let q=G*i-f,j=q;for(;j<0;)j+=c;let X=Math.min(r.inDepth,d+q),K=P+G*T;for(let ne=0;ne<r.outHeight;++ne){let J=ne*o-g,se=J;for(;se<0;)se+=u;let Q=Math.min(r.inHeight,h+J),oe=K+ne*C;for(let ae=0;ae<r.outWidth;++ae){let pe=ae*l-y,ue=pe;for(;ue<0;)ue+=p;let ge=Math.min(r.inWidth,m+pe),ye=oe+ae*F,ke=b,Se=0,Ce=0;for(let Ke=j;Ke<X;Ke+=c){let Ve=B+Ke*a[1];for(let st=se;st<Q;st+=u){let lt=Ve+st*a[2];for(let He=ue;He<ge;He+=p){let ct=lt+He*a[3],pt=e[ct+W];if(s==="max"&&pt>ke?ke=pt:s==="avg"&&(Se+=pt,Ce++),isNaN(ke))break}if(isNaN(ke))break}if(isNaN(ke))break}let Re=ye+W;x[Re]=s==="avg"?Se/Ce:ke}}}}return v}function tH(e,t){let n=Le(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-d,v=b;for(;v<0;)v+=i;let x=Math.min(t.inDepth,c+b);for(let N=0;N<t.outHeight;++N){let T=N*r-h,C=T;for(;C<0;)C+=o;let F=Math.min(t.inHeight,u+T);for(let $=0;$<t.outWidth;++$){let P=$*s-m,B=P;for(;B<0;)B+=l;let W=Math.min(t.inWidth,p+P),G=Number.NEGATIVE_INFINITY,q=-1;for(let j=v;j<x;j+=i){let X=j-b;for(let K=C;K<F;K+=o){let ne=K-T;for(let J=B;J<W;J+=l){let se=J-P,Q=e.get(f,j,K,J,g);Q>=G&&(G=Q,q=X*u*p+ne*u+se)}}}n.set(q,f,y,N,$,g)}}}return n}function nH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;we(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;k.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))p=ir({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=Gv(d,r.shape,r.dtype,h,u,"avg");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var aH={kernelName:Rs,backendName:"cpu",kernelFunc:nH};function rH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;we(r,"avgPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=RT(p,r.shape,r.dtype,k.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var sH={kernelName:fc,backendName:"cpu",kernelFunc:rH};function iH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;we([r,s],"avgPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=u.strideDepth,d=u.strideHeight,h=u.strideWidth,m=u.filterDepth,f=u.filterHeight,g=u.filterWidth,y=u.dilationDepth,b=u.dilationHeight,v=u.dilationWidth,x=u.effectiveFilterDepth,N=u.effectiveFilterHeight,T=u.effectiveFilterWidth,C=x-1-u.padInfo.front,F=T-1-u.padInfo.left,$=N-1-u.padInfo.top,P=Le(s.shape,"float32"),B=1/(m*f*g),W=n.bufferSync(r);for(let G=0;G<u.batchSize;++G)for(let q=0;q<u.inChannels;++q)for(let j=0;j<u.inDepth;++j)for(let X=0;X<u.inHeight;++X)for(let K=0;K<u.inWidth;++K){let ne=j-C,J=X-$,se=K-F,Q=0;for(let oe=0;oe<x;oe+=y){let ae=(ne+oe)/p;if(!(ae<0||ae>=u.outDepth||Math.floor(ae)!==ae))for(let pe=0;pe<N;pe+=b){let ue=(J+pe)/d;if(!(ue<0||ue>=u.outHeight||Math.floor(ue)!==ue))for(let ge=0;ge<T;ge+=v){let ye=(se+ge)/h;ye<0||ye>=u.outWidth||Math.floor(ye)!==ye||(Q+=W.get(G,ae,ue,ye,q))}}}P.set(Q*B,G,j,X,K,q)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var oH={kernelName:Wd,backendName:"cpu",kernelFunc:iH};function lH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;we([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=u.strideHeight,d=u.strideWidth,h=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,g=u.dilationWidth,y=u.effectiveFilterHeight,b=u.effectiveFilterWidth,v=b-1-u.padInfo.left,x=y-1-u.padInfo.top,N=Le(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,F=Le(r.shape,"float32",C);for(let $=0;$<u.batchSize;++$)for(let P=0;P<u.inChannels;++P)for(let B=0;B<u.inHeight;++B)for(let W=0;W<u.inWidth;++W){let G=B-x,q=W-v,j=0;for(let X=0;X<y;X+=f){let K=(G+X)/p;if(!(K<0||K>=u.outHeight||Math.floor(K)!==K))for(let ne=0;ne<b;ne+=g){let J=(q+ne)/d;J<0||J>=u.outWidth||Math.floor(J)!==J||(j+=F.get($,K,J,P))}}N.set(j*T,$,B,W,P)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var uH={kernelName:Bd,backendName:"cpu",kernelFunc:lH};function cH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),we([r,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=a;c==null&&(c=.001);let u=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),g=m.length,y=h.length,b=d.length,v=p.length,x=0,N=0,T=0,C=0;for(let F=0;F<u.length;++F)f[F]=m[x++]+(u[F]-p[N++])*h[T++]/Math.sqrt(d[C++]+c),x>=g&&(x=0),N>=v&&(N=0),T>=y&&(T=0),C>=b&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var pH={kernelName:qs,backendName:"cpu",kernelFunc:cH};function dH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;we([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=It({inputs:{x:r},backend:n,attrs:{shape:l}}),m=xa({inputs:{x:h},backend:n,attrs:{perm:c}}),f=It({inputs:{x:m},backend:n,attrs:{shape:u}}),g=Yi({inputs:{x:f},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var hH={kernelName:gc,backendName:"cpu",kernelFunc:dH};function mH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,c=Mv(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var fH={kernelName:Vd,backendName:"cpu",kernelFunc:mH},gH=it(Gr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),yH={kernelName:Gr,backendName:"cpu",kernelFunc:gH},bH=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;c<o.length;c++){let u=o[c],p=l[c];a[c]=Math.hypot(u,p)}return n.makeOutput(a,t.shape,"float32")},xH={kernelName:yc,backendName:"cpu",kernelFunc:bH};function mu(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var vH={kernelName:nh,backendName:"cpu",kernelFunc:mu};function fu(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(f=>f.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return ir({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(_.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(x=>Xi({inputs:{input:x},backend:n})),g=o.map(x=>mu({inputs:{input:x},backend:n})),y=fu({inputs:f,backend:n,attrs:{axis:s}}),b=fu({inputs:g,backend:n,attrs:{axis:s}}),v=Bn({inputs:{real:y,imag:b},backend:n});return f.forEach(x=>n.disposeIntermediateTensorInfo(x)),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),v}let c=o.map(f=>{let g=k.sizeFromShape(f.shape.slice(s));return It({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=_.computeOutShape(c.map(f=>f.shape),1);let p=c[0].shape[0]===1,d=Pv(u,i,t[0].dtype,p),h=_.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var wH={kernelName:qo,backendName:"cpu",kernelFunc:fu};function MT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a;we([r,s],"conv2d");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,b=d.padInfo.top,v=d.dataFormat==="channelsLast",x=new Ot(d.outShape,r.dtype),N=k.computeStrides(r.shape),T=k.computeStrides(s.shape),C=N[0],F=v?N[1]:N[2],$=v?N[2]:1,P=v?1:N[1],B=x.strides[0],W=v?x.strides[1]:x.strides[2],G=v?x.strides[2]:1,q=v?1:x.strides[1],j=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,K=x.values;for(let ne=0;ne<d.batchSize;++ne){let J=ne*C,se=ne*B;for(let Q=0;Q<d.outHeight;++Q){let oe=se+Q*W,ae=Q*d.strideHeight-b;for(let pe=0;pe<h;++pe){let ue=ae+pe*f;if(ue<0||ue>=d.inHeight)continue;let ge=pe*T[0],ye=J+ue*F;for(let ke=0;ke<d.outWidth;++ke){let Se=oe+ke*G,Ce=ke*d.strideWidth-y;for(let Re=0;Re<m;++Re){let Ke=Ce+Re*g;if(Ke<0||Ke>=d.inWidth)continue;let Ve=ge+Re*T[1],st=ye+Ke*$,lt=Ve;for(let He=0;He<d.inChannels;++He){let ct=j[st+He*P];for(let pt=0;pt<d.outChannels;++pt)K[Se+pt*q]+=ct*X[lt+pt];lt+=d.outChannels}}}}}}return n.makeTensorInfo(x.shape,x.dtype,K)}var kH={kernelName:Ls,backendName:"cpu",kernelFunc:MT};function IH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a;we([r,s],"conv2dBackpropFilter");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=d,y=d.dataFormat==="channelsLast",b=new Ot(d.filterShape,"float32"),v=d.padInfo.left,x=d.padInfo.top,N=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=new Ot(r.shape,r.dtype,N),F=new Ot(s.shape,s.dtype,T);for(let $=0;$<f;++$){let P=Math.max(0,Math.ceil((x-$)/h)),B=Math.min(d.outHeight,(d.inHeight+x-$)/h);for(let W=0;W<g;++W){let G=Math.max(0,Math.ceil((v-W)/m)),q=Math.min(d.outWidth,(d.inWidth+v-W)/m);for(let j=0;j<d.inChannels;++j)for(let X=0;X<d.outChannels;++X){let K=0;for(let ne=0;ne<d.batchSize;++ne)for(let J=P;J<B;++J){let se=$+J*h-x;for(let Q=G;Q<q;++Q){let oe=W+Q*m-v;y?K+=C.get(ne,se,oe,j)*F.get(ne,J,Q,X):K+=C.get(ne,j,se,oe)*F.get(ne,X,J,Q)}}b.set(K,$,W,j,X)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var NH={kernelName:Gd,backendName:"cpu",kernelFunc:IH};function TH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a;we([r,s],"conv2dBackpropInput");let p=k.computeStrides(s.shape),d=k.computeStrides(r.shape),h=_.convertConv2DDataFormat(c),m=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),f=new Ot(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[v,x,N]=p,{batchSize:T,filterHeight:C,filterWidth:F,inChannels:$,inHeight:P,inWidth:B,outChannels:W,outHeight:G,outWidth:q,strideHeight:j,strideWidth:X}=m;h=m.dataFormat;let K=C-1-m.padInfo.top,ne=F-1-m.padInfo.left,J=h==="channelsLast",se=f.strides[0],Q=J?f.strides[1]:f.strides[2],oe=J?f.strides[2]:1,ae=J?1:f.strides[1],pe=d[0],ue=J?d[1]:d[2],ge=J?d[2]:1,ye=J?1:d[1];for(let ke=0;ke<T;++ke)for(let Se=0;Se<$;++Se)for(let Ce=0;Ce<P;++Ce){let Re=Ce-K,Ke=Math.max(0,Math.ceil(Re/j)),Ve=Math.min(G,(C+Re)/j);for(let st=0;st<B;++st){let lt=st-ne,He=Math.max(0,Math.ceil(lt/X)),ct=Math.min(q,(F+lt)/X),pt=0;for(let Je=Ke;Je<Ve;++Je){let En=Je*j-Re;for(let en=He;en<ct;++en){let An=en*X-lt,ra=pe*ke+ue*Je+ge*en,vn=v*(C-1-En)+x*(F-1-An)+N*Se;for(let un=0;un<W;++un){let sa=y[ra+ye*un],Va=b[vn+un];pt+=sa*Va}}}let Hn=se*ke+Q*Ce+oe*st+ae*Se;g[Hn]=pt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var SH={kernelName:zs,backendName:"cpu",kernelFunc:TH};function CH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;we([r,s],"conv3d");let c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=c,y=g.front,b=g.left,v=g.top,x=new Ot(c.outShape,r.dtype),N=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=x.values,F=k.computeStrides(r.shape),$=k.computeStrides(s.shape);for(let P=0;P<c.batchSize;++P){let B=P*F[0],W=P*x.strides[0];for(let G=0;G<c.outDepth;++G){let q=W+G*x.strides[1],j=G*c.strideDepth-y;for(let X=0;X<u;++X){let K=j+X*h;if(K<0||K>=c.inDepth)continue;let ne=X*$[0],J=B+K*F[1];for(let se=0;se<c.outHeight;++se){let Q=q+se*x.strides[2],oe=se*c.strideHeight-v;for(let ae=0;ae<p;++ae){let pe=oe+ae*m;if(pe<0||pe>=c.inHeight)continue;let ue=ne+ae*$[1],ge=J+pe*F[2];for(let ye=0;ye<c.outWidth;++ye){let ke=Q+ye*c.outChannels,Se=ye*c.strideWidth-b;for(let Ce=0;Ce<d;++Ce){let Re=Se+Ce*f;if(Re<0||Re>=c.inWidth)continue;let Ke=ue+Ce*$[2],Ve=ge+Re*c.inChannels,st=Ke;for(let lt=0;lt<c.inChannels;++lt){let He=N[Ve+lt];for(let ct=0;ct<c.outChannels;++ct)C[ke+ct]+=He*T[st+ct];st+=c.outChannels}}}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var _H={kernelName:bc,backendName:"cpu",kernelFunc:CH};function EH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;we([r,s],"conv3dBackpropFilterV2");let c=k.computeStrides(r.shape),u=k.computeStrides(s.shape),p=_.computeConv3DInfo(r.shape,l,i,1,o),d=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,g=p.filterHeight,y=p.filterWidth,b=new Ot(p.filterShape,"float32"),v=b.values,[x,N,T,C]=b.strides,F=n.data.get(s.dataId).values,[$,P,B,W]=u,G=n.data.get(r.dataId).values,[q,j,X,K]=c,ne=p.padInfo.front,J=p.padInfo.left,se=p.padInfo.top;for(let Q=0;Q<f;++Q){let oe=Math.max(0,Math.ceil((ne-Q)/d)),ae=Math.min(p.outDepth,(p.inDepth+ne-Q)/d),pe=Q*x;for(let ue=0;ue<g;++ue){let ge=Math.max(0,Math.ceil((se-ue)/h)),ye=Math.min(p.outHeight,(p.inHeight+se-ue)/h),ke=ue*N+pe;for(let Se=0;Se<y;++Se){let Ce=Math.max(0,Math.ceil((J-Se)/m)),Re=Math.min(p.outWidth,(p.inWidth+J-Se)/m),Ke=Se*T+ke;for(let Ve=0;Ve<p.inChannels;++Ve){let st=Ve*C+Ke;for(let lt=0;lt<p.outChannels;++lt){let He=0;for(let ct=0;ct<p.batchSize;++ct){let pt=ct*q,Hn=ct*$;for(let Je=oe;Je<ae;++Je){let En=(Q+Je*d-ne)*j+pt,en=Je*P+Hn;for(let An=ge;An<ye;++An){let ra=(ue+An*h-se)*X+En,vn=An*B+en;for(let un=Ce;un<Re;++un){let sa=(Se+un*m-J)*K+ra,Va=un*W+vn;He+=G[sa+Ve]*F[Va+lt]}}}}v[st+lt]=He}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var AH={kernelName:Hd,backendName:"cpu",kernelFunc:EH};function FH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;we([r],"conv3dBackpropInputV2");let c=k.computeStrides(r.shape),u=k.computeStrides(s.shape),p=_.computeConv3DInfo(l,s.shape,o,1,i),d=new Ot(p.inShape,"float32"),h=d.values,[m,f,g,y]=d.strides,b=n.data.get(r.dataId).values,[v,x,N,T]=c,C=n.data.get(s.dataId).values,[F,$,P,B]=u,{batchSize:W,filterDepth:G,filterHeight:q,filterWidth:j,inChannels:X,inDepth:K,inHeight:ne,inWidth:J,outChannels:se,outDepth:Q,outHeight:oe,outWidth:ae,strideDepth:pe,strideHeight:ue,strideWidth:ge}=p,ye=G-1-p.padInfo.front,ke=q-1-p.padInfo.top,Se=j-1-p.padInfo.left;for(let Ce=0;Ce<W;++Ce)for(let Re=0;Re<X;++Re)for(let Ke=0;Ke<K;++Ke){let Ve=Ke-ye,st=Math.max(0,Math.ceil(Ve/pe)),lt=Math.min(Q,(G+Ve)/pe);for(let He=0;He<ne;++He){let ct=He-ke,pt=Math.max(0,Math.ceil(ct/ue)),Hn=Math.min(oe,(q+ct)/ue);for(let Je=0;Je<J;++Je){let En=Je-Se,en=Math.max(0,Math.ceil(En/ge)),An=Math.min(ae,(j+En)/ge),ra=0;for(let vn=st;vn<lt;++vn){let un=vn*pe-Ve;for(let sa=pt;sa<Hn;++sa){let Va=sa*ue-ct;for(let Fn=en;Fn<An;++Fn){let Io=Fn*ge-En,Hu=v*Ce+x*vn+N*sa+T*Fn,Ia=F*(G-1-un)+$*(q-1-Va)+P*(j-1-Io)+B*Re;for(let ia=0;ia<se;++ia){let Na=b[Hu+ia],No=C[Ia+ia];ra+=Na*No}}}}h[m*Ce+f*Ke+g*He+y*Je+Re]=ra}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var $H={kernelName:jd,backendName:"cpu",kernelFunc:FH},DH=it(Bs,e=>Math.cos(e)),RH={kernelName:Bs,backendName:"cpu",kernelFunc:DH},MH=it(Ko,e=>Math.cosh(e)),PH={kernelName:Ko,backendName:"cpu",kernelFunc:MH};function OH(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,[u,p,d,h]=r.shape,m=s.shape[0],[f,g]=o,y=Le([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,v=n.data.get(i.dataId).values,x=n.data.get(r.dataId).values,N=k.computeStrides(r.shape),T=k.computeStrides(y.shape);for(let C=0;C<m;C++){let F=C*4,$=b[F],P=b[F+1],B=b[F+2],W=b[F+3],G=v[C];if(G>=u)continue;let q=f>1?(B-$)*(p-1)/(f-1):0,j=g>1?(W-P)*(d-1)/(g-1):0;for(let X=0;X<f;X++){let K=f>1?$*(p-1)+X*q:.5*($+B)*(p-1);if(K<0||K>p-1){for(let ne=0;ne<g;ne++)for(let J=0;J<h;J++){let se=J+ne*T[2]+X*T[1]+C*T[0];y.values[se]=c}continue}if(l==="bilinear"){let ne=Math.floor(K),J=Math.ceil(K),se=K-ne;for(let Q=0;Q<g;Q++){let oe=g>1?P*(d-1)+Q*j:.5*(P+W)*(d-1);if(oe<0||oe>d-1){for(let ge=0;ge<h;ge++){let ye=ge+Q*T[2]+X*T[1]+C*T[0];y.values[ye]=c}continue}let ae=Math.floor(oe),pe=Math.ceil(oe),ue=oe-ae;for(let ge=0;ge<h;ge++){let ye=ge+ae*N[2]+ne*N[1]+G*N[0],ke=x[ye];ye=ge+pe*N[2]+ne*N[1]+G*N[0];let Se=x[ye];ye=ge+ae*N[2]+J*N[1]+G*N[0];let Ce=x[ye];ye=ge+pe*N[2]+J*N[1]+G*N[0];let Re=x[ye],Ke=ke+(Se-ke)*ue,Ve=Ce+(Re-Ce)*ue;ye=ge+Q*T[2]+X*T[1]+C*T[0],y.values[ye]=Ke+(Ve-Ke)*se}}}else for(let ne=0;ne<g;++ne){let J=g>1?P*(d-1)+ne*j:.5*(P+W)*(d-1);if(J<0||J>d-1){for(let oe=0;oe<h;oe++){let ae=oe+ne*T[2]+X*T[1]+C*T[0];y.values[ae]=c}continue}let se=Math.round(J),Q=Math.round(K);for(let oe=0;oe<h;oe++){let ae=oe+se*N[2]+Q*N[1]+G*N[0],pe=oe+ne*T[2]+X*T[1]+C*T[0];y.values[pe]=x[ae]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var LH={kernelName:Xo,backendName:"cpu",kernelFunc:OH};function zH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;we(r,"cumsum");let l=_.getAxesPermutation([s],r.shape.length),c=r;l!=null&&(c=xa({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=_.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let p=pa(c.dtype,"int32"),d=k.makeZerosTypedArray(k.sizeFromShape(c.shape),p),h=n.data.get(c.dataId).values,m=c.shape[c.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let v=f(y,b);if(b===0)d[v]=i?0:h[v];else{let x=f(y,b-1);d[v]=i?h[x]+d[x]:h[v]+d[x]}}let g=n.makeTensorInfo(c.shape,p,d);if(l!=null){let y=_.getUndoAxesPermutation(l),b=xa({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),b}return g}var BH={kernelName:Ws,backendName:"cpu",kernelFunc:zH};function WH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=Mv(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=aT(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var VH={kernelName:qd,backendName:"cpu",kernelFunc:WH};function UH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],p=l*s,d=c*s,h=u/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*d*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<p;++b){let v=Math.floor(b/s),x=b%s;for(let N=0;N<d;++N){let T=Math.floor(N/s),C=N%s,F=(x*s+C)*h;for(let $=0;$<h;++$){let P=$+F+u*(T+c*(v+l*y));f[g++]=m[P]}}}return n.makeTensorInfo([o,p,d,h],r.dtype,f)}var GH={kernelName:Yo,backendName:"cpu",kernelFunc:UH};function PT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=a;we([r,s],"depthwiseConv2DNative");let u=k.computeStrides(r.shape),p=k.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=_.computeConv2DInfo(r.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,v=b.left,x=b.top,N=h.outChannels/h.inChannels,T=new Ot(h.outShape,r.dtype),C=n.data.get(r.dataId).values,F=n.data.get(s.dataId).values,$=T.values;for(let P=0;P<h.batchSize;++P){let B=P*u[0],W=P*T.strides[0];for(let G=0;G<h.outHeight;++G){let q=W+G*T.strides[1],j=G*h.strideHeight-v;for(let X=0;X<m;++X){let K=j+X*g;if(K<0||K>=h.inHeight)continue;let ne=X*p[0],J=B+K*u[1];for(let se=0;se<h.outWidth;++se){let Q=q+se*T.strides[2],oe=se*h.strideWidth-x;for(let ae=0;ae<f;++ae){let pe=oe+ae*y;if(pe<0||pe>=h.inWidth)continue;let ue=ne+ae*p[1],ge=J+pe*h.inChannels,ye=Q,ke=ue;for(let Se=0;Se<h.inChannels;++Se){let Ce=C[ge+Se];for(let Re=0;Re<N;++Re)$[ye+Re]+=Ce*F[ke+Re];ye+=N,ke+=N}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var HH={kernelName:Vs,backendName:"cpu",kernelFunc:PT};function jH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a;we([r,s],"depthwiseConv2dNativeBackpropFilter");let p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),{strideHeight:d,strideWidth:h,filterHeight:m,filterWidth:f}=p,g=new Ot(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,v=p.outChannels/p.inChannels,x=n.data.get(r.dataId).values,N=new Ot(r.shape,r.dtype,x),T=n.data.get(s.dataId).values,C=new Ot(s.shape,s.dtype,T);for(let F=0;F<m;++F){let $=Math.max(0,Math.ceil((b-F)/d)),P=Math.min(p.outHeight,(p.inHeight+b-F)/d);for(let B=0;B<f;++B){let W=Math.max(0,Math.ceil((y-B)/h)),G=Math.min(p.outWidth,(p.inWidth+y-B)/h);for(let q=0;q<p.outChannels;++q){let j=Math.trunc(q/v),X=q%v,K=0;for(let ne=0;ne<p.batchSize;++ne)for(let J=$;J<P;++J){let se=F+J*d-b;for(let Q=W;Q<G;++Q){let oe=B+Q*h-y;K+=N.get(ne,se,oe,j)*C.get(ne,J,Q,q)}}g.set(K,F,B,j,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var qH={kernelName:Kd,backendName:"cpu",kernelFunc:jH};function KH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a;we([r,s],"depthwiseConv2DNativeBackpropInput");let p=k.computeStrides(r.shape),d=k.computeStrides(s.shape),h=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),m=new Ot(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,v=n.data.get(r.dataId).values,[x,N,T]=p,C=n.data.get(s.dataId).values,[F,$,P]=d,{batchSize:B,filterHeight:W,filterWidth:G,inChannels:q,inHeight:j,inWidth:X,outChannels:K,outHeight:ne,outWidth:J,strideHeight:se,strideWidth:Q}=h,oe=W-1-h.padInfo.top,ae=G-1-h.padInfo.left,pe=K/q;for(let ue=0;ue<B;++ue)for(let ge=0;ge<q;++ge)for(let ye=0;ye<j;++ye){let ke=ye-oe,Se=Math.max(0,Math.ceil(ke/se)),Ce=Math.min(ne,(W+ke)/se);for(let Re=0;Re<X;++Re){let Ke=Re-ae,Ve=Math.max(0,Math.ceil(Ke/Q)),st=Math.min(J,(G+Ke)/Q),lt=0;for(let He=Se;He<Ce;++He){let ct=He*se-ke;for(let pt=Ve;pt<st;++pt){let Hn=pt*Q-Ke,Je=x*ue+N*He+T*pt,En=F*(W-1-ct)+$*(G-1-Hn)+P*ge;for(let en=0;en<pe;++en){let An=ge*pe+en,ra=v[Je+An],vn=C[En+en];lt+=ra*vn}}}f[g*ue+y*ye+b*Re+ge]=lt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var XH={kernelName:Xd,backendName:"cpu",kernelFunc:KH};function YH(e){let{inputs:t,backend:n}=e,{x:a}=t,r=k.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Le([r,r],a.dtype),o=i.values;for(let c=0;c<s.length;c++)o[c*r+c]=s[c];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var ZH={kernelName:Yd,backendName:"cpu",kernelFunc:YH},JH={kernelName:xc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(a.dataId).values,u=a.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:v,strideHeight:x,strideWidth:N,filterHeight:T,filterWidth:C,dilationHeight:F,dilationWidth:$,outShape:P}=_.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),B=k.sizeFromShape(P),W=P.length,G=k.getArrayFromDType(a.dtype,B);for(let q=0;q<h;++q)for(let j=0;j<y;++j){let X=j*x-v.top;for(let K=0;K<b;++K){let ne=K*N-v.left;for(let J=0;J<g;++J){let se=Number.MIN_SAFE_INTEGER;for(let oe=0;oe<T;++oe){let ae=X+oe*F;if(ae>=0&&ae<m)for(let pe=0;pe<C;++pe){let ue=ne+pe*$;if(ue>=0&&ue<f){let ge=k.locToIndex([q,ae,ue,J],u,k.computeStrides(a.shape)),ye=k.locToIndex([oe,pe,J],d,k.computeStrides(r.shape)),ke=c[ge]+p[ye];ke>se&&(se=ke)}}}let Q=k.locToIndex([q,j,K,J],W,k.computeStrides(P));G[Q]=se}}}return{dataId:l.write(k.toTypedArray(G,a.dtype),P,a.dtype),shape:P,dtype:a.dtype}}},QH={kernelName:Jd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(a.shape,c.data.get(a.dataId).values),p=k.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:v,strideWidth:x,filterHeight:N,filterWidth:T,dilationHeight:C,dilationWidth:F,outShape:$}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===$.length,()=>`Error in ${Jd}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let P=k.toNestedArray($,c.data.get(s.dataId).values),B=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let W=0;W<d;++W)for(let G=0;G<g;++G){let q=G*v-b.top;for(let j=0;j<y;++j){let X=j*x-b.left;for(let K=0;K<f;++K){let ne=Number.MIN_SAFE_INTEGER,J=0,se=0;for(let Q=0;Q<N;++Q){let oe=q+Q*C;if(oe>=0&&oe<h)for(let ae=0;ae<T;++ae){let pe=X+ae*F;if(pe>=0&&pe<m){let ue=u[W][oe][pe][K]+p[Q][ae][K];ue>ne&&(ne=ue,J=Q,se=ae)}}}B[J][se][K]+=P[W][G][j][K]}}}return{dataId:c.write(k.toTypedArray(B,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},e6={kernelName:Zd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(a.shape,c.data.get(a.dataId).values),p=k.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:v,strideWidth:x,filterHeight:N,filterWidth:T,dilationHeight:C,dilationWidth:F,outShape:$}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===$.length,()=>`Error in ${Zd}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let P=k.toNestedArray($,c.data.get(s.dataId).values),B=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let W=0;W<d;++W)for(let G=0;G<g;++G){let q=G*v-b.top;for(let j=0;j<y;++j){let X=j*x-b.left;for(let K=0;K<f;++K){let ne=Number.MIN_SAFE_INTEGER,J=q<0?0:q,se=X<0?0:X;for(let Q=0;Q<N;++Q){let oe=q+Q*C;if(oe>=0&&oe<h)for(let ae=0;ae<T;++ae){let pe=X+ae*F;if(pe>=0&&pe<m){let ue=u[W][oe][pe][K]+p[Q][ae][K];ue>ne&&(ne=ue,J=oe,se=pe)}}}B[W][J][se][K]+=P[W][G][j][K]}}}return{dataId:c.write(k.toTypedArray(B,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function t6(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;we([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let c=i[l];c>=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",s)}var n6={kernelName:Qd,backendName:"cpu",kernelFunc:t6},a6=Rt((e,t)=>e===t?1:0),OT=Zt(Qo,a6,null,"bool"),r6={kernelName:Qo,backendName:"cpu",kernelFunc:OT},s6=_.ERF_P,i6=_.ERF_A1,o6=_.ERF_A2,l6=_.ERF_A3,u6=_.ERF_A4,c6=_.ERF_A5,p6=it(Jo,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+s6*n);return t*(1-((((c6*a+u6)*a+l6)*a+o6)*a+i6)*a*Math.exp(-n*n))}),d6={kernelName:Jo,backendName:"cpu",kernelFunc:p6};function Qm(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),It({inputs:{x:r},backend:n,attrs:{shape:o}})}var h6={kernelName:el,backendName:"cpu",kernelFunc:Qm},m6=Rt((e,t)=>e/t),Hv=Zt(Us,m6),jv={kernelName:Us,backendName:"cpu",kernelFunc:Hv};function LT(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[r,s],u=k.sizeFromShape(c),p=k.getTypedArrayFromDType("float32",u),d=k.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let y=Yi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=Yi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),v=Bn({inputs:{real:y,imag:b},backend:n}),{real:x,imag:N}=f6(v,t,n),T=_.mergeRealAndImagArrays(x,N);for(let C=0;C<s;C++){let F=_.getComplexWithIndex(T,C);p[g*s+C]=F.real,d[g*s+C]=F.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(v)}let h=n.makeTensorInfo(c,"float32",p),m=n.makeTensorInfo(c,"float32",d),f=Bn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function f6(e,t,n){let a=k.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(g6(a)){let o=qv(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),d=ir({inputs:{x:p},backend:n}),h=jv.kernelFunc({inputs:{a:c,b:p},backend:n}),m=jv.kernelFunc({inputs:{a:u,b:d},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=_.mergeRealAndImagArrays(s,i),l=y6(o,a,t);return _.splitRealAndImagArrays(l)}}function g6(e){return(e&e-1)==0}function qv(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=_.mergeRealAndImagArrays(e,t),i=n/2,o=_.complexWithEvenIndex(s),l=o.real,c=o.imag,u=[l.length],p=r.makeTensorInfo(u,"float32",l),d=r.makeTensorInfo(u,"float32",c),h=Bn({inputs:{real:p,imag:d},backend:r}),m=_.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),v=r.makeTensorInfo(y,"float32",g),x=Bn({inputs:{real:b,imag:v},backend:r}),N=qv(l,c,i,a,r),T=N.real,C=N.imag,F=[T.length],$=r.makeTensorInfo(F,"float32",T),P=r.makeTensorInfo(F,"float32",C),B=Bn({inputs:{real:$,imag:P},backend:r}),W=qv(f,g,i,a,r),G=W.real,q=W.imag,j=[G.length],X=r.makeTensorInfo(j,"float32",G),K=r.makeTensorInfo(j,"float32",q),ne=Bn({inputs:{real:X,imag:K},backend:r}),J=_.exponents(n,a),se=[J.real.length],Q=r.makeTensorInfo(se,"float32",J.real),oe=r.makeTensorInfo(se,"float32",J.imag),ae=Bn({inputs:{real:Q,imag:oe},backend:r}),pe=Wv({inputs:{a:ae,b:ne},backend:r}),ue=Ip({inputs:{a:B,b:pe},backend:r}),ge=Vv({inputs:{a:B,b:pe},backend:r}),ye=Xi({inputs:{input:ue},backend:r}),ke=Xi({inputs:{input:ge},backend:r}),Se=mu({inputs:{input:ue},backend:r}),Ce=mu({inputs:{input:ge},backend:r}),Re=fu({inputs:[ye,ke],backend:r,attrs:{axis:0}}),Ke=fu({inputs:[Se,Ce],backend:r,attrs:{axis:0}}),Ve=r.data.get(Re.dataId).values,st=r.data.get(Ke.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(B),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(ge),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(Ce),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Ke),{real:Ve,imag:st}}function y6(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=_.exponent(r*o,t,n),c=_.getComplexWithIndex(e,o);s+=c.real*l.real-c.imag*l.imag,i+=c.real*l.imag+c.imag*l.real}n&&(s/=t,i/=t),_.assignToTypedArray(a,s,i,r)}return a}function b6(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=It({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=LT(o,!1,n),c=It({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var x6={kernelName:eh,backendName:"cpu",kernelFunc:b6};function Kv(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||k.inferDtype(r),o=k.getArrayFromDType(i,k.sizeFromShape(a));return v6(o,r,i),t.makeTensorInfo(a,i,o)}var w6={kernelName:vc,backendName:"cpu",kernelFunc:Kv};function v6(e,t,n){e.fill(t)}var k6={kernelName:nl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,l,c]=a.shape,u=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let d=p*l*o*c;for(let h=0;h<o;h++){let m=h*(l*c);for(let f=0;f<l;f++){let g=f*c;for(let y=0;y<c;y++){let b=[i,h,f,y][2],v=Math.round(l-b),x=d+m+g+y,N=u[x];if(v>=0&&v<l){let T=v*c,C=d+m+T+y;N=u[C]}s[x]=N}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},I6=Rt((e,t)=>Math.floor(e/t)),N6=Zt(js,I6,null,"int32"),T6={kernelName:js,backendName:"cpu",kernelFunc:N6};function S6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=MT({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=Ip({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Uv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var C6={kernelName:Ti,backendName:"cpu",kernelFunc:S6};function _6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=PT({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=Ip({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Uv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var E6={kernelName:Si,backendName:"cpu",kernelFunc:_6};function A6(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,c,u,p]=_.prepareAndValidate(a,r);if(c===0)return n.makeTensorInfo(l,a.dtype,[]);let d=Le([c,u],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<c;f++){let g=[],y=0;for(let b=0;b<o;b++){let v=h[f*o+b];y+=v*p[b],g.push(v)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${g} does not index into ${a.shape}`);for(let b=0;b<u;b++)d.values[f*u+b]=m[y*u+b]}return n.makeTensorInfo(l,d.dtype,d.values)}var F6={kernelName:rl,backendName:"cpu",kernelFunc:A6};function $6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;we([r,s],"gatherV2");let l=o;o==null&&(l=0);let c=k.sizeFromShape(s.shape),u=k.parseAxisParam(i,r.shape)[0],p=_.segment_util.collectGatherOpShapeInfo(r,s,u,l),d=It({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=It({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,c/p.batchSize]}}),m=[p.batchSize,p.outerSize,c/p.batchSize,p.sliceSize],f=n.bufferSync(h),g=n.bufferSync(d),y=lT(g,f,m);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var D6={kernelName:al,backendName:"cpu",kernelFunc:$6},R6=Rt((e,t)=>e>=t?1:0),M6=Zt(Ks,R6,null,"bool"),P6={kernelName:Ks,backendName:"cpu",kernelFunc:M6};function O6(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=It({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=LT(o,!0,n),c=It({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var L6={kernelName:th,backendName:"cpu",kernelFunc:O6},z6=it(il,e=>Number.isFinite(e)?1:0,"bool"),B6={kernelName:il,backendName:"cpu",kernelFunc:z6},W6=it(ol,e=>Math.abs(e)===Infinity?1:0,"bool"),V6={kernelName:ol,backendName:"cpu",kernelFunc:W6},U6=it(ll,e=>Number.isNaN(e)?1:0,"bool"),G6={kernelName:ll,backendName:"cpu",kernelFunc:U6},H6=Rt((e,t)=>e<=t?1:0),j6=Zt(cl,H6,null,"bool"),q6={kernelName:cl,backendName:"cpu",kernelFunc:j6};function K6(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=pT(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var X6={kernelName:ah,backendName:"cpu",kernelFunc:K6},Y6=it(pl,e=>Math.log1p(e)),Z6={kernelName:pl,backendName:"cpu",kernelFunc:Y6},J6=Rt((e,t)=>e&&t),Q6=Zt(dl,J6,null,"bool"),ej={kernelName:dl,backendName:"cpu",kernelFunc:Q6},tj=it(wc,e=>e?0:1,"bool"),nj={kernelName:wc,backendName:"cpu",kernelFunc:tj},aj=Rt((e,t)=>e||t),rj=Zt(kc,aj,null,"bool"),sj={kernelName:kc,backendName:"cpu",kernelFunc:rj};function ij(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;we(r,"LRN");let c=r.shape[3],u=c-1,p=n.data.get(r.dataId).values,d=k.sizeFromShape(r.shape),h=new Float32Array(d);function m(f){let g=f%c,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,u),v=0;for(;y<=b;y++){let x=p[y];v+=x*x}return v}for(let f=0;f<d;f++){let g=m(f),y=p[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var oj={kernelName:Ic,backendName:"cpu",kernelFunc:ij};function lj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a;we(i,"LRNGrad");let p=k.sizeFromShape(i.shape),d=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let b=0;b<y;b++){let v=b%d,x=b-v+Math.max(0,v-o),N=b-v+Math.min(d,v+o+1),T=0;for(let C=x;C<N;C++)T+=Math.pow(m[C],2);T=c*T+l;for(let C=x;C<N;C++){let F=-2*c*u*m[C]*f[b]/T;b===C&&(F+=Math.pow(T,-u)),F*=h[b],g[C]+=F}}return n.makeTensorInfo(i.shape,r.dtype,g)}var uj={kernelName:rh,backendName:"cpu",kernelFunc:lj};function zT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,c=l.length,u=k.parseAxisParam(s,l),p=u,d=_.getAxesPermutation(p,c),h=o.data.get(r.dataId).values;if(d!=null){let x=new Array(c);for(let N=0;N<x.length;N++)x[N]=l[d[N]];h=Lv(h,l,r.dtype,d,x),p=_.getInnerMostAxes(p.length,c),l=x}we(r,"max"),_.assertAxesAreInnerMostDims("max",p,c);let[m,f]=_.computeOutAndReduceShapes(l,p),g=k.sizeFromShape(f),y=hT(h,g,m,r.dtype),b=o.write(y,m,r.dtype),v=m;return i&&(v=_.expandShapeToKeepDim(m,u)),{dataId:b,shape:v,dtype:r.dtype}}var cj={kernelName:Js,backendName:"cpu",kernelFunc:zT};function pj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;we(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;k.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))p=ir({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=Gv(d,r.shape,r.dtype,h,u,"max");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var dj={kernelName:ei,backendName:"cpu",kernelFunc:pj};function hj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;we(r,"maxPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=RT(p,r.shape,r.dtype,k.computeStrides(r.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var mj={kernelName:Nc,backendName:"cpu",kernelFunc:hj};function fj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;we([r,s],"maxPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=n.bufferSync(s),d=tH(p,u),h=u.strideDepth,m=u.strideHeight,f=u.strideWidth,g=u.dilationDepth,y=u.dilationHeight,b=u.dilationWidth,v=u.effectiveFilterDepth,x=u.effectiveFilterHeight,N=u.effectiveFilterWidth,T=v-1-u.padInfo.front,C=N-1-u.padInfo.left,F=x-1-u.padInfo.top,$=Le(s.shape,"float32"),P=n.bufferSync(r);for(let B=0;B<u.batchSize;++B)for(let W=0;W<u.inChannels;++W)for(let G=0;G<u.inDepth;++G)for(let q=0;q<u.inHeight;++q)for(let j=0;j<u.inWidth;++j){let X=G-T,K=q-F,ne=j-C,J=0;for(let se=0;se<v;se+=g){let Q=(X+se)/h;if(!(Q<0||Q>=u.outDepth||Math.floor(Q)!==Q))for(let oe=0;oe<x;oe+=y){let ae=(K+oe)/m;if(!(ae<0||ae>=u.outHeight||Math.floor(ae)!==ae))for(let pe=0;pe<N;pe+=b){let ue=(ne+pe)/f;if(ue<0||ue>=u.outWidth||Math.floor(ue)!==ue)continue;let ge=v*x*N-1-d.get(B,Q,ae,ue,W),ye=se*x*N+oe*N+pe,ke=ge===ye?1:0;ke!==0&&(J+=P.get(B,Q,ae,ue,W)*ke)}}}$.set(J,B,G,q,j,W)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var gj={kernelName:ih,backendName:"cpu",kernelFunc:fj};function yj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;we([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=n.data.get(o.dataId).values,m=Le(d.outShape,o.dtype,DT(h,o.shape,o.dtype,d).values),f=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,b=d.dilationWidth,v=d.effectiveFilterHeight,x=d.effectiveFilterWidth,N=x-1-d.padInfo.left,T=v-1-d.padInfo.top,C=Le(o.shape,"float32"),F=n.data.get(r.dataId).values,$=Le(r.shape,"float32",F);for(let P=0;P<d.batchSize;++P)for(let B=0;B<d.inChannels;++B)for(let W=0;W<d.inHeight;++W)for(let G=0;G<d.inWidth;++G){let q=W-T,j=G-N,X=0;for(let K=0;K<v;K+=y){let ne=(q+K)/f;if(!(ne<0||ne>=d.outHeight||Math.floor(ne)!==ne))for(let J=0;J<x;J+=b){let se=(j+J)/g;if(se<0||se>=d.outWidth||Math.floor(se)!==se)continue;let Q=v*x-1-m.get(P,ne,se,B),oe=K*x+J,ae=Q===oe?1:0;ae!==0&&(X+=$.get(P,ne,se,B)*ae)}}C.set(X,P,W,G,B)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var bj={kernelName:sh,backendName:"cpu",kernelFunc:yj};function xj(e,t,n,a,r){let s=k.computeStrides(t),i=Gv(e,t,n,s,r,"max"),o=DT(e,t,n,r,!0,a);return[i.values,o.values]}var vj={kernelName:oh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;we(a,"MaxPoolWithArgmax");let c=l.data.get(a.dataId).values,u=_.computePool2DInfo(a.shape,r,s,[1,1],i),[p,d]=xj(c,a.shape,a.dtype,o,u),h=l.write(p,u.outShape,a.dtype),m=l.write(d,u.outShape,a.dtype);return[{dataId:h,shape:u.outShape,dtype:a.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function ef(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"sum");let o;r.dtype==="bool"?o=hs({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=ir({inputs:{x:r},backend:n});let l=o.shape.length,c=k.parseAxisParam(s,o.shape),u=_.getAxesPermutation(c,l),p=c,d=o;u!=null&&(d=xa({inputs:{x:o},backend:n,attrs:{perm:u}}),p=_.getInnerMostAxes(p.length,l)),_.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,m]=_.computeOutAndReduceShapes(d.shape,p),f=_.upcastType(d.dtype,"int32"),g=Jm(n,h,f),y=k.sizeFromShape(m),b=n.data.get(g.dataId).values,v=n.data.get(d.dataId).values;for(let x=0;x<b.length;++x){let N=x*y,T=0;for(let C=0;C<y;++C)T+=v[N+C];b[x]=T}if(i){let x=_.expandShapeToKeepDim(g.shape,c),N=g;g=It({inputs:{x:g},backend:n,attrs:{shape:x}}),n.disposeIntermediateTensorInfo(N)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(d),g}var wj={kernelName:bi,backendName:"cpu",kernelFunc:ef};function kj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=k.parseAxisParam(s,r.shape),l=_.computeOutAndReduceShapes(r.shape,o)[1],c=k.sizeFromShape(l),u=[],p=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(p);let d=hs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});u.push(d);let h=Hv({inputs:{a:d,b:p},backend:n});u.push(h);let m=ef({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Ij={kernelName:ti,backendName:"cpu",kernelFunc:kj};function Nj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"min");let o=k.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=xa({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=k.sizeFromShape(d),m=k.makeZerosTypedArray(k.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,v=f[b];for(let x=0;x<h;++x){let N=f[b+x];N<v&&(v=N)}m[y]=v}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=It({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var Tj={kernelName:ni,backendName:"cpu",kernelFunc:Nj};function Sj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;we(r,"mirrorPad");let o=s.map((b,v)=>b[0]+r.shape[v]+b[1]),l=s.map(b=>b[0]),c=s.map((b,v)=>b[0]+r.shape[v]),u=i==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,g=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let v=k.indexToLoc(b,f,g);for(let N=0;N<f;N++)v[N]<l[N]?v[N]=l[N]*2-v[N]-u:v[N]>=c[N]&&(v[N]=(c[N]-1)*2-v[N]+u);v=v.map((N,T)=>N-l[T]);let x=k.locToIndex(v,d,h);y[b]=p[x]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var Cj={kernelName:Tc,backendName:"cpu",kernelFunc:Sj},_j=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Ej=Zt(hl,_j),Aj={kernelName:hl,backendName:"cpu",kernelFunc:Ej},Fj=Po(Dd());function BT(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],r.shape),c=zT({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=_.expandShapeToKeepDim(c.shape,l),p=It({inputs:{x:c},backend:n,attrs:{shape:u}}),d=Vv({inputs:{a:r,b:p},backend:n}),h=ST({inputs:{x:d},backend:n}),m=ef({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=It({inputs:{x:m},backend:n,attrs:{shape:u}}),g=Hv({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var $j={kernelName:xi,backendName:"cpu",kernelFunc:BT};function Dj(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;we(r,"multinomial");let l=o?r:BT({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],p=n.data.get(l.dataId).values,d=[c,s],h=k.makeZerosTypedArray(k.sizeFromShape(d),"int32");for(let m=0;m<c;++m){let f=m*u,g=new Float32Array(u-1);g[0]=p[f];for(let v=1;v<g.length;++v)g[v]=g[v-1]+p[f+v];let y=Fj.alea(i.toString()),b=m*s;for(let v=0;v<s;++v){let x=y();h[b+v]=g.length;for(let N=0;N<g.length;N++)if(x<g[N]){h[b+v]=N;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var Rj={kernelName:lh,backendName:"cpu",kernelFunc:Dj},Mj=er.nonMaxSuppressionV3Impl;function Pj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;we(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:p}=Mj(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Oj={kernelName:gl,backendName:"cpu",kernelFunc:Pj},Lj=er.nonMaxSuppressionV4Impl;function zj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a;we(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:h}=Lj(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Bj={kernelName:yl,backendName:"cpu",kernelFunc:zj},Wj=er.nonMaxSuppressionV5Impl;function Vj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a;we(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=Wj(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Uj={kernelName:bl,backendName:"cpu",kernelFunc:Vj};function Gj(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;we(r,"oneHot");let l=k.sizeFromShape(r.shape),c=new Float32Array(l*s);c.fill(o);let u=n.data.get(r.dataId).values;for(let p=0;p<l;++p)u[p]>=0&&u[p]<s&&(c[p*s+u[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",c)}var Hj={kernelName:si,backendName:"cpu",kernelFunc:Gj};function tf(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Xi({inputs:{input:a},backend:n}),s=tf({inputs:{x:r},backend:n}),i=mu({inputs:{input:a},backend:n}),o=tf({inputs:{x:i},backend:n}),l=Bn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Kv({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var jj={kernelName:Pl,backendName:"cpu",kernelFunc:tf};function WT(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Xi({inputs:{input:a},backend:n}),s=WT({inputs:{x:r},backend:n}),i=mu({inputs:{input:a},backend:n}),o=tf({inputs:{x:i},backend:n}),l=Bn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Kv({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var qj={kernelName:xl,backendName:"cpu",kernelFunc:WT};function VT(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Qm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=Qm({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=fu({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var Kj={kernelName:vl,backendName:"cpu",kernelFunc:VT};function Xj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;we(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),c=n.data.get(r.dataId).values,u=k.sizeFromShape(r.shape),p=r.shape.length,d=k.computeStrides(r.shape),h=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),g=k.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<u;y++){let b=k.indexToLoc(y,p,d).map((x,N)=>x+l[N]),v=k.locToIndex(b,m,f);g[v]=c[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var UT={kernelName:ii,backendName:"cpu",kernelFunc:Xj},Yj=Rt((e,t)=>Math.pow(e,t)),Zj=Zt(oi,Yj),Jj={kernelName:oi,backendName:"cpu",kernelFunc:Zj};function Qj(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=zv(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var eq={kernelName:Sc,backendName:"cpu",kernelFunc:Qj},tq=it(kl,e=>1/e),nq={kernelName:kl,backendName:"cpu",kernelFunc:tq};function aq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;we(r,"resizeBilinear");let l=k.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(k.sizeFromShape([p,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],v=0,x=y[0]/b[0],N=y[1]/b[1];for(let T=0;T<p;T++)for(let C=0;C<c;C++){let F;i?F=x*(C+.5)-.5:F=x*C;let $=Math.max(0,Math.floor(F)),P=F-$,B=Math.min(d-1,Math.ceil(F)),W=T*l[0]+$*l[1],G=T*l[0]+B*l[1];for(let q=0;q<u;q++){let j;i?j=N*(q+.5)-.5:j=N*q;let X=Math.max(0,Math.floor(j)),K=j-X,ne=Math.min(h-1,Math.ceil(j)),J=W+X*l[2],se=G+X*l[2],Q=W+ne*l[2],oe=G+ne*l[2];for(let ae=0;ae<m;ae++){let pe=f[J+ae],ue=f[se+ae],ge=f[Q+ae],ye=f[oe+ae],ke=pe+(ge-pe)*K,Se=ue+(ye-ue)*K,Ce=ke+(Se-ke)*P;g[v++]=Ce}}}return n.makeTensorInfo([p,c,u,m],"float32",g)}var rq={kernelName:ci,backendName:"cpu",kernelFunc:aq};function sq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;we([s,r],"resizeBilinearGrad");let o=k.computeStrides(r.shape),[l,c,u,p]=r.shape,[,d,h]=s.shape,m=new Float32Array(l*c*u*p),f=[i&&d>1?c-1:c,i&&h>1?u-1:u],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],v=n.data.get(s.dataId).values,x=0;for(let N=0;N<l;N++){let T=N*o[0];for(let C=0;C<d;C++){let F=C*y,$=Math.floor(F),P=Math.min(Math.ceil(F),c-1),B=T+$*o[1],W=T+P*o[1],G=F-$,q=1-G;for(let j=0;j<h;j++){let X=j*b,K=Math.floor(X),ne=Math.min(Math.ceil(X),u-1),J=X-K,se=1-J,Q=B+K*o[2],oe=B+ne*o[2],ae=W+K*o[2],pe=W+ne*o[2],ue=q*se,ge=q*J,ye=G*se,ke=G*J;for(let Se=0;Se<p;Se++){let Ce=v[x++];m[Q+Se]+=Ce*ue,m[oe+Se]+=Ce*ge,m[ae+Se]+=Ce*ye,m[pe+Se]+=Ce*ke}}}}return n.makeTensorInfo([l,u,c,p],"float32",m)}var iq={kernelName:ph,backendName:"cpu",kernelFunc:sq};function oq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;we(r,"resizeNearestNeighbor");let l=k.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(p*c*u*m),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],v=y[0]/b[0],x=y[1]/b[1],N=0;for(let T=0;T<p;T++){let C=T*l[0];for(let F=0;F<c;F++){let $=i?v*(F+.5):v*F,P=Math.min(d-1,s?Math.round($):Math.floor($));i&&(P=Math.max(0,P));let B=C+P*l[1];for(let W=0;W<u;W++){let G=i?x*(W+.5):x*W,q=Math.min(h-1,s?Math.round(G):Math.floor(G));i&&(q=Math.max(0,q));let j=B+q*l[2];for(let X=0;X<m;X++){let K=f[j+X];g[N++]=K}}}}return n.makeTensorInfo([p,c,u,m],r.dtype,g)}var lq={kernelName:Cc,backendName:"cpu",kernelFunc:oq};function uq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;we([s,r],"resizeNearestNeighborGrad");let o=k.computeStrides(r.shape),l=k.computeStrides(s.shape),[c,u,p,d]=r.shape,[,h,m]=s.shape,f=new Float32Array(c*u*p*d),g=n.data.get(s.dataId).values,y=[i&&h>1?u-1:u,i&&m>1?p-1:p],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],v=y[0]/b[0],x=y[1]/b[1],N=1/v,T=1/x,C=Math.ceil(N)*2+2,F=Math.ceil(T)*2+2;for(let $=0;$<c;$++){let P=$*o[0];for(let B=0;B<u;B++){let W=P+B*o[1],G=Math.floor(B*N),q=Math.floor(G-C/2);for(let j=0;j<p;j++){let X=W+j*o[2],K=Math.floor(j*T),ne=Math.floor(K-F/2);for(let J=0;J<d;J++){let se=0;for(let Q=0;Q<C;Q++){let oe=Q+q;if(oe<0||oe>=h)continue;let ae=P+oe*l[1],pe=oe*v,ue=Math.min(u-1,i?Math.round(pe):Math.floor(pe));if(B===ue)for(let ge=0;ge<F;ge++){let ye=ge+ne;if(ye<0||ye>=m)continue;let ke=ae+ye*l[2],Se=ye*x,Ce=Math.min(p-1,i?Math.round(Se):Math.floor(Se));j===Ce&&(se+=g[ke+J])}}f[X+J]=se}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var cq={kernelName:ch,backendName:"cpu",kernelFunc:uq};function pq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;we(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return ir({inputs:{x:r},backend:n});let l=new Ot(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let p=l.indexToLoc(u),d=p.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(c.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var dq={kernelName:di,backendName:"cpu",kernelFunc:pq},hq={kernelName:Ol,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[c,u,p,d]=a.shape,[h,m]=_.getImageCenter(i,u,p),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let v=0;v<c;v++){let x=v*p*u*d;for(let N=0;N<u;N++){let T=N*(p*d);for(let C=0;C<p;C++){let F=C*d;for(let $=0;$<d;$++){let P=[c,N,C,$],B=P[2],W=P[1],G=(B-h)*y-(W-m)*g,q=(B-h)*g+(W-m)*y;G=Math.round(G+h),q=Math.round(q+m);let j=s;if(typeof s!="number"&&($===3?j=f:j=s[$]),G>=0&&G<p&&q>=0&&q<u){let K=q*(p*d),ne=G*d,J=x+K+ne+$;j=b[J]}let X=x+T+F+$;l[X]=j}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},mq=it(hi,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),fq={kernelName:hi,backendName:"cpu",kernelFunc:mq};function GT(e,t,n,a,r,s,i,o,l,c){let u=[a/r,r],p=e.values,d=t.values;if(a===0)return Le(n,t.dtype);let h=Le(u,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=p[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)c?h.values[g*r+y]+=d[m*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[m*r+y]}return h}function gq(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=GT(h,m,i,p,c,l,o,u,0,d);return n.makeTensorInfo(i,f.dtype,f.values)}var yq={kernelName:Nl,backendName:"cpu",kernelFunc:gq};function bq(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;we([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=pa(r.dtype,s.dtype),p=k.makeZerosTypedArray(k.sizeFromShape(r.shape),u),d=0,h=i===0||i>1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[d++]=l[m]:p[d++]=c[m];return n.makeTensorInfo(r.shape,u,p)}var xq={kernelName:Tl,backendName:"cpu",kernelFunc:bq},vq=_.SELU_SCALEALPHA,wq=_.SELU_SCALE,kq=it(Sl,e=>e>=0?wq*e:vq*(Math.exp(e)-1)),Iq={kernelName:Sl,backendName:"cpu",kernelFunc:kq},Nq=it(gi,e=>1/(1+Math.exp(-e))),Tq={kernelName:gi,backendName:"cpu",kernelFunc:Nq},Sq=it(El,e=>e<0?-1:e>0?1:0),Cq={kernelName:El,backendName:"cpu",kernelFunc:Sq},_q=it(fi,e=>Math.sin(e)),Eq={kernelName:fi,backendName:"cpu",kernelFunc:_q},Aq=it(_l,e=>Math.sinh(e)),Fq={kernelName:_l,backendName:"cpu",kernelFunc:Aq},$q=11920928955078125e-23,HT=Math.log($q)+2,Dq=it(Al,e=>{let t=e>-HT,n=e<HT,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),Rq={kernelName:Al,backendName:"cpu",kernelFunc:Dq};function Mq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;we([r],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let c=UT.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=_.getReshaped(c.shape,s,o,!1),p=_.getPermuted(u.length,s.length,!1),d=_.getReshapedPermuted(c.shape,s,o,!1),h=It({inputs:{x:c},backend:n,attrs:{shape:u}}),m=xa({inputs:{x:h},backend:n,attrs:{perm:p}}),f=It({inputs:{x:m},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var Pq={kernelName:_c,backendName:"cpu",kernelFunc:Mq};function Oq(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=_.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],y=GT(m,f,o,d,u,c,l,p,g,h);return n.makeTensorInfo(o,y.dtype,y.values)}var Lq={kernelName:dh,backendName:"cpu",kernelFunc:Oq};function zq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let d=[...u];d[o]=p;let h=Yi({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});return c[o]+=p,h})}var Bq={kernelName:Fl,backendName:"cpu",kernelFunc:zq},Wq=it(yi,e=>Math.sqrt(e)),Vq={kernelName:yi,backendName:"cpu",kernelFunc:Wq},Uq={kernelName:Ec,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;we(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},Gq=it(jr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),Hq={kernelName:jr,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a;we(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=pn.sliceInfo(r.shape,s,i,o,l,c,u,p,d),v=It({inputs:{x:r},backend:n,attrs:{shape:y}}),x;if(h){let T=Yi({inputs:{x:v},backend:n,attrs:{begin:m,size:g}});x=It({inputs:{x:T},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(T)}else if(b.some(T=>T===0))x=n.makeTensorInfo(b,r.dtype,[]);else{let T=n.bufferSync(v),C=wT(b,T,f,m);x=n.makeTensorInfo(C.shape,C.dtype,C.values)}let N=It({inputs:{x},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(x),N}var qq={kernelName:$l,backendName:"cpu",kernelFunc:jq},Kq=it(Dl,e=>Math.tan(e)),Xq={kernelName:Dl,backendName:"cpu",kernelFunc:Kq},Yq=it(ki,e=>Math.tanh(e)),Zq={kernelName:ki,backendName:"cpu",kernelFunc:Yq};function Jq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;we(r,"tile");let i=IT(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var Qq={kernelName:Hr,backendName:"cpu",kernelFunc:Jq};function e5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;we(r,"topk");let o=n.data.get(r.dataId).values,[l,c]=NT(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var t5={kernelName:Rl,backendName:"cpu",kernelFunc:e5};function n5(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;we(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=TT(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var a5={kernelName:hh,backendName:"cpu",kernelFunc:n5};function r5(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(l[c++]=r.shape[h]);let u=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let d=new Array(o);for(let h=0;h<d.length;h++){u[s]=h;let m=Yi({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});d[h]=It({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return d}var s5={kernelName:Ml,backendName:"cpu",kernelFunc:r5};function i5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;we(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,c=[],u=[],p=o-l,d=s;for(let m=0;m<p;++m){let f=Qm({inputs:{input:d},backend:n,attrs:{dim:m+1}});d=f,u.push(f)}for(let m=0;m<i;++m){let f=k.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=OT({inputs:{a:g,b:d},backend:n}),b=hs({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),v=Wv({inputs:{a:b,b:r},backend:n}),x=ef({inputs:{x:v},backend:n,attrs:{axis:0,keepDims:!1}});c.push(x),u.push(g),u.push(y),u.push(b),u.push(v),u.push(x)}let h=VT({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var o5={kernelName:Ac,backendName:"cpu",kernelFunc:i5},l5=[EG,DU,FG,DG,zU,MG,OG,zG,WG,UG,HG,qG,XG,JG,eH,aH,sH,oH,uH,CG,pH,hH,fH,OU,WU,yH,RU,xH,wH,NH,SH,kH,AH,$H,_H,RH,PH,LH,BH,VH,GH,HH,qH,XH,ZH,JH,e6,QH,jv,vG,n6,r6,d6,VU,h6,GU,x6,w6,k6,jU,T6,C6,E6,F6,D6,KU,P6,MU,L6,vH,B6,V6,G6,wG,YU,q6,X6,JU,Z6,ej,nj,sj,oj,uj,eG,dj,mj,gj,bj,vj,cj,Ij,Tj,nG,Cj,Aj,Rj,rG,iG,Oj,Bj,Uj,lG,Hj,qj,Kj,UT,Jj,IG,pG,eq,PU,nq,NG,TG,SG,rq,iq,lq,cq,dq,hq,fq,hG,yq,xq,Iq,Tq,Cq,Eq,Fq,mG,$j,Rq,Pq,Lq,Bq,Vq,Uq,gG,Hq,qq,bG,wj,Xq,Zq,Qq,t5,uG,a5,s5,o5,jj];for(let e of l5)$c(e);var Zi={},Xv={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function u5(e,t){Zi[e]=t}function or(e){if(!(e in Zi)){let n=c5(e);if(n!==null)Zi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Zi[e];return t.isContextLost()?(delete Zi[e],or(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Zi[e])}function p5(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function c5(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=p5(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Zi[e]},!1),e===1?t.getContext("webgl",Xv)||t.getContext("experimental-webgl",Xv):t.getContext("webgl2",Xv)}var Np;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Np||(Np={}));var ea;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ea||(ea={}));var nn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(nn||(nn={}));function Tp(e,t){return[t,e]}function d5(e,t){return e*t}function Sp(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function gu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function h5(e,t){let[n,a]=gu(e,t);return n*a*4}function Yv(e,t){let n=e,a,r,s,i,o,l,c,u,p,d;return ee().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,p=n.HALF_FLOAT,d=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ne(e,t){let n=t();return ee().getBool("DEBUG")&&m5(e),n}function m5(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+f5(e,t))}var g5=596e-10,y5=65504;function b5(e){return!!(ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||g5<Math.abs(e)&&Math.abs(e)<y5)}function f5(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function nf(e,t){return _r(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function x5(e,t){let n=_r(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ne(e,()=>e.shaderSource(n,t)),Ne(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function w5(e,t){let n=_r(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ne(e,()=>e.shaderSource(n,t)),Ne(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw v5(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var k5=/ERROR: [0-9]+:([0-9]+):/g;function v5(e,t){let n=k5.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((p,d)=>k.rightPad((d+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),c=i.slice(a-1,a),u=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${k.rightPad(c[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function I5(e){return _r(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function N5(e,t){if(Ne(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Zv(e,t){if(Ne(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function T5(e,t){let n=_r(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ne(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function S5(e,t){let n=_r(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ne(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ne(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function C5(e){return _r(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function _5(e,t){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function E5(e){return _r(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function jT(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),Ne(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),Ne(e,()=>e.enableVertexAttribArray(o)),!0)}function F5(e,t,n){A5(e,n),Ne(e,()=>e.activeTexture(e.TEXTURE0+n)),Ne(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function $5(e,t,n){return _r(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function D5(e,t,n){return e.getUniformLocation(t,n)}function R5(e,t,n,a){Ne(e,()=>F5(e,t,a)),Ne(e,()=>e.uniform1i(n,a))}function Jv(e,t,n){Ne(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ne(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function qT(e,t){Ne(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ne(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function af(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+M5(e,t))}function M5(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function _r(e,t,n){let a=Ne(e,()=>t());if(a==null)throw new Error(n);return a}function A5(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function yu(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function bu(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Qv(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[yu(e),...bu(e)]),t}function P5(e,t=!1){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=yu(e),s=2,i=2;return e.length&&([s,i]=bu(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function rf(e){return e%2==0}function sf(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||rf(n)&&rf(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&rf(e[0])&&rf(t[0])}var ew,tw;function O5(e){if(ew==null){let t=or(e);ew=t.getParameter(t.MAX_TEXTURE_SIZE)}return ew}function L5(e){if(tw==null){let t=or(e);tw=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,tw)}function z5(e){if(e===0)return 0;let t,n=or(e);return va(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:va(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function va(e,t){return e.getExtension(t)!=null}function KT(e){try{if(or(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function B5(e){if(e===0)return!1;let t=or(e);if(e===1){if(!va(t,"OES_texture_float"))return!1}else if(!va(t,"EXT_color_buffer_float"))return!1;return nw(t)}function V5(e){if(e===0)return!1;let t=or(e);if(e===1){if(!va(t,"OES_texture_float")||!va(t,"WEBGL_color_buffer_float"))return!1}else{if(va(t,"EXT_color_buffer_float"))return nw(t);let n="EXT_color_buffer_half_float";if(va(t,n)){let a=t.getExtension(n);return W5(t,a)}return!1}return nw(t)}function nw(e){let t=Yv(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function W5(e,t){let n=Yv(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function U5(e){return e!==2?!1:or(e).fenceSync!=null}function Cp(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ee=ee();Ee.registerFlag("HAS_WEBGL",()=>Ee.getNumber("WEBGL_VERSION")>0);Ee.registerFlag("WEBGL_VERSION",()=>KT(2)?2:KT(1)?1:0);Ee.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ee.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ee.get("WEBGL_VERSION")===2);Ee.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ee.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ee.registerFlag("WEBGL_PACK",()=>Ee.getBool("HAS_WEBGL"));Ee.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_CLIP",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ee.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_REDUCE",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_CONV_IM2COL",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>O5(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>L5(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ee.getNumber("WEBGL_VERSION");return e===0?0:z5(e)});Ee.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ee.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!wh.isMobile());Ee.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>B5(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ee.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ee.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ee.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>V5(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_FENCE_API_ENABLED",()=>U5(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ee.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ee.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});function mn(){let e,t,n,a,r,s,i,o,l,c;return ee().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Ji(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function aw(e){let t=k.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}var XT=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,G5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Np.DENSE;let t=Sp(e),n=mn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Ji(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}},H5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Np.DENSE;let t=Sp(e),n=mn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Ji(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}},j5=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ea.DOWNLOAD;let t=mn();this.outputShape=e,this.userCode=`
${XT}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},q5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ea.DOWNLOAD;let t=mn();this.outputShape=e,this.userCode=`
${XT}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},K5=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=mn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${aw(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${s};
int c = imod(flatIndex, ${s});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
vec4 values = ${a.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${a.output} = vec4(${i}, 0., 0., 0.);
}
`}},X5=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=mn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${s};
c = imod(flatIndex, ${s});
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
values = ${a.texture2D}(A, uv);
if(offset == 0) {
result[${u}] = values[0];
} else if(offset == 1) {
result[${u}] = values[1];
} else if(offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${aw(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${a.output} = ${o};
}
`}};function Y5(e){let t=mn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return x5(e,n)}function Z5(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return T5(e,t)}function J5(e){let t=new Uint16Array([0,1,2,2,1,3]);return S5(e,t)}function _p(e,t,n,a,r,s){_5(t,n);let i=C5(e),o=e.TEXTURE_2D;return Ne(e,()=>e.bindTexture(o,i)),Ne(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ne(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ne(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ne(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ne(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),Ne(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function YT(e){return e.internalFormatFloat}function Q5(e,t,n,a){let[r,s]=Tp(t,n);return _p(e,r,s,YT(a),a.textureFormatFloat,e.FLOAT)}function ZT(e){return e.internalFormatHalfFloat}function e8(e,t,n,a){let[r,s]=Tp(t,n);return _p(e,r,s,ZT(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function JT(e){return e.downloadTextureFormat}function t8(e,t,n,a){let[r,s]=Tp(t,n);return _p(e,r,s,JT(a),e.RGBA,e.UNSIGNED_BYTE)}function QT(e){return e.internalFormatPackedFloat}function n8(e,t,n,a){let[r,s]=gu(t,n);return _p(e,r,s,QT(a),e.RGBA,e.FLOAT)}function eS(e){return e.internalFormatPackedHalfFloat}function a8(e,t,n,a){let[r,s]=gu(t,n);return _p(e,r,s,eS(a),e.RGBA,a.textureTypeHalfFloat)}function r8(e,t,n){let a=0,r=3*4,s=3*4+2*4;return Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),jT(e,t,"clipSpacePos",n,3,s,a)&&jT(e,t,"uv",n,2,s,r)}function s8(e,t,n,a,r,s){Ne(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),Ne(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),Ne(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function i8(e,t,n){Ne(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ne(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ne(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ne(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function o8(e,t,n,a){let r=e.createBuffer();Ne(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return Ne(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),Ne(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ne(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function l8(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function u8(e,t,n,a){let[r,s]=Tp(t,n),i=4,o=new Uint8Array(d5(t*n,i));return Ne(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function c8(e,t,n,a,r,s,i,o){let l=e,c=new Float32Array(h5(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function p8(e,t,n){let a=new Float32Array(t*n*4);return Ne(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var h8=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ee().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,u5(t,e)):this.gl=or(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(ee().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=nf(this.gl,r),va(this.gl,s))this.textureHalfFloatExtension=nf(this.gl,s);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),va(this.gl,a))this.colorBufferHalfFloatExtension=nf(this.gl,a);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",va(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(va(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Z5(this.gl),this.indexBuffer=J5(this.gl),this.framebuffer=E5(this.gl),this.textureConfig=Yv(this.gl,this.textureHalfFloatExtension)}get debug(){return ee().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ne(e,()=>e.finish()),Ne(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ne(e,()=>e.deleteFramebuffer(this.framebuffer)),Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ne(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ne(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Q5(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),e8(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),t8(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),i8(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),s8(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),a8(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),n8(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(qT(this.gl,this.framebuffer),this.outputTexture=null),Ne(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>u8(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return c8(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return l8(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=o8(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ee().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>p8(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=w5(t,e),a=Y5(t),r=I5(t);return Ne(t,()=>t.attachShader(r,a)),Ne(t,()=>t.attachShader(r,n)),N5(t,r),this.debug&&Zv(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=r8(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ne(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Zv(this.gl,this.program),Ne(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?$5(this.gl,e,t):D5(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ne(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),R5(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=gu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Zv(this.gl,this.program),af(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ne(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ne(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=nf(this.gl,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=d8(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Jv(this.gl,e,this.framebuffer),this.debug&&af(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Jv(this.gl,this.outputTexture,this.framebuffer),this.debug&&af(this.gl)):qT(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;Jv(a,e,this.framebuffer),this.debug&&af(a),this.outputTexture=e,Ne(a,()=>a.viewport(0,0,t,n)),Ne(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),Ne(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function d8(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:tS}=_;function k8(e,t,n,a){let r=[];e.forEach(h=>{let m=k.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
`),i=e.map(h=>m8(h,t,a)).join(`
`),o=t.texShape,l=mn(),c=y8(l),u,p,d=v8(l);return t.isPacked?(u=f8(t.logicalShape,o),p=x8(l)):(u=g8(t.logicalShape,o),p=b8(l)),a&&(d+=w8),[d,c,p,s,u,i,n].join(`
`)}function xu(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return I8(e);case 1:return N8(e);case 2:return T8(e);case 3:return S8(e);case 4:return C8(e);case 5:return _8(e);case 6:return E8(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function nS(e){switch(e.shapeInfo.logicalShape.length){case 0:return A8(e);case 1:return F8(e);case 2:return $8(e);case 3:return D8(e);default:return R8(e)}}function m8(e,t,n=!1){let a="";n?a+=nS(e):a+=xu(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=M8(e,t):a+=P8(e,t)),a}function f8(e,t){switch(e.length){case 0:return aS();case 1:return O8(e,t);case 2:return B8(e,t);case 3:return L8(e,t);default:return z8(e,t)}}function g8(e,t){switch(e.length){case 0:return aS();case 1:return W8(e,t);case 2:return j8(e,t);case 3:return V8(e,t);case 4:return U8(e,t);case 5:return G8(e,t);case 6:return H8(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function y8(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function b8(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function x8(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function v8(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${q8}
${K8}
${X8}
`}var q8=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,K8=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,X8=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,w8=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function aS(){return`
int getOutputCoords() {
return 0;
}
`}function O8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function W8(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function L8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${r};
index -= b * ${r};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec3(b, r, c);
}
`}function V8(e,t){let n=Ji(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function z8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+i,o=`b${l}, `+o;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${i}
int b = index / ${r};
index -= b * ${r};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec${e.length}(${o});
}
`}function U8(e,t){let n=Ji(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function G8(e,t){let n=Ji(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function H8(e,t){let n=Ji(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function B8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let a=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec2(r, c);
}
`}function j8(e,t){return k.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Qi(e){return`offset${e}`}function A8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=mn();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function I8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;let[s,i]=e.shapeInfo.texShape,o=Qi(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
return sampleTexture(${t}, uv);
}
`}function F8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=mn();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${r[0]}, ${r[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function N8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${vu(e)}
}
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=Qi(t);return s===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
return sampleTexture(${t}, uv);
}
`:r===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function $8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=mn();if(r!=null&&k.arraysEqual(t,r))return`
vec4 ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
return ${o.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],c=Math.ceil(t[1]/2);return`
vec4 ${a}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function T8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&k.arraysEqual(t,r)){let p=r[0],d=r[1];return`
float ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let p=wu(e,o),d=["row","col"];return`
${xu(p)}
float ${a}(int row, int col) {
return ${a}(${ku(d,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${vu(e)}
}
`;let l=r[0],c=r[1],u=Qi(n);return c===1?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${u};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${n}, uv);
}
`}function D8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),d=[1,2],h=wu(e,p),m=["b","row","col"];return`
${nS(h)}
vec4 ${a}(int b, int row, int col) {
return ${a}(${ku(m,d)});
}
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),c=l*Math.ceil(t[1]/2),u=mn();return`
vec4 ${a}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${i}, ${o}, ${c}, ${l}, b, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function S8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let m=wu(e,l),f=["row","col","depth"];return`
${xu(m)}
float ${a}(int row, int col, int depth) {
return ${a}(${ku(f,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${r}, ${s}, 1)));
${vu(e)}
}
`;let c=e.shapeInfo.texShape,u=c[0],p=c[1],d=e.shapeInfo.flatOffset;if(p===r&&d==null)return`
float ${a}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;if(p===s&&d==null)return`
float ${a}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;let h=Qi(n);return`
float ${a}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${r} + col * ${s} + depth + ${h};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function R8(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],c=Math.ceil(t[n-1]/2),u=c*Math.ceil(t[n-2]/2),p="int b, int row, int col",d=`b * ${u} + (row / 2) * ${c} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,u*=t[n-m-1],d=`b${m} * ${u} + `+d;let h=mn();return`
vec4 ${r}(${p}) {
int index = ${d};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
return ${h.texture2D}(${a}, uv);
}
`}function C8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let m=wu(e,o),f=["row","col","depth","depth2"];return`
${xu(m)}
float ${a}(int row, int col, int depth, int depth2) {
return ${a}(${ku(f,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${s}, ${r}, 1)));
${vu(e)}
}
`;let c=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,p=u[0],d=u[1];if(d===i&&c==null)return`
float ${a}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(d===r&&c==null)return`
float ${a}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let h=Qi(n);return`
float ${a}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${s} +
depth * ${r} + depth2;
vec2 uv = uvFromFlat(${p}, ${d}, index + ${h});
return sampleTexture(${n}, uv);
}
`}function _8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:c}=k.squeezeShape(t);if(l.length<t.length){let f=wu(e,l),g=["row","col","depth","depth2","depth3"];return`
${xu(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${ku(g,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${vu(e)}
}
`;let u=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===o&&u==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&u==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let m=Qi(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${d}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function E8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=k.squeezeShape(t);if(r.length<t.length){let g=wu(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${xu(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${ku(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${c}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${vu(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],m=d[1];if(m===u&&p==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&p==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=Qi(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${c} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function vu(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function M8(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=tS(e.shapeInfo.logicalShape,t.logicalShape),l=ft(i),c=i-s,u,p=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(g=>`coords.${p[g+c]} = 0;`).join(`
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((g,y)=>`coords.${p[y+c]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${a}(${d});
${h}
}
`}function P8(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let c=ft(l),u=tS(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,d,h=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${h[f+p]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+p]}`).join(", "),`
float ${r}() {
${c} coords = getOutputCoords();
${d}
return get${a}(${m});
}
`}function ft(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function wu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function ku(e,t){return t.map(n=>e[n]).join(", ")}function Y8(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=k8(s,o,r,t.packedInputs),c=e.createProgram(l),u=null,p=e.getUniformLocation(c,"NAN",!1);ee().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;d[m]=e.getUniformLocation(c,m,f),d[`offset${m}`]=e.getUniformLocation(c,`offset${m}`,f)}return{program:t,source:l,webGLProgram:c,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:p}}function rS(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function Z8(e,t,n,a,r){rS(t.inShapeInfos,n),rS([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),ee().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],p=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function J8(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:Q8,bincountImpl:sS,bincountReduceImpl:eK,ceilImpl:tK,concatImpl:nK,expImpl:aK,expm1Impl:rK,floorImpl:sK,gatherV2Impl:iK,greaterImpl:oK,lessImpl:lK,linSpaceImpl:uK,logImpl:cK,maxImpl:pK,maximumImpl:dK,minimumImpl:hK,multiplyImpl:mK,negImpl:fK,prodImpl:gK,rangeImpl:yK,rsqrtImpl:bK,simpleAbsImpl:iS,sliceImpl:xK,stridedSliceImpl:vK,subImpl:wK,tileImpl:kK,topKImpl:IK,transposeImpl:rw,uniqueImpl:NK}=eT;function oS(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function fn(e,t){return t===1?[e]:oS(e,t)}function TK(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var EK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=fn("rc",t),a=ft(t),r=SK(t,e,n),s=CK(t,e[e.length-1],e[e.length-2],n),i=_K(e,n);this.userCode=`
void main() {
${a} rc = getOutputCoords();
if(${r}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}};function AK(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function SK(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function CK(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
int r = ${r[0]};
int c = ${r[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function _K(e,t){let n=e.length,a=AK(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${a[0]}),
cEdge ? 0. : getA(${a[1]}),
rEdge ? 0. : getA(${a[2]}),
rEdge || cEdge ? 0. : getA(${a[3]})`}var lS=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${FK(t)}
${aw(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function FK(e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${Ji(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var $K=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=cS(t,n),r=pS(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=uS(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===nn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===nn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===nn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===nn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===nn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=cS(n,a),s=pS(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=uS(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=ee().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function DK(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function uS(e,t,n,a,r){let s=RK(t,a),i;if(r){let[l,c]=gu(e[0],e[1]);i=l*c}else{let[l,c]=Tp(e[0],e[1]);i=l*c}let o=DK(n,s);return i*o}function RK(e,t){switch(e){case nn.PACKED_2X2_FLOAT32:return QT(t);case nn.PACKED_2X2_FLOAT16:return eS(t);case nn.UNPACKED_FLOAT32:return YT(t);case nn.UNPACKED_FLOAT16:return ZT(t);case nn.PACKED_4X1_UNSIGNED_BYTE:return JT(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function MK(e){return ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?nn.PACKED_2X2_FLOAT32:nn.UNPACKED_FLOAT32:e?nn.PACKED_2X2_FLOAT16:nn.UNPACKED_FLOAT16}function cS(e,t){if(e===ea.UPLOAD)return nn.PACKED_2X2_FLOAT32;if(e===ea.RENDER||e==null)return MK(t);if(e===ea.DOWNLOAD||e===ea.PIXELS)return nn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function pS(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ms=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Pa="if (isnan(x)) return x;",PK="return x;",dS="return abs(x);",OK="return (x >= 0.0) ? x : (exp(x) - 1.0);",LK=Pa+`
return (x < 0.0) ? 0.0 : x;
`,zK=Pa+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,of="return x;",BK="return x;",WK=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,VK=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,UK=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Iu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},GK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=fn("rc",t),a=ft(t),r=TK(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},HK=er.whereImpl,jK=1e-7,qK=1e-4,sw={};function KK(e){return e in sw||(sw[e]={}),sw[e]}var XK=128,YK=600;function ZK(){return ee().global.screen==null?1024:ee().global.screen.height*ee().global.screen.width*window.devicePixelRatio*YK/1024/1024}var iw=class extends pc{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!ee().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=or(ee().getNumber("WEBGL_VERSION"));this.binaryCache=KK(ee().getNumber("WEBGL_VERSION")),this.gpgpu=new h8(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new $K(this.gpgpu),this.numMBBeforeWarning=ZK(),this.texData=new Rd(this,qa())}nextDataId(){return iw.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((ee().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ee().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:ea.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(ee().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:ea.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new Iu(i,of):p=new ms(i,of);let d=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,c;l&&(c=k.now());let u;if(a==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);u=_.mergeRealAndImagArrays(p,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Iu(a,of):h=new ms(a,of);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ee().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&ee().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Sp(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];u=_.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(a);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}c!=null&&this.disposeIntermediateTensorInfo(c);let p=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&qa().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!b5(n))throw ee().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=k.sizeFromShape(t);if(ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...Sp(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=ee().getBool("WEBGL_PACK")&&a===!0,i=s?Qv(t):t,o=s?new q5(i):new j5(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return ee().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=qa().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=XK){let n=this.getCPUBackend();return!ee().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(a=>this.texData.get(a.dataId).texture==null&&k.sizeFromShape(a.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return HK(e.shape,t)}packedUnaryOp(e,t,n){let a=new Iu(e.shape,t),r=this.compileAndRun(a,[e],n);return qa().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=iS(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(ee().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,dS,e.dtype);let t=new ms(e.shape,dS),n=this.compileAndRun(t,[e]);return qa().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return qa().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new GK(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new EK(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[yu(e.shape),...bu(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[yu(t),...bu(t)],s=new lS(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=Qv(a),i;n?i=new H5(s):i=new G5(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Np.DENSE){let m=Sp(e.outputShape);i.texShape=m.map(f=>f*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let f=this.texData.get(m.dataId);if(f.texture==null){if(!e.packedInputs&&k.sizeFromShape(m.shape)<=ee().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:f.values};e.packedInputs&&(f.isPacked=!0,f.shape=m.shape)}else if(!!f.isPacked!=!!e.packedInputs)m=f.isPacked?this.unpackTensor(m):this.packTensor(m),o.push(m),f=this.texData.get(m.dataId);else if(f.isPacked&&!sf(f.shape,m.shape)){let g=m,y=m.shape;m.shape=f.shape,m=this.packedReshape(m,y),o.push(m),f=this.texData.get(m.dataId),g.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:f,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=J8(e,l,c),p=this.getAndSaveBinary(u,()=>Y8(this.gpgpu,e,l,c)),d=this.activeTimers!=null,h;if(d&&(h=this.startTimer()),Z8(this.gpgpu,p,l,c,a),o.forEach(m=>this.disposeIntermediateTensorInfo(m)),d&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)})),!ee().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let m=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),m}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ee().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=D(()=>{if(!ee().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ee().getBool("DEBUG");ee().set("DEBUG",!1);let t=this.abs(de(1e-8)).dataSync()[0];if(ee().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?jK:qK}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=k.now());let u=t.texShape;if(u==null&&(u=P5(n,o),t.texShape=u),r!=null){let p=Qv(n),d,h=u[1],m=u[0],f=r instanceof Uint8Array;o?([h,m]=gu(u[0],u[1]),d=new X5(p,[m,h],f)):d=new K5(p,[m,h],f);let g=this.makeTensorInfo([m,h],a);f?this.texData.get(g.dataId).usage=ea.PIXELS:this.texData.get(g.dataId).usage=ea.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,m,r);let y=!0,b=this.runWebGLProgram(d,[g],a,null,y),v=this.texData.get(b.dataId);t.texture=v.texture,t.texShape=v.texShape,t.isPacked=v.isPacked,t.usage=v.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(b.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-c)}else{let p=this.acquireTexture(u,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=JK(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};iw.nextDataId=0;function JK(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var QK="3.1.0";wh.isBrowser()&&Ch("webgl",()=>new iw,2);var hS=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Nu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},lf=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,Ep=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${ft(r)} coords = getOutputCoords();
`,r===1)s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=fn("coords",r);s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function Wn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var eX={kernelName:Xs,backendName:"webgl",kernelFunc:Wn};function fs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Wn({inputs:{x:a},backend:n}),l=Wn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var tX={kernelName:Ud,backendName:"webgl",kernelFunc:fs},mS="return (a < 0.) ? b * a : a;",fS=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function nX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ep(fS,r.shape,i.shape):new Nu(mS,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var aX={kernelName:Ys,backendName:"webgl",kernelFunc:nX},gS="return (a < 0.) ? b * a : a;",yS=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function rX(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ep(yS,a.shape,r.shape):new Nu(gS,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var sX={kernelName:li,backendName:"webgl",kernelFunc:rX},bS="if (isnan(x)) return x;",iX=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,oX=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Ze({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),d=n(p.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Iu(i.shape,t):u=new ms(i.shape,e),o.runWebGLProgram(u,[i],l)}}function an({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(a&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(v=>{let[x,N]=v,T={dataId:x.dataId,dtype:x.dtype,shape:l.shape},C={dataId:N.dataId,dtype:N.dtype,shape:c.shape},F=new Nu(e,l.shape,c.shape);return u.runWebGLProgram(F,[T,C],pa(x.dtype,N.dtype))}),b=fs({inputs:{real:g,imag:y},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(y),b}let p=s||pa(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&r!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=r(l.shape,c.shape,m.values,f.values,p),b=u.makeTensorInfo(y,p),v=u.texData.get(b.dataId);return v.values=g,b}let d=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new Ep(t,l.shape,c.shape,n):h=new Nu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],p)}}function uf(e,t=!1){if(e==="linear")return t?BK:PK;if(e==="relu")return t?VK:LK;if(e==="elu")return t?WK:OK;if(e==="relu6")return t?UK:zK;if(e==="prelu")return t?yS:gS;if(e==="leakyrelu")return t?fS:mS;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var xS=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=a?e[1]:e[2],u=Math.ceil(c/2),p=a?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",v="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(v=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${b};
int batchB = ${v};
vec4 a = getMatrixA(batchA, ${p});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},vS={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},wS=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},kS="return a * b;";function IS(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=_.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),c=new wS(vS.REAL,a.shape,r.shape),u=new wS(vS.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=fs({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[c,u]=mK(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(u,s),d=n.texData.get(p.dataId);return d.values=c,p}let i;return ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Ep(kS,a.shape,r.shape):i=new Nu(kS,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var lX={kernelName:ri,backendName:"webgl",kernelFunc:IS};function uX(e,t,n){let a=[yu(e.shape),...bu(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[yu(t),...bu(t)],i=new lS(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function be(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=k.sizeFromShape(r.shape),l=k.inferFromImplicitShape(s,o),c=k.sizeFromShape(l);k.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(r.dataId);return u.isPacked&&!sf(r.shape,l)&&!(u.texture!==null&&sf(u.shape,l))?uX(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var cX={kernelName:Il,backendName:"webgl",kernelFunc:be},NS=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${k.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},pX=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,p=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
}
`,d="vec4";t==="all"?(i="1.0",p=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",p=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${p}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${p}
} else if (${u===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${p}
} else if (${u===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${p}
}
setOutput(${l});
}
`}};function dX(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function eo(e,t,n,a){let r=dX(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:c}=r[i],u,p;n==="mean"?u=i===0?new NS({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},o):new NS({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c}):u=new pX({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},n),p=s,s=a.runWebGLProgram(u,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var mX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=ft(this.rank),r=hX(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function hX(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var fX=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=ft(this.rank),r=oS("rc",this.rank),s=new Array(this.rank);for(let c=0;c<t.length;c++)s[t[c]]=r[c];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function cf(e,t,n){let a=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fX(e.shape,t):new mX(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function gX(e,t,n,a){let r=t,s=e.shape.length,i=k.parseAxisParam(r,e.shape),o=i,l=_.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=cf(e,l,a),o=_.getInnerMostAxes(o.length,s)),_.assertAxesAreInnerMostDims("sum",o,s);let[p,d]=_.computeOutAndReduceShapes(u.shape,o),h=p;n&&(h=_.expandShapeToKeepDim(p,i));let m=k.sizeFromShape(d),f=k.sizeFromShape(e.shape)/m,g=be({inputs:{x:u},attrs:{shape:[f,m]},backend:a}),y=vh(e.dtype),b=eo(g,y,"sum",a),v=be({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),c&&a.disposeIntermediateTensorInfo(u),v}function ow(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return gX(r,s,i,n)}var yX={kernelName:bi,backendName:"webgl",kernelFunc:ow};function Sn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=r.shape[s[u]];let c;if(i.shouldExecuteOnCPU([r])){let u=i.texData.get(r.dataId).values,p=rw(u,r.shape,r.dtype,s,l);c=i.makeTensorInfo(l,r.dtype);let d=i.texData.get(c.dataId);d.values=p}else c=cf(r,s,i);return c}var bX={kernelName:Ii,backendName:"webgl",kernelFunc:Sn},TS=1e3;function pf({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,p=n?e.shape[c-2]:e.shape[c-1],d=a?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],m=a?t.shape[u-2]:t.shape[u-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=k.sizeFromShape(f),b=k.sizeFromShape(g),v=y===b||y===1||b===1;k.assert(c>=2&&u>=2&&v,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let x=(y>b?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);k.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let N=n?[y,p,h]:[y,h,p],T=a?[b,m,d]:[b,d,m],C=be({inputs:{x:e},backend:r,attrs:{shape:N}}),F=be({inputs:{x:t},backend:r,attrs:{shape:T}}),$=[C,F],P=Math.max(y,b),B=n?C.shape[1]:C.shape[2],W=s!=null,G=i!=null,q=l==="leakyrelu",j=l!=null?uf(l,!0):null,X=W||G||q||j!=null,K;if((h===1||m===1)&&B>TS&&X===!1){let J=C,se=F;n&&(J=Sn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),$.push(J)),a&&(se=Sn({inputs:{x:F},backend:r,attrs:{perm:[0,2,1]}}),$.push(se));let Q=m!==1,oe=m===1,ae=J;Q&&(ae=be({inputs:{x:J},backend:r,attrs:{shape:[P,B,1]}}),$.push(ae));let pe=m===1?2:1,ue=se;oe&&(ue=be({inputs:{x:se},backend:r,attrs:{shape:[P,1,B]}}),$.push(ue));let ge=IS({inputs:{a:ae,b:ue},backend:r});K=ow({inputs:{x:ge},backend:r,attrs:{axis:pe,keepDims:!0}}),$.push(ge)}else{let J=pa(e.dtype,t.dtype),se=new xS(N,T,[P,h,m],n,a,W,j,G,q),Q=[C,F];if(s!=null&&Q.push(s),G&&Q.push(i),q){let oe=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));Q.push(oe),$.push(oe)}K=r.runWebGLProgram(se,Q,J)}let ne=be({inputs:{x:K},backend:r,attrs:{shape:x}});$.push(K);for(let J of $)r.disposeIntermediateTensorInfo(J);return ne}function xX(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a;return pf({a:r,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:u})}var vX={kernelName:Ni,backendName:"webgl",kernelFunc:xX},SS="return abs(x);";function wX(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=iS(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Iu(a.shape,SS):r=new ms(a.shape,SS),n.runWebGLProgram(r,[a],a.dtype)}var kX={kernelName:zo,backendName:"webgl",kernelFunc:wX},IX=Pa+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,NX=Ze({opSnippet:IX}),TX={kernelName:Bo,backendName:"webgl",kernelFunc:NX},SX=Pa+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,CX=Ze({opSnippet:SX}),_X={kernelName:Wo,backendName:"webgl",kernelFunc:CX},CS="return a + b;",EX=an({opSnippet:CS,packedOpSnippet:CS,supportsComplex:!0,cpuKernelImpl:Q8}),AX={kernelName:Ur,backendName:"webgl",kernelFunc:EX},FX=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},$X=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function df(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Wn({inputs:{x:a[0]},backend:n});if(a.length>ee().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=df({inputs:a.slice(0,o),backend:n}),c=df({inputs:a.slice(o),backend:n});return df({inputs:[l,c],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>pa(o,l)),s=a.map(o=>o.shape),i=ee().getBool("WEBGL_PACK")?new $X(a[0].shape,s):new FX(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var DX={kernelName:$s,backendName:"webgl",kernelFunc:df};function RX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("all",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=k.sizeFromShape(h),f=be({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=eo(f,f.dtype,"all",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=be({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var MX={kernelName:Ld,backendName:"webgl",kernelFunc:RX};function PX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("any",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=k.sizeFromShape(h),f=be({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=eo(f,f.dtype,"any",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=be({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var OX={kernelName:zd,backendName:"webgl",kernelFunc:PX},LX=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},zX=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ft(o),c=fn("coords",o),u,p;if(s===1){p=o+1;let C=ft(p);u=`
${C} sourceLocR = ${C}(${c.join()}, 0);
++${c[o-1]};
${C} sourceLocG = ${C}(${c.join()}, 0);
++${c[o-2]};
${C} sourceLocA = ${C}(${c.join()}, 0);
--${c[o-1]};
${C} sourceLocB = ${C}(${c.join()}, 0);
--${c[o-2]};`}else p=o,u=`
${l} sourceLocR = coords;
++${c[o-1]};
${l} sourceLocG = coords;
++${c[o-2]};
${l} sourceLocA = coords;
--${c[o-1]};
${l} sourceLocB = coords;
--${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],m=d.map(C=>"int "+C),f=fn("sourceLocR",p-1).concat("inIdx.r"),g=fn("sourceLocG",p-1).concat("inIdx.g"),y=fn("sourceLocB",p-1).concat("inIdx.b"),b=fn("sourceLocA",p-1).concat("inIdx.a"),v=n==="max"?"greaterThan":"lessThan",x=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${b.join()})));`,N=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,T=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${T}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${c[o-2]} < ${i[o-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${N};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${x}
vec4 candidate = ${N};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${v}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function _S(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=_.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new LX(o,n,a==null),c=[t];a!=null&&c.push(a);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let p=_S(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}function ES(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=_.computeOptimalWindowSize(s),o=new zX(r,i,n,a==null),l=a==null?[t]:[t,a],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=ES(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function AS(e,t,n,a){let r=[n];if(_.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!ee().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=_.computeOutAndReduceShapes(t.shape,r),l=k.sizeFromShape(o),c=be({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=_S(e,c,a);s.push(u);let p=be({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),p}return ES(e,t,a)}function BX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=AS(n,l,i[0],"max");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var WX={kernelName:Ds,backendName:"webgl",kernelFunc:BX};function VX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=AS(n,l,i[0],"min");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var UX={kernelName:mc,backendName:"webgl",kernelFunc:VX},GX=Pa+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,HX=Ze({opSnippet:GX}),jX={kernelName:Vo,backendName:"webgl",kernelFunc:HX},qX=Pa+"return log(x + sqrt(x * x + 1.0));",KX=Ze({opSnippet:qX}),XX={kernelName:Uo,backendName:"webgl",kernelFunc:KX},YX=Pa+`
return atan(x);
`,ZX=Ze({opSnippet:YX}),JX={kernelName:Go,backendName:"webgl",kernelFunc:ZX},QX=iX+`
return atan(a, b);
`,eY=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+oX+`
return result;
`,tY=an({opSnippet:QX,packedOpSnippet:eY}),nY={kernelName:jo,backendName:"webgl",kernelFunc:tY},aY=Pa+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,rY=Ze({opSnippet:aY}),sY={kernelName:Ho,backendName:"webgl",kernelFunc:rY},Ap=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${p} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let x=Math.floor(s/4)*4,N=s%4,T=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${x}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${T}
}
int xC = xCCorner + ${x};
if (${N===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${N===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${T}
} else if (${N===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${T}
}
}
setOutput(${v});
}
`}},lw=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",v="0.0";if(b||(v="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${p}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${$} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",N=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(N="avgValue / count");let T=Math.floor(s/4)*4,C=s%4,F=`
if (${b}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
const float initializationValue = ${v};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${v});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${p};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
);
${F}
}
int xC = xCCorner + ${T};
if (${C===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${F}
} else if (${C===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
initializationValue,
initializationValue
);
${F}
} else if (${C===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
initializationValue
);
${F}
}
}
setOutput(${N});
}
}
`}};function iY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Cp(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;k.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Wn({inputs:{x:r},backend:n});let p=new Ap(u,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var oY={kernelName:Rs,backendName:"webgl",kernelFunc:iY};function lY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,l,c),d=new lw(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var uY={kernelName:fc,backendName:"webgl",kernelFunc:lY},cY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${u});
const float avgMultiplier = float(${p});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},pY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=u-1-e.padInfo.front,m=p-1-e.padInfo.top,f=d-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${p};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function dY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new pY(d);return n.runWebGLProgram(h,[r],i.dtype)}var hY={kernelName:Wd,backendName:"webgl",kernelFunc:dY};function mY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Cp([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=new cY(u);return n.runWebGLProgram(p,[r],i.dtype)}var fY={kernelName:Bd,backendName:"webgl",kernelFunc:mY};function gY(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return pf({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var yY={kernelName:Ms,backendName:"webgl",kernelFunc:gY},bY=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},xY=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},vY=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[a,r,s],u=null;i!=null&&(u=i.shape,c.push(i));let p=null;o!=null&&(p=o.shape,c.push(o));let d=ee().getBool("WEBGL_PACK_NORMALIZATION")?new xY(a.shape,r.shape,s.shape,u,p,l):new bY(a.shape,r.shape,s.shape,u,p,l);return t.runWebGLProgram(d,c,c[0].dtype)},wY={kernelName:qs,backendName:"webgl",kernelFunc:vY},IY=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ft(this.rank),n=`uniform int start[${this.rank}];`,a=kY(this.rank),r,s=e.map((i,o)=>`sourceLoc.${uw[o]} = start[${o}] + coords.${uw[o]};`);r=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
${n}
void main() {
${r}
setOutput(getSource(${a}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},uw=["x","y","z","w","u","v"];function kY(e){if(e===1)return"sourceLoc";if(e<=6)return uw.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var NY=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ft(this.rank),n=fn("coords",this.rank),a=fn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${a[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function TY(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=pn.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function Fp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=pn.parseSliceParams(r,s,i);if(pn.assertParamsValid(r,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=xK(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:c}=n.texData.get(r.dataId),u=pn.isSliceContinous(r.shape,o,l);if(c||!u){let p=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new NY(l):new IY(l),d=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),TY(r,o,l,n)}var SY={kernelName:Cl,backendName:"webgl",kernelFunc:Fp},CY=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,v)=>b*v),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=[],m=be({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Sn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=be({inputs:{x:f},backend:n,attrs:{shape:u}}),y=Fp({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},_Y={kernelName:gc,backendName:"webgl",kernelFunc:CY};function EY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),c=sS(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var AY={kernelName:Vd,backendName:"webgl",kernelFunc:EY},FY="return float(a != b);",FS=an({opSnippet:FY,dtype:"bool"}),$Y={kernelName:fl,backendName:"webgl",kernelFunc:FS};function $p(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Wn({inputs:{x:r.complexTensorInfos.real},backend:n})}var DY={kernelName:uh,backendName:"webgl",kernelFunc:$p},RY="return float(int(x));";function MY(e,t){let n=new ms(e.shape,RY),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function cw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Wn({inputs:{x:r},backend:n});let i=vt(r.shape),o=cw({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=fs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=$p({inputs:{input:r},backend:n}),o=cw({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Wn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return MY(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=FS({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var PY={kernelName:Ps,backendName:"webgl",kernelFunc:cw},$S="return ceil(x);",OY=Ze({opSnippet:$S,packedOpSnippet:$S,cpuKernelImpl:tK}),LY={kernelName:Os,backendName:"webgl",kernelFunc:OY},zY=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},BY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function WY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;ee().getBool("WEBGL_PACK_CLIP")?o=new BY(r.shape):o=new zY(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var VY={kernelName:Gr,backendName:"webgl",kernelFunc:WY},UY=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function DS(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function GY(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new UY(a.shape),i=[DS(a,r.complexTensorInfos.real),DS(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var HY={kernelName:yc,backendName:"webgl",kernelFunc:GY},jY=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},qY=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=ft(a),s=fn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],c=i.slice(-2),u=i.join(),p=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${u}), vec2(${c.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${hf(i,l,f)}),
vec2(${hf(c,l,f)}));
}`}let d=o.length,h=o[o.length-1];p+=`
return getChannel(
getT${d}(${hf(i,l,h)}),
vec2(${hf(c,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${p}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function hf(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function mf(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Wn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var KY={kernelName:nh,backendName:"webgl",kernelFunc:mf};function Tu(e,t,n){let a=e[0].dtype;if(a==="complex64"){let c=e.map(m=>$p({inputs:{input:m},backend:n})),u=e.map(m=>mf({inputs:{input:m},backend:n})),p=Tu(c,t,n),d=Tu(u,t,n),h=fs({inputs:{real:p,imag:d},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),u.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(a==="string"){let{tensors2D:c,outShape:u}=RS(e,t,n),p=c.map(g=>({vals:n.readSync(g.dataId),shape:g.shape})),d=c[0].shape[0]===1,h=nK(p,u,a,d),m=_.computeOutShape(e.map(g=>g.shape),t),f=n.makeTensorInfo(m,a,h);return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),f}if(e.length>ee().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=Tu(e.slice(0,c),t,n),p=Tu(e.slice(c),t,n),d=Tu([u,p],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),d}if(ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new qY(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,a)}let{tensors2D:r,outShape:s}=RS(e,t,n),i=new jY(r.map(c=>c.shape)),o=n.runWebGLProgram(i,r,a);r.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=be({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function RS(e,t,n){let a=_.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>be({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function MS(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(c=>c.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>k.sizeFromShape(c.shape)>0);if(o.length===1)return Wn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return _.assertParamsConsistent(l,s),Tu(o,s,n)}var XY={kernelName:qo,backendName:"webgl",kernelFunc:MS},PS=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,v="",x="";n&&(a?v=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?v=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:v=`
float activation(float x) {
${n}
}
`,x="result = activation(result);");let N=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${v}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${b}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${N}
${x}
setOutput(result);
}
`}},YY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},ZY=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:p}=n,{left:d,top:h}=o,m=r*a,f=mn(),g=p==="channelsLast",y=g?0:1,b=g?1:2,v="";for(let x=0;x<=1;x++)for(let N=0;N<=1;N++)v+=`
blockIndex = rc.y + ${N};
pos = rc.x + ${x};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
d0 = offsetY + ${u} * (pos / ${m});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${m}.) / ${r}.));
if(d1 < ${t[b]} && d1 >= 0) {
ch = int(mod(float(pos), ${r}.));
if (${g}) {
innerDims = vec2(d1, ch);
result[${x*2+N}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${x*2+N}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${v}
${f.output} = result;
}
`}};function OS({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=a.texData.get(e.dataId),u=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[],b=(p===1||d===1)&&u>TS,v=l[2]%2!=0&&!!c.isPacked;if(b||!ee().getBool("WEBGL_LAZILY_UNPACK")||!ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!v){let x=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],N=be({inputs:{x:e},backend:a,attrs:{shape:[1,x,n.inChannels]}}),T=be({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),C=pf({a:N,b:T,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=be({inputs:{x:C},backend:a,attrs:{shape:n.outShape}}),y.push(N),y.push(T),y.push(C)}else{let x=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),N={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},T=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,k.assert(sf(c.shape,N.shape),()=>`packed reshape ${c.shape} to ${N.shape} isn't free`);let C=be({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(C);let F=pf({a:N,b:C,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),$=a.texData.get(F.dataId);k.assert($.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=T,$.shape=n.outShape,g=Wn({inputs:{x:F},backend:a}),g.shape=n.outShape,y.push(F)}for(let x of y)a.disposeIntermediateTensorInfo(x);return g}function LS({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:p,outHeight:d,dataFormat:h}=n,m=h==="channelsLast",f=l*c*u,g=d*p,y=[f,g],b=!0,v=!1,x=[],N=be({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),T=be({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});x.push(N),x.push(T);let C=new ZY(y,N.shape,n),F=a.runWebGLProgram(C,[N],"float32"),$=be({inputs:{x:F},backend:a,attrs:{shape:[1,y[0],y[1]]}});x.push(F),x.push($);let P=r!=null,B=s!=null,W=o==="leakyrelu",G=o?uf(o,!0):null,q=new xS($.shape,T.shape,[1,g,n.outChannels],b,v,P,G,B,W),j=[$,T];if(r&&j.push(r),B&&j.push(s),W){let J=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));j.push(J),x.push(J)}let X=a.runWebGLProgram(q,j,"float32"),K=m?[1,d,p,n.outChannels]:[1,n.outChannels,d,p],ne=be({inputs:{x:X},backend:a,attrs:{shape:K}});x.push(X);for(let J of x)a.disposeIntermediateTensorInfo(J);return ne}function JY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=OS({x:r,filter:s,convInfo:d,backend:n});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=LS({x:r,filter:s,convInfo:d,backend:n});else{let f=new PS(d);h=n.runWebGLProgram(f,[r,s],"float32")}let m=be({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),m}var QY={kernelName:Ls,backendName:"webgl",kernelFunc:JY},e7=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},t7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},n7=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},a7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function r7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),h=new e7(d);return n.runWebGLProgram(h,[r,s],"float32")}var s7={kernelName:Gd,backendName:"webgl",kernelFunc:r7};function i7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(c),d=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),h=new t7(d);return n.runWebGLProgram(h,[r,s],"float32")}var o7={kernelName:zs,backendName:"webgl",kernelFunc:i7};function l7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),u=new YY(c);return n.runWebGLProgram(u,[r,s],"float32")}var u7={kernelName:bc,backendName:"webgl",kernelFunc:l7};function c7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,c=_.computeConv3DInfo(r.shape,l,i,1,o),u=new n7(c);return n.runWebGLProgram(u,[r,s],"float32")}var p7={kernelName:Hd,backendName:"webgl",kernelFunc:c7};function d7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,c=_.computeConv3DInfo(l,s.shape,o,1,i),u=new a7(c);return n.runWebGLProgram(u,[r,s],"float32")}var h7={kernelName:jd,backendName:"webgl",kernelFunc:d7},m7=bS+`
return cos(x);
`,f7=Ze({opSnippet:m7}),g7={kernelName:Bs,backendName:"webgl",kernelFunc:f7},y7=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,b7=Ze({opSnippet:y7}),x7={kernelName:Ko,backendName:"webgl",kernelFunc:b7},v7=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,p]=n;this.outputShape=[c,u,p,l];let d=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,v,x]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${b});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${v};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${x};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},w7=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,u=new v7(r.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[r,s,i],"float32")},k7={kernelName:Xo,backendName:"webgl",kernelFunc:w7},WS=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${zS(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${ft(a)} coords = getOutputCoords();
int end = ${BS(a,"coords")};
float val = ${r};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${o};
${BS(a,"coords")} = idx;
val += getX(${zS(a,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function zS(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function BS(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function I7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,c=_.getAxesPermutation([s],l),u=r;c!=null&&(u=Sn({inputs:{x:r},backend:n,attrs:{perm:c}}));let p=_.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let d=u.shape[p],h=Wn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new WS(u.shape,!1,o),g=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new WS(u.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=_.getUndoAxesPermutation(c),f=Sn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),f}return h}var N7={kernelName:Ws,backendName:"webgl",kernelFunc:I7};function T7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(s.dataId),u=sS(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=eK(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var S7={kernelName:qd,backendName:"webgl",kernelFunc:T7},C7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function _7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=new C7(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var E7={kernelName:Yo,backendName:"webgl",kernelFunc:_7},VS=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,g="",y="";n&&(a?g=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?g=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:g=`
float activation(float x) {
${n}
}
`,y="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${g}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${f};
int q = d2 - d1 * ${f};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${p};
if (xR < 0 || xR >= ${s}) {
continue;
}
for (int wC = 0; wC < ${m}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${b}
${y}
setOutput(result);
}
`}},US=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=m,g="int xR; int xC; int xCOffset;";for(let x=0;x<h;x++)for(let N=0;N<m;N++)g+=`
vec4 xTexelR${x}C${N*2} = vec4(0.);
vec4 wR${x}C${N} = vec4(0.);
vec4 xR${x}C${N} = vec4(0.);`;for(let x=0;x<h;x++)for(let N=0;N<f;N++){let T=N*2;if(g+=`
xR = xRCorner + ${x*p};
xC = xCCorner + ${T*d};
`,u===1){if(T<m&&(l%2==1?g+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${T} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${x}C${T}.zw = vec2(0.);
}
} else {
xTexelR${x}C${T} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${x}C${T} = vec4(previous.zw, xTexelR${x}C${T}.xy);
} else {
xR${x}C${T} = vec4(0, 0, xTexelR${x}C${T}.xy);
}
`:g+=`
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
xTexelR${x}C${T} = getX(batch, xR, xC, d1);
} else {
xTexelR${x}C${T} = vec4(0.);
}
xR${x}C${T} = xTexelR${x}C${T};
`,T+1<m)){let C=l%2==0?k.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(g+=`
xCOffset = xC + ${l%2} + ${C};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${T+2} = getX(batch, xR, xCOffset, d1);
}
`,d>1&&(g+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${T} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${T} = vec4(0.);
}
`),g+=`
xR${x}C${T+1} = vec4(
xTexelR${x}C${T}.zw, xTexelR${x}C${T+2}.xy);
`):g+=`
xCOffset = xC + ${C};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${T+2} = getX(batch, xR, xCOffset, d1);
}
xR${x}C${T+1} = xTexelR${x}C${T+2};
`}}else T<m&&(g+=`
if(xR >= 0 && xR < ${s}) {
`,l%2==1?(g+=`
xCOffset = xC + 1 - ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${T} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${T} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${x}C${T+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${x}C${T+2} = vec4(0.);
}
xR${x}C${T} = vec4(
xTexelR${x}C${T}.zw, xTexelR${x}C${T+2}.zw);
`,T+1<m&&(g+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${x}C${T+1} = vec4(xTexelR${x}C${T+2}.xy, final.xy);
`)):(g+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${x}C${T} = getX(batch, xR, xC, d1);
} else {
xTexelR${x}C${T} = vec4(0.);
}
xCOffset = xC + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${T+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${T+2} = vec4(0.);
}
xR${x}C${T} = vec4(
xTexelR${x}C${T}.xy, xTexelR${x}C${T+2}.xy);
`,T+1<m&&(g+=`
xR${x}C${T+1} = vec4(
xTexelR${x}C${T}.zw, xTexelR${x}C${T+2}.zw);
`)),g+="}");T<m&&(g+=`
vec4 wTexelR${x}C${T} = getW(${x}, ${T}, d1, q);
wR${x}C${T} = vec4(wTexelR${x}C${T}.xz, wTexelR${x}C${T}.xz);
`,T+1<m&&(g+=`
vec4 wTexelR${x}C${T+1} = getW(${x}, ${T+1}, d1, q);
wR${x}C${T+1} =
vec4(wTexelR${x}C${T+1}.xz, wTexelR${x}C${T+1}.xz);`))}for(let x=0;x<h;x++)for(let N=0;N<m;N++)g+=`dotProd += xR${x}C${N} * wR${x}C${N};`;let y="",b="";n&&(a?y=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?y=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`vec4 activation(vec4 x) {
${n}
}`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${g}
vec4 result = dotProd;
${v}
${b}
setOutput(result);
}
`}};function A7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=a,u=l;u==null&&(u=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computeConv2DInfo(r.shape,s.shape,i,u,o,c,!0),d;return ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?d=new US(p):d=new VS(p),n.runWebGLProgram(d,[r,s],"float32")}var F7={kernelName:Vs,backendName:"webgl",kernelFunc:A7},$7=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},D7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function R7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a,p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),d=new $7(p);return n.runWebGLProgram(d,[r,s],"float32")}var M7={kernelName:Kd,backendName:"webgl",kernelFunc:R7};function P7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a,p=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new D7(p);return n.runWebGLProgram(d,[r,s],"float32")}var O7={kernelName:Xd,backendName:"webgl",kernelFunc:P7},L7=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function z7(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=be({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new L7(s),l=n.runWebGLProgram(o,[i],i.dtype),c=be({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var B7={kernelName:Yd,backendName:"webgl",kernelFunc:z7},W7=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:p}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${u}, ${p});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function V7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),u,p=new W7(c);u=n.runWebGLProgram(p,[r,s],"float32");let d=be({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var U7={kernelName:xc,backendName:"webgl",kernelFunc:V7},G7="return (x >= 0.0) ? x : (exp(x) - 1.0);",H7=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,j7=Ze({opSnippet:G7,packedOpSnippet:H7}),q7={kernelName:Zo,backendName:"webgl",kernelFunc:j7},K7="return (b >= 1.0) ? a : a * (b + 1.0);",X7=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,Y7=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ep(X7,a.shape,r.shape):new Nu(K7,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},Z7={kernelName:Qd,backendName:"webgl",kernelFunc:Y7},J7=`
return vec4(equal(a, b));
`,Q7="return float(a == b);",eZ=an({opSnippet:Q7,packedOpSnippet:J7,dtype:"bool"}),tZ={kernelName:Qo,backendName:"webgl",kernelFunc:eZ},nZ=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${_.ERF_P};
float a1 = ${_.ERF_A1};
float a2 = ${_.ERF_A2};
float a3 = ${_.ERF_A3};
float a4 = ${_.ERF_A4};
float a5 = ${_.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,aZ=Ze({opSnippet:nZ}),rZ={kernelName:Jo,backendName:"webgl",kernelFunc:aZ},GS="return exp(x);",HS=Ze({opSnippet:GS,packedOpSnippet:GS,cpuKernelImpl:aK}),sZ={kernelName:Gs,backendName:"webgl",kernelFunc:HS};function pw(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),be({inputs:{x:s},backend:a,attrs:{shape:o}})}var iZ={kernelName:el,backendName:"webgl",kernelFunc:pw},jS="return exp(x) - 1.0;",oZ=Ze({opSnippet:jS,packedOpSnippet:jS,cpuKernelImpl:rK}),lZ={kernelName:tl,backendName:"webgl",kernelFunc:oZ},qS=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function KS(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=be({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new qS("real",l,t),u=new qS("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=fs({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let f=be({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function uZ(e){let{inputs:t,backend:n}=e,{input:a}=t;return KS(a,!1,n)}var cZ={kernelName:eh,backendName:"webgl",kernelFunc:uZ},pZ=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function dw(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new pZ(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var dZ={kernelName:vc,backendName:"webgl",kernelFunc:dw},hZ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},mZ={kernelName:nl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new hZ(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},XS="return floor(x);",fZ=Ze({opSnippet:XS,packedOpSnippet:XS,cpuKernelImpl:sK}),gZ={kernelName:Hs,backendName:"webgl",kernelFunc:fZ},yZ=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,bZ=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,xZ=an({opSnippet:yZ,packedOpSnippet:bZ,dtype:"int32"}),vZ={kernelName:js,backendName:"webgl",kernelFunc:xZ},wZ=class{constructor(e){this.variableNames=["A"];let t=mn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},kZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=mn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},NZ={kernelName:mh,backendName:"webgl",kernelFunc:IZ},Su;function IZ(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,c],d=[u,c,s];(o||i||l)&&(Su==null&&(Su=document.createElement("canvas").getContext("2d")),Su.canvas.width=c,Su.canvas.height=u,Su.drawImage(r,0,0,c,u),r=Su.canvas);let h=n.makeTensorInfo(p,"int32");n.texData.get(h.dataId).usage=ea.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(h.dataId),r);let m=ee().getBool("WEBGL_PACK")?new kZ(d):new wZ(d),f=n.runWebGLProgram(m,[h],"int32");return n.disposeData(h.dataId),f}function TZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=_.convertConv2DDataFormat(u),g=_.computeConv2DInfo(r.shape,s.shape,l,p,c,d,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=OS({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=LS({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let x=i!=null,N=o!=null,T=h==="leakyrelu",C=h?uf(h,!1):null,F=new PS(g,x,C,N,T),$=[r,s];if(i&&$.push(i),o&&$.push(o),T){let P=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));$.push(P),b.push(P)}y=n.runWebGLProgram(F,$,"float32")}let v=be({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var SZ={kernelName:Ti,backendName:"webgl",kernelFunc:TZ};function CZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=a,m=[],f=u;f==null&&(f=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=_.computeConv2DInfo(r.shape,s.shape,l,f,c,p,!0),y=ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=d?uf(d,y):null,v=[r,s],x=i!=null,N=o!=null,T=d==="leakyrelu";if(x&&v.push(i),N&&v.push(o),T){let $=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));v.push($),m.push($)}let C;y?C=new US(g,x,b,N,T):C=new VS(g,x,b,N,T);let F=n.runWebGLProgram(C,v,"float32");return m.forEach($=>n.disposeIntermediateTensorInfo($)),F}var _Z={kernelName:Si,backendName:"webgl",kernelFunc:CZ},EZ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=ft(t.length),r=ft(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${a} strides = ${a}(${this.strides});
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function AZ(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,c,u]=_.prepareAndValidate(a,r),p=be({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),d=be({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/c,c]}}),h=new EZ(i,u,[l,c]),m=n.runWebGLProgram(h,[d,p],d.dtype),f=be({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var FZ={kernelName:rl,backendName:"webgl",kernelFunc:AZ},DZ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ft(this.rank),a=$Z(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function $Z(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function RZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=k.sizeFromShape(s.shape),p=[],d=be({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=be({inputs:{x:s},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});p.push(d),p.push(h);let m=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),v=n.bufferSync(d),x=iK(v,b,m);return p.forEach(N=>n.disposeIntermediateTensorInfo(N)),n.makeTensorInfo(c.outputShape,x.dtype,x.values)}let f=new DZ(d.shape,m),g=n.runWebGLProgram(f,[d,h],d.dtype);p.push(g);let y=be({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var MZ={kernelName:al,backendName:"webgl",kernelFunc:RZ},PZ="return float(a > b);",OZ=`
return vec4(greaterThan(a, b));
`,LZ=an({opSnippet:PZ,packedOpSnippet:OZ,cpuKernelImpl:oK,dtype:"bool"}),zZ={kernelName:sl,backendName:"webgl",kernelFunc:LZ},BZ="return float(a >= b);",WZ=`
return vec4(greaterThanEqual(a, b));
`,VZ=an({opSnippet:BZ,packedOpSnippet:WZ,dtype:"bool"}),UZ={kernelName:Ks,backendName:"webgl",kernelFunc:VZ};function GZ(e){let{inputs:t,backend:n}=e,{input:a}=t;return KS(a,!0,n)}var HZ={kernelName:th,backendName:"webgl",kernelFunc:GZ},jZ="return float(!isnan(x) && !isinf(x));",qZ=Ze({opSnippet:jZ,dtype:"bool"}),KZ={kernelName:il,backendName:"webgl",kernelFunc:qZ},XZ="return float(isinf(x));",YZ=Ze({opSnippet:XZ,dtype:"bool"}),ZZ={kernelName:ol,backendName:"webgl",kernelFunc:YZ},JZ="return float(isnan(x));",QZ=Ze({opSnippet:JZ,dtype:"bool"}),e9={kernelName:ll,backendName:"webgl",kernelFunc:QZ},t9="return float(a < b);",n9=`
return vec4(lessThan(a, b));
`,a9=an({opSnippet:t9,packedOpSnippet:n9,cpuKernelImpl:lK,dtype:"bool"}),r9={kernelName:ul,backendName:"webgl",kernelFunc:a9},s9="return float(a <= b);",i9=`
return vec4(lessThanEqual(a, b));
`,o9=an({opSnippet:s9,packedOpSnippet:i9,dtype:"bool"}),l9={kernelName:cl,backendName:"webgl",kernelFunc:o9};function u9(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=uK(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var c9={kernelName:ah,backendName:"webgl",kernelFunc:u9},p9=`if (x < 0.0) return NAN;
return log(x);`,d9=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,h9=Ze({opSnippet:p9,packedOpSnippet:d9,cpuKernelImpl:cK}),m9={kernelName:Zs,backendName:"webgl",kernelFunc:h9},f9="return log(1.0 + x);",g9=Ze({opSnippet:f9}),y9={kernelName:pl,backendName:"webgl",kernelFunc:g9},b9="return float(a >= 1.0 && b >= 1.0);",x9=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,v9=an({opSnippet:b9,packedOpSnippet:x9,dtype:"bool"}),w9={kernelName:dl,backendName:"webgl",kernelFunc:v9},k9="return float(!(x >= 1.0));",I9=Ze({opSnippet:k9}),N9={kernelName:wc,backendName:"webgl",kernelFunc:I9},T9="return float(a >= 1.0 || b >= 1.0);",S9=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,C9=an({opSnippet:T9,packedOpSnippet:S9,dtype:"bool"}),_9={kernelName:kc,backendName:"webgl",kernelFunc:C9},E9=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},A9=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},F9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,c=ee().getBool("WEBGL_PACK_NORMALIZATION")?new A9(r.shape,s,i,o,l):new E9(r.shape,s,i,o,l);return n.runWebGLProgram(c,[r],r.dtype)},$9={kernelName:Ic,backendName:"webgl",kernelFunc:F9},D9=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},R9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a,p=new D9(r.shape,o,l,c,u);return n.runWebGLProgram(p,[r,s,i],r.dtype)},M9={kernelName:rh,backendName:"webgl",kernelFunc:R9};function P9(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=eo(i,e.dtype,"max",a),l=be({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function YS(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let b=n.texData.get(h.dataId).values,v=new Array(o);for(let T=0;T<v.length;T++)v[T]=r.shape[u[T]];let x=rw(b,r.shape,r.dtype,u,v);h=n.makeTensorInfo(v,r.dtype);let N=n.texData.get(h.dataId);N.values=x}else h=cf(r,u,n);c=_.getInnerMostAxes(c.length,o)}_.assertAxesAreInnerMostDims("max",c,o);let[m,f]=_.computeOutAndReduceShapes(h.shape,c),g=m;i&&(g=_.expandShapeToKeepDim(m,l));let y;if(d){let b=n.texData.get(h.dataId).values,v=pK(b,k.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let x=n.texData.get(y.dataId);x.values=v}else y=P9(h,f,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var O9={kernelName:Js,backendName:"webgl",kernelFunc:YS},L9=hS+`
return max(a, b);
`,z9=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+lf+`
return result;
`,B9=an({opSnippet:L9,packedOpSnippet:z9,cpuKernelImpl:dK}),W9={kernelName:Qs,backendName:"webgl",kernelFunc:B9};function V9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Cp(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;k.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Wn({inputs:{x:r},backend:n});let p=new Ap(u,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var U9={kernelName:ei,backendName:"webgl",kernelFunc:V9};function G9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,c,l),d=new lw(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var H9={kernelName:Nc,backendName:"webgl",kernelFunc:G9},j9=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},q9=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,p=l-1-e.padInfo.top,d=c-1-e.padInfo.left,h=o*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${p}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function K9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new lw(d,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new q9(d),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var X9={kernelName:ih,backendName:"webgl",kernelFunc:K9};function Y9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Cp([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=!0,m=new Ap(d,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new j9(d),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var Z9={kernelName:sh,backendName:"webgl",kernelFunc:Y9};function J9(e,t,n,a){let r=new Ap(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Ap(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var Q9={kernelName:oh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let c=[1,1];k.assert(_.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=_.computePool2DInfo(a.shape,r,s,c,i),[p,d]=J9(a,o,u,l);return[p,d]}};function eJ(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=eo(i,"float32","mean",a),l=be({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var tJ={kernelName:ti,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(d){let v=i.texData.get(m.dataId).values,x=new Array(o);for(let C=0;C<x.length;C++)x[C]=a.shape[u[C]];let N=rw(v,a.shape,a.dtype,u,x);m=i.makeTensorInfo(x,a.dtype);let T=i.texData.get(m.dataId);T.values=N}else m=cf(a,u,i);h.push(m),c=_.getInnerMostAxes(c.length,o)}_.assertAxesAreInnerMostDims("sum",c,o);let[f,g]=_.computeOutAndReduceShapes(m.shape,c),y=f;r&&(y=_.expandShapeToKeepDim(f,l));let b=eJ(m,g,y,i);for(let v of h)i.disposeIntermediateTensorInfo(v);return b}};function nJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=k.sizeFromShape(h),f=be({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=eo(f,f.dtype,"min",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=be({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var aJ={kernelName:ni,backendName:"webgl",kernelFunc:nJ},rJ=hS+`
return min(a, b);
`,sJ=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+lf+`
return result;
`,iJ=an({opSnippet:rJ,packedOpSnippet:sJ,cpuKernelImpl:hK}),oJ={kernelName:ai,backendName:"webgl",kernelFunc:iJ},lJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let a=e.length,r=ft(a),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},uJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=ft(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=fn("rc",a),l=fn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${p};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${p};
}
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${p}) +
gte * ((end - 1) * 2 - source + ${p});
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},cJ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uJ(a.shape,r,s):new lJ(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},pJ={kernelName:Tc,backendName:"webgl",kernelFunc:cJ},dJ=`if (b == 0.0) return NAN;
return mod(a, b);`,hJ=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+lf+`
return result;
`,mJ=an({opSnippet:dJ,packedOpSnippet:hJ}),fJ={kernelName:hl,backendName:"webgl",kernelFunc:mJ},gJ=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},yJ=`
if (a == b) {
return 1.0;
};
return a / b;`,bJ=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,ZS=an({opSnippet:yJ,packedOpSnippet:bJ,checkOutOfBounds:!0}),xJ={kernelName:Us,backendName:"webgl",kernelFunc:ZS},JS="return a - b;",QS=an({opSnippet:JS,packedOpSnippet:JS,supportsComplex:!0,cpuKernelImpl:wK}),vJ={kernelName:wi,backendName:"webgl",kernelFunc:QS};function e2(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=YS({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=_.expandShapeToKeepDim(o.shape,i),c=be({inputs:{x:o},backend:n,attrs:{shape:l}}),u=QS({inputs:{a:r,b:c},backend:n}),p=HS({inputs:{x:u},backend:n}),d=ow({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=be({inputs:{x:d},backend:n,attrs:{shape:l}}),m=ZS({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}var wJ={kernelName:xi,backendName:"webgl",kernelFunc:e2};function kJ(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:e2({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],p=new gJ(c,u,s),d=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),h}var IJ={kernelName:lh,backendName:"webgl",kernelFunc:kJ},t2="return -x;";function NJ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=fK(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Iu(a.shape,t2):r=new ms(a.shape,t2),n.runWebGLProgram(r,[a],a.dtype)}var TJ={kernelName:ml,backendName:"webgl",kernelFunc:NJ},SJ=er.nonMaxSuppressionV3Impl;function CJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,c=n.readSync(r.dataId),u=n.readSync(s.dataId),{selectedIndices:p}=SJ(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var _J={kernelName:gl,backendName:"webgl",kernelFunc:CJ},EJ=er.nonMaxSuppressionV4Impl;function AJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d,validOutputs:h}=EJ(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var FJ={kernelName:yl,backendName:"webgl",kernelFunc:AJ},$J=er.nonMaxSuppressionV5Impl;function DJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=$J(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var RJ={kernelName:bl,backendName:"webgl",kernelFunc:DJ},MJ=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},PJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=k.sizeFromShape(r.shape),c=new MJ(l,s,i,o),u=be({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let d=[...r.shape,s],h=be({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},OJ={kernelName:si,backendName:"webgl",kernelFunc:PJ};function ff(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=$p({inputs:{input:a},backend:n}),s=ff({inputs:{x:r},backend:n}),i=mf({inputs:{input:a},backend:n}),o=ff({inputs:{x:i},backend:n}),l=fs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return dw({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var LJ={kernelName:Pl,backendName:"webgl",kernelFunc:ff};function n2(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=$p({inputs:{input:a},backend:n}),s=n2({inputs:{x:r},backend:n}),i=mf({inputs:{input:a},backend:n}),o=ff({inputs:{x:i},backend:n}),l=fs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return dw({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var zJ={kernelName:xl,backendName:"webgl",kernelFunc:n2};function BJ(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return pw({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=pw({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=MS({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var WJ={kernelName:vl,backendName:"webgl",kernelFunc:BJ},VJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let a=e.length,r=ft(a),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(float(${n}));
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(float(${n}));
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},UJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=ft(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=fn("rc",a),l=fn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${c}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${c}) {`],d=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${p[m]}
if (${d}) {
result[${m}] = float(${n});
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${u});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},a2=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new UJ(r.shape,s,i):new VJ(r.shape,s,i);return n.runWebGLProgram(o,[r],r.dtype)},GJ={kernelName:ii,backendName:"webgl",kernelFunc:a2},HJ=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,jJ=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+lf+`
return result;
`,qJ=an({opSnippet:HJ,packedOpSnippet:jJ}),KJ={kernelName:oi,backendName:"webgl",kernelFunc:qJ};function XJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],c=k.parseAxisParam(s,r.shape),u=c,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,o),l.push(d)),_.assertAxesAreInnerMostDims("prod",u,o);let h;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:g,outDtype:y}=gK(d.shape,d.dtype,m,u);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=_.computeOutAndReduceShapes(d.shape,u),g=k.sizeFromShape(f),y=be({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),b=vh(r.dtype),v=eo(y,b,"prod",n);h=be({inputs:{x:v},backend:n,attrs:{shape:m}}),l.push(y),l.push(v)}if(i){l.push(h);let m=_.expandShapeToKeepDim(h.shape,c);h=be({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var YJ={kernelName:wl,backendName:"webgl",kernelFunc:XJ},r2=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=yK(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},ZJ={kernelName:Sc,backendName:"webgl",kernelFunc:r2},JJ="return 1.0 / x;",QJ=Ze({opSnippet:JJ}),eQ={kernelName:kl,backendName:"webgl",kernelFunc:QJ},tQ=Pa+`
return (x < 0.0) ? 0.0 : x;
`,nQ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,aQ=Ze({opSnippet:tQ,packedOpSnippet:nQ}),rQ={kernelName:ui,backendName:"webgl",kernelFunc:aQ},sQ=Pa+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,iQ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,oQ=Ze({opSnippet:sQ,packedOpSnippet:iQ}),lQ={kernelName:pi,backendName:"webgl",kernelFunc:oQ},uQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},cQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function pQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new cQ(r.shape,l,c,s,i):new uQ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],"float32")}var dQ={kernelName:ci,backendName:"webgl",kernelFunc:pQ},hQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function mQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new hQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var fQ={kernelName:ph,backendName:"webgl",kernelFunc:mQ},gQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function yQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=new gQ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],r.dtype)}var bQ={kernelName:Cc,backendName:"webgl",kernelFunc:yQ},xQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function vQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new xQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var wQ={kernelName:ch,backendName:"webgl",kernelFunc:vQ},kQ=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=ft(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},IQ=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=fn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ft(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${c(a.slice())};
if(${r}) {
result.a = ${u(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,b)=>d(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function d(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function NQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Wn({inputs:{x:r},backend:n});let l=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new IQ(r.shape,o):new kQ(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var TQ={kernelName:di,backendName:"webgl",kernelFunc:NQ},SQ=class{constructor(e,t,n,a){this.variableNames=["Image"],this.outputShape=[];let r=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,c]=_.getImageCenter(a,r,s),u=l.toFixed(3),p=c.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=`
vec3 fill = vec3(${n.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - ${u}) * ${o} - (float(y) - ${p}) * ${i};
float coordYFloat = (float(x) - ${u}) * ${i} + (float(y) - ${p}) * ${o};
int coordX = int(round(coordXFloat + ${u}));
int coordY = int(round(coordYFloat + ${p}));
${d}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${r}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},CQ={kernelName:Ol,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new SQ(a.shape,r,s,i);return o.runWebGLProgram(l,[a],a.dtype)}},_Q=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,EQ=Ze({opSnippet:_Q}),AQ={kernelName:hi,backendName:"webgl",kernelFunc:EQ},FQ="return inversesqrt(x);",$Q=Ze({opSnippet:FQ,cpuKernelImpl:bK}),DQ={kernelName:mi,backendName:"webgl",kernelFunc:$Q},s2=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ft(r.length),l=ft(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function RQ(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=[p/c,c];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=be({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=be({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new s2(l,o,h.shape.length,m.shape.length,u,d),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=be({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var MQ={kernelName:Nl,backendName:"webgl",kernelFunc:RQ},PQ=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c<t.length;c++)l.push(`${i[c]}`),c<e&&o.push(`${i[c]}`);a=o.join(),r=l.join()}let s=ft(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function OQ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new PQ(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],pa(r.dtype,s.dtype))}var LQ={kernelName:Tl,backendName:"webgl",kernelFunc:OQ},zQ=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${_.SELU_SCALEALPHA};
float scale = ${_.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,BQ=Ze({opSnippet:zQ}),WQ={kernelName:Sl,backendName:"webgl",kernelFunc:BQ},VQ="return 1.0 / (1.0 + exp(-1.0 * x));",UQ=Ze({opSnippet:VQ}),GQ={kernelName:gi,backendName:"webgl",kernelFunc:UQ},HQ=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,jQ=Ze({opSnippet:HQ}),qQ={kernelName:El,backendName:"webgl",kernelFunc:jQ},KQ=bS+`
return sin(x);
`,XQ=Ze({opSnippet:KQ}),YQ={kernelName:fi,backendName:"webgl",kernelFunc:XQ},ZQ=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,JQ=Ze({opSnippet:ZQ}),QQ={kernelName:_l,backendName:"webgl",kernelFunc:JQ},eee=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,tee=Ze({opSnippet:eee}),nee={kernelName:Al,backendName:"webgl",kernelFunc:tee},aee=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let c=[],u=a2({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=_.getReshaped(u.shape,s,o,!1),d=_.getPermuted(p.length,s.length,!1),h=_.getReshapedPermuted(u.shape,s,o,!1),m=be({inputs:{x:u},backend:n,attrs:{shape:p}}),f=Sn({inputs:{x:m},backend:n,attrs:{perm:d}}),g=be({inputs:{x:f},backend:n,attrs:{shape:h}});return c.push(u),c.push(m),c.push(f),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},ree={kernelName:_c,backendName:"webgl",kernelFunc:aee};function see(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,strides:u,outputSize:p}=_.calculateShapes(s,r,o),d=!1,h=new s2(c,l,r.shape.length,s.shape.length,u,[p,1],d),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=be({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var iee={kernelName:dh,backendName:"webgl",kernelFunc:see};function oee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=r.shape.length,u=new Array(c).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[o]=d;let m=Fp({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[o]+=d,m})}var lee={kernelName:Fl,backendName:"webgl",kernelFunc:oee},uee="return sqrt(x);",cee=Ze({opSnippet:uee}),pee={kernelName:yi,backendName:"webgl",kernelFunc:cee},dee="return x * x;",hee=Ze({opSnippet:dee}),mee={kernelName:Ec,backendName:"webgl",kernelFunc:hee},i2="return (a - b) * (a - b);",fee=an({opSnippet:i2,packedOpSnippet:i2}),gee={kernelName:vi,backendName:"webgl",kernelFunc:fee};function yee({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Pa+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new ms(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var bee={kernelName:jr,backendName:"webgl",kernelFunc:yee},xee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=ft(n.length),s=ft(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function vee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=pn.sliceInfo(r.shape,s,i,o,l,c,u,p,d),v=be({inputs:{x:r},backend:n,attrs:{shape:y}}),x;if(h){let T=Fp({inputs:{x:v},backend:n,attrs:{begin:m,size:g}});x=be({inputs:{x:T},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(T)}else if(b.some(T=>T===0))x=n.makeTensorInfo(b,r.dtype,[]);else if(n.shouldExecuteOnCPU([v])){let T=n.texData.get(v.dataId).values,C=Le(v.shape,v.dtype,T),F=vK(b,C,f,m);x=n.makeTensorInfo(b,v.dtype,F.values)}else{let T=new xee(m,f,b);x=n.runWebGLProgram(T,[v],v.dtype)}let N=be({inputs:{x},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(x),N}var wee={kernelName:$l,backendName:"webgl",kernelFunc:vee},kee="return tan(x);",Iee=Ze({opSnippet:kee}),Nee={kernelName:Dl,backendName:"webgl",kernelFunc:Iee},Tee=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,See=Ze({opSnippet:Tee}),Cee={kernelName:ki,backendName:"webgl",kernelFunc:See},Eee=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=ft(this.rank),r=_ee(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function _ee(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function o2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"){let o=n.readSync(r.dataId).map(u=>k.decodeString(u)),l=Le(r.shape,r.dtype,o),c=kK(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new Eee(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var Aee={kernelName:Hr,backendName:"webgl",kernelFunc:o2};function Fee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,c]=IK(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var $ee={kernelName:Rl,backendName:"webgl",kernelFunc:Fee};function Dee(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Cp(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=NK(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var Ree={kernelName:hh,backendName:"webgl",kernelFunc:Dee};function Mee(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],c=new Array(o-1),u=0;for(let f=0;f<o;f++)f!==s&&(c[u++]=i.shape[f]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){d[s]=f;let g=Fp({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),y=be({inputs:{x:g},backend:n,attrs:{shape:c}});m[f]=y,p.push(g)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Pee={kernelName:Ml,backendName:"webgl",kernelFunc:Mee},Oee=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,p=`
sumValue += dot(values, segFilter);
`,d="";r%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${p}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${p}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${p}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${p}
}
setOutput(${l});
}
`}};function Lee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],c=0,u=_.getAxesPermutation([c],o),p=r;u!=null&&(p=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),c=_.getInnerMostAxes(1,o)[0]);let d=_.segment_util.computeOutShape(p.shape,c,i),h=k.sizeFromShape([p.shape[c]]),m=be({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=vh(r.dtype),g=(x,N,T,C,F)=>{let $=x.shape[0],P=x.shape[1],B=_.segment_util.segOpComputeOptimalWindowSize(P,F),W={windowSize:B,inSize:P,batchSize:$,numSegments:F},G=new Oee(W,N),q=n.compileAndRun(G,[x,T],C);if(l.push(q),q.shape[1]===F)return q;let j=r2({backend:n,attrs:{start:0,stop:F,step:1,dtype:"float32"}}),X=o2({inputs:{x:j},backend:n,attrs:{reps:[P/B]}});return l.push(j),l.push(X),g(q,N,X,C,F)},y=g(m,"unsortedSegmentSum",s,f,i),b=be({inputs:{x:y},backend:n,attrs:{shape:d}}),v=b;if(u!=null){l.push(b);let x=_.getUndoAxesPermutation(u);v=Sn({inputs:{x:v},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var zee={kernelName:Ac,backendName:"webgl",kernelFunc:Lee},Bee=[$9,M9,vX,kX,TX,_X,AX,DX,MX,OX,WX,UX,jX,XX,nY,JX,sY,uY,oY,hY,fY,yY,wY,_Y,AY,PY,LY,VY,HY,tX,XY,s7,o7,QY,p7,h7,u7,g7,x7,k7,N7,S7,E7,M7,O7,F7,B7,U7,q7,Z7,tZ,rZ,sZ,iZ,lZ,cZ,dZ,mZ,gZ,vZ,NZ,SZ,_Z,FZ,MZ,zZ,UZ,eX,HZ,KY,KZ,ZZ,e9,aX,r9,l9,c9,y9,m9,w9,N9,_9,O9,H9,U9,X9,Z9,Q9,W9,tJ,aJ,oJ,pJ,fJ,IJ,lX,TJ,_J,FJ,RJ,$Y,OJ,zJ,WJ,GJ,KJ,sX,YJ,ZJ,DY,xJ,eQ,lQ,rQ,cX,dQ,fQ,bQ,wQ,TQ,CQ,AQ,DQ,MQ,LQ,WQ,GQ,qQ,YQ,QQ,SY,wJ,nee,ree,iee,lee,pee,mee,gee,bee,wee,vJ,yX,Nee,Cee,Aee,$ee,bX,Ree,Pee,zee,LJ];for(let e of Bee)$c(e);var Wee="3.1.0",Vee={"tfjs-core":c1,"tfjs-backend-cpu":xG,"tfjs-backend-webgl":QK,"tfjs-data":ON,"tfjs-layers":Mm,"tfjs-converter":FN,tfjs:Wee},Vn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Vn||(Vn={}));var Dp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(Dp||(Dp={}));var l2;function Uee(e){l2=e.wasm.cwrap(Ni,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Gee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let F=n.dataIdMap.get(i.dataId);if(F.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${F.shape.length}.`);m=F.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=Dp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=c?s.shape[1]:s.shape[2],v=r.shape[0],x=n.makeOutput([v,y,b],r.dtype),N=n.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return l2(d,T,r.shape.length,h,C,s.shape.length,l,c,g,m,f,p||0,N),x}var Hee={kernelName:Ni,backendName:"wasm",setupFunc:Uee,kernelFunc:Gee};function Cn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var jee=Cn(zo);function gn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,p=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,m=_.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),b=o.dataIdMap.get(f.dataId).id,v=()=>a(p,g,c.shape.length,d,y,u.shape.length,Vn[c.dtype],b);if(t&&c.dtype==="float32")return v(),f;let x=_.getBroadcastDims(c.shape,m),N=_.getBroadcastDims(u.shape,m),T=x.every((F,$)=>F===$),C=N.every((F,$)=>F===$);if(T&&C)return v(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var qee=!0,Kee=gn(Ur,qee),u2;function Xee(e){u2=e.wasm.cwrap($s,null,["array","number","number","number"])}function Yee(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return u2(s,r.length,Vn[a.dtype],i),a}var Zee={kernelName:$s,backendName:"wasm",setupFunc:Xee,kernelFunc:Yee};function gf(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Jee={kernelName:Xs,backendName:"wasm",kernelFunc:gf},c2;function Qee(e){c2=e.wasm.cwrap(Ii,null,["number","array","number","number","number","array","number"])}function yf(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=tte(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=ete(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=gf({inputs:t,backend:n});return m.shape=o,m}let c=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(c.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return c2(u,h,l.shape.length,Vn[l.dtype],p,d,s.length),c}function ete(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function tte(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var nte={kernelName:Ii,backendName:"wasm",kernelFunc:yf,setupFunc:Qee};function Cu(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,c=!1;if(o!=null){let u=new Array(r);for(let d=0;d<u.length;d++)u[d]=a[o[d]];i=_.getInnerMostAxes(i.length,r),l=yf({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(c=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:c}}var p2;function ate(e){p2=e.wasm.cwrap(Ds,null,["number","number","number","number","number"])}function rte(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:c,axes:u,inputWasTransposed:p}=Cu(s,r,t);if(p){let y=t.dataIdMap.get(c.dataId).id;y!==i&&(l=c,o=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),m=t.dataIdMap.get(h.dataId).id,f=k.sizeFromShape(h.shape),g=l.shape[u[0]];return p2(o,Vn[l.dtype],f,g,m),p&&t.disposeData(c.dataId),h}var ste={kernelName:Ds,backendName:"wasm",kernelFunc:rte,setupFunc:ate},d2;function ite(e){d2=e.wasm.cwrap(Rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ote(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.strideHeight,b=u.strideWidth,v=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let x=a.makeOutput(u.outShape,"float32"),N=a.dataIdMap.get(x.dataId).id;return d2(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,v,N),x}var lte={kernelName:Rs,backendName:"wasm",setupFunc:ite,kernelFunc:ote};function Oa(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=k.sizeFromShape(a.shape),i=k.inferFromImplicitShape(r,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var ute={kernelName:Il,backendName:"wasm",kernelFunc:Oa},h2;function cte(e){h2=e.wasm.cwrap(Ms,null,["number","array","number","number","array","number","number","number","number"])}function pte(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=g===y||g===1||y===1;k.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let v=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);k.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,u,d]:[g,d,u],N=o?[y,h,p]:[y,p,h],T=Oa({inputs:{x:r},backend:n,attrs:{shape:x}}),C=Oa({inputs:{x:s},backend:n,attrs:{shape:N}}),F=n.dataIdMap.get(T.dataId).id,$=n.dataIdMap.get(C.dataId).id,P=i?T.shape[2]:T.shape[1],B=o?C.shape[1]:C.shape[2],W=Math.max(g,y),G=n.makeOutput([W,P,B],T.dtype),q=n.dataIdMap.get(G.dataId).id,j=new Uint8Array(new Int32Array(T.shape).buffer),X=new Uint8Array(new Int32Array(C.shape).buffer);return h2(F,j,T.shape.length,$,X,C.shape.length,i,o,q),n.disposeData(T.dataId),n.disposeData(C.dataId),G.shape=v,G}var dte={kernelName:Ms,backendName:"wasm",setupFunc:cte,kernelFunc:pte};function bf(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var hte={kernelName:Ps,backendName:"wasm",kernelFunc:bf},mte=Cn(Os),m2;function fte(e){m2=e.wasm.cwrap(Gr,null,["number","number","number","number"])}function gte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return m2(o,s,i,c),l}var yte={kernelName:Gr,backendName:"wasm",setupFunc:fte,kernelFunc:gte};function f2(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return gf({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(v=>{let x=k.sizeFromShape(v.shape.slice(a));return Oa({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),m=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));r=_.computeOutShape(h.map(v=>v.shape),1);let f=h[0].shape[0]===1,g=Pv(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(v=>v.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),c=0,u=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return c+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*c;for(let f=0;f<p.length;f++){let g=u[f],y=h*g,b=p[f].subarray(y,y+g);d.set(b,m),m+=g}}return i}var bte={kernelName:qo,backendName:"wasm",kernelFunc:f2},g2;function xte(e){g2=e.wasm.cwrap(Ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function vte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p,dataFormat:d}=n,h=_.convertConv2DDataFormat(d),m=_.computeConv2DInfo(r.shape,s.shape,l,c,u,p,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,v=m.padInfo.bottom,x=m.padInfo.left,N=m.dilationHeight,T=m.dilationWidth,C=m.strideHeight,F=m.strideWidth,$=m.inChannels,P=m.outChannels,B=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let W=a.makeOutput(m.outShape,"float32"),G=a.dataIdMap.get(W.dataId).id;return g2(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,v,x,B,N,T,C,F,$,P,G),W}var wte={kernelName:Ls,backendName:"wasm",setupFunc:xte,kernelFunc:vte},y2;function kte(e){y2=e.wasm.cwrap(zs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ite(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,inputShape:u}=a,p=1,d=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(u,s.shape,i,p,o,c,!1,d),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:v,outChannels:x,outHeight:N,outWidth:T,strideHeight:C,strideWidth:F}=h,$=f-1-h.padInfo.top,P=g-1-h.padInfo.left,B=h.dataFormat==="channelsLast",W=k.computeStrides(h.inShape),G=k.computeStrides(r.shape),[q,j,X]=k.computeStrides(s.shape),K=W[0],ne=B?W[1]:W[2],J=B?W[2]:1,se=B?1:W[1],Q=G[0],oe=B?G[1]:G[2],ae=B?G[2]:1,pe=B?1:G[1],ue=t.makeOutput(h.inShape,"float32"),ge=t.dataIdMap.get(ue.dataId).id,ye=t.dataIdMap.get(r.dataId).id,ke=t.dataIdMap.get(s.dataId).id;return y2(ye,ke,m,f,g,b,v,y,N,T,x,C,F,$,P,q,j,X,K,ne,J,se,Q,oe,ae,pe,ge),ue}var Nte={kernelName:zs,backendName:"wasm",setupFunc:kte,kernelFunc:Ite},Tte=Cn(Bs),hw;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(hw||(hw={}));var b2;function Ste(e){b2=e.wasm.cwrap(Xo,null,["number","number","number","number","array","number","number","number","number","number"])}function Cte(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:c}=n,u=l.shape[0],[p,d]=i,h=[u,p,d,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=bf({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(c.dataId).id,v=t.makeOutput(h,"float32"),x=t.dataIdMap.get(v.dataId).id,N=new Uint8Array(new Int32Array(o.shape).buffer);return b2(g,y,b,u,N,p,d,hw[r],s,x),f!=null&&t.disposeData(f.dataId),v}var _te={kernelName:Xo,backendName:"wasm",setupFunc:Ste,kernelFunc:Cte},x2;function Ete(e){x2=e.wasm.cwrap(Ws,null,["number","number","number","number","number","number"])}function Ate(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=_.getAxesPermutation([s],l),u=r;c!==null&&(u=yf({inputs:{x:r},attrs:{perm:c},backend:n}));let p=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;x2(m,i?1:0,o?1:0,h,f,Vn[r.dtype]);let g=d;if(c!==null){let y=_.getUndoAxesPermutation(c);g=yf({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return g}var Fte={kernelName:Ws,backendName:"wasm",setupFunc:Ete,kernelFunc:Ate},v2;function $te(e){v2=e.wasm.cwrap(Yo,null,["number","number","number","array","number","array","array","number","number"])}function Dte(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),v=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),x=t.dataIdMap.get(f.dataId).id;return v2(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,v,m.length,x),f}var Rte={kernelName:Yo,backendName:"wasm",setupFunc:$te,kernelFunc:Dte},w2;function Mte(e){w2=e.wasm.cwrap(Vs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p}=n,d=c==null?[1,1]:c,h=_.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,N=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,F=h.inChannels,$=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let B=a.makeOutput(h.outShape,"float32"),W=a.dataIdMap.get(B.dataId).id;return w2(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,v,P,x,N,T,C,F,$,W),B}var Ote={kernelName:Vs,backendName:"wasm",setupFunc:Mte,kernelFunc:Pte},Lte=!1,zte=gn(Qo,Lte,"bool"),Bte=Cn(Gs);function mw(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Oa({inputs:{x:r},backend:a,attrs:{shape:o}})}var Wte={kernelName:el,backendName:"wasm",kernelFunc:mw};function Vte(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Ute={kernelName:vc,backendName:"wasm",kernelFunc:Vte},k2;function Gte(e){k2=e.wasm.cwrap(nl,null,["number","number","number","number","number","number"])}function Hte(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,c,u]=a.shape;return k2(s,o,l,c,u,i),r}var jte={kernelName:nl,backendName:"wasm",kernelFunc:Hte,setupFunc:Gte},qte=Cn(Hs),Kte=!1,Xte=gn(js,Kte),I2;function Yte(e){I2=e.wasm.cwrap(qs,null,["number","number","number","number","number","number","number"])}function Zte(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return I2(u,p,d,h,m,r,g),f}var Jte={kernelName:qs,backendName:"wasm",setupFunc:Yte,kernelFunc:Zte},N2;function Qte(e){N2=e.wasm.cwrap(Ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ene(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d),g=Dp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,F=f.padInfo.right,$=f.padInfo.bottom,P=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,j=f.inChannels,X=f.padInfo.type==="SAME"?1:0,K=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return N2(y,K,ne,J,b,N,T,x,C,F,$,P,X,B,W,G,q,j,v,g,oe,m||0,Q),se}var tne={kernelName:Ti,backendName:"wasm",setupFunc:Qte,kernelFunc:ene},T2;function nne(e){T2=e.wasm.cwrap(Si,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ane(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d,!0),g=Dp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,F=f.padInfo.right,$=f.padInfo.bottom,P=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,j=f.inChannels,X=f.padInfo.type==="SAME"?1:0,K=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return T2(y,K,ne,J,b,N,T,x,C,F,$,P,X,B,W,G,q,j,v,g,oe,m||0,Q),se}var rne={kernelName:Si,backendName:"wasm",setupFunc:nne,kernelFunc:ane},S2;function sne(e){S2=e.wasm.cwrap(rl,null,["number","number","number","number","number","number","array","number"])}function ine(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Ry.prepareAndValidate(a,r),c=t.makeOutput(s,a.dtype);if(i===0)return c;let u=r.shape,p=u[u.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return S2(d,Vn[a.dtype],h,i,p,o,m,f),c}var one={kernelName:rl,backendName:"wasm",setupFunc:sne,kernelFunc:ine},C2;function lne(e){C2=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function une(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=Oa({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),d=Oa({inputs:{x:s},attrs:{shape:[c.batchSize,p/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,g=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,v=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return C2(g,Vn[r.dtype],v,f,y,c.batchSize,x,b),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var cne={kernelName:al,backendName:"wasm",setupFunc:lne,kernelFunc:une},pne=!1,dne=gn(sl,pne,"bool"),hne=!1,mne=gn(Ks,hne,"bool"),_2;function fne(e){_2=e.wasm.cwrap(Ys,null,["number","number","number"])}function gne(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;_2(r,n,i)}return s}var yne={kernelName:Ys,backendName:"wasm",setupFunc:fne,kernelFunc:gne},bne=!1,xne=gn(ul,bne,"bool"),vne=!1,wne=gn(cl,vne,"bool"),kne=Cn(Zs),Ine=!1,Nne=gn(dl,Ine,"bool"),E2;function Tne(e){E2=e.wasm.cwrap(Js,null,["number, number, number"])}function Sne(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:p,inputWasTransposed:d}=Cu(i,r,t);if(d){let b=t.dataIdMap.get(c.dataId).id;l=c,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",u,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,u),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;E2(o,g,b)}if(d&&t.disposeData(c.dataId),s){let b=_.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var Cne={kernelName:Js,backendName:"wasm",setupFunc:Tne,kernelFunc:Sne},_ne=!1,Ene=gn(Qs,_ne),A2;function Ane(e){A2=e.wasm.cwrap(ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Fne(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,b=u.dilationWidth,v=u.strideHeight,x=u.strideWidth,N=u.inChannels,T=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(u.outShape,"float32"),F=a.dataIdMap.get(C.dataId).id;return A2(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,v,x,N,T,F),C}var $ne={kernelName:ei,backendName:"wasm",setupFunc:Ane,kernelFunc:Fne},F2;function Dne(e){F2=e.wasm.cwrap(ti,null,["number, number, number"])}function Rne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=c;c.dtype!=="float32"&&(b=bf({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let v=t.makeOutput(f,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;F2(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(v.shape,d);v.shape=x}return c.dtype!=="float32"&&t.disposeData(b.dataId),v}var Mne={kernelName:ti,backendName:"wasm",setupFunc:Dne,kernelFunc:Rne},$2;function Pne(e){$2=e.wasm.cwrap(ni,null,["number, number, number"])}function One(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t);if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v)}let m=c.shape.length;_.assertAxesAreInnerMostDims("min",p,m);let[f,g]=_.computeOutAndReduceShapes(c.shape,p),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;$2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var Lne={kernelName:ni,backendName:"wasm",setupFunc:Pne,kernelFunc:One},zne=!1,Bne=gn(ai,zne),Wne=!0,Vne=gn(ri,Wne),Une=Cn(ml);function fw(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var D2;function Gne(e){D2=e.wasm.cwrap(gl,"number",["number","number","number","number","number"])}function Hne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=D2(c,u,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=fw(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var jne={kernelName:gl,backendName:"wasm",setupFunc:Gne,kernelFunc:Hne},R2;function qne(e){R2=e.wasm.cwrap(yl,"number",["number","number","number","number","number","bool"])}function Kne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=R2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=fw(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Xne={kernelName:yl,backendName:"wasm",setupFunc:qne,kernelFunc:Kne},M2;function Yne(e){M2=e.wasm.cwrap(bl,"number",["number","number","number","number","number","number"])}function Zne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=M2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=fw(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var Jne={kernelName:bl,backendName:"wasm",setupFunc:Yne,kernelFunc:Zne},Qne=!1,eae=gn(fl,Qne,"bool"),P2;function tae(e){P2=e.wasm.cwrap(si,null,["number","number","number","number","number"])}function nae(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return P2(u,s,i,o,c),l}var aae={kernelName:si,backendName:"wasm",setupFunc:tae,kernelFunc:nae};function rae(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var sae={kernelName:xl,backendName:"wasm",kernelFunc:rae};function iae(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return mw({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>mw({inputs:{input:l},backend:n,attrs:{dim:r}}));return f2({inputs:o,backend:n,attrs:{axis:r}})}var oae={kernelName:vl,backendName:"wasm",kernelFunc:iae},O2;function lae(e){O2=e.wasm.cwrap(ii,null,["number","array","number","number","array","array","number","number"])}function uae(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return O2(i,c,t.shape.length,Vn[t.dtype],d,h,r,l),o}var cae={kernelName:ii,backendName:"wasm",kernelFunc:uae,setupFunc:lae},pae=!1,dae=gn(oi,pae),L2;function hae(e){L2=e.wasm.cwrap(li,null,["number","number","number"])}function mae(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return L2(s,i,l),o}var fae={kernelName:li,backendName:"wasm",setupFunc:hae,kernelFunc:mae},z2;function gae(e){z2=e.wasm.cwrap(wl,null,["number","number","number","number"])}function yae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;z2(l,y,Vn[b.dtype],v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var bae={kernelName:wl,backendName:"wasm",setupFunc:gae,kernelFunc:yae},xae=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=zv(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},vae={kernelName:Sc,backendName:"wasm",kernelFunc:xae},wae=!0,kae=gn(Us,wae),Iae=Cn(ui),Nae=Cn(pi),B2;function Tae(e){B2=e.wasm.cwrap(ci,null,["number","number","number","number","number","number","number","number","number","number"])}function Sae(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,[u,p,d,h]=r.shape,m=[u,l,c,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=bf({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return b;let v=t.dataIdMap.get(b.dataId).id;return B2(y,u,p,d,h,l,c,s?1:0,i?1:0,v),g!=null&&t.disposeData(g.dataId),b}var Cae={kernelName:ci,backendName:"wasm",setupFunc:Tae,kernelFunc:Sae},W2;function _ae(e){W2=e.wasm.cwrap(di,null,["number","array","number","array","number","number"])}function Eae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return gf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);W2(l,u,i.length,p,r.shape.length,c);let d=Oa({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),d}var Aae={kernelName:di,backendName:"wasm",kernelFunc:Eae,setupFunc:_ae},V2;function Fae(e){V2=e.wasm.cwrap(Ol,null,["number","number","number","number","number","number","number","number","array","number","number"])}function $ae(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=_.getImageCenter(o,d,h),y=i===0,b=255,v=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],x=new Uint8Array(new Int32Array(v).buffer);return V2(c,p,d,h,m,s,f,g,x,v.length,u),l}var Dae={kernelName:Ol,backendName:"wasm",kernelFunc:$ae,setupFunc:Fae},Rae=Cn(hi),Mae=Cn(mi),U2;function Pae(e){U2=e.wasm.cwrap(Nl,null,["number","number","number","number","number","number","array","number","number"])}function Oae(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=My.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return U2(h,m,Vn[s.dtype],l,c,u,f,d,g),o}var Lae={kernelName:Nl,backendName:"wasm",setupFunc:Pae,kernelFunc:Oae},G2;function zae(e){G2=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Bae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:k.sizeFromShape(r.shape.slice(1));return G2(i,o,l,h,u),c}var Wae={kernelName:Tl,backendName:"wasm",kernelFunc:Bae,setupFunc:zae},H2;function Vae(e){H2=e.wasm.cwrap(gi,null,["number","number"])}function Uae(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||H2(a,s),r}var Gae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Vae,kernelFunc:Uae},Hae=Cn(fi);function xf(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=pn.parseSliceParams(t,n,a),o=pn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),c=r.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),p=r.dataIdMap.get(c.dataId);if(o){let m=pn.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(c).set(l.subarray(m,m+k.sizeFromShape(i))),c}if(t.dtype==="string"){let m=Zm(l,s,i,t.shape,t.dtype);return p.stringBytes=m,c}let d=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)jae(l,u[0],d,s,i);else if(h===3)qae(l,u[0],u[1],d,s,i);else if(h===4)Kae(l,u[0],u[1],u[2],d,s,i);else{let m=Zm(l,s,i,t.shape,t.dtype);d.set(m)}return c}function jae(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let c=i;c<l;c++){let u=c*t+o;n.set(e.subarray(u,u+r[1]),s),s+=r[1]}}function qae(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],c=r[2],u=o+s[0],p=l+s[1];for(let d=o;d<u;d++)for(let h=l;h<p;h++){let m=d*t+h*n+c;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Kae(e,t,n,a,r,s,i){let o=0,l=s[0],c=s[1],u=s[2],p=l+i[0],d=c+i[1],h=u+i[2],m=s[3];for(let f=l;f<p;f++)for(let g=c;g<d;g++)for(let y=u;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var Xae={kernelName:Cl,backendName:"wasm",kernelFunc:xf},j2;function Yae(e){j2=e.wasm.cwrap(xi,null,["number","number","number","number"])}function Zae(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||j2(r,i,o,l),s}var Jae={kernelName:xi,backendName:"wasm",setupFunc:Yae,kernelFunc:Zae};function Qae(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let d=[...u];d[o]=p;let h=xf({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return c[o]+=p,h})}var ere={kernelName:Fl,backendName:"wasm",kernelFunc:Qae},tre=Cn(yi),nre=Cn(Ec),are=!0,rre=gn(vi,are),q2;function sre(e){q2=e.wasm.cwrap(jr,null,["number","number","number"])}function ire(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return q2(i,r,l),o}var ore={kernelName:jr,backendName:"wasm",setupFunc:sre,kernelFunc:ire},K2;function lre(e){K2=e.wasm.cwrap($l,null,["number","array","number","array","array","array","array","array","number","number"])}function ure(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,h=_.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=_.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(P=>{s[P]=0,i[P]=1,g.splice(P,0,1)});let y=Oa({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:v,strides:x}=_.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,c,u);s=b,i=v,o=x;let N=_.slice_util.maskToAxes(d);N.forEach(P=>{i[P]=s[P]+1,o[P]=1});let T=_.slice_util.computeOutShape(s,i,o),C=T.filter((P,B)=>N.indexOf(B)===-1);if(o.every(P=>P===1)){let P=xf({inputs:{x:r},attrs:{begin:s,size:T},backend:t});t.disposeData(y.dataId);let B=Oa({inputs:{x:P},attrs:{shape:C},backend:t});return t.disposeData(P.dataId),B}let F=t.makeOutput(C,"float32");if(!C.some(P=>P===0)){let P=t.dataIdMap.get(y.dataId).id,B=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),W=new Uint8Array(new Int32Array(s).buffer),G=new Uint8Array(new Int32Array(i).buffer),q=new Uint8Array(new Int32Array(o).buffer),j=new Uint8Array(new Int32Array(C).buffer),X=new Uint8Array(new Int32Array(k.computeStrides(C)).buffer),K=t.dataIdMap.get(F.dataId).id;K2(P,B,y.shape.length,W,G,q,j,X,C.length,K)}t.disposeData(y.dataId);let $=Oa({inputs:{x:F},attrs:{shape:C},backend:t});return t.disposeData(F.dataId),$}var cre={kernelName:$l,backendName:"wasm",setupFunc:lre,kernelFunc:ure},pre=!0,dre=gn(wi,pre),X2;function hre(e){X2=e.wasm.cwrap(bi,null,["number, number, number"])}function mre(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;X2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var fre={kernelName:bi,backendName:"wasm",setupFunc:hre,kernelFunc:mre},gre=Cn(ki),Y2;function yre(e){Y2=e.wasm.cwrap(Hr,null,["number","array","number","array","number","number"])}function bre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(u.dataId).id;return Y2(s,l,r.shape.length,c,o.length,Vn[u.dtype],p),u}var xre={kernelName:Hr,backendName:"wasm",setupFunc:yre,kernelFunc:bre},Z2;function vre(e){Z2=e.wasm.cwrap(Rl,null,["number","array","number","number","number","bool","number","number"])}var wre=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(c.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return Z2(i,o,a.shape.length,Vn[a.dtype],r,s,u,d),[c,p]},kre={kernelName:Rl,backendName:"wasm",setupFunc:vre,kernelFunc:wre};function Ire(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==s&&(l[c++]=r.shape[h]);let u=new Array(i),p=new Array(o).fill(0),d=r.shape.slice();d[s]=1;for(let h=0;h<u.length;h++)p[s]=h,u[h]=xf({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return u.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var Nre={kernelName:Ml,backendName:"wasm",kernelFunc:Ire};function Tre(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Sre={kernelName:Pl,backendName:"wasm",kernelFunc:Tre},Cre=[jee,Kee,Zee,ste,lte,dte,hte,mte,yte,bte,wte,Nte,Tte,_te,Fte,Rte,Ote,zte,Bte,Wte,Ute,jte,qte,Xte,Hee,Jte,tne,rne,one,cne,dne,mne,Jee,yne,xne,wne,kne,Nne,Cne,Ene,$ne,Mne,Lne,Bne,Vne,Une,jne,Xne,Jne,eae,aae,sae,oae,cae,dae,fae,bae,vae,kae,Iae,Nae,ute,Cae,Aae,Dae,Mae,Rae,Lae,Wae,Gae,Hae,Xae,Jae,ere,tre,nre,rre,ore,cre,dre,fre,gre,xre,kre,nte,Nre,Sre];for(let e of Cre)$c(e);var gw=ee();gw.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));gw.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(gw.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var J2=Po(eA()),_re='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Ere=Po(tA()),Q2=class extends pc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Rd(this,qa())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return Are(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Fre(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function eC(e,t,n){if(vf!=null)return vf;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Rp!=null&&Rp[a]!=null?Rp[a]:n+a}async function $re(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=_re,p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return l.endsWith(".wasm")?eC(e,t,Mp!=null?Mp:c):c+l},yw&&(r.instantiateWasm=Fre(eC(e,t,Mp!=null?Mp:"")));let s;t&&e&&vf==null?(s=J2.default(r),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+J2.default.toString()],{type:"text/javascript"})):s=Ere.default(r);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,Pp=!1,n({wasm:s})},s.onAbort=()=>{o||Pp||(Pp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function Are(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Dre=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],vf=null,Mp=null,Rp={},Pp=!1,yw=!1;function Rre(e,t=!1){if(Wy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Pp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");vf=e,yw=t}function Mre(e,t=!1){if(Pp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Mp=e;else{Rp=e;let n=Dre.filter(a=>Rp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}yw=t}var Pre="3.1.0",Ore=2;Ch("wasm",async()=>{let{wasm:e}=await $re();return new Q2(e)},Ore);var jf={};uc(jf,{AnchorPosition:()=>cr,DrawBox:()=>Ef,DrawBoxOptions:()=>Ew,DrawFaceLandmarks:()=>Fw,DrawFaceLandmarksOptions:()=>Aw,DrawTextField:()=>bs,DrawTextFieldOptions:()=>Op,drawContour:()=>Er,drawDetections:()=>jre,drawFaceExpressions:()=>qre,drawFaceLandmarks:()=>Kre});function Er(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var wf={};uc(wf,{computeReshapedDimensions:()=>vw,getCenterPoint:()=>ao,isDimensions:()=>If,isEven:()=>kf,isFloat:()=>xw,isTensor:()=>to,isTensor1D:()=>Lre,isTensor2D:()=>bw,isTensor3D:()=>Ar,isTensor4D:()=>ta,isValidNumber:()=>La,isValidProbablitiy:()=>_u,range:()=>lr,round:()=>no});var ln=class{constructor(t,n){if(!La(t)||!La(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new ln(1/this.width,1/this.height)}};function to(e,t){return e instanceof Ae&&e.shape.length===t}function Lre(e){return to(e,1)}function bw(e){return to(e,2)}function Ar(e){return to(e,3)}function ta(e){return to(e,4)}function xw(e){return e%1!=0}function kf(e){return e%2==0}function no(e,t=2){let n=10**t;return Math.floor(e*n)/n}function If(e){return e&&e.width&&e.height}function vw({width:e,height:t},n){let a=n/Math.max(t,e);return new ln(Math.round(e*a),Math.round(t*a))}function ao(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function lr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function La(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function _u(e){return La(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var ot=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(La)}static assertIsValidBox(t,n,a=!1){if(!ot.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(La),s=[a.x,a.y,a.width,a.height].every(La);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,c]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ot.assertIsValidBox({x:i,y:o,width:l,height:c},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=c}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ot({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ot({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new ot({x:t,y:n,width:a,height:r})}rescale(t){let n=If(t)?t.width:t,a=If(t)?t.height:t;return new ot({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new ot({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),c=s-o,u=i-l,p=Math.min(c,t-o),d=Math.min(u,n-l);return new ot({x:o,y:l,width:p,height:d}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new ot({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,c=this.left,u=this.top,p=this.right,d=this.bottom;return p>n&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),c<1&&(l=2-c,c=1),u<1&&(l=2-u,u=1),{dy:i,edy:l,dx:s,edx:o,y:u,ey:d,x:c,ex:p,w:a,h:r}}calibrate(t){return new ot({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var ro=class extends ot{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Fr=class{constructor(t,n,a,r,s){this._imageDims=new ln(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ot(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ot(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Fr(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var yt=class extends Fr{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new yt(a,r,s)}};function Nf(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function Tf(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,Infinity),r=n.reduce((o,l)=>l<o?l:o,Infinity),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new ro(a,r,s,i)}function Sf(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let c=0;c<o.length;c++){let u=o[c],p=e[i],d=e[u];l.push(Nf(p,d,a))}r=r.filter((c,u)=>l[u]<=n)}return s}function wa(e,t){return D(()=>{let[n,a,r]=t,s=kn([...e.shape.slice(0,3),1],n,"float32"),i=kn([...e.shape.slice(0,3),1],a,"float32"),o=kn([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return fe(e,l)})}function Cf(e,t=!1){return D(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,kn(h,0,"float32")},l=o(s),c=r-l.shape[i],p=[t&&c?o(c):null,e,l].filter(d=>!!d).map(d=>ce(d,"float32"));return Qe(p,i)})}function tC(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Eu(e){return 1/(1+Math.exp(-e))}function nC(e){return Math.log(e/(1-e))}var so=class extends ot{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var zre=.5,Bre=.43,Wre=.45,Un=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new ln(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof yt?t.box.floor():new ot(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Wre),l=ao(t),c=Math.floor(Math.max(0,l.x-zre*o)),u=Math.floor(Math.max(0,l.y-Bre*o));return new so(c,u,Math.min(o,this.imageWidth+c),Math.min(o,this.imageHeight+u))}alignMinBbox(t){let n=Tf(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var ww=class extends Un{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],ao([t[3],t[4]])]}};var io=class extends Un{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(ao)}};var Au=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${no(this.distance)})`:""}`}};var Fu=class extends ot{static assertIsValidLabeledBox(t,n){if(ot.assertIsValidBox(t,n),!La(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var ur=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new ur(t.label,n)}};var kw=class extends Fu{static assertIsValidPredictedBox(t,n){if(Fu.assertIsValidLabeledBox(t,n),!_u(t.score)||!_u(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function za(e){return e.detection instanceof yt}function gs(e,t){return{...e,...{detection:t}}}function Iw(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:t}}function _f(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Nw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=_f();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function Tw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var Sw=RE(rC()),Jt;function Gre(){if(!Jt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Jt}function Cw(e){Jt=e}function _w(){return Tw()?Cw(Iw()):Sw.isNodejs()?Cw(Nw()):null}function Hre(e){if(Jt||_w(),!Jt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Jt.Canvas,Image:n=Jt.Image}=e;Jt.Canvas=t,Jt.Image=n,Jt.createCanvasElement=e.createCanvasElement||(()=>new t),Jt.createImageElement=e.createImageElement||(()=>new n),Jt.ImageData=e.ImageData||Jt.ImageData,Jt.Video=e.Video||Jt.Video,Jt.fetch=e.fetch||Jt.fetch,Jt.readFile=e.readFile||Jt.readFile}var rt={getEnv:Gre,setEnv:Cw,initialize:_w,createBrowserEnv:Iw,createFileSystem:_f,createNodejsEnv:Nw,monkeyPatch:Hre,isBrowser:Tw,isNodejs:Sw.isNodejs};_w();function ys(e){return!rt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function yn(e){let{Canvas:t,CanvasRenderingContext2D:n}=rt.getEnv();if(e instanceof n)return e;let a=ys(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var cr;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(cr||(cr={}));var Op=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||cr.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},bs=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof bs?t.text:t,this.anchor=n,this.options=new Op(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a===cr.BOTTOM_RIGHT||a===cr.TOP_RIGHT,s=a===cr.BOTTOM_LEFT||a===cr.BOTTOM_RIGHT,i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,c=s?this.anchor.y-o:this.anchor.y;if(n){let{width:u,height:p}=n,d=Math.max(Math.min(l,u-i),0),h=Math.max(Math.min(c,p-o),0);return{x:d,y:h}}return{x:l,y:c}}draw(t){let n=ys(t),a=yn(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let c=this.measureWidth(a),u=this.measureHeight();a.fillStyle=r;let p=this.getUpperLeft(a,n);a.fillRect(p.x,p.y,c,u),a.fillStyle=s,this.text.forEach((d,h)=>{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var Ew=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:cr.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Op({...i,...s})}},Ef=class{constructor(t,n={}){this.box=new ot(t),this.options=new Ew(n)}draw(t){let n=yn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:c}=this.options;c&&new bs([c],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function jre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof yt?a.score:za(a)?a.detection.score:void 0,s=a instanceof yt?a.box:za(a)?a.detection.box:new ot(a),i=r?`${no(r)}`:void 0;new Ef(s,{label:i}).draw(e)})}function $u(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function Af(e){return new Promise((t,n)=>{if(e instanceof rt.getEnv().Canvas||$u(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function Ff(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=rt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function xs(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t?new ln(e.naturalWidth,e.naturalHeight):e instanceof n?new ln(e.videoWidth,e.videoHeight):new ln(e.width,e.height)}function oo({width:e,height:t}){let{createCanvasElement:n}=rt.getEnv(),a=n();return a.width=e,a.height=t,a}function Du(e,t){let{ImageData:n}=rt.getEnv();if(!(e instanceof n)&&!$u(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||xs(e),s=oo({width:a,height:r});return e instanceof n?yn(s).putImageData(e,0,0):yn(s).drawImage(e,0,0,a,r),s}async function $f(e,t){let n=t||rt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ta(e)?1:0),i=D(()=>e.as3D(a,r,s).toInt());return await Ai.toPixels(i,n),i.dispose(),n}function Lp(e){let{Image:t,Canvas:n,Video:a}=rt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function Df(e,t,n=!1){let{Image:a,Canvas:r}=rt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let s=xs(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,c=oo({width:t,height:t}),u=e instanceof r?e:Du(e),p=Math.abs(o-l)/2,d=n&&o<l?p:0,h=n&&l<o?p:0;return yn(c).drawImage(u,d,h,o,l),c}var pr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Ar(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ta(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof rt.getEnv().Canvas?a:Du(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return lr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return vw({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,D(()=>{let a=lr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ae){let o=ta(i)?i:i.expandDims();return o=Cf(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Qa.resizeBilinear(o,[t,t])),o.as3D(t,t,3)}if(i instanceof rt.getEnv().Canvas)return Ai.fromPixels(Df(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return $t(a.map(s=>ce(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function gt(e){if(e instanceof pr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(ys);return a.forEach((r,s)=>{if(!Lp(r)&&!Ar(r)&&!ta(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ta(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>Lp(r)&&Af(r))),new pr(a,Array.isArray(e))}async function lo(e,t){let{Canvas:n}=rt.getEnv(),a=e;if(!(e instanceof n)){let i=await gt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await $f(o)}let r=yn(a);return t.map(i=>i instanceof yt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:c})=>{let u=oo({width:l,height:c});return yn(u).putImageData(r.getImageData(i,o,l,c),0,0),u})}async function uo(e,t){if(!Ar(e)&&!ta(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ta(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return D(()=>{let[n,a,r]=e.shape.slice(ta(e)?1:0);return t.map(o=>o instanceof yt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:c,height:u})=>Ql(e.as3D(n,a,r),[l,o,0],[u,c,r]))})}async function vs(e,t){let{fetch:n}=rt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function sC(e){let t=await vs(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return Ff(n)}async function Rf(e){return(await vs(e)).json()}async function iC(e){return new Float32Array(await(await vs(e)).arrayBuffer())}function Mf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function Pf(e,t){let{manifestUri:n,modelBaseUri:a}=Mf(e,t),r=await Rf(n);return Ht.loadWeights(r,a)}function oC(e,t,n=!1){let{width:a,height:r}=n?xs(t):t;return e.width=a,e.height=r,{width:a,height:r}}var Qt=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof qr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof qr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Kn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await Pf(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=rt.getEnv(),{manifestUri:a,modelBaseUri:r}=Mf(t,this.getDefaultModelName()),s=c=>Promise.all(c.map(u=>n(u).then(p=>p.buffer))),i=Ht.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ae))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function _n(e,t,n){return D(()=>{let a=Oi(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Z(a,t.bias),a})}function Of(e,t,n=!1){return D(()=>{let a=Ye(n?Z(At(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):_n(e,t.conv0,[2,2])),r=_n(a,t.conv1,[1,1]),s=Ye(Z(a,r)),i=_n(s,t.conv2,[1,1]);return Ye(Z(a,Z(r,i)))})}function zp(e,t,n=!1,a=!0){return D(()=>{let r=Ye(n?Z(At(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):_n(e,t.conv0,a?[2,2]:[1,1])),s=_n(r,t.conv1,[1,1]),i=Ye(Z(r,s)),o=_n(i,t.conv2,[1,1]),l=Ye(Z(r,Z(s,o))),c=_n(l,t.conv3,[1,1]);return Ye(Z(r,Z(s,Z(o,c))))})}function co(e,t,n="same",a=!1){return D(()=>{let r=Z(At(e,t.filters,[1,1],n),t.bias);return a?Ye(r):r})}function bn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Ru(e,t){return(n,a,r,s)=>{let i=_a(e(n*a*r*r),[r,r,n,a]),o=nt(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Lf(e,t){return(n,a,r)=>{let s=Ca(e(n*a),[n,a]),i=nt(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var zf=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Mu(e,t){return(n,a,r)=>{let s=_a(e(3*3*n),[3,3,n,1]),i=_a(e(n*a),[1,1,n,a]),o=nt(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new zf(s,i,o)}}function Pu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new zf(n,a,r)}}function Gn(e,t){return(n,a,r)=>{let s=e[n];if(!to(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function xn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Bf(e,t){let n=Ru(e,t),a=Mu(e,t);function r(i,o,l,c=!1){let u=c?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:u,conv1:p,conv2:d}}function s(i,o,l,c=!1){let{conv0:u,conv1:p,conv2:d}=r(i,o,l,c),h=a(o,o,`${l}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function lC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock4Params:r}=Bf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Wf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function Vf(e,t){let n=Gn(e,t),a=Wf(n),r=Pu(n);function s(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:c,conv1:u,conv2:p}}function i(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:c,conv1:u,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function uC(e){let t=[],{extractDenseBlock4Params:n}=Vf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return bn(e,t),{params:a,paramMappings:t}}var Bp=class extends Qt{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=wa(a,[122.782,117.001,104.298]).div(de(255)),i=zp(s,n.dense0,!0);return i=zp(i,n.dense1),i=zp(i,n.dense2),i=zp(i,n.dense3),i=Yn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return uC(t)}extractParams(t){return lC(t)}};function Wp(e,t){return D(()=>Z(ze(e,t.weights),t.bias))}function cC(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=xn(e),o=Lf(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function pC(e){let t=[],n=Gn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return bn(e,t),{params:r,paramMappings:t}}function Uf(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Vp=class extends Qt{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof pr?this.faceFeatureExtractor.forwardInput(t):t;return Wp(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return cC(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Uf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),pC(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var Gf=["neutral","happy","sad","angry","fearful","disgusted","surprised"],$r=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Gf.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return Gf.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Up=class extends Vp{constructor(t=new Bp){super("FaceExpressionNet",t)}forwardInput(t){return D(()=>Sa(this.runNet(t)))}async forward(t){return this.forwardInput(await gt(t))}async predictExpressions(t){let n=await gt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=await i.data();return i.dispose(),o}));a.dispose();let s=r.map(i=>new $r(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Hf(e){return e.expressions instanceof $r}function Gp(e,t){return{...e,...{expressions:t}}}function qre(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof $r?s:Hf(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),c=za(s)?s.detection.box.bottomLeft:a||new De(0,0);new bs(l.map(p=>`${p.expression} (${no(p.probability)})`),c).draw(e)})}function ws(e){return za(e)&&e.landmarks instanceof Un&&e.unshiftedLandmarks instanceof Un&&e.alignedRect instanceof yt}function po(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new yt(e.detection.score,r.rescale(s.reverse()),s);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i}}}var Aw=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},Fw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new Aw(n)}draw(t){let n=yn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof io&&(n.strokeStyle=i,n.lineWidth=s,Er(n,this.faceLandmarks.getJawOutline()),Er(n,this.faceLandmarks.getLeftEyeBrow()),Er(n,this.faceLandmarks.getRightEyeBrow()),Er(n,this.faceLandmarks.getNose()),Er(n,this.faceLandmarks.getLeftEye(),!0),Er(n,this.faceLandmarks.getRightEye(),!0),Er(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let c=u=>{n.beginPath(),n.arc(u.x,u.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(c)}}};function Kre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof Un?a:ws(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new Fw(r).draw(e)})}var dC="0.12.6";function Xre(e,t){let n=Ru(e,t),a=Mu(e,t);function r(i,o,l){let c=a(i,o,`${l}/separable_conv0`),u=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),c=a(i,i,`${o}/separable_conv1`),u=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function hC(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=xn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Xre(a,n),c=s(3,32,3,"entry_flow/conv_in"),u=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:c,reduction_block_0:u,reduction_block_1:p},h={};lr(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function Yre(e,t){let n=Gn(e,t),a=Wf(n),r=Pu(n);function s(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:u}}function i(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function mC(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Yre(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),c=s("entry_flow/reduction_block_1"),u={conv_in:o,reduction_block_0:l,reduction_block_1:c},p={};lr(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return bn(e,n),{params:{entry_flow:u,middle_flow:p,exit_flow:m},paramMappings:n}}function fC(e,t,n){return Z(At(e,t.filters,n,"same"),t.bias)}function $w(e,t,n=!0){let a=n?Ye(e):e;return a=_n(a,t.separable_conv0,[1,1]),a=_n(Ye(a),t.separable_conv1,[1,1]),a=Ft(a,[3,3],[2,2],"same"),a=Z(a,fC(e,t.expansion_conv,[2,2])),a}function Zre(e,t){let n=_n(Ye(e),t.separable_conv0,[1,1]);return n=_n(Ye(n),t.separable_conv1,[1,1]),n=_n(Ye(n),t.separable_conv2,[1,1]),n=Z(n,e),n}var Dw=class extends Qt{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=wa(a,[122.782,117.001,104.298]).div(de(256)),i=Ye(fC(s,n.entry_flow.conv_in,[2,2]));return i=$w(i,n.entry_flow.reduction_block_0,!1),i=$w(i,n.entry_flow.reduction_block_1),lr(this._numMainBlocks,0,1).forEach(o=>{i=Zre(i,n.middle_flow[`main_block_${o}`])}),i=$w(i,n.exit_flow.reduction_block),i=Ye(_n(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return mC(t,this._numMainBlocks)}extractParams(t){return hC(t,this._numMainBlocks)}};function gC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),r=Lf(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function yC(e){let t=[],n=Gn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return bn(e,t),{params:r,paramMappings:t}}var dr;(function(e){e.FEMALE="female",e.MALE="male"})(dr||(dr={}));var Hp=class extends Qt{constructor(t=new Dw(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof pr?this.faceFeatureExtractor.forwardInput(t):t,r=Yn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Wp(r,n.fc.age).as1D(),i=Wp(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return D(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Sa(a)}})}async forward(t){return this.forwardInput(await gt(t))}async predictAgeAndGender(t){let n=await gt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,c)=>({ageTensor:l,genderTensor:s[c]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:c})=>{let u=(await l.data())[0],p=(await c.data())[0],d=p>.5,h=d?dr.MALE:dr.FEMALE,m=d?p:1-p;return l.dispose(),c.dispose(),{age:u,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return gC(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Uf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),yC(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var jp=class extends Vp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return D(()=>{let i=(p,d)=>$t([kn([68],p,"float32"),kn([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>d<h),c=p=>o(p,(d,h)=>h<d);return t.mul(kn([s,136],n,"float32")).sub($t(Array.from(Array(s),(p,d)=>i(l(d),c(d))))).div($t(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return D(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await gt(t))}async detectLandmarks(t){let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(await s.data()),l=o.filter((u,p)=>kf(p)),c=o.filter((u,p)=>!kf(p));return new io(Array(68).fill(0).map((u,p)=>new De(l[p],c[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var ho=class extends jp{constructor(t=new Bp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function bC(e){let t=[],{extractDenseBlock3Params:n}=Vf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return bn(e,t),{params:a,paramMappings:t}}function xC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock3Params:r}=Bf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var Rw=class extends Qt{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=wa(a,[122.782,117.001,104.298]).div(de(255)),i=Of(s,n.dense0,!0);return i=Of(i,n.dense1),i=Of(i,n.dense2),i=Yn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return bC(t)}extractParams(t){return xC(t)}};var qp=class extends jp{constructor(t=new Rw){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Mw=class extends ho{};function vC(e,t){return Z(L(e,t.weights),t.biases)}function Pw(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=At(e,s,n,r);return o=Z(o,i),o=vC(o,t.scale),a?Ye(o):o}function wC(e,t){return Pw(e,t,[1,1],!0)}function Ow(e,t){return Pw(e,t,[1,1],!1)}function qf(e,t){return Pw(e,t,[2,2],!0,"valid")}function Jre(e,t){function n(o,l,c){let u=e(o),p=u.length/(l*c*c);if(xw(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${u.length}, numFilters: ${l}, filterSize: ${c}`);return D(()=>Ue(_a(u,[l,p,c,c]),[2,3,1,0]))}function a(o,l,c,u){let p=n(o,l,c),d=nt(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:p,bias:d}}function r(o,l){let c=nt(e(o)),u=nt(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:u}}function s(o,l,c,u){let p=a(o,l,c,`${u}/conv`),d=r(l,`${u}/scale`);return{conv:p,scale:d}}function i(o,l,c,u,p=!1){let d=s((p?.5:1)*o,l,c,`${u}/conv1`),h=s(o,l,c,`${u}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function kC(e){let{extractWeights:t,getRemainingWeights:n}=xn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Jre(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),c=s(9216,32,3,"conv32_3"),u=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),v=s(589824,256,3,"conv256_2"),x=s(589824,256,3,"conv256_down_out"),N=D(()=>Ue(Ca(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:c,conv64_down:u,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:v,conv256_down_out:x,fc:N},paramMappings:a}}function Qre(e,t){let n=Gn(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),c=a(i);return{conv:{filters:o,bias:l},scale:c}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function IC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Qre(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),c=a("conv64_1"),u=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:v}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!bw(v))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${v}`);let x={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:c,conv64_2:u,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:v};return bn(e,t),{params:x,paramMappings:t}}function Ba(e,t){let n=wC(e,t.conv1);return n=Ow(n,t.conv2),n=Z(n,e),n=Ye(n),n}function Kp(e,t){let n=qf(e,t.conv1);n=Ow(n,t.conv2);let a=Yn(e,2,2,"valid"),r=vt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=vt(o);n=Qe([n,l],1);let c=[...n.shape];c[2]=1;let u=vt(c);n=Qe([n,u],2)}return a=s?Qe([a,r],3):a,n=Z(a,n),n=Ye(n),n}var mo=class extends Qt{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(150,!0),"float32"),s=wa(a,[122.782,117.001,104.298]).div(de(256)),i=qf(s,n.conv32_down);i=Ft(i,3,2,"valid"),i=Ba(i,n.conv32_1),i=Ba(i,n.conv32_2),i=Ba(i,n.conv32_3),i=Kp(i,n.conv64_down),i=Ba(i,n.conv64_1),i=Ba(i,n.conv64_2),i=Ba(i,n.conv64_3),i=Kp(i,n.conv128_down),i=Ba(i,n.conv128_1),i=Ba(i,n.conv128_2),i=Kp(i,n.conv256_down),i=Ba(i,n.conv256_1),i=Ba(i,n.conv256_2),i=Kp(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await gt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return IC(t)}extractParams(t){return kC(t)}};function NC(e){let t=new mo;return t.extractWeights(e),t}function Xp(e,t){return{...e,...{descriptor:t}}}function TC(e){return typeof e.age=="number"}function Yp(e,t){return{...e,...{age:t}}}function SC(e){return(e.gender===dr.MALE||e.gender===dr.FEMALE)&&_u(e.genderProbability)}function Zp(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function ese(e,t){function n(l,c){let u=_a(e(3*3*l),[3,3,l,1]),p=nt(e(l)),d=nt(e(l)),h=nt(e(l)),m=nt(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:u,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,c,u,p,d){let h=_a(e(l*c*u*u),[u,u,l,c]),m=nt(e(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,c,u,p){let{filters:d,bias:h}=a(l,c,u,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,c,u){let p=n(l,`${u}/depthwise_conv`),d=r(l,c,1,`${u}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),c=s(32,64,"mobilenetv1/conv_1"),u=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),v=s(512,512,"mobilenetv1/conv_11"),x=s(512,1024,"mobilenetv1/conv_12"),N=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:v,conv_12:x,conv_13:N}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),c=r(256,512,3,"prediction_layer/conv_1"),u=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),v=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),x=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),N=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),F=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),$=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),P=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),B=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:v},box_predictor_2:{box_encoding_predictor:x,class_predictor:N},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:F,class_predictor:$},box_predictor_5:{box_encoding_predictor:P,class_predictor:B}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function CC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=ese(n,t),i=r(),o=s(),c={extra_dim:Nh(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:c},paramMappings:t}}function tse(e,t){let n=Gn(e,t);function a(c,u,p){let d=n(`${c}/Conv2d_${u}_pointwise/weights`,4,`${p}/filters`),h=n(`${c}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(c){let u=`mobilenetv1/conv_${c}`,p=`MobilenetV1/Conv2d_${c}_depthwise`,d=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",c,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(c,u){let p=n(`${c}/weights`,4,`${u}/filters`),d=n(`${c}/biases`,1,`${u}/bias`);return{filters:p,bias:d}}function o(c){let u=i(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:u,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function _C(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=tse(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Ar(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return bn(e,t),{params:s,paramMappings:t}}function ka(e,t,n){return D(()=>{let a=At(e,t.filters,n,"same");return a=Z(a,t.batch_norm_offset),qt(a,0,6)})}var nse=.0010000000474974513;function ase(e,t,n){return D(()=>{let a=es(e,t.filters,n,"same");return a=xr(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,nse),qt(a,0,6)})}function rse(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function EC(e,t){return D(()=>{let n,a=ka(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=rse(o);a=ase(a,s.depthwise_conv,l),a=ka(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function sse(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),c=Math.min(a[n][1],a[n][3]),u=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(u-l)*(p-c);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,c),g=Math.min(i,u),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function AC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((u,p)=>({score:u,boxIndex:p})).filter(u=>u.score>r).sort((u,p)=>p.score-u.score),l=u=>u<=a?1:0,c=[];return o.forEach(u=>{if(c.length>=i)return;let p=u.score;for(let d=c.length-1;d>=0;--d){let h=sse(e,u.boxIndex,c[d]);if(h!==0&&(u.score*=l(h),u.score<=r))break}p===u.score&&c.push(u.boxIndex)}),c}function ise(e){let t=dt(Ue(e,[1,0])),n=[fe(t[2],t[0]),fe(t[3],t[1])],a=[Z(t[0],ve(n[0],de(2))),Z(t[1],ve(n[1],de(2)))];return{sizes:n,centers:a}}function ose(e,t){let{sizes:n,centers:a}=ise(e),r=dt(Ue(t,[1,0])),s=ve(L(dn(ve(r[2],de(5))),n[0]),de(2)),i=Z(L(ve(r[0],de(10)),n[0]),a[0]),o=ve(L(dn(ve(r[3],de(5))),n[1]),de(2)),l=Z(L(ve(r[1],de(10)),n[1]),a[1]);return Ue($t([fe(i,s),fe(l,o),Z(i,s),Z(l,o)]),[1,0])}function FC(e,t,n){return D(()=>{let a=e.shape[0],r=ose(H(Xa(n.extra_dim,[a,1,1]),[-1,4]),H(e,[-1,4]));r=H(r,[a,r.shape[0]/a,4]);let s=da(We(t,[0,0,1],[-1,-1,-1])),i=We(s,[0,0,0],[-1,-1,1]);i=H(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function fo(e,t){return D(()=>{let n=e.shape[0],a=H(co(e,t.box_encoding_predictor),[n,-1,1,4]),r=H(co(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function $C(e,t,n){return D(()=>{let a=ka(e,n.conv_0,[1,1]),r=ka(a,n.conv_1,[2,2]),s=ka(r,n.conv_2,[1,1]),i=ka(s,n.conv_3,[2,2]),o=ka(i,n.conv_4,[1,1]),l=ka(o,n.conv_5,[2,2]),c=ka(l,n.conv_6,[1,1]),u=ka(c,n.conv_7,[2,2]),p=fo(t,n.box_predictor_0),d=fo(e,n.box_predictor_1),h=fo(r,n.box_predictor_2),m=fo(i,n.box_predictor_3),f=fo(l,n.box_predictor_4),g=fo(u,n.box_predictor_5),y=Qe([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Qe([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var na=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ks=class extends Qt{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(512,!1),"float32"),r=fe(L(a,de(.007843137718737125)),de(1)),s=EC(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=$C(s.out,s.conv11,n.prediction_layer);return FC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await gt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new na(n),s=await gt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],c=o[0];for(let v=1;v<i.length;v++)i[v].dispose(),o[v].dispose();let u=Array.from(await c.data()),d=AC(l,u,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=d.map(v=>{let[x,N]=[Math.max(0,y[v][0]),Math.min(1,y[v][2])].map(F=>F*g),[T,C]=[Math.max(0,y[v][1]),Math.min(1,y[v][3])].map(F=>F*f);return new yt(u[v],new so(T,x,C-T,N-x),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),c.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return _C(t)}extractParams(t){return CC(t)}};function Lw(e){let t=new ks;return t.extractWeights(e),t}function DC(e){return Lw(e)}var zw=class extends ks{};var RC=.4,MC=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],PC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],OC=[117.001,114.697,97.404],LC="tiny_yolov2_model",zC="tiny_yolov2_separable_conv_model";var Kf=e=>typeof e=="number";function Xf(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Kf(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Kf(t.x)&&Kf(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Kf)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Ou(e){return D(()=>{let t=L(e,de(.10000000149011612));return Z(Ye(fe(e,t)),t)})}function Dr(e,t){return D(()=>{let n=Jn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=At(n,t.conv.filters,[1,1],"valid"),n=fe(n,t.bn.sub),n=L(n,t.bn.truediv),n=Z(n,t.conv.bias),Ou(n)})}function Rr(e,t){return D(()=>{let n=Jn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Oi(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Z(n,t.bias),Ou(n)})}function lse(e,t){let n=Ru(e,t);function a(i,o){let l=nt(e(i)),c=nt(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:c}}function r(i,o,l){let c=n(i,o,3,`${l}/conv`),u=a(o,`${l}/bn`);return{conv:c,bn:u}}let s=Mu(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function BC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=xn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=lse(r,i),u;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,v]=a,x=t.isFirstLayerConv2d?o(p,d,3,"conv0"):c(p,d,"conv0"),N=c(d,h,"conv1"),T=c(h,m,"conv2"),C=c(m,f,"conv3"),F=c(f,g,"conv4"),$=c(g,y,"conv5"),P=b?c(y,b,"conv6"):void 0,B=v?c(b,v,"conv7"):void 0,W=o(v||b||y,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:F,conv5:$,conv6:P,conv7:B,conv8:W}}else{let[p,d,h,m,f,g,y,b,v]=a,x=l(p,d,"conv0"),N=l(d,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),F=l(f,g,"conv4"),$=l(g,y,"conv5"),P=l(y,b,"conv6"),B=l(b,v,"conv7"),W=o(v,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:F,conv5:$,conv6:P,conv7:B,conv8:W}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:u,paramMappings:i}}function use(e,t){let n=Gn(e,t);function a(o){let l=n(`${o}/sub`,1),c=n(`${o}/truediv`,1);return{sub:l,truediv:c}}function r(o){let l=n(`${o}/filters`,4),c=n(`${o}/bias`,1);return{filters:l,bias:c}}function s(o){let l=r(`${o}/conv`),c=a(`${o}/bn`);return{conv:l,bn:c}}let i=Pu(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function WC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=use(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return bn(e,n),{params:i,paramMappings:n}}var Wa=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Bw=class extends Qt{constructor(t){super("TinyYolov2");Xf(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Dr(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=Dr(a,n.conv6),a=Dr(a,n.conv7),co(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Ou(co(t,n.conv0,"valid",!1)):Rr(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=Rr(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=Rr(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=Rr(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=Rr(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=Rr(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=n.conv6?Rr(a,n.conv6):a,a=n.conv7?Rr(a,n.conv7):a,co(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return D(()=>{let r=ce(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?wa(r,this.config.meanRgb):r,r=r.div(de(256)),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await gt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new Wa(n),s=await gt(t),i=await this.forwardInput(s,a),o=D(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},c=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let u=c.map(g=>g.box),p=c.map(g=>g.score),d=c.map(g=>g.classScore),h=c.map(g=>this.config.classes[g.label]);return Sf(u.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new Fr(p[g],d[g],h[g],u[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return WC(t,this.config)}extractParams(t){let n=this.config.filterSizes||Bw.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return BC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,c=t.shape[1],u=this.config.anchors.length,[p,d,h]=D(()=>{let y=t.reshape([c,c,u,this.boxEncodingSize]),b=y.slice([0,0,0,0],[c,c,u,4]),v=y.slice([0,0,0,4],[c,c,u,1]),x=this.withClassScores?Sa(y.slice([0,0,0,5],[c,c,u,this.config.classes.length]),3):de(0);return[b,v,x]}),m=[],f=await d.array(),g=await p.array();for(let y=0;y<c;y++)for(let b=0;b<c;b++)for(let v=0;v<u;v++){let x=Eu(f[y][b][v][0]);if(!a||x>a){let N=(b+Eu(g[y][b][v][0]))/c*o,T=(y+Eu(g[y][b][v][1]))/c*l,C=Math.exp(g[y][b][v][2])*this.config.anchors[v].x/c*o,F=Math.exp(g[y][b][v][3])*this.config.anchors[v].y/c*l,$=N-C/2,P=T-F/2,B={row:y,col:b,anchor:v},{classScore:W,label:G}=this.withClassScores?await this.extractPredictedClass(h,B):{classScore:1,label:0};m.push({box:new ro($,P,$+C,P+F),score:x,classScore:x*W,label:G,...B})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},Lu=Bw;Lu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var go=class extends Lu{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:RC,classes:["face"],...t?{anchors:PC,meanRgb:OC}:{anchors:MC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new yt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?zC:LC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function VC(e,t=!0){let n=new go(t);return n.extractWeights(e),n}var Jp=class extends Wa{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var aa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function yo(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>ws(l)?r(l):l.detection),i=a||(t instanceof Ae?await uo(t,s):await lo(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ae&&l.dispose()),o}async function zu(e,t,n,a,r){return yo([e],t,async s=>n(s[0]),a,r)}var UC=.4,GC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],HC=[117.001,114.697,97.404];var bo=class extends Lu{constructor(){let t={withSeparableConvs:!0,iouThreshold:UC,classes:["face"],anchors:GC,meanRgb:HC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new yt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var et={ssdMobilenetv1:new ks,tinyFaceDetector:new bo,tinyYolov2:new go,faceLandmark68Net:new ho,faceLandmark68TinyNet:new qp,faceRecognitionNet:new mo,faceExpressionNet:new Up,ageGenderNet:new Hp},Ww=(e,t)=>et.ssdMobilenetv1.locateFaces(e,t),jC=(e,t)=>et.tinyFaceDetector.locateFaces(e,t),qC=(e,t)=>et.tinyYolov2.locateFaces(e,t),Vw=e=>et.faceLandmark68Net.detectLandmarks(e),KC=e=>et.faceLandmark68TinyNet.detectLandmarks(e),XC=e=>et.faceRecognitionNet.computeFaceDescriptor(e),YC=e=>et.faceExpressionNet.predictExpressions(e),ZC=e=>et.ageGenderNet.predictAgeAndGender(e),Uw=e=>et.ssdMobilenetv1.load(e),JC=e=>et.tinyFaceDetector.load(e),QC=e=>et.tinyYolov2.load(e),e_=e=>et.faceLandmark68Net.load(e),t_=e=>et.faceLandmark68TinyNet.load(e),n_=e=>et.faceRecognitionNet.load(e),a_=e=>et.faceExpressionNet.load(e),r_=e=>et.ageGenderNet.load(e),s_=Uw,i_=Ww,o_=Vw;var Gw=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Vu=class extends Gw{async run(){let t=await this.parentTask,n=await yo(t,this.input,async a=>Promise.all(a.map(r=>et.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>Gp(a,n[r]))}withAgeAndGender(){return new Bu(this,this.input)}},Uu=class extends Gw{async run(){let t=await this.parentTask;if(!t)return;let n=await zu(t,this.input,a=>et.faceExpressionNet.predictExpressions(a),this.extractedFaces);return Gp(t,n)}withAgeAndGender(){return new Wu(this,this.input)}},wo=class extends Vu{withAgeAndGender(){return new xo(this,this.input)}withFaceDescriptors(){return new Mr(this,this.input)}},ko=class extends Uu{withAgeAndGender(){return new vo(this,this.input)}withFaceDescriptor(){return new Pr(this,this.input)}};var Hw=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Bu=class extends Hw{async run(){let t=await this.parentTask,n=await yo(t,this.input,async a=>Promise.all(a.map(r=>et.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Yp(Zp(a,i,o),s)})}withFaceExpressions(){return new Vu(this,this.input)}},Wu=class extends Hw{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await zu(t,this.input,s=>et.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Yp(Zp(t,a,r),n)}withFaceExpressions(){return new Uu(this,this.input)}},xo=class extends Bu{withFaceExpressions(){return new wo(this,this.input)}withFaceDescriptors(){return new Mr(this,this.input)}},vo=class extends Wu{withFaceExpressions(){return new ko(this,this.input)}withFaceDescriptor(){return new Pr(this,this.input)}};var Qp=class extends aa{constructor(t,n){super();this.parentTask=t;this.input=n}},Mr=class extends Qp{async run(){let t=await this.parentTask;return(await yo(t,this.input,a=>Promise.all(a.map(r=>et.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Xp(t[r],a))}withFaceExpressions(){return new wo(this,this.input)}withAgeAndGender(){return new xo(this,this.input)}},Pr=class extends Qp{async run(){let t=await this.parentTask;if(!t)return;let n=await zu(t,this.input,a=>et.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Xp(t,n)}withFaceExpressions(){return new ko(this,this.input)}withAgeAndGender(){return new vo(this,this.input)}};var ed=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?et.faceLandmark68TinyNet:et.faceLandmark68Net}},td=class extends ed{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ae?await uo(this.input,n):await lo(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ae&&s.dispose()),t.map((s,i)=>po(s,r[i]))}withFaceExpressions(){return new wo(this,this.input)}withAgeAndGender(){return new xo(this,this.input)}withFaceDescriptors(){return new Mr(this,this.input)}},nd=class extends ed{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ae?await uo(this.input,[n]):await lo(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ae&&s.dispose()),po(t,r)}withFaceExpressions(){return new ko(this,this.input)}withAgeAndGender(){return new vo(this,this.input)}withFaceDescriptor(){return new Pr(this,this.input)}};var ad=class extends aa{constructor(t,n=new na){super();this.input=t;this.options=n}},Gu=class extends ad{async run(){let{input:t,options:n}=this,a=n instanceof Jp?r=>et.tinyFaceDetector.locateFaces(r,n):n instanceof na?r=>et.ssdMobilenetv1.locateFaces(r,n):n instanceof Wa?r=>et.tinyYolov2.locateFaces(r,n):null;if(!a)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return a(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>gs({},a)))})}withFaceLandmarks(t=!1){return new td(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Vu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Bu(this.runAndExtendWithFaceDetections(),this.input)}},rd=class extends ad{async run(){let t=await new Gu(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?gs({},n):void 0)})}withFaceLandmarks(t=!1){return new nd(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Uu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Wu(this.runAndExtendWithFaceDetection(),this.input)}};function l_(e,t=new na){return new rd(e,t)}function sd(e,t=new na){return new Gu(e,t)}async function jw(e,t){return sd(e,new na(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function u_(e,t={}){return sd(e,new Wa(t)).withFaceLandmarks().withFaceDescriptors()}var c_=jw;function Yf(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var id=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof ur)return i;if(i instanceof Float32Array)return new ur(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new ur(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>Yf(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Au(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this.distanceThreshold?n:new Au("unknown",n.distance)}toJSON(){return{distanceThreshold:this.distanceThreshold,labeledDescriptors:this.labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>ur.fromJSON(a));return new id(n,t.distanceThreshold)}};function p_(e){let t=new bo;return t.extractWeights(e),t}function qw(e,t){let{width:n,height:a}=new ln(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>qw(r,{width:n,height:a}));if(ws(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return po(gs(e,r),s)}return za(e)?gs(e,e.detection.forSize(n,a)):e instanceof Un||e instanceof yt?e.forSize(n,a):e}var pse=typeof process!="undefined",dse=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",d_={faceapi:dC,node:pse,browser:dse};return cse;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=face-api.js.map