face-api/build/faceFeatureExtractor/TinyFaceFeatureExtractor.js

45 lines
1.8 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.TinyFaceFeatureExtractor = void 0;
const tf = require("@tensorflow/tfjs-core");
const dom_1 = require("../dom");
const NeuralNetwork_1 = require("../NeuralNetwork");
const ops_1 = require("../ops");
const denseBlock_1 = require("./denseBlock");
const extractParamsFromWeigthMapTiny_1 = require("./extractParamsFromWeigthMapTiny");
const extractParamsTiny_1 = require("./extractParamsTiny");
class TinyFaceFeatureExtractor extends NeuralNetwork_1.NeuralNetwork {
constructor() {
super('TinyFaceFeatureExtractor');
}
forwardInput(input) {
const { params } = this;
if (!params) {
throw new Error('TinyFaceFeatureExtractor - load model before inference');
}
return tf.tidy(() => {
const batchTensor = input.toBatchTensor(112, true);
const meanRgb = [122.782, 117.001, 104.298];
const normalized = ops_1.normalize(batchTensor, meanRgb).div(tf.scalar(255));
let out = denseBlock_1.denseBlock3(normalized, params.dense0, true);
out = denseBlock_1.denseBlock3(out, params.dense1);
out = denseBlock_1.denseBlock3(out, params.dense2);
out = tf.avgPool(out, [14, 14], [2, 2], 'valid');
return out;
});
}
async forward(input) {
return this.forwardInput(await dom_1.toNetInput(input));
}
getDefaultModelName() {
return 'face_feature_extractor_tiny_model';
}
extractParamsFromWeigthMap(weightMap) {
return extractParamsFromWeigthMapTiny_1.extractParamsFromWeigthMapTiny(weightMap);
}
extractParams(weights) {
return extractParamsTiny_1.extractParamsTiny(weights);
}
}
exports.TinyFaceFeatureExtractor = TinyFaceFeatureExtractor;
//# sourceMappingURL=TinyFaceFeatureExtractor.js.map