4889 lines
1.2 MiB
4889 lines
1.2 MiB
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var SF=Object.defineProperty;var NF=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var wy=(e,t)=>{for(var n in t)SF(e,n,{get:t[n],enumerable:!0})};var We={};wy(We,{Abs:()=>Al,Acos:()=>Fl,Acosh:()=>Dl,AdadeltaOptimizer:()=>Cf,AdagradOptimizer:()=>_f,AdamOptimizer:()=>Ef,AdamaxOptimizer:()=>$f,Add:()=>ms,AddN:()=>Ii,All:()=>Rl,Any:()=>Ml,ArgMax:()=>Ti,ArgMin:()=>xc,Asin:()=>Pl,Asinh:()=>Ol,Atan:()=>Ll,Atan2:()=>Wl,Atanh:()=>zl,AvgPool:()=>Si,AvgPool3D:()=>vc,AvgPool3DGrad:()=>ym,AvgPoolGrad:()=>bm,BackendWasm:()=>$$,BatchMatMul:()=>Ni,BatchToSpaceND:()=>Bl,Bincount:()=>xm,BroadcastArgs:()=>vm,BroadcastTo:()=>jI,Callback:()=>o2,CallbackList:()=>cN,Cast:()=>Ci,Ceil:()=>_i,ClipByValue:()=>fs,Complex:()=>wm,ComplexAbs:()=>wc,Concat:()=>Vl,Conv2D:()=>Ei,Conv2DBackpropFilter:()=>km,Conv2DBackpropInput:()=>$i,Conv3D:()=>kc,Conv3DBackpropFilterV2:()=>Im,Conv3DBackpropInputV2:()=>Tm,Cos:()=>Ai,Cosh:()=>Fi,CropAndResize:()=>Gl,Cumprod:()=>Ul,Cumsum:()=>Di,CustomCallback:()=>hN,DataStorage:()=>mm,DenseBincount:()=>Sm,DepthToSpace:()=>Hl,DepthwiseConv2dNative:()=>Ri,DepthwiseConv2dNativeBackpropFilter:()=>Nm,DepthwiseConv2dNativeBackpropInput:()=>Cm,Diag:()=>_m,Dilation2D:()=>Ic,Dilation2DBackpropFilter:()=>zh,Dilation2DBackpropInput:()=>Lh,ENV:()=>Bx,EarlyStopping:()=>l2,Einsum:()=>Em,Elu:()=>Pi,EluGrad:()=>$m,Environment:()=>GI,Equal:()=>ql,Erf:()=>jl,Exp:()=>Oi,ExpandDims:()=>Kl,Expm1:()=>Xl,FFT:()=>Am,Fill:()=>Tc,FlipLeftRight:()=>Yl,Floor:()=>Li,FloorDiv:()=>zi,FromPixels:()=>Wh,FusedBatchNorm:()=>Wi,FusedConv2D:()=>li,FusedDepthwiseConv2D:()=>ui,GPGPUContext:()=>Dh,GatherNd:()=>Jl,GatherV2:()=>Zl,GraphModel:()=>O0,Greater:()=>Ql,GreaterEqual:()=>Bi,History:()=>dN,IFFT:()=>Fm,Identity:()=>Vi,Imag:()=>Dm,InputSpec:()=>zt,IsFinite:()=>eu,IsInf:()=>tu,IsNan:()=>nu,KernelBackend:()=>yc,LRN:()=>Sc,LRNGrad:()=>Mm,LayerVariable:()=>rN,LayersModel:()=>Er,LeakyRelu:()=>Ui,Less:()=>au,LessEqual:()=>ru,LinSpace:()=>Rm,Log:()=>Gi,Log1p:()=>su,LogSoftmax:()=>KI,LogicalAnd:()=>iu,LogicalNot:()=>ou,LogicalOr:()=>lu,LogicalXor:()=>qI,LowerBound:()=>gD,MathBackendWebGL:()=>tg,Max:()=>Hi,MaxPool:()=>qi,MaxPool3D:()=>Nc,MaxPool3DGrad:()=>Om,MaxPoolGrad:()=>Pm,MaxPoolWithArgmax:()=>Lm,Maximum:()=>ji,Mean:()=>Ki,Min:()=>Xi,Minimum:()=>Yi,MirrorPad:()=>Zi,Mod:()=>uu,MomentumOptimizer:()=>Af,Multinomial:()=>zm,Multiply:()=>Ji,Neg:()=>pu,NonMaxSuppressionV3:()=>du,NonMaxSuppressionV4:()=>hu,NonMaxSuppressionV5:()=>mu,NotEqual:()=>cu,OP_SCOPE_SUFFIX:()=>Hx,OneHot:()=>Qi,OnesLike:()=>fu,Optimizer:()=>Dr,OptimizerConstructors:()=>Kr,Pack:()=>gu,PadV2:()=>eo,Pool:()=>bD,Pow:()=>to,Prelu:()=>no,Prod:()=>ao,RMSPropOptimizer:()=>Ff,RNN:()=>br,RaggedTensorToTensor:()=>Wm,Range:()=>Cc,Rank:()=>zy,Real:()=>Bm,RealDiv:()=>Mi,Reciprocal:()=>bu,Reduction:()=>kn,Relu:()=>ro,Relu6:()=>oo,Reshape:()=>yu,ResizeBilinear:()=>io,ResizeBilinearGrad:()=>Um,ResizeNearestNeighbor:()=>so,ResizeNearestNeighborGrad:()=>Vm,Reverse:()=>lo,RotateWithOffset:()=>Ru,Round:()=>uo,Rsqrt:()=>po,SGDOptimizer:()=>td,ScatterNd:()=>xu,SearchSorted:()=>Gm,Select:()=>vu,Selu:()=>wu,Sequential:()=>Il,Sigmoid:()=>ho,Sign:()=>Tu,Sin:()=>co,Sinh:()=>Iu,Slice:()=>ku,Softmax:()=>go,Softplus:()=>Su,SpaceToBatchND:()=>Nu,SparseFillEmptyRows:()=>_c,SparseReshape:()=>_u,SparseSegmentMean:()=>Ec,SparseSegmentSum:()=>$c,SparseToDense:()=>Hm,SplitV:()=>Cu,Sqrt:()=>mo,Square:()=>Ac,SquaredDifference:()=>bo,Step:()=>bs,StridedSlice:()=>Eu,StringNGrams:()=>Fc,StringSplit:()=>Dc,StringToHashBucketFast:()=>Rc,Sub:()=>yo,Sum:()=>fo,SymbolicTensor:()=>ja,Tan:()=>xo,Tanh:()=>vo,Tensor:()=>$e,TensorBuffer:()=>jt,Tile:()=>gs,TopK:()=>$u,Transform:()=>Au,Transpose:()=>_r,Unique:()=>jm,Unpack:()=>Fu,UnsortedSegmentSum:()=>Mc,UpperBound:()=>yD,Variable:()=>rs,ZerosLike:()=>Du,_FusedMatMul:()=>oi,abs:()=>Lt,acos:()=>sv,acosh:()=>iv,add:()=>Q,addN:()=>OT,all:()=>Zm,any:()=>ic,argMax:()=>di,argMin:()=>ov,asin:()=>lv,asinh:()=>uv,atan:()=>pv,atan2:()=>cv,atanh:()=>dv,avgPool:()=>ga,avgPool3d:()=>mv,backend:()=>xT,backend_util:()=>C,basicLSTMCell:()=>BT,batchNorm:()=>vs,batchNorm2d:()=>fv,batchNorm3d:()=>gv,batchNorm4d:()=>bv,batchToSpaceND:()=>Gc,bincount:()=>yv,booleanMaskAsync:()=>kS,broadcastArgs:()=>VT,broadcastTo:()=>ai,broadcast_util:()=>Mu,browser:()=>wo,buffer:()=>Le,callbacks:()=>MH,cast:()=>le,ceil:()=>xv,clipByValue:()=>tn,clone:()=>ur,complex:()=>$r,concat:()=>Qe,concat1d:()=>vv,concat2d:()=>wv,concat3d:()=>kv,concat4d:()=>Iv,constraints:()=>oN,conv1d:()=>Jm,conv2d:()=>Dt,conv2dTranspose:()=>Qm,conv3d:()=>Sv,conv3dTranspose:()=>Nv,copyRegisteredKernels:()=>kD,cos:()=>Hc,cosh:()=>ef,cosineWindow:()=>kf,cumprod:()=>oc,cumsum:()=>tf,customGrad:()=>dr,data:()=>F2,denseBincount:()=>GT,deprecationWarn:()=>Jx,depthToSpace:()=>Cv,depthwiseConv2d:()=>ws,deregisterOp:()=>LH,device_util:()=>zc,diag:()=>HT,dilation2d:()=>_v,disableDeprecationWarnings:()=>YR,dispose:()=>Me,disposeVariables:()=>ZR,div:()=>fe,divNoNan:()=>Ev,dot:()=>$v,dropout:()=>aw,einsum:()=>jT,elu:()=>Pu,enableDebugMode:()=>XR,enableProdMode:()=>KR,enclosingPowerOfTwo:()=>rw,engine:()=>rr,env:()=>X,equal:()=>Qn,erf:()=>Av,euclideanNorm:()=>Rv,exp:()=>gn,expandDims:()=>mn,expm1:()=>Mv,eye:()=>nf,fft:()=>Qc,fill:()=>En,findBackend:()=>rM,findBackendFactory:()=>sM,floor:()=>Lu,floorDiv:()=>Ym,forceHalfFloat:()=>X_,fused:()=>vl,gather:()=>zu,gatherND:()=>NS,gather_util:()=>Qx,getBackend:()=>nM,getGradient:()=>Oy,getKernel:()=>Bh,getKernelsForBackend:()=>Vh,getThreadsCount:()=>bpe,gpgpu_util:()=>C_,grad:()=>EO,grads:()=>$O,greater:()=>jn,greaterEqual:()=>ks,ifft:()=>xl,imag:()=>Bc,image:()=>Nr,inTopKAsync:()=>CS,initializers:()=>lN,input:()=>CN,io:()=>Sn,irfft:()=>yf,isFinite:()=>Pv,isInf:()=>Ov,isNaN:()=>Lv,keep:()=>Qt,kernel_impls:()=>gr,layers:()=>uN,leakyRelu:()=>jc,less:()=>af,lessEqual:()=>Is,linalg:()=>ow,linspace:()=>ZT,loadGraphModel:()=>B6,loadGraphModelSync:()=>V6,loadLayersModel:()=>HU,localResponseNormalization:()=>zv,log:()=>ea,log1p:()=>qc,logSigmoid:()=>Wv,logSoftmax:()=>sf,logSumExp:()=>of,logicalAnd:()=>_a,logicalNot:()=>Kc,logicalOr:()=>lf,logicalXor:()=>Bv,losses:()=>zS,lowerBound:()=>QT,matMul:()=>Re,math:()=>yT,max:()=>Na,maxPool:()=>Mt,maxPool3d:()=>Vv,maxPoolWithArgmax:()=>eS,maximum:()=>fr,mean:()=>_t,memory:()=>Hh,meshgrid:()=>tS,metrics:()=>r2,min:()=>lc,minimum:()=>Wu,mirrorPad:()=>Uv,mod:()=>Gv,model:()=>UU,models:()=>s2,moments:()=>Xc,movingAverage:()=>IS,mul:()=>W,multiRNNCell:()=>nS,multinomial:()=>aS,neg:()=>vt,nextFrame:()=>lw,norm:()=>Ou,notEqual:()=>fi,oneHot:()=>fl,ones:()=>Jn,onesLike:()=>ta,op:()=>z,outerProduct:()=>rS,pad:()=>ba,pad1d:()=>sS,pad2d:()=>iS,pad3d:()=>oS,pad4d:()=>lS,pool:()=>Hv,pow:()=>Ar,prelu:()=>Zc,print:()=>Xx,prod:()=>jv,profile:()=>JR,raggedTensorToTensor:()=>uS,rand:()=>pS,randomGamma:()=>cS,randomNormal:()=>pf,randomStandardNormal:()=>dS,randomUniform:()=>Bu,range:()=>bl,ready:()=>tM,real:()=>gl,reciprocal:()=>Xv,registerBackend:()=>Xm,registerCallbackConstructor:()=>jU,registerGradient:()=>XI,registerKernel:()=>Pc,registerOp:()=>OH,regularizers:()=>i2,relu:()=>Xe,relu6:()=>cf,removeBackend:()=>aM,reshape:()=>B,reverse:()=>fa,reverse1d:()=>hS,reverse2d:()=>mS,reverse3d:()=>fS,reverse4d:()=>gS,rfft:()=>ed,round:()=>df,rsqrt:()=>hf,scalar:()=>ke,scatterND:()=>TS,scatter_util:()=>ev,searchSorted:()=>uf,selu:()=>mf,separableConv2d:()=>Ts,sequential:()=>GU,serialization:()=>se,setBackend:()=>eM,setPlatform:()=>iM,setThreadsCount:()=>gpe,setWasmPath:()=>mpe,setWasmPaths:()=>fpe,setWebGLContext:()=>ZC,setdiff1dAsync:()=>bS,sigmoid:()=>da,sign:()=>Yv,signal:()=>LS,sin:()=>ff,sinh:()=>gf,slice:()=>He,slice1d:()=>Jc,slice2d:()=>bf,slice3d:()=>Io,slice4d:()=>yl,slice_util:()=>qt,softmax:()=>Qa,softplus:()=>ko,spaceToBatchND:()=>Yc,sparse:()=>WS,sparseToDense:()=>SS,spectral:()=>OS,split:()=>Vn,sqrt:()=>ln,square:()=>lt,squaredDifference:()=>xf,squeeze:()=>Ss,stack:()=>Rt,step:()=>To,stridedSlice:()=>Zv,string:()=>BS,sub:()=>ce,sum:()=>ye,sumOutType:()=>Km,tan:()=>Jv,tanh:()=>hi,tensor:()=>Bn,tensor1d:()=>Ke,tensor2d:()=>Ca,tensor3d:()=>Vc,tensor4d:()=>$a,tensor5d:()=>yS,tensor6d:()=>xS,tensor_util:()=>qa,test_util:()=>RT,tidy:()=>O,tile:()=>Wn,time:()=>QR,topk:()=>Qv,train:()=>Ks,transpose:()=>Ae,truncatedNormal:()=>vf,unique:()=>ew,unregisterGradient:()=>wD,unregisterKernel:()=>vD,unsortedSegmentSum:()=>wf,unstack:()=>mt,upcastType:()=>ha,upperBound:()=>vS,util:()=>v,valueAndGrad:()=>AO,valueAndGrads:()=>FO,variable:()=>tw,variableGrads:()=>JT,version:()=>_pe,version_converter:()=>G6,version_core:()=>LM,version_layers:()=>$w,version_wasm:()=>ype,version_webgl:()=>uJ,webgl:()=>pJ,webgl_util:()=>YC,where:()=>fn,whereAsync:()=>nw,zeros:()=>It,zerosLike:()=>qe});var CF=Object.create,Px=Object.defineProperty,_F=Object.getOwnPropertyDescriptor,EF=Object.getOwnPropertyNames,$F=Object.getPrototypeOf,AF=Object.prototype.hasOwnProperty,Bt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)Px(e,n,{get:t[n],enumerable:!0})},FF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of EF(t))!AF.call(e,r)&&r!==n&&Px(e,r,{get:()=>t[r],enumerable:!(a=_F(t,r))||a.enumerable});return e},ds=(e,t,n)=>(n=e!=null?CF($F(e)):{},FF(t||!e||!e.__esModule?Px(n,"default",{value:e,enumerable:!0}):n,e)),DF=Bt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(T){}function a(T,P,U){this.low=T|0,this.high=P|0,this.unsigned=!!U}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(T){return(T&&T.__isLong__)===!0}a.isLong=r;var s={},i={};function o(T,P){var U,j,q;return P?(T>>>=0,(q=0<=T&&T<256)&&(j=i[T],j)?j:(U=u(T,(T|0)<0?-1:0,!0),q&&(i[T]=U),U)):(T|=0,(q=-128<=T&&T<128)&&(j=s[T],j)?j:(U=u(T,T<0?-1:0,!1),q&&(s[T]=U),U))}a.fromInt=o;function l(T,P){if(isNaN(T))return P?w:x;if(P){if(T<0)return w;if(T>=g)return A}else{if(T<=-b)return M;if(T+1>=b)return $}return T<0?l(-T,P).neg():u(T%f|0,T/f|0,P)}a.fromNumber=l;function u(T,P,U){return new a(T,P,U)}a.fromBits=u;var p=Math.pow;function d(T,P,U){if(T.length===0)throw Error("empty string");if(T==="NaN"||T==="Infinity"||T==="+Infinity"||T==="-Infinity")return x;if(typeof P=="number"?(U=P,P=!1):P=!!P,U=U||10,U<2||36<U)throw RangeError("radix");var j;if((j=T.indexOf("-"))>0)throw Error("interior hyphen");if(j===0)return d(T.substring(1),P,U).neg();for(var q=l(p(U,8)),K=x,Y=0;Y<T.length;Y+=8){var te=Math.min(8,T.length-Y),re=parseInt(T.substring(Y,Y+te),U);if(te<8){var J=l(p(U,te));K=K.mul(J).add(l(re))}else K=K.mul(q),K=K.add(l(re))}return K.unsigned=P,K}a.fromString=d;function c(T,P){return typeof T=="number"?l(T,P):typeof T=="string"?d(T,P):u(T.low,T.high,typeof P=="boolean"?P:T.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,b=g/2,y=o(m),x=o(0);a.ZERO=x;var w=o(0,!0);a.UZERO=w;var I=o(1);a.ONE=I;var N=o(1,!0);a.UONE=N;var _=o(-1);a.NEG_ONE=_;var $=u(-1,2147483647,!1);a.MAX_VALUE=$;var A=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=A;var M=u(0,-2147483648,!1);a.MIN_VALUE=M;var D=a.prototype;D.toInt=function(){return this.unsigned?this.low>>>0:this.low},D.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},D.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(M)){var P=l(T),U=this.div(P),j=U.mul(P).sub(this);return U.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var q=l(p(T,6),this.unsigned),K=this,Y="";;){var te=K.div(q),re=K.sub(te.mul(q)).toInt()>>>0,J=re.toString(T);if(K=te,K.isZero())return J+Y;for(;J.length<6;)J="0"+J;Y=""+J+Y}},D.getHighBits=function(){return this.high},D.getHighBitsUnsigned=function(){return this.high>>>0},D.getLowBits=function(){return this.low},D.getLowBitsUnsigned=function(){return this.low>>>0},D.getNumBitsAbs=function(){if(this.isNegative())return this.eq(M)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,P=31;P>0&&(T&1<<P)==0;P--);return this.high!=0?P+33:P+1},D.isZero=function(){return this.high===0&&this.low===0},D.eqz=D.isZero,D.isNegative=function(){return!this.unsigned&&this.high<0},D.isPositive=function(){return this.unsigned||this.high>=0},D.isOdd=function(){return(this.low&1)===1},D.isEven=function(){return(this.low&1)===0},D.equals=function(T){return r(T)||(T=c(T)),this.unsigned!==T.unsigned&&this.high>>>31===1&&T.high>>>31===1?!1:this.high===T.high&&this.low===T.low},D.eq=D.equals,D.notEquals=function(T){return!this.eq(T)},D.neq=D.notEquals,D.ne=D.notEquals,D.lessThan=function(T){return this.comp(T)<0},D.lt=D.lessThan,D.lessThanOrEqual=function(T){return this.comp(T)<=0},D.lte=D.lessThanOrEqual,D.le=D.lessThanOrEqual,D.greaterThan=function(T){return this.comp(T)>0},D.gt=D.greaterThan,D.greaterThanOrEqual=function(T){return this.comp(T)>=0},D.gte=D.greaterThanOrEqual,D.ge=D.greaterThanOrEqual,D.compare=function(T){if(r(T)||(T=c(T)),this.eq(T))return 0;var P=this.isNegative(),U=T.isNegative();return P&&!U?-1:!P&&U?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},D.comp=D.compare,D.negate=function(){return!this.unsigned&&this.eq(M)?M:this.not().add(I)},D.neg=D.negate,D.add=function(T){r(T)||(T=c(T));var P=this.high>>>16,U=this.high&65535,j=this.low>>>16,q=this.low&65535,K=T.high>>>16,Y=T.high&65535,te=T.low>>>16,re=T.low&65535,J=0,ie=0,ae=0,oe=0;return oe+=q+re,ae+=oe>>>16,oe&=65535,ae+=j+te,ie+=ae>>>16,ae&=65535,ie+=U+Y,J+=ie>>>16,ie&=65535,J+=P+K,J&=65535,u(ae<<16|oe,J<<16|ie,this.unsigned)},D.subtract=function(T){return r(T)||(T=c(T)),this.add(T.neg())},D.sub=D.subtract,D.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=c(T)),n){var P=n.mul(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(M))return T.isOdd()?M:x;if(T.eq(M))return this.isOdd()?M:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var U=this.high>>>16,j=this.high&65535,q=this.low>>>16,K=this.low&65535,Y=T.high>>>16,te=T.high&65535,re=T.low>>>16,J=T.low&65535,ie=0,ae=0,oe=0,ue=0;return ue+=K*J,oe+=ue>>>16,ue&=65535,oe+=q*J,ae+=oe>>>16,oe&=65535,oe+=K*re,ae+=oe>>>16,oe&=65535,ae+=j*J,ie+=ae>>>16,ae&=65535,ae+=q*re,ie+=ae>>>16,ae&=65535,ae+=K*te,ie+=ae>>>16,ae&=65535,ie+=U*J+j*re+q*te+K*Y,ie&=65535,u(oe<<16|ue,ie<<16|ae,this.unsigned)},D.mul=D.multiply,D.divide=function(T){if(r(T)||(T=c(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var P=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?w:x;var U,j,q;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return w;if(T.gt(this.shru(1)))return N;q=w}else{if(this.eq(M)){if(T.eq(I)||T.eq(_))return M;if(T.eq(M))return I;var K=this.shr(1);return U=K.div(T).shl(1),U.eq(x)?T.isNegative()?I:_:(j=this.sub(T.mul(U)),q=U.add(j.div(T)),q)}else if(T.eq(M))return this.unsigned?w:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();q=x}for(j=this;j.gte(T);){U=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var Y=Math.ceil(Math.log(U)/Math.LN2),te=Y<=48?1:p(2,Y-48),re=l(U),J=re.mul(T);J.isNegative()||J.gt(j);)U-=te,re=l(U,this.unsigned),J=re.mul(T);re.isZero()&&(re=I),q=q.add(re),j=j.sub(J)}return q},D.div=D.divide,D.modulo=function(T){if(r(T)||(T=c(T)),n){var P=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},D.mod=D.modulo,D.rem=D.modulo,D.not=function(){return u(~this.low,~this.high,this.unsigned)},D.and=function(T){return r(T)||(T=c(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},D.or=function(T){return r(T)||(T=c(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},D.xor=function(T){return r(T)||(T=c(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},D.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):u(0,this.low<<T-32,this.unsigned)},D.shl=D.shiftLeft,D.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},D.shr=D.shiftRight,D.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var P=this.high;if(T<32){var U=this.low;return u(U>>>T|P<<32-T,P>>>T,this.unsigned)}else return T===32?u(P,0,this.unsigned):u(P>>>T-32,0,this.unsigned)},D.shru=D.shiftRightUnsigned,D.shr_u=D.shiftRightUnsigned,D.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},D.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},D.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},D.toBytesLE=function(){var T=this.high,P=this.low;return[P&255,P>>>8&255,P>>>16&255,P>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},D.toBytesBE=function(){var T=this.high,P=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,P>>>24,P>>>16&255,P>>>8&255,P&255]},a.fromBytes=function(T,P,U){return U?a.fromBytesLE(T,P):a.fromBytesBE(T,P)},a.fromBytesLE=function(T,P){return new a(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,P)},a.fromBytesBE=function(T,P){return new a(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],P)}}),RF=Bt(()=>{}),MF=Bt(()=>{}),PF=Bt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),OF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),LF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),zF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),WF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,b,y=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(b=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=m+b,f=h==0?f+1:0);for(f>=128&&(y[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=y[f+34&127],h=y[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,y[f]=m^h;d.w=b,d.X=y,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),BF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),VF=Bt(()=>{}),UF=Bt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,N,_){var $=[];N=N==!0?{entropy:!0}:N||{};var A=y(b(N.entropy?[I,w(a)]:I==null?x():I,3),$),M=new f($),D=function(){for(var T=M.g(i),P=u,U=0;T<p;)T=(T+U)*s,P*=s,U=M.g(1);for(;T>=d;)T/=2,P/=2,U>>>=1;return(T+U)/P};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,y(w(M.S),a),(N.pass||_||function(T,P,U,j){return j&&(j.S&&g(j,M),T.state=function(){return g(M,{})}),U?(r[l]=T,P):T})(D,A,"global"in N?N.global:this==r,N.state)}function f(I){var N,_=I.length,$=this,A=0,M=$.i=$.j=0,D=$.S=[];for(_||(I=[_++]);A<s;)D[A]=A++;for(A=0;A<s;A++)D[A]=D[M=c&M+I[A%_]+(N=D[A])],D[M]=N;($.g=function(T){for(var P,U=0,j=$.i,q=$.j,K=$.S;T--;)P=K[j=c&j+1],U=U*s+K[c&(K[j]=K[q=c&q+P])+(K[q]=P)];return $.i=j,$.j=q,U})(s)}function g(I,N){return N.i=I.i,N.j=I.j,N.S=I.S.slice(),N}function b(I,N){var _=[],$=typeof I,A;if(N&&$=="object")for(A in I)try{_.push(b(I[A],N-1))}catch(M){}return _.length?_:$=="string"?I:I+"\0"}function y(I,N){for(var _=I+"",$,A=0;A<_.length;)N[c&A]=c&($^=N[c&A]*19)+_.charCodeAt(A++);return w(N)}function x(){try{var I;return h&&(I=h.randomBytes)?I=I(s):(I=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(I)),w(I)}catch($){var N=n.navigator,_=N&&N.plugins;return[+new Date,n,_,n.screen,w(a)]}}function w(I){return String.fromCharCode.apply(0,I)}if(y(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=VF()}catch(I){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),hm=Bt((e,t)=>{var n=PF(),a=OF(),r=LF(),s=zF(),i=WF(),o=BF(),l=UF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),DI=Bt(()=>{}),Ox=Bt(()=>{}),Mh=Bt(()=>{}),GF=Bt(()=>{}),HF=Bt(()=>{}),jF=Bt(()=>{}),qF=Bt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Ne.buffer!=yn&&Oa(Ne.buffer),Fd}function i(){return Ne.buffer!=yn&&Oa(Ne.buffer),Dd}function o(){return Ne.buffer!=yn&&Oa(Ne.buffer),Sp}function l(){return Ne.buffer!=yn&&Oa(Ne.buffer),Rd}function u(){return Ne.buffer!=yn&&Oa(Ne.buffer),Md}function p(){return Ne.buffer!=yn&&Oa(Ne.buffer),Pd}function d(){return Ne.buffer!=yn&&Oa(Ne.buffer),Od}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(S,F){h=S,m=F});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),b=[],y="./this.program",x=(S,F)=>{throw F},w=typeof window=="object",I=typeof importScripts=="function",N=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=c.ENVIRONMENT_IS_PTHREAD||!1,$="";function A(S){return c.locateFile?c.locateFile(S,$):$+S}var M,D,T,P;function U(S){S instanceof Mp||J("exiting due to exception: "+S)}var j,q,K;if(N){I?$=Mh().dirname($)+"/":$=__dirname+"/",K=()=>{q||(j=Ox(),q=Mh())},M=function(F,V){return K(),F=q.normalize(F),j.readFileSync(F,V?void 0:"utf8")},T=F=>{var V=M(F,!0);return V.buffer||(V=new Uint8Array(V)),V},D=(F,V,Z)=>{K(),F=q.normalize(F),j.readFile(F,function(pe,me){pe?Z(pe):V(me.buffer)})},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),b=process.argv.slice(2),process.on("uncaughtException",function(F){if(!(F instanceof Mp))throw F}),process.on("unhandledRejection",function(F){throw F}),x=(F,V)=>{if(Ws())throw process.exitCode=F,V;U(V),process.exit(F)},c.inspect=function(){return"[Emscripten Module object]"};let S;try{S=GF()}catch(F){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),F}global.Worker=S.Worker}else(w||I)&&(I?$=self.location.href:typeof document!="undefined"&&document.currentScript&&($=document.currentScript.src),typeof a!="undefined"&&a&&($=a),$.indexOf("blob:")!==0?$=$.substr(0,$.replace(/[?#].*/,"").lastIndexOf("/")+1):$="",N||(M=S=>{var F=new XMLHttpRequest;return F.open("GET",S,!1),F.send(null),F.responseText},I&&(T=S=>{var F=new XMLHttpRequest;return F.open("GET",S,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),D=(S,F,V)=>{var Z=new XMLHttpRequest;Z.open("GET",S,!0),Z.responseType="arraybuffer",Z.onload=()=>{if(Z.status==200||Z.status==0&&Z.response){F(Z.response);return}V()},Z.onerror=V,Z.send(null)}),P=S=>document.title=S);N&&typeof performance=="undefined"&&(global.performance=HF().performance);var Y=console.log.bind(console),te=console.warn.bind(console);N&&(K(),Y=S=>j.writeSync(1,S+`
|
|
`),te=S=>j.writeSync(2,S+`
|
|
`));var re=c.print||Y,J=c.printErr||te;Object.assign(c,g),g=null,c.arguments&&(b=c.arguments),c.thisProgram&&(y=c.thisProgram),c.quit&&(x=c.quit);var ie=4;function ae(S){ae.shown||(ae.shown={}),ae.shown[S]||(ae.shown[S]=1,J(S))}function oe(S,F){if(typeof WebAssembly.Function=="function"){for(var V={i:"i32",j:"i64",f:"f32",d:"f64"},Z={parameters:[],results:F[0]=="v"?[]:[V[F[0]]]},pe=1;pe<F.length;++pe)Z.parameters.push(V[F[pe]]);return new WebAssembly.Function(Z,S)}var me=[1,0,1,96],ve=F.slice(0,1),Ce=F.slice(1),Ct={i:127,j:126,f:125,d:124};me.push(Ce.length);for(var pe=0;pe<Ce.length;++pe)me.push(Ct[Ce[pe]]);ve=="v"?me.push(0):me=me.concat([1,Ct[ve]]),me[1]=me.length-2;var Ba=new Uint8Array([0,97,115,109,1,0,0,0].concat(me,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Va=new WebAssembly.Module(Ba),ch=new WebAssembly.Instance(Va,{e:{f:S}}),Pp=ch.exports.f;return Pp}var ue=[],we;function be(){if(ue.length)return ue.pop();try{oa.grow(1)}catch(S){throw S instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":S}return oa.length-1}function Ie(S,F){for(var V=S;V<S+F;V++){var Z=Ko(V);Z&&we.set(Z,V)}}var Ee=0,De=S=>{Ee=S},Be=Atomics.load,je=Atomics.store,st=Atomics.compareExchange,et;c.wasmBinary&&(et=c.wasmBinary);var tt=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Ho("no native wasm support detected");var Ne,ft,dt=!1,bn;function Yt(S,F){S||Ho(F)}function Mn(S){var F=c["_"+S];return F}function Ut(S,F,V,Z,pe){var me={string:function(la){var tl=0;if(la!=null&&la!==0){var ak=(la.length<<2)+1;tl=el(ak),Ls(la,tl,ak)}return tl},array:function(la){var tl=el(la.length);return wr(la,tl),tl}};function ve(la){return F==="string"?ia(la):F==="boolean"?Boolean(la):la}var Ce=Mn(S),Ct=[],Ba=0;if(Z)for(var Va=0;Va<Z.length;Va++){var ch=me[V[Va]];ch?(Ba===0&&(Ba=xy()),Ct[Va]=ch(Z[Va])):Ct[Va]=Z[Va]}var Pp=Ce.apply(null,Ct);function TF(la){return Ba!==0&&oh(Ba),ve(la)}return Pp=TF(Pp),Pp}function Zt(S,F,V,Z){V=V||[];var pe=V.every(function(ve){return ve==="number"}),me=F!=="string";return me&&pe&&!Z?Mn(S):function(){return Ut(S,F,V,arguments,Z)}}var Pa=1;function Pn(S){var F=new TextDecoder(S);this.decode=V=>(V.buffer instanceof SharedArrayBuffer&&(V=new Uint8Array(V)),F.decode.call(F,V))}var Gt=typeof TextDecoder!="undefined"?new Pn("utf8"):void 0;function sa(S,F,V){for(var Z=F+V,pe=F;S[pe]&&!(pe>=Z);)++pe;if(pe-F>16&&S.subarray&&Gt)return Gt.decode(S.subarray(F,pe));for(var me="";F<pe;){var ve=S[F++];if(!(ve&128)){me+=String.fromCharCode(ve);continue}var Ce=S[F++]&63;if((ve&224)==192){me+=String.fromCharCode((ve&31)<<6|Ce);continue}var Ct=S[F++]&63;if((ve&240)==224?ve=(ve&15)<<12|Ce<<6|Ct:ve=(ve&7)<<18|Ce<<12|Ct<<6|S[F++]&63,ve<65536)me+=String.fromCharCode(ve);else{var Ba=ve-65536;me+=String.fromCharCode(55296|Ba>>10,56320|Ba&1023)}}return me}function ia(S,F){return S?sa(i(),S,F):""}function Ur(S,F,V,Z){if(!(Z>0))return 0;for(var pe=V,me=V+Z-1,ve=0;ve<S.length;++ve){var Ce=S.charCodeAt(ve);if(Ce>=55296&&Ce<=57343){var Ct=S.charCodeAt(++ve);Ce=65536+((Ce&1023)<<10)|Ct&1023}if(Ce<=127){if(V>=me)break;F[V++]=Ce}else if(Ce<=2047){if(V+1>=me)break;F[V++]=192|Ce>>6,F[V++]=128|Ce&63}else if(Ce<=65535){if(V+2>=me)break;F[V++]=224|Ce>>12,F[V++]=128|Ce>>6&63,F[V++]=128|Ce&63}else{if(V+3>=me)break;F[V++]=240|Ce>>18,F[V++]=128|Ce>>12&63,F[V++]=128|Ce>>6&63,F[V++]=128|Ce&63}}return F[V]=0,V-pe}function Ls(S,F,V){return Ur(S,i(),F,V)}function Ad(S){for(var F=0,V=0;V<S.length;++V){var Z=S.charCodeAt(V);Z>=55296&&Z<=57343&&(Z=65536+((Z&1023)<<10)|S.charCodeAt(++V)&1023),Z<=127?++F:Z<=2047?F+=2:Z<=65535?F+=3:F+=4}return F}var Gr=typeof TextDecoder!="undefined"?new Pn("utf-16le"):void 0;function wr(S,F){s().set(S,F)}function Tp(S,F,V){for(var Z=0;Z<S.length;++Z)s()[F++>>0]=S.charCodeAt(Z);V||(s()[F>>0]=0)}function Uo(S,F){return S%F>0&&(S+=F-S%F),S}var yn,Fd,Dd,Sp,Rd,Md,O1,Pd,Od;_&&(yn=c.buffer);function Oa(S){yn=S,c.HEAP8=Fd=new Int8Array(S),c.HEAP16=Sp=new Int16Array(S),c.HEAP32=Md=new Int32Array(S),c.HEAPU8=Dd=new Uint8Array(S),c.HEAPU16=Rd=new Uint16Array(S),c.HEAPU32=O1=new Uint32Array(S),c.HEAPF32=Pd=new Float32Array(S),c.HEAPF64=Od=new Float64Array(S)}var Ld=c.INITIAL_MEMORY||16777216;if(_)Ne=c.wasmMemory,yn=c.buffer;else if(c.wasmMemory)Ne=c.wasmMemory;else if(Ne=new WebAssembly.Memory({initial:Ld/65536,maximum:32768,shared:!0}),!(Ne.buffer instanceof SharedArrayBuffer))throw J("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),N&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Ne&&(yn=Ne.buffer),Ld=yn.byteLength,Oa(yn);var oa,Go=[],Hr=[],Wg=[],zd=[],zs=!1,Bg=!1,Wd=0;function Ws(){return tt||Wd>0}function xn(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)L1(c.preRun.shift());Gd(Go)}function Np(){zs=!0,!_&&Gd(Hr)}function Vg(){_||(_e.terminateAllThreads(),Bg=!0)}function Ug(){if(!_){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Cp(c.postRun.shift());Gd(zd)}}function L1(S){Go.unshift(S)}function z1(S){Hr.unshift(S)}function Cp(S){zd.unshift(S)}var jr=0,Bd=null,La=null;function _p(S){jr++,c.monitorRunDependencies&&c.monitorRunDependencies(jr)}function W1(S){if(jr--,c.monitorRunDependencies&&c.monitorRunDependencies(jr),jr==0&&(Bd!==null&&(clearInterval(Bd),Bd=null),La)){var F=La;La=null,F()}}c.preloadedImages={},c.preloadedAudios={};function Ho(S){_?postMessage({cmd:"onAbort",arg:S}):c.onAbort&&c.onAbort(S),S="Aborted("+S+")",J(S),dt=!0,bn=1,S+=". Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(S);throw m(F),F}var Gg="data:application/octet-stream;base64,";function Ep(S){return S.startsWith(Gg)}function Vd(S){return S.startsWith("file://")}var vn;vn="tfjs-backend-wasm-threaded-simd.wasm",Ep(vn)||(vn=A(vn));function Ud(S){try{if(S==vn&&et)return new Uint8Array(et);if(T)return T(S);throw"both async and sync fetching of the wasm failed"}catch(F){Ho(F)}}function jo(){if(!et&&(w||I)){if(typeof fetch=="function"&&!Vd(vn))return fetch(vn,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+vn+"'";return S.arrayBuffer()}).catch(function(){return Ud(vn)});if(D)return new Promise(function(S,F){D(vn,function(V){S(new Uint8Array(V))},F)})}return Promise.resolve().then(function(){return Ud(vn)})}function Hg(){var S={env:nh,wasi_snapshot_preview1:nh};function F(ve,Ce){var Ct=ve.exports;if(c.asm=Ct,Jg(c.asm.emscripten_tls_init),oa=c.asm.__indirect_function_table,z1(c.asm.__wasm_call_ctors),ft=Ce,!_){var Ba=_e.unusedWorkers.length;_e.unusedWorkers.forEach(function(Va){_e.loadWasmModuleToWorker(Va,function(){--Ba||W1("wasm-instantiate")})})}}_||_p("wasm-instantiate");function V(ve){F(ve.instance,ve.module)}function Z(ve){return jo().then(function(Ce){return WebAssembly.instantiate(Ce,S)}).then(function(Ce){return Ce}).then(ve,function(Ce){J("failed to asynchronously prepare wasm: "+Ce),Ho(Ce)})}function pe(){return!et&&typeof WebAssembly.instantiateStreaming=="function"&&!Ep(vn)&&!Vd(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(ve){var Ce=WebAssembly.instantiateStreaming(ve,S);return Ce.then(V,function(Ct){return J("wasm streaming compile failed: "+Ct),J("falling back to ArrayBuffer instantiation"),Z(V)})}):Z(V)}if(c.instantiateWasm)try{var me=c.instantiateWasm(S,F);return me}catch(ve){return J("Module.instantiateWasm callback failed with error: "+ve),!1}return pe().catch(m),{}}var B1,V1,jg={};function Gd(S){for(;S.length>0;){var F=S.shift();if(typeof F=="function"){F(c);continue}var V=F.func;typeof V=="number"?F.arg===void 0?Ko(V)():Ko(V)(F.arg):V(F.arg===void 0?null:F.arg)}}function qo(S){var F=xy(),V=S();return oh(F),V}function FA(S){return S}function U1(S){var F=/\b_Z[\w\d_]+/g;return S.replace(F,function(V){var Z=V;return V===Z?V:Z+" ["+V+"]"})}function qg(S){u()[S>>2]=0;var F=_e.pthreads[S];delete _e.pthreads[S],F.worker.terminate(),yy(S),_e.runningWorkers.splice(_e.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function Kg(S){var F=_e.pthreads[S];F.worker.postMessage({cmd:"cancel"})}function Hd(S){var F=_e.pthreads[S];if(F){u()[S>>2]=0;var V=F.worker;_e.returnWorkerToPool(V)}}function jd(S){wF(S)}function Xg(S){if(S instanceof Mp||S=="unwind")return bn;x(1,S)}var _e={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){_?_e.initWorker():_e.initMainThread()},initMainThread:function(){for(var S=8,F=0;F<S;++F)_e.allocateUnusedWorker()},initWorker:function(){tt=!1},pthreads:{},setExitStatus:function(S){bn=S},terminateAllThreads:function(){for(var S in _e.pthreads){var F=_e.pthreads[S];F&&F.worker&&_e.returnWorkerToPool(F.worker)}for(var V=0;V<_e.unusedWorkers.length;++V){var Z=_e.unusedWorkers[V];Z.terminate()}_e.unusedWorkers=[]},returnWorkerToPool:function(S){_e.runWithoutMainThreadQueuedCalls(function(){delete _e.pthreads[S.pthread.threadInfoStruct],_e.unusedWorkers.push(S),_e.runningWorkers.splice(_e.runningWorkers.indexOf(S),1),yy(S.pthread.threadInfoStruct),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){u()[nk>>2]=0;try{S()}finally{u()[nk>>2]=1}},receiveObjectTransfer:function(S){},threadInit:function(){for(var S in _e.tlsInitFunctions)_e.tlsInitFunctions[S]()},loadWasmModuleToWorker:function(S,F){S.onmessage=V=>{var Z=V.data,pe=Z.cmd;if(S.pthread&&(_e.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),Z.targetThread&&Z.targetThread!=ih()){var me=_e.pthreads[Z.targetThread];me?me.worker.postMessage(Z,Z.transferList):J('Internal error! Worker sent a message "'+pe+'" to target pthread '+Z.targetThread+", but that thread no longer exists!"),_e.currentProxiedOperationCallerThread=void 0;return}pe==="processQueuedMainThreadWork"?Z1():pe==="spawnThread"?Kd(Z):pe==="cleanupThread"?Hd(Z.thread):pe==="killThread"?qg(Z.thread):pe==="cancelThread"?Kg(Z.thread):pe==="loaded"?(S.loaded=!0,F&&F(S),S.runPthread&&(S.runPthread(),delete S.runPthread)):pe==="print"?re("Thread "+Z.threadId+": "+Z.text):pe==="printErr"?J("Thread "+Z.threadId+": "+Z.text):pe==="alert"?alert("Thread "+Z.threadId+": "+Z.text):Z.target==="setimmediate"?S.postMessage(Z):pe==="onAbort"?c.onAbort&&c.onAbort(Z.arg):J("worker sent an unknown command "+pe),_e.currentProxiedOperationCallerThread=void 0},S.onerror=V=>{var Z="worker sent an error!";throw J(Z+" "+V.filename+":"+V.lineno+": "+V.message),V},N&&(S.on("message",function(V){S.onmessage({data:V})}),S.on("error",function(V){S.onerror(V)}),S.on("detachedExit",function(){})),S.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:Ne,wasmModule:ft})},allocateUnusedWorker:function(){var S=A("tfjs-backend-wasm-threaded-simd.worker.js");_e.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return _e.unusedWorkers.length==0&&(_e.allocateUnusedWorker(),_e.loadWasmModuleToWorker(_e.unusedWorkers[0])),_e.unusedWorkers.pop()}};function Yg(){var S=ih(),F=u()[S+44>>2],V=u()[S+48>>2],Z=F-V;tk(F,Z),oh(F)}c.establishStackSpace=Yg;function qd(S){if(_)return Us(1,0,S);try{jd(S)}catch(F){Xg(F)}}var Bs=[];function Ko(S){var F=Bs[S];return F||(S>=Bs.length&&(Bs.length=S+1),Bs[S]=F=oa.get(S)),F}function Zg(S,F){return Ko(S)(F)}c.invokeEntryPoint=Zg;function G1(){var S=new Error;if(!S.stack){try{throw new Error}catch(F){S=F}if(!S.stack)return"(no stack trace available)"}return S.stack.toString()}function Jg(S,F,V){_e.tlsInitFunctions.push(S)}function H1(S,F){oa.set(S,F),Bs[S]=F}var Vs;N?Vs=()=>{var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:_?Vs=()=>performance.now()-c.__performance_now_clock_drift:Vs=()=>performance.now();var Qg=!0;function eb(S){return u()[Y1()>>2]=S,S}function tb(S,F){var V;if(S===0)V=Date.now();else if((S===1||S===4)&&Qg)V=Vs();else return eb(28),-1;return u()[F>>2]=V/1e3|0,u()[F+4>>2]=V%1e3*1e3*1e3|0,0}function nb(S,F){return tb(S,F)}function ab(S){J1(S,!I,1,!w),_e.threadInit()}function rb(S){_?postMessage({cmd:"cleanupThread",thread:S}):Hd(S)}function Kd(S){var F=_e.getNewWorker();if(!F)return 6;_e.runningWorkers.push(F);var V=_e.pthreads[S.pthread_ptr]={worker:F,threadInfoStruct:S.pthread_ptr};F.pthread=V;var Z={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr};return F.runPthread=()=>{Z.time=performance.now(),F.postMessage(Z,S.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread),0}function sb(S,F,V,Z){if(typeof SharedArrayBuffer=="undefined")return J("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var pe=[],me=0;if(_&&(pe.length===0||me))return Q1(687865856,S,F,V,Z);if(me)return me;var ve={startRoutine:V,pthread_ptr:S,arg:Z,transferList:pe};return _?(ve.cmd="spawnThread",postMessage(ve,pe),0):Kd(ve)}function ib(){return 2097152}function ob(S,F){if(S==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(_)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var V=_e.pthreads[S],Z=V&&V.worker;if(!Z)return;Z.postMessage({cmd:"processThreadQueue"})}return 1}function lb(){Ho("")}function ub(){N||I||ae("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Xd(){return 2147483648}function pb(S,F,V){i().copyWithin(S,F,F+V)}function cb(){return N?jF().cpus().length:navigator.hardwareConcurrency}function Us(S,F){var V=arguments.length-2,Z=arguments;return qo(function(){for(var pe=V,me=el(pe*8),ve=me>>3,Ce=0;Ce<V;Ce++){var Ct=Z[2+Ce];d()[ve+Ce]=Ct}return ek(S,pe,me,F)})}var $p=[];function db(S,F,V){$p.length=F;for(var Z=V>>3,pe=0;pe<F;pe++)$p[pe]=d()[Z+pe];var me=S<0,ve=me?jg[-S-1]:Ab[S];return ve.apply(null,$p)}function hb(S){try{return Ne.grow(S-yn.byteLength+65535>>>16),Oa(Ne.buffer),1}catch(F){}}function mb(S){var F=i().length;if(S=S>>>0,S<=F)return!1;var V=Xd();if(S>V)return!1;for(var Z=1;Z<=4;Z*=2){var pe=F*(1+.2/Z);pe=Math.min(pe,S+100663296);var me=Math.min(V,Uo(Math.max(S,pe),65536)),ve=hb(me);if(ve)return!0}return!1}var Ue={inEventHandler:0,removeAllEventListeners:function(){for(var S=Ue.eventHandlers.length-1;S>=0;--S)Ue._removeHandler(S);Ue.eventHandlers=[],Ue.deferredCalls=[]},registerRemoveEventListeners:function(){Ue.removeEventListenersRegistered||(Wg.push(Ue.removeAllEventListeners),Ue.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,F,V){function Z(ve,Ce){if(ve.length!=Ce.length)return!1;for(var Ct in ve)if(ve[Ct]!=Ce[Ct])return!1;return!0}for(var pe in Ue.deferredCalls){var me=Ue.deferredCalls[pe];if(me.targetFunction==S&&Z(me.argsList,V))return}Ue.deferredCalls.push({targetFunction:S,precedence:F,argsList:V}),Ue.deferredCalls.sort(function(ve,Ce){return ve.precedence<Ce.precedence})},removeDeferredCalls:function(S){for(var F=0;F<Ue.deferredCalls.length;++F)Ue.deferredCalls[F].targetFunction==S&&(Ue.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Ue.inEventHandler&&Ue.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Ue.canPerformEventHandlerRequests())for(var S=0;S<Ue.deferredCalls.length;++S){var F=Ue.deferredCalls[S];Ue.deferredCalls.splice(S,1),--S,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,F){for(var V=0;V<Ue.eventHandlers.length;++V)Ue.eventHandlers[V].target==S&&(!F||F==Ue.eventHandlers[V].eventTypeString)&&Ue._removeHandler(V--)},_removeHandler:function(S){var F=Ue.eventHandlers[S];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Ue.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var F=function(Z){++Ue.inEventHandler,Ue.currentEventHandler=S,Ue.runDeferredCalls(),S.handlerFunc(Z),Ue.runDeferredCalls(),--Ue.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=F,S.target.addEventListener(S.eventTypeString,F,S.useCapture),Ue.eventHandlers.push(S),Ue.registerRemoveEventListeners();else for(var V=0;V<Ue.eventHandlers.length;++V)Ue.eventHandlers[V].target==S.target&&Ue.eventHandlers[V].eventTypeString==S.eventTypeString&&Ue._removeHandler(V--)},queueEventHandlerOnThread_iiii:function(S,F,V,Z,pe){qo(function(){var me=el(12);u()[me>>2]=V,u()[me+4>>2]=Z,u()[me+8>>2]=pe,by(S,637534208,F,Z,me)})},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return _e.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function fb(S){var F=Ad(S)+1,V=gy(F);return Ls(S,V,F),V}function gb(S,F,V,Z){qo(function(){var pe=el(12),me=0;F&&(me=fb(F)),u()[pe>>2]=me,u()[pe+4>>2]=V,u()[pe+8>>2]=Z,by(S,657457152,0,me,pe)})}function bb(S,F,V,Z){F=F?ia(F):"",gb(S,F,V,Z)}function yb(S){return S>2?ia(S):S}var xb=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function vb(S){S=yb(S);var F=xb[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return F}function Ap(S){return vb(S)}function Yd(S,F,V){var Z=Ap(S);if(!Z)return-4;if(Z.canvasSharedPtr&&(u()[Z.canvasSharedPtr>>2]=F,u()[Z.canvasSharedPtr+4>>2]=V),Z.offscreenCanvas||!Z.controlTransferredOffscreen){Z.offscreenCanvas&&(Z=Z.offscreenCanvas);var pe=!1;if(Z.GLctxObject&&Z.GLctxObject.GLctx){var me=Z.GLctxObject.GLctx.getParameter(2978);pe=me[0]===0&&me[1]===0&&me[2]===Z.width&&me[3]===Z.height}Z.width=F,Z.height=V,pe&&Z.GLctxObject.GLctx.viewport(0,0,F,V)}else if(Z.canvasSharedPtr){var ve=u()[Z.canvasSharedPtr+8>>2];return bb(ve,S,F,V),1}else return-4;return 0}function Zd(S,F,V){return _?Us(2,1,S,F,V):Yd(S,F,V)}function wb(S,F,V){var Z=Ap(S);return Z?Yd(S,F,V):Zd(S,F,V)}function kb(){throw"unwind"}function Ib(S){var F=S.getExtension("ANGLE_instanced_arrays");if(F)return S.vertexAttribDivisor=function(V,Z){F.vertexAttribDivisorANGLE(V,Z)},S.drawArraysInstanced=function(V,Z,pe,me){F.drawArraysInstancedANGLE(V,Z,pe,me)},S.drawElementsInstanced=function(V,Z,pe,me,ve){F.drawElementsInstancedANGLE(V,Z,pe,me,ve)},1}function Tb(S){var F=S.getExtension("OES_vertex_array_object");if(F)return S.createVertexArray=function(){return F.createVertexArrayOES()},S.deleteVertexArray=function(V){F.deleteVertexArrayOES(V)},S.bindVertexArray=function(V){F.bindVertexArrayOES(V)},S.isVertexArray=function(V){return F.isVertexArrayOES(V)},1}function Sb(S){var F=S.getExtension("WEBGL_draw_buffers");if(F)return S.drawBuffers=function(V,Z){F.drawBuffersWEBGL(V,Z)},1}function Nb(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var Nt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(S){Nt.lastError||(Nt.lastError=S)},getNewId:function(S){for(var F=Nt.counter++,V=S.length;V<F;V++)S[V]=null;return F},getSource:function(S,F,V,Z){for(var pe="",me=0;me<F;++me){var ve=Z?u()[Z+me*4>>2]:-1;pe+=ia(u()[V+me*4>>2],ve<0?void 0:ve)}return pe},createContext:function(S,F){S.getContextSafariWebGL2Fixed||(S.getContextSafariWebGL2Fixed=S.getContext,S.getContext=function(pe,me){var ve=S.getContextSafariWebGL2Fixed(pe,me);return pe=="webgl"==ve instanceof WebGLRenderingContext?ve:null});var V=S.getContext("webgl",F);if(!V)return 0;var Z=Nt.registerContext(V,F);return Z},registerContext:function(S,F){var V=gy(8);u()[V+4>>2]=ih();var Z={handle:V,attributes:F,version:F.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=Z),Nt.contexts[V]=Z,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&Nt.initExtensions(Z),V},makeContextCurrent:function(S){return Nt.currentContext=Nt.contexts[S],c.ctx=th=Nt.currentContext&&Nt.currentContext.GLctx,!(S&&!th)},getContext:function(S){return Nt.contexts[S]},deleteContext:function(S){Nt.currentContext===Nt.contexts[S]&&(Nt.currentContext=null),typeof Ue=="object"&&Ue.removeAllHandlersOnTarget(Nt.contexts[S].GLctx.canvas),Nt.contexts[S]&&Nt.contexts[S].GLctx.canvas&&(Nt.contexts[S].GLctx.canvas.GLctxObject=void 0),X1(Nt.contexts[S].handle),Nt.contexts[S]=null},initExtensions:function(S){if(S||(S=Nt.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var F=S.GLctx;Ib(F),Tb(F),Sb(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),Nb(F);var V=F.getSupportedExtensions()||[];V.forEach(function(Z){!Z.includes("lose_context")&&!Z.includes("debug")&&F.getExtension(Z)})}}},Cb=["default","low-power","high-performance"];function _b(S,F){var V=F>>2,Z=u()[V+6],pe={alpha:!!u()[V+0],depth:!!u()[V+1],stencil:!!u()[V+2],antialias:!!u()[V+3],premultipliedAlpha:!!u()[V+4],preserveDrawingBuffer:!!u()[V+5],powerPreference:Cb[Z],failIfMajorPerformanceCaveat:!!u()[V+7],majorVersion:u()[V+8],minorVersion:u()[V+9],enableExtensionsByDefault:u()[V+10],explicitSwapControl:u()[V+11],proxyContextToMainThread:u()[V+12],renderViaOffscreenBackBuffer:u()[V+13]},me=Ap(S);if(!me||pe.explicitSwapControl)return 0;var ve=Nt.createContext(me,pe);return ve}function Eb(S,F){return _b(S,F)}var Xo={mappings:{},buffers:[null,[],[]],printChar:function(S,F){var V=Xo.buffers[S];F===0||F===10?((S===1?re:J)(sa(V,0)),V.length=0):V.push(F)},varargs:void 0,get:function(){Xo.varargs+=4;var S=u()[Xo.varargs-4>>2];return S},getStr:function(S){var F=ia(S);return F},get64:function(S,F){return S}};function Jd(S){return _?Us(3,1,S):0}function Qd(S,F,V,Z,pe){if(_)return Us(4,1,S,F,V,Z,pe)}function eh(S,F,V,Z){if(_)return Us(5,1,S,F,V,Z);for(var pe=0,me=0;me<V;me++){var ve=u()[F>>2],Ce=u()[F+4>>2];F+=8;for(var Ct=0;Ct<Ce;Ct++)Xo.printChar(S,i()[ve+Ct]);pe+=Ce}return u()[Z>>2]=pe,0}function $b(S){De(S)}_e.init();var th,Ab=[null,qd,Zd,Jd,Qd,eh],j1=!1,nh={__clock_gettime:nb,__emscripten_init_main_thread_js:ab,__emscripten_thread_cleanup:rb,__pthread_create_js:sb,_emscripten_default_pthread_stack_size:ib,_emscripten_notify_thread_queue:ob,abort:lb,emscripten_check_blocking_allowed:ub,emscripten_get_heap_max:Xd,emscripten_get_now:Vs,emscripten_memcpy_big:pb,emscripten_num_logical_cores:cb,emscripten_receive_on_main_thread_js:db,emscripten_resize_heap:mb,emscripten_set_canvas_element_size:wb,emscripten_unwind_to_js_event_loop:kb,emscripten_webgl_create_context:Eb,exit:jd,fd_close:Jd,fd_seek:Qd,fd_write:eh,memory:Ne||c.wasmMemory,setTempRet0:$b},q1=Hg(),Fb=c.___wasm_call_ctors=function(){return(Fb=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},Db=c._init=function(){return(Db=c._init=c.asm.init).apply(null,arguments)},Rb=c._init_with_threads_count=function(){return(Rb=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},Mb=c._get_threads_count=function(){return(Mb=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},Pb=c._register_tensor=function(){return(Pb=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},Ob=c._dispose_data=function(){return(Ob=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},Lb=c._dispose=function(){return(Lb=c._dispose=c.asm.dispose).apply(null,arguments)},zb=c._Abs=function(){return(zb=c._Abs=c.asm.Abs).apply(null,arguments)},Wb=c._Add=function(){return(Wb=c._Add=c.asm.Add).apply(null,arguments)},Bb=c._AddN=function(){return(Bb=c._AddN=c.asm.AddN).apply(null,arguments)},Vb=c._All=function(){return(Vb=c._All=c.asm.All).apply(null,arguments)},Ub=c._Any=function(){return(Ub=c._Any=c.asm.Any).apply(null,arguments)},Gb=c._ArgMax=function(){return(Gb=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},Hb=c._AvgPool=function(){return(Hb=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},jb=c._BatchMatMul=function(){return(jb=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},qb=c._Ceil=function(){return(qb=c._Ceil=c.asm.Ceil).apply(null,arguments)},Kb=c._ClipByValue=function(){return(Kb=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},Xb=c._Conv2D=function(){return(Xb=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},Yb=c._Conv2DBackpropInput=function(){return(Yb=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},Zb=c._Cos=function(){return(Zb=c._Cos=c.asm.Cos).apply(null,arguments)},Jb=c._Cosh=function(){return(Jb=c._Cosh=c.asm.Cosh).apply(null,arguments)},Qb=c._CropAndResize=function(){return(Qb=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},ey=c._Cumprod=function(){return(ey=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},ty=c._Cumsum=function(){return(ty=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},ny=c._DepthToSpace=function(){return(ny=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},ay=c._DepthwiseConv2dNative=function(){return(ay=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},ry=c._Elu=function(){return(ry=c._Elu=c.asm.Elu).apply(null,arguments)},sy=c._Equal=function(){return(sy=c._Equal=c.asm.Equal).apply(null,arguments)},iy=c._Exp=function(){return(iy=c._Exp=c.asm.Exp).apply(null,arguments)},oy=c._FlipLeftRight=function(){return(oy=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},ly=c._Floor=function(){return(ly=c._Floor=c.asm.Floor).apply(null,arguments)},uy=c._FloorDiv=function(){return(uy=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},py=c._FusedBatchNorm=function(){return(py=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},cy=c._FusedConv2D=function(){return(cy=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},ah=c._FusedDepthwiseConv2D=function(){return(ah=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},rh=c._Gather=function(){return(rh=c._Gather=c.asm.Gather).apply(null,arguments)},Fp=c._GatherNd=function(){return(Fp=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},dy=c._Greater=function(){return(dy=c._Greater=c.asm.Greater).apply(null,arguments)},hy=c._GreaterEqual=function(){return(hy=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},Yo=c._LeakyRelu=function(){return(Yo=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},Dp=c._Less=function(){return(Dp=c._Less=c.asm.Less).apply(null,arguments)},Rp=c._LessEqual=function(){return(Rp=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},K1=c._Log=function(){return(K1=c._Log=c.asm.Log).apply(null,arguments)},Zo=c._LogicalAnd=function(){return(Zo=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},Jo=c._LogicalNot=function(){return(Jo=c._LogicalNot=c.asm.LogicalNot).apply(null,arguments)},my=c._LogicalOr=function(){return(my=c._LogicalOr=c.asm.LogicalOr).apply(null,arguments)},G=c._LogicalXor=function(){return(G=c._LogicalXor=c.asm.LogicalXor).apply(null,arguments)},ee=c._Max=function(){return(ee=c._Max=c.asm.Max).apply(null,arguments)},de=c._MaxPool=function(){return(de=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Te=c._Maximum=function(){return(Te=c._Maximum=c.asm.Maximum).apply(null,arguments)},Je=c._Mean=function(){return(Je=c._Mean=c.asm.Mean).apply(null,arguments)},nt=c._Min=function(){return(nt=c._Min=c.asm.Min).apply(null,arguments)},Ge=c._Minimum=function(){return(Ge=c._Minimum=c.asm.Minimum).apply(null,arguments)},Ve=c._MirrorPad=function(){return(Ve=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Ot=c._Multiply=function(){return(Ot=c._Multiply=c.asm.Multiply).apply(null,arguments)},za=c._Neg=function(){return(za=c._Neg=c.asm.Neg).apply(null,arguments)},Wa=c._NonMaxSuppressionV3=function(){return(Wa=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},Qo=c._NonMaxSuppressionV4=function(){return(Qo=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},Gs=c._NonMaxSuppressionV5=function(){return(Gs=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},fy=c._NotEqual=function(){return(fy=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},On=c._OneHot=function(){return(On=c._OneHot=c.asm.OneHot).apply(null,arguments)},qr=c._PadV2=function(){return(qr=c._PadV2=c.asm.PadV2).apply(null,arguments)},sh=c._Pow=function(){return(sh=c._Pow=c.asm.Pow).apply(null,arguments)},DA=c._Prelu=function(){return(DA=c._Prelu=c.asm.Prelu).apply(null,arguments)},RA=c._Prod=function(){return(RA=c._Prod=c.asm.Prod).apply(null,arguments)},MA=c._RealDiv=function(){return(MA=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},PA=c._Relu=function(){return(PA=c._Relu=c.asm.Relu).apply(null,arguments)},OA=c._Relu6=function(){return(OA=c._Relu6=c.asm.Relu6).apply(null,arguments)},LA=c._ResizeBilinear=function(){return(LA=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},zA=c._ResizeNearestNeighbor=function(){return(zA=c._ResizeNearestNeighbor=c.asm.ResizeNearestNeighbor).apply(null,arguments)},WA=c._Reverse=function(){return(WA=c._Reverse=c.asm.Reverse).apply(null,arguments)},BA=c._RotateWithOffset=function(){return(BA=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},VA=c._Round=function(){return(VA=c._Round=c.asm.Round).apply(null,arguments)},UA=c._Rsqrt=function(){return(UA=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},GA=c._ScatterNd=function(){return(GA=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},HA=c._SelectV2=function(){return(HA=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},jA=c._Sigmoid=function(){return(jA=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},qA=c._Sin=function(){return(qA=c._Sin=c.asm.Sin).apply(null,arguments)},KA=c._Softmax=function(){return(KA=c._Softmax=c.asm.Softmax).apply(null,arguments)},XA=c._SparseFillEmptyRows=function(){return(XA=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},YA=c._SparseReshape=function(){return(YA=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},ZA=c._SparseSegmentReduction=function(){return(ZA=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},JA=c._Sqrt=function(){return(JA=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},QA=c._Square=function(){return(QA=c._Square=c.asm.Square).apply(null,arguments)},eF=c._SquaredDifference=function(){return(eF=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},tF=c._Step=function(){return(tF=c._Step=c.asm.Step).apply(null,arguments)},nF=c._StridedSlice=function(){return(nF=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},aF=c._Sub=function(){return(aF=c._Sub=c.asm.Sub).apply(null,arguments)},rF=c._Sum=function(){return(rF=c._Sum=c.asm.Sum).apply(null,arguments)},sF=c._Tan=function(){return(sF=c._Tan=c.asm.Tan).apply(null,arguments)},iF=c._Tanh=function(){return(iF=c._Tanh=c.asm.Tanh).apply(null,arguments)},oF=c._Tile=function(){return(oF=c._Tile=c.asm.Tile).apply(null,arguments)},lF=c._TopK=function(){return(lF=c._TopK=c.asm.TopK).apply(null,arguments)},uF=c._Transform=function(){return(uF=c._Transform=c.asm.Transform).apply(null,arguments)},pF=c._Transpose=function(){return(pF=c._Transpose=c.asm.Transpose).apply(null,arguments)},cF=c.__FusedMatMul=function(){return(cF=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},gy=c._malloc=function(){return(gy=c._malloc=c.asm.malloc).apply(null,arguments)},X1=c._free=function(){return(X1=c._free=c.asm.free).apply(null,arguments)},dF=c._emscripten_tls_init=function(){return(dF=c._emscripten_tls_init=c.asm.emscripten_tls_init).apply(null,arguments)},Y1=c.___errno_location=function(){return(Y1=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},ih=c._pthread_self=function(){return(ih=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},Z1=c._emscripten_main_thread_process_queued_calls=function(){return(Z1=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},hF=c.__emscripten_thread_crashed=function(){return(hF=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},J1=c.__emscripten_thread_init=function(){return(J1=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},mF=c._emscripten_current_thread_process_queued_calls=function(){return(mF=c._emscripten_current_thread_process_queued_calls=c.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},fF=c._emscripten_main_browser_thread_id=function(){return(fF=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},gF=c._emscripten_sync_run_in_main_thread_2=function(){return(gF=c._emscripten_sync_run_in_main_thread_2=c.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},Q1=c._emscripten_sync_run_in_main_thread_4=function(){return(Q1=c._emscripten_sync_run_in_main_thread_4=c.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},ek=c._emscripten_run_in_main_runtime_thread_js=function(){return(ek=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},by=c._emscripten_dispatch_to_thread_=function(){return(by=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},yy=c.__emscripten_thread_free_data=function(){return(yy=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},bF=c.__emscripten_thread_exit=function(){return(bF=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},yF=c._memalign=function(){return(yF=c._memalign=c.asm.memalign).apply(null,arguments)},tk=c._emscripten_stack_set_limits=function(){return(tk=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},xy=c.stackSave=function(){return(xy=c.stackSave=c.asm.stackSave).apply(null,arguments)},oh=c.stackRestore=function(){return(oh=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},el=c.stackAlloc=function(){return(el=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},xF=c.dynCall_iijjiiii=function(){return(xF=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},vF=c.dynCall_jiji=function(){return(vF=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)},nk=c.__emscripten_allow_main_runtime_queued_calls=21672;c.cwrap=Zt,c.keepRuntimeAlive=Ws,c.PThread=_e,c.PThread=_e,c.wasmMemory=Ne,c.ExitStatus=Mp;var lh;function Mp(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}La=function S(){lh||vy(),lh||(La=S)};function vy(S){if(S=S||b,jr>0)return;if(_){h(c),Np(),postMessage({cmd:"loaded"});return}if(xn(),jr>0)return;function F(){lh||(lh=!0,c.calledRun=!0,!dt&&(Np(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Ug()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),F()},1)):F()}c.run=vy;function wF(S,F){if(bn=S,!F&&_)throw qd(S),"unwind";Ws()||Vg(),kF(S)}function kF(S){bn=S,Ws()||(_e.terminateAllThreads(),c.onExit&&c.onExit(S),dt=!0),x(S,new Mp(S))}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();vy();var uh;f&&(uh={uncaughtException:process.listeners("uncaughtException").filter(function(S){return!f.uncaughtException.indexOf(S)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(S){return!f.unhandledRejection.indexOf(S)>-1})});var ph;if(typeof WasmBackendModule!="undefined")ph=WasmBackendModule;else if(typeof r!="undefined")ph=r;else throw new Error("Could not find wasm module in post.js");if(uh){var IF=ph._dispose;ph._dispose=function(){IF(),uh.uncaughtException.forEach(function(S){process.removeListener("uncaughtException",S)}),uh.unhandledRejection.forEach(function(S){process.removeListener("unhandledRejection",S)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),KF=Bt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`}),XF=Bt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(G,ee){i=G,o=ee});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(G,ee)=>{throw ee},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function b(G){return s.locateFile?s.locateFile(G,g):g+G}var y,x,w,I;function N(G){G instanceof Dp||D("exiting due to exception: "+G)}var _,$,A;f?(m?g=Mh().dirname(g)+"/":g=__dirname+"/",A=()=>{$||(_=Ox(),$=Mh())},y=function(G,ee){return A(),G=$.normalize(G),_.readFileSync(G,ee?void 0:"utf8")},w=G=>{var ee=y(G,!0);return ee.buffer||(ee=new Uint8Array(ee)),ee},x=(G,ee,de)=>{A(),G=$.normalize(G),_.readFile(G,function(Te,Je){Te?de(Te):ee(Je.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(G){if(!(G instanceof Dp))throw G}),process.on("unhandledRejection",function(G){throw G}),c=(G,ee)=>{if(Sp())throw process.exitCode=G,ee;N(ee),process.exit(G)},s.inspect=function(){return"[Emscripten Module object]"}):(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",y=G=>{var ee=new XMLHttpRequest;return ee.open("GET",G,!1),ee.send(null),ee.responseText},m&&(w=G=>{var ee=new XMLHttpRequest;return ee.open("GET",G,!1),ee.responseType="arraybuffer",ee.send(null),new Uint8Array(ee.response)}),x=(G,ee,de)=>{var Te=new XMLHttpRequest;Te.open("GET",G,!0),Te.responseType="arraybuffer",Te.onload=()=>{if(Te.status==200||Te.status==0&&Te.response){ee(Te.response);return}de()},Te.onerror=de,Te.send(null)},I=G=>document.title=G);var M=s.print||console.log.bind(console),D=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var T=4;function P(G){P.shown||(P.shown={}),P.shown[G]||(P.shown[G]=1,D(G))}function U(G,ee){if(typeof WebAssembly.Function=="function"){for(var de={i:"i32",j:"i64",f:"f32",d:"f64"},Te={parameters:[],results:ee[0]=="v"?[]:[de[ee[0]]]},Je=1;Je<ee.length;++Je)Te.parameters.push(de[ee[Je]]);return new WebAssembly.Function(Te,G)}var nt=[1,0,1,96],Ge=ee.slice(0,1),Ve=ee.slice(1),Ot={i:127,j:126,f:125,d:124};nt.push(Ve.length);for(var Je=0;Je<Ve.length;++Je)nt.push(Ot[Ve[Je]]);Ge=="v"?nt.push(0):nt=nt.concat([1,Ot[Ge]]),nt[1]=nt.length-2;var za=new Uint8Array([0,97,115,109,1,0,0,0].concat(nt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Wa=new WebAssembly.Module(za),Qo=new WebAssembly.Instance(Wa,{e:{f:G}}),Gs=Qo.exports.f;return Gs}var j=[],q;function K(){if(j.length)return j.pop();try{Gr.grow(1)}catch(G){throw G instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":G}return Gr.length-1}function Y(G,ee){for(var de=G;de<G+ee;de++){var Te=_p(de);Te&&q.set(Te,de)}}var te=0,re=G=>{te=G},J;s.wasmBinary&&(J=s.wasmBinary);var ie=s.noExitRuntime||!0;typeof WebAssembly!="object"&&zs("no native wasm support detected");var ae,oe=!1,ue;function we(G,ee){G||zs(ee)}function be(G){var ee=s["_"+G];return ee}function Ie(G,ee,de,Te,Je){var nt={string:function(On){var qr=0;if(On!=null&&On!==0){var sh=(On.length<<2)+1;qr=Fp(sh),tt(On,qr,sh)}return qr},array:function(On){var qr=Fp(On.length);return dt(On,qr),qr}};function Ge(On){return ee==="string"?st(On):ee==="boolean"?Boolean(On):On}var Ve=be(G),Ot=[],za=0;if(Te)for(var Wa=0;Wa<Te.length;Wa++){var Qo=nt[de[Wa]];Qo?(za===0&&(za=ah()),Ot[Wa]=Qo(Te[Wa])):Ot[Wa]=Te[Wa]}var Gs=Ve.apply(null,Ot);function fy(On){return za!==0&&rh(za),Ge(On)}return Gs=fy(Gs),Gs}function Ee(G,ee,de,Te){de=de||[];var Je=de.every(function(Ge){return Ge==="number"}),nt=ee!=="string";return nt&&Je&&!Te?be(G):function(){return Ie(G,ee,de,arguments,Te)}}var De=1,Be=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function je(G,ee,de){for(var Te=ee+de,Je=ee;G[Je]&&!(Je>=Te);)++Je;if(Je-ee>16&&G.subarray&&Be)return Be.decode(G.subarray(ee,Je));for(var nt="";ee<Je;){var Ge=G[ee++];if(!(Ge&128)){nt+=String.fromCharCode(Ge);continue}var Ve=G[ee++]&63;if((Ge&224)==192){nt+=String.fromCharCode((Ge&31)<<6|Ve);continue}var Ot=G[ee++]&63;if((Ge&240)==224?Ge=(Ge&15)<<12|Ve<<6|Ot:Ge=(Ge&7)<<18|Ve<<12|Ot<<6|G[ee++]&63,Ge<65536)nt+=String.fromCharCode(Ge);else{var za=Ge-65536;nt+=String.fromCharCode(55296|za>>10,56320|za&1023)}}return nt}function st(G,ee){return G?je(Zt,G,ee):""}function et(G,ee,de,Te){if(!(Te>0))return 0;for(var Je=de,nt=de+Te-1,Ge=0;Ge<G.length;++Ge){var Ve=G.charCodeAt(Ge);if(Ve>=55296&&Ve<=57343){var Ot=G.charCodeAt(++Ge);Ve=65536+((Ve&1023)<<10)|Ot&1023}if(Ve<=127){if(de>=nt)break;ee[de++]=Ve}else if(Ve<=2047){if(de+1>=nt)break;ee[de++]=192|Ve>>6,ee[de++]=128|Ve&63}else if(Ve<=65535){if(de+2>=nt)break;ee[de++]=224|Ve>>12,ee[de++]=128|Ve>>6&63,ee[de++]=128|Ve&63}else{if(de+3>=nt)break;ee[de++]=240|Ve>>18,ee[de++]=128|Ve>>12&63,ee[de++]=128|Ve>>6&63,ee[de++]=128|Ve&63}}return ee[de]=0,de-Je}function tt(G,ee,de){return et(G,Zt,ee,de)}function Ne(G){for(var ee=0,de=0;de<G.length;++de){var Te=G.charCodeAt(de);Te>=55296&&Te<=57343&&(Te=65536+((Te&1023)<<10)|G.charCodeAt(++de)&1023),Te<=127?++ee:Te<=2047?ee+=2:Te<=65535?ee+=3:ee+=4}return ee}var ft=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function dt(G,ee){Ut.set(G,ee)}function bn(G,ee,de){for(var Te=0;Te<G.length;++Te)Ut[ee++>>0]=G.charCodeAt(Te);de||(Ut[ee>>0]=0)}function Yt(G,ee){return G%ee>0&&(G+=ee-G%ee),G}var Mn,Ut,Zt,Pa,Pn,Gt,sa,ia,Ur;function Ls(G){Mn=G,s.HEAP8=Ut=new Int8Array(G),s.HEAP16=Pa=new Int16Array(G),s.HEAP32=Gt=new Int32Array(G),s.HEAPU8=Zt=new Uint8Array(G),s.HEAPU16=Pn=new Uint16Array(G),s.HEAPU32=sa=new Uint32Array(G),s.HEAPF32=ia=new Float32Array(G),s.HEAPF64=Ur=new Float64Array(G)}var Ad=s.INITIAL_MEMORY||16777216,Gr,wr=[],Tp=[],Uo=[],yn=!1,Fd=!1,Dd=0;function Sp(){return ie||Dd>0}function Rd(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Od(s.preRun.shift());Cp(wr)}function Md(){yn=!0,Cp(Tp)}function O1(){Fd=!0}function Pd(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Ld(s.postRun.shift());Cp(Uo)}function Od(G){wr.unshift(G)}function Oa(G){Tp.unshift(G)}function Ld(G){Uo.unshift(G)}var oa=0,Go=null,Hr=null;function Wg(G){oa++,s.monitorRunDependencies&&s.monitorRunDependencies(oa)}function zd(G){if(oa--,s.monitorRunDependencies&&s.monitorRunDependencies(oa),oa==0&&(Go!==null&&(clearInterval(Go),Go=null),Hr)){var ee=Hr;Hr=null,ee()}}s.preloadedImages={},s.preloadedAudios={};function zs(G){s.onAbort&&s.onAbort(G),G="Aborted("+G+")",D(G),oe=!0,ue=1,G+=". Build with -s ASSERTIONS=1 for more info.";var ee=new WebAssembly.RuntimeError(G);throw o(ee),ee}var Bg="data:application/octet-stream;base64,";function Wd(G){return G.startsWith(Bg)}function Ws(G){return G.startsWith("file://")}var xn;xn="tfjs-backend-wasm.wasm",Wd(xn)||(xn=b(xn));function Np(G){try{if(G==xn&&J)return new Uint8Array(J);if(w)return w(G);throw"both async and sync fetching of the wasm failed"}catch(ee){zs(ee)}}function Vg(){if(!J&&(h||m)){if(typeof fetch=="function"&&!Ws(xn))return fetch(xn,{credentials:"same-origin"}).then(function(G){if(!G.ok)throw"failed to load wasm binary file at '"+xn+"'";return G.arrayBuffer()}).catch(function(){return Np(xn)});if(x)return new Promise(function(G,ee){x(xn,function(de){G(new Uint8Array(de))},ee)})}return Promise.resolve().then(function(){return Np(xn)})}function Ug(){var G={env:qo,wasi_snapshot_preview1:qo};function ee(Ge,Ve){var Ot=Ge.exports;s.asm=Ot,ae=s.asm.memory,Ls(ae.buffer),Gr=s.asm.__indirect_function_table,Oa(s.asm.__wasm_call_ctors),zd("wasm-instantiate")}Wg("wasm-instantiate");function de(Ge){ee(Ge.instance)}function Te(Ge){return Vg().then(function(Ve){return WebAssembly.instantiate(Ve,G)}).then(function(Ve){return Ve}).then(Ge,function(Ve){D("failed to asynchronously prepare wasm: "+Ve),zs(Ve)})}function Je(){return!J&&typeof WebAssembly.instantiateStreaming=="function"&&!Wd(xn)&&!Ws(xn)&&typeof fetch=="function"?fetch(xn,{credentials:"same-origin"}).then(function(Ge){var Ve=WebAssembly.instantiateStreaming(Ge,G);return Ve.then(de,function(Ot){return D("wasm streaming compile failed: "+Ot),D("falling back to ArrayBuffer instantiation"),Te(de)})}):Te(de)}if(s.instantiateWasm)try{var nt=s.instantiateWasm(G,ee);return nt}catch(Ge){return D("Module.instantiateWasm callback failed with error: "+Ge),!1}return Je().catch(o),{}}var L1,z1;function Cp(G){for(;G.length>0;){var ee=G.shift();if(typeof ee=="function"){ee(s);continue}var de=ee.func;typeof de=="number"?ee.arg===void 0?_p(de)():_p(de)(ee.arg):de(ee.arg===void 0?null:ee.arg)}}function jr(G){return G}function Bd(G){var ee=/\b_Z[\w\d_]+/g;return G.replace(ee,function(de){var Te=de;return de===Te?de:Te+" ["+de+"]"})}var La=[];function _p(G){var ee=La[G];return ee||(G>=La.length&&(La.length=G+1),La[G]=ee=Gr.get(G)),ee}function W1(){var G=new Error;if(!G.stack){try{throw new Error}catch(ee){G=ee}if(!G.stack)return"(no stack trace available)"}return G.stack.toString()}function Ho(G,ee){Gr.set(G,ee),La[G]=ee}function Gg(){zs("")}function Ep(){return 2147483648}function Vd(G,ee,de){Zt.copyWithin(G,ee,ee+de)}function vn(G){try{return ae.grow(G-Mn.byteLength+65535>>>16),Ls(ae.buffer),1}catch(ee){}}function Ud(G){var ee=Zt.length;G=G>>>0;var de=Ep();if(G>de)return!1;for(var Te=1;Te<=4;Te*=2){var Je=ee*(1+.2/Te);Je=Math.min(Je,G+100663296);var nt=Math.min(de,Yt(Math.max(G,Je),65536)),Ge=vn(nt);if(Ge)return!0}return!1}var jo={mappings:{},buffers:[null,[],[]],printChar:function(G,ee){var de=jo.buffers[G];ee===0||ee===10?((G===1?M:D)(je(de,0)),de.length=0):de.push(ee)},varargs:void 0,get:function(){jo.varargs+=4;var G=Gt[jo.varargs-4>>2];return G},getStr:function(G){var ee=st(G);return ee},get64:function(G,ee){return G}};function Hg(G){return 0}function B1(G,ee,de,Te,Je){}function V1(G,ee,de,Te){for(var Je=0,nt=0;nt<de;nt++){var Ge=Gt[ee>>2],Ve=Gt[ee+4>>2];ee+=8;for(var Ot=0;Ot<Ve;Ot++)jo.printChar(G,Zt[Ge+Ot]);Je+=Ve}return Gt[Te>>2]=Je,0}function jg(G){re(G)}var Gd=!1,qo={abort:Gg,emscripten_get_heap_max:Ep,emscripten_memcpy_big:Vd,emscripten_resize_heap:Ud,fd_close:Hg,fd_seek:B1,fd_write:V1,setTempRet0:jg},FA=Ug(),U1=s.___wasm_call_ctors=function(){return(U1=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},qg=s._init=function(){return(qg=s._init=s.asm.init).apply(null,arguments)},Kg=s._init_with_threads_count=function(){return(Kg=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},Hd=s._get_threads_count=function(){return(Hd=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},jd=s._register_tensor=function(){return(jd=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},Xg=s._dispose_data=function(){return(Xg=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},_e=s._dispose=function(){return(_e=s._dispose=s.asm.dispose).apply(null,arguments)},Yg=s._Abs=function(){return(Yg=s._Abs=s.asm.Abs).apply(null,arguments)},qd=s._Add=function(){return(qd=s._Add=s.asm.Add).apply(null,arguments)},Bs=s._AddN=function(){return(Bs=s._AddN=s.asm.AddN).apply(null,arguments)},Ko=s._All=function(){return(Ko=s._All=s.asm.All).apply(null,arguments)},Zg=s._Any=function(){return(Zg=s._Any=s.asm.Any).apply(null,arguments)},G1=s._ArgMax=function(){return(G1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},Jg=s._AvgPool=function(){return(Jg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},H1=s._BatchMatMul=function(){return(H1=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Vs=s._Ceil=function(){return(Vs=s._Ceil=s.asm.Ceil).apply(null,arguments)},Qg=s._ClipByValue=function(){return(Qg=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},eb=s._Conv2D=function(){return(eb=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},tb=s._Conv2DBackpropInput=function(){return(tb=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},nb=s._Cos=function(){return(nb=s._Cos=s.asm.Cos).apply(null,arguments)},ab=s._Cosh=function(){return(ab=s._Cosh=s.asm.Cosh).apply(null,arguments)},rb=s._CropAndResize=function(){return(rb=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Kd=s._Cumprod=function(){return(Kd=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},sb=s._Cumsum=function(){return(sb=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},ib=s._DepthToSpace=function(){return(ib=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},ob=s._DepthwiseConv2dNative=function(){return(ob=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},lb=s._Elu=function(){return(lb=s._Elu=s.asm.Elu).apply(null,arguments)},ub=s._Equal=function(){return(ub=s._Equal=s.asm.Equal).apply(null,arguments)},Xd=s._Exp=function(){return(Xd=s._Exp=s.asm.Exp).apply(null,arguments)},pb=s._FlipLeftRight=function(){return(pb=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},cb=s._Floor=function(){return(cb=s._Floor=s.asm.Floor).apply(null,arguments)},Us=s._FloorDiv=function(){return(Us=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},$p=s._FusedBatchNorm=function(){return($p=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},db=s._FusedConv2D=function(){return(db=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},hb=s._FusedDepthwiseConv2D=function(){return(hb=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},mb=s._Gather=function(){return(mb=s._Gather=s.asm.Gather).apply(null,arguments)},Ue=s._GatherNd=function(){return(Ue=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},fb=s._Greater=function(){return(fb=s._Greater=s.asm.Greater).apply(null,arguments)},gb=s._GreaterEqual=function(){return(gb=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},bb=s._LeakyRelu=function(){return(bb=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},yb=s._Less=function(){return(yb=s._Less=s.asm.Less).apply(null,arguments)},xb=s._LessEqual=function(){return(xb=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},vb=s._Log=function(){return(vb=s._Log=s.asm.Log).apply(null,arguments)},Ap=s._LogicalAnd=function(){return(Ap=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Yd=s._LogicalNot=function(){return(Yd=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},Zd=s._LogicalOr=function(){return(Zd=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},wb=s._LogicalXor=function(){return(wb=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},kb=s._Max=function(){return(kb=s._Max=s.asm.Max).apply(null,arguments)},Ib=s._MaxPool=function(){return(Ib=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Tb=s._Maximum=function(){return(Tb=s._Maximum=s.asm.Maximum).apply(null,arguments)},Sb=s._Mean=function(){return(Sb=s._Mean=s.asm.Mean).apply(null,arguments)},Nb=s._Min=function(){return(Nb=s._Min=s.asm.Min).apply(null,arguments)},Nt=s._Minimum=function(){return(Nt=s._Minimum=s.asm.Minimum).apply(null,arguments)},Cb=s._MirrorPad=function(){return(Cb=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},_b=s._Multiply=function(){return(_b=s._Multiply=s.asm.Multiply).apply(null,arguments)},Eb=s._Neg=function(){return(Eb=s._Neg=s.asm.Neg).apply(null,arguments)},Xo=s._NonMaxSuppressionV3=function(){return(Xo=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Jd=s._NonMaxSuppressionV4=function(){return(Jd=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Qd=s._NonMaxSuppressionV5=function(){return(Qd=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},eh=s._NotEqual=function(){return(eh=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},$b=s._OneHot=function(){return($b=s._OneHot=s.asm.OneHot).apply(null,arguments)},th=s._PadV2=function(){return(th=s._PadV2=s.asm.PadV2).apply(null,arguments)},Ab=s._Pow=function(){return(Ab=s._Pow=s.asm.Pow).apply(null,arguments)},j1=s._Prelu=function(){return(j1=s._Prelu=s.asm.Prelu).apply(null,arguments)},nh=s._Prod=function(){return(nh=s._Prod=s.asm.Prod).apply(null,arguments)},q1=s._RealDiv=function(){return(q1=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Fb=s._Relu=function(){return(Fb=s._Relu=s.asm.Relu).apply(null,arguments)},Db=s._Relu6=function(){return(Db=s._Relu6=s.asm.Relu6).apply(null,arguments)},Rb=s._ResizeBilinear=function(){return(Rb=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},Mb=s._ResizeNearestNeighbor=function(){return(Mb=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},Pb=s._Reverse=function(){return(Pb=s._Reverse=s.asm.Reverse).apply(null,arguments)},Ob=s._RotateWithOffset=function(){return(Ob=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Lb=s._Round=function(){return(Lb=s._Round=s.asm.Round).apply(null,arguments)},zb=s._Rsqrt=function(){return(zb=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Wb=s._ScatterNd=function(){return(Wb=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Bb=s._SelectV2=function(){return(Bb=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Vb=s._Sigmoid=function(){return(Vb=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Ub=s._Sin=function(){return(Ub=s._Sin=s.asm.Sin).apply(null,arguments)},Gb=s._Softmax=function(){return(Gb=s._Softmax=s.asm.Softmax).apply(null,arguments)},Hb=s._SparseFillEmptyRows=function(){return(Hb=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},jb=s._SparseReshape=function(){return(jb=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},qb=s._SparseSegmentReduction=function(){return(qb=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},Kb=s._Sqrt=function(){return(Kb=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Xb=s._Square=function(){return(Xb=s._Square=s.asm.Square).apply(null,arguments)},Yb=s._SquaredDifference=function(){return(Yb=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Zb=s._Step=function(){return(Zb=s._Step=s.asm.Step).apply(null,arguments)},Jb=s._StridedSlice=function(){return(Jb=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Qb=s._Sub=function(){return(Qb=s._Sub=s.asm.Sub).apply(null,arguments)},ey=s._Sum=function(){return(ey=s._Sum=s.asm.Sum).apply(null,arguments)},ty=s._Tan=function(){return(ty=s._Tan=s.asm.Tan).apply(null,arguments)},ny=s._Tanh=function(){return(ny=s._Tanh=s.asm.Tanh).apply(null,arguments)},ay=s._Tile=function(){return(ay=s._Tile=s.asm.Tile).apply(null,arguments)},ry=s._TopK=function(){return(ry=s._TopK=s.asm.TopK).apply(null,arguments)},sy=s._Transform=function(){return(sy=s._Transform=s.asm.Transform).apply(null,arguments)},iy=s._Transpose=function(){return(iy=s._Transpose=s.asm.Transpose).apply(null,arguments)},oy=s.__FusedMatMul=function(){return(oy=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},ly=s._malloc=function(){return(ly=s._malloc=s.asm.malloc).apply(null,arguments)},uy=s._free=function(){return(uy=s._free=s.asm.free).apply(null,arguments)},py=s.___errno_location=function(){return(py=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},cy=s._emscripten_main_thread_process_queued_calls=function(){return(cy=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},ah=s.stackSave=function(){return(ah=s.stackSave=s.asm.stackSave).apply(null,arguments)},rh=s.stackRestore=function(){return(rh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Fp=s.stackAlloc=function(){return(Fp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},dy=s.dynCall_iijjiiii=function(){return(dy=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},hy=s.dynCall_jiji=function(){return(hy=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Ee;var Yo;function Dp(G){this.name="ExitStatus",this.message="Program terminated with exit("+G+")",this.status=G}Hr=function G(){Yo||Rp(),Yo||(Hr=G)};function Rp(G){if(G=G||p,oa>0||(Rd(),oa>0))return;function ee(){Yo||(Yo=!0,s.calledRun=!0,!oe&&(Md(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Pd()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ee()},1)):ee()}s.run=Rp;function K1(G){ue=G,Sp()||(s.onExit&&s.onExit(G),oe=!0),c(G,new Dp(G))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Rp();var Zo;l&&(Zo={uncaughtException:process.listeners("uncaughtException").filter(function(G){return!l.uncaughtException.indexOf(G)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(G){return!l.unhandledRejection.indexOf(G)>-1})});var Jo;if(typeof r!="undefined")Jo=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Jo=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Zo){var my=Jo._dispose;Jo._dispose=function(){my(),Zo.uncaughtException.forEach(function(G){process.removeListener("uncaughtException",G)}),Zo.unhandledRejection.forEach(function(G){process.removeListener("unhandledRejection",G)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),mm=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},yc=class{refCount(e){return ua("refCount")}incRef(e){return ua("incRef")}timerAvailable(){return!0}time(e){return ua("time")}read(e){return ua("read")}readSync(e){return ua("readSync")}readToGPU(e,t){return ua("readToGPU")}numDataIds(){return ua("numDataIds")}disposeData(e,t){return ua("disposeData")}write(e,t,n){return ua("write")}move(e,t,n,a,r){return ua("move")}memory(){return ua("memory")}floatPrecision(){return ua("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return ua("dispose")}};function ua(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function RI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Ph(e,t,n)}function YF(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,Ph(e,n,a),Ph(t,n,a)}function tc(e,t,n){return Math.max(e,Math.min(t,n))}function ZF(e){return e%2===0?e:e+1}function Ph(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function JF(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function QF(e,t){let n=Math.random();return t*n+(1-n)*e}function eD(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function R(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Cn(e,t,n=""){R(hs(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ki(e){R(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ii(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let a=0;a<e.length;++a)ii(e[a],t,n);else t.push(e);return t}function bt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function tD(e){return e.length===0}function hs(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function dl(e){return e%1===0}function nD(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function aD(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function rD(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return RI(t),t}function Zp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function sD(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function iD(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Ea(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),R(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),R(e.every(a=>dl(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function MI(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Ea(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function PI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function OI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function LI(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function zI(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function oD(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function hn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Py(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function WI(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Zr(e){return typeof e=="string"||e instanceof String}function BI(e){return typeof e=="boolean"}function VI(e){return typeof e=="number"}function fm(e){return Array.isArray(e)?fm(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":VI(e)?"float32":Zr(e)?"string":BI(e)?"bool":"float32"}function as(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Oh(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function $l(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function UI(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=UI(e+l*o,i,n,a)}return r}function ll(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return UI(0,e,t,n)}function Lx(e,t){let n=gm(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function gm(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function lD(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return ll(e,new Float32Array(n));if(t==="int32")return ll(e,new Int32Array(n));if(t==="bool")return ll(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function zx(e){e.forEach(t=>{R(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function uD(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function pD(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Wx(e){return e&&e.then&&typeof e.then=="function"}var rk="tfjsflags",GI=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=cD,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Wx(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);rk in e&&e[rk].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=hD(n,a)})}};function cD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(dD(t,a[0],a[1]),a.join("="))),t}function dD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function hD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function X(){return Bx}var Bx=null;function mD(e){Bx=e}var ky;function HI(){if(ky==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");ky=e}return ky}function fD(){let e=HI();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Vx(e,t){let n=fD();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Al="Abs",Fl="Acos",Dl="Acosh",ms="Add",Ii="AddN",Rl="All",Ml="Any",Ti="ArgMax",xc="ArgMin",Pl="Asin",Ol="Asinh",Ll="Atan",zl="Atanh",Wl="Atan2",Si="AvgPool",bm="AvgPoolGrad",vc="AvgPool3D",ym="AvgPool3DGrad",Ni="BatchMatMul",Bl="BatchToSpaceND",xm="Bincount",jI="BroadcastTo",vm="BroadcastArgs",Ci="Cast",_i="Ceil",fs="ClipByValue",wm="Complex",wc="ComplexAbs",Vl="Concat",Ei="Conv2D",km="Conv2DBackpropFilter",$i="Conv2DBackpropInput",kc="Conv3D",Im="Conv3DBackpropFilterV2",Tm="Conv3DBackpropInputV2",Ai="Cos",Fi="Cosh",Ul="Cumprod",Di="Cumsum",Gl="CropAndResize",Sm="DenseBincount",Hl="DepthToSpace",Ri="DepthwiseConv2dNative",Nm="DepthwiseConv2dNativeBackpropFilter",Cm="DepthwiseConv2dNativeBackpropInput",_m="Diag",Ic="Dilation2D",Lh="Dilation2DBackpropInput",zh="Dilation2DBackpropFilter",Mi="RealDiv",Em="Einsum",Pi="Elu",$m="EluGrad",jl="Erf",ql="Equal",Oi="Exp",Kl="ExpandDims",Xl="Expm1",Am="FFT",Tc="Fill",Yl="FlipLeftRight",Li="Floor",zi="FloorDiv",Wi="FusedBatchNorm",Zl="GatherV2",Jl="GatherNd",Ql="Greater",Bi="GreaterEqual",Vi="Identity",Fm="IFFT",Dm="Imag",eu="IsFinite",tu="IsInf",nu="IsNan",Ui="LeakyRelu",au="Less",ru="LessEqual",Rm="LinSpace",Gi="Log",su="Log1p",iu="LogicalAnd",ou="LogicalNot",lu="LogicalOr",qI="LogicalXor",KI="LogSoftmax",gD="LowerBound",Sc="LRN",Mm="LRNGrad",Hi="Max",ji="Maximum",qi="MaxPool",Pm="MaxPoolGrad",Nc="MaxPool3D",Om="MaxPool3DGrad",Lm="MaxPoolWithArgmax",Ki="Mean",Xi="Min",Yi="Minimum",Zi="MirrorPad",uu="Mod",zm="Multinomial",Ji="Multiply",pu="Neg",cu="NotEqual",du="NonMaxSuppressionV3",hu="NonMaxSuppressionV4",mu="NonMaxSuppressionV5",fu="OnesLike",Qi="OneHot",gu="Pack",eo="PadV2",bD="Pool",to="Pow",no="Prelu",ao="Prod",Wm="RaggedTensorToTensor",Cc="Range",Bm="Real",bu="Reciprocal",ro="Relu",yu="Reshape",so="ResizeNearestNeighbor",Vm="ResizeNearestNeighborGrad",io="ResizeBilinear",Um="ResizeBilinearGrad",oo="Relu6",lo="Reverse",uo="Round",po="Rsqrt",xu="ScatterNd",Gm="SearchSorted",vu="Select",wu="Selu",ku="Slice",co="Sin",Iu="Sinh",Tu="Sign",ho="Sigmoid",Su="Softplus",mo="Sqrt",fo="Sum",Nu="SpaceToBatchND",Cu="SplitV",go="Softmax",_c="SparseFillEmptyRows",_u="SparseReshape",Ec="SparseSegmentMean",$c="SparseSegmentSum",Hm="SparseToDense",bo="SquaredDifference",Ac="Square",Eu="StridedSlice",Fc="StringNGrams",Dc="StringSplit",Rc="StringToHashBucketFast",yo="Sub",xo="Tan",vo="Tanh",gs="Tile",$u="TopK",Au="Transform",_r="Transpose",jm="Unique",Fu="Unpack",Mc="UnsortedSegmentSum",yD="UpperBound",Du="ZerosLike",bs="Step",Wh="FromPixels",Ru="RotateWithOffset",oi="_FusedMatMul",li="FusedConv2D",ui="FusedDepthwiseConv2D";function Yr(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(...e)}function xD(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.log(...e)}var hl=Vx("kernelRegistry",()=>new Map),nc=Vx("gradRegistry",()=>new Map);function Bh(e,t){let n=Ux(e,t);return hl.get(n)}function Oy(e){return nc.get(e)}function Vh(e){let t=hl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function Pc(e){let{kernelName:t,backendName:n}=e,a=Ux(t,n);hl.has(a)&&Yr(`The kernel '${t}' for backend '${n}' is already registered`),hl.set(a,e)}function XI(e){let{kernelName:t}=e;nc.has(t)&&X().getBool("DEBUG")&&Yr(`Overriding the gradient for '${t}'`),nc.set(t,e)}function vD(e,t){let n=Ux(e,t);if(!hl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);hl.delete(n)}function wD(e){if(!nc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);nc.delete(e)}function kD(e,t){Vh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});Pc(a)})}function Ux(e,t){return`${t}_${e}`}var v={};Fe(v,{arraysEqual:()=>hs,assert:()=>R,assertNonNegativeIntegerDimensions:()=>zx,assertNonNull:()=>ki,assertShapesMatch:()=>Cn,bytesFromStringArray:()=>WI,bytesPerElement:()=>Py,checkConversionForErrors:()=>LI,clamp:()=>tc,computeStrides:()=>$l,createScalarValue:()=>_D,createShuffledIndices:()=>rD,decodeString:()=>Uh,distSquared:()=>eD,encodeString:()=>Lc,fetch:()=>$D,fingerPrint64:()=>CD,flatten:()=>ii,getArrayFromDType:()=>OI,getTypedArrayFromDType:()=>PI,hasEncodingLoss:()=>oD,hexToLong:()=>Oc,indexToLoc:()=>pD,inferDtype:()=>fm,inferFromImplicitShape:()=>iD,isBoolean:()=>BI,isFunction:()=>as,isInt:()=>dl,isNumber:()=>VI,isPromise:()=>Wx,isScalarShape:()=>tD,isString:()=>Zr,isTypedArray:()=>hn,isValidDtype:()=>zI,locToIndex:()=>uD,makeOnesTypedArray:()=>Lx,makeZerosNestedTypedArray:()=>lD,makeZerosTypedArray:()=>gm,nearestDivisor:()=>Oh,nearestLargerEven:()=>ZF,now:()=>ac,parseAxisParam:()=>Ea,randUniform:()=>QF,repeatedTry:()=>sD,rightPad:()=>Zp,shuffle:()=>RI,shuffleCombo:()=>YF,sizeFromShape:()=>bt,sizeToSquarishShape:()=>aD,squeezeShape:()=>MI,sum:()=>JF,swap:()=>Ph,tanh:()=>nD,toNestedArray:()=>ll,toTypedArray:()=>qm});var sk=ds(DF()),Xs=sk.default||sk;function Oc(e){return Xs.fromString(e,!0,16)}var YI=Oc("c3a5c85c97cb3127"),qs=Oc("b492b66fbe98f273"),wn=Oc("9ae16a3b2f90404f");function Ly(e){return e.xor(e.shru(47))}function ZI(e,t,n){let a=e.slice(t,t+n);return Xs.fromBytes(Array.from(a),!0,!0)}function gt(e,t){return ZI(e,t,8)}function ik(e,t){return ZI(e,t,4)}function Jt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function es(e,t,n=Oc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function ID(e,t,n,a,r,s){r=r.add(e),s=Jt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Jt(r,44)),[r.add(a),s.add(i)]}function dh(e,t,n,a){return ID(gt(e,t),gt(e,t+8),gt(e,t+16),gt(e,t+24),n,a)}function TD(e,t=e.length){if(t>=8){let n=wn.add(t*2),a=gt(e,0).add(wn),r=gt(e,t-8),s=Jt(r,37).mul(n).add(a),i=Jt(a,25).add(r).mul(n);return es(s,i,n)}if(t>=4){let n=wn.add(t*2),a=ik(e,0);return es(a.shl(3).add(t),ik(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return Ly(wn.mul(s).xor(YI.mul(i))).mul(wn)}return wn}function SD(e,t=e.length){let n=wn.add(t*2),a=gt(e,0).mul(qs),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(wn);return es(Jt(a.add(r),43).add(Jt(s,30)).add(i),a.add(Jt(r.add(wn),18)).add(s),n)}function ND(e,t=e.length){let n=wn.add(t*2),a=gt(e,0).mul(wn),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(wn),o=Jt(a.add(r),43).add(Jt(s,30)).add(i),l=es(o,a.add(Jt(r.add(wn),18)).add(s),n),u=gt(e,16).mul(n),p=gt(e,24),d=o.add(gt(e,t-32)).mul(n),c=l.add(gt(e,t-24)).mul(n);return es(Jt(u.add(p),43).add(Jt(d,30)).add(c),u.add(Jt(p.add(a),18)).add(d),n)}function CD(e,t=e.length){let n=Xs.fromNumber(81,!0);if(t<=32)return t<=16?TD(e,t):SD(e,t);if(t<=64)return ND(e,t);let a=n,r=n.mul(qs).add(113),s=Ly(r.mul(wn).add(113)).mul(wn),i=[Xs.UZERO,Xs.UZERO],o=[Xs.UZERO,Xs.UZERO];a=a.mul(wn).add(gt(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Jt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(qs),r=Jt(r.add(i[1]).add(gt(e,l+48)),42).mul(qs),a=a.xor(o[1]),r=r.add(i[0]).add(gt(e,l+40)),s=Jt(s.add(o[0]),33).mul(qs),i=dh(e,l,i[1].mul(qs),a.add(o[0])),o=dh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=qs.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Jt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(d),r=Jt(r.add(i[1]).add(gt(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(gt(e,l+40))),s=Jt(s.add(o[0]),33).mul(d),i=dh(e,l,i[1].mul(d),a.add(o[0])),o=dh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],es(es(i[0],o[0],d).add(Ly(r).mul(YI)).add(s),es(i[1],o[1],d).add(a),d)}function _D(e,t){return t==="string"?Lc(e):qm([e],t)}function ED(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function qm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ii(e)),X().getBool("DEBUG")&&LI(e,t),ED(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function ac(){return X().platform.now()}function $D(e,t){return X().platform.fetch(e,t)}function Lc(e,t="utf-8"){return t=t||"utf-8",X().platform.encode(e,t)}function Uh(e,t="utf-8"){return t=t||"utf-8",X().platform.decode(e,t)}var AD=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new DD)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=ac();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:ac()-i})}if(X().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{FD(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function FD(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var DD=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Zp(`${a}ms`,9):a.error,o=Zp(e,25),l=t.rank,u=t.size,p=Zp(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function RD(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function MD(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!hs(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var ok=20,Op=3,Iy=7;function PD(e,t,n,a){let r=$l(t),s=OD(e,t,n,r),i=t.length,o=Sh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function OD(e,t,n,a){let r=bt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Vp(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],Bp(l[p+d],0,n).length)}return i}function Bp(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Iy))} + ${parseFloat(e[1].toFixed(Iy))}j`:Zr(e)?a=`'${e}'`:n==="bool"?a=JI(e):a=parseFloat(e.toFixed(Iy)).toString(),Zp(a,t)}function JI(e){return e===0?"false":"true"}function Sh(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Vp(e);return[Bp(f[0],0,n)]}return n==="bool"?[JI(e[0])]:[e[0].toString()]}if(l===1){if(o>ok){let g=Op*i,b=Array.from(e.slice(0,g)),y=Array.from(e.slice((o-Op)*i,o*i));return n==="complex64"&&(b=Vp(b),y=Vp(y)),["["+b.map((x,w)=>Bp(x,r[w],n)).join(", ")+", ..., "+y.map((x,w)=>Bp(x,r[o-Op+w],n)).join(", ")+"]"]}let f=n==="complex64"?Vp(e):Array.from(e);return["["+f.map((g,b)=>Bp(g,r[b],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>ok){for(let f=0;f<Op;f++){let g=f*d,b=g+d;c.push(...Sh(e.slice(g,b),u,n,p,r,!1))}c.push("...");for(let f=o-Op;f<o;f++){let g=f*d,b=g+d;c.push(...Sh(e.slice(g,b),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,b=g+d;c.push(...Sh(e.slice(g,b),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function Vp(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var jt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=bt(e),n!=null){let a=n.length;R(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||OI(t,this.size),this.strides=$l(e)}set(e,...t){t.length===0&&(t=[0]),R(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ua().makeTensor(this.values,this.shape,this.dtype)}},Ua=null,sl=null,LD=null;function zD(e){Ua=e}function WD(e){sl=e}function BD(e){LD=e}var $e=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=bt(e),this.strides=$l(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return sl.buffer(this.shape,this.dtype,e)}bufferSync(){return sl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return ll(this.shape,e,this.dtype==="complex64")}arraySync(){return ll(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Ua().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Uh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Ua().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Ua().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Uh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ua().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ua().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return sl.print(this,e)}clone(){return this.throwIfDisposed(),sl.clone(this)}toString(e=!1){let t=this.dataSync();return PD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),sl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ua().makeVariable(this,e,t,n)}};Object.defineProperty($e,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ne(){return Vx("Tensor",()=>$e)}ne();var rs=class extends $e{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!hs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ua().disposeTensor(this),this.dataId=e.dataId,Ua().incRef(this,null)}dispose(){Ua().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(rs,Symbol.hasInstance,{value:e=>e instanceof $e&&e.assign!=null&&e.assign instanceof Function});var qa={};Fe(qa,{assertTypesMatch:()=>QI,getTensorsInContainer:()=>Gx,isTensorInList:()=>UD,makeTypesMatch:()=>$t});var zy;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(zy||(zy={}));var Wy;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Wy||(Wy={}));var By;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(By||(By={}));var Vy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Vy||(Vy={}));var Uy;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Uy||(Uy={}));var VD={float32:Vy,int32:Wy,bool:By,complex64:Uy};function ha(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return VD[e][t]}function Km(e){return ha(e,"int32")}function $t(e,t){if(e.dtype===t.dtype)return[e,t];let n=ha(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function QI(e,t){R(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function UD(e,t){return t.some(n=>n.id===e.id)}function Gx(e){let t=[];return eT(e,t,new Set),t}function eT(e,t,n){if(e==null)return;if(e instanceof $e){t.push(e);return}if(!GD(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),eT(s,t,n))}}function GD(e){return Array.isArray(e)||typeof e=="object"}function Ty(e){return e.kernelName!=null}var lk=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},rc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new lk}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Yr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new AD(this.backendInstance),!0}setupRegisteredKernels(){Vh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Vh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof yc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,Yr(`Initialization of backend ${e} failed`),Yr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Yr(`Initialization of backend ${e} failed`),Yr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return rc.nextTensorId++}nextVariableId(){return rc.nextVariableId++}clone(e){let t=L.runKernel(Vi,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return L.runKernel(Ci,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,Bh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Ty(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Ty(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=Bh(h,this.backendName);R(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let x=y.map(w=>w.rank!=null?w:this.makeTensorFromTensorInfo(w));if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=Ty(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Oy(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(R(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Zr(e[0])&&(r=e.map(o=>Lc(o)));let s=a.write(r,t,n),i=new $e(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=WI(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,a)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new $e(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new rs(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Py(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof rs||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Py(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Oy(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=gm(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Gx(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(R(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));R(r instanceof $e,()=>"The result y returned by f() must be a tensor.");let s=RD(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?HD(r.shape):n,MD(i,s,l=>this.tidy(l),jD);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return R(as(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{R(t.every(i=>i instanceof $e),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),R(n.value instanceof $e,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),R(as(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];R(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),R(u.every(d=>d instanceof $e),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=ac(),n=await this.backend.time(e);return n.wallMs=ac()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new lk;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};rc.nextTensorId=0;rc.nextVariableId=0;function HD(e){let t=Lx(bt(e),"float32");return L.makeTensor(t,e,"float32")}function tT(){let e=HI();if(e._tfengine==null){let t=new GI(e);e._tfengine=new rc(t)}return mD(e._tfengine.ENV),zD(()=>e._tfengine),e._tfengine}var L=tT();function jD(e,t){let n={a:e,b:t};return L.runKernel(ms,n)}var zc={};Fe(zc,{isBrowser:()=>nT,isMobile:()=>XD,mockIsMobile:()=>KD});function qD(){return typeof navigator!="undefined"&&navigator!=null}var Gy;function KD(e){Gy=e}function XD(e){if(Gy!==void 0)return Gy;if(e||qD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function nT(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ma=X();ma.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ma.registerFlag("IS_BROWSER",()=>nT());ma.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ma.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ma.registerFlag("PROD",()=>!1);ma.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ma.getBool("DEBUG"));ma.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ma.registerFlag("IS_TEST",()=>!1);ma.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ma.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);ma.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);ma.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);function cr(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&X().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&aT(e,a,[]),a}function aT(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){R(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}R(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),R(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)aT(e[r],a,n.concat(r))}function uk(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function E(e,t,n,a="numeric"){if(e instanceof $e)return uk(a,e.dtype,t,n),e;let r=fm(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),uk(a,r,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=cr(e,r);!hn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?qm(e,r):ii(e,[],!0);return L.makeTensor(i,s,r)}function sc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>E(r,`${t}[${s}]`,n,a))}var Hx="__op";function z(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Hx;let r=(...s)=>{L.startScope(n);try{let i=a(...s);return Wx(i)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(i),i}catch(i){throw L.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function YD(e,t){let n=E(e,"real","complex"),a=E(t,"imag","complex");Cn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return L.runKernel(wm,r)}var $r=z({complex_:YD});function ys(e,t,n,a){if(a==null&&(a=fm(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){zx(t);let r=bt(t),s=bt(n);R(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==bt(t.slice(i)):!0;R(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?qm(e,a):ii(e,[],!0),L.makeTensor(e,t,a)}function Bn(e,t,n){let a=cr(e,n);return ys(e,t,a,n)}var Hy={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Gh=4;async function ZD(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,b)=>g+b.length,0)+Gh*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let b=c[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);m.set(y,f),f+=Gh,m.set(b,f),f+=b.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:JD(s),specs:n}}function rT(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=bt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Hy[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=rR()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=bt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+Gh))[0];r+=Gh;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=Hy[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let b=0;b<h.length;b++)h[b]=p[b*2],m[b]=p[b*2+1];let f=Bn(h,l,"float32"),g=Bn(m,l,"float32");n[i]=$r(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=Bn(p,l,o))}return n}function JD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var jx=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function pk(e){return jx?Buffer.byteLength(e):new Blob([e]).size}function QD(e){if(jx)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function eR(e){if(jx){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function qx(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function ck(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function sT(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Kx(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[a,r]=await t(e.weightsManifest);n.weightSpecs=a,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Wc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:pk(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:pk(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function tR(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)===0;)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function nR(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function aR(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function rR(){let e=tR(),t=nR(),n=aR();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Ft=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ft.instance==null&&(Ft.instance=new Ft),Ft.instance}static registerSaveRouter(e){Ft.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ft.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ft.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ft.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Ft.getInstance().loadRouters:Ft.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},sR=e=>Ft.registerSaveRouter(e),iR=e=>Ft.registerLoadRouter(e),oR=e=>Ft.getSaveHandlers(e),lR=(e,t)=>Ft.getLoadHandlers(e,t),jy="tensorflowjs",qy=1,Qs="models_store",Jr="model_info_store";function iT(){if(!X().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Ky(e){let t=e.result;t.createObjectStore(Qs,{keyPath:"modelPath"}),t.createObjectStore(Jr,{keyPath:"modelPath"})}var pi=class{constructor(e){if(this.indexedDB=iT(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(jy,qy);r.onupgradeneeded=()=>Ky(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Qs,"readonly"),o=i.objectStore(Qs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Wc(t),o=s.transaction(Jr,"readwrite"),l=o.objectStore(Jr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(Qs,"readwrite");let d=p.objectStore(Qs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=c=>{l=o.objectStore(Jr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(d.error)),h.onerror=m=>(s.close(),a(d.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};pi.URL_SCHEME="indexeddb://";var oT=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(pi.URL_SCHEME)?uR(e.slice(pi.URL_SCHEME.length)):null;Ft.registerSaveRouter(oT);Ft.registerLoadRouter(oT);function uR(e){return new pi(e)}function pR(e){return e.startsWith(pi.URL_SCHEME)?e.slice(pi.URL_SCHEME.length):e}var cR=class{constructor(){this.indexedDB=iT()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(jy,qy);n.onupgradeneeded=()=>Ky(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Jr,"readonly"),s=r.objectStore(Jr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=pR(e),new Promise((t,n)=>{let a=this.indexedDB.open(jy,qy);a.onupgradeneeded=()=>Ky(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Jr,"readwrite"),i=s.objectStore(Jr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Qs,"readwrite");let d=l.objectStore(Qs).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Sr="/",il="tensorflowjs_models",lT="info",dR="model_topology",hR="weight_specs",mR="weight_data",fR="model_metadata";function uT(e){return{info:[il,e,lT].join(Sr),topology:[il,e,dR].join(Sr),weightSpecs:[il,e,hR].join(Sr),weightData:[il,e,mR].join(Sr),modelMetadata:[il,e,fR].join(Sr)}}function pT(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function gR(e){let t=e.split(Sr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Sr)}function bR(e){return e.startsWith(ci.URL_SCHEME)?e.slice(ci.URL_SCHEME.length):e}var ci=class{constructor(e){if(!X().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=uT(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Wc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,QD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw pT(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=eR(s),t}};ci.URL_SCHEME="localstorage://";var cT=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ci.URL_SCHEME)?yR(e.slice(ci.URL_SCHEME.length)):null;Ft.registerSaveRouter(cT);Ft.registerLoadRouter(cT);function yR(e){return new ci(e)}var xR=class{constructor(){R(X().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),R(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=il+Sr,n=Sr+lT;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=gR(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=bR(e);let t=uT(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return pT(t),n}},ul="://",Ln=class{constructor(){this.managers={}}static getInstance(){return Ln.instance==null&&(Ln.instance=new Ln),Ln.instance}static registerManager(e,t){R(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(ul)&&(e=e.slice(0,e.indexOf(ul))),R(e.length>0,()=>"scheme must not be an empty string.");let n=Ln.getInstance();R(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=Ln.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(Ln.getInstance().managers)}};function Nh(e){if(e.indexOf(ul)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Ln.getSchemes().join(",")}`);return{scheme:e.split(ul)[0],path:e.split(ul)[1]}}async function dT(e,t,n=!1){R(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Ft.getLoadHandlers(e);R(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),R(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Ft.getSaveHandlers(t);R(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),R(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Nh(e).scheme,l=Nh(e).path,u=o===Nh(e).scheme,p=await r.load();n&&u&&await Ln.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await Ln.getManager(o).removeModel(l),d.modelArtifactsInfo}async function vR(){let e=Ln.getSchemes(),t={};for(let n of e){let a=await Ln.getManager(n).listModels();for(let r in a){let s=n+ul+r;t[s]=a[r]}}return t}async function wR(e){let t=Nh(e);return Ln.getManager(t.scheme).removeModel(t.path)}async function kR(e,t){return dT(e,t,!1)}async function IR(e,t){return dT(e,t,!0)}var TR=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(X().get("IS_BROWSER")){X().setPlatform("browser",new TR);try{Ln.registerManager(ci.URL_SCHEME,new xR)}catch(e){}try{Ln.registerManager(pi.URL_SCHEME,new cR)}catch(e){}}var SR={importFetch:()=>RF()},Sy,NR=class{constructor(){this.util=MF(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return X().global.fetch!=null?X().global.fetch(e,t):(Sy==null&&(Sy=SR.importFetch()),Sy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};X().get("IS_NODE")&&!X().get("IS_BROWSER")&&X().setPlatform("node",new NR);function Le(e,t="float32",n){return t=t||"float32",zx(e),new jt(e,t,n)}function CR(e,t){let n=E(e,"x","cast");if(!zI(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return L.runKernel(Ci,a,r)}var le=z({cast_:CR});function _R(e){let t={x:E(e,"x","clone","string_or_numeric")};return L.runKernel(Vi,t)}var ur=z({clone_:_R});function Xx(e,t=!1){console.log(e.toString(t))}tT();var ER={buffer:Le,cast:le,clone:ur,print:Xx};WD(ER);var Sn={};Fe(Sn,{browserFiles:()=>PR,browserHTTPRequest:()=>BR,concatenateArrayBuffers:()=>qx,copyModel:()=>kR,decodeWeights:()=>rT,encodeWeights:()=>ZD,fromMemory:()=>UR,fromMemorySync:()=>bT,getLoadHandlers:()=>lR,getModelArtifactsForJSON:()=>Kx,getModelArtifactsInfoForJSON:()=>Wc,getSaveHandlers:()=>oR,http:()=>Zx,isHTTPScheme:()=>Xy,listModels:()=>vR,loadWeights:()=>OR,moveModel:()=>IR,registerLoadRouter:()=>iR,registerSaveRouter:()=>sR,removeModel:()=>wR,weightsLoaderFactory:()=>mT,withSaveHandler:()=>GR,withSaveHandlerSync:()=>HR});var $R="model",AR=".json",FR=".weights.bin";function dk(e){return new Promise(t=>setTimeout(t)).then(e)}var ml=class{constructor(e){if(!X().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ml.URL_SCHEME)&&(e=e.slice(ml.URL_SCHEME.length)),(e==null||e.length===0)&&(e=$R),this.modelJsonFileName=e+AR,this.weightDataFileName=e+FR}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=sT(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await dk(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await dk(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Wc(e)}}}};ml.URL_SCHEME="downloads://";var DR=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=Kx(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,qx(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>ck(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=ck(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},RR=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ml.URL_SCHEME)?MR(e.slice(ml.URL_SCHEME.length)):null;Ft.registerSaveRouter(RR);function MR(e="model"){return new ml(e)}function PR(e){return new DR(e)}function hk(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){R(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){R(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),R(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),R(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function hT(e,t){t==null&&(t={});let n=t.fetchFunc==null?X().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await hk(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await hk(i,t.onProgress,o,l)}async function OR(e,t="",n,a){return mT(r=>hT(r,{requestInit:a}))(e,t,n)}function mT(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=Hy[b]*bt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:y})};a!=null?a.forEach((w,I)=>{w===g.name&&(x(),i[I]=!0)}):x(),o.push(g.name),f+=y})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=p[c+x].byteLength;let g=new ArrayBuffer(f),b=new Uint8Array(g),y=0;for(let x=0;x<m;x++){let w=new Uint8Array(p[c+x]);b.set(w,y),y+=w.byteLength}s[h].forEach(x=>{let w=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),I=rT(w,[x.manifestEntry]);for(let N in I)d[N]=I[N]}),c+=m}),d}}var LR="application/octet-stream",zR="application/json",Yx=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(R(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=X().platform.fetch,R(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&R(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=sT(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:zR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:LR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Wc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Kx(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=WR(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await hT(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,qx(l)]}};Yx.URL_SCHEME_REGEX=/^https?:\/\//;function WR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Xy(e){return e.match(Yx.URL_SCHEME_REGEX)!=null}var fT=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Xy(a)):n=Xy(e),n)return Zx(e,t)}return null};Ft.registerSaveRouter(fT);Ft.registerLoadRouter(fT);function Zx(e,t){return new Yx(e,t)}function BR(e,t){return Zx(e,t)}var Ny=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},gT=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},VR=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function UR(e,t,n,a){let r=arguments;return new VR(bT(...r))}function bT(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Ny(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ny({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ny({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function GR(e){return new gT(e)}function HR(e){return new gT(e)}var yT={};Fe(yT,{confusionMatrix:()=>dM});function jR(e,t,n=!1,a=!1){let r=E(e,"a","matMul"),s=E(t,"b","matMul");[r,s]=$t(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return L.runKernel(Ni,i,o)}var Re=z({matMul_:jR});function qR(e,t,n=1,a=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:E(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:a};return L.runKernel(Qi,s,i)}var fl=z({oneHot_:qR});function KR(){X().set("PROD",!0)}function XR(){X().set("DEBUG",!0)}function YR(){X().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Jx(e){X().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}BD(Jx);function ZR(){L.disposeVariables()}function rr(){return L}function Hh(){return L.memory()}function JR(e){return L.profile(e)}function O(e,t){return L.tidy(e,t)}function Me(e){Gx(e).forEach(t=>t.dispose())}function Qt(e){return L.keep(e)}function QR(e){return L.time(e)}function eM(e){return L.setBackend(e)}function tM(){return L.ready()}function nM(){return L.backendName}function aM(e){L.removeBackend(e)}function rM(e){return L.findBackend(e)}function sM(e){return L.findBackendFactory(e)}function Xm(e,t,n=1){return L.registerBackend(e,t,n)}function xT(){return L.backend}function iM(e,t){X().setPlatform(e,t)}function oM(e){let t={input:E(e,"input","imag")};return L.runKernel(Dm,t)}var Bc=z({imag_:oM});function lM(e){let t={x:E(e,"x","neg")};return L.runKernel(pu,t)}var vt=z({neg_:lM});function uM(e){let t={input:E(e,"input","real")};return L.runKernel(Bm,t)}var gl=z({real_:uM});function pM(e,t,n){let a=E(e,"x","transpose");if(t==null&&(t=a.shape.map((i,o)=>o).reverse()),R(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of perm ${t}.`),t.forEach(i=>{R(i>=0&&i<a.rank,()=>`All entries in 'perm' must be between 0 and ${a.rank-1} but got ${t}`)}),a.rank<=1)return a.clone();let r={x:a},s={perm:t};return a.dtype==="complex64"?O(()=>{let i=gl(a),o=Bc(a);return i=L.runKernel(_r,{x:i},s),o=L.runKernel(_r,{x:o},s),n&&(o=vt(o)),$r(i,o)}):L.runKernel(_r,r,s)}var Ae=z({transpose_:pM});function cM(e,t,n){let a=E(e,"labels","confusionMatrix"),r=E(t,"predictions","confusionMatrix");R(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),R(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),R(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),R(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),R(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=fl(le(a,"int32"),n),i=fl(le(r,"int32"),n),o=Ae(s),l=Re(o,i);return le(l,"int32")}var dM=z({confusionMatrix_:cM}),Mu={};Fe(Mu,{assertAndGetBroadcastShape:()=>pt,getBroadcastDims:()=>vT,getReductionAxes:()=>Wt});function vT(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function pt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}var wo={};Fe(wo,{fromPixels:()=>xM,fromPixelsAsync:()=>bM,toPixels:()=>yM});function Vc(e,t,n){if(ki(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=cr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ys(e,t,a,n)}var Hs;function wT(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(Bh(Wh,L.backendName)!=null){let c={pixels:e},h={numChannels:t};return L.runKernel(Wh,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Hs==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Hs=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Hs=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Hs.canvas.width=l,Hs.canvas.height=u,Hs.drawImage(e,0,0,l,u),p=Hs.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return Vc(d,[u,l,t],"int32")}function hM(e){return e!=null&&e.data instanceof Uint8Array}function mM(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function fM(e){return e!=null&&e.width!==0&&e.height!==0}function gM(e){return mM()&&!(e instanceof ImageBitmap)&&fM(e)&&!hM(e)}async function bM(e,t=3){let n=null;if(X().getBool("WRAP_TO_IMAGEBITMAP")&&gM(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return wT(n,t)}async function yM(e,t){let n=E(e,"img","toPixels");if(!(e instanceof $e)){let u=n;n=le(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var xM=z({fromPixels_:wT}),Qx={};Fe(Qx,{prepareAndValidate:()=>kT});function kT(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(bt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...$l(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var ev={};Fe(ev,{calculateShapes:()=>IT,validateInput:()=>nv,validateUpdateShape:()=>tv});function tv(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function nv(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}tv(n,t,e)}function IT(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=bt(t.shape)/o,u=[...$l(n.slice(0,r)),1],p=bt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}var qt={};Fe(qt,{assertParamsValid:()=>wM,computeFlatOffset:()=>NM,computeOutShape:()=>IM,getNormalizedAxes:()=>TM,isSliceContinous:()=>SM,maskToAxes:()=>kM,parseSliceParams:()=>FT,sliceInfo:()=>CM,startForAxis:()=>$T,startIndicesWithElidedDims:()=>CT,stopForAxis:()=>AT,stopIndicesWithElidedDims:()=>_T,stridesForAxis:()=>ET,stridesWithElidedDims:()=>TT});var Yy=-2,vM=-1;function wM(e,t,n){let a=e.shape.length;R(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),R(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)R(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function kM(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function IM(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function TT(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function ST(e,t,n){return n<=e?n:n-(t-1)}function NT(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function TM(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=CT(i,h,m,a,e),d=_T(o,h,m,r,e),c=TT(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=$T(i,a,s,e,h,l),d[h]=AT(o,r,s,e,h,l),c[h]=ET(s,h,l);return{begin:p,end:d,strides:c}}function CT(e,t,n,a,r){let s=[...r],i=NT(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=ST(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function _T(e,t,n,a,r){let s=[...r],i=NT(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=ST(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=tc(0,s[o],r[o])}return s}function ET(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function $T(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=tc(0,i,l-1),i}function AT(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=tc(0,i,l):i=tc(-1,i,l-1),i}function SM(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function NM(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function FT(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{R(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(R(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function CM(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)p&&(1<<y&o)!==0&&d.numAddAxisAfterEllipsis++,1<<y&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};_M(d,c);let h=!0,m=!0,f=!0,g=[],b=[];for(let y=0;y<e.length;++y){if(c.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<y),w=e[y];if(w===-1){g.push(x?1:-1);continue}let I=[c.beginMask&1<<y,c.endMask&1<<y],N=[c.strides[y]>0?0:-1,c.strides[y]>0?w:w-1];if(x&&c.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[y]===1;let _=!!(c.beginMask&1<<y&&c.endMask&1<<y);if(c.beginValid&&c.endValid){if(x){let D=c.begin[y]<0?w+c.begin[y]:c.begin[y];if(c.begin[y]=D,c.end[y]=c.begin[y]+1,D<0||D>=w)throw Error(`slice index ${c.begin[y]} of dimension ${y} out of bounds.`)}else c.begin[y]=mk(c.begin[y],0,c.strides[y],w,I,N),c.end[y]=mk(c.end[y],1,c.strides[y],w,I,N);let M=c.strides[y]===1&&c.begin[y]===0&&c.end[y]===w;h=h&&M,m=m&&(y===0&&c.strides[y]===1||M)}else h=h&&c.strides[y]===1&&_,m=m&&(y===0&&c.strides[y]===1||_);let $,A=!1;if(c.beginValid&&c.endValid?($=c.end[y]-c.begin[y],A=!0):x?($=1,A=!0):_&&w>=0&&(c.strides[y]<0?$=-w:$=w,A=!0),A){let M;$===0||$<0!=c.strides[y]<0?M=0:M=Math.trunc($/c.strides[y])+($%c.strides[y]!==0?1:0),g.push(M)}else g.push(-1)}for(let y=0;y<c.finalShapeGatherIndices.length;++y){let x=c.finalShapeGatherIndices[y];x>=0?b.push(g[x]):x===Yy&&b.push(1)}return{finalShapeSparse:b.filter((y,x)=>c.finalShapeGatherIndices[x]!==Yy),finalShape:b,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function _M(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(Yy),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(vM),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function mk(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var se={};Fe(se,{Serializable:()=>DT,SerializationMap:()=>Ys,registerClass:()=>xs});var DT=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ys=class{constructor(){this.classNameMap={}}static getMap(){return Ys.instance==null&&(Ys.instance=new Ys),Ys.instance}static register(e){Ys.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function xs(e){R(e.className!=null,()=>"Class being registered does not have the static className property defined."),R(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),R(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ys.register(e)}var RT={};Fe(RT,{TEST_EPSILON_FLOAT16:()=>MT,createVideoElement:()=>PM,encodeStrings:()=>PT,expectArrayBuffersEqual:()=>MM,expectArraysClose:()=>$M,expectArraysEqual:()=>FM,expectNumbersClose:()=>DM,expectPromiseToFail:()=>AM,expectValuesInRange:()=>RM,play:()=>OM,testEpsilon:()=>av});var EM=.001,MT=.1;function $M(e,t,n){return n==null&&(n=av()),Zy(e,t,(a,r)=>rv(a,r,n))}function av(){return L.backend.floatPrecision()===32?EM:MT}function Zy(e,t,n){let a=!0;if((hn(e)||hn(t))&&(a=!1),hn(e)&&hn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=cr(e),o=cr(t);if(!hs(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=hn(e)?e:ii(e),s=hn(t)?t:ii(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function AM(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function FM(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Zr(e)||Zr(e[0])||Zr(t)||Zr(t[0])?Zy(e,n,(a,r)=>a==r):Zy(e,t,(a,r)=>rv(a,r,0))}function DM(e,t,n){if(n==null&&(n=av()),!rv(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function rv(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function RM(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function MM(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function PT(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?PT(n):e[t]=Lc(n)}return e}function PM(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(n=>{t.addEventListener("loadeddata",a=>n(t)),t.load()})}async function OM(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var LM="3.20.0";function zM(e,t){let n=E(e,"a","add"),a=E(t,"b","add");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(ms,r)}var Q=z({add_:zM});function WM(e,t){let n=E(e,"a","floorDiv"),a=E(t,"b","floorDiv");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(zi,r)}var Ym=z({floorDiv_:WM});function BM(e,t){let n=E(e,"a","div"),a=E(t,"b","div");if([n,a]=$t(n,a),n.dtype==="int32"&&a.dtype==="int32")return Ym(n,a);let r={a:n,b:a},s={};return L.runKernel(Mi,r,s)}var fe=z({div_:BM});function VM(e,t){let n=E(e,"a","mul"),a=E(t,"b","mul");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(Ji,r)}var W=z({mul_:VM});function UM(e){let t=E(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(wc,n)}else{let n={x:t};return L.runKernel(Al,n)}}var Lt=z({abs_:UM});function GM(e){let t={x:E(e,"x","acos")};return L.runKernel(Fl,t)}var sv=z({acos_:GM});function HM(e){let t={x:E(e,"x","acosh")};return L.runKernel(Dl,t)}var iv=z({acosh_:HM});function jM(e){R(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),R(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>E(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!hs(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return L.runKernel(Ii,a)}var OT=z({addN_:jM});function qM(e,t=null,n=!1){let a={x:E(e,"x","all","bool")},r={axis:t,keepDims:n};return L.runKernel(Rl,a,r)}var Zm=z({all_:qM});function KM(e,t=null,n=!1){let a={x:E(e,"x","any","bool")},r={axis:t,keepDims:n};return L.runKernel(Ml,a,r)}var ic=z({any_:KM});function XM(e,t=0){let n={x:E(e,"x","argMax")},a={axis:t};return L.runKernel(Ti,n,a)}var di=z({argMax_:XM});function YM(e,t=0){let n={x:E(e,"x","argMin")},a={axis:t};return L.runKernel(xc,n,a)}var ov=z({argMin_:YM});function ZM(e){let t={x:E(e,"x","asin")};return L.runKernel(Pl,t)}var lv=z({asin_:ZM});function JM(e){let t={x:E(e,"x","asinh")};return L.runKernel(Ol,t)}var uv=z({asinh_:JM});function QM(e){let t={x:E(e,"x","atan")};return L.runKernel(Ll,t)}var pv=z({atan_:QM});function eP(e,t){let n=E(e,"a","atan2"),a=E(t,"b","atan2");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(Wl,r)}var cv=z({atan2_:eP});function tP(e){let t={x:E(e,"x","atanh")};return L.runKernel(zl,t)}var dv=z({atanh_:tP});function nP(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=WT(r);return Uc(e,o,n,s,a,null,null,l)}function LT(e,t,n,a,r,s,i="channelsLast"){let[o,l]=jh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Uc(e,u,n,a,r,s,!1,i)}function aP(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Jy(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return zT(e,p,n,a,r,!1,d,s)}function Uc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=jh(n),[b,y]=jh(a),x=pl(c,b),w=pl(h,y),{padInfo:I,outHeight:N,outWidth:_}=iP(r,u,p,f,g,x,w,s,o),$=i?m*d:m,A;return o==="channelsFirst"?A=[l,$,N,_]:o==="channelsLast"&&(A=[l,N,_,$]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:N,outWidth:_,outChannels:$,padInfo:I,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:b,dilationWidth:y,inShape:e,outShape:A,filterShape:t}}function zT(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[b,y,x]=Jy(n),[w,I,N]=Jy(a),_=pl(h,w),$=pl(m,I),A=pl(f,N),{padInfo:M,outDepth:D,outHeight:T,outWidth:P}=oP(r,u,p,d,b,y,x,_,$,A,o),U=s?g*c:g,j;return i==="channelsFirst"?j=[l,U,D,T,P]:i==="channelsLast"&&(j=[l,D,T,P,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:D,outHeight:T,outWidth:P,outChannels:U,padInfo:M,strideDepth:b,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:_,effectiveFilterHeight:$,effectiveFilterWidth:A,dilationDepth:w,dilationHeight:I,dilationWidth:N,inShape:e,outShape:j,filterShape:t}}function rP(e,t,n,a,r){a==null&&(a=hv(e,t,n));let s=e[0],i=e[1],o=ni((s-t+2*a)/n+1,r),l=ni((i-t+2*a)/n+1,r);return[o,l]}function sP(e,t,n,a,r,s){r==null&&(r=hv(e,t,a));let i=e[0],o=e[1],l=e[2],u=ni((i-t+2*r)/a+1,s),p=ni((o-t+2*r)/a+1,s),d=ni((l-t+2*r)/a+1,s);return[u,p,d,n]}function hv(e,t,n,a=1){let r=pl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function jh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Jy(e){return typeof e=="number"?[e,e,e]:e}function pl(e,t){return t<=1?e:e+(e-1)*(t-1)}function iP(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=rP([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),b=h-g;u={top:m,bottom:f,left:g,right:b,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=ni((t-s+c+h)/a+1,o),d=ni((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function oP(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=sP([t,n,a,1],o,1,r,e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,b=(m-1)*i+u-a,y=Math.floor(f/2),x=f-y,w=Math.floor(g/2),I=g-w,N=Math.floor(b/2),_=b-N;d={top:w,bottom:I,left:N,right:_,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function ni(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ss(e){let[t,n,a]=jh(e);return t===1&&n===1&&a===1}function mr(e,t){return ss(e)||ss(t)}function WT(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function _n(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")R(dl(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{R(dl(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function lP(e,t){let n={x:E(e,"x","reshape","string_or_numeric")},a={shape:t};return L.runKernel(yu,n,a)}var B=z({reshape_:lP});function uP(e,t,n,a,r){let s=E(e,"x","avgPool","float32"),i=1;R(mr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=B(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),_n("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(Si,u,p);return d=le(d,s.dtype),l?B(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ga=z({avgPool_:uP});function pP(e,t,n,a,r,s="NDHWC"){let i=E(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),_n("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(vc,u,p);return d=le(d,o.dtype),l?B(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var mv=z({avgPool3d_:pP});function cP(e,t=0){R(e.length>=1,()=>"Pass at least one tensor to concat");let n=sc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return ur(n[0]);let a=n,r={axis:t};return L.runKernel(Vl,a,r)}var Qe=z({concat_:cP});function dP(e){let t={x:E(e,"x","sigmoid","float32")};return L.runKernel(ho,t)}var da=z({sigmoid_:dP});function hP(e,t,n){let a=E(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return L.runKernel(ku,r,s)}var He=z({slice_:hP});function mP(e){let t={x:E(e,"x","tanh","float32")};return L.runKernel(vo,t)}var hi=z({tanh_:mP});function fP(e,t,n,a,r,s){let i=E(e,"forgetBias","basicLSTMCell"),o=E(t,"lstmKernel","basicLSTMCell"),l=E(n,"lstmBias","basicLSTMCell"),u=E(a,"data","basicLSTMCell"),p=E(r,"c","basicLSTMCell"),d=E(s,"h","basicLSTMCell"),c=Qe([u,d],1),h=Re(c,o),m=Q(h,l),f=m.shape[0],g=m.shape[1]/4,b=[f,g],y=He(m,[0,0],b),x=He(m,[0,g],b),w=He(m,[0,g*2],b),I=He(m,[0,g*3],b),N=Q(W(da(y),hi(x)),W(p,da(Q(i,w)))),_=W(hi(N),da(I));return[N,_]}var BT=z({basicLSTMCell_:fP});function gP(e,t,n){let a=E(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);R(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),R(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),R(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return L.runKernel(Bl,s,i)}var Gc=z({batchToSpaceND_:gP});function bP(e){let t;return e.rank===0||e.rank===1?t=B(e,[1,1,1,e.size]):e.rank===2?t=B(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=B(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function yP(e,t,n,a,r,s){s==null&&(s=.001);let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;a!=null&&(p=E(a,"offset","batchNorm")),R(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),R(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),R(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:bP(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=L.runKernel(Wi,d,c);return B(h,i.shape)}var vs=z({batchNorm_:yP});function xP(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;return a!=null&&(p=E(a,"offset","batchNorm")),R(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),R(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),R(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),vs(i,o,l,p,u,s)}var fv=z({batchNorm2d_:xP});function vP(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;return a!=null&&(p=E(a,"offset","batchNorm")),R(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),R(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),R(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),vs(i,o,l,p,u,s)}var gv=z({batchNorm3d_:vP});function wP(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;return a!=null&&(p=E(a,"offset","batchNorm")),R(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),R(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),R(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),vs(i,o,l,p,u,s)}var bv=z({batchNorm4d_:wP});function kP(e,t,n){let a=E(e,"x","bincount"),r=E(t,"weights","bincount");R(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return L.runKernel(xm,s,i)}var yv=z({bincount_:kP});function IP(e,t){let n=E(e,"s0","broadcastArgs","int32"),a=E(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return L.runKernel(vm,r)}var VT=z({broadcastArgs_:IP});function TP(e,t){let n=E(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=B(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return ur(n);let i={x:n},o={reps:s};return L.runKernel(gs,i,o)}var ai=z({broadcastTo_:TP});function SP(e){let t={x:E(e,"x","ceil","float32")};return L.runKernel(_i,t)}var xv=z({ceil_:SP});function NP(e,t,n){let a=E(e,"x","clipByValue");R(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return L.runKernel(fs,r,s)}var tn=z({clipByValue_:NP});function CP(e){return Qe(e,0)}var vv=z({concat1d_:CP});function _P(e,t){return Qe(e,t)}var wv=z({concat2d_:_P});function EP(e,t){return Qe(e,t)}var kv=z({concat3d_:EP});function $P(e,t){return Qe(e,t)}var Iv=z({concat4d_:$P});function AP(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","conv2d","float32"),l=E(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),_n("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];R(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),R(mr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=L.runKernel(Ei,c,h);return p?B(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Dt=z({conv2d_:AP});function FP(e,t,n,a,r="NWC",s=1,i){let o=E(e,"x","conv1d"),l=E(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=B(o,[1,o.shape[0],o.shape[1]])),R(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),R(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),_n("conv1d",a,i),R(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),R(mr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),R(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=B(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=B(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Dt(c,d,[1,n],a,"NHWC",[1,s],i);return p?B(h,[h.shape[2],h.shape[3]]):B(h,[h.shape[0],h.shape[2],h.shape[3]])}var Jm=z({conv1d_:FP});function DP(e,t,n,a,r,s="NHWC",i){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=B(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),R(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),R(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),R(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];R(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),R(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),_n("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=L.runKernel($i,c,h);return u?B(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Tv=z({conv2DBackpropInput_:DP});function RP(e,t,n,a,r,s){let i=E(e,"x","conv2dTranspose"),o=E(t,"filter","conv2dTranspose");return Tv(n,i,o,a,r,"NHWC",s)}var Qm=z({conv2dTranspose_:RP});function MP(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=E(e,"x","conv3d"),o=E(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),R(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),R(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),R(mr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),R(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=L.runKernel(kc,p,d);return u?B(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var Sv=z({conv3d_:MP});function PP(e,t,n,a,r){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=B(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];R(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),R(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),R(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),R(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),R(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=L.runKernel(Tm,p,d);return o?B(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var UT=z({conv3DBackpropInput_:PP});function OP(e,t,n,a,r){let s=E(e,"x","conv3dTranspose"),i=E(t,"filter","conv3dTranspose");return UT(n,s,i,a,r)}var Nv=z({conv3dTranspose_:OP});function LP(e){let t={x:E(e,"x","cos","float32")};return L.runKernel(Ai,t)}var Hc=z({cos_:LP});function zP(e){let t={x:E(e,"x","cosh","float32")};return L.runKernel(Fi,t)}var ef=z({cosh_:zP});function WP(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return L.runKernel(Ul,r,s)}var oc=z({cumprod_:WP});function BP(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return L.runKernel(Di,r,s)}var tf=z({cumsum_:BP});function VP(e,t,n,a=!1){let r=E(e,"x","denseBincount"),s=E(t,"weights","denseBincount");R(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),R(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return L.runKernel(Sm,i,o)}var GT=z({denseBincount_:VP});function UP(e,t,n="NHWC"){let a=E(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];R(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),R(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),R(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),R(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return L.runKernel(Hl,o,l)}var Cv=z({depthToSpace_:UP});function GP(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","depthwiseConv2d","float32"),l=E(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];R(d===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d}) must match the inChannels dimension in filter ${l.shape[2]}.`),_n("depthwiseConv2d",a,i);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=L.runKernel(Ri,c,h);return p?B(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ws=z({depthwiseConv2d_:GP});function HP(e){let t={x:E(e,"x","diag")};return L.runKernel(_m,t)}var HT=z({diag_:HP});function jP(e,t,n,a,r=[1,1],s="NHWC"){let i=E(e,"x","dilation2d"),o=E(t,"filter","dilation2d");R(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),R(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),R(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=B(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=L.runKernel(Ic,p,d);return u?B(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var _v=z({dilation2d_:jP});function qP(e,t){let n=E(e,"a","equal","string_or_numeric"),a=E(t,"b","equal","string_or_numeric");[n,a]=$t(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(ql,r)}var Qn=z({equal_:qP});function KP(e,t,n){let a=E(t,"a","where"),r=E(n,"b","where"),s=E(e,"condition","where","bool"),i=pt(pt(s.shape,a.shape),r.shape),o=ai(s,i),l=ai(a,i),u=ai(r,i),p={condition:o,t:l,e:u};return L.runKernel(vu,p)}var fn=z({where_:KP});function XP(e){let t={x:E(e,"x","zerosLike")};return L.runKernel(Du,t)}var qe=z({zerosLike_:XP});function YP(e,t){let n=E(e,"a","div"),a=E(t,"b","div");[n,a]=$t(n,a);let r=fe(n,a),s=qe(r),i=Qn(a,s);return fn(i,s,r)}var Ev=z({divNoNan_:YP});function ZP(e,t){let n=E(e,"t1","dot"),a=E(t,"t2","dot");R((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(R(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=B(n,[1,-1]),o=B(a,[-1,1]),l=Re(i,o);return B(l,[])}else if(n.rank===1&&a.rank===2){let i=B(n,[1,-1]),o=B(a,[a.shape[0],a.shape[1]]),l=Re(i,o);return B(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=B(a,[-1,1]),o=Re(n,i);return B(o,[o.size])}else{let i=B(a,[a.shape[0],a.shape[1]]);return Re(n,i)}}var $v=z({dot_:ZP});function JP(e,...t){let n=t.map((r,s)=>E(r,`tensors${s}`,"einsum")),a={equation:e};return L.runKernel(Em,n,a)}var jT=z({einsum_:JP});function QP(e){let t={x:E(e,"x","elu","float32")};return L.runKernel(Pi,t)}var Pu=z({elu_:QP});function eO(e){let t=E(e,"x","erf");R(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=le(t,"float32"));let n={x:t};return L.runKernel(jl,n)}var Av=z({erf_:eO});function Fv(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function qT(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function KT(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function mi(e,t){let n=t.map(a=>1);return qT(e,n,t)}function tO(e,t,n){R(Fv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function XT(e,t){if(Fv(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function Dv(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function nO(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function aO(e,t=null,n=!1){let a={x:E(e,"x","max")},r={reductionIndices:t,keepDims:n};return L.runKernel(Hi,a,r)}var Na=z({max_:aO});function rO(e,t=null,n=!1){let a={x:E(e,"x","min")},r={axis:t,keepDims:n};return L.runKernel(Xi,a,r)}var lc=z({min_:rO});function sO(e,t){let n=E(e,"base","pow"),a=E(t,"exp","pow");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(to,r)}var Ar=z({pow_:sO});function ke(e,t){if((hn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&hn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ys(e,[],[],t)}function iO(e){let t={x:E(e,"x","sqrt","float32")};return L.runKernel(mo,t)}var ln=z({sqrt_:iO});function oO(e){let t=E(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var lt=z({square_:oO});function lO(e,t=null,n=!1){let a=E(e,"x","sum");a.dtype==="bool"&&(a=le(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(fo,r,s)}var ye=z({sum_:lO});function uO(e,t="euclidean",n=null,a=!1){e=E(e,"x","norm");let r=YT(e,t,n),s=r.shape;if(a){let i=Ea(n,e.shape);s=mi(r.shape,i)}return B(r,s)}function YT(e,t,n=null){if(e.rank===0)return Lt(e);if(e.rank!==1&&n===null)return YT(B(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ye(Lt(e),n);if(t===1/0)return Na(Lt(e),n);if(t===-1/0)return lc(Lt(e),n);if(t==="euclidean"||t===2)return ln(ye(Ar(Lt(e),ke(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Na(ye(Lt(e),n[0]),n[1]-1);if(t===1/0)return Na(ye(Lt(e),n[1]),n[0]);if(t===-1/0)return lc(ye(Lt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return ln(ye(lt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Ou=z({norm_:uO});function pO(e,t=null,n=!1){return Ou(e,"euclidean",t,n)}var Rv=z({euclideanNorm_:pO});function cO(e){let t={x:E(e,"x","exp")};return L.runKernel(Oi,t)}var gn=z({exp_:cO});function dO(e,t=0){let n=E(e,"x","expandDims","string_or_numeric");R(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return L.runKernel(Kl,a,r)}var mn=z({expandDims_:dO});function hO(e){let t={x:E(e,"x","expm1")};return L.runKernel(Xl,t)}var Mv=z({expm1_:hO});function mO(e,t){let n=E(e,"x","tile","string_or_numeric");R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return L.runKernel(gs,a,r)}var Wn=z({tile_:mO});function fO(e,t,n,a="float32"){t==null&&(t=e);let r=Le([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=B(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Wn(mn(i,0),[n[0],1,1]);if(n.length===2)return Wn(mn(mn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Wn(mn(mn(mn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var nf=z({eye_:fO});function En(e,t,n){let a={shape:e,value:t,dtype:n};return L.runKernel(Tc,{},a)}function gO(e){let t={x:E(e,"x","floor","float32")};return L.runKernel(Li,t)}var Lu=z({floor_:gO});function bO(e,t,n=0,a=0){let r=E(e,"x","gather"),s=E(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return L.runKernel(Zl,i,o)}var zu=z({gather_:bO});function yO(e,t){let n=E(e,"a","greater","string_or_numeric"),a=E(t,"b","greater","string_or_numeric");[n,a]=$t(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Ql,r)}var jn=z({greater_:yO});function xO(e,t){let n=E(e,"a","greaterEqual","string_or_numeric"),a=E(t,"b","greaterEqual","string_or_numeric");[n,a]=$t(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Bi,r)}var ks=z({greaterEqual_:xO});function vO(e){let t={x:E(e,"x","isFinite")};return L.runKernel(eu,t)}var Pv=z({isFinite_:vO});function wO(e){let t={x:E(e,"x","isInf")};return L.runKernel(tu,t)}var Ov=z({isInf_:wO});function kO(e){let t={x:E(e,"x","isNaN")};return L.runKernel(nu,t)}var Lv=z({isNaN_:kO});function IO(e,t=.2){let n={x:E(e,"x","leakyRelu")},a={alpha:t};return L.runKernel(Ui,n,a)}var jc=z({leakyRelu_:IO});function TO(e,t){let n=E(e,"a","less","string_or_numeric"),a=E(t,"b","less","string_or_numeric");[n,a]=$t(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(au,r)}var af=z({less_:TO});function SO(e,t){let n=E(e,"a","lessEqual","string_or_numeric"),a=E(t,"b","lessEqual","string_or_numeric");[n,a]=$t(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(ru,r)}var Is=z({lessEqual_:SO});function ZT(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return L.runKernel(Rm,{},a)}function NO(e,t=5,n=1,a=1,r=.5){let s=E(e,"x","localResponseNormalization");R(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),R(dl(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=B(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=L.runKernel(Sc,l,u);return o?B(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var zv=z({localResponseNormalization_:NO});function CO(e){let t={x:E(e,"x","log","float32")};return L.runKernel(Gi,t)}var ea=z({log_:CO});function _O(e){let t={x:E(e,"x","log1p")};return L.runKernel(su,t)}var qc=z({log1p_:_O});function EO(e){return R(as(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=E(t,"x","tf.grad","string_or_numeric"),r=n!=null?E(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(a),[a],r);return r!=null&&Cn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),rf(i),i[0]})}}function $O(e){return R(as(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{R(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=sc(t,"args","tf.grads","string_or_numeric"),r=n!=null?E(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(...a),a,r);return r!=null&&Cn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),rf(i),i})}}function AO(e){return R(as(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{R(t instanceof $e,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),R(n==null||n instanceof $e,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=L.gradients(()=>e(t),[t],n);return rf(a),{grad:a[0],value:r}}}function FO(e){return R(as(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{R(Array.isArray(t)&&t.every(r=>r instanceof $e),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),R(n==null||n instanceof $e,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=L.gradients(()=>e(...t),t,n);return n!=null&&Cn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),rf(a.grads),a}}function JT(e,t){R(as(e),()=>"The f passed in variableGrads(f) must be a function"),R(t==null||Array.isArray(t)&&t.every(u=>u instanceof rs),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),R(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=L.gradients(e,t,null,s);R(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),R(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function dr(e){return L.customGrad(e)}function rf(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function DO(e){let t={x:E(e,"x","softplus")};return L.runKernel(Su,t)}var ko=z({softplus_:DO});function RO(e){let t=E(e,"x","logSigmoid");return dr(n=>({value:vt(ko(vt(n))),gradFunc:a=>W(a,da(vt(n)))}))(t)}var Wv=z({logSigmoid_:RO});function MO(e,t){let n=E(e,"a","sub"),a=E(t,"b","sub");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(yo,r)}var ce=z({sub_:MO});function PO(e,t=-1){let n=E(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return dr((a,r)=>{let s=Na(a,t,!0),i=ce(a,s),o=ce(le(i,"float32"),ea(ye(gn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=gn(p);return ce(l,W(ye(l,t,d),c))}}})(n)}var sf=z({logSoftmax_:PO});function OO(e,t=null,n=!1){let a=E(e,"x","logSumExp"),r=Ea(t,a.shape),s=Na(a,r,!0),i=ce(a,s),o=gn(i),l=ye(o,r),u=ea(l),p=Q(B(s,u.shape),u);if(n){let d=mi(p.shape,r);return B(p,d)}return p}var of=z({logSumExp_:OO});function LO(e,t){let n=E(e,"a","logicalAnd","bool"),a=E(t,"b","logicalAnd","bool");pt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(iu,r)}var _a=z({logicalAnd_:LO});function zO(e){let t={x:E(e,"x","logicalNot","bool")};return L.runKernel(ou,t)}var Kc=z({logicalNot_:zO});function WO(e,t){let n=E(e,"a","logicalOr","bool"),a=E(t,"b","logicalOr","bool");pt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(lu,r)}var lf=z({logicalOr_:WO});function BO(e,t){let n=E(e,"a","logicalXor","bool"),a=E(t,"b","logicalXor","bool");return pt(n.shape,a.shape),_a(lf(e,t),Kc(_a(e,t)))}var Bv=z({logicalXor_:BO}),hh=2147483648;function VO(e,t,n="left"){let a=E(e,"sortedSequence","searchSorted"),r=E(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=B(a,[-1,s]),l=B(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(bt(l.shape)>=hh)throw new Error(`values tensor size must less than ${hh}`);if(o.shape[1]>=hh)throw new Error(`trailing dim_size must less than ${hh} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return L.runKernel(Gm,u,p)}var uf=z({searchSorted_:VO});function QT(e,t){return uf(e,t,"left")}function UO(e,t,n,a,r){let s=E(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=B(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),R(mr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),_n("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(qi,u,p);return l?B(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Mt=z({maxPool_:UO});function GO(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=E(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),_n("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(Nc,u,p);return l?B(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Vv=z({maxPool3d_:GO});function HO(e,t,n,a,r=!1){let s={x:E(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=L.runKernel(Lm,s,i);return{result:o[0],indexes:o[1]}}var eS=z({maxPoolWithArgmax_:HO});function jO(e,t){let n=E(e,"a","maximum"),a=E(t,"b","maximum");[n,a]=$t(n,a),n.dtype==="bool"&&(n=le(n,"int32"),a=le(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(ji,r)}var fr=z({maximum_:jO});function qO(e,t=null,n=!1){let a={x:E(e,"x","mean")},r={axis:t,keepDims:n};return L.runKernel(Ki,a,r)}var _t=z({mean_:qO});function It(e,t="float32"){if(t==="complex64"){let a=It(e,"float32"),r=It(e,"float32");return $r(a,r)}let n=gm(bt(e),t);return L.makeTensor(n,e,t)}function Jn(e,t="float32"){if(t==="complex64"){let a=Jn(e,"float32"),r=It(e,"float32");return $r(a,r)}let n=Lx(bt(e),t);return L.makeTensor(n,e,t)}function tS(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=E(e,"x","meshgrid",e instanceof $e?e.dtype:"float32");if(t===void 0)return[a];let r=E(t,"y","meshgrid",t instanceof $e?t.dtype:"float32"),s=bt(a.shape),i=bt(r.shape);return n==="xy"?(a=B(a,[1,-1]),r=B(r,[-1,1]),[Re(Jn([i,1],a.dtype),a),Re(r,Jn([1,s],r.dtype))]):(a=B(a,[-1,1]),r=B(r,[1,-1]),[Re(a,Jn([1,i],a.dtype)),Re(Jn([s,1],r.dtype),r)])}function KO(e,t){let n=E(e,"a","minimum"),a=E(t,"b","minimum");[n,a]=$t(n,a),n.dtype==="bool"&&(n=le(n,"int32"),a=le(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Yi,r)}var Wu=z({minimum_:KO});function XO(e,t,n){R(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=E(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");R(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)R(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),R(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return L.runKernel(Zi,i,s)}var Uv=z({mirrorPad_:XO});function YO(e,t){let n=E(e,"a","mod"),a=E(t,"b","mod");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(uu,r)}var Gv=z({mod_:YO});function ZO(e,t=null,n=!1){e=E(e,"x","moments");let a=Ea(t,e.shape),r=_t(e,a,n),s=r.shape;n||(s=mi(r.shape,a));let i=lt(ce(le(e,"float32"),B(r,s))),o=_t(i,a,n);return{mean:r,variance:o}}var Xc=z({moments_:ZO});function JO(e,t,n,a){let r=E(t,"data","multiRNNCell"),s=sc(n,"c","multiRNNCell"),i=sc(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var nS=z({multiRNNCell_:JO});function QO(e,t,n,a=!1){let r=E(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?B(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=L.runKernel(zm,o,l);return i===1?B(u,[u.size]):u}var aS=z({multinomial_:QO});function e3(e,t){let n=E(e,"a","notEqual","string_or_numeric"),a=E(t,"b","notEqual","string_or_numeric");[n,a]=$t(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(cu,r)}var fi=z({notEqual_:e3});function t3(e){let t={x:E(e,"x","onesLike")};return L.runKernel(fu,t)}var ta=z({onesLike_:t3});function n3(e,t){let n=E(e,"v1","outerProduct"),a=E(t,"v2","outerProduct");R(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=B(n,[-1,1]),s=B(a,[1,-1]);return Re(r,s)}var rS=z({outerProduct_:n3});function a3(e,t,n=0){let a=E(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return L.runKernel(eo,s,r)}var ba=z({pad_:a3});function r3(e,t,n=0){return R(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ba(e,[t],n)}var sS=z({pad1d_:r3});function s3(e,t,n=0){return R(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ba(e,t,n)}var iS=z({pad2d_:s3});function i3(e,t,n=0){return R(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ba(e,t,n)}var oS=z({pad3d_:i3});function o3(e,t,n=0){return R(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ba(e,t,n)}var lS=z({pad4d_:o3});function l3(e,t,n){let a=E(e,"x","spaceToBatchND");R(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),R(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),R(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return L.runKernel(Nu,r,s)}var Yc=z({spaceToBatchND_:l3});function u3(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=E(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(mr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=LT(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=c3([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=p3([p.inHeight,p.inWidth],d,c),g=h?a:"valid",b=h?l:Yc(l,d,m),y=(n==="avg"?()=>ga(b,t,s,g,i):()=>Mt(b,t,s,g,i))(),x=h?y:Gc(y,d,f);return u?B(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function p3(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function c3(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var Hv=z({pool_:u3});function d3(e,t){let n=E(e,"x","prelu"),a=E(t,"alpha","prelu"),r={x:n,alpha:a};return L.runKernel(no,r)}var Zc=z({prelu_:d3});function h3(e,t=null,n=!1){let a=E(e,"x","prod");a.dtype==="bool"&&(a=le(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(ao,r,s)}var jv=z({prod_:h3});function m3(e,t,n,a,r){let s=E(e,"shape","raggedTensorToTensor","int32"),i=E(t,"values","raggedTensorToTensor"),o=E(n,"defaultValue","raggedTensorToTensor",i.dtype),l=a.map((d,c)=>E(d,`tensors${c}`,"raggedTensorToTensor","int32")),u={shape:s,values:i,defaultValue:o,rowPartitionTensors:l},p={rowPartitionTypes:r};return L.runKernel(Wm,u,p)}var uS=z({raggedTensorToTensor_:m3});function f3(e,t,n){let a=bt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return L.makeTensor(r,e,n)}var pS=z({rand_:f3}),qv=ds(hm()),Kv=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=qv.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},g3=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=qv.alea(r.toString()),this.randn=new Kv(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},b3=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=qv.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function y3(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new g3(t,n,a,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var cS=z({randomGamma_:y3});function x3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new Kv(t,n,a,!1,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var pf=z({randomNormal_:x3});function v3(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return pf(e,0,1,t,n)}var dS=z({randomStandardNormal_:v3});function w3(e,t=0,n=1,a="float32",r){let s=Le(e,a),i=new b3(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Bu=z({randomUniform_:w3});function bl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return L.runKernel(Cc,{},r)}function k3(e){let t={x:E(e,"x","reciprocal")};return L.runKernel(bu,t)}var Xv=z({reciprocal_:k3});function I3(e){let t={x:E(e,"x","relu")};return L.runKernel(ro,t)}var Xe=z({relu_:I3});function T3(e){let t={x:E(e,"x","relu6")};return L.runKernel(oo,t)}var cf=z({relu6_:T3});function S3(e,t){let n={x:E(e,"x","reverse")},a={dims:t};return L.runKernel(lo,n,a)}var fa=z({reverse_:S3});function N3(e){let t=E(e,"x","reverse");return R(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),fa(t,0)}var hS=z({reverse1d_:N3});function C3(e,t){let n=E(e,"x","reverse");return R(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),fa(n,t)}var mS=z({reverse2d_:C3});function _3(e,t){let n=E(e,"x","reverse");return R(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),fa(n,t)}var fS=z({reverse3d_:_3});function E3(e,t){let n=E(e,"x","reverse");return R(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),fa(n,t)}var gS=z({reverse4d_:E3});function $3(e){let t={x:E(e,"x","round")};return L.runKernel(uo,t)}var df=z({round_:$3});function A3(e){let t={x:E(e,"x","rsqrt","float32")};return L.runKernel(po,t)}var hf=z({rsqrt_:A3});function F3(e){let t={x:E(e,"x","selu")};return L.runKernel(wu,t)}var mf=z({selu_:F3});function D3(e,t,n,a,r,s=[1,1],i="NHWC"){let o=E(e,"x","separableConv2d"),l=E(t,"depthwiseFilter","separableConv2d"),u=E(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");R(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),R(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),R(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),R(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];R(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=ws(p,l,a,r,i,s),f=Dt(m,u,1,"valid",i);return d?B(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ts=z({separableConv2d_:D3});async function R3(e,t){let n=E(e,"x","setdiff1d"),a=E(t,"y","setdiff1d");R(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),R(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),R(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new jt([o],n.dtype),u=new jt([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var bS=R3;function M3(e){let t={x:E(e,"x","sign")};return L.runKernel(Tu,t)}var Yv=z({sign_:M3});function P3(e){let t={x:E(e,"x","sin","float32")};return L.runKernel(co,t)}var ff=z({sin_:P3});function O3(e){let t={x:E(e,"x","sinh")};return L.runKernel(Iu,t)}var gf=z({sinh_:O3});function L3(e,t,n){let a=E(e,"x","slice1d");return R(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),He(a,[t],[n])}var Jc=z({slice1d_:L3});function z3(e,t,n){let a=E(e,"x","slice2d");return R(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var bf=z({slice2d_:z3});function W3(e,t,n){let a=E(e,"x","slice3d");return R(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var Io=z({slice3d_:W3});function B3(e,t,n){let a=E(e,"x","slice4d");return R(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var yl=z({slice4d_:B3});function V3(e,t=-1){let n=E(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return L.runKernel(go,a,r)}var Qa=z({softmax_:V3});function U3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Am,t)}var Qc=z({fft_:U3});function G3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Fm,t)}var xl=z({ifft_:G3});function H3(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=B(e,[n,t]);a=xl(r)}else{let r=[n,2*(t-1)],s=B(gl(e),[n,t]),i=B(Bc(e),[n,t]),o=fa(He(s,[0,1],[n,t-2]),1),l=W(fa(He(i,[0,1],[n,t-2]),1),ke(-1)),u=Qe([s,o],1),p=Qe([i,l],1),d=B($r(u,p),[r[0],r[1]]);a=xl(d)}if(a=gl(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=B(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var yf=z({irfft_:H3});function j3(e,t,n=0){let a={x:E(e,"x","split")},r={numOrSizeSplits:t,axis:n};return L.runKernel(Cu,a,r)}var Vn=z({split_:j3});function q3(e,t){R(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=He(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Qe([e,It(m)],e.shape.length-1),n=t}else r=e;let s=qe(r),i=B($r(r,s),[a,n]),o=Qc(i),l=Math.floor(n/2)+1,u=gl(o),p=Bc(o),d=Vn(u,[l,n-l],u.shape.length-1),c=Vn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,B($r(d[0],c[0]),h)}var ed=z({rfft_:q3});function K3(e,t){let n=E(e,"a","squaredDifference"),a=E(t,"b","squaredDifference");[n,a]=$t(n,a),pt(n.shape,a.shape);let r={a:n,b:a},s={};return L.runKernel(bo,r,s)}var xf=z({squaredDifference_:K3});function X3(e,t){let n=E(e,"x","squeeze","string_or_numeric");return B(n,MI(n.shape,t).newShape)}var Ss=z({squeeze_:X3});function Y3(e,t=0){let n=sc(e,"tensors","stack","string_or_numeric");R(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&R(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return L.runKernel(gu,a,r)}var Rt=z({stack_:Y3});function Z3(e,t=0){let n={x:E(e,"x","step")},a={alpha:t};return L.runKernel(bs,n,a)}var To=z({step_:Z3});function J3(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:E(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return L.runKernel(Eu,u,p)}var Zv=z({stridedSlice_:J3});function Q3(e){let t={x:E(e,"x","tan","float32")};return L.runKernel(xo,t)}var Jv=z({tan_:Q3});function Ke(e,t){ki(e);let n=cr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ys(e,null,n,t)}function Ca(e,t,n){if(ki(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=cr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ys(e,t,a,n)}function $a(e,t,n){if(ki(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=cr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ys(e,t,a,n)}function yS(e,t,n){if(ki(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=cr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ys(e,t,a,n)}function xS(e,t,n){if(ki(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=cr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,ys(e,t,a,n)}function eL(e,t=1,n=!0){let a=E(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=L.runKernel($u,s,i);return{values:o,indices:l}}var Qv=z({topk_:eL});function tL(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Kv(t,n,a,!0,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var vf=z({truncatedNormal_:tL});function nL(e,t=0){let n=E(e,"x","unique","string_or_numeric");R(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=L.runKernel(jm,a,r);return{values:s,indices:i}}var ew=z({unique_:nL});function aL(e,t,n){let a=E(e,"x","unsortedSegmentSum"),r=E(t,"segmentIds","unsortedSegmentSum","int32");R(dl(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return L.runKernel(Mc,s,i)}var wf=z({unsortedSegmentSum_:aL});function rL(e,t=0){let n=E(e,"x","unstack","string_or_numeric");R(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return L.runKernel(Fu,a,r)}var mt=z({unstack_:rL});function vS(e,t){return uf(e,t,"right")}function tw(e,t=!0,n,a){return L.makeVariable(e,t,n,a)}function wS(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Le(e,"int32"),r=Le([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function sL(e){let t=E(e,"condition","whereAsync","bool"),n=await t.data(),a=wS(t.shape,n);return e!==t&&t.dispose(),a}var nw=sL;async function iL(e,t,n){let a=E(e,"tensor","boolMask"),r=E(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;R(i>0,()=>"mask cannot be scalar"),Cn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=B(a,u),d=B(r,[-1]),c=await nw(d),h=Ss(c,[1]),m=zu(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var kS=iL;function oL(e,t,n,a,r=!0){let s=E(e,"v","movingAverage"),i=E(t,"x","movingAverage"),o=E(n,"decay","movingAverage");QI(s,i),R(hs(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ke(1),u=ce(l,o),p=W(ce(i,s),u);if(r){R(a!=null,()=>"When using zeroDebias: true, step is required.");let d=E(a,"step","movingAverage");p=fe(p,ce(l,Ar(o,d)))}return Q(s,p)}var IS=z({movingAverage_:oL});function lL(e,t,n){let a=E(e,"indices","scatterND","int32"),r=E(t,"updates","scatterND");nv(r,a,n);let s={indices:a,updates:r},i={shape:n};return L.runKernel(xu,s,i)}var TS=z({scatterND_:lL});function uL(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function pL(e,t,n,a=0){let r=E(e,"sparseIndices","sparseToDense","int32"),s=E(t,"sparseValues","sparseToDense","string_or_numeric"),i=E(a,"defaultValue","sparseToDense",s.dtype);uL(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return L.runKernel(Hm,o,l)}var SS=z({sparseToDense_:pL});function cL(e,t){let n=E(t,"indices","gatherND","int32"),a={params:E(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(Jl,a)}var NS=z({gatherND_:cL});function dL(e,t){if(t==null)return e.shape.slice();if(hs(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function hL(e,t,n,a){let r=E(e,"x","dropout");if(R(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),R(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof $e?r.clone():r;let s=dL(r,n),i=1-t,o=fe(Lu(Q(Bu(s,0,1,"float32",a),i)),i);return W(r,o)}var aw=z({dropout_:hL});function rw(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function kf(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Ke(r,"float32")}async function mL(e,t,n=1){let a=E(e,"predictions","inTopK"),r=E(t,"targets","inTopK");R(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),R(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Cn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];R(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=PI("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Bn(p,r.shape,"bool")}var CS=mL,vl={};Fe(vl,{conv2d:()=>bL,depthwiseConv2d:()=>wL,matMul:()=>IL});function fL(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=B(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=B(t,[1,t.shape[0],t.shape[1],t.shape[2]])),R(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),R(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),R(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];R(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),R(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),_n("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return L.runKernel(km,d,c)}var sw=z({conv2DBackpropFilter_:fL});function If(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return W(e,To(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Tf(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=ye(n,a)),B(n,e.shape)}function Sf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Xe(e);if(t==="elu")return Pu(e);if(t==="relu6")return cf(e);if(t==="prelu")return Zc(e,n);if(t==="leakyrelu")return jc(e,a);if(t==="sigmoid")return da(e);throw new Error(`Unknown fused activation ${t}.`)}var Nf=(e,t)=>!(e>0)||t==="linear";function gL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",Nf(L.state.gradientDepth,l)===!1){R(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let N=Dt(e,t,n,a,r,s,i);return o!=null&&(N=Q(N,o)),Sf(N,l,u,p)}let d=E(e,"x","conv2d","float32"),c=E(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=B(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),_n("fused conv2d",a,i);let f=r==="NHWC"?h.shape[3]:h.shape[1];R(c.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${c.shape[2]}.`),R(mr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let g=Uc(h.shape,c.shape,n,s,a,i),b;o!=null&&(b=E(o,"bias","fused conv2d"),[b]=$t(b,d),r==="NHWC"?pt(g.outShape,b.shape):(R(b.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${b.shape.length}.`),R(b.shape.length===0||b.shape[0]===g.outChannels||b.shape[0]===1,()=>`Error in fused conv2d: bias shape (${b.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let y;if(u!=null){let N=u.shape;if(R(N.length<=1||N.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${N.length}.`),N.length===1)R(N[0]===1||N[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${N}) is not compatible with the number of output channels (${g.outChannels}).`);else if(N.length===3)try{pt(N,g.outShape)}catch(_){let $=`Error in fused conv2d: PReLU activation weights (${N}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error($)}y=E(u,"prelu weights","fused conv2d")}let x=(N,_)=>{R(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[$,A,M,D]=_,T=If(N,M,l);R(ss(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let P=Tv(A.shape,T,$,n,a),U=sw(A,T,$.shape,n,a),j=[P,U];if(D!=null){let q=Tf(D,T);j.push(q)}return j},w={x:h,filter:c,bias:b,preluActivationWeights:y},I={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?dr((N,_,$)=>{let A=L.runKernel(li,w,I);return $([_,N,A]),m&&(A=B(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:x}})(h,c):dr((N,_,$,A)=>{let M=L.runKernel(li,w,I);return A([_,N,M,$]),m&&(M=B(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:x}})(h,c,b)}var bL=z({fusedConv2d_:gL});function yL(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=B(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=B(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return L.runKernel(Nm,u,p)}var _S=z({depthwiseConv2dNativeBackpropFilter_:yL});function xL(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=B(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=L.runKernel(Cm,u,p);return l?B(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ES=z({depthwiseConv2dNativeBackpropInput_:xL});function vL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(Nf(L.state.gradientDepth,l)===!1){let I=ws(e,t,n,a,r,s,i);return o!=null&&(I=Q(I,o)),Sf(I,l,u,p)}let d=E(e,"x","depthwiseConv2d","float32"),c=E(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=B(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),R(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),R(mr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),_n("fused depthwiseConv2d",a,i);let f=Uc(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=$t(g,d),pt(f.outShape,g.shape));let b;u!=null&&(b=E(u,"prelu weights","fused depthwiseConv2d"));let y=(I,N)=>{R(ss(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[_,$,A,M]=N,D=If(I,A,l),T=ES($.shape,D,_,n,a,s,i),P=_S($,D,_.shape,n,a,s,i);if(M!=null){let U=Tf(g,D);return[T,P,U]}return[T,P]},x={x:h,filter:c,bias:g,preluActivationWeights:b},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?dr((I,N,_)=>{let $=L.runKernel(ui,x,w);return _([N,I,$]),m&&($=B($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:y}})(h,c):dr((I,N,_,$)=>{let A=L.runKernel(ui,x,w);return $([N,I,A,_]),m&&(A=B(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:y}})(h,c,g)}var wL=z({fusedDepthwiseConv2d_:vL});function kL({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(Nf(L.state.gradientDepth,s)===!1){let M=Re(e,t,n,a);return r!=null&&(M=Q(M,r)),Sf(M,s,i,o)}let l=E(e,"a","fused matMul"),u=E(t,"b","fused matMul");[l,u]=$t(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=bt(m),b=bt(f);R(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let y=pt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?B(l,[g,p,c]):B(l,[g,c,p]),w=a?B(u,[b,h,d]):B(u,[b,d,h]),I;r!=null&&(I=E(r,"bias","fused matMul"),[I]=$t(I,l),pt(y,I.shape));let N;i!=null&&(N=E(i,"prelu weights","fused matMul"));let _=(M,D)=>{let[T,P,U,j]=D,q=If(B(M,U.shape),U,s),K,Y;if(!n&&!a?(K=Re(q,P,!1,!0),Y=Re(T,q,!0,!1)):!n&&a?(K=Re(q,P,!1,!1),Y=Re(q,T,!0,!1)):n&&!a?(K=Re(P,q,!1,!0),Y=Re(T,q,!1,!1)):(K=Re(P,q,!0,!0),Y=Re(q,T,!0,!0)),r!=null){let te=Tf(j,q);return[K,Y,te]}else return[K,Y]},$={a:x,b:w,bias:I,preluActivationWeights:N},A={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?dr((M,D,T)=>{let P=L.runKernel(oi,$,A);return T([M,D,P]),{value:B(P,y),gradFunc:_}})(x,w):dr((M,D,T,P)=>{let U=L.runKernel(oi,$,A);return P([M,D,U,T]),{value:B(U,y),gradFunc:_}})(x,w,I)}var IL=z({fusedMatMul_:kL});function TL(e){return kf(e,.54,.46)}var SL=z({hammingWindow_:TL});function NL(e){return kf(e,.5,.5)}var $S=z({hannWindow_:NL});function CL(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(He(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Qe([He(e,s,t-o),En([o],r)]);i.push(l),s+=n}return i.length===0?Ca([],[0,t]):B(Qe(i),[i.length,t])}var AS=z({frame_:CL});function _L(e,t,n,a,r=$S){a==null&&(a=rw(t));let s=AS(e,t,n),i=W(s,r(t));return ed(i,a)}var EL=z({stft_:_L});function $L(e,t,n,a,r="bilinear",s=0){let i=E(e,"image","cropAndResize"),o=E(t,"boxes","cropAndResize","float32"),l=E(n,"boxInd","cropAndResize","int32"),u=o.shape[0];R(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),R(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),R(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),R(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),R(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return L.runKernel(Gl,p,d)}var AL=z({cropAndResize_:$L});function FL(e){let t=E(e,"image","flipLeftRight","float32");R(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(Yl,n,{})}var DL=z({flipLeftRight_:FL});function RL(e){let t=E(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];R(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),R(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Wn(t,r)}var ML=z({grayscaleToRGB_:RL});function PL(e,t,n=0,a=.5){let r=E(e,"image","rotateWithOffset","float32");R(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return L.runKernel(Ru,s,i)}var OL=z({rotateWithOffset_:PL});function Vu(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),R(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),R(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),R(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),R(t.rank===1,()=>"scores must be a 1D tensor"),R(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),R(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function LL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppression","float32"),i=E(t,"scores","nonMaxSuppression","float32"),o=Vu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return L.runKernel(du,{boxes:s,scores:i},l)}var zL=z({nonMaxSuppression_:LL});function WL(e,t,n){let a=BL(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function BL(e,t,n){return UL(e,t,n||VL)}function VL(e,t){return e>t?1:e<t?-1:0}function UL(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function FS(e,t,n,a,r){return iw(e,t,n,a,r,0)}function DS(e,t,n,a,r,s){return iw(e,t,n,a,r,0,!1,s,!0)}function RS(e,t,n,a,r,s){return iw(e,t,n,a,r,s,!0)}function iw(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(fk);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:b,boxIndex:y,suppressBeginIndex:x}=g;if(b<r)break;let w=!1;for(let I=d.length-1;I>=x;--I){let N=GL(e,y,d[I]);if(N>=a){w=!0;break}if(g.score=g.score*HL(a,p,N),g.score<=r)break}g.suppressBeginIndex=d.length,w||(g.score===b?(d.push(y),c.push(g.score)):g.score>r&&WL(u,g,fk))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function GL(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),b=Math.min(o,d),y=Math.min(l,c),x=Math.max(b-f,0)*Math.max(y-g,0);return x/(h+m-x)}function HL(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function fk(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function jL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),o=Vu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=FS(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ke(d,"int32")}var qL=jL;function KL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Vu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=L.runKernel(mu,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var XL=z({nonMaxSuppressionWithScore_:KL});async function YL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Vu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=RS(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(c,"int32"),selectedScores:Ke(h)}}var ZL=YL;function JL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Vu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=L.runKernel(hu,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var QL=z({nonMaxSuppressionPadded_:JL});async function ez(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Vu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=DS(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(m,"int32"),validOutputs:ke(f,"int32")}}var tz=ez;function nz(e,t,n=!1,a=!1){let r=E(e,"images","resizeBilinear");R(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),R(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=B(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(io,o,l);return i?B(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var MS=z({resizeBilinear_:nz});function az(e,t,n=!1,a=!1){let r=E(e,"images","resizeNearestNeighbor");R(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),R(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),R(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=B(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(so,o,l);return i?B(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var PS=z({resizeNearestNeighbor_:az});function rz(e,t="binary",n=!1,a=.5){let r=E(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=W(Ke([a]),255),p,d,c,h;if(R(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),R(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),R(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),R(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=Vn(r,[1,1,1],-1);let f=W(p,s),g=W(d,i),b=W(c,o);h=Q(Q(f,g),b)}else h=e;if(t==="otsu"){let f=yv(le(df(h),"int32"),Bn([]),256);u=sz(f,l)}let m=n?Is(h,u):jn(h,u);return le(W(m,255),"int32")}function sz(e,t){let n=Ke([-1]),a=Ke([0]),r=Ke([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=He(e,0,d+1),i=He(e,d+1),u=fe(ye(s),t),p=fe(ye(i),t);let c=ye(W(s,bl(0,s.size)));o=fe(c,ye(s));let h=En(i.shape,s.size),m=Q(bl(0,i.size),h),f=W(i,m);l=fe(ye(f),ye(i));let g=ce(o,l),b=ce(o,l),y=W(u,p);r=W(W(y,g),b);let x=jn(r,a);a=fn(x,r,a),n=fn(x,Ke([d]),n)}return n}var iz=z({threshold_:rz});function oz(e,t,n="nearest",a="constant",r=0,s){let i=E(e,"image","transform","float32"),o=E(t,"transforms","transform","float32");R(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),R(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return L.runKernel(Au,l,u)}var lz=z({transform_:oz});function uz(e,t,n){R(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),R(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=E(e,"a","bandPart");R(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=B(bl(0,s,1,"int32"),[-1,1]),l=bl(0,i,1,"int32"),u=ce(o,l),p=_a(Is(u,ke(+t,"int32")),ks(u,ke(-n,"int32"))),d=It([s,i],a.dtype);return B(Rt(mt(B(a,[-1,s,i])).map(c=>fn(p,c,d))),r)}var pz=z({bandPart_:uz});function cz(e){let t;if(Array.isArray(e)){t=!1,R(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)R(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=Vn(e,e.shape[0],0).map(r=>Ss(r,[0]));R(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=W(ye(W(n[i],s)),n[i]);s=ce(s,o)}return fe(s,Ou(s,"euclidean"))}));return t?Rt(n,0):n}var dz=z({gramSchmidt_:cz});function hz(e,t=!1){if(R(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return gk(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=mt(B(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=gk(l,t);r.push(u),s.push(p)});let i=B(Rt(r,0),e.shape),o=B(Rt(s,0),e.shape);return[i,o]}}function gk(e,t=!1){return L.tidy(()=>{R(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=nf(n),s=ur(e),i=Ca([[1]],[1,1]),o=ur(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=L.tidy(()=>{let h=He(s,[u,u],[n-u,1]),m=Ou(h),f=He(s,[u,u],[1,1]),g=fn(jn(f,0),Ca([[-1]]),Ca([[1]])),b=ce(f,W(g,m)),y=fe(h,b);y.shape[0]===1?o=ur(i):o=Qe([i,He(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=vt(fe(Re(g,b),m)),w=He(s,[u,0],[n-u,a]),I=W(x,o),N=Ae(o);if(u===0)s=ce(w,Re(I,Re(N,w)));else{let A=ce(w,Re(I,Re(N,w)));s=Qe([He(s,[0,0],[u,a]),A],0)}let _=Ae(I),$=He(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ce($,Re(Re($,o),_));else{let A=ce($,Re(Re($,o),_));r=Qe([He(r,[0,0],[n,u]),A],1)}return[o,s,r]}),Me([p,d,c])}return!t&&n>a&&(r=He(r,[0,0],[n,a]),s=He(s,[0,0],[a,a])),[r,s]})}var mz=z({qr_:hz}),kn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(kn||(kn={}));function fz(e,t,n=kn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=E(t,"weights","computeWeightedLoss"));let s=r==null?a:W(a,r);if(n===kn.NONE)return s;if(n===kn.SUM)return ye(s);if(n===kn.MEAN){if(r==null)return _t(s);{let i=a.size/r.size,o=fe(ye(s),ye(r));return i>1?fe(o,ke(i)):o}}if(n===kn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(ye(s),ke(a.size));{let i=W(r,Jn(a.shape)),o=le(ye(fi(i,ke(0))),"float32");return fe(ye(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Fr=z({computeWeightedLoss_:fz});function gz(e,t,n,a=kn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","absoluteDifference"),s=E(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=E(n,"weights","absoluteDifference")),Cn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(ce(r,s));return Fr(o,i,a)}var bz=z({absoluteDifference_:gz});function yz(e,t,n,a,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","cosineDistance"),i=E(t,"predictions","cosineDistance"),o=null;a!=null&&(o=E(a,"weights","cosineDistance")),Cn(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),u=ce(l,ye(W(s,i),n,!0));return Fr(u,o,r)}var xz=z({cosineDistance_:yz});function vz(e,t,n,a=kn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","hingeLoss"),s=E(t,"predictions","hingeLoss"),i=null;n!=null&&(i=E(n,"weights","hingeLoss")),Cn(r.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);r=ce(W(ke(2),r),o);let l=Xe(ce(o,W(r,s)));return Fr(l,i,a)}var wz=z({hingeLoss_:vz});function kz(e,t,n,a=1,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","huberLoss"),i=E(t,"predictions","huberLoss"),o=null;n!=null&&(o=E(n,"weights","huberLoss")),Cn(s.shape,i.shape,"Error in huberLoss: ");let l=ke(a),u=Lt(ce(i,s)),p=Wu(u,l),d=ce(u,p),c=Q(W(ke(.5),lt(p)),W(l,d));return Fr(c,o,r)}var Iz=z({huberLoss_:kz});function Tz(e,t,n,a=1e-7,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","logLoss"),i=E(t,"predictions","logLoss"),o=null;n!=null&&(o=E(n,"weights","logLoss")),Cn(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),u=ke(a),p=vt(W(s,ea(Q(i,u)))),d=W(ce(l,s),ea(Q(ce(l,i),u))),c=ce(p,d);return Fr(c,o,r)}var Sz=z({logLoss_:Tz});function Nz(e,t,n,a=kn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","meanSquaredError"),s=E(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=E(n,"weights","meanSquaredError")),Cn(r.shape,s.shape,"Error in meanSquaredError: ");let o=xf(r,s);return Fr(o,i,a)}var Cz=z({meanSquaredError_:Nz});function _z(e,t){let n=E(e,"labels","sigmoidCrossEntropyWithLogits"),a=E(t,"logits","sigmoidCrossEntropyWithLogits");Cn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xe(a),s=W(a,n),i=qc(gn(vt(Lt(a))));return Q(ce(r,s),i)}function Ez(e,t,n,a=0,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"multiClassLabels","sigmoidCrossEntropy"),i=E(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","sigmoidCrossEntropy")),Cn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ke(a),p=ke(1),d=ke(.5);s=Q(W(s,ce(p,u)),W(d,u))}let l=_z(s,i);return Fr(l,o,r)}var $z=z({sigmoidCrossEntropy_:Ez});function Az(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return dr((a,r,s)=>{let i=of(r,[n],!0),o=ce(le(r,"float32"),i);s([a,o]);let l=vt(W(o,a));return{value:ye(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=mi(u.shape,[n]);return[W(B(u,h),ce(le(d,"float32"),gn(c))),W(B(u,h),ce(gn(c),le(d,"float32")))]}}})(e,t)}function Fz(e,t,n,a=0,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"onehotLabels","softmaxCrossEntropy"),i=E(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","softmaxCrossEntropy")),Cn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ke(a),p=ke(1),d=ke(s.shape[1]);s=Q(W(s,ce(p,u)),fe(u,d))}let l=Az(s,i);return Fr(l,o,r)}var Dz=z({softmaxCrossEntropy_:Fz});function Rz(e,t,n,a){let r=E(e,"indices","sparseFillEmptyRows","int32"),s=E(t,"values","sparseFillEmptyRows"),i=E(n,"denseShape","sparseFillEmptyRows","int32"),o=E(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=L.runKernel(_c,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var Mz=z({sparseFillEmptyRows_:Rz});function Pz(e,t,n){let a=E(e,"inputIndices","sparseReshape","int32"),r=E(t,"inputShape","sparseReshape","int32"),s=E(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=L.runKernel(_u,i);return{outputIndices:o[0],outputShape:o[1]}}var Oz=z({sparseReshape_:Pz});function Lz(e,t,n){let a=E(e,"data","sparseSegmentMean"),r=E(t,"indices","sparseSegmentMean","int32"),s=E(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(Ec,i)}var zz=z({sparseSegmentMean_:Lz});function Wz(e,t,n){let a=E(e,"data","sparseSegmentSum"),r=E(t,"indices","sparseSegmentSum","int32"),s=E(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel($c,i)}var Bz=z({sparseSegmentSum_:Wz});function Vz(e,t,n,a,r,s,i,o){let l=E(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=E(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=L.runKernel(Fc,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var Uz=z({stringNGrams_:Vz});function Gz(e,t,n=!0){let a=E(e,"input","stringSplit","string"),r=E(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=L.runKernel(Dc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var Hz=z({stringSplit_:Gz});function jz(e,t){let n=E(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(Rc,r,a)}var qz=z({stringToHashBucketFast_:jz}),OS={fft:Qc,ifft:xl,rfft:ed,irfft:yf},LS={hammingWindow:SL,hannWindow:$S,frame:AS,stft:EL},Nr={flipLeftRight:DL,grayscaleToRGB:ML,resizeNearestNeighbor:PS,resizeBilinear:MS,rotateWithOffset:OL,cropAndResize:AL,nonMaxSuppression:zL,nonMaxSuppressionAsync:qL,nonMaxSuppressionWithScore:XL,nonMaxSuppressionWithScoreAsync:ZL,nonMaxSuppressionPadded:QL,nonMaxSuppressionPaddedAsync:tz,threshold:iz,transform:lz},ow={bandPart:pz,gramSchmidt:dz,qr:mz},zS={absoluteDifference:bz,computeWeightedLoss:Fr,cosineDistance:xz,hingeLoss:wz,huberLoss:Iz,logLoss:Sz,meanSquaredError:Cz,sigmoidCrossEntropy:$z,softmaxCrossEntropy:Dz},WS={sparseFillEmptyRows:Mz,sparseReshape:Oz,sparseSegmentMean:zz,sparseSegmentSum:Bz},BS={stringNGrams:Uz,stringSplit:Hz,stringToHashBucketFast:qz},Dr=class extends DT{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Me(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return JT(e,t)}dispose(){this.iterations_!=null&&Me(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Dr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Cf=class extends Dr{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:O(()=>qe(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:O(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;O(()=>{let l=Q(W(i,this.rho),W(lt(s),1-this.rho)),u=W(fe(ln(Q(o,this.epsilon)),ln(Q(i,this.epsilon))),s),p=Q(W(o,this.rho),W(lt(u),1-this.rho));i.assign(l),o.assign(p);let d=Q(W(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Me(this.accumulatedGrads.map(e=>e.variable)),Me(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Cf.className="Adadelta";xs(Cf);var _f=class extends Dr{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:O(()=>En(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;O(()=>{let i=Q(s,lt(r));s.assign(i);let o=Q(W(fe(r,ln(Q(i,L.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Me(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};_f.className="Adagrad";xs(_f);var Ef=class extends Dr{constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],O(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=ce(1,this.accBeta2);t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:O(()=>qe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:O(()=>qe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=Q(W(u,this.beta1),W(l,1-this.beta1)),c=Q(W(p,this.beta2),W(lt(l),1-this.beta2)),h=fe(d,n),m=fe(c,a);u.assign(d),p.assign(c);let f=Q(W(fe(h,Q(ln(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(W(this.accBeta1,this.beta1)),this.accBeta2.assign(W(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Me(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Me(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),O(()=>{this.accBeta1.assign(Ar(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ar(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Ef.className="Adam";xs(Ef);var $f=class extends Dr{constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],O(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=fe(-this.learningRate,Q(W(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:qe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:qe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=Q(W(u,this.beta1),W(l,1-this.beta1)),c=W(p,this.beta2),h=Lt(l),m=fr(c,h);u.assign(d),p.assign(m);let f=Q(W(fe(a,n),fe(d,Q(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(Q(this.iteration,1)),this.accBeta1.assign(W(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Me(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Me(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};$f.className="Adamax";xs($f);var td=class extends Dr{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=L.registeredVariables[t];O(()=>{let s=Q(W(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Qt(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};td.className="SGD";xs(td);var Af=class extends td{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:O(()=>qe(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&O(()=>{let i,o=Q(W(this.m,r),s);this.useNesterov?i=Q(W(this.c,Q(s,W(o,this.m))),a):i=Q(W(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Me(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Af.className="Momentum";xs(Af);var Ff=class extends Dr{constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:O(()=>qe(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:O(()=>qe(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:O(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;O(()=>{let l=Q(W(i,this.decay),W(lt(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=Q(W(u,this.decay),W(s,1-this.decay)),d=fe(W(s,this.learningRate),ln(ce(l,Q(lt(p),this.epsilon)))),c=Q(W(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=ce(a,c);a.assign(h)}else{let u=Q(W(i,this.decay),W(lt(s),1-this.decay)),p=Q(W(o,this.momentum),fe(W(s,this.learningRate),ln(Q(u,this.epsilon))));i.assign(u),o.assign(p);let d=ce(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Me(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Me(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Me(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Ff.className="RMSProp";xs(Ff);var Kr=class{static sgd(e){return new td(e)}static momentum(e,t,n=!1){return new Af(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Ff(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Ef(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Cf(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new $f(e,t,n,a,r)}static adagrad(e,t=.1){return new _f(e,t)}},Ks={sgd:Kr.sgd,momentum:Kr.momentum,adadelta:Kr.adadelta,adagrad:Kr.adagrad,rmsprop:Kr.rmsprop,adamax:Kr.adamax,adam:Kr.adam},Kz=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function lw(){return new Promise(e=>Kz(()=>e()))}var C={};Fe(C,{ERF_A1:()=>uW,ERF_A2:()=>pW,ERF_A3:()=>cW,ERF_A4:()=>dW,ERF_A5:()=>hW,ERF_P:()=>lW,PARALLELIZE_THRESHOLD:()=>uw,RowPartitionType:()=>sr,SELU_SCALE:()=>US,SELU_SCALEALPHA:()=>VS,applyActivation:()=>Sf,assertAndGetBroadcastShape:()=>pt,assertAxesAreInnerMostDims:()=>tO,assertParamsConsistent:()=>Xz,assignToTypedArray:()=>xW,axesAreInnerMostDims:()=>Fv,calculateShapes:()=>IT,checkEinsumDimSizes:()=>SW,checkPadOnDimRoundingMode:()=>_n,combineLocations:()=>qT,combineRaggedTensorToTensorShapes:()=>Zz,complexWithEvenIndex:()=>gW,complexWithOddIndex:()=>bW,computeConv2DInfo:()=>Uc,computeConv3DInfo:()=>zT,computeDefaultPad:()=>hv,computeDilation2DInfo:()=>nP,computeOptimalWindowSize:()=>tW,computeOutAndReduceShapes:()=>KT,computeOutShape:()=>Yz,computePool2DInfo:()=>LT,computePool3DInfo:()=>aP,convertConv2DDataFormat:()=>WT,decodeEinsumEquation:()=>IW,eitherStridesOrDilationsAreOne:()=>mr,expandShapeToKeepDim:()=>mi,exponent:()=>wW,exponents:()=>vW,fromStringArrayToUint8:()=>jW,fromUint8ToStringArray:()=>HW,getAxesPermutation:()=>XT,getBroadcastDims:()=>vT,getComplexWithIndex:()=>yW,getEinsumComputePath:()=>NW,getEinsumPermutation:()=>TW,getFusedBiasGradient:()=>Tf,getFusedDyActivation:()=>If,getImageCenter:()=>nW,getInnerMostAxes:()=>nO,getPermuted:()=>rW,getRaggedRank:()=>Qz,getReductionAxes:()=>Wt,getReshaped:()=>aW,getReshapedPermuted:()=>sW,getRowPartitionTypesHelper:()=>Jz,getSliceBeginCoords:()=>iW,getSliceSize:()=>oW,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>$W,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>AW,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>FW,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>MW,getSparseReshapeInputOutputMismatchErrorMessage:()=>OW,getSparseReshapeInputOutputMultipleErrorMessage:()=>PW,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>DW,getSparseReshapeNegativeOutputDimErrorMessage:()=>RW,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>BW,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>LW,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>zW,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>WW,getUndoAxesPermutation:()=>Dv,isIdentityPermutation:()=>CW,log:()=>xD,mergeRealAndImagArrays:()=>mW,prepareAndValidate:()=>kT,prepareSplitSize:()=>EW,segment_util:()=>GS,shouldFuse:()=>Nf,slice_util:()=>qt,splitRealAndImagArrays:()=>fW,tupleValuesAreOne:()=>ss,upcastType:()=>ha,validateDefaultValueShape:()=>eW,validateInput:()=>nv,validateUpdateShape:()=>tv,warn:()=>Yr});function Xz(e,t){let n=e[0].length;e.forEach((r,s)=>{R(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),R(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)R(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function Yz(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var sr;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(sr||(sr={}));function Zz(e,t,n){let a=new Array;if(n==null&&t==null)return a;if(t==null)for(;a.length<e+n.length;)a.push(-1);else a=t.slice();if(n==null)return a;if(e+n.length!==a.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+n.length}, but shape.rank = ${a.length}`);for(let r=1;r<n.length;++r){let s=n[r],i=a[a.length-n.length+r],o=a[i];if(s>=0)if(o>=0){if(o!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${s} but shape[${r+e}] = ${o}`)}else a[i]=s}return a}function Jz(e){let t={FIRST_DIM_SIZE:sr.FIRST_DIM_SIZE,VALUE_ROWIDS:sr.VALUE_ROWIDS,ROW_LENGTHS:sr.ROW_LENGTHS,ROW_SPLITS:sr.ROW_SPLITS,ROW_LIMITS:sr.ROW_LIMITS,ROW_STARTS:sr.ROW_STARTS},n=[];for(let a of e)if(a in t)n.push(t[a]);else break;return n}function Qz(e){return e.length===0?0:e[0]===sr.FIRST_DIM_SIZE?e.length-1:e.length}function eW(e,t){if(e==null||t==null)return;let n=e.length,a=t.length;if(n>=a)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${a})`);for(let r=0;r<Math.min(n,a-1);++r){let s=e[r],i=t[r+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${s} but ragged tensor input.flatValues.shape[${r-e.length}] = ${i}`)}}var uw=30;function tW(e){return e<=uw?e:Oh(e,Math.floor(Math.sqrt(e)))}function nW(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function aW(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function rW(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function sW(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function iW(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function oW(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var VS=1.7580993408473768,US=1.0507009873554805,lW=.3275911,uW=.254829592,pW=-.284496736,cW=1.421413741,dW=-1.453152027,hW=1.061405429;function mW(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function fW(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function gW(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function bW(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function yW(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function xW(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function vW(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function wW(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var Cy="->",kW=/->/g,bk=",",yk="...";function IW(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(kW,"").length)/Cy.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Cy}").`);let[a,r]=e.split(Cy);R(a.indexOf(yk)===-1,()=>`The ellipsis notation ("${yk}") is not supported yet.`);let s=a.split(bk),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==bk&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function TW(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function SW(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:R(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function NW(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=_W(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function CW(e){return e.every((t,n)=>t===n)}function _W(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function EW(e,t,n=0){let a=[];if(typeof t=="number")R(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);R(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}R(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function $W(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function AW(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function FW(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function DW(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function RW(e,t){return`size ${e} must be non-negative, not ${t}`}function MW(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function PW(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function OW(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function LW(){return"segment ids must be >= 0"}function zW(){return"segment ids are not increasing"}function WW(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function BW(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var GS={};Fe(GS,{collectGatherOpShapeInfo:()=>GW,computeOutShape:()=>UW,segOpComputeOptimalWindowSize:()=>VW});function VW(e,t){let n=!1,a;for(e<=uw?(a=e,n=!0):a=Oh(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Oh(e,a+1);return a}function UW(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function GW(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function HW(e){try{return e.map(t=>Uh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function jW(e){return e.map(t=>Lc(t))}var gr={};Fe(gr,{nonMaxSuppressionV3Impl:()=>FS,nonMaxSuppressionV4Impl:()=>DS,nonMaxSuppressionV5Impl:()=>RS,whereImpl:()=>wS});var HS={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,To(le(n,"float32"),-1))}}},qW={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=lt(le(n,"float32")),r=ln(ce(ke(1),a));return vt(fe(e,r))}}}},KW={kernelName:Dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ln(ce(lt(le(n,"float32")),1));return fe(e,a)}}}},XW={kernelName:ms,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=ye(s,i)),B(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=ye(s,i)),B(s,a.shape)}}}},YW={kernelName:Ii,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},ZW={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},JW={kernelName:xc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},QW={kernelName:Pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ln(ce(ke(1),lt(le(n,"float32")))))}}},eB={kernelName:Ol,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ln(Q(ke(1),lt(le(n,"float32"))));return fe(e,a)}}}},tB={kernelName:Wl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=Q(lt(n),lt(a)),i=W(e,fe(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=ye(i,o)),B(i,n.shape)},b:()=>{let s=Q(lt(n),lt(a)),i=vt(W(e,fe(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=ye(i,o)),B(i,a.shape)}}}},nB={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Q(lt(le(n,"float32")),1))}}},aB={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ce(ke(1),lt(le(n,"float32"))))}}};function rB(e,t,n,a,r,s){let i=E(e,"dy","avgPool3dGrad"),o=E(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=B(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),R(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),R(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),_n("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=L.runKernel(ym,d,c);return p?B(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var sB=z({avgPool3dGrad_:rB}),iB={kernelName:vc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>sB(e,a,r,s,i,o)}}};function oB(e,t,n,a,r){let s=E(e,"dy","avgPoolGrad"),i=E(t,"input","avgPoolGrad");R(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=B(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=B(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),R(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=L.runKernel(bm,p,d);return u?B(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var lB=z({avgPoolGrad_:oB}),uB={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>lB(e,a,r,s,i)}}},pB={kernelName:Ni,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Re(e,r,!1,!0),b:()=>Re(a,e,!0,!1)}:!s&&i?{a:()=>Re(e,r,!1,!1),b:()=>Re(e,a,!0,!1)}:s&&!i?{a:()=>Re(r,e,!1,!0),b:()=>Re(a,e,!1,!1)}:{a:()=>Re(r,e,!0,!0),b:()=>Re(e,a,!0,!0)}}},cB={kernelName:Bl,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Yc(e,a,r)}}},dB={kernelName:jI,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>ye(e,o,!0)}}},hB={kernelName:Ci,gradFunc:e=>({x:()=>e.clone()})},mB={kernelName:_i,gradFunc:e=>({x:()=>qe(e)})},fB={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>fn(_a(ks(a,r),Is(a,s)),e,qe(e))}}},gB={kernelName:wc,inputsToSave:["x"],gradFunc:HS.gradFunc},bB={kernelName:Vl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Ea(r,t[0].shape)[0],i=a.map(o=>o[s]);return Vn(e,i,s).map(o=>()=>o)}},yB={kernelName:Ei,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return R(ss(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Tv(a.shape,e,r,i,o,l),filter:()=>sw(a,e,r.shape,i,o,l)}}},xB={kernelName:$i,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Dt(e,r,s,i,o,1,l),filter:()=>sw(e,a,r.shape,s,i,o,l)}}};function vB(e,t,n,a,r){let s=e;e.rank===4&&(s=B(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=B(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),R(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),R(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),R(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),R(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),R(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return L.runKernel(Im,o,l)}var wB=z({conv3DBackpropFilter_:vB}),kB={kernelName:kc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;R(ss(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>UT(i.shape,e,o,r,s),filter:()=>wB(i,e,o.shape,r,s)}}},IB={kernelName:Ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(vt(ff(le(n,"float32"))),e)}}},TB={kernelName:Fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(gf(le(n,"float32")),e)}}},SB={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=XT([r],a.rank),l=tf(e,r,s,!i);return o!=null&&(l=Ae(l,o)),l}}}},NB={kernelName:Ri,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;R(ss(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return R(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),R(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),R(mr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),_n("depthwiseConv2d",s,i),{x:()=>ES(l.shape,e,u,r,s,o,i),filter:()=>_S(l,e,u.shape,r,s,o,i)}}},CB={kernelName:Ic,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>L.runKernel(Lh,s,n),filter:()=>L.runKernel(zh,i,n)}}},_B={kernelName:Pi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>L.runKernel($m,a)}}},EB={kernelName:jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=W(gn(vt(lt(n))),2/Math.sqrt(Math.PI));return{x:()=>W(e,a)}}},$B={kernelName:Oi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n)}}},AB={kernelName:Kl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>B(e,n.shape)}}},FB={kernelName:Xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,gn(n))}}},DB={kernelName:Li,gradFunc:e=>({x:()=>qe(e)})},RB={kernelName:zi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=fe(e,le(a,"float32")),i=Wt(n.shape,r);return i.length>0?B(ye(s,i),n.shape):s},b:()=>{let s=W(e,le(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=B(ye(s,i),a.shape));let o=lt(a);return vt(fe(s,le(o,"float32")))}}}},MB={kernelName:Wi,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ke(1):o,u=Wt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=ce(r,s),c=W(e,l),h=hf(Q(i,ke(a))),m=W(W(W(h,h),h),ke(-.5));return{x:()=>s.rank===1?B(W(W(e,Wn(B(h,[1,1,1,s.shape[0]]),p)),l),r.shape):B(W(W(e,h),l),r.shape),mean:()=>{let f=W(W(h,ke(-1)),c);return s.rank===1&&(f=ye(f,u)),B(f,s.shape)},variance:()=>{let f=W(W(m,d),c);return s.rank===1&&(f=ye(f,u)),B(f,s.shape)},scale:()=>{let f=W(d,h),g=W(e,f);return s.rank===1&&(g=ye(g,u)),B(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=ye(f,u)),B(f,s.shape)}}}},PB={kernelName:Zl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Ea(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=xk(0,p),m=xk(p+1,p+1+c),f=vk([u,[l],d]),g=B(e,f),b=B(r,[l]),y=vk([[p],h,m]),x=Ae(g,y),w=wf(x,b,a.shape[i]),I=Dv(y);return w=Ae(w,I),w},indices:()=>r}}};function xk(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function vk(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var OB={kernelName:Bi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>qe(n),b:()=>qe(a)}}},LB={kernelName:Vi,gradFunc:e=>({x:()=>le(e,"float32")})},zB={kernelName:eu,gradFunc:e=>({x:()=>qe(e)})},WB={kernelName:tu,gradFunc:e=>({x:()=>qe(e)})},BB={kernelName:nu,gradFunc:e=>({x:()=>qe(e)})},VB={kernelName:Ui,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=jn(a,0);return{x:()=>fn(s,e,W(e,r))}}},UB={kernelName:su,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Q(n,1))}}},GB={kernelName:Gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,le(n,"float32"))}}},HB={kernelName:KI,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=gn(a);return ce(e,W(ye(e,r,!0),s))}}}};function jB(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return L.runKernel(Mm,o,l)}var qB=z({localResponseNormalizationBackprop_:jB}),KB={kernelName:Sc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>qB(a,r,e,s,i,o,l)}}};function jS(e,t,n,a){return t.rank<n.rank&&(t=B(t,mi(t.shape,a))),e.rank<n.rank&&(e=B(e,mi(e.shape,a))),{x:()=>W(e,le(Qn(n,t),e.dtype))}}var wk={kernelName:Hi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Ea(r,s.shape),l=jS(e,i,s,o);return{x:()=>l.x()}}},XB={kernelName:ji,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>W(e,le(ks(n,a),"float32")),b:()=>W(e,le(af(n,a),"float32"))}}};function YB(e,t,n,a,r,s,i){let o=E(e,"dy","maxPool3dGrad"),l=E(t,"input","maxPool3dGrad"),u=E(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=B(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=B(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=B(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),R(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),R(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),R(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),_n("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=L.runKernel(Om,m,f);return h?B(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var ZB=z({maxPool3dGrad_:YB}),JB={kernelName:Nc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>ZB(e,a,r,s,i,o,l)}}};function QB(e,t,n,a,r,s,i){let o=E(e,"dy","maxPoolGrad"),l=E(t,"input","maxPoolGrad"),u=E(n,"output","maxPoolGrad");R(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),R(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),R(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),_n("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return L.runKernel(Pm,p,d)}var e4=z({maxPoolGrad_:QB}),t4={kernelName:qi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>e4(e,a,r,s,i,o)}}},n4={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Ea(r,a.shape),i=KT(a.shape,s)[1],o=bt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=B(e,l);return fe(W(u,Jn(a.shape,"float32")),o)}}}},a4={kernelName:Xi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Ea(r,s.shape),l=jS(e,i,s,o);return{x:()=>l.x()}}},r4={kernelName:Yi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>W(e,le(Is(n,a),"float32")),b:()=>W(e,le(jn(n,a),"float32"))}}},s4={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>He(e,s,a.shape)}}},i4={kernelName:uu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?B(ye(e,s),n.shape):e},b:()=>{let s=W(e,vt(Lu(fe(n,a)))),i=Wt(a.shape,r);return i.length>0?B(ye(s,i),a.shape):s}}}},o4={kernelName:Ji,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=W(e,le(a,"float32")),i=Wt(n.shape,r);return i.length>0?B(ye(s,i),n.shape):s},b:()=>{let s=W(e,le(n,"float32")),i=Wt(a.shape,r);return i.length>0?B(ye(s,i),a.shape):s}}}},l4={kernelName:pu,gradFunc:e=>({x:()=>vt(e)})},u4={kernelName:Qi,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>It(n.shape,"float32")}}},p4={kernelName:fu,gradFunc:e=>({x:()=>qe(e)})},c4={kernelName:gu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return mt(e,a).map(r=>()=>r)}},kk={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>He(e,s,a.shape)}}},d4={kernelName:to,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=pt(s.shape,i.shape);return{a:()=>{let l=le(i,"float32"),u=W(e,W(l,Ar(s,ce(l,ke(1))))),p=Wt(s.shape,o);return p.length>0&&(u=ye(u,p)),B(u,s.shape)},b:()=>{let l=jn(s,0),u=fn(l,ea(s),qe(s)),p=W(e,W(r,u)),d=Wt(i.shape,o);return d.length>0&&(p=ye(p,d)),B(p,i.shape)}}}},h4={kernelName:no,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=jn(n,0);return{x:()=>fn(r,e,W(e,a)),alpha:()=>{let s=fn(r,qe(e),W(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=ye(s,i)),B(s,a.shape)}}}};function m4(e,t,n){let a=e.shape.slice();a[n]=1;let r=B(t,a),s=oc(e,n,!0,!1),i=oc(e,n,!0,!0),o=W(s,i);return W(r,o)}function f4(e,t,n){let a=e.shape.length,r=a-n.length,s=C.getAxesPermutation(n,a),i=e;s!=null&&(i=Ae(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=m4(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=C.getUndoAxesPermutation(s);p=Ae(p,d)}return p}var g4={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>f4(a,e,s)}}},b4={kernelName:Mi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=fe(e,le(a,"float32")),i=Wt(n.shape,r);return i.length>0?B(ye(s,i),n.shape):s},b:()=>{let s=W(e,le(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=B(ye(s,i),a.shape));let o=lt(a);return vt(fe(s,le(o,"float32")))}}}},y4={kernelName:bu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,vt(lt(n)))}}},x4={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=W(Is(n,6),To(n));return{x:()=>W(e,le(a,"float32"))}}},v4={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,le(To(n),"float32"))}}},w4={kernelName:yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n.shape)}}},k4={kernelName:io,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(Um,r,n)}}},I4={kernelName:so,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(Vm,r,n)}}},T4={kernelName:lo,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Ea(a,e.shape);return{x:()=>fa(e,r)}}},S4={kernelName:uo,gradFunc:e=>({x:()=>qe(e)})},N4={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>vt(fe(e,W(Ar(n,1.5),2)))}}},C4={kernelName:vu,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>le(qe(n),"float32"),t:()=>W(e,le(n,e.dtype)),e:()=>W(e,le(Kc(n),e.dtype))}}},_4={kernelName:wu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=jn(n,ke(0)),r=ke(VS),s=ke(US),i=W(e,s),o=W(W(e,r),gn(le(n,"float32")));return fn(a,i,o)}}}},E4={kernelName:ho,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(n,ce(ke(1),n)))}}},$4={kernelName:Tu,gradFunc:e=>({x:()=>qe(e)})},A4={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(Hc(le(n,"float32")),e)}}},F4={kernelName:Iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(ef(le(n,"float32")),e)}}},D4={kernelName:ku,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=FT(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>ba(e,u)}}},R4={kernelName:go,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=W(e,a);return{logits:()=>ce(i,W(ye(i,[r],s),a))}}},M4={kernelName:Su,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,da(n))}}},Ik={kernelName:Nu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Gc(e,a,r)}}},Tk={kernelName:Cu,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Qe(e,a)}}},P4={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,W(ln(le(n,"float32")),2))}}},O4={kernelName:Ac,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(le(n,"float32"),2))}}},L4={kernelName:bo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ke(2);return{a:()=>W(e,W(r,ce(n,a))),b:()=>W(e,W(r,ce(a,n)))}}},z4={kernelName:bs,gradFunc:e=>({x:()=>qe(e)})},W4={kernelName:yo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=ye(s,i)),B(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=ye(s,i)),B(vt(s),a.shape)}}}},B4={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Ea(s,a.shape).forEach(l=>{r[l]=1});let i=B(e,r),o=W(i,Jn(a.shape,"float32"));return{x:()=>o}}},V4={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,lt(Hc(n)))}}},U4={kernelName:vo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(ce(ke(1),lt(n)),e)}}},G4={kernelName:gs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=qe(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=Q(s,He(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=Q(s,He(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=Q(s,He(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=Q(s,He(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},H4={kernelName:_r,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=Dv(r);return{x:()=>Ae(e,s)}}},j4={kernelName:Fu,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Rt(e,r)}}},q4={kernelName:Mc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K4(e,n)}}};function K4(e,t){let n=fr(t,qe(t)),a=zu(e,n),r=ks(t,ke(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=mn(r,o+1);r=_a(r,Jn(a.shape,"bool"));let i=qe(a);return fn(r,a,i)}var X4={kernelName:Du,gradFunc:e=>({x:()=>qe(e)})},Y4=[HS,qW,KW,XW,YW,ZW,JW,QW,eB,tB,nB,aB,iB,uB,pB,cB,dB,hB,mB,fB,gB,bB,xB,yB,kB,IB,TB,SB,NB,CB,b4,_B,EB,$B,AB,FB,RB,DB,MB,PB,OB,LB,zB,WB,BB,VB,UB,GB,HB,KB,wk,wk,XB,JB,t4,n4,a4,r4,s4,i4,o4,l4,u4,p4,c4,kk,kk,d4,h4,g4,y4,x4,v4,w4,k4,I4,T4,S4,N4,C4,_4,E4,$4,A4,F4,D4,R4,M4,Ik,Ik,Tk,Tk,P4,L4,O4,z4,W4,B4,V4,U4,G4,H4,j4,q4,X4];for(let e of Y4)XI(e);ne().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};ne().prototype.acos=function(){return this.throwIfDisposed(),sv(this)};ne().prototype.acosh=function(){return this.throwIfDisposed(),iv(this)};ne().prototype.add=function(e){return this.throwIfDisposed(),Q(this,e)};ne().prototype.all=function(e,t){return this.throwIfDisposed(),Zm(this,e,t)};ne().prototype.any=function(e,t){return this.throwIfDisposed(),ic(this,e,t)};ne().prototype.argMax=function(e){return this.throwIfDisposed(),di(this,e)};ne().prototype.argMin=function(e){return this.throwIfDisposed(),ov(this,e)};ne().prototype.asScalar=function(){return this.throwIfDisposed(),R(this.size===1,()=>"The array must have only 1 element."),B(this,[])};ne().prototype.asType=function(e){return this.throwIfDisposed(),le(this,e)};ne().prototype.as1D=function(){return this.throwIfDisposed(),B(this,[this.size])};ne().prototype.as2D=function(e,t){return this.throwIfDisposed(),B(this,[e,t])};ne().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),B(this,[e,t,n])};ne().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),B(this,[e,t,n,a])};ne().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),B(this,[e,t,n,a,r])};ne().prototype.asin=function(){return this.throwIfDisposed(),lv(this)};ne().prototype.asinh=function(){return this.throwIfDisposed(),uv(this)};ne().prototype.atan=function(){return this.throwIfDisposed(),pv(this)};ne().prototype.atan2=function(e){return this.throwIfDisposed(),cv(this,e)};ne().prototype.atanh=function(){return this.throwIfDisposed(),dv(this)};ne().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ga(this,e,t,n,a)};ne().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Gc(this,e,t)};ne().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),vs(this,e,t,n,a,r)};ne().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ai(this,e)};ne().prototype.cast=function(e){return this.throwIfDisposed(),le(this,e)};ne().prototype.ceil=function(){return this.throwIfDisposed(),xv(this)};ne().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),tn(this,e,t)};ne().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof $e&&(e=[e]),Qe([this,...e],t)};ne().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Jm(this,e,t,n,a,r,s)};ne().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Qm(this,e,t,n,a,r)};ne().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Dt(this,e,t,n,a,r,s)};ne().prototype.cos=function(){return this.throwIfDisposed(),Hc(this)};ne().prototype.cosh=function(){return this.throwIfDisposed(),ef(this)};ne().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),oc(this,e,t,n)};ne().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),tf(this,e,t,n)};ne().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Cv(this,e,t)};ne().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),ws(this,e,t,n,a,r,s)};ne().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),_v(this,e,t,n,a,r)};ne().prototype.divNoNan=function(e){return this.throwIfDisposed(),Ev(this,e)};ne().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};ne().prototype.dot=function(e){return this.throwIfDisposed(),$v(this,e)};ne().prototype.elu=function(){return this.throwIfDisposed(),Pu(this)};ne().prototype.equal=function(e){return this.throwIfDisposed(),Qn(this,e)};ne().prototype.erf=function(){return this.throwIfDisposed(),Av(this)};ne().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),Rv(this,e,t)};ne().prototype.exp=function(){return this.throwIfDisposed(),gn(this)};ne().prototype.expandDims=function(e){return this.throwIfDisposed(),mn(this,e)};ne().prototype.expm1=function(){return this.throwIfDisposed(),Mv(this)};ne().prototype.fft=function(){return this.throwIfDisposed(),Qc(this)};ne().prototype.flatten=function(){return this.throwIfDisposed(),B(this,[this.size])};ne().prototype.floor=function(){return this.throwIfDisposed(),Lu(this)};ne().prototype.floorDiv=function(e){return this.throwIfDisposed(),Ym(this,e)};ne().prototype.gather=function(e,t){return this.throwIfDisposed(),zu(this,e,t)};ne().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ks(this,e)};ne().prototype.greater=function(e){return this.throwIfDisposed(),jn(this,e)};ne().prototype.ifft=function(){return this.throwIfDisposed(),xl(this)};ne().prototype.irfft=function(){return this.throwIfDisposed(),yf(this)};ne().prototype.isFinite=function(){return this.throwIfDisposed(),Pv(this)};ne().prototype.isInf=function(){return this.throwIfDisposed(),Ov(this)};ne().prototype.isNaN=function(){return this.throwIfDisposed(),Lv(this)};ne().prototype.leakyRelu=function(e){return this.throwIfDisposed(),jc(this,e)};ne().prototype.lessEqual=function(e){return this.throwIfDisposed(),Is(this,e)};ne().prototype.less=function(e){return this.throwIfDisposed(),af(this,e)};ne().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),zv(this,e,t,n,a)};ne().prototype.logSigmoid=function(){return this.throwIfDisposed(),Wv(this)};ne().prototype.logSoftmax=function(e){return this.throwIfDisposed(),sf(this,e)};ne().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),of(this,e,t)};ne().prototype.log=function(){return this.throwIfDisposed(),ea(this)};ne().prototype.log1p=function(){return this.throwIfDisposed(),qc(this)};ne().prototype.logicalAnd=function(e){return this.throwIfDisposed(),_a(this,e)};ne().prototype.logicalNot=function(){return this.throwIfDisposed(),Kc(this)};ne().prototype.logicalOr=function(e){return this.throwIfDisposed(),lf(this,e)};ne().prototype.logicalXor=function(e){return this.throwIfDisposed(),Bv(this,e)};ne().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Re(this,e,t,n)};ne().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Mt(this,e,t,n,a)};ne().prototype.max=function(e,t){return this.throwIfDisposed(),Na(this,e,t)};ne().prototype.maximum=function(e){return this.throwIfDisposed(),fr(this,e)};ne().prototype.mean=function(e,t){return this.throwIfDisposed(),_t(this,e,t)};ne().prototype.min=function(e,t){return this.throwIfDisposed(),lc(this,e,t)};ne().prototype.minimum=function(e){return this.throwIfDisposed(),Wu(this,e)};ne().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Uv(this,e,t)};ne().prototype.mod=function(e){return this.throwIfDisposed(),Gv(this,e)};ne().prototype.mul=function(e){return this.throwIfDisposed(),W(this,e)};ne().prototype.neg=function(){return this.throwIfDisposed(),vt(this)};ne().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Ou(this,e,t,n)};ne().prototype.notEqual=function(e){return this.throwIfDisposed(),fi(this,e)};ne().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),fl(this,e,t,n)};ne().prototype.onesLike=function(){return this.throwIfDisposed(),ta(this)};ne().prototype.pad=function(e,t){return this.throwIfDisposed(),ba(this,e,t)};ne().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),Hv(this,e,t,n,a,r,s)};ne().prototype.pow=function(e){return this.throwIfDisposed(),Ar(this,e)};ne().prototype.prelu=function(e){return this.throwIfDisposed(),Zc(this,e)};ne().prototype.prod=function(e,t){return this.throwIfDisposed(),jv(this,e,t)};ne().prototype.reciprocal=function(){return this.throwIfDisposed(),Xv(this)};ne().prototype.relu=function(){return this.throwIfDisposed(),Xe(this)};ne().prototype.relu6=function(){return this.throwIfDisposed(),cf(this)};ne().prototype.reshapeAs=function(e){return this.throwIfDisposed(),B(this,e.shape)};ne().prototype.reshape=function(e){return this.throwIfDisposed(),B(this,e)};ne().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),MS(this,e,t,n)};ne().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),PS(this,e,t,n)};ne().prototype.reverse=function(e){return this.throwIfDisposed(),fa(this,e)};ne().prototype.rfft=function(){return this.throwIfDisposed(),ed(this)};ne().prototype.round=function(){return this.throwIfDisposed(),df(this)};ne().prototype.rsqrt=function(){return this.throwIfDisposed(),hf(this)};ne().prototype.selu=function(){return this.throwIfDisposed(),mf(this)};ne().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ts(this,e,t,n,a,r,s)};ne().prototype.sigmoid=function(){return this.throwIfDisposed(),da(this)};ne().prototype.sign=function(){return this.throwIfDisposed(),Yv(this)};ne().prototype.sin=function(){return this.throwIfDisposed(),ff(this)};ne().prototype.sinh=function(){return this.throwIfDisposed(),gf(this)};ne().prototype.slice=function(e,t){return this.throwIfDisposed(),He(this,e,t)};ne().prototype.softmax=function(e){return this.throwIfDisposed(),Qa(this,e)};ne().prototype.softplus=function(){return this.throwIfDisposed(),ko(this)};ne().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Yc(this,e,t)};ne().prototype.split=function(e,t){return this.throwIfDisposed(),Vn(this,e,t)};ne().prototype.sqrt=function(){return this.throwIfDisposed(),ln(this)};ne().prototype.square=function(){return this.throwIfDisposed(),lt(this)};ne().prototype.squaredDifference=function(e){return this.throwIfDisposed(),xf(this,e)};ne().prototype.squeeze=function(e){return this.throwIfDisposed(),Ss(this,e)};ne().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof $e?[this,e]:[this,...e];return Rt(n,t)};ne().prototype.step=function(e){return this.throwIfDisposed(),To(this,e)};ne().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Zv(this,e,t,n,a,r,s,i,o)};ne().prototype.sub=function(e){return this.throwIfDisposed(),ce(this,e)};ne().prototype.sum=function(e,t){return this.throwIfDisposed(),ye(this,e,t)};ne().prototype.tan=function(){return this.throwIfDisposed(),Jv(this)};ne().prototype.tanh=function(){return this.throwIfDisposed(),hi(this)};ne().prototype.tile=function(e){return this.throwIfDisposed(),Wn(this,e)};ne().prototype.toBool=function(){return this.throwIfDisposed(),le(this,"bool")};ne().prototype.toFloat=function(){return this.throwIfDisposed(),le(this,"float32")};ne().prototype.toInt=function(){return this.throwIfDisposed(),le(this,"int32")};ne().prototype.topk=function(e,t){return this.throwIfDisposed(),Qv(this,e,t)};ne().prototype.transpose=function(e){return this.throwIfDisposed(),Ae(this,e)};ne().prototype.unique=function(e){return this.throwIfDisposed(),ew(this,e)};ne().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),wf(this,e,t)};ne().prototype.unstack=function(e){return this.throwIfDisposed(),mt(this,e)};ne().prototype.where=function(e,t){return this.throwIfDisposed(),fn(e,this,t)};ne().prototype.zerosLike=function(){return this.throwIfDisposed(),qe(this)};var kr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,kr.prototype)}},Ha=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ha.prototype)}},H=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,H.prototype)}},Pe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Pe.prototype)}},qS=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,qS.prototype)}},KS=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function gi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ir(e,t){if(!e)throw new qS(t)}function Sk(e,t){let n=0;for(let a of e)a===t&&n++;return n}function zn(e){return e.length===1?e[0]:e}function xt(e){return Array.isArray(e)?e:[e]}function Ir(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Zs(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var wa={};function pw(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Qy(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Qy(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Qy(a))}}}function nd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in wa)i=wa[s];else if(i=t[s],i==null)throw new H(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new H(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in wa?[o,l]=wa.className:i in t&&([o,l]=t[i]),o==null)throw new H(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(wa))u[h]=wa[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},wa);for(let h of Object.keys(n))wa[h]=n[h];Qy(s.config);let c=l(o,s.config,n,r);return wa=Object.assign({},d),c}else{let u=Object.assign({},wa);for(let d of Object.keys(n))wa[d]=n[d];let p=new o(s.config);return wa=Object.assign({},u),p}}}function Z4(e,t){return e<t?-1:e>t?1:0}function mh(e,t){return-1*Z4(e,t)}function ts(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function J4(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function So(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function cw(e,t,n=0,a=1/0){return ir(n>=0),ir(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function en(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>en(n,`element ${a+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${XS(e)}.`)}function XS(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>XS(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function Q4(e,t,n){let a=n!=null?n():v.now(),r;return(...s)=>{let i=n!=null?n():v.now();return i-a<t||(a=i,r=e(...s)),r}}function YS(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var eV=0;function ZS(){return eV++}var fh={};function Df(e=""){return e in fh||(fh[e]=0),fh[e]+=1,e+fh[e].toString()}var tV=["channelsFirst","channelsLast"],nV=["nearest","bilinear"],aV=["valid","same","causal"],rV=["max","avg"],sV=["sum","mul","concat","ave"],nl=new Map;function Pt(e){So(tV,"DataFormat",e)}function iV(e){So(nV,"InterpolationFormat",e)}function ya(e){So(aV,"PaddingMode",e)}function JS(e){So(rV,"PoolMode",e)}var Jp=[],Nk="/";function ri(e,t){Jp.push(e);try{let n=t();return Jp.pop(),n}catch(n){throw Jp.pop(),n}}function oV(){return Jp.length===0?"":Jp.join(Nk)+Nk}function QS(e){if(!tN(e))throw new Error("Not a valid tensor name: '"+e+"'");return oV()+e}function eN(e){if(!tN(e))throw new Error("Not a valid tensor name: '"+e+"'");nl.has(e)||nl.set(e,0);let t=nl.get(e);if(nl.set(e,nl.get(e)+1),t>0){let n=`${e}_${t}`;return nl.set(n,1),n}else return e}var lV=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function tN(e){return!!e.match(lV)}function uV(e){return e===parseInt(e.toString(),10)}function ns(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function wl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function is(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function Ya(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var _y;function Ht(){return _y==null&&(_y=xT().epsilon()),_y}function Za(){return"channelsLast"}function Rf(e,t){return le(e,t)}function ad(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),B(e,n)}function pV(e,t){return O(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=ad(e,1);return ex(n,[1,t,1])})}function cV(e){let t=[ns(e.shape)];return B(e,t)}function dV(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ns(e.shape,1)];return B(e,t)}function si(e,t,n){return O(()=>{switch(e.rank){case 1:return Jc(e,t,n);case 2:return bf(e,[t,0],[n,e.shape[1]]);case 3:return Io(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return yl(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return He(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return He(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Ey(e,t,n){return O(()=>{switch(e.rank){case 1:return Jc(e,t,n);case 2:return bf(e,[0,t],[e.shape[0],n]);case 3:return Io(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return yl(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function gh(e,t,n,a){return O(()=>{switch(e.rank){case 1:return Jc(e,t,n);case 2:switch(a){case 1:return si(e,t,n);case 2:return Ey(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return si(e,t,n);case 2:return Io(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Ey(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return si(e,t,n);case 2:return yl(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return yl(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Ey(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function dw(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Qe(e,t)}function Ck(e,t){switch(e.rank){case 1:return vv([e,t]);case 2:return wv([e,t],0);case 3:return kv([e,t],0);case 4:return Iv([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function ex(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Wn(e,t)}function Mf(e,t=0,n=1,a,r){return pf(e,t,n,a,r)}function pr(e,t,n,a){if(e.rank<2||t.rank<2)throw new Pe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Pe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return vl.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?tx(e.rank,a,Za()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=B(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=B(Ae(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return B(vl.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?tx(e.rank,a,Za()):null,activation:n}),d)}}function nN(e,t,n){return O(()=>(Array.isArray(t)?t=Ke(t,"int32"):t=le(t,"int32"),zu(e,t,n)))}function rd(e){return W(e,e)}function tx(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?B(t,[1,a[0],1,1,1]):B(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?B(t,[1,1,1,1,a[0]]):B(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?B(t,[1,a[0],1,1]):B(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?B(t,[1,1,1,a[0]]):B(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?B(t,[1,a[0],1]):B(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?B(t,[1,1,a[0]]):B(t,[1].concat(a))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function er(e,t,n){return O(()=>(n==null&&(n=Za()),Pt(n),Q(e,tx(e.rank,t,n))))}function hV(e,t=1){if(t!==1)throw new Pe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Pu(e)}function mV(e){return O(()=>fe(e,Q(Lt(e),1)))}function aN(e,t,n,a){return O(()=>aw(e,t,n,a))}function fV(e){return O(()=>{let t=Q(.5,W(.2,e));return tn(t,0,1)})}function sd(e,t,n=!1){return n?e():t()}var gV=["fanIn","fanOut","fanAvg"],bV=["normal","uniform","truncatedNormal"];function yV(e){So(gV,"FanMode",e)}function xV(e){So(bV,"Distribution",e)}var Aa=class extends se.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},hw=class extends Aa{apply(e,t){return It(e,t)}};hw.className="Zeros";se.registerClass(hw);var Pf=class extends Aa{apply(e,t){return Jn(e,t)}};Pf.className="Ones";se.registerClass(Pf);var mw=class extends Aa{constructor(e){if(super(),typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return O(()=>W(ke(this.value),Jn(e,t)))}getConfig(){return{value:this.value}}};mw.className="Constant";se.registerClass(mw);var fw=class extends Aa{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Bu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};fw.className="RandomUniform";se.registerClass(fw);var gw=class extends Aa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`randomNormal does not support dType ${t}.`);return Mf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};gw.className="RandomNormal";se.registerClass(gw);var bw=class extends Aa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`truncatedNormal does not support dType ${t}.`);return vf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};bw.className="TruncatedNormal";se.registerClass(bw);var yw=class extends Aa{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return O(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return W(this.gain,nf(e[0]))})}getConfig(){return{gain:this.gain}}};yw.className="Identity";se.registerClass(yw);function vV(e,t="channelsLast"){let n,a;if(Pt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ns(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=ns(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=ns(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Gn=class extends Aa{constructor(e){if(super(),e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,yV(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,xV(this.distribution),this.seed=e.seed}apply(e,t){let n=vV(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`${this.getClassName()} does not support dType ${t}.`);return vf(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Bu(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Gn.className="VarianceScaling";se.registerClass(Gn);var Of=class extends Gn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};Of.className="GlorotUniform";se.registerClass(Of);var Lf=class extends Gn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};Lf.className="GlorotNormal";se.registerClass(Lf);var zf=class extends Gn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};zf.className="HeNormal";se.registerClass(zf);var Wf=class extends Gn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};Wf.className="HeUniform";se.registerClass(Wf);var Bf=class extends Gn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};Bf.className="LeCunNormal";se.registerClass(Bf);var Vf=class extends Gn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};Vf.className="LeCunNormal";se.registerClass(Vf);var xw=class extends Aa{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Pe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return O(()=>{if(e.length<2)throw new Pe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Mf(n,0,1,"float32"),r=ow.gramSchmidt(a);return e[0]>e[1]&&(r=Ae(r)),W(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};xw.className="Orthogonal";se.registerClass(xw);var _k={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Ek(e,t={}){return nd(e,se.SerializationMap.getMap().classNameMap,t,"initializer")}function Et(e){return pw(e)}function Tt(e){if(typeof e=="string"){let t=e in _k?_k[e]:e;if(t==="GlorotNormal")return new Lf;if(t==="GlorotUniform")return new Of;if(t==="HeNormal")return new zf;if(t==="HeUniform")return new Wf;if(t==="LeCunNormal")return new Bf;if(t==="LeCunUniform")return new Vf;{let n={};return n.className=t,n.config={},Ek(n)}}else return e instanceof Aa?e:Ek(e)}function nx(e){return Array.isArray(e)&&Array.isArray(e[0])}function qh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function it(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Kh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var $k="Variable",rN=class{constructor(e,t="float32",n=$k,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=ZS(),n=n==null?$k:n,this.originalName=QS(n),this.name=eN(this.originalName),this.trainable_=a,this.constraint=r,this.val=tw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),wV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function wV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function ax(e){return e.map(t=>t.read())}function vw(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},ja=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=ZS(),s!=null&&(this.originalName=QS(s),this.name=eN(this.originalName)),this.rank=t.length}},kV=0,Uf=class{constructor(e,t){this.callArgs=t,this.id=kV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},IV=0,Ye=class extends se.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=IV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Ir(n)+"_"+Df(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ha(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return zn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return zn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new kr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new kr(`Layer ${this.name} is not connected, no input to return.`);return zn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new kr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new kr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return zn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=xt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=xt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=xt(e),a=!0;for(let s of n)if(!(s instanceof ja)){a=!1;break}let r=!0;for(let s of n)if(s instanceof ja){r=!1;break}if(a===r)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return ri(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of xt(e))s.push(i.shape);this.build(zn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=xt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=zn(o),this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=TV(e),i=this.computeOutputShape(s),o,l=SV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new ja(l,u,this,xt(e),t,this.name,p)):o=new ja(l,i,this,xt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new kr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new kr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ha(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Kh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return ax(e?this.trainableWeights:this.weights)}setWeights(e){O(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=ax(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!v.arraysEqual(s.shape,o.shape))throw new H(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}vw(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():Tt("zeros"));let l=a.apply(t,n),u=new rN(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=xt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=xt(e);t=xt(t),n=xt(n),a=xt(a),r=qh(r),s=qh(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new Uf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function TV(e){e=xt(e);let t=[];for(let n of e)t.push(n.shape);return zn(t)}function SV(e){return"float32"}function sN(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=sN(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var Uu=class extends Ye{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:Df("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new ja(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Uf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Uu.className="InputLayer";se.registerClass(Uu);function iN(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Uu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function NV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return le(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var ei=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ei)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=NV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof ja){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof ja){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Me(this.id2Mask)}},Xh=new KS,Yh=new KS;function CV(e){Xh!=null&&Xh.setMaxEntries(e),Yh!=null&&Yh.setMaxEntries(e)}function Up(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=Xh.get(p),c;if(d==null){let m=_V(i,t);d=m.sorted,c=m.recipientCounts,Xh.put(p,d),Yh.put(p,c)}c={},r||Object.assign(c,Yh.get(p));let h=new ei(t);for(let m=0;m<d.length;++m){if(a!=null){let A=Hh().numTensors;A>a.maxNumTensors&&(a.maxNumTensors=A),A<a.minNumTensors&&(a.minNumTensors=A)}let f=d[m],g=f.sourceLayer;if(g instanceof Uu)continue;let b=[],y=[],x=[],w=!1;for(let A of f.inputs){let M=h.getValue(A),D=h.getMask(A);b.push(M),y.push(D),D!=null&&(w=!0),r||(c[A.name]--,c[A.name]===0&&!t.hasKey(A)&&o.indexOf(A.name)===-1&&!M.isDisposed&&A.sourceLayer.stateful!==!0&&x.push(M))}w&&(n=n||{},n.mask=y[0]);let I=xt(g.apply(b,n)),N=null;g.supportsMasking&&(N=g.computeMask(b,y));let _=$V(f),$=Array.isArray(_)?_:[_];for(let A=0;A<$.length;++A){h.hasKey($[A])||h.add($[A],I[A],Array.isArray(N)?N[0]:N);let M=o.indexOf($[A].name);M!==-1&&(l[M]=I[A])}r||Me(x)}return h.disposeMasks(),s?l:l[0]}function _V(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=Ak(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=Ak(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:EV(a)}}function EV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Ak(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function $V(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var AV=X();AV.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,CV);var oN={};Fe(oN,{maxNorm:()=>FV,minMaxNorm:()=>MV,nonNeg:()=>RV,unitNorm:()=>DV});function ww(e,t){return O(()=>ln(ye(W(e,e),t,!0)))}var id=class extends se.Serializable{getConfig(){return{}}},kw=class extends id{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=ww(e,this.axis),n=tn(t,0,this.maxValue);return W(e,fe(n,Q(Ht(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};kw.className="MaxNorm";se.registerClass(kw);var Iw=class extends id{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>fe(e,Q(Ht(),ww(e,this.axis))))}getConfig(){return{axis:this.axis}}};Iw.className="UnitNorm";se.registerClass(Iw);var Tw=class extends id{apply(e){return Xe(e)}};Tw.className="NonNeg";se.registerClass(Tw);var Sw=class extends id{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=ww(e,this.axis),n=Q(W(this.rate,tn(t,this.minValue,this.maxValue)),W(1-this.rate,t));return W(e,fe(n,Q(Ht(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Sw.className="MinMaxNorm";se.registerClass(Sw);var Fk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Kt(e){return pw(e)}function Dk(e,t={}){return nd(e,se.SerializationMap.getMap().classNameMap,t,"constraint")}function Xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Fk?Fk[e]:e,config:{}};return Dk(t)}else return e instanceof id?e:Dk(e)}function FV(e){return new kw(e)}function DV(e){return new Iw(e)}function RV(){return new Tw}function MV(e){return new Sw(e)}var lN={};Fe(lN,{constant:()=>LV,glorotNormal:()=>HV,glorotUniform:()=>GV,heNormal:()=>jV,heUniform:()=>qV,identity:()=>VV,leCunNormal:()=>KV,leCunUniform:()=>XV,ones:()=>OV,orthogonal:()=>YV,randomNormal:()=>WV,randomUniform:()=>zV,truncatedNormal:()=>BV,varianceScaling:()=>UV,zeros:()=>PV});function PV(){return new hw}function OV(){return new Pf}function LV(e){return new mw(e)}function zV(e){return new fw(e)}function WV(e){return new gw(e)}function BV(e){return new bw(e)}function VV(e){return new yw(e)}function UV(e){return new Gn(e)}function GV(e){return new Of(e)}function HV(e){return new Lf(e)}function jV(e){return new zf(e)}function qV(e){return new Wf(e)}function KV(e){return new Bf(e)}function XV(e){return new Vf(e)}function YV(e){return new xw(e)}var uN={};Fe(uN,{Layer:()=>Ye,RNN:()=>br,RNNCell:()=>cd,activation:()=>kG,add:()=>AG,alphaDropout:()=>mH,average:()=>FG,averagePooling1d:()=>F0,averagePooling2d:()=>D0,averagePooling3d:()=>R0,avgPool1d:()=>BG,avgPool2d:()=>UG,avgPool3d:()=>HG,avgPooling1d:()=>VG,avgPooling2d:()=>GG,avgPooling3d:()=>jG,batchNormalization:()=>LG,bidirectional:()=>iH,concatenate:()=>DG,conv1d:()=>hG,conv2d:()=>mG,conv2dTranspose:()=>fG,conv3d:()=>gG,conv3dTranspose:()=>bG,convLstm2d:()=>nH,convLstm2dCell:()=>aH,cropping2D:()=>xG,dense:()=>IG,depthwiseConv2d:()=>wG,dot:()=>OG,dropout:()=>TG,elu:()=>oG,embedding:()=>$G,flatten:()=>NG,gaussianDropout:()=>hH,gaussianNoise:()=>dH,globalAveragePooling1d:()=>qG,globalAveragePooling2d:()=>KG,globalMaxPool1d:()=>lH,globalMaxPool2d:()=>uH,globalMaxPooling1d:()=>e2,globalMaxPooling2d:()=>t2,gru:()=>YG,gruCell:()=>ZG,input:()=>CN,inputLayer:()=>iG,layerNormalization:()=>zG,leakyReLU:()=>uG,lstm:()=>JG,lstmCell:()=>QG,masking:()=>fH,maxPool1d:()=>pH,maxPool2d:()=>cH,maxPooling1d:()=>n2,maxPooling2d:()=>a2,maxPooling3d:()=>XG,maximum:()=>RG,minimum:()=>MG,multiply:()=>PG,permute:()=>EG,prelu:()=>pG,reLU:()=>lG,repeatVector:()=>CG,reshape:()=>_G,rnn:()=>rH,separableConv2d:()=>yG,simpleRNN:()=>eH,simpleRNNCell:()=>tH,softmax:()=>cG,spatialDropout1d:()=>SG,stackedRNNCells:()=>sH,thresholdedReLU:()=>dG,timeDistributed:()=>oH,upSampling2d:()=>vG,zeroPadding2d:()=>WG});async function Xr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Me(a)}}function pN(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Rk;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Rk||(Rk={}));var ZV=125,kl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},cN=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},JV=class extends kl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=O(()=>Q(this.totals[a],W(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:O(()=>{let a=W(fe(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Qt(t[n])}))}},dN=class extends kl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},hN=class extends kl{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||lw,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=ZV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=Q4(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Xr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Xr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Xr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Xr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Xr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Xr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Xr(e),await this.trainEnd(e))}};function mN(e,t){return e==null&&(e={}),e instanceof kl?[e]:Array.isArray(e)&&e[0]instanceof kl?e:xt(e).map(n=>new hN(n,t))}var Ta=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ta.checkForDuplicate(t),Ta.constructors[e]==null&&(Ta.constructors[e]=[]),Ta.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ta.constructors)Ta.constructors[+t].forEach(n=>{if(n===e)throw new H("Duplicate callback constructor.")})}static clear(){Ta.constructors={}}static createCallbacks(e){let t=[];for(let n in Ta.constructors){let a=+n;e>=a&&t.push(...Ta.constructors[a])}return t.map(n=>new n)}};Ta.constructors={};function fN(e,t,n,a,r,s,i,o,l){let u=new dN,p=[new JV,...Ta.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new cN(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function Ka(e,t={},n=!1){return nd(e,se.SerializationMap.getMap().classNameMap,t,"layer",n)}function Zh(e,t){return O(()=>{e.dtype!=="float32"&&(e=le(e,"float32"));let n=ye(rd(e),t,!0),a=En(n.shape,Ht()),r=ln(fr(n,a));return fe(e,r)})}function No(e,t){return O(()=>_t(rd(ce(t,e)),-1))}function Gf(e,t){return O(()=>_t(Lt(ce(t,e)),-1))}function Gu(e,t){return O(()=>{let n=ce(e,t),a=tn(Lt(e),Ht(),Number.MAX_VALUE),r=Lt(fe(n,a));return W(100,_t(r,-1))})}function QV(e,t){return O(()=>{let n=tn(t,Ht(),Number.MAX_VALUE),a=ea(Q(1,n)),r=tn(e,Ht(),Number.MAX_VALUE),s=ea(Q(1,r));return _t(rd(ce(a,s)),-1)})}function eU(e,t){return O(()=>{let n=fr(0,ce(1,W(e,t)));return _t(rd(n),-1)})}function tU(e,t){return O(()=>{let n=fr(0,ce(1,W(e,t)));return _t(n,-1)})}function nU(e,t){return O(()=>{let n=ye(W(e,t),-1),a=Na(W(ce(1,e),t),-1);return fr(0,Q(1,ce(a,n)))})}function aU(e,t){return O(()=>{let n=Math.log(2),a=ce(t,e),r=ce(Q(a,ko(W(-2,a))),n);return _t(r,-1)})}function uc(e,t,n=!1){return O(()=>{if(n)t=Qa(t);else{let a=ye(t,t.shape.length-1,!0);t=fe(t,a)}return t=tn(t,Ht(),1-Ht()),vt(ye(W(le(e,"float32"),ea(t)),t.shape.length-1))})}function Jh(e,t,n=!1){return O(()=>{let a=le(Lu(cV(e)),"int32");t=tn(t,Ht(),1-Ht());let r=t.shape,s=B(fl(a,r[r.length-1]),r);return uc(s,t,n)})}function rU(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return O(()=>{let n=Xe(t),a=vt(Lt(t));return Q(ce(n,W(t,e)),qc(gn(a)))})}function Hf(e,t){return O(()=>{let n;return n=tn(t,Ht(),1-Ht()),n=ea(fe(n,ce(1,n))),_t(rU(e,n),-1)})}function sU(e,t){return O(()=>{let n=tn(e,Ht(),1),a=tn(t,Ht(),1);return ye(W(e,ea(fe(n,a))),-1)})}function iU(e,t){return O(()=>{let n=ea(Q(Ht(),t));return _t(ce(t,W(e,n)),-1)})}function Nw(e,t){return O(()=>{let n=Zh(e,-1),a=Zh(t,-1),r=W(n,a);return vt(ye(r,-1))})}var Qh={meanSquaredError:No,meanAbsoluteError:Gf,meanAbsolutePercentageError:Gu,meanSquaredLogarithmicError:QV,squaredHinge:eU,hinge:tU,categoricalHinge:nU,logcosh:aU,categoricalCrossentropy:uc,sparseCategoricalCrossentropy:Jh,binaryCrossentropy:Hf,kullbackLeiblerDivergence:sU,poisson:iU,cosineProximity:Nw};function $y(e){if(typeof e=="string"){if(e in Qh)return Qh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function Cw(e,t){return O(()=>{let n=W(.5,ta(t)),a=Rf(jn(t,n),e.dtype);return _t(Qn(e,a),-1)})}function _w(e,t){return O(()=>Rf(Qn(di(e,-1),di(t,-1)),"float32"))}function gN(e,t){return O(()=>le(ye(_a(Qn(e,1),Qn(t,1))),"float32"))}function oU(e,t){return O(()=>le(ye(_a(Qn(e,1),Qn(t,0))),"float32"))}function lU(e,t){return O(()=>le(ye(_a(Qn(e,0),Qn(t,1))),"float32"))}function bN(e,t){return O(()=>{let n=gN(e,t),a=lU(e,t),r=Q(n,a);return le(fn(jn(r,0),fe(n,r),0),"float32")})}function uU(e,t){return O(()=>{let n=gN(e,t),a=oU(e,t),r=Q(n,a);return le(fn(jn(r,0),fe(n,r),0),"float32")})}function yN(e,t){return Hf(e,t)}function xN(e,t){return e.rank===t.rank&&(e=Ss(e,[e.rank-1])),t=di(t,-1),t.dtype!==e.dtype&&(t=le(t,e.dtype)),le(Qn(e,t),"float32")}var pU=No,cU=No,dU=Gf,hU=Gf,mU=Gu,fU=Gu,Ew=uc,gU=Nw,vN=Jh,em={binaryAccuracy:Cw,categoricalAccuracy:_w,precision:bN,categoricalCrossentropy:Ew,sparseCategoricalCrossentropy:vN,mse:pU,MSE:cU,mae:dU,MAE:hU,mape:mU,MAPE:fU,cosine:gU};function bU(e){if(typeof e=="string"&&e in em)return em[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function bh(e){if(ir(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Qh))if(Qh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(em))if(em[n]===e){t=n;break}return t!==void 0?t:e.name}}function yU(e){let t={Adagrad:()=>Ks.adagrad(.01),Adadelta:()=>Ks.adadelta(1,.95,Ht()),Adam:()=>Ks.adam(.001,.9,.999,Ht()),Adamax:()=>Ks.adamax(.002,.9,.999,Ht(),0),RMSProp:()=>Ks.rmsprop(.001,.9,0,Ht()),SGD:()=>Ks.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}function Mk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!rx(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function rx(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!rx(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!rx(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function xU(e,t,n,a=console.log){let r=wU(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),tm(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?kU(o[p],n,a):IU(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=vU(e),u=Kh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function vU(e){let t;return e.collectedTrainableWeights!=null?t=Kh(e.collectedTrainableWeights):t=Kh(e.trainableWeights),t}function wU(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function tm(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function kU(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];tm(o,t,n)}function IU(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];tm(p,t,a);for(let d=1;d<i.length;++d)tm(["","","","",i[d]],t,a)}function wN(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function pc(e,t){if(e===null)return null;if(typeof e=="string")return Zs(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];wN(t,r,s)?n.push(s):n.push(pc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Zs(a);n[s]=pc(r,s)}}return n}}function sx(e,t){if(e==null)return null;if(typeof e=="string")return Ir(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];wN(t,r,s)?n.push(s):n.push(sx(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Ir(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=sx(r,a)}return n}}var $w="3.20.0",ar=class extends Ye{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Df(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],ts(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);ts(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let b of this.inputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;ir(x===0,"input layer has >1 nodes"),ir(w===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof Uu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},a={},r={},s={},i=[],o=(b,y,x,w,I,N)=>{(w==null||I==null||N==null)&&(w=b.sourceLayer,I=b.nodeIndex,N=b.tensorIndex);let _=w.inboundNodes[I];if(x.indexOf(_)!==-1)throw new Ha(`The tensor ${b.name} at layer "${w.name}" is part of a cycle.`);if(y.indexOf(_)!==-1)return;this.containerNodes.add(ar.nodeKey(w,I)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(_)===-1&&x.push(_);let $=_.inboundLayers.length;for(let A=0;A<$;A++){let M=_.inputTensors[A],D=_.inboundLayers[A],T=_.nodeIndices[A],P=_.tensorIndices[A];o(M,y,x,D,T,P)}for(y.push(_);x.indexOf(_)>=0;)x.splice(x.indexOf(_),1);i.push(_)},l=[],u=[];for(let b of this.outputs)o(b,l,u);let p=i.slice().reverse();for(let b of p){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],x=a[b.outboundLayer.id]==null?0:a[b.outboundLayer.id];y=Math.max(y,x),a[b.outboundLayer.id]=y,r[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let w=0;w<b.inboundLayers.length;w++){let I=b.inboundLayers[w],N=b.nodeIndices[w],_=I.inboundNodes[N],$=t[_.id]==null?0:t[_.id];t[_.id]=Math.max(y+1,$),n[_.id]=_}}let d={};for(let b in t){let y=t[b];y in d||(d[y]=[]),d[y].push(n[b])}let c={};for(let b in a){let y=a[b];y in c||(c[y]=[]),c[y].push(r[b])}let h=Object.keys(c).map(b=>parseInt(b,10)).sort(mh);this.layers=[];for(let b of h){let y=c[b];y.sort((x,w)=>{let I=s[x.id],N=s[w.id];return I<N?-1:I>N?1:0});for(let x of y)x instanceof ar&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(b=>parseInt(b,10)).sort(mh);let m=this.inputs.slice(),f=[];for(let b of h)for(let y of d[b]){let x=y.outboundLayer;if(x!=null){for(let w of y.inputTensors)if(m.indexOf(w)===-1)throw new Ha(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of y.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(x=>x===b).length;if(y!==1)throw new Ha(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Uf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new H(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new H(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new H(`${s.length} of ${a} weights are not set: ${s}`)}vw(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${$w}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=sx(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return O(()=>{e=xt(e);let n=new ei;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Up(this.outputs,n,t)})}computeMask(e,t){return O(()=>{e=xt(e);let n;return t==null?n=gi(null,e.length):n=xt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=qh(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(mh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],b=l.tensorIndices[m],y=`${f.name}_${g}_${b}`,x=n[y];p.push(x)}let d=u.computeOutputShape(zn(p)),c=qh(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];ir(o in n),r.push(n[o])}return zn(r)}runInternalGraph(e,t){t==null&&(t=gi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(mh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,b,y;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),b=xt(p.call(x,m)),y=xt(p.computeMask(x,w)),f=[x],g=[w]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),b=xt(p.call(f,m)),y=xt(p.computeMask(f,g));if(p.activityRegularizer)throw new Pe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],I=b[x],N=y[x];n[w.id]=[I,N]}}}}let r=[],s=[],i=[];for(let o of this.outputs){ir(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof ar?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=ar.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return O(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=ar.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=ar.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],b=d.nodeIndices[f],y=d.tensorIndices[f],x=ar.nodeKey(g,b),w=t[x];w==null&&(w=0),m.push([g.name,w,y,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=ar.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=ar.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let b=[],y;for(let x of g){let w=x[0],I=x[1],N=x[2];if(y=x[3]==null?{}:x[3],!(w in r)){i(f,g);return}let _=r[w];if(_.inboundNodes.length<=I){i(f,g);return}let $=_.inboundNodes[I];b.push($.outputTensors[N])}b.length>0&&f.apply(zn(b),y)}function l(f){let g=f.name,b=Ka(f,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(a),r[g]=b,f.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${y}`);i(b,y)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!J4(s);)for(let f of p){let g=r[f.name];if(g.name in s){let b=s[g.name];delete s[g.name];for(let y of b)o(g,y)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],b=f[1],y=f[2];ir(g in r);let x=r[g].inboundNodes[b].outputTensors;d.push(x[y])}let m=t.outputLayers;for(let f of m){let g=f[0],b=f[1],y=f[2];ir(g in r);let x=r[g].inboundNodes[b].outputTensors;c.push(x[y])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){O(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function TU(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function kN(e,t){return TU(e,t,"classWeight")}async function IN(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=O(()=>{if(e.shape.length===1)return ur(e);if(e.shape.length===2){if(e.shape[1]>1)return di(e,1);if(e.shape[1]===1)return B(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Me(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Ke(i,"float32")}else return null}function SU(e,t){return W(e,t)}var NU=32;function TN(e,t){let n,a,r=t;n=r.xs,a=r.ys,v.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=Pk("input",e.inputNames,n),i=Pk("output",e.outputNames,a),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function Pk(e,t,n){if(n instanceof $e)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function CU(e){if(e.length===3)throw new Pe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function _U(e,t,n){let a=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(Ok(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=CU(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=mN(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=fN(p,d,n.epochs,null,null,EU(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let b=0,y=0;for(a||(f=await t.iterator());!a||b<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:I}=TN(e,x.value),N={};N.batch=y,N.size=w[0].shape[0],await c.onBatchBegin(y,N);let _=[];if(n.classWeight!=null){let M=kN(n.classWeight,e.outputNames);for(let D=0;D<M.length;++D)_.push(await IN(I[D],null,M[D]))}let $=w.concat(I).concat(_),A=o($);Me($);for(let M=0;M<l.length;++M){let D=l[M],T=A[M];N[D]=T,Qt(T)}await c.onBatchEnd(y,N),pN(N),y++,b++}if(a?b>=n.batchesPerEpoch:x.done){if(r){let w;Ok(n.validationData)?w=xt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=xt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?NU:n.validationBatchSize,verbose:0}));for(let I=0;I<e.metricsNames.length;++I)g[`val_${e.metricsNames[I]}`]=w[I]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function EU(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Ok(e){return typeof e.iterator=="function"}function $U(e){return typeof e.next=="function"}async function AU(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Pe("Verbose mode is not implemented yet.");v.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=$U(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=O(()=>{if(u.value){let{xs:p,ys:d}=TN(e,u.value),c=p.concat(d),h=O(()=>r(c));if(Me(c),l===0)for(let f=0;f<h.length;++f)s.push(ke(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],b=s[f];s[f]=O(()=>Q(s[f],W(m,g))),l>0&&Me(b)}Me(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=fe(s[u],o),Me(p)}return zn(s)}function ix(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Gp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>si(a,t,n-t)):si(e,t,n-t)}function Aw(e,t){return O(()=>e==null?null:Array.isArray(e)?e.map(n=>Aw(n,t)):nN(e,t.dtype==="int32"?t:le(t,"int32")))}function ox(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function FU(e,t,n,a,r,s,i,o,l,u,p,d,c,h,m){r==null&&(r=32),s==null&&(s=1),p==null&&(p=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),b;g!=null&&(b=Ya(0,g)),i==null&&(i=1);let{callbackList:y,history:x}=fN(o,i,s,c,g,h,r,f,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let w=c;w<s;++w){await y.onEpochBegin(w);let I={};if(h!=null)throw new Pe("stepsPerEpoch mode is not implemented yet.");{if(p==="batch")throw new Pe("batch shuffling is not implemneted yet");p&&v.shuffle(b);let N=Ke(b),_=ox(g,r);for(let $=0;$<_.length;++$){let A={};if(await y.onBatchBegin($,A),O(()=>{let M=_[$][0],D=_[$][1],T=si(N,M,D-M);A.batch=$,A.size=D-M;let P=Aw(n,T),U=t(P);for(let j=0;j<a.length;++j){let q=a[j],K=U[j];A[q]=K,Qt(K)}if($===_.length-1&&f){let j=e.testLoop(l,u,r);for(let q=0;q<a.length;++q){let K=a[q],Y=j[q];Qt(Y),I["val_"+K]=Y}}}),await y.onBatchEnd($,A),pN(A),e.stopTraining_)break}N.dispose()}if(await y.onEpochEnd(w,I),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function DU(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,p,d,c;try{let h=a.batchSize==null?32:a.batchSize;ix(h);let m=!1,f=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,m,h);r=f[0],s=f[1],c=f[2];let g=!1,b;if(a.validationData!=null&&a.validationData.length>0){if(g=!0,a.validationData.length===2)l=a.validationData[0],u=a.validationData[1];else throw a.validationData.length===3?new Pe("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let $=!0,A=await e.standardizeUserData(l,u,null,null,$,h);p=A[0],d=A[1],b=p.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){g=!0;let $=Math.floor(r[0].shape[0]*(1-a.validationSplit)),A=r[0].shape[0];p=Gp(r,$,A),i=r,r=Gp(r,0,$),d=Gp(s,$,A),o=s,s=Gp(s,0,$),b=p.concat(d)}else a.validationSteps!=null&&(g=!0);let y=r.concat(s).concat(c);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),w=e.getDedupedMetricsNames(),I,N;g?(e.makeTestFunction(),I=e.testFunction,N=w.slice().concat(w.map($=>"val_"+$))):(I=null,b=[],N=w.slice());let _=mN(a.callbacks,a.yieldEvery);return await FU(e,x,y,w,h,a.epochs,a.verbose,_,I,b,a.shuffle,N,a.initialEpoch,null,null)}finally{e.isTraining=!1,Ga(r,t),Ga(s,n),Ga(i,t),Ga(o,n),Ga(p,l),Ga(d,u),c!=null&&Me(c)}}function SN(e){let t=[];e instanceof $e&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(ad(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Ga(e,t){if(e==null)return;let n=[];if(t instanceof $e)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof $e)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function RU(e){return e instanceof $e}function lx(e){return Array.isArray(e)}function Lk(e){return!RU(e)&&!lx(e)}function zk(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(lx(e)&&e.length>0)i=!0;else if(Lk(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new H(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(Lk(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new H(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(lx(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new H(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=SN(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new H(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function MU(e,t,n){let a=ts(e.map(s=>s.shape[0]));a.sort();let r=ts(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!v.arraysEqual(a,r))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function PU(e,t,n){let a=[No,Hf,uc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===uc&&s.shape[s.shape.length-1]===1)throw new H(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new H(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Wk(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new H(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function OU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var LU="layers-model",Er=class extends ar{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");xU(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=yU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Dr))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new H(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push($y(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>$y(s))}else{let s=$y(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ri("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=OU(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};ri("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Hf?["accuracy","acc"].indexOf(c)!==-1?p=Cw:["crossentropy","ce"].indexOf(c)!==-1&&(p=yN):this.lossFunctions[s]===Jh?["accuracy","acc"].indexOf(c)!==-1?p=xN:["crossentropy","ce"].indexOf(c)!==-1&&(p=vN):["accuracy","acc"].indexOf(c)!==-1?p=_w:["crossentropy","ce"].indexOf(c)!==-1&&(p=Ew);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=bU(c),u=l+bh(c);let h;ri(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;ix(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return zn(l)}finally{Ga(s[0],e),Ga(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),AU(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new H(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new ei;if(e instanceof $e&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new H(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Up(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=gi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return O(()=>{let a=this.checkNumSamples(e);if(n)throw new Pe("Verbose predictLoop() is not implemented yet.");let r=ox(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)O(()=>{let o=r[i][0],l=r[i][1],u=Gp(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new ei(p);return Up(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return zn(s.map(i=>Qe(i,0)))})}predict(e,t={}){let n=SN(e);Wk(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return ix(a),this.predictLoop(n,a)}finally{Ga(n,e)}}predictOnBatch(e){Wk(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ha("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Jh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=zk(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=zk(t,this.feedOutputNames,r,!1,"target"),MU(e,t,null),PU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=kN(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await IN(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return O(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Pe("Verbose mode is not implemented yet.");if(r!=null)throw new Pe("steps mode in testLoop() is not implemented yet");{let o=ox(s,n),l=Ke(Ya(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=si(l,p,d-p),h=Aw(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ke(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=Q(i[f],W(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=fe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;Sk(e,a)>1&&(r+=`_${Sk(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new ei(u),d=Up(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h],f=m(a[h],d[h]);r[h]!=null&&(f=SU(f,r[h]));let g=_t(f);t.push(g),h===0?c=f:c=Q(c,f)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=_t(f(a[g],d[g]))}Qt(m),s.push(m)}return c=_t(c),this.calculateLosses().forEach(h=>{c=Q(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>O(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new ei(s),o=Up(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=_t(u(r[l],o[l]));l===0?n=p:n=Q(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=_t(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){return DU(this,e,t,n)}async fitDataset(e,t){return _U(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Me(s),Ga(n[0],e),Ga(n[1],t),zn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Hh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Hh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Ir(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Ir(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Ir(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Ir(bh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Ir(bh(e)));{let e={};for(let t in this.metrics)e[t]=Ir(bh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=pc(e.optimizer_config),n=Ka(t),a;if(typeof e.loss=="string")a=Zs(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Zs(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Zs(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Zs(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Zs(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Sn.getSaveHandlers(e);if(i.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new H(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Sn.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:LU,generatedBy:`TensorFlow.js tfjs-layers v${$w}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Sn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Sn.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(Mk(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){Mk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Er.className="Model";se.registerClass(Er);var NN=class extends Er{};NN.className="Functional";se.registerClass(NN);async function zU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=pc(n),r=Ka(a,t);if(e.weightsManifest!=null){let s=await Sn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Me(s)}return r}async function WU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Sn.getLoadHandlers(e,t);if(n.length===0)n.push(Sn.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return BU(e,void 0,t)}async function BU(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Ka(pc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=VU(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),Me(u),Me(p.map(d=>d.tensor))}return o}function VU(e,t){let n=Sn.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Il=class extends Er{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Df("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Il||e instanceof Er,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=iN({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=sN(this.outputs[0])}this.inboundNodes=[],new Uf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:gi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(it(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Er({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ha("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ha("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ha("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ha("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Il))throw new Pe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Ka(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Il.className="Sequential";se.registerClass(Il);function UU(e){return new Er(e)}function GU(e){return new Il(e)}function HU(e,t){return t==null&&(t={}),WU(e,t)}function CN(e){return iN(e)}function jU(e,t){Ta.registerCallbackConstructor(e,t)}var qn=class extends se.Serializable{getConfig(){return{}}},_N=class extends qn{apply(e,t=1){return hV(e,t)}};_N.className="elu";se.registerClass(_N);var EN=class extends qn{apply(e){return mf(e)}};EN.className="selu";se.registerClass(EN);var $N=class extends qn{apply(e){return Xe(e)}};$N.className="relu";se.registerClass($N);var AN=class extends qn{apply(e){return O(()=>Wu(6,Xe(e)))}};AN.className="relu6";se.registerClass(AN);var FN=class extends qn{apply(e){return e}};FN.className="linear";se.registerClass(FN);var DN=class extends qn{apply(e){return da(e)}};DN.className="sigmoid";se.registerClass(DN);var RN=class extends qn{apply(e){return fV(e)}};RN.className="hardSigmoid";se.registerClass(RN);var MN=class extends qn{apply(e){return ko(e)}};MN.className="softplus";se.registerClass(MN);var PN=class extends qn{apply(e){return mV(e)}};PN.className="softsign";se.registerClass(PN);var ON=class extends qn{apply(e){return hi(e)}};ON.className="tanh";se.registerClass(ON);var Fw=class extends qn{apply(e,t=-1){return Qa(e,t)}};Fw.className="softmax";se.registerClass(Fw);var LN=class extends qn{apply(e,t=-1){return sf(e,t)}};LN.className="logSoftmax";se.registerClass(LN);var zN=class extends qn{apply(e,t=1){return O(()=>W(da(W(e,t)),e))}};zN.className="swish";se.registerClass(zN);var WN=class extends qn{apply(e){return O(()=>W(e,hi(ko(e))))}};WN.className="mish";se.registerClass(WN);function os(e){return e.getClassName()}function Ay(e,t={}){return nd(e,se.SerializationMap.getMap().classNameMap,t,"activation")}function ls(e){if(e==null){let t={};return t.className="linear",t.config={},Ay(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Ay(t)}else return e instanceof qn?e:Ay(e)}function Dw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var BN=class extends se.Serializable{},od=class extends BN{constructor(e){super(),Dw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return O(()=>{let t=It([1]);return this.hasL1&&(t=Q(t,ye(W(this.l1,Lt(e))))),this.hasL2&&(t=Q(t,ye(W(this.l2,rd(e))))),B(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};od.className="L1L2";se.registerClass(od);function qU(e){return Dw(e),new od({l1:e!=null?e.l1:null,l2:0})}function KU(e){return Dw(e),new od({l2:e!=null?e.l2:null,l1:0})}var Bk={l1l2:"L1L2"};function ht(e){return pw(e)}function Vk(e,t={}){return nd(e,se.SerializationMap.getMap().classNameMap,t,"regularizer")}function St(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Bk?Bk[e]:e,config:{}};return Vk(t)}else return e instanceof BN?e:Vk(e)}var Rw=class extends Ye{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Xe(e);return this.maxValue!=null&&(n=tn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Rw.className="ReLU";se.registerClass(Rw);var Mw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return jc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Mw.className="LeakyReLU";se.registerClass(Mw);var Pw=class extends Ye{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Tt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=St(e.alphaRegularizer),this.alphaConstraint=Xt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=it(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),Zc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Et(this.alphaInitializer),alphaRegularizer:ht(this.alphaRegularizer),alphaConstraint:Kt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Pw.className="PReLU";se.registerClass(Pw);var Ow=class extends Ye{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Pe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Pu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Ow.className="ELU";se.registerClass(Ow);var Lw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return W(n,le(jn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Lw.className="ThresholdedReLU";se.registerClass(Lw);var zw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Fw().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};zw.className="Softmax";se.registerClass(zw);function cl(e,t,n){if(typeof e=="number")return gi(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!uV(r))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Xa(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function or(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+is([n-t,0]);else if(a==="same")e=e*t;else throw new H(`Unsupport padding mode: ${a}.`);return e}function Ww(e,t){return O(()=>(Pt(t),t==="channelsFirst"?Ae(e,[0,2,3,1]):e))}function VN(e,t){return O(()=>(Pt(t),t==="channelsFirst"?Ae(e,[0,2,3,4,1]):e))}function XU(e,t,n,a=1,r="valid",s,i=1){return O(()=>{if(s==null&&(s=Za()),Pt(s),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ae(e,[0,2,1])),r==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Jm(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=er(o,n)),o})}function Uk(e,t,n,a=[1,1],r="valid",s,i,o=null){return O(()=>{if(s==null&&(s=Za()),Pt(s),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Ww(e,s);if(r==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=vl.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ae(l,[0,3,1,2])),l})}function YU(e,t,n,a=[1,1,1],r="valid",s,i){return O(()=>{if(s==null&&(s=Za()),Pt(s),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=VN(e,s);if(r==="causal")throw new Pe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Sv(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=er(o,n)),s==="channelsFirst"&&(o=Ae(o,[0,4,1,2,3])),o})}var Bw=class extends Ye{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Bw.verifyArgs(t),this.rank=e,en(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Pe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=cl(t.kernelSize,e,"kernelSize"),this.strides=cl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ya(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Pt(this.dataFormat),this.activation=ls(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Tt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Xt(t.biasConstraint),this.biasRegularizer=St(t.biasRegularizer),this.activityRegularizer=St(t.activityRegularizer),this.dilationRate=cl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ir("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!cw(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:os(this.activation),useBias:this.useBias,biasInitializer:Et(this.biasInitializer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},ld=class extends Bw{constructor(e,t){super(e,t),this.kernel=null,ld.verifyArgs(t),this.filters=t.filters,en(this.filters,"filters"),this.kernelInitializer=Tt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Xt(t.kernelConstraint),this.kernelRegularizer=St(t.kernelRegularizer)}build(e){e=it(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return O(()=>{e=ze(e);let n,a=this.bias==null?null:this.bias.read(),r=YS(this.activation.getClassName());if(r!=null&&this.rank===2)n=Uk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=XU(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Uk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=YU(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Pe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=it(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Xa(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Et(this.kernelInitializer),kernelRegularizer:ht(this.kernelRegularizer),kernelConstraint:Kt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},ud=class extends ld{constructor(e){super(2,e),ud.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!cw(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};ud.className="Conv2D";se.registerClass(ud);var pd=class extends ld{constructor(e){super(3,e),pd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};pd.className="Conv3D";se.registerClass(pd);var Vw=class extends ud{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=ze(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=or(o,d,u,this.padding),m=or(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ae(n,[0,2,3,1]));let g=Qm(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ae(g,[0,3,1,2])),this.bias!=null&&(g=er(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=or(t[a],o,s,this.padding),t[r]=or(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Vw.className="Conv2DTranspose";se.registerClass(Vw);var Uw=class extends pd{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=ze(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],b=or(l,m,d,this.padding),y=or(u,f,c,this.padding),x=or(p,g,h,this.padding),w=[r,b,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ae(n,[0,2,3,4,1]));let I=Nv(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(I=Ae(I,[0,4,1,2,3])),this.bias!==null&&(I=er(I,this.bias.read(),this.dataFormat)),this.activation!==null&&(I=this.activation.apply(I)),I})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=or(t[a],u,i,this.padding),t[r]=or(t[r],p,o,this.padding),t[s]=or(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Uw.className="Conv3DTranspose";se.registerClass(Uw);var UN=class extends ld{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Tt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=St(t.depthwiseRegularizer),this.depthwiseConstraint=Xt(t.depthwiseConstraint),this.pointwiseInitializer=Tt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=St(t.pointwiseRegularizer),this.pointwiseConstraint=Xt(t.pointwiseConstraint)}build(e){if(e=it(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{e=ze(e);let n;if(this.rank===1)throw new Pe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ae(e,[0,2,3,1])),n=Ts(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=er(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ae(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Et(this.depthwiseInitializer),e.pointwiseInitializer=Et(this.pointwiseInitializer),e.depthwiseRegularizer=ht(this.depthwiseRegularizer),e.pointwiseRegularizer=ht(this.pointwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseConstraint),e.pointwiseConstraint=Kt(this.pointwiseConstraint),e}};UN.className="SeparableConv";var Gw=class extends UN{constructor(e){super(2,e)}};Gw.className="SeparableConv2D";se.registerClass(Gw);var jf=class extends ld{constructor(e){super(1,e),jf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!cw(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};jf.className="Conv1D";se.registerClass(jf);var Hw=class extends Ye{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return O(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=gh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return gh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=gh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return gh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Hw.className="Cropping2D";se.registerClass(Hw);var jw=class extends Ye{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,iV(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return O(()=>{let n=ze(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ae(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?Nr.resizeNearestNeighbor(n,[r,s]):Nr.resizeBilinear(n,[r,s]);return Ae(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?Nr.resizeNearestNeighbor(n,[r,s]):Nr.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};jw.className="UpSampling2D";se.registerClass(jw);function ZU(e,t,n=[1,1],a="valid",r,s){return O(()=>{r==null&&(r=Za()),Pt(r);let i=Ww(e,r);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ws(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ae(i,[0,3,1,2])),i})}var qw=class extends Bw{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Tt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Xt(e.depthwiseConstraint),this.depthwiseRegularizer=St(e.depthwiseRegularizer)}build(e){if(e=it(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{e=ze(e);let n=ZU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=er(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Xa(t,this.kernelSize[0],this.padding,this.strides[0]),s=Xa(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Et(this.depthwiseInitializer),e.depthwiseRegularizer=ht(this.depthwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseRegularizer),e}};qw.className="DepthwiseConv2D";se.registerClass(qw);function GN(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function HN(e,t,n,a=!1,r,s,i=!1,o=!1){return O(()=>{let l=t.shape.length;if(l<3)throw new H(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ya(2,l));if(t=Ae(t,u),s!=null)throw new Pe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=le(le(r,"bool"),"float32"),r.rank===l-1&&(r=mn(r,-1)),r=Ae(r,u)),a&&(t=fa(t,0),r!=null&&(r=fa(r,0)));let p=[],d,c=n,h=t.shape[0],m=mt(t),f;r!=null&&(f=mt(r));for(let b=0;b<h;++b){let y=m[b],x=O(()=>e(y,c));if(r==null)d=x[0],c=x[1];else{let w=O(()=>{let I=f[b],N=ce(ta(I),I),_=Q(W(x[0],I),W(c[0],N)),$=c.map((A,M)=>Q(W(x[1][M],I),W(A,N)));return{output:_,newStates:$}});d=w.output,c=w.newStates}o&&p.push(d)}let g;return o&&(g=Rt(p,1)),[d,g,c]})}var br=class extends Ye{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Xf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ya(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){nx(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return O(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Pe("Constants support is not implemented in RNN yet.");nx(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new zt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new zt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new kr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_=[It([n,this.cell.stateSize])];else if(e==null)Me(this.states_),this.keptStates!=null&&(Me(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_[0]=It([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Me(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(r.shape,i))throw new H(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Qt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=GN(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof ja){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=ze(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new H(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=HN((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return O(()=>{let t=It(e.shape);return t=ye(t,[1,2]),t=ad(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?ex(t,[1,n]):t):this.cell.stateSize>1?[ex(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===br.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Ka(a,n);return new e(Object.assign(t,{cell:r}))}};br.className="RNN";se.registerClass(br);var cd=class extends Ye{},qf=class extends cd{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,en(this.units,"units"),this.activation=ls(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=St(e.kernelRegularizer),this.recurrentRegularizer=St(e.recurrentRegularizer),this.biasRegularizer=St(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=wl([1,is([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=wl([1,is([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>ta(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>ta(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=pr(W(e,s),this.kernel.read()):r=pr(e,this.kernel.read()),this.bias!=null&&(r=er(r,this.bias.read())),i!=null&&(n=W(n,i));let o=Q(r,pr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};qf.className="SimpleRNNCell";se.registerClass(qf);var Kw=class extends br{constructor(e){e.cell=new qf(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Kw.className="SimpleRNN";se.registerClass(Kw);var Kf=class extends cd{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,en(this.units,"units"),this.activation=ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=St(e.kernelRegularizer),this.recurrentRegularizer=St(e.recurrentRegularizer),this.biasRegularizer=St(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=wl([1,is([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=wl([1,is([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>ta(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>ta(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=W(e,r[0]));let u=pr(e,this.kernel.read());this.useBias&&(u=er(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=W(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=Vn(p,[2*this.units,this.units],p.rank-1),h=pr(a,d),[m,f,g]=Vn(u,3,u.rank-1),[b,y]=Vn(h,2,h.rank-1);i=this.recurrentActivation.apply(Q(m,b)),o=this.recurrentActivation.apply(Q(f,y));let x=pr(W(o,a),c);l=this.activation.apply(Q(g,x));let w=Q(W(i,a),W(Q(1,vt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),recurrentActivation:os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Kf.className="GRUCell";se.registerClass(Kf);var Xw=class extends br{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Kf(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Xw.className="GRU";se.registerClass(Xw);var dd=class extends cd{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,en(this.units,"units"),this.activation=ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=St(e.kernelRegularizer),this.recurrentRegularizer=St(e.recurrentRegularizer),this.biasRegularizer=St(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=wl([1,is([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=wl([1,is([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=it(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Aa{apply(i,o){let l=r.apply([s]),u=new Pf().apply([s]),p=r.apply([s*2]);return Ck(Ck(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>ta(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>ta(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=W(e,s[0]));let d=pr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=W(a,i[0])),d=Q(d,pr(a,this.recurrentKernel.read())),this.useBias&&(d=er(d,this.bias.read()));let[c,h,m,f]=Vn(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=Q(W(l,r),W(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=W(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),recurrentActivation:os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};dd.className="LSTMCell";se.registerClass(dd);var Yw=class extends br{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new dd(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Yw.className="LSTM";se.registerClass(Yw);var Xf=class extends cd{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return O(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){nx(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{ri(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Ka(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return ax(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}vw(t)}};Xf.className="StackedRNNCells";se.registerClass(Xf);function us(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):aN(t(),n),o=()=>sd(i,t,a);return!r||r<=1?Qt(o().clone()):Array(r).fill(void 0).map(o).map(l=>Qt(l.clone()))}var JU=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},jN=class extends br{constructor(e){if(e.unroll)throw new Pe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Pe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new zt({ndim:5})]}call(e,t){return O(()=>{if(this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return O(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=It(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new kr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_=[It(r)];else if(e==null)Me(this.states_),this.keptStates!=null&&(Me(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_[0]=It(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Me(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!v.arraysEqual(i.shape,o))throw new H(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Qt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=Xa(l,a[0],r,s[0],i[0]),d=Xa(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};jN.className="ConvRNN2D";var Yf=class extends dd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t})),this.filters=t,en(this.filters,"filters"),this.kernelSize=cl(n,2,"kernelSize"),this.kernelSize.forEach(o=>en(o,"kernelSize")),this.strides=cl(a||1,2,"strides"),this.strides.forEach(o=>en(o,"strides")),this.padding=r||"valid",ya(this.padding),this.dataFormat=s||"channelsLast",Pt(this.dataFormat),this.dilationRate=cl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>en(o,"dilationRate"))}build(e){var t;e=it(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Aa{apply(p,d){let c=l.apply([u]),h=Jn([u]),m=l.apply([u*2]);return dw([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return O(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>ta(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(te,re,J)=>!re||!re[J]?te:W(re[J],te),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>ta(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),b=l(r,h,3),y=3,[x,w,I,N]=Vn(this.kernel.read(),i,y),[_,$,A,M]=this.useBias?Vn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,_,this.padding),p=this.inputConv(p,w,$,this.padding),d=this.inputConv(d,I,A,this.padding),c=this.inputConv(c,N,M,this.padding);let[D,T,P,U]=Vn(this.recurrentKernel.read(),i,y);m=this.recurrentConv(m,D),f=this.recurrentConv(f,T),g=this.recurrentConv(g,P),b=this.recurrentConv(b,U);let j=this.recurrentActivation.apply(Q(u,m)),q=this.recurrentActivation.apply(Q(p,f)),K=Q(W(q,s),W(j,this.activation.apply(Q(d,g)))),Y=W(this.recurrentActivation.apply(Q(c,b)),this.activation.apply(K));return[Y,Y,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=JU(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=Dt(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?er(r,n,this.dataFormat):r}recurrentConv(e,t){return Dt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Yf.className="ConvLSTM2DCell";se.registerClass(Yf);var Zw=class extends jN{constructor(e){let t=new Yf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Zw.className="ConvLSTM2D";se.registerClass(Zw);var Zf=class extends Ye{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return sd(()=>aN(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Zf.className="Dropout";se.registerClass(Zf);var Jw=class extends Zf{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Jw.className="SpatialDropout1D";se.registerClass(Jw);var Qw=class extends Ye{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,en(this.units,"units"),this.activation=ls(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Xt(e.kernelConstraint),this.biasConstraint=Xt(e.biasConstraint),this.kernelRegularizer=St(e.kernelRegularizer),this.biasRegularizer=St(e.biasRegularizer),this.activityRegularizer=St(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=it(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=it(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e),a=YS(this.activation.getClassName()),r;return a!=null?r=pr(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=pr(n,this.kernel.read()),this.bias!=null&&(r=er(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:os(this.activation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Qw.className="Dense";se.registerClass(Qw);var e0=class extends Ye{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=it(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ns(e,1)]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=Ae(n,a)}return dV(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};e0.className="Flatten";se.registerClass(e0);var t0=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.activation=ls(e.activation)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:os(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};t0.className="Activation";se.registerClass(t0);var n0=class extends Ye{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return O(()=>(e=ze(e),pV(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};n0.className="RepeatVector";se.registerClass(n0);var a0=class extends Ye{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new H("Can only specifiy one unknown dimension.");else r*=l}let i=ns(e);if(s!==null){if(r===0||i%r!==0)throw new H(n);a[s]=i/r}else if(i!==r)throw new H(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return B(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};a0.className="Reshape";se.registerClass(a0);var r0=class extends Ye{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ya(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=it(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ae(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};r0.className="Permute";se.registerClass(r0);var s0=class extends Ye{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),a=-1;return ic(fi(n,this.maskValue),a)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e),a=-1,r=!0,s=ic(fi(n,this.maskValue),a,r);return W(n,le(s,n.dtype))})}};s0.className="Masking";se.registerClass(s0);var i0=class extends Ye{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(xt(e.inputLength))}this.inputDim=e.inputDim,en(this.inputDim,"inputDim"),this.outputDim=e.outputDim,en(this.outputDim,"outputDim"),this.embeddingsInitializer=Tt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=St(e.embeddingsRegularizer),this.activityRegularizer=St(e.activityRegularizer),this.embeddingsConstraint=Xt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return O(()=>this.maskZero?(e=ze(e),fi(e,qe(e))):null)}computeOutputShape(e){if(e=it(e),this.inputLength==null)return[...e,this.outputDim];let t=xt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);n.dtype!=="int32"&&(n=Rf(n,"int32"));let a=nN(this.embeddings.read(),B(n,[n.size]));return B(a,it(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Et(this.embeddingsInitializer),embeddingsRegularizer:ht(this.embeddingsRegularizer),activityRegularizer:ht(this.activityRegularizer),embeddingsConstraint:Kt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};i0.className="Embedding";se.registerClass(i0);var Co=class extends Ye{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Pe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[it(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=ts(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&ts(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return O(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=is(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=ad(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=B(o,[p].concat(ns(u.slice(1))));c=Ae(c,[1,0]),c=B(c,d),n.push(c),r=!0}else if(l>1){let u=Ya(1,l).concat([0]);n.push(Ae(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=B(Ae(B(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(Ya(0,i-1));s=Ae(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=ts(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return O(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:mn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=_a(n,t[a]);return n})}},o0=class extends Co{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Q(t,e[n]);return t})}};o0.className="Add";se.registerClass(o0);var l0=class extends Co{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=W(t,e[n]);return t})}};l0.className="Multiply";se.registerClass(l0);var u0=class extends Co{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Q(t,e[n]);return W(1/e.length,t)})}};u0.className="Average";se.registerClass(u0);var p0=class extends Co{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=fr(t,e[n]);return t})}};p0.className="Maximum";se.registerClass(p0);var c0=class extends Co{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Wu(t,e[n]);return t})}};c0.className="Minimum";se.registerClass(c0);var d0=class extends Co{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return O(()=>dw(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return O(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(le(ta(e[s]),"bool")):t[s].rank<e[s].rank?a.push(mn(t[s],-1)):a.push(t[s]);let r=Qe(a,this.axis);return Zm(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};d0.className="Concatenate";se.registerClass(d0);function Lp(e,t){for(;e<0;)e+=t;return e}function QU(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Pe("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Pe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return O(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=B(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=B(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=ye(W(e,t),s[0]):o=ye(W(Ae(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Re(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=Ss(o,u)}return o.shape.length===1&&(o=mn(o,1)),o})}var h0=class extends Co{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new H(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Lp(r,e[s].shape.length)):a=[Lp(this.axes,t.shape.length),Lp(this.axes,n.shape.length)],this.normalize&&(t=Zh(t,a[0]),n=Zh(n,a[1])),QU(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Lp(this.axes,e.length),Lp(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};h0.className="Dot";se.registerClass(h0);var m0=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);return sd(()=>Q(Mf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};m0.className="GaussianNoise";se.registerClass(m0);var f0=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?sd(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return W(n,Mf(n.shape,1,a))},()=>n,t.training||!1):n})}};f0.className="GaussianDropout";se.registerClass(f0);var g0=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return sd(()=>{let a=ze(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=ks(Bu(n),this.rate);o=Rf(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=Q(W(a,o),W(Q(o,-1),i));return Q(W(p,l),u)},()=>ze(e),t.training||!1)}return e})}};g0.className="AlphaDropout";se.registerClass(g0);function cc(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=fv(e,t,n,a,r,s);else if(e.rank===3)i=gv(e,t,n,a,r,s);else if(e.rank===4)i=bv(e,t,n,a,r,s);else throw new Pe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function eG(e,t,n,a,r=.001){return O(()=>{let s=Xc(e,a),i=s.mean,o=s.variance;return[cc(e,i,o,n,t,r),i,o]})}function tG(e,t,n,a,r=.001){return O(()=>{let s=Xc(e,a),i=s.mean,o=s.variance,l=[];for(let h of Ya(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=B(i,l),p=B(o,l),d=t==null?null:B(t,l),c=n==null?null:B(n,l);return[cc(e,u,p,c,d,r),i,o]})}function nG(e,t,n,a,r=.001){return v.arraysEqual(a.slice().sort(),Ya(0,e.rank-1))?eG(e,t,n,a,r):tG(e,t,n,a,r)}var b0=class extends Ye{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Tt(e.betaInitializer||"zeros"),this.gammaInitializer=Tt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Tt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Tt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Xt(e.betaConstraint),this.gammaConstraint=Xt(e.gammaConstraint),this.betaRegularizer=St(e.betaRegularizer),this.gammaRegularizer=St(e.gammaRegularizer)}build(e){e=it(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training,a=ze(e),r=a.shape,s=r.length,i=Ya(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=gi(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!v.arraysEqual(u,Ya(0,s).slice(0,s-1)),d=()=>{if(p){let g=B(this.movingMean.read(),l),b=B(this.movingVariance.read(),l),y=this.center?B(this.beta.read(),l):null,x=this.scale?B(this.gamma.read(),l):null;return cc(a,g,b,y,x,this.epsilon)}else return cc(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=nG(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,b,y)=>{O(()=>{let x=1-y,w=g.read(),I=W(ce(w,b),x);g.write(ce(w,I))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Et(this.betaInitializer),gammaInitializer:Et(this.gammaInitializer),movingMeanInitializer:Et(this.movingMeanInitializer),movingVarianceInitializer:Et(this.movingVarianceInitializer),betaRegularizer:ht(this.betaRegularizer),gammaRegularizer:ht(this.gammaRegularizer),betaConstraint:Kt(this.betaConstraint),gammaConstraint:Kt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};b0.className="BatchNormalization";se.registerClass(b0);var y0=class extends Ye{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Tt(e.betaInitializer||"zeros"),this.gammaInitializer=Tt(e.gammaInitializer||"ones"),this.betaRegularizer=St(e.betaRegularizer),this.gammaRegularizer=St(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=it(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==ts(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=ze(e),a=n.shape,r=a.length;return O(()=>{let{mean:s,variance:i}=Xc(n,this.axis,!0),o=gi(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?B(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=Wn(s,d),i=Wn(i,d),u!=null&&(u=Wn(u,c)),p!=null&&(p=Wn(p,c)),cc(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Et(this.betaInitializer),gammaInitializer:Et(this.gammaInitializer),betaRegularizer:ht(this.betaRegularizer),gammaRegularizer:ht(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};y0.className="LayerNormalization";se.registerClass(y0);function aG(e,t,n){return O(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Za()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ba(e,a)})}var x0=class extends Ye{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Za():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=it(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return O(()=>aG(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};x0.className="ZeroPadding2D";se.registerClass(x0);function Jf(e,t,n,a,r,s){return O(()=>{Pt(r),JS(s),ya(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Za()),s==null&&(s="max"),e=Ww(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Mt(e,t,n,o):i=ga(e,t,n,o),r==="channelsFirst"&&(i=Ae(i,[0,3,1,2])),i})}function qN(e,t,n,a,r,s){return O(()=>{Pt(r),JS(s),ya(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Za()),s==null&&(s="max"),e=VN(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Vv(e,t,n,o):i=mv(e,t,n,o),r==="channelsFirst"&&(i=Ae(i,[0,4,1,2,3])),i})}var KN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(en(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ya(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=it(e);let t=Xa(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return O(()=>{this.invokeCallHook(e,t),e=ad(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Ss(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},v0=class extends KN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ya(a),Jf(e,t,n,a,r,"max")}};v0.className="MaxPooling1D";se.registerClass(v0);var w0=class extends KN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ya(a),Jf(e,t,n,a,r,"avg")}};w0.className="AveragePooling1D";se.registerClass(w0);var XN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];en(this.poolSize,"poolSize"),en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),ya(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Xa(t,this.poolSize[0],this.padding,this.strides[0]),n=Xa(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},k0=class extends XN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ya(a),Jf(e,t,n,a,r,"max")}};k0.className="MaxPooling2D";se.registerClass(k0);var I0=class extends XN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ya(a),Jf(e,t,n,a,r,"avg")}};I0.className="AveragePooling2D";se.registerClass(I0);var YN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];en(this.poolSize,"poolSize"),en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),ya(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Xa(t,this.poolSize[0],this.padding,this.strides[0]),n=Xa(n,this.poolSize[1],this.padding,this.strides[1]),a=Xa(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},T0=class extends YN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ya(a),qN(e,t,n,a,r,"max")}};T0.className="MaxPooling3D";se.registerClass(T0);var S0=class extends YN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),ya(a),qN(e,t,n,a,r,"avg")}};S0.className="AveragePooling3D";se.registerClass(S0);var ZN=class extends Ye{constructor(e){super(e),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Pe}},N0=class extends ZN{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=ze(e);return _t(n,1)})}};N0.className="GlobalAveragePooling1D";se.registerClass(N0);var C0=class extends ZN{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=ze(e);return Na(n,1)})}};C0.className="GlobalMaxPooling1D";se.registerClass(C0);var JN=class extends Ye{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Pe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},_0=class extends JN{call(e,t){return O(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?_t(n,[1,2]):_t(n,[2,3])})}};_0.className="GlobalAveragePooling2D";se.registerClass(_0);var E0=class extends JN{call(e,t){return O(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Na(n,[1,2]):Na(n,[2,3])})}};E0.className="GlobalMaxPooling2D";se.registerClass(E0);var QN=class extends Ye{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Ka(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},$0=class extends QN{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=it(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=it(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return O(()=>(e=ze(e),HN((n,a)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};$0.className="TimeDistributed";se.registerClass($0);function rG(e){So(sV,"BidirectionalMergeMode",e)}var sG="concat",A0=class extends QN{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ka(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Ka(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?sG:e.mergeMode,rG(this.mergeMode),e.weights)throw new Pe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):zn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=GN(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new zt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Pe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof ja;for(let l of s)if(l instanceof ja!==o)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=fa(r,1));let i;return this.mergeMode==="concat"?i=dw([a,r]):this.mergeMode==="sum"?i=Q(a,r):this.mergeMode==="ave"?i=W(.5,Q(a,r)):this.mergeMode==="mul"?i=W(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ri(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ri(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ka(t.layer);if(delete t.layer,t.numConstants!=null)throw new Pe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};A0.className="Bidirectional";se.registerClass(A0);function iG(e){return new Uu(e)}function oG(e){return new Ow(e)}function lG(e){return new Rw(e)}function uG(e){return new Mw(e)}function pG(e){return new Pw(e)}function cG(e){return new zw(e)}function dG(e){return new Lw(e)}function hG(e){return new jf(e)}function mG(e){return new ud(e)}function fG(e){return new Vw(e)}function gG(e){return new pd(e)}function bG(e){return new Uw(e)}function yG(e){return new Gw(e)}function xG(e){return new Hw(e)}function vG(e){return new jw(e)}function wG(e){return new qw(e)}function kG(e){return new t0(e)}function IG(e){return new Qw(e)}function TG(e){return new Zf(e)}function SG(e){return new Jw(e)}function NG(e){return new e0(e)}function CG(e){return new n0(e)}function _G(e){return new a0(e)}function EG(e){return new r0(e)}function $G(e){return new i0(e)}function AG(e){return new o0(e)}function FG(e){return new u0(e)}function DG(e){return new d0(e)}function RG(e){return new p0(e)}function MG(e){return new c0(e)}function PG(e){return new l0(e)}function OG(e){return new h0(e)}function LG(e){return new b0(e)}function zG(e){return new y0(e)}function WG(e){return new x0(e)}function F0(e){return new w0(e)}function BG(e){return F0(e)}function VG(e){return F0(e)}function D0(e){return new I0(e)}function UG(e){return D0(e)}function GG(e){return D0(e)}function R0(e){return new S0(e)}function HG(e){return R0(e)}function jG(e){return R0(e)}function qG(e){return new N0(e)}function KG(e){return new _0(e)}function e2(e){return new C0(e)}function t2(e){return new E0(e)}function n2(e){return new v0(e)}function a2(e){return new k0(e)}function XG(e){return new T0(e)}function YG(e){return new Xw(e)}function ZG(e){return new Kf(e)}function JG(e){return new Yw(e)}function QG(e){return new dd(e)}function eH(e){return new Kw(e)}function tH(e){return new qf(e)}function nH(e){return new Zw(e)}function aH(e){return new Yf(e)}function rH(e){return new br(e)}function sH(e){return new Xf(e)}function iH(e){return new A0(e)}function oH(e){return new $0(e)}var lH=e2,uH=t2,pH=n2,cH=a2;function dH(e){return new m0(e)}function hH(e){return new f0(e)}function mH(e){return new g0(e)}function fH(e){return new s0(e)}var r2={};Fe(r2,{MAPE:()=>NH,MSE:()=>EH,binaryAccuracy:()=>gH,binaryCrossentropy:()=>bH,categoricalAccuracy:()=>xH,categoricalCrossentropy:()=>vH,cosineProximity:()=>IH,mape:()=>CH,meanAbsoluteError:()=>TH,meanAbsolutePercentageError:()=>SH,meanSquaredError:()=>_H,mse:()=>$H,precision:()=>wH,recall:()=>kH,sparseCategoricalAccuracy:()=>yH});function gH(e,t){return Cw(e,t)}function bH(e,t){return yN(e,t)}function yH(e,t){return xN(e,t)}function xH(e,t){return _w(e,t)}function vH(e,t){return Ew(e,t)}function wH(e,t){return bN(e,t)}function kH(e,t){return uU(e,t)}function IH(e,t){return Nw(e,t)}function TH(e,t){return Gf(e,t)}function SH(e,t){return Gu(e,t)}function NH(e,t){return Gu(e,t)}function CH(e,t){return Gu(e,t)}function _H(e,t){return No(e,t)}function EH(e,t){return No(e,t)}function $H(e,t){return No(e,t)}var s2={};Fe(s2,{modelFromJSON:()=>zU});var i2={};Fe(i2,{l1:()=>FH,l1l2:()=>AH,l2:()=>DH});function AH(e){return new od(e)}function FH(e){return qU(e)}function DH(e){return KU(e)}var o2=class extends kl{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Er))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function yh(e,t){return e<t}function Gk(e,t){return e>t}var l2=class extends o2{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Pe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=yh:this.mode==="max"?this.monitorFunc=Gk:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Gk:this.monitorFunc=yh,this.monitorFunc===yh&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===yh?1/0:-1/0}async onEpochEnd(e,t){await Xr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function RH(e){return new l2(e)}var MH={earlyStopping:RH},PH=X();PH.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Ia;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Ia||(Ia={}));var Hk;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Hk||(Hk={}));var M0={};function OH(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};M0[e]=n}function u2(e){return M0[e]}function LH(e){delete M0[e]}function k(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return In(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(d=>In(d,n,a,r));let u=In(t.inputNames.slice(o)[0],n,a,r),p=u.dataSync();return s.type==="number"?p[0]:v.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function In(e,t,n,a){let[r,s]=Yn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[nm(r,o)]);return i!==void 0?t[nm(r,i)][s]:void 0}function zH(e,t,n){return t[nm(e,n.currentContextId)]}function lr(e,t){let[n,a,r]=Yn(e);return[nm(n,t&&t.currentContextId),a,r]}function nm(e,t){return t?`${e}-${t}`:e}function Yn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function Ch(e,t,n){let a=k("pad",e,t,n);if(a==="explicit"){a=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Tr(e){return e.kept?e:ur(e)}var p2={};Fe(p2,{json:()=>WH});var WH=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],c2={};Fe(c2,{json:()=>BH});var BH=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],d2={};Fe(d2,{json:()=>VH});var VH=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],h2={};Fe(h2,{json:()=>UH});var UH=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],m2={};Fe(m2,{json:()=>GH});var GH=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],f2={};Fe(f2,{json:()=>HH});var HH=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],g2={};Fe(g2,{json:()=>jH});var jH=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],b2={};Fe(b2,{json:()=>qH});var qH=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],y2={};Fe(y2,{json:()=>KH});var KH=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],x2={};Fe(x2,{json:()=>XH});var XH=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],v2={};Fe(v2,{json:()=>YH});var YH=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],w2={};Fe(w2,{json:()=>ZH});var ZH=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],k2={};Fe(k2,{json:()=>JH});var JH=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],I2={};Fe(I2,{json:()=>QH});var QH=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],T2={};Fe(T2,{json:()=>e6});var e6=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],S2={};Fe(S2,{json:()=>t6});var t6=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],N2={};Fe(N2,{json:()=>n6});var n6=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],C2={};Fe(C2,{json:()=>a6});var a6=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],_2={};Fe(_2,{json:()=>r6});var r6=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],jk=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[p2,c2,d2,h2,m2,f2,g2,b2,y2,x2,v2,w2,k2,I2,T2,S2,N2,C2,_2],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,b)=>{let[y,,x]=lr(g),w=i[y];if(w.outputs!=null){let I=w.outputs.indexOf(x);if(I!==-1){let N=`${y}:${I}`;f.inputNames[b]=N}}f.inputs.push(w),w.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=lr(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=lr(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=u2(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=ux(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ux(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=gx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=gx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=cx(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=cx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=fx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=fx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=px(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=px(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=yx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=yx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=mx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=mx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=bx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=bx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=dx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=dx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=hx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=hx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=qk(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=qk(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=lr(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:P0(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=lr(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let b=`${h}:${g}`;p.inputNames[c]=b}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=lr(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function s6(e){let t=X().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function E2(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):s6(e);return t?n:n.toLowerCase()}function ux(e,t,n,a=!1){let r=e[t];return r!=null?E2(r.s,a):n}function px(e,t,n){let a=e[t];return a?a.b:n}function cx(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function P0(e){switch(typeof e=="string"&&(e=Ia[e]),e){case Ia.DT_FLOAT:case Ia.DT_HALF:return"float32";case Ia.DT_INT32:case Ia.DT_INT64:case Ia.DT_INT8:case Ia.DT_UINT8:return"int32";case Ia.DT_BOOL:return"bool";case Ia.DT_DOUBLE:return"float32";case Ia.DT_STRING:return"string";default:return null}}function qk(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function dx(e,t,n){let a=e[t];return a&&a.type?P0(a.type):n}function hx(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>P0(r)):n}function $2(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function mx(e,t,n){let a=e[t];return a&&a.shape?$2(a.shape):n}function fx(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function gx(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>E2(s,a)):n}function bx(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>$2(r)):n}function yx(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var i6=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return In(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return In(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return cx(this.node.rawAttrs,e,t);if(n.s!=null)return ux(this.node.rawAttrs,e,t);if(n.b!=null)return px(this.node.rawAttrs,e,t);if(n.shape!=null)return mx(this.node.rawAttrs,e,t);if(n.type!=null)return dx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return fx(this.node.rawAttrs,e,t);if(n.list.s!=null)return gx(this.node.rawAttrs,e,t);if(n.list.shape!=null)return bx(this.node.rawAttrs,e,t);if(n.list.b!=null)return yx(this.node.rawAttrs,e,t);if(n.list.type!=null)return hx(this.node.rawAttrs,e,t)}return t}},un={};Fe(un,{OP_SCOPE_SUFFIX:()=>Hx,abs:()=>Lt,acos:()=>sv,acosh:()=>iv,add:()=>Q,addN:()=>OT,all:()=>Zm,any:()=>ic,argMax:()=>di,argMin:()=>ov,asin:()=>lv,asinh:()=>uv,atan:()=>pv,atan2:()=>cv,atanh:()=>dv,avgPool:()=>ga,avgPool3d:()=>mv,basicLSTMCell:()=>BT,batchNorm:()=>vs,batchNorm2d:()=>fv,batchNorm3d:()=>gv,batchNorm4d:()=>bv,batchToSpaceND:()=>Gc,bincount:()=>yv,booleanMaskAsync:()=>kS,broadcastArgs:()=>VT,broadcastTo:()=>ai,buffer:()=>Le,cast:()=>le,ceil:()=>xv,clipByValue:()=>tn,clone:()=>ur,complex:()=>$r,concat:()=>Qe,concat1d:()=>vv,concat2d:()=>wv,concat3d:()=>kv,concat4d:()=>Iv,conv1d:()=>Jm,conv2d:()=>Dt,conv2dTranspose:()=>Qm,conv3d:()=>Sv,conv3dTranspose:()=>Nv,cos:()=>Hc,cosh:()=>ef,cosineWindow:()=>kf,cumprod:()=>oc,cumsum:()=>tf,denseBincount:()=>GT,depthToSpace:()=>Cv,depthwiseConv2d:()=>ws,diag:()=>HT,dilation2d:()=>_v,div:()=>fe,divNoNan:()=>Ev,dot:()=>$v,dropout:()=>aw,einsum:()=>jT,elu:()=>Pu,enclosingPowerOfTwo:()=>rw,equal:()=>Qn,erf:()=>Av,euclideanNorm:()=>Rv,exp:()=>gn,expandDims:()=>mn,expm1:()=>Mv,eye:()=>nf,fft:()=>Qc,fill:()=>En,floor:()=>Lu,floorDiv:()=>Ym,fused:()=>vl,gather:()=>zu,gatherND:()=>NS,greater:()=>jn,greaterEqual:()=>ks,ifft:()=>xl,imag:()=>Bc,image:()=>Nr,inTopKAsync:()=>CS,irfft:()=>yf,isFinite:()=>Pv,isInf:()=>Ov,isNaN:()=>Lv,leakyRelu:()=>jc,less:()=>af,lessEqual:()=>Is,linalg:()=>ow,linspace:()=>ZT,localResponseNormalization:()=>zv,log:()=>ea,log1p:()=>qc,logSigmoid:()=>Wv,logSoftmax:()=>sf,logSumExp:()=>of,logicalAnd:()=>_a,logicalNot:()=>Kc,logicalOr:()=>lf,logicalXor:()=>Bv,losses:()=>zS,lowerBound:()=>QT,matMul:()=>Re,max:()=>Na,maxPool:()=>Mt,maxPool3d:()=>Vv,maxPoolWithArgmax:()=>eS,maximum:()=>fr,mean:()=>_t,meshgrid:()=>tS,min:()=>lc,minimum:()=>Wu,mirrorPad:()=>Uv,mod:()=>Gv,moments:()=>Xc,movingAverage:()=>IS,mul:()=>W,multiRNNCell:()=>nS,multinomial:()=>aS,neg:()=>vt,norm:()=>Ou,notEqual:()=>fi,oneHot:()=>fl,ones:()=>Jn,onesLike:()=>ta,op:()=>z,outerProduct:()=>rS,pad:()=>ba,pad1d:()=>sS,pad2d:()=>iS,pad3d:()=>oS,pad4d:()=>lS,pool:()=>Hv,pow:()=>Ar,prelu:()=>Zc,print:()=>Xx,prod:()=>jv,raggedTensorToTensor:()=>uS,rand:()=>pS,randomGamma:()=>cS,randomNormal:()=>pf,randomStandardNormal:()=>dS,randomUniform:()=>Bu,range:()=>bl,real:()=>gl,reciprocal:()=>Xv,relu:()=>Xe,relu6:()=>cf,reshape:()=>B,reverse:()=>fa,reverse1d:()=>hS,reverse2d:()=>mS,reverse3d:()=>fS,reverse4d:()=>gS,rfft:()=>ed,round:()=>df,rsqrt:()=>hf,scalar:()=>ke,scatterND:()=>TS,searchSorted:()=>uf,selu:()=>mf,separableConv2d:()=>Ts,setdiff1dAsync:()=>bS,sigmoid:()=>da,sign:()=>Yv,signal:()=>LS,sin:()=>ff,sinh:()=>gf,slice:()=>He,slice1d:()=>Jc,slice2d:()=>bf,slice3d:()=>Io,slice4d:()=>yl,softmax:()=>Qa,softplus:()=>ko,spaceToBatchND:()=>Yc,sparse:()=>WS,sparseToDense:()=>SS,spectral:()=>OS,split:()=>Vn,sqrt:()=>ln,square:()=>lt,squaredDifference:()=>xf,squeeze:()=>Ss,stack:()=>Rt,step:()=>To,stridedSlice:()=>Zv,string:()=>BS,sub:()=>ce,sum:()=>ye,tan:()=>Jv,tanh:()=>hi,tensor:()=>Bn,tensor1d:()=>Ke,tensor2d:()=>Ca,tensor3d:()=>Vc,tensor4d:()=>$a,tensor5d:()=>yS,tensor6d:()=>xS,tile:()=>Wn,topk:()=>Qv,transpose:()=>Ae,truncatedNormal:()=>vf,unique:()=>ew,unsortedSegmentSum:()=>wf,unstack:()=>mt,upperBound:()=>vS,variable:()=>tw,where:()=>fn,whereAsync:()=>nw,zeros:()=>It,zerosLike:()=>qe});var o6=(e,t,n,a=un)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[a.add(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[a.addN(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[a.mod(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[a.mul(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[a.div(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[a.divNoNan(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[a.floorDiv(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[a.sub(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[a.minimum(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[a.maximum(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[a.pow(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[a.squaredDifference(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},l6=(e,t,n,a=un)=>{switch(e.op){case"Abs":case"ComplexAbs":return[a.abs(k("x",e,t,n))];case"Acos":return[a.acos(k("x",e,t,n))];case"Acosh":return[a.acosh(k("x",e,t,n))];case"Asin":return[a.asin(k("x",e,t,n))];case"Asinh":return[a.asinh(k("x",e,t,n))];case"Atan":return[a.atan(k("x",e,t,n))];case"Atan2":return[a.atan2(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[a.atanh(k("x",e,t,n))];case"Ceil":return[a.ceil(k("x",e,t,n))];case"Complex":return[a.complex(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[a.cos(k("x",e,t,n))];case"Cosh":return[a.cosh(k("x",e,t,n))];case"Elu":return[a.elu(k("x",e,t,n))];case"Erf":return[a.erf(k("x",e,t,n))];case"Exp":return[a.exp(k("x",e,t,n))];case"Expm1":return[a.expm1(k("x",e,t,n))];case"Floor":return[a.floor(k("x",e,t,n))];case"Log":return[a.log(k("x",e,t,n))];case"Log1p":return[a.log1p(k("x",e,t,n))];case"Imag":return[a.imag(k("x",e,t,n))];case"Neg":return[a.neg(k("x",e,t,n))];case"Reciprocal":return[a.reciprocal(k("x",e,t,n))];case"Real":return[a.real(k("x",e,t,n))];case"Relu":return[a.relu(k("x",e,t,n))];case"Round":return[a.round(k("x",e,t,n))];case"Selu":return[a.selu(k("x",e,t,n))];case"Sigmoid":return[a.sigmoid(k("x",e,t,n))];case"Sin":return[a.sin(k("x",e,t,n))];case"Sign":return[a.sign(k("x",e,t,n))];case"Sinh":return[a.sinh(k("x",e,t,n))];case"Softplus":return[a.softplus(k("x",e,t,n))];case"Sqrt":return[a.sqrt(k("x",e,t,n))];case"Square":return[a.square(k("x",e,t,n))];case"Tanh":return[a.tanh(k("x",e,t,n))];case"Tan":return[a.tan(k("x",e,t,n))];case"ClipByValue":return[a.clipByValue(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[a.relu6(k("x",e,t,n))];case"Rsqrt":return[a.rsqrt(In(e.inputNames[0],t,n))];case"Prod":return[a.prod(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[a.leakyRelu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[a.prelu(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[a.isNaN(In(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Sa(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];v.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function Kk(e){return!(typeof e=="number"||e.some(t=>t<0))}function zp(e,t,n){let a=xx(e,n),r=!Kk(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=xx(s.shape,a)}),!Kk(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function xx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var u6=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),Qt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Sa(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Qt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Bn([],[0].concat(this.elementShape));let n=this.readMany(e);return Sa(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Rt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Bn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Sa(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Qe(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,mt(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];O(()=>{t=B(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],p=[1,e[o],r];s[o]=B(He(t,u,p),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Tl=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Sa(t,r.shape,"TensorList shape mismatch: "),Qt(r)}),this.idTensor=ke(0),this.maxNumElements=a,Qt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Tl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Sa(e,this.elementShape,"TensorList shape mismatch: ");let a=zp(this.elementShape,this.tensors,e);return O(()=>{let r=this.tensors.map(s=>B(s,a));return Rt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=zp(this.elementShape,this.tensors,e),a=this.tensors.pop();return a.kept=!1,Sa(a.shape,e,"TensorList shape mismatch: "),B(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Sa(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Qt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new Tl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Sa(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=zp(this.elementShape,this.tensors,t);return B(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Sa(this.elementShape,t.shape,"TensorList shape mismatch: "),Qt(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Sa(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=zp(this.elementShape,this.tensors,n);return e.length===0?Bn([],[0].concat(a)):O(()=>{let r=e.map(s=>B(this.tensors[s],a));return Rt(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Sa(this.elementShape,t,"TensorList shape mismatch: ");let n=zp(this.elementShape,this.tensors,t);return this.size()===0?Bn([],[0].concat(n)):O(()=>{let a=this.tensors.map(r=>B(r,n));return Qe(a,0)})}};function p6(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Sa(r,t,"TensorList shape mismatch: ");let s=mt(e);return new Tl(s,t,a)}function c6(e,t,n,a){return new Tl([],e,t,a)}function d6(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Tl([],n,e.dtype,a),i=mt(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function h6(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=xx(s,n),o=a===0?0:e.size/a,l=O(()=>{let p=[];e=B(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=d===0?0:r[d-1],h=[0,c,0],m=[1,t[d],o];p[d]=B(He(e,h,m),i)}return e.dispose(),p}),u=new Tl([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var m6=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=k("body",e,t,n),r=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=k("pred",e,t,n);return[Tr(a)]}case"Switch":{let a=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Tr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>In(r,t,n)!==void 0);if(a){let r=In(a,t,n);return[Tr(r)]}return}case"Enter":{let a=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(a),[Tr(r)]}case"Exit":{let a=k("tensor",e,t,n);return n.exitFrame(),[Tr(a)]}case"NextIteration":{let a=k("tensor",e,t,n);return n.nextIteration(),[Tr(a)]}case"TensorArrayV3":{let a=k("size",e,t,n),r=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),p=new u6(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,ke(1)]}case"TensorArrayWriteV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=k("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ke(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=k("indices",e,t,n),r=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=d6(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=k("elementShape",e,t,n),r=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=e.op==="TensorListReserve"?-1:i,l=c6(a,r,i,o);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let a=k("tensorListId",e,t,n),r=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=p6(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=k("tensorListId",e,t,n),r=k("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=h6(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id);return[ke(r.size(),"int32")]}case"TensorListResize":{let a=k("tensorListId",e,t,n),r=k("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Xk(e,t,n){let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=k("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=k("strides",e,t,n),d=Ch(e,t,n),c=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[m,f]=k("args",e,t,n);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var f6=(e,t,n,a=un)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[a.conv1d(k("x",e,t,n),k("filter",e,t,n),r,s,i,o)]}case"Conv2D":{let r=k("strides",e,t,n),s=Ch(e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv2d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=Xk(e,t,n);return[a.fused.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=Xk(e,t,n);return[a.fused.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),s=k("strides",e,t,n),i=Ch(e,t,n);return[a.conv2dTranspose(k("x",e,t,n),k("filter",e,t,n),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),s=Ch(e,t,n),i=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[a.depthwiseConv2d(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv3d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:l,indexes:u}=a.maxPoolWithArgmax(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dilations",e,t,n),o=r[1],l=r[2],u=i[1],p=i[2];return[a.dilation2d(k("x",e,t,n),k("filter",e,t,n),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},g6=(e,t,n,a=un)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),s=k("dtype",e,t,n),i=k("value",e,t,n);return[a.fill(r,i,s)]}case"LinSpace":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("num",e,t,n);return[a.linspace(r,s,i)]}case"Multinomial":{let r=k("logits",e,t,n),s=k("numSamples",e,t,n),i=k("seed",e,t,n);return[a.multinomial(r,s,i)]}case"OneHot":{let r=k("indices",e,t,n),s=k("depth",e,t,n),i=k("onValue",e,t,n),o=k("offValue",e,t,n),l=k("dtype",e,t,n);return[a.oneHot(r,s,i,o,l)]}case"Ones":return[a.ones(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[a.onesLike(k("x",e,t,n))];case"RandomStandardNormal":return[a.randomStandardNormal(k("shape",e,t,n),k("dtype",e,t,n),k("seed",e,t,n))];case"RandomUniform":return[a.randomUniform(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("step",e,t,n);return[a.range(r,s,i,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),s=k("mean",e,t,n),i=k("stdDev",e,t,n),o=k("seed",e,t,n);return[a.truncatedNormal(r,s,i,k("dtype",e,t,n),o)]}case"Zeros":return[a.zeros(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[a.zerosLike(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Fy(e,t,n){let a=k("boxes",e,t,n),r=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var b6=async(e,t,n,a,r=un)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=Fy(e,t,n),d=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=Fy(e,t,n),p=k("padToMaxOutputSize",e,t,n),d=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=Fy(e,t,n);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(k("condition",e,t,n),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},y6=(e,t,n,a=un)=>{switch(e.op){case"LowerBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.lowerBound(r,s)]}case"TopKV2":{let r=k("x",e,t,n),s=k("k",e,t,n),i=k("sorted",e,t,n),o=a.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.upperBound(r,s)]}case"Unique":{let r=k("x",e,t,n),s=a.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=k("x",e,t,n),s=k("axis",e,t,n),i=a.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},x6=(e,t,n,a=un)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[In(e.name,t,n)||r];case"Placeholder":return[In(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=k("x",e,t,n);return[Tr(p)]}case"IdentityN":return k("x",e,t,n).map(p=>Tr(p));case"Snapshot":let s=k("x",e,t,n);return[Tr(s)];case"Shape":return[a.tensor1d(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(p=>a.tensor1d(p.shape));case"Size":return[a.scalar(k("x",e,t,n).size,"int32")];case"Rank":return[a.scalar(k("x",e,t,n).rank,"int32")];case"NoOp":return[a.scalar(1)];case"Print":let i=k("x",e,t,n),o=k("data",e,t,n),l=k("message",e,t,n),u=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;p<o.length;p++)console.log(Array.prototype.slice.call(o[p].dataSync()).slice(0,u));return[i];default:throw TypeError(`Node type ${e.op} is not implemented`)}},v6=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,Qt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ke(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),O(()=>{let a=mt(t),r=n.length,s=a.length;v.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Qt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return O(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Rt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},w6=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=k("keyDType",e,t,n),s=k("valueDType",e,t,n),i=new v6(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},k6=(e,t,n,a=un)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=k("image",e,t,n),s=k("boxes",e,t,n),i=k("boxInd",e,t,n),o=k("cropSize",e,t,n),l=k("method",e,t,n),u=k("extrapolationValue",e,t,n);return[a.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=k("images",e,t,n),s=k("transforms",e,t,n),i=k("outputShape",e,t,n),o=k("fillValue",e,t,n),l=k("interpolation",e,t,n),u=k("fillMode",e,t,n);return[a.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},I6=(e,t,n,a=un)=>{switch(e.op){case"Equal":return[a.equal(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[a.notEqual(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[a.greater(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[a.greaterEqual(k("a",e,t,n),k("b",e,t,n))];case"Less":return[a.less(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[a.lessEqual(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[a.logicalAnd(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[a.logicalNot(k("a",e,t,n))];case"LogicalOr":return[a.logicalOr(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[a.where(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},T6=(e,t,n,a=un)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[a.matMul(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[a.einsum(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[a.transpose(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,s]=k("fusedOps",e,t,n),i=r==="biasadd",o=s==="prelu",l=k("numArgs",e,t,n),u=k("leakyreluAlpha",e,t,n);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,d]=k("args",e,t,n);return[a.fused.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:p,activation:s,preluActivationWeights:d,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},S6=(e,t,n,a=un)=>{switch(e.op){case"EuclideanNorm":return[a.euclideanNorm(k("x",e,t,n),k("axis",e,t,n),k("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[a.localResponseNormalization(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[a.softmax(k("x",e,t,n))];case"LogSoftmax":return[a.logSoftmax(k("x",e,t,n))];case"SparseToDense":return[a.sparseToDense(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},N6=(e,t,n,a=un)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.max(k("x",e,t,n),o,l)]}case"Mean":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.mean(k("x",e,t,n),o,l)]}case"Min":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.min(k("x",e,t,n),o,l)]}case"Sum":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.sum(k("x",e,t,n),o,l)]}case"All":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.all(k("x",e,t,n),o,l)]}case"Any":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.any(k("x",e,t,n),o,l)]}case"ArgMax":{let o=k("axis",e,t,n);return[a.argMax(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[a.argMin(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.prod(k("x",e,t,n),o,l)]}case"Cumprod":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumprod(k("x",e,t,n),o,l,u)]}case"Cumsum":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumsum(k("x",e,t,n),o,l,u)]}case"Bincount":let r=k("x",e,t,n),s=k("weights",e,t,n),i=k("size",e,t,n);return[a.bincount(r,s,i)];case"DenseBincount":{let o=k("x",e,t,n),l=k("weights",e,t,n),u=k("size",e,t,n),p=k("binaryOutput",e,t,n);return[a.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},C6=(e,t,n,a=un)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),s=k("axis",e,t,n),i=k("tensors",e,t,n);return i=i.slice(0,r),[a.concat(i,s)]}case"Gather":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gather(r,a.cast(s,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),s=k("batchDims",e,t,n),i=k("x",e,t,n),o=k("indices",e,t,n);return[a.gather(i,a.cast(o,"int32"),r,s)]}case"Reverse":{let r=k("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let i=k("x",e,t,n);return[a.reverse(i,s)]}case"ReverseV2":{let r=k("axis",e,t,n),s=k("x",e,t,n);return[a.reverse(s,r)]}case"Slice":{let r=k("begin",e,t,n),s=k("size",e,t,n);return[a.slice(k("x",e,t,n),r,s)]}case"StridedSlice":{let r=k("begin",e,t,n),s=k("end",e,t,n),i=k("strides",e,t,n),o=k("beginMask",e,t,n),l=k("endMask",e,t,n),u=k("ellipsisMask",e,t,n),p=k("newAxisMask",e,t,n),d=k("shrinkAxisMask",e,t,n),c=k("x",e,t,n);return[a.stridedSlice(c,r,s,i,o,l,u,p,d)]}case"Pack":return O(()=>{let r=k("axis",e,t,n),s=k("tensors",e,t,n),i=s[0].shape,o=a.squeeze(s[0]).shape,l=s.map(u=>{let p=v.arraysEqual(u.shape,i);if(!p&&!v.arraysEqual(a.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:a.reshape(u,i)});return[a.stack(l,r)]});case"Unpack":{let r=k("axis",e,t,n),s=k("tensor",e,t,n);return a.unstack(s,r)}case"Tile":{let r=k("reps",e,t,n);return[a.tile(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),s=k("numOrSizeSplits",e,t,n),i=k("x",e,t,n);return a.split(i,s,r)}case"ScatterNd":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("shape",e,t,n);return[a.scatterND(r,s,i)]}case"GatherNd":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gatherND(r,s)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),s=k("outputShape",e,t,n),i=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[a.sparseToDense(r,i,s,i.dtype===o.dtype?o:a.cast(o,i.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_6=(e,t,n,a=un)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=a.sparse.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=a.sparse.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[a.sparse.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[a.sparse.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},E6=(e,t,n,a=un)=>{switch(e.op){case"FFT":return[a.fft(k("x",e,t,n))];case"IFFT":return[a.ifft(k("x",e,t,n))];case"RFFT":return[a.rfft(k("x",e,t,n))];case"IRFFT":return[a.irfft(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$6=(e,t,n,a=un)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=a.string.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=a.string.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[r,s,i]}case"StringToHashBucketFast":return[a.string.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},A6=(e,t,n,a=un)=>{switch(e.op){case"Cast":return[a.cast(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[a.expandDims(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[a.squeeze(k("x",e,t,n),r)]}case"Reshape":return[a.reshape(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[a.mirrorPad(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[a.pad(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),s=k("paddings",e,t,n);return[a.spaceToBatchND(k("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),s=k("crops",e,t,n);return[a.batchToSpaceND(k("x",e,t,n),r,s)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),s=k("dataFormat",e,t,n).toUpperCase();return[a.depthToSpace(k("x",e,t,n),r,s)]}case"BroadcastTo":return[a.broadcastTo(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[a.broadcastArgs(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Yk(e,t,n,a,r=O){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>o6(i,o,l));case"basic_math":return r(()=>l6(i,o,l));case"control":return m6(i,o,l);case"convolution":return r(()=>f6(i,o,l));case"creation":return r(()=>g6(i,o,l));case"dynamic":return b6(i,o,l);case"evaluation":return r(()=>y6(i,o,l));case"image":return r(()=>k6(i,o,l));case"graph":return r(()=>x6(i,o,l));case"logical":return r(()=>I6(i,o,l));case"matrices":return r(()=>T6(i,o,l));case"normalization":return r(()=>S6(i,o,l));case"reduction":return r(()=>N6(i,o,l));case"slice_join":return r(()=>C6(i,o,l));case"sparse":return r(()=>_6(i,o,l));case"spectral":return r(()=>E6(i,o,l));case"string":return r(()=>$6(i,o,l));case"transformation":return r(()=>A6(i,o,l));case"hash_table":return w6(i,o,l,a);case"custom":let u=u2(i.op);if(u&&u.customExecutor)return u.customExecutor(new i6(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var Zk=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Jk(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Yn(c)[0]),p=[];a!=null&&(p=a.map(c=>Yn(c.name)[0]));let d=[...t];for(;d.length>0;){let c=d.pop();if((A2(c)||P6(c)||O6(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&p.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function F6(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(p=>Yn(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{a.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{a.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{a.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(d=>{!l.has(d.name)&&a.has(d.name)&&d.inputs.every(c=>l.has(c.name))&&s.push(d)})}return u}var D6=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],R6=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],M6=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function A2(e){return D6.indexOf(e.op)>=0}function P6(e){return R6.indexOf(e.op)>=0}function O6(e){return M6.indexOf(e.op)>=0}var vx=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new vx(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=Jk(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return F6(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(p=>this.graph.nodes[Yn(p)[0]]),r=t.map(p=>Yn(p)[0]),s=r.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return O(()=>{let p=new Zk(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Yn(m),b=[];b[g]=e[m],d[f]=b});let c=this.getFrozenTensorIds(d),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!d[f.name]){let g=Yk(f,d,p,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=g,this.checkTensorForDisposal(f.name,f,d,p,c,r,h)}}return this.parent==null&&p.dispose(c),t.map(m=>In(m,d,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=zH(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];if(p===1){if(!this.keepTensorForDebug)u.dispose();else{let[d,c]=lr(t.name,a);this.intermediateTensors[d]?this.intermediateTensors[d][c]=u:(this.intermediateTensors[d]=[],this.intermediateTensors[d][c]=u)}delete i[u.id]}else p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=X().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new Zk(this.weightMap,a,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,n);let i=t.map(u=>In(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(y=>this.graph.nodes[Yn(y)[0]]),i=n.map(y=>Yn(y)[0]),o=i.map(y=>this.graph.nodes[y]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:d}=Jk(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,w]=Yn(y),I=[];I[w]=e[y],h[x]=I});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let y=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(y)}p==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=o.filter(y=>!A2(y)&&!In(y.name,h,t)).map(y=>y.name);if(b.length>0){let y="";throw p!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&k("isConstant",p.node,a,n)&&([d]=lr(p.node.name,n)),a[p.node.name]==null){let c=Yk(p.node,a,n,this._resourceManager);d||([d]=lr(p.node.name,n));let h=n.currentContext;v.isPromise(c)?u.push(c.then(m=>(a[d]=m,n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=lr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!In(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!In(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Yn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Yn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Yn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},L6=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},z6="?tfjs-format=file",W6="model.json",O0=class{constructor(e,t={},n=Sn){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new L6}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new vx(jk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=jk.Instance.transformGraph(e.modelInitializer);this.initializer=new vx(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let a=n instanceof $e?[n]:n,r={};return a.forEach((s,i)=>r[this.structuredOutputKeys[i]]=s),r}return n}normalizeInputs(e){if(!(e instanceof $e)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function B6(e,t={},n=Sn){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=U6(e));let a=new O0(e,t,n);return await a.load(),a}function V6(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new O0(e);return t.load(),t}function U6(e){return e.endsWith("/")||(e=e+"/"),`${e}${W6}${z6}`}var G6="3.20.0",F2={};Fe(F2,{CSVDataset:()=>B2,Dataset:()=>Hu,FileDataSource:()=>K2,TextLineDataset:()=>W2,URLDataSource:()=>X2,array:()=>hj,csv:()=>Tj,func:()=>Sj,generator:()=>Nj,microphone:()=>_j,version_data:()=>Ej,webcam:()=>Cj,zip:()=>mj});var H6=ds(hm()),j6=ds(hm());function q6(e,t){return am(e,t)}function am(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Sl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=am(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function K6(e,t=R2){return D2(e,t)}function D2(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Sl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=D2(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function R2(e){return e===null?null:Sl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function M2(e,t){let n=new Map;am(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(v.isPromise(r)){let s=await r;n.set(a,s)}}return am(e,t,n)}function Sl(e){let t=!1;if(X().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=DI();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof $e)&&!(e instanceof Promise)&&!t)}function X6(e){return e==null||Y6(e)||Array.isArray(e)||typeof e=="object"&&e instanceof $e||v.isTypedArray(e)}function Y6(e){return e===null||typeof e!="object"&&typeof e!="function"}function Z6(e){return q6(e,J6)}function J6(e){return e instanceof $e?{value:e.clone(),recurse:!1}:Sl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var P2=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},L0=class extends P2{constructor(){super(L0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};L0.INITIAL_CAPACITY=32;function O2(e){return new tj(e)}function z0(e){return new nj(e)}function Q6(e,t){return new L2(e,t)}function ej(e,t=Qr.FAIL){return new cj(e,t)}var nn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new uj(this,e)}filter(e){return new oj(this,e)}map(e){return new lj(this,e)}mapAsync(e){return new Qk(this,e)}serialMapAsync(e){return new Qk(this,e).serial()}flatmap(e){return new pj(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new ij(this,e,t)}columnMajorBatch(e,t=!0,n=R2){return this.rowMajorBatch(e,t).map(a=>K6(a,n))}concatenate(e,t){return new L2(O2([this,e]),t)}take(e){return e<0||e==null?this:new sj(this,e)}skip(e){return e<0||e==null?this:new rj(this,e)}prefetch(e){return new z2(this,e)}shuffle(e,t){return new dj(this,e,t)}serial(){return new aj(this)}},tj=class extends nn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Z6(e),done:!1}}},nj=class extends nn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},aj=class extends nn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},rj=class extends nn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Me(e.value)}return this.upstream.next()}},sj=class extends nn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},ij=class extends nn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},oj=class extends nn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Me(e.value)}}},lj=class extends nn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=qa.getTensorsInContainer(e.value),n=this.transform(e.value),a=qa.getTensorsInContainer(n);for(let r of t)qa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},uj=class extends nn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Qk=class extends nn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=qa.getTensorsInContainer(e.value),n=await this.transform(e.value),a=qa.getTensorsInContainer(n);for(let r of t)qa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},W0=class extends nn{constructor(){super(),this.outputQueue=new L0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},pj=class extends W0{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=qa.getTensorsInContainer(e.value),n=this.transform(e.value),a=qa.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)qa.isTensorInList(r,a)||r.dispose();return!0}},L2=class extends nn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Qr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Qr||(Qr={}));var cj=class extends nn{constructor(e,t=Qr.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof nn?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await M2(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Qr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Qr.SHORTEST:return{value:null,done:!0};case Qr.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},z2=class extends nn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new P2(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},dj=class extends z2{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=j6.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Hu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Xn(async()=>(await n.iterator()).columnMajorBatch(e,t,fj),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Xn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Xn(async()=>(await t.iterator()).filter(a=>O(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Xn(async()=>(await t.iterator()).map(n=>O(()=>e(n))),this.size)}mapAsync(e){let t=this;return Xn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Xn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Xn(async()=>{let a=z0(async()=>({value:await t.iterator(),done:!1}));return Q6(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Xn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=H6.alea(t||v.now().toString());return Xn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Xn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Hu.MAX_BUFFER_SIZE=1e4;function Xn(e,t=null){return new class extends Hu{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function hj(e){return Xn(async()=>O2(e),e.length)}function mj(e){if(!Sl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Xn(async()=>{let n=await M2(e,a=>{if(a instanceof Hu)return{value:a.iterator(),recurse:!1};if(Sl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return ej(n,Qr.SHORTEST)},t)}function fj(e){if(e===null)return null;let t=e[0];return X6(t)?{value:gj(e),recurse:!1}:{value:null,recurse:!0}}function gj(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof $e?Rt(e):Bn(e)}var W2=class extends Hu{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},xh='"',Wp=Symbol("out"),eI=Symbol("field"),vh=Symbol("quote"),Dy=Symbol("quoteafterquote"),tI=Symbol("quoteinquote"),B2=class extends Hu{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new W2(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Wp;for(let i=0;i<r;i++)switch(s){case Wp:switch(e.charAt(i)){case xh:a=i+1,s=vh;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Wp;break;default:s=eI,a=i;break}break;case eI:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Wp,a=i+1;break;default:}break;case vh:switch(e.charAt(i)){case xh:s=Dy;break;default:}break;case Dy:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Wp,a=i+1;break;case xh:s=vh;break;default:s=tI;break}break;case tI:switch(e.charAt(i)){case xh:s=vh;break;default:}break;default:}if(s===Dy?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},V2=class extends nn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!X().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new V2(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),Bn(n,t)}},U2=class extends nn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ke([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ca([s,r,o,i],[1,4])}else this.cropBox=Ca([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!X().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new U2(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=wo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return O(()=>{let t=mn(le(e,"float32"),0),n;n=Nr.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return B(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},G2=class{},H2=class extends nn{split(e){return new bj(this,e)}},bj=class extends H2{constructor(e,t){super(),this.upstream=e,this.impl=new yj(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},yj=class extends W0{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},xj=class extends nn{decodeUTF8(){return new vj(this)}},vj=class extends H2{constructor(e){super(),this.upstream=e,this.impl=new wj(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},wj=class extends W0{constructor(e){if(super(),this.upstream=e,X().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=DI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return X().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},j2=class extends xj{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(X().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function kj(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=Ij(e));let s=await(n||v.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new j2(i,t)}else throw new Error(s.statusText)}var Ij=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function q2(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var K2=class extends G2{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(q2(this.input)&&X().get("IS_NODE")){let e=Ox();this.input=e.readFileSync(this.input.slice(7))}return new j2(this.input,this.options)}},X2=class extends G2{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return q2(this.url)?new K2(this.url,this.fileOptions).iterator():kj(this.url,this.fileOptions)}};function Tj(e,t={}){return new B2(new X2(e),t)}function Sj(e){let t=z0(e);return Xn(async()=>t)}function Nj(e){return Xn(async()=>{let t=await e();return z0(()=>t.next())})}async function Cj(e,t){return U2.create(e,t)}async function _j(e){return V2.create(e)}var Ej="3.20.0";function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var $j=gr.whereImpl,B0=class extends yc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new mm(this,rr())}nextDataId(){return B0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,X().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Le(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,t)}makeOutput(e,t,n){return rr().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return $j(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};B0.nextDataId=0;var Y2={};Fe(Y2,{addImpl:()=>Q2,bincountImpl:()=>U0,bincountReduceImpl:()=>eC,castImpl:()=>J2,ceilImpl:()=>tC,concatImpl:()=>G0,equalImpl:()=>nC,expImpl:()=>rC,expm1Impl:()=>iC,floorImpl:()=>oC,gatherNdImpl:()=>lC,gatherV2Impl:()=>uC,greaterEqualImpl:()=>cC,greaterImpl:()=>pC,lessEqualImpl:()=>hC,lessImpl:()=>dC,linSpaceImpl:()=>mC,logImpl:()=>fC,maxImpl:()=>gC,maximumImpl:()=>bC,minimumImpl:()=>yC,multiplyImpl:()=>H0,negImpl:()=>xC,notEqualImpl:()=>vC,prodImpl:()=>wC,raggedTensorToTensorImpl:()=>kC,rangeImpl:()=>q0,rsqrtImpl:()=>IC,scatterImpl:()=>ol,sigmoidImpl:()=>yq,simpleAbsImpl:()=>Z2,sliceImpl:()=>sm,sparseFillEmptyRowsImpl:()=>SC,sparseReshapeImpl:()=>NC,sparseSegmentReductionImpl:()=>K0,sqrtImpl:()=>wq,squaredDifferenceImpl:()=>CC,stridedSliceImpl:()=>_C,stringNGramsImpl:()=>X0,stringSplitImpl:()=>Y0,stringToHashBucketFastImpl:()=>Z0,subImpl:()=>EC,tileImpl:()=>$C,topKImpl:()=>FC,transposeImpl:()=>j0,uniqueImpl:()=>DC});function Z2(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var Aj=e=>{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=Z2(r),n.makeOutput(a,t.shape,t.dtype)},Fj={kernelName:Al,backendName:"cpu",kernelFunc:Aj};function Vt(e){return(t,n,a,r,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),p=v.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=v.computeStrides(t),m=v.computeStrides(n),f=C.getBroadcastDims(t,i),g=C.getBroadcastDims(n,i);if(f.length+g.length===0)for(let b=0;b<p.length;++b)p[b]=e(a[b%a.length],r[b%r.length]);else for(let b=0;b<p.length;++b){let y=v.indexToLoc(b,o,l),x=y.slice(-d);f.forEach(_=>x[_]=0);let w=v.locToIndex(x,d,h),I=y.slice(-c);g.forEach(_=>I[_]=0);let N=v.locToIndex(I,c,m);p[b]=e(a[w],r[N])}return[p,i]}}function Zn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var Dj={kernelName:wm,backendName:"cpu",kernelFunc:Zn};function rm(e,t,n="float32"){if(n==="complex64"){let r=rm(e,t,"float32"),s=rm(e,t,"float32");return Zn({inputs:{real:r,imag:s},backend:e})}let a=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function hr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var Rj={kernelName:Vi,backendName:"cpu",kernelFunc:hr};function bi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var Mj={kernelName:Bm,backendName:"cpu",kernelFunc:bi};function J2(e,t,n,a){if(a==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(a==="bool"){let r=v.toTypedArray([0],n),[s,i]=Vt((o,l)=>o!==l?1:0)(t,[],e,r,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${n} to ${a}`)}function ps(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return hr({inputs:{x:r},backend:n});let p=rm(n,r.shape,r.dtype),d=ps({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),c=Zn({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),c}if(r.dtype==="complex64"){let p=bi({inputs:{input:r},backend:n}),d=ps({inputs:{x:p},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(p),d}if(!v.hasEncodingLoss(r.dtype,s)){let p=hr({inputs:{x:r},backend:n});return{dataId:p.dataId,shape:p.shape,dtype:s}}let i=n.data.get(r.dataId).values,[o,l,u]=J2(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}var Pj={kernelName:Ci,backendName:"cpu",kernelFunc:ps};function an(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;xe([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?C.fromUint8ToStringArray(u):u,c=i.dtype==="string"?C.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=ps({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=ps({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(b.dataId).values,w=l.data.get(y.dataId).values,[I,N,_]=n(i.shape,o.shape,h,m,x,w),$=l.makeTensorInfo(_,"float32",I),A=l.makeTensorInfo(_,"float32",N),M=Zn({inputs:{real:$,imag:A},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo($),l.disposeIntermediateTensorInfo(A),M}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function V0(e){return(t,n,a,r,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,p=v.computeStrides(o),d=v.getTypedArrayFromDType("float32",l),c=v.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(a,r),g=C.mergeRealAndImagArrays(s,i),b=t.length,y=v.computeStrides(t),x=n.length,w=v.computeStrides(n);if(h.length+m.length===0)for(let I=0;I<d.length;I++){let N=I%f.length,_=I%g.length,$=e(f[N*2],f[N*2+1],g[_*2],g[_*2+1]);d[I]=$.real,c[I]=$.imag}else for(let I=0;I<d.length;I++){let N=v.indexToLoc(I,u,p),_=N.slice(-b);h.forEach(T=>_[T]=0);let $=v.locToIndex(_,b,y),A=N.slice(-x);m.forEach(T=>A[T]=0);let M=v.locToIndex(A,x,w),D=e(f[$*2],f[$*2+1],g[M*2],g[M*2+1]);d[I]=D.real,c[I]=D.imag}return[d,c,o]}}var Q2=Vt((e,t)=>e+t),Oj=V0((e,t,n,a)=>({real:e+n,imag:t+a})),Nl=an(ms,Q2,Oj),Lj={kernelName:ms,backendName:"cpu",kernelFunc:Nl};function U0(e,t,n,a,r){let s=v.sizeFromShape(a),i=v.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function eC(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Le([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Ns(e){return(t,n,a)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function ot(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),p=n||i.dtype,d=v.getArrayFromDType(p,u);for(let c=0;c<u;++c)d[c]=t(l[c],r);return o.makeTensorInfo(i.shape,p,d)}}function ju(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var tC=Ns(e=>Math.ceil(e)),zj=ju(_i,tC),Wj={kernelName:_i,backendName:"cpu",kernelFunc:zj};function G0(e,t,n,a){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var nC=Vt((e,t)=>e===t?1:0),aC=an(ql,nC,null,"bool"),Bj={kernelName:ql,backendName:"cpu",kernelFunc:aC},rC=Ns(e=>Math.exp(e)),sC=ju(Oi,rC,"float32"),Vj={kernelName:Oi,backendName:"cpu",kernelFunc:sC},iC=Ns(e=>Math.expm1(e)),Uj=ju(Xl,iC),Gj={kernelName:Xl,backendName:"cpu",kernelFunc:Uj},oC=Ns(e=>Math.floor(e)),Hj=ju(Li,oC),jj={kernelName:Li,backendName:"cpu",kernelFunc:Hj};function lC(e,t,n,a,r,s,i,o,l){let u=Le([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function uC(e,t,n){let a=Le(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var pC=Vt((e,t)=>e>t?1:0),qj=an(Ql,pC,null,"bool"),Kj={kernelName:Ql,backendName:"cpu",kernelFunc:qj},cC=Vt((e,t)=>e>=t?1:0),Xj=an(Bi,cC,null,"bool"),Yj={kernelName:Bi,backendName:"cpu",kernelFunc:Xj},dC=Vt((e,t)=>e<t?1:0),Zj=an(au,dC,null,"bool"),Jj={kernelName:au,backendName:"cpu",kernelFunc:Zj},hC=Vt((e,t)=>e<=t?1:0),Qj=an(ru,hC,null,"bool"),eq={kernelName:ru,backendName:"cpu",kernelFunc:Qj};function mC(e,t,n){let a=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var fC=Ns(e=>Math.log(e)),tq=ju(Gi,fC),nq={kernelName:Gi,backendName:"cpu",kernelFunc:tq};function gC(e,t,n,a){let r=v.getTypedArrayFromDType(a,v.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var bC=Vt((e,t)=>Math.max(e,t)),aq=an(ji,bC),rq={kernelName:ji,backendName:"cpu",kernelFunc:aq},yC=Vt((e,t)=>Math.min(e,t)),sq=an(Yi,yC),iq={kernelName:Yi,backendName:"cpu",kernelFunc:sq},H0=Vt((e,t)=>e*t),oq=V0((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Qf=an(Ji,H0,oq),lq={kernelName:Ji,backendName:"cpu",kernelFunc:Qf};function xC(e,t,n){let a=v.createScalarValue(-1,n);return H0([],t,a,e,n)}function uq(e){let{inputs:t,backend:n}=e,{x:a}=t;xe(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=xC(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var pq={kernelName:pu,backendName:"cpu",kernelFunc:uq},vC=Vt((e,t)=>e!==t?1:0),cq=an(cu,vC,null,"bool"),dq={kernelName:cu,backendName:"cpu",kernelFunc:cq};function j0(e,t,n,a,r){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let p=0;p<i;++p){let d=v.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=v.locToIndex(c,s,l);u[h]=e[p]}return u}function Hn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;xe(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=j0(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var hq={kernelName:_r,backendName:"cpu",kernelFunc:Hn};function wC(e,t,n,a){let[r,s]=C.computeOutAndReduceShapes(e,a),i=ha(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(r),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function mq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"prod");let o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=C.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Hn({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=C.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=wC(d.shape,d.dtype,h,p),b=f;return i&&(b=C.expandShapeToKeepDim(f,l)),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,m)}var fq={kernelName:ao,backendName:"cpu",kernelFunc:mq},ka=C.RowPartitionType,wx=class{constructor(e,t,n,a,r,s,i,o,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=a,this.valuesDType=r,this.defaultValue=s,this.defaultValueShape=i,this.rowPartitionValues=o,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=C.getRowPartitionTypesHelper(u),this.raggedRank=C.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===ka.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===ka.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case ka.VALUE_ROWIDS:return wx.getMaxWidthValueRowID(t);case ka.ROW_SPLITS:return wx.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${ka[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let a=0;a<t-1;++a){let r=e[a+1]-e[a];r>n&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,a=e[0],r=0;for(let s=1;s<t;++s){let i=e[s];i!==a&&(a=i,r=Math.max(s-n,r),n=s)}return Math.max(t-n,r)}tensorShapeFromTensor(e,t,n=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return aI(e,n)}calculateOutputSize(e){let t=this.valuesShape,n=this.defaultValueShape;C.validateDefaultValueShape(n,t);let a=this.tensorShapeFromTensor(this.shape,this.shapeShape),r=C.combineRaggedTensorToTensorShapes(this.raggedRank,a,t);r[0]<0&&(r[0]=e);for(let s=1;s<=this.raggedRank;++s)r[s]<0&&(r[s]=this.getMaxWidth(s));return r}calculateFirstParentOutputIndex(e,t,n){let a=Math.min(e,n),r=[],s=0;for(let i=0;i<a;++i,s+=t)r.push(s);for(let i=a;i<e;++i)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,a){let r=e.length,s=[];for(let i=0;i<r-1;++i){let o=e[i+1]-e[i],l=Math.min(a,o),u=t[i];u===-1&&(l=0);for(let p=0;p<l;++p)s.push(u),u+=n;for(let p=0;p<o-l;++p)s.push(-1)}if(r>0&&s.length!==e[r-1])throw new Error("Invalid row split size.");return s}calculateOutputIndexValueRowID(e,t,n,a){let r=e.length,s=[];if(r===0)return[];let i=0,o=e[0];if(o>=t.length)throw new Error(`Got currentValueRowId=${o}, which is not less than ${t.length}`);let l=t[o];s.push(l);for(let u=1;u<r;++u){let p=e[u];if(p===o)l>=0&&(++i,i<a?l+=n:l=-1);else{if(i=0,o=p,p>=t.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${t.length}`);l=t[p]}s.push(l)}if(s.length!==e.length)throw new Error("Invalid row ids.");return s}calculateOutputIndex(e,t,n,a){let r=this.getRowPartitionTensor(e),s=this.getRowPartitionTypeByDimension(e);switch(s){case ka.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,a);case ka.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,a);default:throw new Error(`Unsupported partition type: ${ka[s]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case ka.FIRST_DIM_SIZE:return e[0];case ka.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case ka.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${ka[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),t=this.calculateOutputSize(e),n=new Array(this.raggedRank+1);n[n.length-1]=1;for(let s=n.length-2;s>=0;--s)n[s]=n[s+1]*t[s+1];let a=aI(t,!1),r=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(a));if(n[0]*t[0]>0){let s=this.calculateFirstParentOutputIndex(e,n[0],t[0]);for(let i=1;i<=this.raggedRank;++i)s=this.calculateOutputIndex(i-1,s,n[i],t[i]);this.setOutput(this.raggedRank,s,r,a)}return[a,r]}setOutput(e,t,n,a){if(n.length===0)return;let r=this.values,s=n,i=a.slice();i=i.slice(e+1);let o=v.sizeFromShape(i),l=t.length,u=this.defaultValue;if(u.length!==o&&u.length!==1){let h=this.defaultValueShape;O(()=>{let m=B(u,h);u=ai(m,i).dataSync()})}let p=0,d=0,c=0;for(let h=0;h<=l;++h){let m=h<l?t[h]:-1;if(m===c){++c;continue}if(d<c){let f=r.subarray(p*o),g=s.subarray(d*o),b=(c-d)*o;nI(g,f,b)}if(h>=l){let f=n.length;m=Math.floor(f/o)}if(m>c)if(this.defaultValue.length===1)s.subarray(c*o,m*o).fill(this.defaultValue[0]),c=m;else for(;m>c;){let f=s.slice(c*o);nI(f,u,o),++c}m<0?(p=h+1,d=c):(p=h,d=c,c=d+1)}}};function nI(e,t,n){for(let a=0;a<n;a++)e[a]=t[a]}function aI(e,t){let n=[];for(let a of e){if(a<0){if(!t)throw new Error(`Dimension ${a} must be >= 0`);if(a<-1)throw new Error(`Dimension ${a} must be >= -1`);a=-1}n.push(a)}return n}function kC(e,t,n,a,r,s,i,o,l,u){return new wx(e,t,n,a,r,s,i,o,l,u).compute()}function q0(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return v.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var IC=Ns(e=>1/Math.sqrt(e)),gq=ju(po,IC),bq={kernelName:po,backendName:"cpu",kernelFunc:gq};function ol(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return Le(n,t.dtype);let h=Le(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let b=0;b<i;b++){let y=d[m*i+b];f.push(y),g+=y*o[b]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let b=0;b<r;b++)u?h.values[g*r+b]+=c[m*r+b]:h.values[g*r+b]=t.rank===0?c[0]:c[m*r+b]}return h}var yq=Ns(e=>1/(1+Math.exp(-e))),TC=ot(ho,e=>1/(1+Math.exp(-e))),xq={kernelName:ho,backendName:"cpu",kernelFunc:TC};function sm(e,t,n,a,r){let s=qt.isSliceContinous(a,t,n),i=v.sizeFromShape(n),o=v.computeStrides(a);if(s){let d=qt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=Le(a,r,l),p=Le(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?C.fromStringArrayToUint8(p.values):p.values}function yi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;xe(r,"slice");let[o,l]=qt.parseSliceParams(r,s,i);qt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=sm(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var vq={kernelName:ku,backendName:"cpu",kernelFunc:yi};function SC(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(n,0),b=v.getArrayFromDType(r,0);return[g,[0,d],b,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let b=e[g*d];if(b<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,l));++m[b],c=c&&b>=h,h=b}let f=!0;for(let g=0;g<l;++g){let b=m[g]===0;u[g]=b,f=f&&!b,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,b=a;for(let y=0;y<o;++y)p[y]=y;return[g,[o,d],b,u,p]}else{let g=m[l-1],b=v.getArrayFromDType(n,g*d),y=v.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let w=0;w<o;++w){let I=e[w*d],N=x[I],_=(I===0?0:m[I-1])+N;x[I]++;for(let $=0;$<d;++$)b[_*d+$]=e[w*d+$];y[_]=a[w],p[w]=_}for(let w=0;w<l;++w)if(x[w]===0){let I=w===0?0:m[w-1];b[I*d+0]=w;for(let N=1;N<d;++N)b[I*d+N]=0;y[I]=i}return[b,[g,d],y,u,p]}}function NC(e,t,n,a,r){let s=v.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(v.sizeFromShape(l)!==s)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=v.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let b=0;b<d;++b)g+=e[f*d+b]*c[b];for(let b=0;b<o;++b)m[f*o+b]=Math.trunc(g/h[b]),g%=h[b]}return[m,[i,o],l]}function K0(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((y,x)=>y*x,1),h=v.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,b=r[m];for(;;){let y=0;if(f<o){if(y=r[f],b===y){++f;continue}if(b>=y)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>g&&h.fill(i,g*u,b*u);for(let x=m;x<f;++x){let w=a[x];if(w<0||w>=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let I=0;I<u;I++)h[b*u+I]+=e[w*u+I]}if(s)for(let x=0;x<u;x++)h[b*u+x]/=f-m;if(m=f,++f,g=b+1,b=y,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var wq=Ns(e=>Math.sqrt(e)),kq=ot(mo,e=>Math.sqrt(e)),Iq={kernelName:mo,backendName:"cpu",kernelFunc:kq},CC=Vt((e,t)=>{let n=e-t;return n*n}),Tq=an(bo,CC),Sq={kernelName:bo,backendName:"cpu",kernelFunc:Tq};function _C(e,t,n,a){let r=Le(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var Nq=class{constructor(e,t,n,a,r,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let g=0;g<p;++g)c+=e[d+g].length;c+=u*this.rightPad.length,c+=(l+u+p-1)*this.separator.length,n[a+i]=new Uint8Array(c);let h=n[a+i],m=0,f=g=>g.forEach(b=>h[m++]=b);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<p-1;++g)f(e[d+g]),f(this.separator);if(p>0){f(e[d+p-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=v.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function X0(e,t,n,a,r,s,i,o){return new Nq(n,a,r,s,i,o).compute(e,t)}function Cq(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function Y0(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;Cq(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function Z0(e,t){let n=v.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=v.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var EC=Vt((e,t)=>e-t),_q=V0((e,t,n,a)=>({real:e-n,imag:t-a})),J0=an(yo,EC,_q),Eq={kernelName:yo,backendName:"cpu",kernelFunc:J0};function $C(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Le(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var Hp=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function AC(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));AC(e,t,c,h)}let r=e[t],s=n,i=a;for(v.swap(e,n,t),Hp(e[a],r)>0&&v.swap(e,n,a);s<i;){for(v.swap(e,s,i),s++,i--;Hp(e[s],r)<0;)s=s+1;for(;Hp(e[i],r)>0;)i=i-1}Hp(e[n],r)===0?v.swap(e,n,i):(i=i+1,v.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function FC(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*a),u=v.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((y,x)=>m[x]={value:y,index:x}),a<m.length&&(AC(m,a),m=m.slice(0,a)),r&&m.sort(Hp);let f=d*a,g=l.subarray(f,f+a),b=u.subarray(f,f+a);for(let y=0;y<a;y++)g[y]=m[y].value,b[y]=m[y].index}let p=t.slice();return p[p.length-1]=a,[Le(p,n,l),Le(p,"int32",u)]}function DC(e,t,n,a){let r=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new jt(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let g=[];for(let b=0;b<s[0];b++)for(let y=0;y<s[2];y++)g.push(l.get(b,m,y));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let d=s.slice();d[1]=Object.keys(i).length;let c=new jt(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let b=0;b<s[2];b++)c.set(l.get(g,m,b),g,f,b)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}Xm("cpu",()=>new B0,1);var RC=ot(Pi,e=>e>=0?e:Math.exp(e)-1),$q={kernelName:Pi,backendName:"cpu",kernelFunc:RC};function MC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;xe([r],"leakyRelu");let i=v.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var Aq={kernelName:Ui,backendName:"cpu",kernelFunc:MC},Fq=Vt((e,t)=>e<0?t*e:e);function PC(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;xe([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=Fq(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var Dq={kernelName:no,backendName:"cpu",kernelFunc:PC},OC=ot(ro,e=>Math.max(0,e)),Rq={kernelName:ro,backendName:"cpu",kernelFunc:OC},LC=ot(oo,e=>Math.min(Math.max(0,e),6)),Mq={kernelName:oo,backendName:"cpu",kernelFunc:LC};function im(e,t,n,a,r){if(n==="linear")return hr({inputs:{x:t},backend:e});if(n==="relu")return OC({inputs:{x:t},backend:e});if(n==="elu")return RC({inputs:{x:t},backend:e});if(n==="relu6")return LC({inputs:{x:t},backend:e});if(n==="prelu")return PC({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return MC({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return TC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function yt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=v.sizeFromShape(r.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var Pq={kernelName:yu,backendName:"cpu",kernelFunc:yt};function zC(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;xe([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=Mu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=yt({inputs:{x:r},backend:n,attrs:{shape:x}}),N=yt({inputs:{x:s},backend:n,attrs:{shape:w}}),_=i?I.shape[1]:I.shape[2],$=i?I.shape[2]:I.shape[1],A=o?N.shape[1]:N.shape[2],M=Math.max(g,b),D=n.data.get(I.dataId).values,T=n.data.get(N.dataId).values,P=v.computeStrides(I.shape),U=v.computeStrides(N.shape),[j,q,K]=i?[P[0],1,P[1]]:[P[0],P[1],1],[Y,te,re]=o?[1,U[1],U[0]]:[U[1],1,U[0]],J=$*A,ie=Le([M,$,A],I.dtype),ae=ie.values,oe=n.blockSize;for(let ue=0;ue<M;ue++)for(let we=0;we<$;we+=oe)for(let be=0;be<A;be+=oe)for(let Ie=0;Ie<_;Ie+=oe){let Ee=Math.min(we+oe,$),De=Math.min(be+oe,A),Be=Math.min(Ie+oe,_);for(let je=we;je<Ee;je++)for(let st=be;st<De;st++){let et=0;for(let tt=Ie;tt<Be;tt++){let Ne=Math.min(ue,g-1)*j,ft=Math.min(ue,b-1)*re,dt=D[Ne+je*q+tt*K],bn=T[tt*Y+st*te+ft];et+=dt*bn}ae[ue*J+(je*A+st)]+=et}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(y,ie.dtype,ie.values)}var Oq={kernelName:Ni,backendName:"cpu",kernelFunc:zC};function Lq(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=zC({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=Nl({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=im(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var zq={kernelName:oi,backendName:"cpu",kernelFunc:Lq},Wq=ot(Fl,e=>Math.acos(e)),Bq={kernelName:Fl,backendName:"cpu",kernelFunc:Wq},Vq=ot(Dl,e=>Math.acosh(e)),Uq={kernelName:Dl,backendName:"cpu",kernelFunc:Vq};function Gq(e){let{inputs:t,backend:n}=e,a=t;xe(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Le(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var Hq={kernelName:Ii,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"all");let o=v.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Hn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=C.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x&&I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=C.expandShapeToKeepDim(d,o),y=yt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var qq={kernelName:Rl,backendName:"cpu",kernelFunc:jq};function Kq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"any");let o=v.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Hn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=C.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x||I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=C.expandShapeToKeepDim(d,o),y=yt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var Xq={kernelName:Ml,backendName:"cpu",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMax");let i=v.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Hn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=C.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I>y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Zq={kernelName:Ti,backendName:"cpu",kernelFunc:Yq};function Jq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMin");let i=v.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Hn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=C.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I<y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Qq={kernelName:xc,backendName:"cpu",kernelFunc:Jq},e5=ot(Pl,e=>Math.asin(e)),t5={kernelName:Pl,backendName:"cpu",kernelFunc:e5},n5=ot(Ol,e=>Math.asinh(e)),a5={kernelName:Ol,backendName:"cpu",kernelFunc:n5},r5=ot(Ll,e=>Math.atan(e)),s5={kernelName:Ll,backendName:"cpu",kernelFunc:r5},i5=Vt((e,t)=>Math.atan2(e,t)),o5=an(Wl,i5),l5={kernelName:Wl,backendName:"cpu",kernelFunc:o5},u5=ot(zl,e=>Math.atanh(e)),p5={kernelName:zl,backendName:"cpu",kernelFunc:u5};function Q0(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Le(r.outShape,n),g=f.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let I=w*b,N=w*a[0];for(let _=0;_<r.inChannels;++_)for(let $=0;$<r.outHeight;++$){let A=$*i-c,M=Math.max(0,A),D=Math.min(r.inHeight,p+A),T=I+$*y;for(let P=0;P<r.outWidth;++P){let U=P*o-h,j=Math.max(0,U),q=Math.min(r.inWidth,d+U),K=m,Y=0,te=0;for(let J=M;J<D;J+=l){let ie=N+J*a[1];for(let ae=j;ae<q;ae+=u){let oe=ie+ae*a[2],ue=e[oe+_];s==="max"&&ue>K?K=ue:s==="avg"&&(Y+=ue,te++)}if(isNaN(K))break}let re=T+P*x+_;g[re]=s==="avg"?Y/te:K}}}return f}function WC(e,t,n,a,r=!1,s=!1){let i=Le(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Le(t,n,e);for(let g=0;g<a.batchSize;++g)for(let b=0;b<a.inChannels;++b)for(let y=0;y<a.outHeight;++y){let x=y*o-h,w=x;for(;w<0;)w+=u;let I=Math.min(a.inHeight,d+x);for(let N=0;N<a.outWidth;++N){let _=N*l-m,$=_;for(;$<0;)$+=p;let A=Math.min(a.inWidth,c+_),M=Number.NEGATIVE_INFINITY,D=-1;for(let T=w;T<I;T+=u){let P=T-x;for(let U=$;U<A;U+=p){let j=U-_,q=f.get(g,T,U,b);q>M&&(M=q,r?D=s?((g*a.inHeight+T)*a.inWidth+U)*a.inChannels+b:(T*a.inWidth+U)*a.inChannels+b:D=P*c+j)}}i.set(D,g,y,N,b)}}return i}function BC(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,b=r.padInfo.left,y=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Le(r.outShape,n),w=x.values,I=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],N=r.outShape[2]*r.outShape[3]*r.outShape[4],_=r.outShape[3]*r.outShape[4],$=r.outShape[4];for(let A=0;A<r.batchSize;++A){let M=A*I,D=A*a[0];for(let T=0;T<r.inChannels;++T)for(let P=0;P<r.outDepth;++P){let U=P*i-f,j=U;for(;j<0;)j+=u;let q=Math.min(r.inDepth,c+U),K=M+P*N;for(let Y=0;Y<r.outHeight;++Y){let te=Y*o-g,re=te;for(;re<0;)re+=p;let J=Math.min(r.inHeight,h+te),ie=K+Y*_;for(let ae=0;ae<r.outWidth;++ae){let oe=ae*l-b,ue=oe;for(;ue<0;)ue+=d;let we=Math.min(r.inWidth,m+oe),be=ie+ae*$,Ie=y,Ee=0,De=0;for(let je=j;je<q;je+=u){let st=D+je*a[1];for(let et=re;et<J;et+=p){let tt=st+et*a[2];for(let Ne=ue;Ne<we;Ne+=d){let ft=tt+Ne*a[3],dt=e[ft+T];if(s==="max"&&dt>Ie?Ie=dt:s==="avg"&&(Ee+=dt,De++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Be=be+T;w[Be]=s==="avg"?Ee/De:Ie}}}}return x}function c5(e,t){let n=Le(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*a-c,x=y;for(;x<0;)x+=i;let w=Math.min(t.inDepth,u+y);for(let I=0;I<t.outHeight;++I){let N=I*r-h,_=N;for(;_<0;)_+=o;let $=Math.min(t.inHeight,p+N);for(let A=0;A<t.outWidth;++A){let M=A*s-m,D=M;for(;D<0;)D+=l;let T=Math.min(t.inWidth,d+M),P=Number.NEGATIVE_INFINITY,U=-1;for(let j=x;j<w;j+=i){let q=j-y;for(let K=_;K<$;K+=o){let Y=K-N;for(let te=D;te<T;te+=l){let re=te-M,J=e.get(f,j,K,te,g);J>=P&&(P=J,U=q*p*d+Y*p+re)}}}n.set(U,f,b,I,A,g)}}}return n}function d5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=hr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=Q0(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var h5={kernelName:Si,backendName:"cpu",kernelFunc:d5};function m5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;xe(r,"avgPool3d");let p=C.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=BC(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var f5={kernelName:vc,backendName:"cpu",kernelFunc:m5};function g5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;xe([r,s],"avgPool3DGrad");let p=C.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,b=p.dilationDepth,y=p.dilationHeight,x=p.dilationWidth,w=p.effectiveFilterDepth,I=p.effectiveFilterHeight,N=p.effectiveFilterWidth,_=w-1-p.padInfo.front,$=N-1-p.padInfo.left,A=I-1-p.padInfo.top,M=Le(s.shape,"float32"),D=1/(m*f*g),T=n.bufferSync(r);for(let P=0;P<p.batchSize;++P)for(let U=0;U<p.inChannels;++U)for(let j=0;j<p.inDepth;++j)for(let q=0;q<p.inHeight;++q)for(let K=0;K<p.inWidth;++K){let Y=j-_,te=q-A,re=K-$,J=0;for(let ie=0;ie<w;ie+=b){let ae=(Y+ie)/d;if(!(ae<0||ae>=p.outDepth||Math.floor(ae)!==ae))for(let oe=0;oe<I;oe+=y){let ue=(te+oe)/c;if(!(ue<0||ue>=p.outHeight||Math.floor(ue)!==ue))for(let we=0;we<N;we+=x){let be=(re+we)/h;be<0||be>=p.outWidth||Math.floor(be)!==be||(J+=T.get(P,ae,ue,be,U))}}}M.set(J*D,P,j,q,K,U)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var b5={kernelName:ym,backendName:"cpu",kernelFunc:g5};function y5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;xe([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=C.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,b=p.effectiveFilterHeight,y=p.effectiveFilterWidth,x=y-1-p.padInfo.left,w=b-1-p.padInfo.top,I=Le(i.shape,"float32"),N=1/(h*m),_=n.data.get(r.dataId).values,$=Le(r.shape,"float32",_);for(let A=0;A<p.batchSize;++A)for(let M=0;M<p.inChannels;++M)for(let D=0;D<p.inHeight;++D)for(let T=0;T<p.inWidth;++T){let P=D-w,U=T-x,j=0;for(let q=0;q<b;q+=f){let K=(P+q)/d;if(!(K<0||K>=p.outHeight||Math.floor(K)!==K))for(let Y=0;Y<y;Y+=g){let te=(U+Y)/c;te<0||te>=p.outWidth||Math.floor(te)!==te||(j+=$.get(A,K,te,M))}}I.set(j*N,A,D,T,M)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var x5={kernelName:bm,backendName:"cpu",kernelFunc:y5};function v5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,b=h.length,y=c.length,x=d.length,w=0,I=0,N=0,_=0;for(let $=0;$<p.length;++$)f[$]=m[w++]+(p[$]-d[I++])*h[N++]/Math.sqrt(c[_++]+u),w>=g&&(w=0),I>=x&&(I=0),N>=b&&(N=0),_>=y&&(_=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var w5={kernelName:Wi,backendName:"cpu",kernelFunc:v5};function k5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;xe([r],"batchToSpaceND");let o=s.reduce((b,y)=>b*y),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),p=C.getReshapedPermuted(r.shape,s,o),d=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(p,i,s.length),h=yt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Hn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=yt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=yi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var I5={kernelName:Bl,backendName:"cpu",kernelFunc:k5};function T5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=U0(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var S5={kernelName:xm,backendName:"cpu",kernelFunc:T5};function N5(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=C.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var C5={kernelName:vm,backendName:"cpu",kernelFunc:N5},_5=ot(fs,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),E5={kernelName:fs,backendName:"cpu",kernelFunc:_5},$5=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},A5={kernelName:wc,backendName:"cpu",kernelFunc:$5};function Cl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var F5={kernelName:Dm,backendName:"cpu",kernelFunc:Cl};function _l(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>v.sizeFromShape(f.shape)>0);if(o.length===1)return hr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(w=>bi({inputs:{input:w},backend:n})),g=o.map(w=>Cl({inputs:{input:w},backend:n})),b=_l({inputs:f,backend:n,attrs:{axis:s}}),y=_l({inputs:g,backend:n,attrs:{axis:s}}),x=Zn({inputs:{real:b,imag:y},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),x}let u=o.map(f=>{let g=v.sizeFromShape(f.shape.slice(s));return yt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=G0(p,i,t[0].dtype,d),h=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var D5={kernelName:Vl,backendName:"cpu",kernelFunc:_l};function VC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;xe([r,s],"conv2d");let d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,b=c.padInfo.left,y=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new jt(c.outShape,r.dtype),I=v.computeStrides(r.shape),N=v.computeStrides(s.shape),_=I[0],$=x?I[1]:I[2],A=x?I[2]:1,M=x?1:I[1],D=w.strides[0],T=x?w.strides[1]:w.strides[2],P=x?w.strides[2]:1,U=x?1:w.strides[1],j=n.data.get(r.dataId).values,q=n.data.get(s.dataId).values,K=w.values;for(let Y=0;Y<c.batchSize;++Y){let te=Y*_,re=Y*D;for(let J=0;J<c.outHeight;++J){let ie=re+J*T,ae=J*c.strideHeight-y;for(let oe=0;oe<h;++oe){let ue=ae+oe*f;if(ue<0||ue>=c.inHeight)continue;let we=oe*N[0],be=te+ue*$;for(let Ie=0;Ie<c.outWidth;++Ie){let Ee=ie+Ie*P,De=Ie*c.strideWidth-b;for(let Be=0;Be<m;++Be){let je=De+Be*g;if(je<0||je>=c.inWidth)continue;let st=we+Be*N[1],et=be+je*A,tt=st;for(let Ne=0;Ne<c.inChannels;++Ne){let ft=j[et+Ne*M];for(let dt=0;dt<c.outChannels;++dt)K[Ee+dt*U]+=ft*q[tt+dt];tt+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,K)}var R5={kernelName:Ei,backendName:"cpu",kernelFunc:VC};function M5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;xe([r,s],"conv2dBackpropFilter");let d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,b=c.dataFormat==="channelsLast",y=new jt(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,I=n.data.get(r.dataId).values,N=n.data.get(s.dataId).values,_=new jt(r.shape,r.dtype,I),$=new jt(s.shape,s.dtype,N);for(let A=0;A<f;++A){let M=Math.max(0,Math.ceil((w-A)/h)),D=Math.min(c.outHeight,(c.inHeight+w-A)/h);for(let T=0;T<g;++T){let P=Math.max(0,Math.ceil((x-T)/m)),U=Math.min(c.outWidth,(c.inWidth+x-T)/m);for(let j=0;j<c.inChannels;++j)for(let q=0;q<c.outChannels;++q){let K=0;for(let Y=0;Y<c.batchSize;++Y)for(let te=M;te<D;++te){let re=A+te*h-w;for(let J=P;J<U;++J){let ie=T+J*m-x;b?K+=_.get(Y,re,ie,j)*$.get(Y,te,J,q):K+=_.get(Y,j,re,ie)*$.get(Y,q,te,J)}}y.set(K,A,T,j,q)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var P5={kernelName:km,backendName:"cpu",kernelFunc:M5};function O5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;xe([r,s],"conv2dBackpropInput");let d=v.computeStrides(s.shape),c=v.computeStrides(r.shape),h=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new jt(m.inShape,"float32"),g=f.values,b=n.data.get(r.dataId).values,y=n.data.get(s.dataId).values,[x,w,I]=d,{batchSize:N,filterHeight:_,filterWidth:$,inChannels:A,inHeight:M,inWidth:D,outChannels:T,outHeight:P,outWidth:U,strideHeight:j,strideWidth:q}=m;h=m.dataFormat;let K=_-1-m.padInfo.top,Y=$-1-m.padInfo.left,te=h==="channelsLast",re=f.strides[0],J=te?f.strides[1]:f.strides[2],ie=te?f.strides[2]:1,ae=te?1:f.strides[1],oe=c[0],ue=te?c[1]:c[2],we=te?c[2]:1,be=te?1:c[1];for(let Ie=0;Ie<N;++Ie)for(let Ee=0;Ee<A;++Ee)for(let De=0;De<M;++De){let Be=De-K,je=Math.max(0,Math.ceil(Be/j)),st=Math.min(P,(_+Be)/j);for(let et=0;et<D;++et){let tt=et-Y,Ne=Math.max(0,Math.ceil(tt/q)),ft=Math.min(U,($+tt)/q),dt=0;for(let Yt=je;Yt<st;++Yt){let Mn=Yt*j-Be;for(let Ut=Ne;Ut<ft;++Ut){let Zt=Ut*q-tt,Pa=oe*Ie+ue*Yt+we*Ut,Pn=x*(_-1-Mn)+w*($-1-Zt)+I*Ee;for(let Gt=0;Gt<T;++Gt){let sa=b[Pa+be*Gt],ia=y[Pn+Gt];dt+=sa*ia}}}let bn=re*Ie+J*De+ie*et+ae*Ee;g[bn]=dt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var L5={kernelName:$i,backendName:"cpu",kernelFunc:O5};function z5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;xe([r,s],"conv3d");let u=C.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,b=g.front,y=g.left,x=g.top,w=new jt(u.outShape,r.dtype),I=n.data.get(r.dataId).values,N=n.data.get(s.dataId).values,_=w.values,$=v.computeStrides(r.shape),A=v.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let D=M*$[0],T=M*w.strides[0];for(let P=0;P<u.outDepth;++P){let U=T+P*w.strides[1],j=P*u.strideDepth-b;for(let q=0;q<p;++q){let K=j+q*h;if(K<0||K>=u.inDepth)continue;let Y=q*A[0],te=D+K*$[1];for(let re=0;re<u.outHeight;++re){let J=U+re*w.strides[2],ie=re*u.strideHeight-x;for(let ae=0;ae<d;++ae){let oe=ie+ae*m;if(oe<0||oe>=u.inHeight)continue;let ue=Y+ae*A[1],we=te+oe*$[2];for(let be=0;be<u.outWidth;++be){let Ie=J+be*u.outChannels,Ee=be*u.strideWidth-y;for(let De=0;De<c;++De){let Be=Ee+De*f;if(Be<0||Be>=u.inWidth)continue;let je=ue+De*A[2],st=we+Be*u.inChannels,et=je;for(let tt=0;tt<u.inChannels;++tt){let Ne=I[st+tt];for(let ft=0;ft<u.outChannels;++ft)_[Ie+ft]+=Ne*N[et+ft];et+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var W5={kernelName:kc,backendName:"cpu",kernelFunc:z5};function B5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;xe([r,s],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=C.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,b=d.filterWidth,y=new jt(d.filterShape,"float32"),x=y.values,[w,I,N,_]=y.strides,$=n.data.get(s.dataId).values,[A,M,D,T]=p,P=n.data.get(r.dataId).values,[U,j,q,K]=u,Y=d.padInfo.front,te=d.padInfo.left,re=d.padInfo.top;for(let J=0;J<f;++J){let ie=Math.max(0,Math.ceil((Y-J)/c)),ae=Math.min(d.outDepth,(d.inDepth+Y-J)/c),oe=J*w;for(let ue=0;ue<g;++ue){let we=Math.max(0,Math.ceil((re-ue)/h)),be=Math.min(d.outHeight,(d.inHeight+re-ue)/h),Ie=ue*I+oe;for(let Ee=0;Ee<b;++Ee){let De=Math.max(0,Math.ceil((te-Ee)/m)),Be=Math.min(d.outWidth,(d.inWidth+te-Ee)/m),je=Ee*N+Ie;for(let st=0;st<d.inChannels;++st){let et=st*_+je;for(let tt=0;tt<d.outChannels;++tt){let Ne=0;for(let ft=0;ft<d.batchSize;++ft){let dt=ft*U,bn=ft*A;for(let Yt=ie;Yt<ae;++Yt){let Mn=(J+Yt*c-Y)*j+dt,Ut=Yt*M+bn;for(let Zt=we;Zt<be;++Zt){let Pa=(ue+Zt*h-re)*q+Mn,Pn=Zt*D+Ut;for(let Gt=De;Gt<Be;++Gt){let sa=(Ee+Gt*m-te)*K+Pa,ia=Gt*T+Pn;Ne+=P[sa+st]*$[ia+tt]}}}}x[et+tt]=Ne}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var V5={kernelName:Im,backendName:"cpu",kernelFunc:B5};function U5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;xe([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=C.computeConv3DInfo(l,s.shape,o,1,i),c=new jt(d.inShape,"float32"),h=c.values,[m,f,g,b]=c.strides,y=n.data.get(r.dataId).values,[x,w,I,N]=u,_=n.data.get(s.dataId).values,[$,A,M,D]=p,{batchSize:T,filterDepth:P,filterHeight:U,filterWidth:j,inChannels:q,inDepth:K,inHeight:Y,inWidth:te,outChannels:re,outDepth:J,outHeight:ie,outWidth:ae,strideDepth:oe,strideHeight:ue,strideWidth:we}=d,be=P-1-d.padInfo.front,Ie=U-1-d.padInfo.top,Ee=j-1-d.padInfo.left;for(let De=0;De<T;++De)for(let Be=0;Be<q;++Be)for(let je=0;je<K;++je){let st=je-be,et=Math.max(0,Math.ceil(st/oe)),tt=Math.min(J,(P+st)/oe);for(let Ne=0;Ne<Y;++Ne){let ft=Ne-Ie,dt=Math.max(0,Math.ceil(ft/ue)),bn=Math.min(ie,(U+ft)/ue);for(let Yt=0;Yt<te;++Yt){let Mn=Yt-Ee,Ut=Math.max(0,Math.ceil(Mn/we)),Zt=Math.min(ae,(j+Mn)/we),Pa=0;for(let Pn=et;Pn<tt;++Pn){let Gt=Pn*oe-st;for(let sa=dt;sa<bn;++sa){let ia=sa*ue-ft;for(let Ur=Ut;Ur<Zt;++Ur){let Ls=Ur*we-Mn,Ad=x*De+w*Pn+I*sa+N*Ur,Gr=$*(P-1-Gt)+A*(U-1-ia)+M*(j-1-Ls)+D*Be;for(let wr=0;wr<re;++wr){let Tp=y[Ad+wr],Uo=_[Gr+wr];Pa+=Tp*Uo}}}}h[m*De+f*je+g*Ne+b*Yt+Be]=Pa}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var G5={kernelName:Tm,backendName:"cpu",kernelFunc:U5},H5=ot(Ai,e=>Math.cos(e)),j5={kernelName:Ai,backendName:"cpu",kernelFunc:H5},q5=ot(Fi,e=>Math.cosh(e)),K5={kernelName:Fi,backendName:"cpu",kernelFunc:q5};function X5(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,b=Le([m,f,g,h],"float32"),y=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,I=v.computeStrides(r.shape),N=v.computeStrides(b.shape);for(let _=0;_<m;_++){let $=_*4,A=y[$],M=y[$+1],D=y[$+2],T=y[$+3],P=x[_];if(P>=p)continue;let U=f>1?(D-A)*(d-1)/(f-1):0,j=g>1?(T-M)*(c-1)/(g-1):0;for(let q=0;q<f;q++){let K=f>1?A*(d-1)+q*U:.5*(A+D)*(d-1);if(K<0||K>d-1){for(let Y=0;Y<g;Y++)for(let te=0;te<h;te++){let re=te+Y*N[2]+q*N[1]+_*N[0];b.values[re]=u}continue}if(l==="bilinear"){let Y=Math.floor(K),te=Math.ceil(K),re=K-Y;for(let J=0;J<g;J++){let ie=g>1?M*(c-1)+J*j:.5*(M+T)*(c-1);if(ie<0||ie>c-1){for(let we=0;we<h;we++){let be=we+J*N[2]+q*N[1]+_*N[0];b.values[be]=u}continue}let ae=Math.floor(ie),oe=Math.ceil(ie),ue=ie-ae;for(let we=0;we<h;we++){let be=we+ae*I[2]+Y*I[1]+P*I[0],Ie=w[be];be=we+oe*I[2]+Y*I[1]+P*I[0];let Ee=w[be];be=we+ae*I[2]+te*I[1]+P*I[0];let De=w[be];be=we+oe*I[2]+te*I[1]+P*I[0];let Be=w[be],je=Ie+(Ee-Ie)*ue,st=De+(Be-De)*ue;be=we+J*N[2]+q*N[1]+_*N[0],b.values[be]=je+(st-je)*re}}}else for(let Y=0;Y<g;++Y){let te=g>1?M*(c-1)+Y*j:.5*(M+T)*(c-1);if(te<0||te>c-1){for(let ie=0;ie<h;ie++){let ae=ie+Y*N[2]+q*N[1]+_*N[0];b.values[ae]=u}continue}let re=Math.round(te),J=Math.round(K);for(let ie=0;ie<h;ie++){let ae=ie+re*I[2]+J*I[1]+P*I[0],oe=ie+Y*N[2]+q*N[1]+_*N[0];b.values[oe]=w[ae]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var Y5={kernelName:Gl,backendName:"cpu",kernelFunc:X5};function Z5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumprod");let l=C.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Hn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=C.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ha(u.dtype,"int32"),c=v.makeOnesTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?1:h[x];else{let w=f(b,y-1);c[x]=i?h[w]*c[w]:h[x]*c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=C.getUndoAxesPermutation(l),y=Hn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var J5={kernelName:Ul,backendName:"cpu",kernelFunc:Z5};function Q5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumsum");let l=C.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Hn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=C.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ha(u.dtype,"int32"),c=v.makeZerosTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?0:h[x];else{let w=f(b,y-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=C.getUndoAxesPermutation(l),y=Hn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var eK={kernelName:Di,backendName:"cpu",kernelFunc:Q5};function tK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=U0(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=eC(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var nK={kernelName:Sm,backendName:"cpu",kernelFunc:tK};function aK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let b=0;b<o;++b)for(let y=0;y<d;++y){let x=Math.floor(y/s),w=y%s;for(let I=0;I<c;++I){let N=Math.floor(I/s),_=I%s,$=(w*s+_)*h;for(let A=0;A<h;++A){let M=A+$+p*(N+u*(x+l*b));f[g++]=m[M]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var rK={kernelName:Hl,backendName:"cpu",kernelFunc:aK};function UC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;xe([r,s],"depthwiseConv2DNative");let p=v.computeStrides(r.shape),d=v.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:b,padInfo:y}=h,x=y.left,w=y.top,I=h.outChannels/h.inChannels,N=new jt(h.outShape,r.dtype),_=n.data.get(r.dataId).values,$=n.data.get(s.dataId).values,A=N.values;for(let M=0;M<h.batchSize;++M){let D=M*p[0],T=M*N.strides[0];for(let P=0;P<h.outHeight;++P){let U=T+P*N.strides[1],j=P*h.strideHeight-w;for(let q=0;q<m;++q){let K=j+q*g;if(K<0||K>=h.inHeight)continue;let Y=q*d[0],te=D+K*p[1];for(let re=0;re<h.outWidth;++re){let J=U+re*N.strides[2],ie=re*h.strideWidth-x;for(let ae=0;ae<f;++ae){let oe=ie+ae*b;if(oe<0||oe>=h.inWidth)continue;let ue=Y+ae*d[1],we=te+oe*h.inChannels,be=J,Ie=ue;for(let Ee=0;Ee<h.inChannels;++Ee){let De=_[we+Ee];for(let Be=0;Be<I;++Be)A[be+Be]+=De*$[Ie+Be];be+=I,Ie+=I}}}}}}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var sK={kernelName:Ri,backendName:"cpu",kernelFunc:UC};function iK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;xe([r,s],"depthwiseConv2dNativeBackpropFilter");let d=C.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new jt(d.filterShape,"float32"),b=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,w=n.data.get(r.dataId).values,I=new jt(r.shape,r.dtype,w),N=n.data.get(s.dataId).values,_=new jt(s.shape,s.dtype,N);for(let $=0;$<m;++$){let A=Math.max(0,Math.ceil((y-$)/c)),M=Math.min(d.outHeight,(d.inHeight+y-$)/c);for(let D=0;D<f;++D){let T=Math.max(0,Math.ceil((b-D)/h)),P=Math.min(d.outWidth,(d.inWidth+b-D)/h);for(let U=0;U<d.outChannels;++U){let j=Math.trunc(U/x),q=U%x,K=0;for(let Y=0;Y<d.batchSize;++Y)for(let te=A;te<M;++te){let re=$+te*c-y;for(let J=T;J<P;++J){let ie=D+J*h-b;K+=I.get(Y,re,ie,j)*_.get(Y,te,J,U)}}g.set(K,$,D,j,q)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var oK={kernelName:Nm,backendName:"cpu",kernelFunc:iK};function lK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;xe([r,s],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),c=v.computeStrides(s.shape),h=C.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new jt(h.inShape,"float32"),f=m.values,[g,b,y]=m.strides,x=n.data.get(r.dataId).values,[w,I,N]=d,_=n.data.get(s.dataId).values,[$,A,M]=c,{batchSize:D,filterHeight:T,filterWidth:P,inChannels:U,inHeight:j,inWidth:q,outChannels:K,outHeight:Y,outWidth:te,strideHeight:re,strideWidth:J}=h,ie=T-1-h.padInfo.top,ae=P-1-h.padInfo.left,oe=K/U;for(let ue=0;ue<D;++ue)for(let we=0;we<U;++we)for(let be=0;be<j;++be){let Ie=be-ie,Ee=Math.max(0,Math.ceil(Ie/re)),De=Math.min(Y,(T+Ie)/re);for(let Be=0;Be<q;++Be){let je=Be-ae,st=Math.max(0,Math.ceil(je/J)),et=Math.min(te,(P+je)/J),tt=0;for(let Ne=Ee;Ne<De;++Ne){let ft=Ne*re-Ie;for(let dt=st;dt<et;++dt){let bn=dt*J-je,Yt=w*ue+I*Ne+N*dt,Mn=$*(T-1-ft)+A*(P-1-bn)+M*we;for(let Ut=0;Ut<oe;++Ut){let Zt=we*oe+Ut,Pa=x[Yt+Zt],Pn=_[Mn+Ut];tt+=Pa*Pn}}}f[g*ue+b*be+y*Be+we]=tt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var uK={kernelName:Cm,backendName:"cpu",kernelFunc:lK};function pK(e){let{inputs:t,backend:n}=e,{x:a}=t,r=v.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Le([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var cK={kernelName:_m,backendName:"cpu",kernelFunc:pK},dK={kernelName:Ic,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:b,outWidth:y,padInfo:x,strideHeight:w,strideWidth:I,filterHeight:N,filterWidth:_,dilationHeight:$,dilationWidth:A,outShape:M}=C.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),D=v.sizeFromShape(M),T=M.length,P=v.getArrayFromDType(a.dtype,D);for(let U=0;U<h;++U)for(let j=0;j<b;++j){let q=j*w-x.top;for(let K=0;K<y;++K){let Y=K*I-x.left;for(let te=0;te<g;++te){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<N;++ie){let ae=q+ie*$;if(ae>=0&&ae<m)for(let oe=0;oe<_;++oe){let ue=Y+oe*A;if(ue>=0&&ue<f){let we=v.locToIndex([U,ae,ue,te],p,v.computeStrides(a.shape)),be=v.locToIndex([ie,oe,te],c,v.computeStrides(r.shape)),Ie=u[we]+d[be];Ie>re&&(re=Ie)}}}let J=v.locToIndex([U,j,K,te],T,v.computeStrides(M));P[J]=re}}}return{dataId:l.write(v.toTypedArray(P,a.dtype),M,a.dtype),shape:M,dtype:a.dtype}}},hK={kernelName:zh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:N,dilationHeight:_,dilationWidth:$,outShape:A}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===A.length,()=>`Error in ${zh}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let M=v.toNestedArray(A,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<c;++T)for(let P=0;P<g;++P){let U=P*x-y.top;for(let j=0;j<b;++j){let q=j*w-y.left;for(let K=0;K<f;++K){let Y=Number.MIN_SAFE_INTEGER,te=0,re=0;for(let J=0;J<I;++J){let ie=U+J*_;if(ie>=0&&ie<h)for(let ae=0;ae<N;++ae){let oe=q+ae*$;if(oe>=0&&oe<m){let ue=p[T][ie][oe][K]+d[J][ae][K];ue>Y&&(Y=ue,te=J,re=ae)}}}D[te][re][K]+=M[T][P][j][K]}}}return{dataId:u.write(v.toTypedArray(D,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},mK={kernelName:Lh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:N,dilationHeight:_,dilationWidth:$,outShape:A}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===A.length,()=>`Error in ${Lh}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let M=v.toNestedArray(A,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let T=0;T<c;++T)for(let P=0;P<g;++P){let U=P*x-y.top;for(let j=0;j<b;++j){let q=j*w-y.left;for(let K=0;K<f;++K){let Y=Number.MIN_SAFE_INTEGER,te=U<0?0:U,re=q<0?0:q;for(let J=0;J<I;++J){let ie=U+J*_;if(ie>=0&&ie<h)for(let ae=0;ae<N;++ae){let oe=q+ae*$;if(oe>=0&&oe<m){let ue=p[T][ie][oe][K]+d[J][ae][K];ue>Y&&(Y=ue,te=ie,re=oe)}}}D[T][te][re][K]+=M[T][P][j][K]}}}return{dataId:u.write(v.toTypedArray(D,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function hd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"sum");let o;r.dtype==="bool"?o=ps({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=hr({inputs:{x:r},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),p=C.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Hn({inputs:{x:o},backend:n,attrs:{perm:p}}),d=C.getInnerMostAxes(d.length,l)),C.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=C.computeOutAndReduceShapes(c.shape,d),f=C.upcastType(c.dtype,"int32"),g=rm(n,h,f),b=v.sizeFromShape(m),y=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<y.length;++w){let I=w*b,N=0;for(let _=0;_<b;++_)N+=x[I+_];y[w]=N}if(i){let w=C.expandShapeToKeepDim(g.shape,u),I=g;g=yt({inputs:{x:g},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(I)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var fK={kernelName:fo,backendName:"cpu",kernelFunc:hd};function gK(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=C.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=C.getEinsumPermutation(h,l[g]),x;C.isIdentityPermutation(b)?x=s[g]:(x=Hn({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=yt({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=Qf({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=hd({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var bK={kernelName:Em,backendName:"cpu",kernelFunc:gK};function yK(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;xe([a,r],"eluGrad");let s=new Float32Array(v.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var xK={kernelName:$m,backendName:"cpu",kernelFunc:yK},vK=C.ERF_P,wK=C.ERF_A1,kK=C.ERF_A2,IK=C.ERF_A3,TK=C.ERF_A4,SK=C.ERF_A5,NK=ot(jl,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+vK*n);return t*(1-((((SK*a+TK)*a+IK)*a+kK)*a+wK)*a*Math.exp(-n*n))}),CK={kernelName:jl,backendName:"cpu",kernelFunc:NK};function om(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),yt({inputs:{x:r},backend:n,attrs:{shape:o}})}var _K={kernelName:Kl,backendName:"cpu",kernelFunc:om},EK=Vt((e,t)=>e/t),e1=an(Mi,EK),kx={kernelName:Mi,backendName:"cpu",kernelFunc:e1};function GC(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=v.sizeFromShape(u),d=v.getTypedArrayFromDType("float32",p),c=v.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let b=yi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),y=yi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Zn({inputs:{real:b,imag:y},backend:n}),{real:w,imag:I}=$K(x,t,n),N=C.mergeRealAndImagArrays(w,I);for(let _=0;_<s;_++){let $=C.getComplexWithIndex(N,_);d[g*s+_]=$.real,c[g*s+_]=$.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Zn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function $K(e,t,n){let a=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(AK(a)){let o=Ix(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),c=hr({inputs:{x:d},backend:n}),h=kx.kernelFunc({inputs:{a:u,b:d},backend:n}),m=kx.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=FK(o,a,t);return C.splitRealAndImagArrays(l)}}function AK(e){return(e&e-1)===0}function Ix(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Zn({inputs:{real:d,imag:c},backend:r}),m=C.complexWithOddIndex(s),f=m.real,g=m.imag,b=[f.length],y=r.makeTensorInfo(b,"float32",f),x=r.makeTensorInfo(b,"float32",g),w=Zn({inputs:{real:y,imag:x},backend:r}),I=Ix(l,u,i,a,r),N=I.real,_=I.imag,$=[N.length],A=r.makeTensorInfo($,"float32",N),M=r.makeTensorInfo($,"float32",_),D=Zn({inputs:{real:A,imag:M},backend:r}),T=Ix(f,g,i,a,r),P=T.real,U=T.imag,j=[P.length],q=r.makeTensorInfo(j,"float32",P),K=r.makeTensorInfo(j,"float32",U),Y=Zn({inputs:{real:q,imag:K},backend:r}),te=C.exponents(n,a),re=[te.real.length],J=r.makeTensorInfo(re,"float32",te.real),ie=r.makeTensorInfo(re,"float32",te.imag),ae=Zn({inputs:{real:J,imag:ie},backend:r}),oe=Qf({inputs:{a:ae,b:Y},backend:r}),ue=Nl({inputs:{a:D,b:oe},backend:r}),we=J0({inputs:{a:D,b:oe},backend:r}),be=bi({inputs:{input:ue},backend:r}),Ie=bi({inputs:{input:we},backend:r}),Ee=Cl({inputs:{input:ue},backend:r}),De=Cl({inputs:{input:we},backend:r}),Be=_l({inputs:[be,Ie],backend:r,attrs:{axis:0}}),je=_l({inputs:[Ee,De],backend:r,attrs:{axis:0}}),st=r.data.get(Be.dataId).values,et=r.data.get(je.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(M),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(Y),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo(De),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(je),{real:st,imag:et}}function FK(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(r*o,t,n),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(a,s,i,r)}return a}function DK(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=yt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=GC(o,!1,n),u=yt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var RK={kernelName:Am,backendName:"cpu",kernelFunc:DK};function t1(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||v.inferDtype(r),o=v.getArrayFromDType(i,v.sizeFromShape(a));return PK(o,r,i),t.makeTensorInfo(a,i,o)}var MK={kernelName:Tc,backendName:"cpu",kernelFunc:t1};function PK(e,t,n){e.fill(t)}var OK={kernelName:Yl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let b=0;b<u;b++){let y=Math.round(l-f-1),x=c+m+g+b,w=p[x];if(y>=0&&y<l){let I=y*u,N=c+m+I+b;w=p[N]}s[x]=w}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},LK=Vt((e,t)=>Math.floor(e/t)),zK=an(zi,LK,null,"int32"),WK={kernelName:zi,backendName:"cpu",kernelFunc:zK};function BK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=VC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let b=yt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=Nl({inputs:{a:f,b},backend:n}),n.disposeIntermediateTensorInfo(b)}else f=Nl({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let b=yt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});f=im(n,f,h,b,m),n.disposeIntermediateTensorInfo(b)}else f=im(n,f,h,o,m);n.disposeIntermediateTensorInfo(g)}return f}var VK={kernelName:li,backendName:"cpu",kernelFunc:BK};function UK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=UC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=Nl({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=im(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var GK={kernelName:ui,backendName:"cpu",kernelFunc:UK};function HK(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=v.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=C.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=lC(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var jK={kernelName:Jl,backendName:"cpu",kernelFunc:HK};function qK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;xe([r,s],"gatherV2");let l=v.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let w=0;w<u.length;++w){let I=u[w];v.assert(I<=p-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=v.sizeFromShape(s.shape),h=C.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=yt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=yt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],b=n.bufferSync(f),y=n.bufferSync(m),x=uC(y,b,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var KK={kernelName:Zl,backendName:"cpu",kernelFunc:qK};function XK(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=yt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=GC(o,!0,n),u=yt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var YK={kernelName:Fm,backendName:"cpu",kernelFunc:XK},ZK=ot(eu,e=>Number.isFinite(e)?1:0,"bool"),JK={kernelName:eu,backendName:"cpu",kernelFunc:ZK},QK=ot(tu,e=>Math.abs(e)===1/0?1:0,"bool"),e8={kernelName:tu,backendName:"cpu",kernelFunc:QK},t8=ot(nu,e=>Number.isNaN(e)?1:0,"bool"),n8={kernelName:nu,backendName:"cpu",kernelFunc:t8};function a8(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=mC(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var r8={kernelName:Rm,backendName:"cpu",kernelFunc:a8},s8=ot(su,e=>Math.log1p(e)),i8={kernelName:su,backendName:"cpu",kernelFunc:s8},o8=Vt((e,t)=>e&&t),l8=an(iu,o8,null,"bool"),u8={kernelName:iu,backendName:"cpu",kernelFunc:l8},p8=ot(ou,e=>e?0:1,"bool"),c8={kernelName:ou,backendName:"cpu",kernelFunc:p8},d8=Vt((e,t)=>e||t),h8=an(lu,d8,null,"bool"),m8={kernelName:lu,backendName:"cpu",kernelFunc:h8};function f8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;xe(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,b=f-g+Math.max(0,g-s),y=f-g+Math.min(g+s,p),x=0;for(;b<=y;b++){let w=d[b];x+=w*w}return x}for(let f=0;f<c;f++){let g=m(f),b=d[f]*Math.pow(i+o*g,-l);h[f]=b}return n.makeTensorInfo(r.shape,r.dtype,h)}var g8={kernelName:Sc,backendName:"cpu",kernelFunc:f8};function b8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;xe(i,"LRNGrad");let d=v.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),b=d;for(let y=0;y<b;y++){let x=y%c,w=y-x+Math.max(0,x-o),I=y-x+Math.min(c,x+o+1),N=0;for(let _=w;_<I;_++)N+=Math.pow(m[_],2);N=u*N+l;for(let _=w;_<I;_++){let $=-2*u*p*m[_]*f[y]/N;y===_&&($+=Math.pow(N,-p)),$*=h[y],g[_]+=$}}return n.makeTensorInfo(i.shape,r.dtype,g)}var y8={kernelName:Mm,backendName:"cpu",kernelFunc:b8};function HC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=v.parseAxisParam(s,l),d=p,c=C.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(u);for(let I=0;I<w.length;I++)w[I]=l[c[I]];h=j0(h,l,r.dtype,c,w),d=C.getInnerMostAxes(d.length,u),l=w}xe(r,"max"),C.assertAxesAreInnerMostDims("max",d,u);let[m,f]=C.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(f),b=gC(h,g,m,r.dtype),y=o.write(b,m,r.dtype),x=m;return i&&(x=C.expandShapeToKeepDim(m,p)),{dataId:y,shape:x,dtype:r.dtype}}var x8={kernelName:Hi,backendName:"cpu",kernelFunc:HC};function v8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=hr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=Q0(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var w8={kernelName:qi,backendName:"cpu",kernelFunc:v8};function k8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;xe(r,"maxPool3d");let p=C.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=BC(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var I8={kernelName:Nc,backendName:"cpu",kernelFunc:k8};function T8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;xe([r,s],"maxPool3DGrad");let p=C.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=c5(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,b=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterDepth,w=p.effectiveFilterHeight,I=p.effectiveFilterWidth,N=x-1-p.padInfo.front,_=I-1-p.padInfo.left,$=w-1-p.padInfo.top,A=Le(s.shape,"float32"),M=n.bufferSync(r);for(let D=0;D<p.batchSize;++D)for(let T=0;T<p.inChannels;++T)for(let P=0;P<p.inDepth;++P)for(let U=0;U<p.inHeight;++U)for(let j=0;j<p.inWidth;++j){let q=P-N,K=U-$,Y=j-_,te=0;for(let re=0;re<x;re+=g){let J=(q+re)/h;if(!(J<0||J>=p.outDepth||Math.floor(J)!==J))for(let ie=0;ie<w;ie+=b){let ae=(K+ie)/m;if(!(ae<0||ae>=p.outHeight||Math.floor(ae)!==ae))for(let oe=0;oe<I;oe+=y){let ue=(Y+oe)/f;if(ue<0||ue>=p.outWidth||Math.floor(ue)!==ue)continue;let we=x*w*I-1-c.get(D,J,ae,ue,T),be=re*w*I+ie*I+oe,Ie=we===be?1:0;Ie!==0&&(te+=M.get(D,J,ae,ue,T)*Ie)}}}A.set(te,D,P,U,j,T)}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var S8={kernelName:Om,backendName:"cpu",kernelFunc:T8};function N8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=C.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=Le(c.outShape,o.dtype,WC(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,b=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,I=w-1-c.padInfo.left,N=x-1-c.padInfo.top,_=Le(o.shape,"float32"),$=n.data.get(r.dataId).values,A=Le(r.shape,"float32",$);for(let M=0;M<c.batchSize;++M)for(let D=0;D<c.inChannels;++D)for(let T=0;T<c.inHeight;++T)for(let P=0;P<c.inWidth;++P){let U=T-N,j=P-I,q=0;for(let K=0;K<x;K+=b){let Y=(U+K)/f;if(!(Y<0||Y>=c.outHeight||Math.floor(Y)!==Y))for(let te=0;te<w;te+=y){let re=(j+te)/g;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let J=x*w-1-m.get(M,Y,re,D),ie=K*w+te,ae=J===ie?1:0;ae!==0&&(q+=A.get(M,Y,re,D)*ae)}}_.set(q,M,T,P,D)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var C8={kernelName:Pm,backendName:"cpu",kernelFunc:N8};function _8(e,t,n,a,r){let s=v.computeStrides(t),i=Q0(e,t,n,s,r,"max"),o=WC(e,t,n,r,!0,a);return[i.values,o.values]}var E8={kernelName:Lm,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=C.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=_8(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function $8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=v.parseAxisParam(s,r.shape),l=C.computeOutAndReduceShapes(r.shape,o)[1],u=v.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=ps({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=e1({inputs:{a:c,b:d},backend:n});p.push(h);let m=hd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var A8={kernelName:Ki,backendName:"cpu",kernelFunc:$8};function F8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"min");let o=v.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Hn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=C.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];(Number.isNaN(I)||I<x)&&(x=I)}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=C.expandShapeToKeepDim(d,o),y=yt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var D8={kernelName:Xi,backendName:"cpu",kernelFunc:F8};function R8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;xe(r,"mirrorPad");let o=s.map((y,x)=>y[0]+r.shape[x]+y[1]),l=s.map(y=>y[0]),u=s.map((y,x)=>y[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=v.computeStrides(r.shape),m=v.sizeFromShape(o),f=o.length,g=v.computeStrides(o),b=v.getTypedArrayFromDType(r.dtype,m);for(let y=0;y<m;y++){let x=v.indexToLoc(y,f,g);for(let I=0;I<f;I++)x[I]<l[I]?x[I]=l[I]*2-x[I]-p:x[I]>=u[I]&&(x[I]=(u[I]-1)*2-x[I]+p);x=x.map((I,N)=>I-l[N]);let w=v.locToIndex(x,c,h);b[y]=d[w]}return{dataId:n.write(b,o,r.dtype),shape:o,dtype:r.dtype}}var M8={kernelName:Zi,backendName:"cpu",kernelFunc:R8},P8=Vt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),O8=an(uu,P8),L8={kernelName:uu,backendName:"cpu",kernelFunc:O8},z8=ds(hm());function jC(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],r.shape),u=HC({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=C.expandShapeToKeepDim(u.shape,l),d=yt({inputs:{x:u},backend:n,attrs:{shape:p}}),c=J0({inputs:{a:r,b:d},backend:n}),h=sC({inputs:{x:c},backend:n}),m=hd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=yt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=e1({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var W8={kernelName:go,backendName:"cpu",kernelFunc:jC};function B8(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;xe(r,"multinomial");let l=o?r:jC({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=v.makeZerosTypedArray(v.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let b=z8.alea(i.toString()),y=m*s;for(let x=0;x<s;++x){let w=b();h[y+x]=g.length;for(let I=0;I<g.length;I++)if(w<g[I]){h[y+x]=I;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var V8={kernelName:zm,backendName:"cpu",kernelFunc:B8},U8=gr.nonMaxSuppressionV3Impl;function G8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;xe(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=U8(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var H8={kernelName:du,backendName:"cpu",kernelFunc:G8},j8=gr.nonMaxSuppressionV4Impl;function q8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;xe(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=j8(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var K8={kernelName:hu,backendName:"cpu",kernelFunc:q8},X8=gr.nonMaxSuppressionV5Impl;function Y8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;xe(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=X8(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var Z8={kernelName:mu,backendName:"cpu",kernelFunc:Y8};function J8(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a;xe(r,"oneHot");let u=v.sizeFromShape(r.shape),p=new Float32Array(u*i);p.fill(l);let d=n.data.get(r.dataId).values;for(let c=0;c<u;++c)d[c]>=0&&d[c]<i&&(p[c*i+d[c]]=o);return n.makeTensorInfo([...r.shape,i],s,p)}var Q8={kernelName:Qi,backendName:"cpu",kernelFunc:J8};function lm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=bi({inputs:{input:a},backend:n}),s=lm({inputs:{x:r},backend:n}),i=Cl({inputs:{input:a},backend:n}),o=lm({inputs:{x:i},backend:n}),l=Zn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return t1({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var eX={kernelName:Du,backendName:"cpu",kernelFunc:lm};function qC(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=bi({inputs:{input:a},backend:n}),s=qC({inputs:{x:r},backend:n}),i=Cl({inputs:{input:a},backend:n}),o=lm({inputs:{x:i},backend:n}),l=Zn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return t1({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var tX={kernelName:fu,backendName:"cpu",kernelFunc:qC};function KC(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return om({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=om({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=_l({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var nX={kernelName:gu,backendName:"cpu",kernelFunc:KC};function aX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;xe(r,"pad");let o=s.map((b,y)=>b[0]+r.shape[y]+b[1]),l=s.map(b=>b[0]),u=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),d=r.shape.length,c=v.computeStrides(r.shape),h=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),g=v.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let b=0;b<p;b++){let y=v.indexToLoc(b,d,c).map((w,I)=>w+l[I]),x=v.locToIndex(y,m,f);g[x]=u[b]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var XC={kernelName:eo,backendName:"cpu",kernelFunc:aX},rX=Vt((e,t)=>Math.pow(e,t)),sX=an(to,rX),iX={kernelName:to,backendName:"cpu",kernelFunc:sX};function oX(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,c=o.map(g=>n.data.get(g.dataId).values),h=o.map(g=>g.shape),[m,f]=kC(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var lX={kernelName:Wm,backendName:"cpu",kernelFunc:oX};function uX(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=q0(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var pX={kernelName:Cc,backendName:"cpu",kernelFunc:uX},cX=ot(bu,e=>1/e),dX={kernelName:bu,backendName:"cpu",kernelFunc:cX};function hX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,u,p,m])),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,w=b[0]/y[0],I=b[1]/y[1];for(let N=0;N<d;N++)for(let _=0;_<u;_++){let $;i?$=w*(_+.5)-.5:$=w*_;let A=Math.max(0,Math.floor($)),M=$-A,D=Math.min(c-1,Math.ceil($)),T=N*l[0]+A*l[1],P=N*l[0]+D*l[1];for(let U=0;U<p;U++){let j;i?j=I*(U+.5)-.5:j=I*U;let q=Math.max(0,Math.floor(j)),K=j-q,Y=Math.min(h-1,Math.ceil(j)),te=T+q*l[2],re=P+q*l[2],J=T+Y*l[2],ie=P+Y*l[2];for(let ae=0;ae<m;ae++){let oe=f[te+ae],ue=f[re+ae],we=f[J+ae],be=f[ie+ae],Ie=oe+(we-oe)*K,Ee=ue+(be-ue)*K,De=Ie+(Ee-Ie)*M;g[x++]=De}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var mX={kernelName:io,backendName:"cpu",kernelFunc:hX};function fX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeBilinearGrad");let o=v.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],b=f[0]/g[0],y=f[1]/g[1],x=n.data.get(s.dataId).values,w=0;for(let I=0;I<l;I++){let N=I*o[0];for(let _=0;_<c;_++){let $=_*b,A=Math.floor($),M=Math.min(Math.ceil($),u-1),D=N+A*o[1],T=N+M*o[1],P=$-A,U=1-P;for(let j=0;j<h;j++){let q=j*y,K=Math.floor(q),Y=Math.min(Math.ceil(q),p-1),te=q-K,re=1-te,J=D+K*o[2],ie=D+Y*o[2],ae=T+K*o[2],oe=T+Y*o[2],ue=U*re,we=U*te,be=P*re,Ie=P*te;for(let Ee=0;Ee<d;Ee++){let De=x[w++];m[J+Ee]+=De*ue,m[ie+Ee]+=De*we,m[ae+Ee]+=De*be,m[oe+Ee]+=De*Ie}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var gX={kernelName:Um,backendName:"cpu",kernelFunc:fX};function bX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=b[0]/y[0],w=b[1]/y[1],I=0;for(let N=0;N<d;N++){let _=N*l[0];for(let $=0;$<u;$++){let A=i?x*($+.5):x*$,M=Math.min(c-1,s?Math.round(A):Math.floor(A));i&&(M=Math.max(0,M));let D=_+M*l[1];for(let T=0;T<p;T++){let P=i?w*(T+.5):w*T,U=Math.min(h-1,s?Math.round(P):Math.floor(P));i&&(U=Math.max(0,U));let j=D+U*l[2];for(let q=0;q<m;q++){let K=f[j+q];g[I++]=K}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var yX={kernelName:so,backendName:"cpu",kernelFunc:bX};function xX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeNearestNeighborGrad");let o=v.computeStrides(r.shape),l=v.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,b=[i&&h>1?p-1:p,i&&m>1?d-1:d],y=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=b[0]/y[0],w=b[1]/y[1],I=1/x,N=1/w,_=Math.ceil(I)*2+2,$=Math.ceil(N)*2+2;for(let A=0;A<u;A++){let M=A*o[0];for(let D=0;D<p;D++){let T=M+D*o[1],P=Math.floor(D*I),U=Math.floor(P-_/2);for(let j=0;j<d;j++){let q=T+j*o[2],K=Math.floor(j*N),Y=Math.floor(K-$/2);for(let te=0;te<c;te++){let re=0;for(let J=0;J<_;J++){let ie=J+U;if(ie<0||ie>=h)continue;let ae=M+ie*l[1],oe=ie*x,ue=Math.min(p-1,i?Math.round(oe):Math.floor(oe));if(D===ue)for(let we=0;we<$;we++){let be=we+Y;if(be<0||be>=m)continue;let Ie=ae+be*l[2],Ee=be*w,De=Math.min(d-1,i?Math.round(Ee):Math.floor(Ee));j===De&&(re+=g[Ie+te])}}f[q+te]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var vX={kernelName:Vm,backendName:"cpu",kernelFunc:xX};function wX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;xe(r,"reverse");let i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return hr({inputs:{x:r},backend:n});let l=new jt(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var kX={kernelName:lo,backendName:"cpu",kernelFunc:wX},IX={kernelName:Ru,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=C.getImageCenter(i,p,d),f=255,g=Math.sin(r),b=Math.cos(r),y=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let w=x*d*p*c;for(let I=0;I<p;I++){let N=I*(d*c);for(let _=0;_<d;_++){let $=_*c;for(let A=0;A<c;A++){let M=[u,I,_,A],D=M[2],T=M[1],P=(D-h)*b-(T-m)*g,U=(D-h)*g+(T-m)*b;P=Math.round(P+h),U=Math.round(U+m);let j=s;if(typeof s!="number"&&(A===3?j=f:j=s[A]),P>=0&&P<d&&U>=0&&U<p){let K=U*(d*c),Y=P*c,te=w+K+Y+A;j=y[te]}let q=w+N+$+A;l[q]=j}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},TX=ot(uo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),SX={kernelName:uo,backendName:"cpu",kernelFunc:TX};function NX(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=C.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=ol(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var CX={kernelName:xu,backendName:"cpu",kernelFunc:NX};function _X(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<t?n=r+1:a=r;return a}function EX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<=t?n=r+1:a=r;return a}function $X(e,t,n,a,r,s){let i=v.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let l=e.slice(o*a,(o+1)*a),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?_X(l,t[p+u]):EX(l,t[p+u])}return i}function AX(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=$X(o,l,r.shape[0],r.shape[1],s.shape[1],i);return n.makeTensorInfo(s.shape,"int32",u)}var FX={kernelName:Gm,backendName:"cpu",kernelFunc:AX};function DX(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;xe([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=ha(r.dtype,s.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var RX={kernelName:vu,backendName:"cpu",kernelFunc:DX},MX=C.SELU_SCALEALPHA,PX=C.SELU_SCALE,OX=ot(wu,e=>e>=0?PX*e:MX*(Math.exp(e)-1)),LX={kernelName:wu,backendName:"cpu",kernelFunc:OX},zX=ot(Tu,e=>e<0?-1:e>0?1:0),WX={kernelName:Tu,backendName:"cpu",kernelFunc:zX},BX=ot(co,e=>Math.sin(e)),VX={kernelName:co,backendName:"cpu",kernelFunc:BX},UX=ot(Iu,e=>Math.sinh(e)),GX={kernelName:Iu,backendName:"cpu",kernelFunc:UX},HX=11920928955078125e-23,rI=Math.log(HX)+2,jX=ot(Su,e=>{let t=e>-rI,n=e<rI,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),qX={kernelName:Su,backendName:"cpu",kernelFunc:jX};function KX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;xe([r],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=XC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(u.shape,s,o,!1),d=C.getPermuted(p.length,s.length,!1),c=C.getReshapedPermuted(u.shape,s,o,!1),h=yt({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Hn({inputs:{x:h},backend:n,attrs:{perm:d}}),f=yt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var XX={kernelName:Nu,backendName:"cpu",kernelFunc:KX};function YX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=SC(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var ZX={kernelName:_c,backendName:"cpu",kernelFunc:YX};function JX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=NC(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var QX={kernelName:_u,backendName:"cpu",kernelFunc:JX};function e7(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=K0(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var t7={kernelName:Ec,backendName:"cpu",kernelFunc:e7};function n7(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=K0(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var a7={kernelName:$c,backendName:"cpu",kernelFunc:n7};function r7(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=C.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),b=Boolean(n.data.get(i.dataId).values[0]);f=ol(m,g,o,c,p,u,l,d,b,h);break}case"float32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=ol(m,g,o,c,p,u,l,d,b,h);break}case"int32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=ol(m,g,o,c,p,u,l,d,b,h);break}case"string":{let g=n.bufferSync(s),b=v.decodeString(n.data.get(i.dataId).values[0]);f=ol(m,g,o,c,p,u,l,d,b,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var s7={kernelName:Hm,backendName:"cpu",kernelFunc:r7};function i7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=yi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var o7={kernelName:Cu,backendName:"cpu",kernelFunc:i7},l7={kernelName:Ac,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;xe(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},u7=ot(bs,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),p7={kernelName:bs,backendName:"cpu",kernelFunc:u7};function c7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;xe(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=yt({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let N=qt.computeOutShape(y,x,w),_=yi({inputs:{x:r},backend:n,attrs:{begin:y,size:N}});I=yt({inputs:{x:_},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(_)}else{let N=n.bufferSync(r),_=_C(h,N,w,y);I=n.makeTensorInfo(m,_.dtype,_.values)}return I}var d7={kernelName:Eu,backendName:"cpu",kernelFunc:c7};function h7(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=X0(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var m7={kernelName:Fc,backendName:"cpu",kernelFunc:h7};function f7(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=Y0(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var g7={kernelName:Dc,backendName:"cpu",kernelFunc:f7};function b7(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=Z0(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var y7={kernelName:Rc,backendName:"cpu",kernelFunc:b7},x7=ot(xo,e=>Math.tan(e)),v7={kernelName:xo,backendName:"cpu",kernelFunc:x7},w7=ot(vo,e=>Math.tanh(e)),k7={kernelName:vo,backendName:"cpu",kernelFunc:w7};function I7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;xe(r,"tile");let i=$C(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var T7={kernelName:gs,backendName:"cpu",kernelFunc:I7};function S7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;xe(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=FC(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var N7={kernelName:$u,backendName:"cpu",kernelFunc:S7};function C7(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=v.computeStrides(r.shape),y=b[0],x=b[1],w=b[2],I=v.computeStrides(g),N=I[0],_=I[1],$=I[2],A=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));A.fill(l);let M=a.data.get(r.dataId).values,D=a.data.get(s.dataId).values;for(let T=0;T<p;++T){let P=s.shape[0]===1?D:D.subarray(T*8,T*8+8);for(let U=0;U<m;++U)for(let j=0;j<f;++j)for(let q=0;q<h;++q){let K,Y=P[6]*j+P[7]*U+1;if(Y===0)continue;let te=(P[0]*j+P[1]*U+P[2])/Y,re=(P[3]*j+P[4]*U+P[5])/Y,J=sI(te,c,o),ie=sI(re,d,o);switch(i){case"nearest":K=D7(M,d,c,y,x,w,T,ie,J,q,l);break;case"bilinear":K=R7(M,d,c,y,x,w,T,ie,J,q,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let ae=T*N+U*_+j*$+q;A[ae]=K}return a.makeTensorInfo(g,r.dtype,A)}return{dataId:a.write(A,g,r.dtype),shape:r.shape,dtype:r.dtype}}var _7={kernelName:Au,backendName:"cpu",kernelFunc:C7};function sI(e,t,n){switch(n){case"reflect":return E7(e,t);case"wrap":return $7(e,t);case"nearest":return F7(e,t);case"constant":default:return A7(e,t)}}function E7(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return v.clamp(0,n,t-1)}function $7(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return v.clamp(0,n,t-1)}function A7(e,t){return e}function F7(e,t){return v.clamp(0,e,t-1)}function jp(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function D7(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return jp(e,t,n,a,r,s,i,d,c,u,p)}function R7(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*jp(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*jp(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*jp(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*jp(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function M7(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;xe(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=DC(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var P7={kernelName:jm,backendName:"cpu",kernelFunc:M7};function O7(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=yi({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=yt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var L7={kernelName:Fu,backendName:"cpu",kernelFunc:O7};function z7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;xe(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=om({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),b=aC({inputs:{a:g,b:c},backend:n}),y=ps({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),x=Qf({inputs:{a:y,b:r},backend:n}),w=hd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),p.push(g),p.push(b),p.push(y),p.push(x),p.push(w)}let h=KC({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var W7={kernelName:Mc,backendName:"cpu",kernelFunc:z7},B7=[zq,Fj,Bq,Uq,Lj,Hq,qq,Xq,Zq,Qq,t5,a5,s5,l5,p5,h5,f5,b5,x5,Oq,w5,I5,S5,C5,Pj,Wj,E5,Dj,A5,D5,R5,P5,L5,W5,V5,G5,j5,K5,Y5,J5,eK,nK,rK,sK,oK,uK,cK,dK,hK,mK,bK,$q,xK,Bj,CK,Vj,_K,Gj,RK,MK,OK,jj,WK,VK,GK,jK,KK,Kj,Yj,Rj,YK,F5,JK,e8,n8,Aq,Jj,eq,r8,nq,i8,u8,c8,m8,g8,y8,x8,rq,w8,I8,S8,C8,E8,A8,D8,iq,M8,L8,V8,lq,pq,H8,K8,Z8,dq,Q8,tX,nX,XC,iX,Dq,fq,lX,pX,Mj,kx,dX,Rq,Mq,Pq,mX,gX,yX,vX,kX,IX,SX,bq,CX,FX,RX,LX,xq,WX,VX,GX,vq,W8,qX,XX,ZX,QX,t7,a7,s7,o7,Iq,l7,Sq,p7,d7,m7,g7,y7,Eq,fK,v7,k7,T7,N7,_7,hq,P7,L7,W7,eX];for(let e of B7)Pc(e);var YC={};Fe(YC,{assertNotComplex:()=>Ku,bindCanvasToFramebuffer:()=>J7,bindColorTextureToFramebuffer:()=>Eh,bindTextureToProgramUniformSampler:()=>d_,bindTextureUnit:()=>u_,bindVertexBufferToProgramAttribute:()=>Tx,callAndCheck:()=>ge,canBeRepresented:()=>JC,createFragmentShader:()=>t_,createFramebuffer:()=>l_,createProgram:()=>n_,createStaticIndexBuffer:()=>s_,createStaticVertexBuffer:()=>r_,createTexture:()=>i_,createVertexShader:()=>e_,getBatchDim:()=>xi,getExtensionOrThrow:()=>qp,getFramebufferErrorMessage:()=>h_,getMaxTexturesInShader:()=>b_,getNumChannels:()=>Y7,getProgramUniformLocation:()=>c_,getProgramUniformLocationOrThrow:()=>p_,getRowsCols:()=>vi,getShapeAs3D:()=>$h,getTextureShapeFromLogicalShape:()=>f_,getWebGLDisjointQueryTimerVersion:()=>y_,getWebGLErrorMessage:()=>QC,getWebGLMaxTextureSize:()=>g_,hasExtension:()=>ca,isCapableOfRenderingToFloatTexture:()=>x_,isDownloadFloatTextureEnabled:()=>v_,isReshapeFree:()=>hc,isWebGLFenceEnabled:()=>w_,isWebGLVersionEnabled:()=>Nx,linkProgram:()=>a_,logShaderSourceAndInfoLog:()=>a1,resetMaxTextureSize:()=>Q7,resetMaxTexturesInShader:()=>eY,unbindColorTextureFromFramebuffer:()=>Sx,unbindTextureUnit:()=>Z7,validateFramebuffer:()=>Kp,validateProgram:()=>_h,validateTextureSize:()=>o_});var Js={},wh={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function ZC(e,t){Js[e]=t}function Ja(e,t){if(!(e in Js)||t!=null){let a=U7(e,t);if(a!==null)Js[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Js[e];return n==null||n.isContextLost()?(delete Js[e],Ja(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Js[e])}function V7(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function U7(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?V7(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Js[e]},!1),X().getBool("SOFTWARE_WEBGL_ENABLED")&&(wh.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",wh)||n.getContext("experimental-webgl",wh):n.getContext("webgl2",wh)}var dc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(dc||(dc={}));var pa;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(pa||(pa={}));var on;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(on||(on={}));function md(e,t){return[t,e]}function G7(e,t){return e*t}function kh(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function qu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function H7(e,t){let[n,a]=qu(e,t);return n*a*4}function n1(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return X().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function ge(e,t){let n=t();return X().getBool("DEBUG")&&j7(e),n}function j7(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+QC(e,t))}var q7=596e-10,K7=65504;function JC(e){return!!(X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||q7<Math.abs(e)&&Math.abs(e)<K7)}function QC(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function qp(e,t){return Rr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function e_(e,t){let n=Rr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function t_(e,t){let n=Rr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),X().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw a1(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var X7=/ERROR: [0-9]+:([0-9]+):/g;function a1(e,t){let n=X7.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((d,c)=>v.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
|
|
`))}function n_(e){return Rr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function a_(e,t){if(ge(e,()=>e.linkProgram(t)),!X().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function _h(e,t){if(ge(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function r_(e,t){let n=Rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function s_(e,t){let n=Rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Y7(){return X().getNumber("WEBGL_VERSION")===2?1:4}function i_(e){return Rr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function o_(e,t){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function l_(e){return Rr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Tx(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),ge(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),ge(e,()=>e.enableVertexAttribArray(o)),!0)}function u_(e,t,n){m_(e,n),ge(e,()=>e.activeTexture(e.TEXTURE0+n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function Z7(e,t){m_(e,t),ge(e,()=>e.activeTexture(e.TEXTURE0+t)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function p_(e,t,n){return Rr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function c_(e,t,n){return e.getUniformLocation(t,n)}function d_(e,t,n,a){ge(e,()=>u_(e,t,a)),ge(e,()=>e.uniform1i(n,a))}function J7(e){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ge(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Eh(e,t,n){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Sx(e,t){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Kp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+h_(e,t))}function h_(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Rr(e,t,n){let a=ge(e,()=>t());if(a==null)throw new Error(n);return a}function m_(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function xi(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function vi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function $h(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[xi(e),...vi(e)]),t}function f_(e,t=!1){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let a=v.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=xi(e),s=2,i=2;return e.length&&([s,i]=vi(e)),a=r*(s/2)*(i/2),v.sizeToSquarishShape(a).map(o=>o*2)}return v.sizeToSquarishShape(a)}function Ih(e){return e%2===0}function hc(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||Ih(n)&&Ih(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Ih(e[0])&&Ih(t[0])}var Ah,Fh;function g_(e){if(Ah==null){let t=Ja(e);Ah=t.getParameter(t.MAX_TEXTURE_SIZE)}return Ah}function Q7(){Ah=null}function eY(){Fh=null}function b_(e){if(Fh==null){let t=Ja(e);Fh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Fh)}function y_(e){if(e===0)return 0;let t,n=Ja(e);return ca(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ca(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ca(e,t){return e.getExtension(t)!=null}function Nx(e){try{if(Ja(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function x_(e){if(e===0)return!1;let t=Ja(e);if(e===1){if(!ca(t,"OES_texture_float"))return!1}else if(!ca(t,"EXT_color_buffer_float"))return!1;return Cx(t)}function v_(e){if(e===0)return!1;let t=Ja(e);if(e===1){if(!ca(t,"OES_texture_float")||!ca(t,"WEBGL_color_buffer_float"))return!1}else{if(ca(t,"EXT_color_buffer_float"))return Cx(t);let n="EXT_color_buffer_half_float";if(ca(t,n)){let a=t.getExtension(n);return tY(t,a)}return!1}return Cx(t)}function Cx(e){let t=n1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function tY(e,t){let n=n1(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function w_(e){return e!==2?!1:Ja(e).fenceSync!=null}function Ku(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Se=X();Se.registerFlag("HAS_WEBGL",()=>Se.getNumber("WEBGL_VERSION")>0);Se.registerFlag("WEBGL_VERSION",()=>Nx(2)?2:Nx(1)?1:0);Se.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Se.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Se.get("WEBGL_VERSION")===2);Se.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Se.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Se.registerFlag("WEBGL_PACK",()=>Se.getBool("HAS_WEBGL"));Se.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_CLIP",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_PACK_REDUCE",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_LAZILY_UNPACK",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_CONV_IM2COL",()=>Se.getBool("WEBGL_PACK"));Se.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>g_(Se.getNumber("WEBGL_VERSION")));Se.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>b_(Se.getNumber("WEBGL_VERSION")));Se.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Se.getNumber("WEBGL_VERSION");return e===0?0:y_(e)});Se.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Se.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!zc.isMobile());Se.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>x_(Se.getNumber("WEBGL_VERSION")));Se.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Se.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Se.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Se.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>v_(Se.getNumber("WEBGL_VERSION")));Se.registerFlag("WEBGL_FENCE_API_ENABLED",()=>w_(Se.getNumber("WEBGL_VERSION")));Se.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Se.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Se.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Se.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>zc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Se.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Se.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Se.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Se.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);Se.registerFlag("WEBGL_EXP_CONV",()=>!1);Se.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>Se.getBool("IS_TEST"));function $n(){let e,t,n,a,r,s,i,o,l,u;return X().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function _o(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function eg(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function nY(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function aY(e,t,n="index"){let a=e.map((s,i)=>i),r=nY(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function r1(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function s1(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var k_=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:I_}=C;function rY(e,t,n){let a=[];if(e.forEach(c=>{let h=v.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=i1(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
|
|
`),s=e.map(c=>sY(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=$n(),l=lY(o),u,p,d=cY(o);return t.isPacked?(u=iY(t.logicalShape,i,n.enableShapeUniforms),p=pY(o)):(u=oY(t.logicalShape,i,n.enableShapeUniforms),p=uY(o)),n.packedInputs&&(d+=fY),[d,l,p,r,u,s,n.userCode].join(`
|
|
`)}function Xu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return CY(e,t);case 1:return EY(e,t);case 2:return AY(e,t);case 3:return DY(e,t);case 4:return MY(e,t);case 5:return PY(e);case 6:return OY(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function T_(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return NY(e);case 1:return _Y(e,t);case 2:return $Y(e,t);case 3:return FY(e,t);default:return RY(e,t)}}function sY(e,t,n=!1,a){let r="";n?r+=T_(e,a):r+=Xu(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=LY(e,t):r+=zY(e,t)),r}function iY(e,t,n){switch(e.length){case 0:return S_();case 1:return gY(e,t,n);case 2:return TY(e,t,n);case 3:return yY(e,t,n);default:return vY(e,t,n)}}function oY(e,t,n){switch(e.length){case 0:return S_();case 1:return bY(e,t,n);case 2:return SY(e,t,n);case 3:return xY(e,t,n);case 4:return wY(e,t,n);case 5:return kY(e,t);case 6:return IY(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function lY(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function uY(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function pY(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function cY(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${dY}
|
|
${hY}
|
|
${mY}
|
|
`}var dY=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,hY=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,mY=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,fY=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function S_(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function gY(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${a[1]}.0);
|
|
}
|
|
`:a[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${a[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
|
|
}
|
|
`}function bY(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function yY(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function xY(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${eg(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let a=_o(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function vY(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
|
|
int b${u} = index / ${i};
|
|
index -= b${u} * ${i};
|
|
`+o,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function wY(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${eg(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let a=_o(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function kY(e,t){let n=_o(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function IY(e,t){let n=_o(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function TY(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function SY(e,t,n){return v.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Eo(e){return`offset${e}`}function NY(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=$n();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function CY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=Eo(n);if(t)return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[o,l]=e.shapeInfo.texShape;return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function _Y(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=$n();if(t)return`
|
|
vec4 ${a}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${a}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`}function EY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int index) {
|
|
${Yu(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
|
|
float ${a}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=Eo(n);return i===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function $Y(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=$n();if(s!=null&&v.arraysEqual(n,s))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`}function AY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(n,s)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let c=s[0],h=s[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=v.squeezeShape(n),l=i;if(l.length<n.length){let c=Zu(e,l),h=["row","col"];return`
|
|
${Xu(c,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Ju(h,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${Yu(e)}
|
|
}
|
|
`;let u=s[0],p=s[1],d=Eo(a);return p===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${p}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function FY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=Zu(e,c),f=["b","row","col"];return`
|
|
${T_(m,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Ju(f,h)});
|
|
}
|
|
`}let o=$n();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${d}, ${p}, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`}function DY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=v.squeezeShape(n),u=o;if(u.length<n.length){let f=Zu(e,u),g=["row","col","depth"];return`
|
|
${Xu(f,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Ju(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${Yu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${a}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(c===i&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let m=Eo(a);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${a}Shape[1] * ${a}Shape[2];
|
|
int stride1 = ${a}Shape[2];
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${c}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function RY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=$n();if(t)return`
|
|
vec4 ${a}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${m};
|
|
int texR = index / ${p};
|
|
int texC = index - texR * ${p};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function MY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let y=Zu(e,l),x=["row","col","depth","depth2"];return`
|
|
${Xu(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Ju(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, 1)));
|
|
${Yu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${m}
|
|
${f}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(h===s&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let b=Eo(a);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${m}
|
|
${f}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${b});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index + ${b});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function PY(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=Zu(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Xu(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${Ju(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${Yu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&p==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Eo(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function OY(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=v.squeezeShape(t);if(r.length<t.length){let g=Zu(e,r),b=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Xu(g)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${Ju(b,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${p}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Yu(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&d==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Eo(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${p} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Yu(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function LY(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=I_(e.shapeInfo.logicalShape,t.logicalShape),l=ut(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,b)=>`coords.${d[b+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,b=s-1;o.indexOf(g)>-1&&o.indexOf(b)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(b)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${p}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function zY(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ut(l),p=I_(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function ut(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function i1(e,t,n){let{newShape:a,keptDims:r}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!v.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function Zu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Ju(e,t){return t.map(n=>e[n]).join(", ")}function WY(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=rY(r,i,t),l=t_(e.gl,o),u=e.createProgram(l);return X().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},N_(e,t,u))}function N_(e,t,n){let a={},r={},s={},i=[],o,l,u,p=null,d=null;d=e.getUniformLocation(n,"NAN",!1),X().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(n,"INFINITY",!1));let c=!1;for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h];a[m]=e.getUniformLocation(n,m,c),a[`offset${m}`]=e.getUniformLocation(n,`offset${m}`,c),t.enableShapeUniforms&&(r[`${m}Shape`]=e.getUniformLocation(n,`${m}Shape`,c),s[`${m}TexShape`]=e.getUniformLocation(n,`${m}TexShape`,c))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",c),u=e.getUniformLocation(n,"outShapeStrides",c),l=e.getUniformLocation(n,"outTexShape",c)),t.customUniforms&&t.customUniforms.forEach((h,m)=>{i[m]=e.getUniformLocation(n,h.name,c)}),{uniformLocations:a,customUniformLocations:i,infLoc:p,nanLoc:d,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function iI(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!v.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function BY(e,t,n,a,r){t.program.enableShapeUniforms||(iI(t.inShapeInfos,n),iI([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),X().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let p=t.program.variableNames[u],d=t.uniformLocations[p],c=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],m=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:f}=i1(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,d,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(p,d);else if(l.type==="vec2")e.gl.uniform2fv(p,d);else if(l.type==="vec3")e.gl.uniform3fv(p,d);else if(l.type==="vec4")e.gl.uniform4fv(p,d);else if(l.type==="int")e.gl.uniform1iv(p,d);else if(l.type==="ivec2")e.gl.uniform2iv(p,d);else if(l.type==="ivec3")e.gl.uniform3iv(p,d);else if(l.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function VY(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=i1(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let I=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${I[0]>1}_${I[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let I=v.computeStrides(p);m=`${I[0]===l[1]}_${I[I.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&v.arraysEqual(i.shape,l),b=v.sizeFromShape(i.shape)===1,y=C.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&v.arraysEqual(l,n.texData.texShape),w=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${b}_${y}_${g}_${c}_${h}_${m}_${w}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${X().getNumber("WEBGL_VERSION")}`,s}function An(e){return X().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var UY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=dc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=$n();this.outputShape=e,this.enableShapeUniforms=An(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?eg(["r","c","d"],e):_o(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},GY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=dc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=$n();this.outputShape=e,this.enableShapeUniforms=An(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?eg(["r","c","d"],e):_o(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},HY=class{constructor(e){this.variableNames=["A"],this.outTexUsage=pa.DOWNLOAD;let t=$n();this.outputShape=e,this.userCode=`
|
|
${k_}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},jY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=pa.DOWNLOAD;let t=$n();this.outputShape=e,this.userCode=`
|
|
${k_}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},qY=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=$n();this.outputShape=e,this.enableShapeUniforms=An(this.outputShape.length);let a="result";t&&(a="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?s1():r1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${a}, 0., 0., 0.);
|
|
}
|
|
`}},KY=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=$n();this.outputShape=e,this.enableShapeUniforms=An(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${s};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?s1():r1(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${a}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},C_={};Fe(C_,{bindVertexProgramAttributeStreams:()=>P_,createBufferFromOutputTexture:()=>z_,createFloat16MatrixTexture:()=>F_,createFloat16PackedMatrixTexture:()=>M_,createFloat32MatrixTexture:()=>A_,createIndexBuffer:()=>$_,createPackedMatrixTexture:()=>R_,createUnsignedBytesMatrixTexture:()=>D_,createVertexBuffer:()=>E_,createVertexShader:()=>__,downloadByteEncodedFloatMatrixFromOutputTexture:()=>B_,downloadFloat32MatrixFromBuffer:()=>W_,downloadMatrixFromPackedOutputTexture:()=>U_,downloadPackedMatrixFromBuffer:()=>V_,getInternalFormatForFloat16MatrixTexture:()=>l1,getInternalFormatForFloat16PackedMatrixTexture:()=>c1,getInternalFormatForFloat32MatrixTexture:()=>o1,getInternalFormatForPackedMatrixTexture:()=>p1,getInternalFormatForUnsignedBytesMatrixTexture:()=>u1,uploadDenseMatrixToTexture:()=>O_,uploadPixelDataToTexture:()=>L_});function __(e){let t=$n(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return e_(e,n)}function E_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return r_(e,t)}function $_(e){let t=new Uint16Array([0,1,2,2,1,3]);return s_(e,t)}function fd(e,t,n,a,r,s){o_(t,n);let i=i_(e),o=e.TEXTURE_2D;return ge(e,()=>e.bindTexture(o,i)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),X().getNumber("WEBGL_VERSION")===1?ge(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):ge(e,()=>e.texStorage2D(o,1,a,t,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function o1(e){return e.internalFormatFloat}function A_(e,t,n,a){let[r,s]=md(t,n);return fd(e,r,s,o1(a),a.textureFormatFloat,e.FLOAT)}function l1(e){return e.internalFormatHalfFloat}function F_(e,t,n,a){let[r,s]=md(t,n);return fd(e,r,s,l1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function u1(e){return e.downloadTextureFormat}function D_(e,t,n,a){let[r,s]=md(t,n);return fd(e,r,s,u1(a),e.RGBA,e.UNSIGNED_BYTE)}function p1(e){return e.internalFormatPackedFloat}function R_(e,t,n,a){let[r,s]=qu(t,n);return fd(e,r,s,p1(a),e.RGBA,e.FLOAT)}function c1(e){return e.internalFormatPackedHalfFloat}function M_(e,t,n,a){let[r,s]=qu(t,n);return fd(e,r,s,c1(a),e.RGBA,a.textureTypeHalfFloat)}function P_(e,t,n){return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Tx(e,t,"clipSpacePos",n,3,20,0)&&Tx(e,t,"uv",n,2,20,12)}function O_(e,t,n,a,r,s){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function L_(e,t,n){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function z_(e,t,n,a){let r=e.createBuffer();ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return ge(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function W_(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function B_(e,t,n,a){let[r,s]=md(t,n),i=4,o=new Uint8Array(G7(t*n,i));return ge(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function V_(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(H7(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function U_(e,t,n){let a=new Float32Array(t*n*4);return ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Dh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=X().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,ZC(t,e)):this.gl=Ja(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),X().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=qp(this.gl,r),ca(this.gl,s))this.textureHalfFloatExtension=qp(this.gl,s);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ca(this.gl,a))this.colorBufferHalfFloatExtension=qp(this.gl,a);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ca(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ca(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=E_(this.gl),this.indexBuffer=$_(this.gl),this.framebuffer=l_(this.gl),this.textureConfig=n1(this.gl,this.textureHalfFloatExtension)}get debug(){return X().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ge(e,()=>e.finish()),ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.deleteFramebuffer(this.framebuffer)),ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ge(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),A_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),F_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),D_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),L_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),O_(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),M_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),R_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Sx(this.gl,this.framebuffer),this.outputTexture=null),ge(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>B_(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return V_(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return W_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=z_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(X().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>U_(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=__(t));let n=n_(t);return ge(t,()=>t.attachShader(n,this.vertexShader)),ge(t,()=>t.attachShader(n,e)),a_(t,n),this.debug&&_h(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=P_(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ge(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&_h(this.gl,this.program),ge(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?p_(this.gl,e,t):c_(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ge(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),d_(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=qu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&_h(this.gl,this.program),Kp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ge(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ge(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=qp(this.gl,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=XY(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Eh(this.gl,e,this.framebuffer),this.debug&&Kp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Eh(this.gl,this.outputTexture,this.framebuffer),this.debug&&Kp(this.gl)):Sx(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;Eh(a,e,this.framebuffer),this.debug&&Kp(a),this.outputTexture=e,ge(a,()=>a.viewport(0,0,t,n)),ge(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),ge(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function XY(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:YY,bincountImpl:G_,bincountReduceImpl:ZY,castImpl:JY,ceilImpl:QY,concatImpl:eZ,equalImpl:tZ,expImpl:nZ,expm1Impl:aZ,floorImpl:rZ,gatherNdImpl:sZ,gatherV2Impl:iZ,greaterImpl:oZ,greaterEqualImpl:lZ,lessImpl:uZ,lessEqualImpl:pZ,linSpaceImpl:cZ,logImpl:dZ,maxImpl:hZ,maximumImpl:mZ,minimumImpl:fZ,multiplyImpl:gZ,negImpl:bZ,notEqualImpl:yZ,prodImpl:xZ,raggedTensorToTensorImpl:vZ,rangeImpl:wZ,rsqrtImpl:kZ,scatterImpl:IZ,sigmoidImpl:TZ,simpleAbsImpl:H_,sliceImpl:SZ,sparseFillEmptyRowsImpl:NZ,sparseReshapeImpl:CZ,sparseSegmentReductionImpl:j_,sqrtImpl:_Z,stridedSliceImpl:EZ,stringNGramsImpl:$Z,stringSplitImpl:AZ,stringToHashBucketFastImpl:FZ,subImpl:DZ,tileImpl:RZ,topKImpl:MZ,transposeImpl:d1,uniqueImpl:PZ}=Y2;function q_(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Tn(e,t){return t===1?[e]:q_(e,t)}function OZ(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var LZ=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=An(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=Tn("rc",this.rank),n=ut(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${s}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${a};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},K_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=An(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${zZ(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?s1():r1(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function zZ(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?aY(["r","c","d"],"inputShape"):_o(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var WZ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=lI(t,n),r=uI(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=oI(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===on.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===on.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===on.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===on.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===on.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=lI(n,a),s=uI(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=oI(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=X().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function BZ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function oI(e,t,n,a,r){let s=VZ(t,a),i;if(r){let[l,u]=qu(e[0],e[1]);i=l*u}else{let[l,u]=md(e[0],e[1]);i=l*u}let o=BZ(n,s);return i*o}function VZ(e,t){switch(e){case on.PACKED_2X2_FLOAT32:return p1(t);case on.PACKED_2X2_FLOAT16:return c1(t);case on.UNPACKED_FLOAT32:return o1(t);case on.UNPACKED_FLOAT16:return l1(t);case on.PACKED_4X1_UNSIGNED_BYTE:return u1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function UZ(e){return X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?on.PACKED_2X2_FLOAT32:on.UNPACKED_FLOAT32:e?on.PACKED_2X2_FLOAT16:on.UNPACKED_FLOAT16}function lI(e,t){if(e===pa.UPLOAD)return on.PACKED_2X2_FLOAT32;if(e===pa.RENDER||e==null)return UZ(t);if(e===pa.DOWNLOAD||e===pa.PIXELS)return on.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function uI(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Cr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=An(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Fa="if (isnan(x)) return x;",GZ="return x;",pI="return abs(x);",HZ="return (x >= 0.0) ? x : (exp(x) - 1.0);",jZ=Fa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,qZ=Fa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,al="return x;",KZ="return 1.0 / (1.0 + exp(-1.0 * x));",XZ="return x;",YZ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,ZZ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,JZ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,QZ="return 1.0 / (1.0 + exp(-1.0 * x));",ti=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=An(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},eJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=An(this.outputShape.length);let t=e.length,n=Tn("rc",t),a=ut(t),r=OZ(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},tJ=gr.whereImpl,nJ=1e-7,aJ=1e-4,Ry={};function rJ(e){return e in Ry||(Ry[e]={}),Ry[e]}var sJ=X().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),iJ=600;function oJ(){return X().global.screen==null?1024:X().global.screen.height*X().global.screen.width*window.devicePixelRatio*iJ/1024/1024}var tg=class extends yc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!X().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Dh)t=e;else{let n=Ja(X().getNumber("WEBGL_VERSION"),e);t=new Dh(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ja(X().getNumber("WEBGL_VERSION"));t=new Dh(n),this.binaryCache=rJ(X().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new WZ(this.gpgpu),this.numMBBeforeWarning=oJ(),this.texData=new mm(this,rr())}nextDataId(){return tg.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((X().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||X().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:pa.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(X().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:pa.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new ti(i,al):d=new Cr(i,al);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=C.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new ti(a,al):h=new Cr(a,al);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(X().getBool("DEBUG")&&!X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&X().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&X().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...kh(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=C.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ge(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&rr().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new ti(r,al):c=new Cr(r,al);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=rr().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Le(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!JC(n))throw X().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=v.sizeFromShape(t);if(X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...kh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=X().getBool("WEBGL_PACK")&&a===!0,i=s?$h(t):t,o=s?new jY(i):new HY(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=sJ){return X().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return tJ(e.shape,t)}packedUnaryOp(e,t,n){let a=new ti(e.shape,t),r=this.compileAndRun(a,[e],n);return rr().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=H_(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(X().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,pI,e.dtype);let t=new Cr(e.shape,pI),n=this.compileAndRun(t,[e]);return rr().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return rr().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new eJ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new LZ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[xi(e.shape),...vi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[xi(t),...vi(t)],s=new K_(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=v.sizeFromShape(r),c=t[0]*t[1]*4;v.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=$h(r),o;a?o=new GY(i):o=new UY(i);let l=!0,u=[t!=null?t:kh(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===dc.DENSE){let g=s!=null?s:kh(e.outputShape);o.texShape=g.map(b=>b*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(g.dataId);if(b.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=X().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!b.isPacked!=!!e.packedInputs)g=b.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),b=this.texData.get(g.dataId);else if(b.isPacked&&!hc(b.shape,g.shape)){let y=g,x=g.shape;g.shape=b.shape,g=this.packedReshape(g,x),l.push(g),b=this.texData.get(g.dataId),y.shape=x}return{shape:g.shape,texData:b,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=VY(e,u,p),c=this.getAndSaveBinary(d,()=>WY(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),X().get("ENGINE_COMPILE_ONLY")||BY(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=X().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=v.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!X().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(X().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=O(()=>{if(!X().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=X().getBool("DEBUG");X().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(X().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?nJ:aJ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let p=t.texShape;if(p==null&&(p=f_(n,o),t.texShape=p),r!=null){let d=$h(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=qu(p[0],p[1])),o?c=new KY(d,f):c=new qY(d,f);let g=f?[m,h]:p,b=this.makeTensorInfo(g,a),y=this.texData.get(b.dataId);f?y.usage=pa.PIXELS:y.usage=pa.UPLOAD,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,m,r);let x=[[m,h]],w=!0,I=this.runWebGLProgram(c,[b],a,x,w),N=this.texData.get(I.dataId);t.texShape=N.texShape,t.isPacked=N.isPacked,t.usage=N.usage,X().get("ENGINE_COMPILE_ONLY")?this.disposeData(I.dataId):(t.texture=N.texture,t.values=null,this.texData.delete(I.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=v.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=lJ(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await lw(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(a1(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=N_(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};tg.nextDataId=0;function lJ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var uJ="3.20.0";function X_(){X().set("WEBGL_FORCE_F16_TEXTURES",!0)}zc.isBrowser()&&Xm("webgl",()=>new tg,2);var pJ={forceHalfFloat:X_},Y_=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,El=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=An(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},ng=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,gd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=An(r);let s="";if(a)if(r===0||v.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ut(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?s+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Tn("coords",r);this.enableShapeUniforms?s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function na(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var cJ={kernelName:Vi,backendName:"webgl",kernelFunc:na};function Cs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=na({inputs:{x:a},backend:n}),l=na({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var dJ={kernelName:wm,backendName:"webgl",kernelFunc:Cs},Z_="return (a < 0.) ? b * a : a;",J_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function hJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new gd(J_,r.shape,i.shape):new El(Z_,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var mJ={kernelName:Ui,backendName:"webgl",kernelFunc:hJ},Q_="return (a < 0.) ? b * a : a;",eE=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function fJ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new gd(eE,a.shape,r.shape):new El(Q_,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var gJ={kernelName:no,backendName:"webgl",kernelFunc:fJ},Qu="if (isnan(x)) return x;",bJ=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,yJ=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ze({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=X().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new ti(i.shape,t):p=new Cr(i.shape,e),o.runWebGLProgram(p,[i],l)}}function pn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,b]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,I]=x,N={dataId:w.dataId,dtype:w.dtype,shape:l.shape},_={dataId:I.dataId,dtype:I.dtype,shape:u.shape},$=new El(e,l.shape,u.shape);return p.runWebGLProgram($,[N,_],ha(w.dtype,I.dtype))}),y=Cs({inputs:{real:g,imag:b},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(b),y}let d=s||ha(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?C.fromUint8ToStringArray(m):m,b=l.dtype==="string"?C.fromUint8ToStringArray(f):f,[y,x]=r(l.shape,u.shape,g,b,d),w=p.makeTensorInfo(x,d),I=p.texData.get(w.dataId);return I.values=y,w}let c=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new gd(t,l.shape,u.shape,n):h=new El(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function mc(e,t=!1){if(e==="linear")return t?XZ:GZ;if(e==="relu")return t?ZZ:jZ;if(e==="elu")return t?YZ:HZ;if(e==="relu6")return t?JZ:qZ;if(e==="prelu")return t?eE:Q_;if(e==="leakyrelu")return t?J_:Z_;if(e==="sigmoid")return t?QZ:KZ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var tE=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=An(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let b=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${p}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${b}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},cI={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},dI=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},hI="return a * b;";function h1(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=C.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new dI(cI.REAL,a.shape,r.shape),p=new dI(cI.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Cs({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=gZ(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new gd(hI,a.shape,r.shape):i=new El(hI,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var xJ={kernelName:Ji,backendName:"webgl",kernelFunc:h1};function vJ(e,t,n){let a=[xi(e.shape),...vi(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[xi(t),...vi(t)],i=new K_(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function he(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!hc(r.shape,l)&&!(p.texture!==null&&hc(p.shape,l))?vJ(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var wJ={kernelName:yu,backendName:"webgl",kernelFunc:he},mI=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${v.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},kJ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function IJ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function $o(e,t,n,a){let r=IJ(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new mI({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new mI({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new kJ({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var TJ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=ut(this.rank),r=SJ(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function SJ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var NJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=ut(this.rank),r=q_("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function ag(e,t,n){let a=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new NJ(e.shape,t):new TJ(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function CJ(e,t,n,a){let r=t,s=e.shape.length,i=v.parseAxisParam(r,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=ag(e,l,a),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=C.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=C.expandShapeToKeepDim(d,i));let m=v.sizeFromShape(c),f=v.sizeFromShape(e.shape)/m,g=he({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),b=Km(e.dtype),y=$o(g,b,"sum",a),x=he({inputs:{x:y},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(y),u&&a.disposeIntermediateTensorInfo(p),x}function rg(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return CJ(r,s,i,n)}var _J={kernelName:fo,backendName:"webgl",kernelFunc:rg};function Nn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=d1(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=ag(r,s,i);return u}var EJ={kernelName:_r,backendName:"webgl",kernelFunc:Nn},nE=1e3;function um({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=v.sizeFromShape(f),y=v.sizeFromShape(g),x=Mu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);v.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let w=n?[b,d,h]:[b,h,d],I=a?[y,m,c]:[y,c,m],N=he({inputs:{x:e},backend:r,attrs:{shape:w}}),_=he({inputs:{x:t},backend:r,attrs:{shape:I}}),$=[N,_],A=Math.max(b,y),M=n?N.shape[1]:N.shape[2],D=s!=null,T=i!=null,P=l==="leakyrelu",U=l!=null?mc(l,!0):null,j=D||T||P||U!=null,q;if((h===1||m===1)&&M>nE&&j===!1){let Y=N,te=_;n&&(Y=Nn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),$.push(Y)),a&&(te=Nn({inputs:{x:_},backend:r,attrs:{perm:[0,2,1]}}),$.push(te));let re=m!==1,J=m===1,ie=Y;re&&(ie=he({inputs:{x:Y},backend:r,attrs:{shape:[A,M,1]}}),$.push(ie));let ae=m===1?2:1,oe=te;J&&(oe=he({inputs:{x:te},backend:r,attrs:{shape:[A,1,M]}}),$.push(oe));let ue=h1({inputs:{a:ie,b:oe},backend:r});q=rg({inputs:{x:ue},backend:r,attrs:{axis:ae,keepDims:!0}}),$.push(ue)}else{let Y=ha(e.dtype,t.dtype),te=new tE(w,I,[A,h,m],n,a,D,U,T,P),re=[N,_];if(s!=null&&re.push(s),T&&re.push(i),P){let J=r.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));re.push(J),$.push(J)}q=r.runWebGLProgram(te,re,Y)}let K=he({inputs:{x:q},backend:r,attrs:{shape:x}});$.push(q);for(let Y of $)r.disposeIntermediateTensorInfo(Y);return K}function $J(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return um({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var AJ={kernelName:oi,backendName:"webgl",kernelFunc:$J},fI="return abs(x);";function FJ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=H_(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ti(a.shape,fI):r=new Cr(a.shape,fI),n.runWebGLProgram(r,[a],a.dtype)}var DJ={kernelName:Al,backendName:"webgl",kernelFunc:FJ},RJ=Fa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,MJ=Ze({opSnippet:RJ}),PJ={kernelName:Fl,backendName:"webgl",kernelFunc:MJ},OJ=Fa+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,LJ=Ze({opSnippet:OJ}),zJ={kernelName:Dl,backendName:"webgl",kernelFunc:LJ},gI="return a + b;",WJ=pn({opSnippet:gI,packedOpSnippet:gI,supportsComplex:!0,cpuKernelImpl:YY}),BJ={kernelName:ms,backendName:"webgl",kernelFunc:WJ},VJ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},UJ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function Rh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return na({inputs:{x:a[0]},backend:n});if(a.length>X().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Rh({inputs:a.slice(0,o),backend:n}),u=Rh({inputs:a.slice(o),backend:n});return Rh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ha(o,l)),s=a.map(o=>o.shape),i=X().getBool("WEBGL_PACK")?new UJ(a[0].shape,s):new VJ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var GJ={kernelName:Ii,backendName:"webgl",kernelFunc:Rh};function HJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[c,h]=C.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=he({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=$o(f,f.dtype,"all",n),b;if(i){let y=C.expandShapeToKeepDim(c,l);b=he({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=he({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var jJ={kernelName:Rl,backendName:"webgl",kernelFunc:HJ};function qJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[c,h]=C.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=he({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=$o(f,f.dtype,"any",n),b;if(i){let y=C.expandShapeToKeepDim(c,l);b=he({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=he({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var KJ={kernelName:Ml,backendName:"webgl",kernelFunc:qJ},XJ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},YJ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ut(o),u=Tn("coords",o),p,d;if(s===1){d=o+1;let _=ut(d);p=`
|
|
${_} sourceLocR = ${_}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${_} sourceLocG = ${_}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${_} sourceLocA = ${_}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${_} sourceLocB = ${_}(${u.join()}, 0);
|
|
--${u[o-2]};`}else d=o,p=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(_=>"int "+_),f=Tn("sourceLocR",d-1).concat("inIdx.r"),g=Tn("sourceLocG",d-1).concat("inIdx.g"),b=Tn("sourceLocB",d-1).concat("inIdx.b"),y=Tn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${b.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,I=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${b.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,N=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${N}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${I};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${w}
|
|
vec4 candidate = ${I};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function aE(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new XJ(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=aE(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function rE(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=C.computeOptimalWindowSize(s),o=new YJ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=rE(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function sE(e,t,n,a){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!X().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=C.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(p),c=he({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=aE(e,c,a);s.push(h);let m=he({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return rE(e,t,a)}function ZJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Nn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=sE(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var JJ={kernelName:Ti,backendName:"webgl",kernelFunc:ZJ};function QJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Nn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=sE(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var e9={kernelName:xc,backendName:"webgl",kernelFunc:QJ},t9=Fa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,n9=Ze({opSnippet:t9}),a9={kernelName:Pl,backendName:"webgl",kernelFunc:n9},r9=Fa+"return log(x + sqrt(x * x + 1.0));",s9=Ze({opSnippet:r9}),i9={kernelName:Ol,backendName:"webgl",kernelFunc:s9},o9=Fa+`
|
|
return atan(x);
|
|
`,l9=Ze({opSnippet:o9}),u9={kernelName:Ll,backendName:"webgl",kernelFunc:l9},p9=bJ+`
|
|
return atan(a, b);
|
|
`,c9=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+yJ+`
|
|
return result;
|
|
`,d9=pn({opSnippet:p9,packedOpSnippet:c9}),h9={kernelName:Wl,backendName:"webgl",kernelFunc:d9},m9=Fa+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,f9=Ze({opSnippet:m9}),g9={kernelName:zl,backendName:"webgl",kernelFunc:f9},fc=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(m||(b="-1.0 / 1e-20"),n){let _=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${_} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,I=s%4,N=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${N}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${I===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${I===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${I===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},m1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let A=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${A} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",I=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(I="avgValue / count");let N=Math.floor(s/4)*4,_=s%4,$=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${b});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${N}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${$}
|
|
}
|
|
|
|
int xC = xCCorner + ${N};
|
|
if (${_===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
} else if (${_===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
} else if (${_===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
}
|
|
}
|
|
setOutput(${I});
|
|
}
|
|
}
|
|
`}};function b9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Ku(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return na({inputs:{x:r},backend:n});let d=new fc(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var y9={kernelName:Si,backendName:"webgl",kernelFunc:b9};function x9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=C.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new m1(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var v9={kernelName:vc,backendName:"webgl",kernelFunc:x9},w9=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${p});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},k9=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function I9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,d,u,p),h=new k9(c);return n.runWebGLProgram(h,[r],i.dtype)}var T9={kernelName:ym,backendName:"webgl",kernelFunc:I9};function S9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Ku([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=C.computePool2DInfo(i.shape,o,l,1,u),d=new w9(p);return n.runWebGLProgram(d,[r],i.dtype)}var N9={kernelName:bm,backendName:"webgl",kernelFunc:S9};function C9(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return um({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var _9={kernelName:Ni,backendName:"webgl",kernelFunc:C9},E9=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},$9=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},A9=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;v.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=X().getBool("WEBGL_PACK_NORMALIZATION")?new $9(a.shape,r.shape,s.shape,p,d,l):new E9(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},F9={kernelName:Wi,backendName:"webgl",kernelFunc:A9},D9=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ut(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=R9(this.rank),a,r=e.map((s,i)=>`sourceLoc.${_x[i]} = start[${i}] + coords.${_x[i]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},_x=["x","y","z","w","u","v"];function R9(e){if(e===1)return"sourceLoc";if(e<=6)return _x.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var M9=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ut(this.rank),n=Tn("coords",this.rank),a=Tn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function P9(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=qt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function ep(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=qt.parseSliceParams(r,s,i);if(qt.assertParamsValid(r,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=SZ(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=qt.isSliceContinous(r.shape,o,l);if(u||!p){let d=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new M9(l):new D9(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),P9(r,o,l,n)}var O9={kernelName:ku,backendName:"webgl",kernelFunc:ep},L9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,x)=>y*x),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),p=C.getReshapedPermuted(r.shape,s,o),d=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(p,i,s.length),h=[],m=he({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Nn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=he({inputs:{x:f},backend:n,attrs:{shape:p}}),b=ep({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},z9={kernelName:Bl,backendName:"webgl",kernelFunc:L9};function W9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=G_(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var B9={kernelName:xm,backendName:"webgl",kernelFunc:W9};function V9(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=C.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var U9={kernelName:vm,backendName:"webgl",kernelFunc:V9},G9="return float(a != b);",iE=pn({opSnippet:G9,cpuKernelImpl:yZ,dtype:"bool"}),H9={kernelName:cu,backendName:"webgl",kernelFunc:iE};function bd(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return na({inputs:{x:r.complexTensorInfos.real},backend:n})}var j9={kernelName:Bm,backendName:"webgl",kernelFunc:bd},q9="return float(int(x));";function K9(e,t){let n=new Cr(e.shape,q9),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function Ex(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return na({inputs:{x:r},backend:n});let i=It(r.shape),o=Ex({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Cs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=bd({inputs:{input:r},backend:n}),o=Ex({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=na({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(n.shouldExecuteOnCPU([r])){let i=n.texData.get(r.dataId).values,[o,l,u]=JY(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}if(s==="int32")return K9(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=iE({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var X9={kernelName:Ci,backendName:"webgl",kernelFunc:Ex},bI="return ceil(x);",Y9=Ze({opSnippet:bI,packedOpSnippet:bI,cpuKernelImpl:QY}),Z9={kernelName:_i,backendName:"webgl",kernelFunc:Y9},J9=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},Q9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function eQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;X().getBool("WEBGL_PACK_CLIP")?o=new Q9(r.shape):o=new J9(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var tQ={kernelName:fs,backendName:"webgl",kernelFunc:eQ},nQ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function yI(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function aQ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new nQ(a.shape),i=[yI(a,r.complexTensorInfos.real),yI(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var rQ={kernelName:wc,backendName:"webgl",kernelFunc:aQ},sQ=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},iQ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=ut(a),s=Tn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${Th(i,l,f)}),
|
|
vec2(${Th(u,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];d+=`
|
|
return getChannel(
|
|
getT${c}(${Th(i,l,h)}),
|
|
vec2(${Th(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Th(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function sg(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return na({inputs:{x:r.complexTensorInfos.imag},backend:n})}var oQ={kernelName:Dm,backendName:"webgl",kernelFunc:sg};function Xp(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(g=>bd({inputs:{input:g},backend:n})),c=e.map(g=>sg({inputs:{input:g},backend:n})),h=Xp(d,t,n),m=Xp(c,t,n),f=Cs({inputs:{real:h,imag:m},backend:n});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(y=>{let x=v.sizeFromShape(y.shape.slice(t));return he({inputs:{x:y},backend:n,attrs:{shape:[-1,x]}})}),c=d.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),h=C.computeOutShape(d.map(y=>y.shape),1),m=d[0].shape[0]===1,f=eZ(c,h,a,m),g=C.computeOutShape(e.map(y=>y.shape),t),b=n.makeTensorInfo(g,a,f);return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}let s=X().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>s){let d=[];for(let h=0;h<e.length;h+=s){let m=e.slice(h,h+s);d.push(Xp(m,t,n))}let c=Xp(d,t,n);for(let h of d)n.disposeIntermediateTensorInfo(h);return c}if(X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new iQ(e.map(c=>c.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:i,outShape:o}=lQ(e,t,n),l=new sQ(i.map(d=>d.shape)),u=n.runWebGLProgram(l,i,a);i.forEach(d=>n.disposeIntermediateTensorInfo(d));let p=he({inputs:{x:u},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(u),p}function lQ(e,t,n){let a=C.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>he({inputs:{x:r},attrs:{shape:[-1,v.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function oE(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return na({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),Xp(o,s,n)}var uQ={kernelName:Vl,backendName:"webgl",kernelFunc:oE},lE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,b=f?2:3,y=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,w="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${b}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${I}
|
|
${w}
|
|
setOutput(result);
|
|
}
|
|
`}},pQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},uE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=An(this.outputShape.length);let s=e.padInfo.left,i=e.strideWidth,o=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,p=u,d=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let f=0;f<u;f++)d+=`
|
|
vec4 xTexelC${f*2};
|
|
int xTexelC${f*2}Ready;
|
|
vec4 xTexelC${f*2+1};
|
|
int xTexelC${f*2+1}Ready;
|
|
vec4 xC${f};`;d+=`
|
|
for (int r = 0; r < ${l}; r++) {
|
|
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
|
|
`;for(let f=0;f<u;f++)d+=`
|
|
xTexelC${f*2} = vec4(0.0);
|
|
xTexelC${f*2}Ready = 0;
|
|
xTexelC${f*2+1} = vec4(0.0);
|
|
xTexelC${f*2+1}Ready = 0;
|
|
xC${f} = vec4(0.0);`;d+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let f=0;f<(p+1)/2;f++){let g=f*2;if(d+=`
|
|
xC = xCCorner + ${g*o};
|
|
`,i===1){if(g<u&&(s%2===1?(d+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
`,o===1&&g>0?d+=`
|
|
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
|
|
`:d+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
|
|
} else {
|
|
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
|
|
}
|
|
`):d+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
xC${g} = xTexelC${g};
|
|
`,g+1<u)){let b=s%2===0?v.nearestLargerEven(o):o;o%2===0&&s%2===1||o%2!==0&&s%2!==1?(d+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
`,o>1?d+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
|
|
} else {
|
|
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
|
|
}
|
|
`:d+=`
|
|
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
|
|
`):b===1?d+=`
|
|
xC${g+1} = xTexelC${g};
|
|
`:d+=`
|
|
xCOffset = xC + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g+1} = xTexelC${g+1};
|
|
`}}else g<u&&(s%2===1?(d+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
|
|
`,g+1<u&&(d+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
|
|
`)):(d+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g} = vec4(
|
|
xTexelC${g}.xy, xTexelC${g+1}.xy);
|
|
`,g+1<u&&(d+=`
|
|
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
|
|
`)));g<u&&(d+=`
|
|
wTexel = getW(r, ${g}, d1, d2);
|
|
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
|
|
if(d1 + 1 < ${e.inChannels}) {
|
|
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
|
|
}
|
|
`,g+1<u&&(d+=`
|
|
wTexel = getW(r, ${g+1}, d1, d2);
|
|
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
|
|
if(d1 + 1 < ${e.inChannels}) {
|
|
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
|
|
}
|
|
`))}d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`;let c="",h="";n&&(a?c=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?c=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:c=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,h="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${c}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${d}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},cQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=An(this.outputShape.length);let{dataFormat:n}=t,a=$n(),r=n==="channelsLast",s=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
|
|
blockIndex = rc.z + ${p};
|
|
pos = rc.y + ${u};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${s}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(rc.x, d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(rc.x, ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${a.output} = result;
|
|
}
|
|
`}};function pm(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function pE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,b=[];if(s!=null){let y=pm(s.shape,h);y!=null&&(s=he({inputs:{x:s},backend:a,attrs:{shape:y}}),b.push(s))}if(r!=null){let y=pm(r.shape,h);y!=null&&(r=he({inputs:{x:r},backend:a,attrs:{shape:y}}),b.push(r))}if(!((d===1||c===1)&&p>nE)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let y=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,y,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(hc(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let I=he({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(I);let N=um({a:x,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),_=a.texData.get(N.dataId);v.assert(_.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,_.shape=n.outShape,g=na({inputs:{x:N},backend:a}),g.shape=n.outShape,b.push(N)}else{let y=n.outHeight*n.outWidth,x=he({inputs:{x:e},backend:a,attrs:{shape:h?[n.batchSize,y,n.inChannels]:[n.batchSize,n.inChannels,y]}}),w=he({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=um({a:h?x:w,b:h?w:x,transposeA:!h,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=he({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),b.push(x),b.push(w),b.push(I)}for(let y of b)a.disposeIntermediateTensorInfo(y);return g}function cE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,b=[n.batchSize,f,g],y=!0,x=!1,w=[];if(s!=null){let Y=pm(s.shape,m);Y!=null&&(s=he({inputs:{x:s},backend:a,attrs:{shape:Y}}),w.push(s))}if(r!=null){let Y=pm(r.shape,m);Y!=null&&(r=he({inputs:{x:r},backend:a,attrs:{shape:Y}}),w.push(r))}let I=he({inputs:{x:t},backend:a,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});w.push(I);let N=new cQ(b,n),_=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],$=a.runWebGLProgram(N,[e],"float32",_),A=he({inputs:{x:$},backend:a,attrs:{shape:b}});w.push($),w.push(A);let M=r!=null,D=s!=null,T=o==="leakyrelu",P=o?mc(o,!0):null,U=new tE(m?A.shape:I.shape,m?I.shape:A.shape,m?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],y,x,M,P,D,T),j=m?[A,I]:[I,A];if(r&&j.push(r),D&&j.push(s),T){let Y=a.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));j.push(Y),w.push(Y)}let q=a.runWebGLProgram(U,j,"float32"),K=he({inputs:{x:q},backend:a,attrs:{shape:n.outShape}});w.push(q);for(let Y of w)a.disposeIntermediateTensorInfo(Y);return K}function dQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=pE({x:r,filter:s,convInfo:c,backend:n});else if(c.strideWidth<=2&&d==="channelsLast"&&X().getBool("WEBGL_EXP_CONV")){let f=new uE(c),g=[[c.padInfo.top,c.padInfo.left],[c.strideHeight,c.strideWidth],[c.dilationHeight,c.dilationWidth],[c.inHeight,c.inWidth]];h=n.runWebGLProgram(f,[r,s],"float32",g)}else if(X().getBool("WEBGL_CONV_IM2COL"))h=cE({x:r,filter:s,convInfo:c,backend:n});else{let f=new lE(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=he({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var hQ={kernelName:Ei,backendName:"webgl",kernelFunc:dQ},mQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},fQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},gQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},bQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function yQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new mQ(c);return n.runWebGLProgram(h,[r,s],"float32")}var xQ={kernelName:km,backendName:"webgl",kernelFunc:yQ};function vQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=C.convertConv2DDataFormat(u),c=C.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d),h=new fQ(c);return n.runWebGLProgram(h,[r,s],"float32")}var wQ={kernelName:$i,backendName:"webgl",kernelFunc:vQ};function kQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=C.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new pQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var IQ={kernelName:kc,backendName:"webgl",kernelFunc:kQ};function TQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=C.computeConv3DInfo(r.shape,l,i,1,o),p=new gQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var SQ={kernelName:Im,backendName:"webgl",kernelFunc:TQ};function NQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=C.computeConv3DInfo(l,s.shape,o,1,i),p=new bQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var CQ={kernelName:Tm,backendName:"webgl",kernelFunc:NQ},_Q=Qu+`
|
|
return cos(x);
|
|
`,EQ=Ze({opSnippet:_Q}),$Q={kernelName:Ai,backendName:"webgl",kernelFunc:EQ},AQ=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,FQ=Ze({opSnippet:AQ}),DQ={kernelName:Fi,backendName:"webgl",kernelFunc:FQ},RQ=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,w]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${b};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${w};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},MQ=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new RQ(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},PQ={kernelName:Gl,backendName:"webgl",kernelFunc:MQ},gc;(function(e){e.Prod="*",e.Sum="+"})(gc||(gc={}));var xI=class{constructor(e,t,n,a){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===gc.Prod?"1.0":"0.0",i=n?s:`getX(${vI(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${ut(r)} coords = getOutputCoords();
|
|
int end = ${wI(r,"coords",this.op)};
|
|
float val = ${i};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${l}) {
|
|
int idx = ${u};
|
|
${wI(r,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${vI(r,"coords",this.op)});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function vI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function wI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function dE(e,t,n,a,r,s){let i=t.shape.length,o=C.getAxesPermutation([a],i),l=t;o!=null&&(l=Nn({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=C.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=na({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new xI(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new xI(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=C.getUndoAxesPermutation(o),h=Nn({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function OQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return dE(gc.Prod,r,n,s,i,o)}var LQ={kernelName:Ul,backendName:"webgl",kernelFunc:OQ};function zQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return dE(gc.Sum,r,n,s,i,o)}var WQ={kernelName:Di,backendName:"webgl",kernelFunc:zQ};function BQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=G_(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=ZY(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var VQ={kernelName:Sm,backendName:"webgl",kernelFunc:BQ},UQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function GQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new UQ(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var HQ={kernelName:Hl,backendName:"webgl",kernelFunc:GQ},hE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=An(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${s}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${p}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},mE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=An(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;c+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<p;g++)c+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;c+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let b=g*2;if(c+=`
|
|
xC = xCCorner + ${b*l};
|
|
`,o===1){if(b<p&&(i%2===1?(c+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`,l===1&&b>0?c+=`
|
|
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
|
|
`:c+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
|
|
} else {
|
|
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
|
|
}
|
|
`):c+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xC${b} = xTexelC${b};
|
|
`,b+1<p)){let y=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
`,l>1?c+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);
|
|
} else {
|
|
xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);
|
|
}
|
|
`:c+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
|
|
`):y===1?c+=`
|
|
xC${b+1} = xTexelC${b};
|
|
`:c+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b+1} = xTexelC${b+1};
|
|
`}}else b<p&&(i%2===1?(c+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`,b+1<p&&(c+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
|
|
`)):(c+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(
|
|
xTexelC${b}.xy, xTexelC${b+1}.xy);
|
|
`,b+1<p&&(c+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`)));b<p&&(c+=`
|
|
wTexel = getW(r, ${b}, d1, q);
|
|
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
|
|
`,b+1<p&&(c+=`
|
|
wTexel = getW(r, ${b+1}, d1, q);
|
|
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}c+=`
|
|
}
|
|
`,c+=`
|
|
}
|
|
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${c}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${f}
|
|
${m}
|
|
setOutput(result);
|
|
}
|
|
`}};function jQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=C.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;X().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new mE(d):c=new hE(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var qQ={kernelName:Ri,backendName:"webgl",kernelFunc:jQ},KQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},XQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function YQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=C.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new KQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var ZQ={kernelName:Nm,backendName:"webgl",kernelFunc:YQ};function JQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=C.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new XQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var QQ={kernelName:Cm,backendName:"webgl",kernelFunc:JQ},eee=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function tee(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=v.sizeFromShape(a.shape),i=he({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new eee(s),l=n.runWebGLProgram(o,[i],i.dtype),u=he({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var nee={kernelName:_m,backendName:"webgl",kernelFunc:tee},aee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${p}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function ree(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=C.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new aee(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=he({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var see={kernelName:Ic,backendName:"webgl",kernelFunc:ree};function iee(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=C.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=C.getEinsumPermutation(h,l[g]),x;C.isIdentityPermutation(b)?x=s[g]:(x=Nn({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=he({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=h1({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=rg({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var oee={kernelName:Em,backendName:"webgl",kernelFunc:iee},lee="return (x >= 0.0) ? x : (exp(x) - 1.0);",uee=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,pee=Ze({opSnippet:lee,packedOpSnippet:uee}),cee={kernelName:Pi,backendName:"webgl",kernelFunc:pee},dee="return (b >= 1.0) ? a : a * (b + 1.0);",hee=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,mee=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new gd(hee,a.shape,r.shape):new El(dee,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},fee={kernelName:$m,backendName:"webgl",kernelFunc:mee},gee=`
|
|
return vec4(equal(a, b));
|
|
`,bee="return float(a == b);",yee=pn({opSnippet:bee,packedOpSnippet:gee,dtype:"bool",cpuKernelImpl:tZ}),xee={kernelName:ql,backendName:"webgl",kernelFunc:yee},vee=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,wee=Ze({opSnippet:vee}),kee={kernelName:jl,backendName:"webgl",kernelFunc:wee},Iee=Qu+`
|
|
return exp(x);
|
|
`,Tee=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,fE=Ze({opSnippet:Iee,packedOpSnippet:Tee,cpuKernelImpl:nZ,dtype:"float32"}),See={kernelName:Oi,backendName:"webgl",kernelFunc:fE};function $x(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),he({inputs:{x:s},backend:a,attrs:{shape:o}})}var Nee={kernelName:Kl,backendName:"webgl",kernelFunc:$x},kI="return exp(x) - 1.0;",Cee=Ze({opSnippet:kI,packedOpSnippet:kI,cpuKernelImpl:aZ}),_ee={kernelName:Xl,backendName:"webgl",kernelFunc:Cee},II=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function gE(e,t,n){let a=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=he({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new II("real",l,t),p=new II("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Cs({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=he({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function Eee(e){let{inputs:t,backend:n}=e,{input:a}=t;return gE(a,!1,n)}var $ee={kernelName:Am,backendName:"webgl",kernelFunc:Eee},Aee=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function yd(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new Aee(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var Fee={kernelName:Tc,backendName:"webgl",kernelFunc:yd},Dee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Ree={kernelName:Yl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new Dee(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},TI="return floor(x);",Mee=Ze({opSnippet:TI,packedOpSnippet:TI,cpuKernelImpl:rZ}),Pee={kernelName:Li,backendName:"webgl",kernelFunc:Mee},Oee=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Lee=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,zee=pn({opSnippet:Oee,packedOpSnippet:Lee,dtype:"int32"}),Wee={kernelName:zi,backendName:"webgl",kernelFunc:zee},Bee=class{constructor(e){this.variableNames=["A"];let t=$n(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Vee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=$n(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Uee={kernelName:Wh,backendName:"webgl",kernelFunc:Gee},rl,My=X().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Gee(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];if(o||i){let f=X().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(rl==null||f!==My)&&(My=f,rl=document.createElement("canvas").getContext("2d",{willReadFrequently:My})),rl.canvas.width=l,rl.canvas.height=u,rl.drawImage(r,0,0,l,u),r=rl.canvas}let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=pa.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=X().getBool("WEBGL_PACK")?new Vee(d):new Bee(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function Hee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=C.convertConv2DDataFormat(p),g=C.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),b,y=[],x=i!=null,w=o!=null,I=h==="leakyrelu",N=()=>{let $=[r,s],A=(M,D)=>{if(D==="NCHW"&&M.shape.length===1&&M.shape[0]!==1){let T=he({inputs:{x:M},backend:n,attrs:{shape:[M.shape[0],1,1]}});return y.push(T),T}return M};if(x&&$.push(A(i,p)),w&&$.push(A(o,p)),I){let M=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));$.push(M),y.push(M)}return $};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=pE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(g.strideWidth<=2&&f==="channelsLast"&&X().getBool("WEBGL_EXP_CONV")){let $=h?mc(h,!0):null,A=new uE(g,x,$,w,I),M=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],D=N();b=n.runWebGLProgram(A,D,"float32",M)}else if(X().getBool("WEBGL_CONV_IM2COL"))b=cE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let $=h?mc(h,!1):null,A=new lE(g,x,$,w,I),M=N();b=n.runWebGLProgram(A,M,"float32")}let _=he({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach($=>n.disposeIntermediateTensorInfo($)),_}var jee={kernelName:li,backendName:"webgl",kernelFunc:Hee};function qee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=C.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),b=X().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=c?mc(c,b):null,x=[r,s],w=i!=null,I=o!=null,N=c==="leakyrelu";if(w&&x.push(i),I&&x.push(o),N){let M=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(M),m.push(M)}let _;b?_=new mE(g,w,y,I,N):_=new hE(g,w,y,I,N);let $=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],A=n.runWebGLProgram(_,x,"float32",$);return m.forEach(M=>n.disposeIntermediateTensorInfo(M)),A}var Kee={kernelName:ui,backendName:"webgl",kernelFunc:qee},Xee=class{constructor(e,t,n,a){this.sliceDim=e,this.strides=t,this.paramsShape=a,this.variableNames=["x","indices"],this.outputShape=n;let r=ut(t.length),s=ut(n.length),i=this.sliceDim>1?"strides[j]":"strides",o=ut(a.length),l=a.length>1?"paramsShape[j]":"paramsShape";this.userCode=`
|
|
${r} strides = ${r}(${this.strides});
|
|
${o} paramsShape = ${o}(${this.paramsShape});
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
bool out_of_bounds = false;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
out_of_bounds = out_of_bounds || index < 0;
|
|
out_of_bounds = out_of_bounds || index >= ${l};
|
|
flattenIndex += index * ${i};
|
|
}
|
|
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Yee(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(a.shape),[l,u,p,d]=C.prepareAndValidate(a,r),c=he({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=he({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let b=n.readSync(r.dataId),y=n.bufferSync(a),x=sZ(b,y,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new Xee(i,d,[u,p],a.shape),f=n.runWebGLProgram(m,[h,c],h.dtype),g=he({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var Zee={kernelName:Jl,backendName:"webgl",kernelFunc:Yee},Jee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ut(this.rank),a=Qee(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${a}));
|
|
}
|
|
`}};function Qee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function bE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0];if(X().get("DEBUG")){let y=n.readSync(s.dataId),x=r.shape[l];for(let w=0;w<y.length;++w){let I=y[w];v.assert(I<=x-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${x-1}]`)}}let u=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),d=[],c=he({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=he({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=n.bufferSync(h),x=n.bufferSync(c),w=iZ(x,y,m);return d.forEach(I=>n.disposeIntermediateTensorInfo(I)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new Jee(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let b=he({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var ete={kernelName:Zl,backendName:"webgl",kernelFunc:bE},tte="return float(a > b);",nte=`
|
|
return vec4(greaterThan(a, b));
|
|
`,ate=pn({opSnippet:tte,packedOpSnippet:nte,cpuKernelImpl:oZ,dtype:"bool"}),rte={kernelName:Ql,backendName:"webgl",kernelFunc:ate},ste="return float(a >= b);",ite=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,ote=pn({opSnippet:ste,packedOpSnippet:ite,dtype:"bool",cpuKernelImpl:lZ}),lte={kernelName:Bi,backendName:"webgl",kernelFunc:ote};function ute(e){let{inputs:t,backend:n}=e,{input:a}=t;return gE(a,!0,n)}var pte={kernelName:Fm,backendName:"webgl",kernelFunc:ute},cte="return float(!isnan(x) && !isinf(x));",dte=Ze({opSnippet:cte,dtype:"bool"}),hte={kernelName:eu,backendName:"webgl",kernelFunc:dte},mte="return float(isinf(x));",fte=Ze({opSnippet:mte,dtype:"bool"}),gte={kernelName:tu,backendName:"webgl",kernelFunc:fte},bte="return float(isnan(x));",yte=Ze({opSnippet:bte,dtype:"bool"}),xte={kernelName:nu,backendName:"webgl",kernelFunc:yte},vte="return float(a < b);",wte=`
|
|
return vec4(lessThan(a, b));
|
|
`,kte=pn({opSnippet:vte,packedOpSnippet:wte,cpuKernelImpl:uZ,dtype:"bool"}),Ite={kernelName:au,backendName:"webgl",kernelFunc:kte},Tte="return float(a <= b);",Ste=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,Nte=pn({opSnippet:Tte,packedOpSnippet:Ste,cpuKernelImpl:pZ,dtype:"bool"}),Cte={kernelName:ru,backendName:"webgl",kernelFunc:Nte};function _te(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=cZ(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var Ete={kernelName:Rm,backendName:"webgl",kernelFunc:_te},$te=Qu+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,Ate=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,Fte=Ze({opSnippet:$te,packedOpSnippet:Ate,cpuKernelImpl:dZ}),Dte={kernelName:Gi,backendName:"webgl",kernelFunc:Fte},Rte=Qu+`
|
|
return log(1.0 + x);
|
|
`,Mte=Ze({opSnippet:Rte}),Pte={kernelName:su,backendName:"webgl",kernelFunc:Mte},Ote="return float(a >= 1.0 && b >= 1.0);",Lte=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,zte=pn({opSnippet:Ote,packedOpSnippet:Lte,dtype:"bool"}),Wte={kernelName:iu,backendName:"webgl",kernelFunc:zte},Bte="return float(!(x >= 1.0));",Vte=Ze({opSnippet:Bte}),Ute={kernelName:ou,backendName:"webgl",kernelFunc:Vte},Gte="return float(a >= 1.0 || b >= 1.0);",Hte=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,jte=pn({opSnippet:Gte,packedOpSnippet:Hte,dtype:"bool"}),qte={kernelName:lu,backendName:"webgl",kernelFunc:jte},Kte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},Xte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},Yte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=X().getBool("WEBGL_PACK_NORMALIZATION")?new Xte(r.shape,s,i,o,l):new Kte(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},Zte={kernelName:Sc,backendName:"webgl",kernelFunc:Yte},Jte=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Qte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new Jte(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},ene={kernelName:Mm,backendName:"webgl",kernelFunc:Qte};function tne(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=he({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=$o(i,e.dtype,"max",a),l=he({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function yE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let y=n.texData.get(h.dataId).values,x=new Array(o);for(let N=0;N<x.length;N++)x[N]=r.shape[p[N]];let w=d1(y,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let I=n.texData.get(h.dataId);I.values=w}else h=ag(r,p,n);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[m,f]=C.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=C.expandShapeToKeepDim(m,l));let b;if(c){let y=n.texData.get(h.dataId).values,x=hZ(y,v.sizeFromShape(f),g,r.dtype);b=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(b.dataId);w.values=x}else b=tne(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),b}var nne={kernelName:Hi,backendName:"webgl",kernelFunc:yE},ane=Y_+`
|
|
return max(a, b);
|
|
`,rne=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+ng+`
|
|
return result;
|
|
`,sne=pn({opSnippet:ane,packedOpSnippet:rne,cpuKernelImpl:mZ}),ine={kernelName:ji,backendName:"webgl",kernelFunc:sne};function one(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Ku(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return na({inputs:{x:r},backend:n});let d=new fc(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var lne={kernelName:qi,backendName:"webgl",kernelFunc:one};function une(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=C.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new m1(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var pne={kernelName:Nc,backendName:"webgl",kernelFunc:une},cne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},dne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${d}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function hne(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,d,u,p),h=new m1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new dne(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var mne={kernelName:Om,backendName:"webgl",kernelFunc:hne};function fne(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Ku([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=C.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new fc(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new cne(c),b=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),b}var gne={kernelName:Pm,backendName:"webgl",kernelFunc:fne};function bne(e,t,n,a){let r=new fc(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new fc(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var yne={kernelName:Lm,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=C.computePool2DInfo(a.shape,r,s,u,i),[d,c]=bne(a,o,p,l);return[d,c]}};function xne(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=he({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=$o(i,"float32","mean",a),l=he({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var vne={kernelName:Ki,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,p=C.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let _=0;_<w.length;_++)w[_]=a.shape[p[_]];let I=d1(x,a.shape,a.dtype,p,w);m=i.makeTensorInfo(w,a.dtype);let N=i.texData.get(m.dataId);N.values=I}else m=ag(a,p,i);h.push(m),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=C.computeOutAndReduceShapes(m.shape,u),b=f;r&&(b=C.expandShapeToKeepDim(f,l));let y=xne(m,g,b,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return y}};function wne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[c,h]=C.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=he({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=$o(f,f.dtype,"min",n),b;if(i){let y=C.expandShapeToKeepDim(c,l);b=he({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=he({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var kne={kernelName:Xi,backendName:"webgl",kernelFunc:wne},Ine=Y_+`
|
|
return min(a, b);
|
|
`,Tne=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+ng+`
|
|
return result;
|
|
`,Sne=pn({opSnippet:Ine,packedOpSnippet:Tne,cpuKernelImpl:fZ}),Nne={kernelName:Yi,backendName:"webgl",kernelFunc:Sne},Cne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=ut(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},_ne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=ut(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=Tn("rc",a),l=Tn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},Ene=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new _ne(a.shape,r,s):new Cne(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},$ne={kernelName:Zi,backendName:"webgl",kernelFunc:Ene},Ane=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Fne=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+ng+`
|
|
return result;
|
|
`,Dne=pn({opSnippet:Ane,packedOpSnippet:Fne}),Rne={kernelName:uu,backendName:"webgl",kernelFunc:Dne},Mne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},Pne=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,One=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,xE=pn({opSnippet:Pne,packedOpSnippet:One,checkOutOfBounds:!0}),Lne={kernelName:Mi,backendName:"webgl",kernelFunc:xE},SI="return a - b;",vE=pn({opSnippet:SI,packedOpSnippet:SI,supportsComplex:!0,cpuKernelImpl:DZ}),zne={kernelName:yo,backendName:"webgl",kernelFunc:vE};function wE(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=v.parseAxisParam([s],r.shape),o=yE({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=he({inputs:{x:o},backend:n,attrs:{shape:l}}),p=vE({inputs:{a:r,b:u},backend:n}),d=fE({inputs:{x:p},backend:n}),c=rg({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=he({inputs:{x:c},backend:n,attrs:{shape:l}}),m=xE({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var Wne={kernelName:go,backendName:"webgl",kernelFunc:wE};function Bne(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:wE({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new Mne(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var Vne={kernelName:zm,backendName:"webgl",kernelFunc:Bne},Une=Fa+`
|
|
return -x;
|
|
`,Gne=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Hne(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=bZ(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ti(a.shape,Gne):r=new Cr(a.shape,Une),n.runWebGLProgram(r,[a],a.dtype)}var jne={kernelName:pu,backendName:"webgl",kernelFunc:Hne},qne=gr.nonMaxSuppressionV3Impl;function Kne(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=qne(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Xne={kernelName:du,backendName:"webgl",kernelFunc:Kne},Yne=gr.nonMaxSuppressionV4Impl;function Zne(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=Yne(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Jne={kernelName:hu,backendName:"webgl",kernelFunc:Zne},Qne=gr.nonMaxSuppressionV5Impl;function eae(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=Qne(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var tae={kernelName:mu,backendName:"webgl",kernelFunc:eae},nae=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},aae=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=v.sizeFromShape(r.shape),p=new nae(u,i,o,l),d=he({inputs:{x:r},backend:n,attrs:{shape:[u]}}),c=n.runWebGLProgram(p,[d],s);n.disposeIntermediateTensorInfo(d);let h=[...r.shape,i],m=he({inputs:{x:c},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(c),m},rae={kernelName:Qi,backendName:"webgl",kernelFunc:aae};function cm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=bd({inputs:{input:a},backend:n}),s=cm({inputs:{x:r},backend:n}),i=sg({inputs:{input:a},backend:n}),o=cm({inputs:{x:i},backend:n}),l=Cs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return yd({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var sae={kernelName:Du,backendName:"webgl",kernelFunc:cm};function kE(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=bd({inputs:{input:a},backend:n}),s=kE({inputs:{x:r},backend:n}),i=sg({inputs:{input:a},backend:n}),o=cm({inputs:{x:i},backend:n}),l=Cs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return yd({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var iae={kernelName:fu,backendName:"webgl",kernelFunc:kE};function oae(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return $x({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=$x({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=oE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var lae={kernelName:gu,backendName:"webgl",kernelFunc:oae},uae=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=ut(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},pae=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=ut(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=Tn("rc",a),l=Tn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${d[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},IE=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(v.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return yd({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pae(r.shape,s,i):new uae(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},cae={kernelName:eo,backendName:"webgl",kernelFunc:IE},dae=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,hae=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+ng+`
|
|
return result;
|
|
`,mae=pn({opSnippet:dae,packedOpSnippet:hae}),fae={kernelName:to,backendName:"webgl",kernelFunc:mae};function gae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=v.parseAxisParam(s,r.shape),p=u,d=C.getAxesPermutation(p,o),c=r;d!=null&&(c=Nn({inputs:{x:r},backend:n,attrs:{perm:d}}),p=C.getInnerMostAxes(p.length,o),l.push(c)),C.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:b}=xZ(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,b,f)}else{let[m,f]=C.computeOutAndReduceShapes(c.shape,p),g=v.sizeFromShape(f),b=he({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),y=Km(r.dtype),x=$o(b,y,"prod",n);h=he({inputs:{x},backend:n,attrs:{shape:m}}),l.push(b),l.push(x)}if(i){l.push(h);let m=C.expandShapeToKeepDim(h.shape,u);h=he({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var bae={kernelName:ao,backendName:"webgl",kernelFunc:gae};function yae(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=n.readSync(i.dataId),c=o.map(g=>n.readSync(g.dataId)),h=o.map(g=>g.shape),[m,f]=vZ(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var xae={kernelName:Wm,backendName:"webgl",kernelFunc:yae},TE=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=wZ(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},vae={kernelName:Cc,backendName:"webgl",kernelFunc:TE},wae="return 1.0 / x;",kae=Ze({opSnippet:wae}),Iae={kernelName:bu,backendName:"webgl",kernelFunc:kae},Tae=Fa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Sae=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Nae=Ze({opSnippet:Tae,packedOpSnippet:Sae}),Cae={kernelName:ro,backendName:"webgl",kernelFunc:Nae},_ae=Fa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Eae=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,$ae=Ze({opSnippet:_ae,packedOpSnippet:Eae}),Aae={kernelName:oo,backendName:"webgl",kernelFunc:$ae},Fae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Dae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Rae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Dae(r.shape,l,u,s,i):new Fae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var Mae={kernelName:io,backendName:"webgl",kernelFunc:Rae},Pae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Oae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Pae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Lae={kernelName:Um,backendName:"webgl",kernelFunc:Oae},zae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Wae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Bae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Wae(r.shape,l,u,s,i):new zae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var Vae={kernelName:so,backendName:"webgl",kernelFunc:Bae},Uae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Gae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Uae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Hae={kernelName:Vm,backendName:"webgl",kernelFunc:Gae},jae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},qae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=Tn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ut(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${p(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((b,y)=>c(y,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Kae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return na({inputs:{x:r},backend:n});let l=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qae(r.shape,o):new jae(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var Xae={kernelName:lo,backendName:"webgl",kernelFunc:Kae},Yae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Zae={kernelName:Ru,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Yae(a.shape,s),[u,p]=C.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},Jae=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Qae=Ze({opSnippet:Jae}),ere={kernelName:uo,backendName:"webgl",kernelFunc:Qae},tre="return inversesqrt(x);",nre=Ze({opSnippet:tre,cpuKernelImpl:kZ}),are={kernelName:po,backendName:"webgl",kernelFunc:nre},SE=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ut(r.length),l=ut(s.length),u="";n===1?u="i":n===2&&(u="i, j");let p=`getIndices(${u})`,d="";a===1?d="i":a===2&&(d="i, coords[1]");let c=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function rre(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=C.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=he({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=he({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new SE(l,o,h.shape.length,m.shape.length,p,c),b=n.runWebGLProgram(g,[m,h,f],m.dtype),y=he({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(f),y}var sre={kernelName:xu,backendName:"webgl",kernelFunc:rre},ire=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=X().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=`
|
|
int findBound(int batch, float value) {
|
|
int left = 0;
|
|
int right = numInputs;
|
|
int mid;
|
|
${i}
|
|
mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${o} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int valueIndex = coords[1];
|
|
|
|
float value = getValues(batch, valueIndex);
|
|
|
|
setOutput(float(findBound(batch, value)));
|
|
}
|
|
`}};function ore(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new ire(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var lre={kernelName:Gm,backendName:"webgl",kernelFunc:ore},ure=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function pre(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new ure(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ha(r.dtype,s.dtype))}var cre={kernelName:vu,backendName:"webgl",kernelFunc:pre},dre=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,hre=Ze({opSnippet:dre}),mre={kernelName:wu,backendName:"webgl",kernelFunc:hre},fre=Qu+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,gre=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,bre=Ze({opSnippet:fre,packedOpSnippet:gre,cpuKernelImpl:TZ}),yre={kernelName:ho,backendName:"webgl",kernelFunc:bre},xre=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,vre=Ze({opSnippet:xre}),wre={kernelName:Tu,backendName:"webgl",kernelFunc:vre},kre=Qu+`
|
|
return sin(x);
|
|
`,Ire=Ze({opSnippet:kre}),Tre={kernelName:co,backendName:"webgl",kernelFunc:Ire},Sre=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Nre=Ze({opSnippet:Sre}),Cre={kernelName:Iu,backendName:"webgl",kernelFunc:Nre},_re=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Ere=Ze({opSnippet:_re}),$re={kernelName:Su,backendName:"webgl",kernelFunc:Ere},Are=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,y)=>b*y),l=[[0,0]];l.push(...i);for(let b=1+s.length;b<r.shape.length;++b)l.push([0,0]);let u=[],p=IE({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=C.getReshaped(p.shape,s,o,!1),c=C.getPermuted(d.length,s.length,!1),h=C.getReshapedPermuted(p.shape,s,o,!1),m=he({inputs:{x:p},backend:n,attrs:{shape:d}}),f=Nn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=he({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},Fre={kernelName:Nu,backendName:"webgl",kernelFunc:Are};function Dre(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=NZ(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var Rre={kernelName:_c,backendName:"webgl",kernelFunc:Dre};function Mre(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=CZ(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var Pre={kernelName:_u,backendName:"webgl",kernelFunc:Mre};function Ore(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=j_(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var Lre={kernelName:Ec,backendName:"webgl",kernelFunc:Ore};function zre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=j_(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var Wre={kernelName:$c,backendName:"webgl",kernelFunc:zre};function Bre(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=C.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let b=n.bufferSync(r),y=n.bufferSync(s),x=v.decodeString(n.readSync(i.dataId)[0]),w=IZ(b,y,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,w.dtype,w.values)}let m=new SE(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=he({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var Vre={kernelName:Hm,backendName:"webgl",kernelFunc:Bre};function Ure(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=ep({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var Gre={kernelName:Cu,backendName:"webgl",kernelFunc:Ure},NI="return sqrt(x);",Hre=Ze({opSnippet:NI,packedOpSnippet:NI,cpuKernelImpl:_Z}),jre={kernelName:mo,backendName:"webgl",kernelFunc:Hre},qre="return x * x;",Kre=Ze({opSnippet:qre}),Xre={kernelName:Ac,backendName:"webgl",kernelFunc:Kre},CI="return (a - b) * (a - b);",Yre=pn({opSnippet:CI,packedOpSnippet:CI}),Zre={kernelName:bo,backendName:"webgl",kernelFunc:Yre};function Jre({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Fa+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Cr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var Qre={kernelName:bs,backendName:"webgl",kernelFunc:Jre},ese=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=ut(n.length),s=ut(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function tse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=he({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let _=qt.computeOutShape(y,x,w),$=ep({inputs:{x:r},backend:n,attrs:{begin:y,size:_}});I=he({inputs:{x:$},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo($)}else if(n.shouldExecuteOnCPU([r])){let _=n.readSync(r.dataId),$=Le(r.shape,r.dtype,_),A=EZ(h,$,w,y);I=n.makeTensorInfo(m,r.dtype,A.values)}else{let _=new ese(y,w,h);I=n.runWebGLProgram(_,[r],r.dtype)}let N=he({inputs:{x:I},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(I),N}var nse={kernelName:Eu,backendName:"webgl",kernelFunc:tse};function ase(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=$Z(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var rse={kernelName:Fc,backendName:"webgl",kernelFunc:ase};function sse(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=AZ(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var ise={kernelName:Dc,backendName:"webgl",kernelFunc:sse};function ose(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=FZ(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var lse={kernelName:Rc,backendName:"webgl",kernelFunc:ose},use="return tan(x);",pse=Ze({opSnippet:use}),cse={kernelName:xo,backendName:"webgl",kernelFunc:pse},dse=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,hse=Ze({opSnippet:dse}),mse={kernelName:vo,backendName:"webgl",kernelFunc:hse},fse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=ut(this.rank),r=gse(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function gse(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function NE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>v.decodeString(d)):o,u=Le(r.shape,r.dtype,l),p=RZ(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new fse(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var bse={kernelName:gs,backendName:"webgl",kernelFunc:NE},yse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},xse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function js(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function _I(e){let t=1;for(;t<e;)t*=2;return t}function vse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=X().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=X().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let A=n.readSync(r.dataId),[M,D]=MZ(A,u,r.dtype,s,i);return[n.makeTensorInfo(M.shape,M.dtype,M.values),n.makeTensorInfo(D.shape,D.dtype,D.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,yd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=v.sizeFromShape(u)/p,f=he({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&js(n,h);let g=_I(s),b=_I(p),y=null,x=()=>y===null?[f,f]:[f,y],w=(A,M,D)=>{let T=x(),P=new yse(D),U=[[p],[y===null?1:0],[Number.NEGATIVE_INFINITY],[A],[M]],j=y;y=n.runWebGLProgram(P,T,"int32",U),js(n,j)};for(let A=1;A<g;A*=2){let M=A*2;for(let D=A;D>=1;D/=2)w(M,D,[m,b])}for(let A=b;A>g;A/=2){let M=x(),D=new xse([m,A/2]),T=[[p],[y===null?1:0],[g]],P=y;y=n.runWebGLProgram(D,M,"int32",T),js(n,P);let U=g/2,j=U*2;for(let q=U;q>=1;q/=2)w(j,q,y.shape)}let I=y;y=ep({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,s]}}),js(n,I);let N=bE({inputs:{x:f,indices:y},backend:n,attrs:{axis:1,batchDims:1}});js(n,f);let _=u.slice(0,-1);_.push(s),I=y,y=he({inputs:{x:y},attrs:{shape:_},backend:n}),js(n,I);let $=N;return N=he({inputs:{x:N},attrs:{shape:_},backend:n}),js(n,$),[N,y]}var wse={kernelName:$u,backendName:"webgl",kernelFunc:vse},kse=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Ise(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new kse(d,c,i,o,l,g);return n.runWebGLProgram(b,[r,s],"float32")}var Tse={kernelName:Au,backendName:"webgl",kernelFunc:Ise};function Sse(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Ku(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=PZ(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var Nse={kernelName:jm,backendName:"webgl",kernelFunc:Sse};function Cse(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=ep({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),b=he({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=b,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var _se={kernelName:Fu,backendName:"webgl",kernelFunc:Cse},Ese=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function $se(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=C.getAxesPermutation([u],o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=C.getInnerMostAxes(1,o)[0]);let c=C.segment_util.computeOutShape(d.shape,u,i),h=v.sizeFromShape([d.shape[u]]),m=he({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Km(r.dtype),g=(w,I,N,_,$)=>{let A=w.shape[0],M=w.shape[1],D=C.segment_util.segOpComputeOptimalWindowSize(M,$),T={windowSize:D,inSize:M,batchSize:A,numSegments:$},P=new Ese(T,I),U=n.compileAndRun(P,[w,N],_);if(l.push(U),U.shape[1]===$)return U;let j=TE({backend:n,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),q=NE({inputs:{x:j},backend:n,attrs:{reps:[M/D]}});return l.push(j),l.push(q),g(U,I,q,_,$)},b=g(m,"unsortedSegmentSum",s,f,i),y=he({inputs:{x:b},backend:n,attrs:{shape:c}}),x=y;if(p!=null){l.push(y);let w=C.getUndoAxesPermutation(p);x=Nn({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var Ase={kernelName:Mc,backendName:"webgl",kernelFunc:$se},Fse=[AJ,DJ,PJ,zJ,BJ,GJ,jJ,KJ,JJ,e9,a9,i9,u9,h9,g9,y9,v9,T9,N9,_9,F9,z9,B9,U9,X9,Z9,tQ,dJ,rQ,uQ,hQ,xQ,wQ,IQ,SQ,CQ,$Q,DQ,PQ,LQ,WQ,VQ,HQ,qQ,ZQ,QQ,nee,see,oee,cee,fee,xee,kee,See,Nee,_ee,$ee,Fee,Ree,Pee,Wee,Uee,jee,Kee,Zee,ete,rte,lte,cJ,pte,oQ,hte,gte,xte,mJ,Ite,Cte,Ete,Dte,Pte,Wte,Ute,qte,Zte,ene,nne,ine,lne,pne,mne,gne,yne,vne,kne,Nne,$ne,Rne,Vne,xJ,jne,Xne,Jne,tae,H9,rae,iae,lae,cae,fae,gJ,bae,xae,vae,j9,Lne,Iae,Cae,Aae,wJ,Mae,Lae,Vae,Hae,Xae,Zae,ere,are,sre,lre,cre,mre,yre,wre,Tre,Cre,O9,Wne,$re,Fre,Rre,Pre,Lre,Wre,Vre,Gre,jre,Xre,Zre,Qre,nse,rse,ise,lse,zne,_J,cse,mse,bse,wse,Tse,EJ,Nse,_se,Ase,sae];for(let e of Fse)Pc(e);var At;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(At||(At={}));var bc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(bc||(bc={}));var CE;function Dse(e){CE=e.wasm.cwrap(oi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Rse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let $=n.dataIdMap.get(i.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);m=$.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=bc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let b=l?r.shape[2]:r.shape[1],y=u?s.shape[1]:s.shape[2],x=Mu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),w=n.makeOutput([...x,b,y],r.dtype),I=n.dataIdMap.get(w.dataId).id,N=new Uint8Array(new Int32Array(r.shape).buffer),_=new Uint8Array(new Int32Array(s.shape).buffer);return CE(c,N,r.shape.length,h,_,s.shape.length,l,u,g,m,f,d||0,I),w}var Mse={kernelName:oi,backendName:"wasm",setupFunc:Dse,kernelFunc:Rse};function rn(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,At[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var Pse=rn(Al);function cn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=C.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(v.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),b=new Uint8Array(new Int32Array(p.shape).buffer),y=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,b,p.shape.length,At[u.dtype],y),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Ose=!0,Lse=cn(ms,Ose),_E;function zse(e){_E=e.wasm.cwrap(Ii,null,["array","number","number","number"])}function Wse(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return _E(s,r.length,At[a.dtype],i),a}var Bse={kernelName:Ii,backendName:"wasm",setupFunc:zse,kernelFunc:Wse};function ig(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Vse={kernelName:Vi,backendName:"wasm",kernelFunc:ig},EE;function Use(e){EE=e.wasm.cwrap(_r,null,["number","array","number","number","number","array","number"])}function cs(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Hse(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Gse(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=ig({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return EE(p,h,l.shape.length,At[l.dtype],d,c,s.length),u}function Gse(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Hse(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var jse={kernelName:_r,backendName:"wasm",kernelFunc:cs,setupFunc:Use};function _s(e,t,n){let a=e.shape,r=e.shape.length,s=v.parseAxisParam(t,a),i=s,o=C.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=C.getInnerMostAxes(i.length,r),l=cs({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var $E;function qse(e){$E=e.wasm.cwrap(Rl,null,["number, number, number"])}function Kse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=_s(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;C.assertAxesAreInnerMostDims("all",p,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;$E(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=C.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var Xse={kernelName:Rl,backendName:"wasm",setupFunc:qse,kernelFunc:Kse},AE;function Yse(e){AE=e.wasm.cwrap(Ml,null,["number, number, number"])}function Zse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=_s(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;C.assertAxesAreInnerMostDims("any",p,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;AE(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=C.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var Jse={kernelName:Ml,backendName:"wasm",setupFunc:Yse,kernelFunc:Zse},FE;function Qse(e){FE=e.wasm.cwrap(Ti,null,["number","number","number","number","number"])}function eie(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:d}=_s(s,r,t);if(d){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(l=u,o=b)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=v.sizeFromShape(h.shape),g=l.shape[p[0]];return FE(o,At[l.dtype],f,g,m),d&&t.disposeData(u.dataId),h}var tie={kernelName:Ti,backendName:"wasm",kernelFunc:eie,setupFunc:Qse},DE;function nie(e){DE=e.wasm.cwrap(Si,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function aie(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=C.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.strideHeight,y=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let w=a.makeOutput(p.outShape,"float32"),I=a.dataIdMap.get(w.dataId).id;return DE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,I),w}var rie={kernelName:Si,backendName:"wasm",setupFunc:nie,kernelFunc:aie};function Un(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=v.sizeFromShape(a.shape),i=v.inferFromImplicitShape(r,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var sie={kernelName:yu,backendName:"wasm",kernelFunc:Un},RE;function iie(e){RE=e.wasm.cwrap(Ni,null,["number","array","number","number","array","number","number","number","number"])}function oie(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=Mu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=Un({inputs:{x:r},backend:n,attrs:{shape:x}}),N=Un({inputs:{x:s},backend:n,attrs:{shape:w}}),_=n.dataIdMap.get(I.dataId).id,$=n.dataIdMap.get(N.dataId).id,A=i?I.shape[2]:I.shape[1],M=o?N.shape[1]:N.shape[2],D=Math.max(g,b),T=n.makeOutput([D,A,M],I.dtype),P=n.dataIdMap.get(T.dataId).id,U=new Uint8Array(new Int32Array(I.shape).buffer),j=new Uint8Array(new Int32Array(N.shape).buffer);return RE(_,U,I.shape.length,$,j,N.shape.length,i,o,P),n.disposeData(I.dataId),n.disposeData(N.dataId),T.shape=y,T}var lie={kernelName:Ni,backendName:"wasm",setupFunc:iie,kernelFunc:oie};function wi(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=qt.parseSliceParams(t,n,a),o=qt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=v.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=qt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+v.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=sm(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)uie(l,p[0],c,s,i);else if(h===3)pie(l,p[0],p[1],c,s,i);else if(h===4)cie(l,p[0],p[1],p[2],c,s,i);else{let m=sm(l,s,i,t.shape,t.dtype);c.set(m)}return u}function uie(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function pie(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function cie(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let b=p;b<h;b++){let y=f*t+g*n+b*a+m;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var die={kernelName:ku,backendName:"wasm",kernelFunc:wi};function hie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((b,y)=>b*y),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),p=C.getReshapedPermuted(r.shape,s,o),d=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(p,i,s.length),h=Un({inputs:{x:r},backend:n,attrs:{shape:l}}),m=cs({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Un({inputs:{x:m},backend:n,attrs:{shape:p}}),g=wi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var mie={kernelName:Bl,backendName:"wasm",kernelFunc:hie};function tp(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var fie={kernelName:Ci,backendName:"wasm",kernelFunc:tp},gie=rn(_i),ME;function bie(e){ME=e.wasm.cwrap(fs,null,["number","number","number","number"])}function yie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return ME(o,s,i,u),l}var xie={kernelName:fs,backendName:"wasm",setupFunc:bie,kernelFunc:yie};function PE(e){let{inputs:t,backend:n}=e,a=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>v.sizeFromShape(h.shape)>0);if(s.length===1)return ig({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(C.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let w=v.sizeFromShape(x.shape.slice(a));return Un({inputs:{x},backend:n,attrs:{shape:[-1,w]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=C.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=G0(m,r,t[0].dtype,f),b=C.computeOutShape(s.map(x=>x.shape),a);i.shape=b;let y=n.dataIdMap.get(i.dataId);return y.stringBytes=C.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,a)),u=0,p=s.map(h=>{let m=v.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],b=h*g,y=d[f].subarray(b,b+g);c.set(y,m),m+=g}}return i}var vie={kernelName:Vl,backendName:"wasm",kernelFunc:PE},OE;function wie(e){OE=e.wasm.cwrap(Ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function kie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=C.convertConv2DDataFormat(c),m=C.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,b=m.padInfo.top,y=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,I=m.dilationHeight,N=m.dilationWidth,_=m.strideHeight,$=m.strideWidth,A=m.inChannels,M=m.outChannels,D=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let T=a.makeOutput(m.outShape,"float32"),P=a.dataIdMap.get(T.dataId).id;return OE(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,b,y,x,w,D,I,N,_,$,A,M,P),T}var Iie={kernelName:Ei,backendName:"wasm",setupFunc:wie,kernelFunc:kie},LE;function Tie(e){LE=e.wasm.cwrap($i,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Sie(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=C.convertConv2DDataFormat(l),h=C.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:b,inHeight:y,inWidth:x,outChannels:w,outHeight:I,outWidth:N,strideHeight:_,strideWidth:$}=h,A=f-1-h.padInfo.top,M=g-1-h.padInfo.left,D=h.dataFormat==="channelsLast",T=v.computeStrides(h.inShape),P=v.computeStrides(r.shape),[U,j,q]=v.computeStrides(s.shape),K=T[0],Y=D?T[1]:T[2],te=D?T[2]:1,re=D?1:T[1],J=P[0],ie=D?P[1]:P[2],ae=D?P[2]:1,oe=D?1:P[1],ue=t.makeOutput(h.inShape,"float32"),we=t.dataIdMap.get(ue.dataId).id,be=t.dataIdMap.get(r.dataId).id,Ie=t.dataIdMap.get(s.dataId).id;return LE(be,Ie,m,f,g,y,x,b,I,N,w,_,$,A,M,U,j,q,K,Y,te,re,J,ie,ae,oe,we),ue}var Nie={kernelName:$i,backendName:"wasm",setupFunc:Tie,kernelFunc:Sie},Cie=rn(Ai),_ie=rn(Fi),Ax;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Ax||(Ax={}));var zE;function Eie(e){zE=e.wasm.cwrap(Gl,null,["number","number","number","number","array","number","number","number","number","number"])}function $ie(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=tp({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,b=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,I=new Uint8Array(new Int32Array(o.shape).buffer);return zE(g,b,y,p,I,d,c,Ax[r],s,w),f!=null&&t.disposeData(f.dataId),x}var Aie={kernelName:Gl,backendName:"wasm",setupFunc:Eie,kernelFunc:$ie},WE;function Fie(e){WE=e.wasm.cwrap(Ul,null,["number","number","number","number","number","number"])}function Die(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),p=r;u!==null&&(p=cs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;WE(m,i?1:0,o?1:0,h,f,At[r.dtype]);let g=c;if(u!==null){let b=C.getUndoAxesPermutation(u);g=cs({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Rie={kernelName:Ul,backendName:"wasm",setupFunc:Fie,kernelFunc:Die},BE;function Mie(e){BE=e.wasm.cwrap(Di,null,["number","number","number","number","number","number"])}function Pie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),p=r;u!==null&&(p=cs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;BE(m,i?1:0,o?1:0,h,f,At[r.dtype]);let g=c;if(u!==null){let b=C.getUndoAxesPermutation(u);g=cs({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Oie={kernelName:Di,backendName:"wasm",setupFunc:Mie,kernelFunc:Pie},VE;function Lie(e){VE=e.wasm.cwrap(Hl,null,["number","number","number","array","number","array","array","number","number"])}function zie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return VE(g,s,i==="NHWC"?1:0,b,r.shape.length-1,y,x,m.length,w),f}var Wie={kernelName:Hl,backendName:"wasm",setupFunc:Lie,kernelFunc:zie},UE;function Bie(e){UE=e.wasm.cwrap(Ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Vie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=C.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,I=h.dilationWidth,N=h.strideHeight,_=h.strideWidth,$=h.inChannels,A=h.outChannels,M=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let D=a.makeOutput(h.outShape,"float32"),T=a.dataIdMap.get(D.dataId).id;return UE(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,b,y,x,M,w,I,N,_,$,A,T),D}var Uie={kernelName:Ri,backendName:"wasm",setupFunc:Bie,kernelFunc:Vie},Gie=rn(Pi),Hie=!1,jie=cn(ql,Hie,"bool"),qie=rn(Oi,"float32");function Fx(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Un({inputs:{x:r},backend:a,attrs:{shape:o}})}var Kie={kernelName:Kl,backendName:"wasm",kernelFunc:Fx};function GE(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Xie={kernelName:Tc,backendName:"wasm",kernelFunc:GE},HE;function Yie(e){HE=e.wasm.cwrap(Yl,null,["number","number","number","number","number","number"])}function Zie(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return HE(s,o,l,u,p,i),r}var Jie={kernelName:Yl,backendName:"wasm",kernelFunc:Zie,setupFunc:Yie},Qie=rn(Li),eoe=!1,toe=cn(zi,eoe),jE;function noe(e){jE=e.wasm.cwrap(Wi,null,["number","number","number","number","number","number","number"])}function aoe(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return jE(p,d,c,h,m,r,g),f}var roe={kernelName:Wi,backendName:"wasm",setupFunc:noe,kernelFunc:aoe},qE;function soe(e){qE=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ioe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=bc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);w=ae.id}let I=f.filterHeight,N=f.filterWidth,_=f.padInfo.top,$=f.padInfo.right,A=f.padInfo.bottom,M=f.padInfo.left,D=f.dilationHeight,T=f.dilationWidth,P=f.strideHeight,U=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Y=f.inHeight,te=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),J=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return qE(b,K,Y,te,y,I,N,w,_,$,A,M,q,D,T,P,U,j,x,g,ie,m||0,J),re}var ooe={kernelName:li,backendName:"wasm",setupFunc:soe,kernelFunc:ioe},KE;function loe(e){KE=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function uoe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=bc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);w=ae.id}let I=f.filterHeight,N=f.filterWidth,_=f.padInfo.top,$=f.padInfo.right,A=f.padInfo.bottom,M=f.padInfo.left,D=f.dilationHeight,T=f.dilationWidth,P=f.strideHeight,U=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Y=f.inHeight,te=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),J=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return KE(b,K,Y,te,y,I,N,w,_,$,A,M,q,D,T,P,U,j,x,g,ie,m||0,J),re}var poe={kernelName:ui,backendName:"wasm",setupFunc:loe,kernelFunc:uoe},XE;function coe(e){XE=e.wasm.cwrap(Jl,null,["number","number","number","number","number","number","array","number"])}function doe(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Qx.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return XE(c,At[a.dtype],h,i,d,o,m,f),u}var hoe={kernelName:Jl,backendName:"wasm",setupFunc:coe,kernelFunc:doe},YE;function moe(e){YE=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function foe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let _=0;_<u.length;++_){let $=u[_];v.assert($<=p-1&&$>=0,()=>`GatherV2: the index value ${$} is not in [0, ${p-1}]`)}let d=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Un({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),m=Un({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let b=c.shape.length-1,y=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,w=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),N=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer);return YE(y,At[r.dtype],I,b,x,d.batchSize,N,w),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var goe={kernelName:Zl,backendName:"wasm",setupFunc:moe,kernelFunc:foe},boe=!1,yoe=cn(Ql,boe,"bool"),xoe=!1,voe=cn(Bi,xoe,"bool"),ZE;function woe(e){ZE=e.wasm.cwrap(Ui,null,["number","number","number","number"])}function koe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;ZE(r,At[t.dtype],n,i)}return s}var Ioe={kernelName:Ui,backendName:"wasm",setupFunc:woe,kernelFunc:koe},Toe=!1,Soe=cn(au,Toe,"bool"),Noe=!1,Coe=cn(ru,Noe,"bool"),_oe=rn(Gi),Eoe=!1,$oe=cn(iu,Eoe,"bool"),Aoe=rn(ou),Foe=!1,Doe=cn(lu,Foe,"bool"),Roe=!1,Moe=cn(qI,Roe,"bool"),JE;function Poe(e){JE=e.wasm.cwrap(Hi,null,["number","number","number","number"])}function Ooe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=_s(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;C.assertAxesAreInnerMostDims("max",p,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;JE(o,At[i.dtype],g,y)}if(c&&t.disposeData(u.dataId),s){let y=C.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var Loe={kernelName:Hi,backendName:"wasm",setupFunc:Poe,kernelFunc:Ooe},zoe=!1,Woe=cn(ji,zoe),QE;function Boe(e){QE=e.wasm.cwrap(qi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Voe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=C.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.dilationHeight,y=p.dilationWidth,x=p.strideHeight,w=p.strideWidth,I=p.inChannels,N=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let _=a.makeOutput(p.outShape,"float32"),$=a.dataIdMap.get(_.dataId).id;return QE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,w,I,N,$),_}var Uoe={kernelName:qi,backendName:"wasm",setupFunc:Boe,kernelFunc:Voe},e$;function Goe(e){e$=e.wasm.cwrap(Ki,null,["number, number, number"])}function Hoe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t),m=d;if(h){let w=t.dataIdMap.get(p.dataId).id;w!==o&&(u=p,l=w,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=tp({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;e$(l,b,w)}if(h&&t.disposeData(p.dataId),s){let w=C.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var joe={kernelName:Ki,backendName:"wasm",setupFunc:Goe,kernelFunc:Hoe},t$;function qoe(e){t$=e.wasm.cwrap(Xi,null,["number","number","number","number"])}function Koe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;C.assertAxesAreInnerMostDims("min",d,m);let[f,g]=C.computeOutAndReduceShapes(u.shape,d),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;t$(l,At[i.dtype],b,x)}if(h&&t.disposeData(p.dataId),s){let x=C.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Xoe={kernelName:Xi,backendName:"wasm",setupFunc:qoe,kernelFunc:Koe},Yoe=!1,Zoe=cn(Yi,Yoe),Dx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Dx||(Dx={}));var n$;function Joe(e){n$=e.wasm.cwrap(Zi,null,["number","array","number","number","array","array","number","number"])}function Qoe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return n$(i,u,t.shape.length,At[t.dtype],c,h,Dx[r],l),o}var ele={kernelName:Zi,backendName:"wasm",kernelFunc:Qoe,setupFunc:Joe},tle=!0,nle=cn(Ji,tle),ale=rn(pu);function f1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var a$;function rle(e){a$=e.wasm.cwrap(du,"number",["number","number","number","number","number"])}function sle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=a$(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=f1(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var ile={kernelName:du,backendName:"wasm",setupFunc:rle,kernelFunc:sle},r$;function ole(e){r$=e.wasm.cwrap(hu,"number",["number","number","number","number","number","bool"])}function lle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=r$(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=f1(t,c);t.wasm._free(f);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var ule={kernelName:hu,backendName:"wasm",setupFunc:ole,kernelFunc:lle},s$;function ple(e){s$=e.wasm.cwrap(mu,"number",["number","number","number","number","number","number"])}function cle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=s$(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=f1(t,c);t.wasm._free(g);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([m],"float32",f);return[b,y]}var dle={kernelName:mu,backendName:"wasm",setupFunc:ple,kernelFunc:cle},hle=!1,mle=cn(cu,hle,"bool"),i$;function fle(e){i$=e.wasm.cwrap(Qi,null,["number","number","number","number","number"])}function gle(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=n.makeOutput([...r.shape,i],s),p=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return i$(d,i,o,l,p),u}var ble={kernelName:Qi,backendName:"wasm",setupFunc:fle,kernelFunc:gle};function yle(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var xle={kernelName:fu,backendName:"wasm",kernelFunc:yle};function vle(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Fx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Fx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=PE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var wle={kernelName:gu,backendName:"wasm",kernelFunc:vle},o$;function kle(e){o$=e.wasm.cwrap(eo,null,["number","array","number","number","array","array","number","number"])}function Ile(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(v.sizeFromShape(t.shape)===0)return GE({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return o$(i,u,t.shape.length,At[t.dtype],c,h,r,l),o}var l$={kernelName:eo,backendName:"wasm",kernelFunc:Ile,setupFunc:kle},Tle=!1,Sle=cn(to,Tle),u$;function Nle(e){u$=e.wasm.cwrap(no,null,["number","number","number"])}function Cle(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=tp({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return u$(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var _le={kernelName:no,backendName:"wasm",setupFunc:Nle,kernelFunc:Cle},p$;function Ele(e){p$=e.wasm.cwrap(ao,null,["number","number","number","number"])}function $le(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;p$(l,b,At[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=C.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Ale={kernelName:ao,backendName:"wasm",setupFunc:Ele,kernelFunc:$le},Fle=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=q0(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Dle={kernelName:Cc,backendName:"wasm",kernelFunc:Fle},Rle=!0,Mle=cn(Mi,Rle),Ple=rn(ro),Ole=rn(oo),c$;function Lle(e){c$=e.wasm.cwrap(io,null,["number","number","number","number","number","number","number","number","number","number"])}function zle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=tp({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let b=f.id,y=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return c$(b,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),y}var Wle={kernelName:io,backendName:"wasm",setupFunc:Lle,kernelFunc:zle},d$;function Ble(e){d$=e.wasm.cwrap(so,null,["number","number","number","number","number","number","number","number","number","number"])}function Vle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),b;g.dtype!=="float32"&&(b=tp({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(b.dataId));let y=g.id,x=t.dataIdMap.get(f.dataId).id;return d$(y,p,d,c,h,l,u,s?1:0,i?1:0,x),b!=null&&t.disposeData(b.dataId),f}var Ule={kernelName:so,backendName:"wasm",setupFunc:Ble,kernelFunc:Vle},h$;function Gle(e){h$=e.wasm.cwrap(lo,null,["number","array","number","array","number","number"])}function Hle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=v.parseAxisParam(s,r.shape);if(r.shape.length===0)return ig({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);h$(l,p,i.length,d,r.shape.length,u);let c=Un({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var jle={kernelName:lo,backendName:"wasm",kernelFunc:Hle,setupFunc:Gle},m$;function qle(e){m$=e.wasm.cwrap(Ru,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Kle(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=C.getImageCenter(o,c,h),b=i===0,y=255,x=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],w=new Uint8Array(new Int32Array(x).buffer);return m$(u,d,c,h,m,s,f,g,w,x.length,p),l}var Xle={kernelName:Ru,backendName:"wasm",kernelFunc:Kle,setupFunc:qle},Yle=rn(uo),Zle=rn(po),f$;function Jle(e){f$=e.wasm.cwrap(xu,null,["number","number","number","number","number","number","array","number","number"])}function Qle(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=ev.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return f$(h,m,At[s.dtype],l,u,p,f,c,g),o}var eue={kernelName:xu,backendName:"wasm",setupFunc:Jle,kernelFunc:Qle},g$;function tue(e){g$=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function nue(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:v.sizeFromShape(r.shape.slice(1));return g$(i,o,l,h,p),u}var aue={kernelName:vu,backendName:"wasm",kernelFunc:nue,setupFunc:tue},b$;function rue(e){b$=e.wasm.cwrap(ho,null,["number","number"])}function sue(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||b$(a,s),r}var iue={kernelName:"Sigmoid",backendName:"wasm",setupFunc:rue,kernelFunc:sue},oue=rn(co),y$;function lue(e){y$=e.wasm.cwrap(go,null,["number","number","number","number"])}function uue(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||y$(r,i,o,l),s}var pue={kernelName:go,backendName:"wasm",setupFunc:lue,kernelFunc:uue};function cue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=l$.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(u.shape,s,o,!1),d=C.getPermuted(p.length,s.length,!1),c=C.getReshapedPermuted(u.shape,s,o,!1),h=Un({inputs:{x:u},backend:n,attrs:{shape:p}}),m=cs({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Un({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var due={kernelName:Nu,backendName:"wasm",kernelFunc:cue},x$;function hue(e){x$=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function mue(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([u],"bool"),x=t.dataIdMap.get(y.dataId).id,w=t.makeOutput([o],a.dtype),I=t.dataIdMap.get(w.dataId).id,N=t.makeOutput([4],"int32"),_=t.dataIdMap.get(N.dataId).id,$=x$(d,c,At[r.dtype],o,u,l,h,f,b,x,I,_),A=t.readSync(N.dataId),M;switch(A[0]){case 1:{M=C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(A[1]);break}case 2:{M=C.getSparseFillEmptyRowsNegativeIndexErrorMessage(A[1],A[2]);break}case 3:M=C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(A[1],A[2],A[3]);break;default:M=""}if(t.disposeData(N.dataId),M)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(w.dataId),new Error(M);let D=m,T=g;return $!==p[0]&&(D=wi({inputs:{x:m},attrs:{begin:0,size:[$,l]},backend:t}),T=wi({inputs:{x:g},attrs:{begin:0,size:$},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[D,T,y,w]}var fue={kernelName:_c,backendName:"wasm",setupFunc:hue,kernelFunc:mue},v$;function gue(e){v$=e.wasm.cwrap(_u,null,["number","number","number","number","number","number","number"])}function bue(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=v.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;v$(i,o,l,u,c,m,g);let b=t.readSync(f.dataId),y;switch(b[0]){case 0:{y=C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=C.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=C.getSparseReshapeInputOutputMultipleErrorMessage(x,w);break}case 4:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=C.getSparseReshapeInputOutputMismatchErrorMessage(x,w);break}default:y=""}if(t.disposeData(f.dataId),y)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(y);return[d,h]}var yue={kernelName:_u,backendName:"wasm",setupFunc:gue,kernelFunc:bue},w$;function k$(e){w$=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function I$(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),b=n.dataIdMap.get(g.dataId).id;w$(d,At[r.dtype],r.shape[0],c,h,f,b,t,0);let y=n.readSync(g.dataId),x;switch(y[0]){case 0:{x=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:x=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function xue(e){return I$(e,!0)}var vue={kernelName:Ec,backendName:"wasm",setupFunc:k$,kernelFunc:xue};function wue(e){return I$(e,!1)}var kue={kernelName:$c,backendName:"wasm",setupFunc:k$,kernelFunc:wue};function Iue(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=wi({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var Tue={kernelName:Cu,backendName:"wasm",kernelFunc:Iue},Sue=rn(mo),Nue=rn(Ac),Cue=!0,_ue=cn(bo,Cue),T$;function Eue(e){T$=e.wasm.cwrap(bs,null,["number","number","number","number"])}function $ue(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return T$(i,r,At[s.dtype],l),o}var Aue={kernelName:bs,backendName:"wasm",setupFunc:Eue,kernelFunc:$ue},S$;function Fue(e){S$=e.wasm.cwrap(Eu,null,["number","array","number","array","array","array","array","array","number","number"])}function Due(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=Un({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let N=qt.computeOutShape(y,x,w),_=wi({inputs:{x:r},backend:t,attrs:{begin:y,size:N}});I=Un({inputs:{x:_},backend:t,attrs:{shape:m}}),t.disposeData(_.dataId)}else{let N=t.makeOutput(h,"float32"),_=t.dataIdMap.get(r.dataId).id,$=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(y).buffer),M=new Uint8Array(new Int32Array(x).buffer),D=new Uint8Array(new Int32Array(w).buffer),T=new Uint8Array(new Int32Array(h).buffer),P=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),U=t.dataIdMap.get(N.dataId).id;S$(_,$,r.shape.length,A,M,D,T,P,h.length,U),I=Un({inputs:{x:N},backend:t,attrs:{shape:m}}),t.disposeData(N.dataId)}return I}var Rue={kernelName:Eu,backendName:"wasm",setupFunc:Fue,kernelFunc:Due};function Mue(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=X0(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),b=t.dataIdMap.get(g.dataId);b.stringBytes=m;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(f),[g,y]}var Pue={kernelName:Fc,backendName:"wasm",kernelFunc:Mue};function Oue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=Y0(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var Lue={kernelName:Dc,backendName:"wasm",kernelFunc:Oue};function zue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=Z0(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var Wue={kernelName:Rc,backendName:"wasm",kernelFunc:zue},Bue=!0,Vue=cn(yo,Bue),N$;function Uue(e){N$=e.wasm.cwrap(fo,null,["number","number","number","number"])}function Gue(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;N$(l,b,At[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=C.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Hue={kernelName:fo,backendName:"wasm",setupFunc:Uue,kernelFunc:Gue},jue=rn(xo),que=rn(vo),C$;function Kue(e){C$=e.wasm.cwrap(gs,null,["number","array","number","array","number","number"])}function Xue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return C$(s,l,r.shape.length,u,o.length,At[p.dtype],d),p}var Yue={kernelName:gs,backendName:"wasm",setupFunc:Kue,kernelFunc:Xue},_$;function Zue(e){_$=e.wasm.cwrap($u,null,["number","array","number","number","number","bool","number","number"])}var Jue=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return _$(i,o,a.shape.length,At[a.dtype],r,s,p,c),[u,d]},Que={kernelName:$u,backendName:"wasm",setupFunc:Zue,kernelFunc:Jue},E$;function epe(e){E$=e.wasm.cwrap(Au,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function tpe(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),w=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,N=t.dataIdMap.get(s.dataId).id,_=i==="nearest"?1:2,$;switch(o){case"constant":$=1;break;case"reflect":$=2;break;case"wrap":$=3;break;case"nearest":$=4;break;default:$=1;break}return E$(I,N,s.shape[0]>1,p,m,f,h,c,d,b,r.shape.length-1,y,g.length-1,_,$,l,w),x}var npe={kernelName:Au,backendName:"wasm",setupFunc:epe,kernelFunc:tpe};function ape(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=wi({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var rpe={kernelName:Fu,backendName:"wasm",kernelFunc:ape};function spe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var ipe={kernelName:Du,backendName:"wasm",kernelFunc:spe},ope=[Mse,Pse,Lse,Bse,Xse,Jse,tie,rie,lie,mie,fie,gie,xie,vie,Iie,Nie,Cie,_ie,Aie,Rie,Oie,Wie,Uie,Gie,jie,qie,Kie,Xie,Jie,Qie,toe,roe,ooe,poe,hoe,goe,yoe,voe,Vse,Ioe,Soe,Coe,_oe,$oe,Aoe,Doe,Moe,Loe,Woe,Uoe,joe,Xoe,Zoe,ele,nle,ale,ile,ule,dle,mle,ble,xle,wle,l$,Sle,_le,Ale,Dle,Mle,Ple,Ole,sie,Wle,Ule,jle,Xle,Yle,Zle,eue,aue,iue,oue,die,pue,due,fue,yue,vue,kue,Tue,Sue,Nue,_ue,Aue,Rue,Pue,Lue,Wue,Vue,Hue,jue,que,Yue,Que,npe,jse,rpe,ipe];for(let e of ope)Pc(e);var Rx=X();Rx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Rx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Rx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var EI=ds(qF()),lpe=ds(KF()),$I=ds(XF()),AI=EI.default||EI,upe=$I.default||$I,$$=class extends yc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(A$),Mx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new mm(this,rr())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||v.sizeFromShape(s);let o=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return dpe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function ppe(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function FI(e,t,n){if(dm!=null)return dm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Qp!=null&&Qp[a]!=null?Qp[a]:n+a}async function cpe(){let[e,t]=await Promise.all([X().getAsync("WASM_HAS_SIMD_SUPPORT"),X().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=lpe.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?FI(e,t,Yp!=null?Yp:l):l+o},g1&&(r.instantiateWasm=ppe(FI(e,t,Yp!=null?Yp:"")));let s=!1;r.onAbort=()=>{s||ec||(ec=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&dm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+AI.toString()],{type:"text/javascript"}),i=AI(r)):i=upe(r),i.then(o=>{s=!0,ec=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function dpe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var hpe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],dm=null,Yp=null,Qp={},ec=!1,g1=!1;function mpe(e,t=!1){if(Jx("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),ec)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");dm=e,g1=t}function fpe(e,t=!1){if(ec)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Yp=e;else{Qp=e;let n=hpe.filter(a=>Qp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}g1=t}var A$=-1,Mx=-1;function gpe(e){A$=e}function bpe(){if(Mx===-1)throw new Error("WASM backend not initialized.");return Mx}var ype="3.20.0",xpe=2;Xm("wasm",async()=>{let{wasm:e}=await cpe();return new $$(e)},xpe);var vpe="3.20.0",wpe="3.20.0",kpe="3.20.0",Ipe="3.20.0",Tpe="3.20.0",Spe="3.20.0",Npe="3.20.0",Cpe="3.20.0",_pe={tfjs:vpe,"tfjs-core":wpe,"tfjs-data":kpe,"tfjs-layers":Ipe,"tfjs-converter":Tpe,"tfjs-backend-cpu":Spe,"tfjs-backend-webgl":Npe,"tfjs-backend-wasm":Cpe};var J$={};wy(J$,{AnchorPosition:()=>S1,DrawBox:()=>kd,DrawBoxOptions:()=>cg,DrawFaceLandmarks:()=>Ig,DrawFaceLandmarksOptions:()=>kg,DrawTextField:()=>zr,DrawTextFieldOptions:()=>lp,drawContour:()=>Mr,drawDetections:()=>Mpe,drawFaceExpressions:()=>Ppe,drawFaceLandmarks:()=>Lpe});function Mr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var F$={};wy(F$,{computeReshapedDimensions:()=>x1,getCenterPoint:()=>Do,isDimensions:()=>lg,isEven:()=>og,isFloat:()=>y1,isTensor:()=>Ao,isTensor1D:()=>Epe,isTensor2D:()=>b1,isTensor3D:()=>Pr,isTensor4D:()=>xa,isValidNumber:()=>tr,isValidProbablitiy:()=>np,range:()=>yr,round:()=>Fo});var Fn=class{constructor(t,n){if(!tr(t)||!tr(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new Fn(1/this.width,1/this.height)}};function Ao(e,t){return e instanceof $e&&e.shape.length===t}function Epe(e){return Ao(e,1)}function b1(e){return Ao(e,2)}function Pr(e){return Ao(e,3)}function xa(e){return Ao(e,4)}function y1(e){return e%1!==0}function og(e){return e%2===0}function Fo(e,t=2){let n=10**t;return Math.floor(e*n)/n}function lg(e){return e&&e.width&&e.height}function x1({width:e,height:t},n){let a=n/Math.max(t,e);return new Fn(Math.round(e*a),Math.round(t*a))}function Do(e){return e.reduce((t,n)=>t.add(n),new Oe(0,0)).div(new Oe(e.length,e.length))}function yr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function tr(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function np(e){return tr(e)&&e>=0&&e<=1}var Oe=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Oe(this.x+t.x,this.y+t.y)}sub(t){return new Oe(this.x-t.x,this.y-t.y)}mul(t){return new Oe(this.x*t.x,this.y*t.y)}div(t){return new Oe(this.x/t.x,this.y/t.y)}abs(){return new Oe(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Oe(Math.floor(this.x),Math.floor(this.y))}};var ct=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(tr)}static assertIsValidBox(t,n,a=!1){if(!ct.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(tr),s=[a.x,a.y,a.width,a.height].every(tr);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ct.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Oe(this.left,this.top)}get topRight(){return new Oe(this.right,this.top)}get bottomLeft(){return new Oe(this.left,this.bottom)}get bottomRight(){return new Oe(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ct({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ct({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new ct({x:t,y:n,width:a,height:r})}rescale(t){let n=lg(t)?t.width:t,a=lg(t)?t.height:t;return new ct({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new ct({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new ct({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new ct({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new ct({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var ap=class extends ct{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Es=class{constructor(t,n,a,r,s){this._imageDims=new Fn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ct(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ct(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Es(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var wt=class extends Es{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new wt(a,r,s)}};function D$(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function R$(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new ap(a,r,s,i)}function M$(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(D$(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function xr(e,t){return O(()=>{let[n,a,r]=t,s=En([...e.shape.slice(0,3),1],n,"float32"),i=En([...e.shape.slice(0,3),1],a,"float32"),o=En([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return ce(e,l)})}function P$(e,t=!1){return O(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,En(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>le(c,"float32"));return Qe(d,i)})}function Nbe(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function ug(e){return 1/(1+Math.exp(-e))}function _be(e){return Math.log(e/(1-e))}var rp=class extends ct{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var $pe=.5,Ape=.43,Fpe=.45,va=class{constructor(t,n,a=new Oe(0,0)){let{width:r,height:s}=n;this._imgDims=new Fn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Oe(r,s)).add(a))}get shift(){return new Oe(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Oe(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Oe(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof wt?t.box.floor():new ct(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Fpe),l=Do(t),u=Math.floor(Math.max(0,l.x-$pe*o)),p=Math.floor(Math.max(0,l.y-Ape*o));return new rp(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=R$(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var O$=class extends va{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Do([t[3],t[4]])]}};var sp=class extends va{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Do)}};var xd=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Fo(this.distance)})`:""}`}};var vd=class extends ct{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(ct.assertIsValidBox(n,a),!tr(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var Or=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new Or(t.label,n)}};var L$=class extends vd{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(vd.assertIsValidLabeledBox(n,a),!np(n.score)||!np(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function Lr(e){return e.detection instanceof wt}function ip(e,t){return{...e,...{detection:t}}}function v1(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function wd(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function pg(e){let t="";if(!e&&wd())try{e=NF("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function w1(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=pg();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function k1(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var sn;function Dpe(){if(!sn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return sn}function I1(e){sn=e}function T1(){return k1()?I1(v1()):wd()?I1(w1()):null}function Rpe(e){if(sn||T1(),!sn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=sn.Canvas,Image:n=sn.Image}=e;sn.Canvas=t,sn.Image=n,sn.createCanvasElement=e.createCanvasElement||(()=>new t),sn.createImageElement=e.createImageElement||(()=>new n),sn.ImageData=e.ImageData||sn.ImageData,sn.Video=e.Video||sn.Video,sn.fetch=e.fetch||sn.fetch,sn.readFile=e.readFile||sn.readFile}var at={getEnv:Dpe,setEnv:I1,initialize:T1,createBrowserEnv:v1,createFileSystem:pg,createNodejsEnv:w1,monkeyPatch:Rpe,isBrowser:k1,isNodejs:wd};T1();function op(e){return!at.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function aa(e){let{Canvas:t,CanvasRenderingContext2D:n}=at.getEnv();if(e instanceof n)return e;let a=op(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var S1=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(S1||{}),lp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},zr=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof zr?t.text:t,this.anchor=n,this.options=new lp(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=op(t),a=aa(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var cg=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new lp({...i,...s})}},kd=class{constructor(t,n={}){this.box=new ct(t),this.options=new cg(n)}draw(t){let n=aa(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new zr([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Mpe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof wt?a.score:Lr(a)?a.detection.score:void 0,s=a instanceof wt?a.box:Lr(a)?a.detection.box:new ct(a),i=r?`${Fo(r)}`:void 0;new kd(s,{label:i}).draw(e)})}function dg(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function z$(e){return new Promise((t,n)=>{(e instanceof at.getEnv().Canvas||dg(e))&&t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function W$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=at.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function up(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t?new Fn(e.naturalWidth,e.naturalHeight):e instanceof n?new Fn(e.videoWidth,e.videoHeight):new Fn(e.width,e.height)}function pp({width:e,height:t}){let{createCanvasElement:n}=at.getEnv(),a=n();return a.width=e,a.height=t,a}function hg(e,t){let{ImageData:n}=at.getEnv();if(!(e instanceof n)&&!dg(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||up(e),s=pp({width:a,height:r});return e instanceof n?aa(s).putImageData(e,0,0):aa(s).drawImage(e,0,0,a,r),s}async function B$(e,t){let n=t||at.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(xa(e)?1:0),i=O(()=>e.as3D(a,r,s).toInt());return await wo.toPixels(i,n),i.dispose(),n}function N1(e){let{Image:t,Canvas:n,Video:a}=at.getEnv();return e instanceof t||e instanceof n||e instanceof a}function V$(e,t,n=!1){let{Image:a,Canvas:r}=at.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return pp({width:1,height:1});let s=up(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=pp({width:t,height:t}),p=e instanceof r?e:hg(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&aa(u).drawImage(p,c,h,o,l),u}var Wr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Pr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(xa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof at.getEnv().Canvas?a:hg(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return yr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return x1({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,O(()=>{let a=yr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof $e){let o=xa(i)?i:mn(i);return o=P$(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Nr.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof at.getEnv().Canvas)return wo.fromPixels(V$(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Rt(a.map(s=>le(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function kt(e){if(e instanceof Wr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(op);return a.forEach((r,s)=>{if(!N1(r)&&!Pr(r)&&!xa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(xa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>N1(r)&&z$(r))),new Wr(a,Array.isArray(e))}async function Id(e,t){let{Canvas:n}=at.getEnv(),a=e;if(!(e instanceof n)){let i=await kt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await B$(o)}let r=aa(a);return t.map(i=>i instanceof wt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=pp({width:l,height:u});return l>0&&u>0&&aa(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function Td(e,t){if(!Pr(e)&&!xa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(xa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return O(()=>{let[n,a,r]=e.shape.slice(xa(e)?1:0);return t.map(o=>o instanceof wt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>Io(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function $s(e,t){let{fetch:n}=at.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function hve(e){let t=await $s(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return W$(n)}async function U$(e){return(await $s(e)).json()}async function yve(e){return new Float32Array(await(await $s(e)).arrayBuffer())}function G$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=at.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function Tve(e){let t=await $s(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return G$(n)}function mg(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function H$(e,t){let{manifestUri:n,modelBaseUri:a}=mg(e,t),r=await U$(n);return Sn.loadWeights(r,a)}function Ave(e,t,n=!1){let{width:a,height:r}=n?up(t):t;return e.width=a,e.height=r,{width:a,height:r}}var dn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof rs)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof rs))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Bn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await H$(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=at.getEnv(),{manifestUri:a,modelBaseUri:r}=mg(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=Sn.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof $e))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Kn(e,t,n){return O(()=>{let a=Ts(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Q(a,t.bias),a})}function fg(e,t,n=!1){return O(()=>{let a=Xe(n?Q(Dt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Kn(e,t.conv0,[2,2])),r=Kn(a,t.conv1,[1,1]),s=Xe(Q(a,r)),i=Kn(s,t.conv2,[1,1]);return Xe(Q(a,Q(r,i)))})}function Sd(e,t,n=!1,a=!0){return O(()=>{let r=Xe(n?Q(Dt(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Kn(e,t.conv0,a?[2,2]:[1,1])),s=Kn(r,t.conv1,[1,1]),i=Xe(Q(r,s)),o=Kn(i,t.conv2,[1,1]),l=Xe(Q(r,Q(s,o))),u=Kn(l,t.conv3,[1,1]);return Xe(Q(r,Q(s,Q(o,u))))})}function Ro(e,t,n="same",a=!1){return O(()=>{let r=Q(Dt(e,t.filters,[1,1],n),t.bias);return a?Xe(r):r})}function Dn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function cp(e,t){return(n,a,r,s)=>{let i=$a(e(n*a*r*r),[r,r,n,a]),o=Ke(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function gg(e,t){return(n,a,r)=>{let s=Ca(e(n*a),[n,a]),i=Ke(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Nd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function dp(e,t){return(n,a,r)=>{let s=$a(e(9*n),[3,3,n,1]),i=$a(e(n*a),[1,1,n,a]),o=Ke(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Nd(s,i,o)}}function hp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Nd(n,a,r)}}function ra(e,t){return(n,a,r)=>{let s=e[n];if(!Ao(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function Rn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function bg(e,t){let n=cp(e,t),a=dp(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function j$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Rn(e),{extractDenseBlock4Params:r}=bg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function yg(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function xg(e,t){let n=ra(e,t),a=yg(n),r=hp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function q$(e){let t=[],{extractDenseBlock4Params:n}=xg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return Dn(e,t),{params:a,paramMappings:t}}var mp=class extends dn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return O(()=>{let a=le(t.toBatchTensor(112,!0),"float32"),s=xr(a,[122.782,117.001,104.298]).div(255),i=Sd(s,n.dense0,!0);return i=Sd(i,n.dense1),i=Sd(i,n.dense2),i=Sd(i,n.dense3),i=ga(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await kt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return q$(t)}extractParams(t){return j$(t)}};function Cd(e,t){return O(()=>Q(Re(e,t.weights),t.bias))}function K$(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=Rn(e),o=gg(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function X$(e){let t=[],n=ra(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return Dn(e,t),{params:r,paramMappings:t}}function vg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var fp=class extends dn{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return O(()=>{let r=n instanceof Wr?this.faceFeatureExtractor.forwardInput(n):n;return Cd(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return K$(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=vg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),X$(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var Y$=["neutral","happy","sad","angry","fearful","disgusted","surprised"],As=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Y$.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return Y$.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var wg=class extends fp{constructor(t=new mp){super("FaceExpressionNet",t)}forwardInput(t){return O(()=>Qa(this.runNet(t)))}async forward(t){return this.forwardInput(await kt(t))}async predictExpressions(t){let n=await kt(t),a=await this.forwardInput(n),r=await Promise.all(mt(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new As(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Z$(e){return e.expressions instanceof As}function C1(e,t){return{...e,...{expressions:t}}}function Ppe(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof As?s:Z$(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=Lr(s)?s.detection.box.bottomLeft:a||new Oe(0,0);new zr(l.map(d=>`${d.expression} (${Fo(d.probability)})`),u).draw(e)})}function gp(e){return Lr(e)&&e.landmarks instanceof va&&e.unshiftedLandmarks instanceof va&&e.alignedRect instanceof wt}function Ope(e){let t=(o,l,u,p)=>Math.atan2(p-l,u-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,1/0),i=r.reduce((o,l)=>o>l._y?o:l._y,-1/0);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function _d(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new wt(e.detection.score,r.rescale(s.reverse()),s),o=Ope(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var kg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},Ig=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new kg(n)}draw(t){let n=aa(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof sp&&(n.strokeStyle=i,n.lineWidth=s,Mr(n,this.faceLandmarks.getJawOutline()),Mr(n,this.faceLandmarks.getLeftEyeBrow()),Mr(n,this.faceLandmarks.getRightEyeBrow()),Mr(n,this.faceLandmarks.getNose()),Mr(n,this.faceLandmarks.getLeftEye(),!0),Mr(n,this.faceLandmarks.getRightEye(),!0),Mr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function Lpe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof va?a:gp(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new Ig(r).draw(e)})}var Q$="1.7.4";function Bpe(e,t){let n=cp(e,t),a=dp(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function eA(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=Rn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Bpe(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};yr(t,0,1).forEach(b=>{h[`main_block_${b}`]=l(128,`middle_flow/main_block_${b}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function Vpe(e,t){let n=ra(e,t),a=yg(n),r=hp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function tA(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Vpe(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};yr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return Dn(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function nA(e,t,n){return Q(Dt(e,t.filters,n,"same"),t.bias)}function _1(e,t,n=!0){let a=n?Xe(e):e;return a=Kn(a,t.separable_conv0,[1,1]),a=Kn(Xe(a),t.separable_conv1,[1,1]),a=Mt(a,[3,3],[2,2],"same"),a=Q(a,nA(e,t.expansion_conv,[2,2])),a}function Upe(e,t){let n=Kn(Xe(e),t.separable_conv0,[1,1]);return n=Kn(Xe(n),t.separable_conv1,[1,1]),n=Kn(Xe(n),t.separable_conv2,[1,1]),n=Q(n,e),n}var Tg=class extends dn{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return O(()=>{let r=le(n.toBatchTensor(112,!0),"float32"),i=xr(r,[122.782,117.001,104.298]).div(255),o=Xe(nA(i,a.entry_flow.conv_in,[2,2]));return o=_1(o,a.entry_flow.reduction_block_0,!1),o=_1(o,a.entry_flow.reduction_block_1),yr(this._numMainBlocks,0,1).forEach(l=>{o=Upe(o,a.middle_flow[`main_block_${l}`])}),o=_1(o,a.exit_flow.reduction_block),o=Xe(Kn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await kt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return tA(n,this._numMainBlocks)}extractParams(n){return eA(n,this._numMainBlocks)}};function aA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Rn(e),r=gg(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function rA(e){let t=[],n=ra(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return Dn(e,t),{params:r,paramMappings:t}}var E1=(n=>(n.FEMALE="female",n.MALE="male",n))(E1||{});var Sg=class extends dn{constructor(n=new Tg(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return O(()=>{let r=n instanceof Wr?this.faceFeatureExtractor.forwardInput(n):n,s=ga(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=Cd(s,a.fc.age).as1D(),o=Cd(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return O(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Qa(r)}})}async forward(n){return this.forwardInput(await kt(n))}async predictAgeAndGender(n){let a=await kt(n),r=await this.forwardInput(a),s=mt(r.age),i=mt(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return aA(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=vg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),rA(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var bp=class extends fp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return O(()=>{let i=(d,c)=>Rt([En([68],d,"float32"),En([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(En([s,136],n,"float32")).sub(Rt(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Rt(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return O(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await kt(t))}async detectLandmarks(t){let n=await kt(t),a=O(()=>mt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>og(d)),u=o.filter((p,d)=>!og(d));return new sp(Array(68).fill(0).map((p,d)=>new Oe(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var yp=class extends bp{constructor(t=new mp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function sA(e){let t=[],{extractDenseBlock3Params:n}=xg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return Dn(e,t),{params:a,paramMappings:t}}function iA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Rn(e),{extractDenseBlock3Params:r}=bg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var Ng=class extends dn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return O(()=>{let a=le(t.toBatchTensor(112,!0),"float32"),s=xr(a,[122.782,117.001,104.298]).div(255),i=fg(s,n.dense0,!0);return i=fg(i,n.dense1),i=fg(i,n.dense2),i=ga(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await kt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return sA(t)}extractParams(t){return iA(t)}};var Cg=class extends bp{constructor(t=new Ng){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var oA=class extends yp{};function lA(e,t){return Q(W(e,t.weights),t.biases)}function $1(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Dt(e,s,n,r);return o=Q(o,i),o=lA(o,t.scale),a?Xe(o):o}function uA(e,t){return $1(e,t,[1,1],!0)}function A1(e,t){return $1(e,t,[1,1],!1)}function _g(e,t){return $1(e,t,[2,2],!0,"valid")}function Gpe(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(y1(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return O(()=>Ae($a(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=Ke(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=Ke(e(o)),p=Ke(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function pA(e){let{extractWeights:t,getRemainingWeights:n}=Rn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Gpe(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),b=s(589824,256,3,"conv256_down",!0),y=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),w=s(589824,256,3,"conv256_down_out"),I=O(()=>Ae(Ca(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:x,conv256_down_out:w,fc:I},paramMappings:a}}function Hpe(e,t){let n=ra(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function cA(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Hpe(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),b=a("conv256_2"),y=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!b1(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let w={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:x};return Dn(e,t),{params:w,paramMappings:t}}function nr(e,t){let n=uA(e,t.conv1);return n=A1(n,t.conv2),n=Q(n,e),n=Xe(n),n}function Ed(e,t){let n=_g(e,t.conv1);n=A1(n,t.conv2);let a=ga(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=Qe([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=Qe([n,p],2)}return a=s?Qe([a,r],3):a,n=Q(a,n),n=Xe(n),n}var xp=class extends dn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return O(()=>{let a=le(t.toBatchTensor(150,!0),"float32"),s=xr(a,[122.782,117.001,104.298]).div(255),i=_g(s,n.conv32_down);i=Mt(i,3,2,"valid"),i=nr(i,n.conv32_1),i=nr(i,n.conv32_2),i=nr(i,n.conv32_3),i=Ed(i,n.conv64_down),i=nr(i,n.conv64_1),i=nr(i,n.conv64_2),i=nr(i,n.conv64_3),i=Ed(i,n.conv128_down),i=nr(i,n.conv128_1),i=nr(i,n.conv128_2),i=Ed(i,n.conv256_down),i=nr(i,n.conv256_1),i=nr(i,n.conv256_2),i=Ed(i,n.conv256_down_out);let o=i.mean([1,2]);return Re(o,n.fc)})}async forward(t){return this.forwardInput(await kt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await kt(t),a=O(()=>mt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return cA(t)}extractParams(t){return pA(t)}};function aIe(e){let t=new xp;return t.extractWeights(e),t}function F1(e,t){return{...e,...{descriptor:t}}}function oIe(e){return typeof e.age=="number"}function D1(e,t){return{...e,...{age:t}}}function cIe(e){return(e.gender==="male"||e.gender==="female")&&np(e.genderProbability)}function R1(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function jpe(e,t){function n(l,u){let p=$a(e(9*l),[3,3,l,1]),d=Ke(e(l)),c=Ke(e(l)),h=Ke(e(l)),m=Ke(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=$a(e(l*u*p*p),[p,p,l,u]),m=Ke(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),b=s(512,512,"mobilenetv1/conv_9"),y=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),w=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:b,conv_10:y,conv_11:x,conv_12:w,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),w=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),N=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),_=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),$=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),A=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),M=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),D=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:x},box_predictor_2:{box_encoding_predictor:w,class_predictor:I},box_predictor_3:{box_encoding_predictor:N,class_predictor:_},box_predictor_4:{box_encoding_predictor:$,class_predictor:A},box_predictor_5:{box_encoding_predictor:M,class_predictor:D}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function dA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Rn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=jpe(n,t),i=r(),o=s(),u={extra_dim:Vc(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function qpe(e,t){let n=ra(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function hA(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=qpe(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Pr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return Dn(e,t),{params:s,paramMappings:t}}function Da(e,t,n){return O(()=>{let a=Dt(e,t.filters,n,"same");return a=Q(a,t.batch_norm_offset),tn(a,0,6)})}var Kpe=.0010000000474974513;function Xpe(e,t,n){return O(()=>{let a=ws(e,t.filters,n,"same");return a=vs(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Kpe),tn(a,0,6)})}function Ype(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function mA(e,t){return O(()=>{let n,a=Da(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Ype(o);a=Xpe(a,s.depthwise_conv,l),a=Da(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Zpe(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),b=Math.min(o,d),y=Math.max(g-m,0)*Math.max(b-f,0);return y/(c+h-y)}function fA(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=Zpe(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function Jpe(e){let t=mt(Ae(e,[1,0])),n=[ce(t[2],t[0]),ce(t[3],t[1])],a=[Q(t[0],fe(n[0],2)),Q(t[1],fe(n[1],2))];return{sizes:n,centers:a}}function Qpe(e,t){let{sizes:n,centers:a}=Jpe(e),r=mt(Ae(t,[1,0])),s=fe(W(gn(fe(r[2],5)),n[0]),2),i=Q(W(fe(r[0],10),n[0]),a[0]),o=fe(W(gn(fe(r[3],5)),n[1]),2),l=Q(W(fe(r[1],10),n[1]),a[1]);return Ae(Rt([ce(i,s),ce(l,o),Q(i,s),Q(l,o)]),[1,0])}function gA(e,t,n){return O(()=>{let a=e.shape[0],r=Qpe(B(Wn(n.extra_dim,[a,1,1]),[-1,4]),B(e,[-1,4]));r=B(r,[a,r.shape[0]/a,4]);let s=da(He(t,[0,0,1],[-1,-1,-1])),i=He(s,[0,0,0],[-1,-1,1]);i=B(i,[a,i.shape[1]]);let o=mt(r),l=mt(i);return{boxes:o,scores:l}})}function Mo(e,t){return O(()=>{let n=e.shape[0],a=B(Ro(e,t.box_encoding_predictor),[n,-1,1,4]),r=B(Ro(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function bA(e,t,n){return O(()=>{let a=Da(e,n.conv_0,[1,1]),r=Da(a,n.conv_1,[2,2]),s=Da(r,n.conv_2,[1,1]),i=Da(s,n.conv_3,[2,2]),o=Da(i,n.conv_4,[1,1]),l=Da(o,n.conv_5,[2,2]),u=Da(l,n.conv_6,[1,1]),p=Da(u,n.conv_7,[2,2]),d=Mo(t,n.box_predictor_0),c=Mo(e,n.box_predictor_1),h=Mo(r,n.box_predictor_2),m=Mo(i,n.box_predictor_3),f=Mo(l,n.box_predictor_4),g=Mo(p,n.box_predictor_5),b=Qe([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),y=Qe([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var Ra=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Po=class extends dn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return O(()=>{let a=le(t.toBatchTensor(512,!1),"float32"),r=ce(fe(a,127.5),1),s=mA(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=bA(s.out,s.conv11,n.prediction_layer);return gA(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await kt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Ra(n),s=await kt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=fA(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,b=l.arraySync(),y=c.map(x=>{let[w,I]=[Math.max(0,b[x][0]),Math.min(1,b[x][2])].map($=>$*g),[N,_]=[Math.max(0,b[x][1]),Math.min(1,b[x][3])].map($=>$*f);return new wt(p[x],new rp(N,w,_-N,I-w),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return hA(t)}extractParams(t){return dA(t)}};function ece(e){let t=new Po;return t.extractWeights(e),t}function aTe(e){return ece(e)}var yA=class extends Po{};var xA=.4,vA=[new Oe(.738768,.874946),new Oe(2.42204,2.65704),new Oe(4.30971,7.04493),new Oe(10.246,4.59428),new Oe(12.6868,11.8741)],wA=[new Oe(1.603231,2.094468),new Oe(6.041143,7.080126),new Oe(2.882459,3.518061),new Oe(4.266906,5.178857),new Oe(9.041765,10.66308)],kA=[117.001,114.697,97.404],IA="tiny_yolov2_model",TA="tiny_yolov2_separable_conv_model";var Eg=e=>typeof e=="number";function SA(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Eg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Eg(t.x)&&Eg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Eg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function vp(e){return O(()=>{let t=W(e,ke(.10000000149011612));return Q(Xe(ce(e,t)),t)})}function Br(e,t){return O(()=>{let n=ba(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Dt(n,t.conv.filters,[1,1],"valid"),n=ce(n,t.bn.sub),n=W(n,t.bn.truediv),n=Q(n,t.conv.bias),vp(n)})}function Vr(e,t){return O(()=>{let n=ba(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ts(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Q(n,t.bias),vp(n)})}function tce(e,t){let n=cp(e,t);function a(i,o){let l=Ke(e(i)),u=Ke(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=dp(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function NA(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=Rn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=tce(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,b,y,x]=a,w=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),N=u(h,m,"conv2"),_=u(m,f,"conv3"),$=u(f,g,"conv4"),A=u(g,b,"conv5"),M=y?u(b,y,"conv6"):void 0,D=x?u(y,x,"conv7"):void 0,T=o(x||y||b,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:N,conv3:_,conv4:$,conv5:A,conv6:M,conv7:D,conv8:T}}else{let[d,c,h,m,f,g,b,y,x]=a,w=l(d,c,"conv0"),I=l(c,h,"conv1"),N=l(h,m,"conv2"),_=l(m,f,"conv3"),$=l(f,g,"conv4"),A=l(g,b,"conv5"),M=l(b,y,"conv6"),D=l(y,x,"conv7"),T=o(x,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:N,conv3:_,conv4:$,conv5:A,conv6:M,conv7:D,conv8:T}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function nce(e,t){let n=ra(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=hp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function CA(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=nce(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return Dn(e,n),{params:i,paramMappings:n}}var vr=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var M1=class extends dn{constructor(n){super("TinyYolov2");SA(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=Br(n,a.conv0);return r=Mt(r,[2,2],[2,2],"same"),r=Br(r,a.conv1),r=Mt(r,[2,2],[2,2],"same"),r=Br(r,a.conv2),r=Mt(r,[2,2],[2,2],"same"),r=Br(r,a.conv3),r=Mt(r,[2,2],[2,2],"same"),r=Br(r,a.conv4),r=Mt(r,[2,2],[2,2],"same"),r=Br(r,a.conv5),r=Mt(r,[2,2],[1,1],"same"),r=Br(r,a.conv6),r=Br(r,a.conv7),Ro(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?vp(Ro(n,a.conv0,"valid",!1)):Vr(n,a.conv0);return r=Mt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv1),r=Mt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv2),r=Mt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv3),r=Mt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv4),r=Mt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv5),r=Mt(r,[2,2],[1,1],"same"),r=a.conv6?Vr(r,a.conv6):r,r=a.conv7?Vr(r,a.conv7):r,Ro(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return O(()=>{let s=le(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?xr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await kt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new vr(a),i=await kt(n),o=await this.forwardInput(i,r),l=O(()=>mt(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(b=>b.box),c=p.map(b=>b.score),h=p.map(b=>b.classScore),m=p.map(b=>this.config.classes[b.label]);return M$(d.map(b=>b.rescale(r)),c,this.config.iouThreshold,!0).map(b=>new Es(c[b],h[b],m[b],d[b],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return CA(n,this.config)}extractParams(n){let a=this.config.filterSizes||M1.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return NA(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=O(()=>{let y=n.reshape([p,p,d,this.boxEncodingSize]),x=y.slice([0,0,0,0],[p,p,d,4]),w=y.slice([0,0,0,4],[p,p,d,1]),I=this.withClassScores?Qa(y.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):ke(0);return[x,w,I]}),f=[],g=await h.array(),b=await c.array();for(let y=0;y<p;y++)for(let x=0;x<p;x++)for(let w=0;w<d;w++){let I=ug(g[y][x][w][0]);if(!r||I>r){let N=(x+ug(b[y][x][w][0]))/p*l,_=(y+ug(b[y][x][w][1]))/p*u,$=Math.exp(b[y][x][w][2])*this.config.anchors[w].x/p*l,A=Math.exp(b[y][x][w][3])*this.config.anchors[w].y/p*u,M=N-$/2,D=_-A/2,T={row:y,col:x,anchor:w},{classScore:P,label:U}=this.withClassScores?await this.extractPredictedClass(m,T):{classScore:1,label:0};f.push({box:new ap(M,D,M+$,D+A),score:I,classScore:I*P,label:U,...T})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},Oo=M1;Oo.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var wp=class extends Oo{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:xA,classes:["face"],...t?{anchors:wA,meanRgb:kA}:{anchors:vA,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new wt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?TA:IA}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function KTe(e,t=!0){let n=new wp(t);return n.extractWeights(e),n}var $g=class extends vr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Ma=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function Lo(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>gp(l)?r(l):l.detection),i=a||(t instanceof $e?await Td(t,s):await Id(t,s)),o=await n(i);return i.forEach(l=>l instanceof $e&&l.dispose()),o}async function kp(e,t,n,a,r){return Lo([e],t,async s=>n(s[0]),a,r)}var _A=.4,EA=[new Oe(1.603231,2.094468),new Oe(6.041143,7.080126),new Oe(2.882459,3.518061),new Oe(4.266906,5.178857),new Oe(9.041765,10.66308)],$A=[117.001,114.697,97.404];var Ip=class extends Oo{constructor(){let t={withSeparableConvs:!0,iouThreshold:_A,classes:["face"],anchors:EA,meanRgb:$A,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new wt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var rt={ssdMobilenetv1:new Po,tinyFaceDetector:new Ip,tinyYolov2:new wp,faceLandmark68Net:new yp,faceLandmark68TinyNet:new Cg,faceRecognitionNet:new xp,faceExpressionNet:new wg,ageGenderNet:new Sg},ace=(e,t)=>rt.ssdMobilenetv1.locateFaces(e,t),TSe=(e,t)=>rt.tinyFaceDetector.locateFaces(e,t),SSe=(e,t)=>rt.tinyYolov2.locateFaces(e,t),rce=e=>rt.faceLandmark68Net.detectLandmarks(e),NSe=e=>rt.faceLandmark68TinyNet.detectLandmarks(e),CSe=e=>rt.faceRecognitionNet.computeFaceDescriptor(e),_Se=e=>rt.faceExpressionNet.predictExpressions(e),ESe=e=>rt.ageGenderNet.predictAgeAndGender(e),sce=e=>rt.ssdMobilenetv1.load(e),$Se=e=>rt.tinyFaceDetector.load(e),ASe=e=>rt.tinyYolov2.load(e),FSe=e=>rt.faceLandmark68Net.load(e),DSe=e=>rt.faceLandmark68TinyNet.load(e),RSe=e=>rt.faceRecognitionNet.load(e),MSe=e=>rt.faceExpressionNet.load(e),PSe=e=>rt.ageGenderNet.load(e),OSe=sce,LSe=ace,zSe=rce;var Ag=class extends Ma{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},zo=class extends Ag{async run(){let t=await this.parentTask,n=await Lo(t,this.input,async a=>Promise.all(a.map(r=>rt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>C1(a,n[r]))}withAgeAndGender(){return new Bo(this,this.input)}},Wo=class extends Ag{async run(){let t=await this.parentTask;if(!t)return;let n=await kp(t,this.input,a=>rt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return C1(t,n)}withAgeAndGender(){return new Vo(this,this.input)}},Fs=class extends zo{withAgeAndGender(){return new Rs(this,this.input)}withFaceDescriptors(){return new Ps(this,this.input)}},Ds=class extends Wo{withAgeAndGender(){return new Ms(this,this.input)}withFaceDescriptor(){return new Os(this,this.input)}};var Fg=class extends Ma{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Bo=class extends Fg{async run(){let t=await this.parentTask,n=await Lo(t,this.input,async a=>Promise.all(a.map(r=>rt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return D1(R1(a,i,o),s)})}withFaceExpressions(){return new zo(this,this.input)}},Vo=class extends Fg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await kp(t,this.input,s=>rt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return D1(R1(t,a,r),n)}withFaceExpressions(){return new Wo(this,this.input)}},Rs=class extends Bo{withFaceExpressions(){return new Fs(this,this.input)}withFaceDescriptors(){return new Ps(this,this.input)}},Ms=class extends Vo{withFaceExpressions(){return new Ds(this,this.input)}withFaceDescriptor(){return new Os(this,this.input)}};var Dg=class extends Ma{constructor(n,a){super();this.parentTask=n;this.input=a}},Ps=class extends Dg{async run(){let t=await this.parentTask;return(await Lo(t,this.input,a=>Promise.all(a.map(r=>rt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>F1(t[r],a))}withFaceExpressions(){return new Fs(this,this.input)}withAgeAndGender(){return new Rs(this,this.input)}},Os=class extends Dg{async run(){let t=await this.parentTask;if(!t)return;let n=await kp(t,this.input,a=>rt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return F1(t,n)}withFaceExpressions(){return new Ds(this,this.input)}withAgeAndGender(){return new Ms(this,this.input)}};var Rg=class extends Ma{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?rt.faceLandmark68TinyNet:rt.faceLandmark68Net}},Mg=class extends Rg{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof $e?await Td(this.input,n):await Id(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof $e&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>_d(i,r[o]))}withFaceExpressions(){return new Fs(this,this.input)}withAgeAndGender(){return new Rs(this,this.input)}withFaceDescriptors(){return new Ps(this,this.input)}},Pg=class extends Rg{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof $e?await Td(this.input,[n]):await Id(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof $e&&s.dispose()),_d(t,r)}withFaceExpressions(){return new Ds(this,this.input)}withAgeAndGender(){return new Ms(this,this.input)}withFaceDescriptor(){return new Os(this,this.input)}};var Og=class extends Ma{constructor(n,a=new Ra){super();this.input=n;this.options=a}},$d=class extends Og{async run(){let{input:t,options:n}=this,a;if(n instanceof $g)a=rt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Ra)a=rt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof vr)a=rt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>ip({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new Mg(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new zo(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Bo(this.runAndExtendWithFaceDetections(),this.input)}},Lg=class extends Og{async run(){let t=await new $d(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?ip({},n):void 0)})}withFaceLandmarks(t=!1){return new Pg(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Wo(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Vo(this.runAndExtendWithFaceDetection(),this.input)}};function PNe(e,t=new Ra){return new Lg(e,t)}function P1(e,t=new Ra){return new $d(e,t)}async function ice(e,t){return P1(e,new Ra(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function VNe(e,t={}){return P1(e,new vr(t)).withFaceLandmarks().withFaceDescriptors()}var UNe=ice;function AA(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var zg=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof Or)return i;if(i instanceof Float32Array)return new Or(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new Or(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>AA(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new xd(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new xd("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>Or.fromJSON(a));return new zg(n,t.distanceThreshold)}};function o2e(e){let t=new Ip;return t.extractWeights(e),t}function oce(e,t){let{width:n,height:a}=new Fn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>oce(r,{width:n,height:a}));if(gp(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return _d(ip(e,r),s)}return Lr(e)?ip(e,e.detection.forSize(n,a)):e instanceof va||e instanceof wt?e.forSize(n,a):e}var y2e=Q$;export{Sg as AgeGenderNet,ap as BoundingBox,ct as Box,Ma as ComposableTask,Ps as ComputeAllFaceDescriptorsTask,Dg as ComputeFaceDescriptorsTaskBase,Os as ComputeSingleFaceDescriptorTask,Mg as DetectAllFaceLandmarksTask,$d as DetectAllFacesTask,Rg as DetectFaceLandmarksTaskBase,Og as DetectFacesTaskBase,Pg as DetectSingleFaceLandmarksTask,Lg as DetectSingleFaceTask,Fn as Dimensions,Y$ as FACE_EXPRESSION_LABELS,wt as FaceDetection,yA as FaceDetectionNet,wg as FaceExpressionNet,As as FaceExpressions,yp as FaceLandmark68Net,Cg as FaceLandmark68TinyNet,oA as FaceLandmarkNet,va as FaceLandmarks,O$ as FaceLandmarks5,sp as FaceLandmarks68,xd as FaceMatch,zg as FaceMatcher,xp as FaceRecognitionNet,E1 as Gender,vd as LabeledBox,Or as LabeledFaceDescriptors,Wr as NetInput,dn as NeuralNetwork,Es as ObjectDetection,Oe as Point,L$ as PredictedBox,rp as Rect,Po as SsdMobilenetv1,Ra as SsdMobilenetv1Options,Ip as TinyFaceDetector,$g as TinyFaceDetectorOptions,wp as TinyYolov2,vr as TinyYolov2Options,UNe as allFaces,ice as allFacesSsdMobilenetv1,VNe as allFacesTinyYolov2,z$ as awaitMediaLoaded,W$ as bufferToImage,CSe as computeFaceDescriptor,pp as createCanvas,hg as createCanvasFromMedia,aTe as createFaceDetectionNet,aIe as createFaceRecognitionNet,ece as createSsdMobilenetv1,o2e as createTinyFaceDetector,KTe as createTinyYolov2,P1 as detectAllFaces,rce as detectFaceLandmarks,NSe as detectFaceLandmarksTiny,zSe as detectLandmarks,PNe as detectSingleFace,J$ as draw,at as env,AA as euclideanDistance,D1 as extendWithAge,F1 as extendWithFaceDescriptor,ip as extendWithFaceDetection,C1 as extendWithFaceExpressions,_d as extendWithFaceLandmarks,R1 as extendWithGender,Td as extractFaceTensors,Id as extractFaces,hve as fetchImage,U$ as fetchJson,yve as fetchNetWeights,$s as fetchOrThrow,Tve as fetchVideo,aa as getContext2dOrThrow,up as getMediaDimensions,B$ as imageTensorToCanvas,V$ as imageToSquare,_be as inverseSigmoid,D$ as iou,N1 as isMediaElement,dg as isMediaLoaded,oIe as isWithAge,Lr as isWithFaceDetection,Z$ as isWithFaceExpressions,gp as isWithFaceLandmarks,cIe as isWithGender,PSe as loadAgeGenderModel,OSe as loadFaceDetectionModel,MSe as loadFaceExpressionModel,FSe as loadFaceLandmarkModel,DSe as loadFaceLandmarkTinyModel,RSe as loadFaceRecognitionModel,sce as loadSsdMobilenetv1Model,$Se as loadTinyFaceDetectorModel,ASe as loadTinyYolov2Model,H$ as loadWeightMap,LSe as locateFaces,Ave as matchDimensions,R$ as minBbox,rt as nets,M$ as nonMaxSuppression,xr as normalize,P$ as padToSquare,ESe as predictAgeAndGender,_Se as recognizeFaceExpressions,oce as resizeResults,op as resolveInput,Nbe as shuffleArray,ug as sigmoid,ace as ssdMobilenetv1,We as tf,TSe as tinyFaceDetector,SSe as tinyYolov2,kt as toNetInput,F$ as utils,SA as validateConfig,y2e as version};
|
|
//# sourceMappingURL=face-api.esm.js.map
|