4949 lines
1.2 MiB
4949 lines
1.2 MiB
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var faceapi=(()=>{var mb=Object.defineProperty;var VA=Object.getOwnPropertyDescriptor;var UA=Object.getOwnPropertyNames;var GA=Object.prototype.hasOwnProperty;var HA=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var gh=(e,t)=>{for(var n in t)mb(e,n,{get:t[n],enumerable:!0})},jA=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of UA(t))!GA.call(e,r)&&r!==n&&mb(e,r,{get:()=>t[r],enumerable:!(a=VA(t,r))||a.enumerable});return e};var qA=e=>jA(mb({},"__esModule",{value:!0}),e);var Jpe={};gh(Jpe,{AgeGenderNet:()=>Sd,BoundingBox:()=>Ao,Box:()=>lt,ComposableTask:()=>wa,ComputeAllFaceDescriptorsTask:()=>Ur,ComputeFaceDescriptorsTaskBase:()=>_d,ComputeSingleFaceDescriptorTask:()=>Gr,DetectAllFaceLandmarksTask:()=>Fd,DetectAllFacesTask:()=>vp,DetectFaceLandmarksTaskBase:()=>Ed,DetectFacesTaskBase:()=>$d,DetectSingleFaceLandmarksTask:()=>Ad,DetectSingleFaceTask:()=>Dd,Dimensions:()=>yn,FACE_EXPRESSION_LABELS:()=>h1,FaceDetection:()=>xt,FaceDetectionNet:()=>v1,FaceExpressionNet:()=>Id,FaceExpressions:()=>Br,FaceLandmark68Net:()=>Bo,FaceLandmark68TinyNet:()=>Nd,FaceLandmarkNet:()=>y1,FaceLandmarks:()=>ra,FaceLandmarks5:()=>Z0,FaceLandmarks68:()=>Do,FaceMatch:()=>ip,FaceMatcher:()=>Rd,FaceRecognitionNet:()=>Wo,Gender:()=>Cg,LabeledBox:()=>op,LabeledFaceDescriptors:()=>xr,NetInput:()=>wr,NeuralNetwork:()=>ln,ObjectDetection:()=>Or,Point:()=>Pe,PredictedBox:()=>e1,Rect:()=>$o,SsdMobilenetv1:()=>Es,SsdMobilenetv1Options:()=>va,TinyFaceDetector:()=>jo,TinyFaceDetectorOptions:()=>Cd,TinyYolov2:()=>Go,TinyYolov2Options:()=>ar,allFaces:()=>Xpe,allFacesSsdMobilenetv1:()=>qF,allFacesTinyYolov2:()=>Kpe,awaitMediaLoaded:()=>o1,bufferToImage:()=>l1,computeFaceDescriptor:()=>Rpe,createCanvas:()=>Oo,createCanvasFromMedia:()=>xd,createFaceDetectionNet:()=>Cpe,createFaceRecognitionNet:()=>gpe,createSsdMobilenetv1:()=>$F,createTinyFaceDetector:()=>Ype,createTinyYolov2:()=>Fpe,detectAllFaces:()=>Pg,detectFaceLandmarks:()=>HF,detectFaceLandmarksTiny:()=>Dpe,detectLandmarks:()=>jpe,detectSingleFace:()=>qpe,draw:()=>f1,env:()=>et,euclideanDistance:()=>I1,extendWithAge:()=>Ag,extendWithFaceDescriptor:()=>Fg,extendWithFaceDetection:()=>Ro,extendWithFaceExpressions:()=>Ig,extendWithFaceLandmarks:()=>gp,extendWithGender:()=>$g,extractFaceTensors:()=>pp,extractFaces:()=>up,fetchImage:()=>npe,fetchJson:()=>c1,fetchNetWeights:()=>ape,fetchOrThrow:()=>zr,fetchVideo:()=>rpe,getContext2dOrThrow:()=>jn,getMediaDimensions:()=>Po,imageTensorToCanvas:()=>u1,imageToSquare:()=>p1,inverseSigmoid:()=>Xue,iou:()=>X0,isMediaElement:()=>fg,isMediaLoaded:()=>bd,isWithAge:()=>ype,isWithFaceDetection:()=>vr,isWithFaceExpressions:()=>m1,isWithFaceLandmarks:()=>zo,isWithGender:()=>bpe,loadAgeGenderModel:()=>Upe,loadFaceDetectionModel:()=>Gpe,loadFaceExpressionModel:()=>Vpe,loadFaceLandmarkModel:()=>zpe,loadFaceLandmarkTinyModel:()=>Bpe,loadFaceRecognitionModel:()=>Wpe,loadSsdMobilenetv1Model:()=>jF,loadTinyFaceDetectorModel:()=>Ope,loadTinyYolov2Model:()=>Lpe,loadWeightMap:()=>d1,locateFaces:()=>Hpe,matchDimensions:()=>spe,minBbox:()=>Y0,nets:()=>tt,nonMaxSuppression:()=>Q0,normalize:()=>tr,padToSquare:()=>J0,predictAgeAndGender:()=>Ppe,recognizeFaceExpressions:()=>Mpe,resizeResults:()=>KF,resolveInput:()=>Mo,shuffleArray:()=>Kue,sigmoid:()=>fd,ssdMobilenetv1:()=>GF,tf:()=>Le,tinyFaceDetector:()=>Ape,tinyYolov2:()=>$pe,toNetInput:()=>vt,utils:()=>K0,validateConfig:()=>w1,version:()=>Qpe});var Le={};gh(Le,{Abs:()=>Ll,Acos:()=>zl,Acosh:()=>Bl,AdadeltaOptimizer:()=>Ff,AdagradOptimizer:()=>Af,AdamOptimizer:()=>$f,AdamaxOptimizer:()=>Df,Add:()=>ys,AddN:()=>vi,All:()=>Wl,Any:()=>Vl,ArgMax:()=>wi,ArgMin:()=>yc,Asin:()=>Ul,Asinh:()=>Gl,Atan:()=>Hl,Atan2:()=>ql,Atanh:()=>jl,AvgPool:()=>ki,AvgPool3D:()=>bc,AvgPool3DGrad:()=>wm,AvgPoolGrad:()=>vm,BackendWasm:()=>oF,BatchMatMul:()=>Ii,BatchToSpaceND:()=>Kl,Bincount:()=>km,BroadcastArgs:()=>Im,BroadcastTo:()=>$I,Callback:()=>ON,CallbackList:()=>W2,Cast:()=>Si,Ceil:()=>Ni,ClipByValue:()=>bs,Complex:()=>Sm,ComplexAbs:()=>xc,Concat:()=>Xl,Conv2D:()=>Ti,Conv2DBackpropFilter:()=>Nm,Conv2DBackpropInput:()=>Ci,Conv3D:()=>vc,Conv3DBackpropFilterV2:()=>Tm,Conv3DBackpropInputV2:()=>Cm,Cos:()=>_i,Cosh:()=>Ei,CropAndResize:()=>Ql,Cumprod:()=>Yl,Cumsum:()=>Fi,CustomCallback:()=>U2,DataStorage:()=>ym,DenseBincount:()=>_m,DepthToSpace:()=>Jl,DepthwiseConv2dNative:()=>Ai,DepthwiseConv2dNativeBackpropFilter:()=>Em,DepthwiseConv2dNativeBackpropInput:()=>Fm,Diag:()=>Am,Dilation2D:()=>wc,Dilation2DBackpropFilter:()=>Gh,Dilation2DBackpropInput:()=>Uh,ENV:()=>Dx,EarlyStopping:()=>LN,Einsum:()=>$m,Elu:()=>Di,EluGrad:()=>Dm,Environment:()=>FI,Equal:()=>eu,Erf:()=>Zl,Exp:()=>Ri,ExpandDims:()=>tu,Expm1:()=>nu,FFT:()=>Rm,Fill:()=>kc,FlipLeftRight:()=>au,Floor:()=>Mi,FloorDiv:()=>Pi,FromPixels:()=>Hh,FusedBatchNorm:()=>Oi,FusedConv2D:()=>ai,FusedDepthwiseConv2D:()=>ri,GPGPUContext:()=>Lh,GatherNd:()=>su,GatherV2:()=>ru,GraphModel:()=>lT,Greater:()=>iu,GreaterEqual:()=>Li,History:()=>V2,IFFT:()=>Mm,Identity:()=>zi,Imag:()=>Pm,InputSpec:()=>Bt,IsFinite:()=>ou,IsInf:()=>lu,IsNan:()=>uu,KernelBackend:()=>gc,LRN:()=>Nc,LRNGrad:()=>Lm,LayerVariable:()=>R2,LayersModel:()=>Er,LeakyRelu:()=>Bi,Less:()=>pu,LessEqual:()=>cu,LinSpace:()=>Om,Log:()=>Wi,Log1p:()=>du,LogSoftmax:()=>DI,LogicalAnd:()=>hu,LogicalNot:()=>Ic,LogicalOr:()=>Sc,LowerBound:()=>V$,MathBackendWebGL:()=>rg,Max:()=>Vi,MaxPool:()=>Gi,MaxPool3D:()=>Tc,MaxPool3DGrad:()=>Bm,MaxPoolGrad:()=>zm,MaxPoolWithArgmax:()=>Wm,Maximum:()=>Ui,Mean:()=>Hi,Min:()=>ji,Minimum:()=>qi,MirrorPad:()=>Ki,Mod:()=>mu,MomentumOptimizer:()=>Rf,Multinomial:()=>Vm,Multiply:()=>Xi,Neg:()=>fu,NonMaxSuppressionV3:()=>yu,NonMaxSuppressionV4:()=>bu,NonMaxSuppressionV5:()=>xu,NotEqual:()=>gu,OP_SCOPE_SUFFIX:()=>UI,OneHot:()=>Yi,OnesLike:()=>vu,Optimizer:()=>Dr,OptimizerConstructors:()=>Yr,Pack:()=>wu,PadV2:()=>Qi,Pool:()=>U$,Pow:()=>Ji,Prelu:()=>Zi,Prod:()=>eo,RMSPropOptimizer:()=>Mf,RNN:()=>yr,Range:()=>Cc,Rank:()=>$b,Real:()=>Um,RealDiv:()=>$i,Reciprocal:()=>ku,Reduction:()=>In,Relu:()=>to,Relu6:()=>ao,Reshape:()=>Iu,ResizeBilinear:()=>no,ResizeBilinearGrad:()=>Hm,ResizeNearestNeighbor:()=>_c,ResizeNearestNeighborGrad:()=>Gm,Reverse:()=>ro,RotateWithOffset:()=>zu,Round:()=>so,Rsqrt:()=>io,SGDOptimizer:()=>Yc,ScatterNd:()=>Su,SearchSorted:()=>jm,Select:()=>Nu,Selu:()=>Tu,Sequential:()=>Fl,Sigmoid:()=>lo,Sign:()=>Eu,Sin:()=>oo,Sinh:()=>_u,Slice:()=>Cu,Softmax:()=>co,Softplus:()=>Fu,SpaceToBatchND:()=>Au,SparseFillEmptyRows:()=>Ec,SparseReshape:()=>Du,SparseSegmentMean:()=>Fc,SparseSegmentSum:()=>Ac,SparseToDense:()=>qm,SplitV:()=>$u,Sqrt:()=>uo,Square:()=>$c,SquaredDifference:()=>ho,Step:()=>vs,StridedSlice:()=>Ru,StringNGrams:()=>Km,StringSplit:()=>Xm,StringToHashBucketFast:()=>Ym,Sub:()=>mo,Sum:()=>po,SymbolicTensor:()=>Ua,Tan:()=>fo,Tanh:()=>go,Tensor:()=>Fe,TensorBuffer:()=>jt,Tile:()=>xs,TopK:()=>Mu,Transform:()=>Pu,Transpose:()=>yo,Unique:()=>Qm,Unpack:()=>Ou,UnsortedSegmentSum:()=>Dc,UpperBound:()=>G$,Variable:()=>is,ZerosLike:()=>Lu,_FusedMatMul:()=>ni,abs:()=>zt,acos:()=>Xx,acosh:()=>Yx,add:()=>J,addN:()=>kS,all:()=>af,any:()=>ac,argMax:()=>oi,argMin:()=>Qx,asin:()=>Jx,asinh:()=>Zx,atan:()=>ev,atan2:()=>tv,atanh:()=>nv,avgPool:()=>ga,avgPool3d:()=>rv,backend:()=>wS,backend_util:()=>_,basicLSTMCell:()=>PM,batchNorm:()=>Fr,batchNorm2d:()=>TS,batchNorm3d:()=>CS,batchNorm4d:()=>_S,batchToSpaceND:()=>Bc,bincount:()=>sv,booleanMaskAsync:()=>H3,broadcastArgs:()=>ES,broadcastTo:()=>vl,broadcast_util:()=>bo,browser:()=>xo,buffer:()=>Ve,callbacks:()=>w6,cast:()=>oe,ceil:()=>iv,clipByValue:()=>an,clone:()=>_r,complex:()=>os,concat:()=>Ze,concat1d:()=>FS,concat2d:()=>AS,concat3d:()=>$S,concat4d:()=>DS,constraints:()=>O2,conv1d:()=>rf,conv2d:()=>Rt,conv2dTranspose:()=>sf,conv3d:()=>lv,conv3dTranspose:()=>MS,copyRegisteredKernels:()=>K$,cos:()=>Wc,cosh:()=>of,cosineWindow:()=>Pv,cumprod:()=>rc,cumsum:()=>lf,customGrad:()=>cr,data:()=>uT,denseBincount:()=>PS,deprecationWarn:()=>Kx,depthToSpace:()=>uv,depthwiseConv2d:()=>Is,deregisterOp:()=>S6,device_util:()=>Oc,diag:()=>hP,dilation2d:()=>pv,disableDeprecationWarnings:()=>KR,dispose:()=>Re,disposeVariables:()=>XR,div:()=>fe,divNoNan:()=>cv,dot:()=>OS,dropout:()=>i2,einsum:()=>LS,elu:()=>Bu,enableDebugMode:()=>qR,enableProdMode:()=>jR,enclosingPowerOfTwo:()=>o2,engine:()=>sr,env:()=>X,equal:()=>Zn,erf:()=>dv,euclideanNorm:()=>fv,exp:()=>gn,expandDims:()=>mn,expm1:()=>gv,eye:()=>yv,fft:()=>Kc,fill:()=>_n,findBackend:()=>nM,findBackendFactory:()=>aM,floor:()=>Wu,floorDiv:()=>nf,forceHalfFloat:()=>C_,fused:()=>us,gather:()=>pi,gatherND:()=>s2,gather_util:()=>Vx,getBackend:()=>eM,getGradient:()=>Fb,getKernel:()=>jh,getKernelsForBackend:()=>qh,getThreadsCount:()=>Mue,gpgpu_util:()=>s_,grad:()=>JP,grads:()=>ZP,greater:()=>Un,greaterEqual:()=>Ss,ifft:()=>Cl,imag:()=>uf,image:()=>Ln,inTopKAsync:()=>tL,initializers:()=>L2,input:()=>aN,io:()=>en,irfft:()=>If,isFinite:()=>US,isInf:()=>GS,isNaN:()=>bv,keep:()=>tn,kernel_impls:()=>gr,layers:()=>z2,leakyRelu:()=>Uc,less:()=>pf,lessEqual:()=>Ns,linalg:()=>y2,linspace:()=>HS,loadGraphModel:()=>CH,loadLayersModel:()=>AU,localResponseNormalization:()=>xv,log:()=>ea,log1p:()=>Gc,logSigmoid:()=>qS,logSoftmax:()=>df,logSumExp:()=>vv,logicalAnd:()=>_a,logicalNot:()=>Hc,logicalOr:()=>hf,logicalXor:()=>KS,losses:()=>Oz,lowerBound:()=>XS,matMul:()=>De,math:()=>aS,max:()=>Ta,maxPool:()=>Pt,maxPool3d:()=>kv,maxPoolWithArgmax:()=>YS,maximum:()=>fr,mean:()=>Et,memory:()=>Yh,meshgrid:()=>bO,metrics:()=>RN,min:()=>sc,minimum:()=>Vu,mirrorPad:()=>Iv,mod:()=>Sv,model:()=>EU,models:()=>MN,moments:()=>mf,movingAverage:()=>q3,mul:()=>B,multiRNNCell:()=>SO,multinomial:()=>QS,neg:()=>Nt,nextFrame:()=>zv,norm:()=>Vc,notEqual:()=>ci,oneHot:()=>Nl,ones:()=>Qn,onesLike:()=>ta,op:()=>z,outerProduct:()=>EO,pad:()=>ya,pad1d:()=>$O,pad2d:()=>RO,pad3d:()=>PO,pad4d:()=>LO,pool:()=>JS,pow:()=>Ar,prelu:()=>qc,print:()=>ZI,prod:()=>ff,profile:()=>YR,rand:()=>jO,randomGamma:()=>YO,randomNormal:()=>ZS,randomUniform:()=>Uu,range:()=>Tl,ready:()=>ZR,real:()=>ic,reciprocal:()=>Cv,registerBackend:()=>tf,registerCallbackConstructor:()=>$U,registerGradient:()=>RI,registerKernel:()=>Rc,registerOp:()=>I6,regularizers:()=>PN,relu:()=>Xe,relu6:()=>gf,removeBackend:()=>tM,reshape:()=>W,reverse:()=>na,reverse1d:()=>s3,reverse2d:()=>o3,reverse3d:()=>u3,reverse4d:()=>c3,rfft:()=>Xc,round:()=>yf,rsqrt:()=>bf,scalar:()=>we,scatterND:()=>r2,scatter_util:()=>Ux,searchSorted:()=>wv,selu:()=>xf,separableConv2d:()=>wo,sequential:()=>FU,serialization:()=>se,setBackend:()=>JR,setPlatform:()=>rM,setThreadsCount:()=>Rue,setWasmPath:()=>$ue,setWasmPaths:()=>Due,setWebGLContext:()=>EC,setdiff1dAsync:()=>e2,sigmoid:()=>ma,sign:()=>_v,signal:()=>Pz,sin:()=>vf,sinh:()=>wf,slice:()=>He,slice1d:()=>kf,slice2d:()=>Ev,slice3d:()=>Gu,slice4d:()=>oc,slice_util:()=>qt,softmax:()=>Qa,softplus:()=>vo,spaceToBatchND:()=>jc,sparse:()=>Bp,sparseToDense:()=>Mv,spectral:()=>Mz,split:()=>zn,sqrt:()=>pn,square:()=>ut,squaredDifference:()=>Sf,squeeze:()=>dr,stack:()=>Mt,step:()=>Hu,stridedSlice:()=>Fv,string:()=>Ah,sub:()=>ce,sum:()=>be,sumOutType:()=>Zm,tan:()=>Av,tanh:()=>li,tensor:()=>Jn,tensor1d:()=>qe,tensor2d:()=>Ha,tensor3d:()=>ef,tensor4d:()=>Ja,tensor5d:()=>P3,tensor6d:()=>O3,tensor_util:()=>Ga,test_util:()=>bS,tidy:()=>O,tile:()=>On,time:()=>QR,topk:()=>$v,train:()=>Gs,transpose:()=>Ae,truncatedNormal:()=>Nf,unique:()=>Jh,unregisterGradient:()=>q$,unregisterKernel:()=>j$,unsortedSegmentSum:()=>Dv,unstack:()=>ht,upcastType:()=>fa,upperBound:()=>t2,util:()=>w,valueAndGrad:()=>eO,valueAndGrads:()=>tO,variable:()=>n2,variableGrads:()=>jS,version:()=>jue,version_converter:()=>_H,version_core:()=>HR,version_layers:()=>ow,version_wasm:()=>Pue,version_webgl:()=>U9,webgl:()=>G9,webgl_util:()=>_C,where:()=>fn,whereAsync:()=>Rv,zeros:()=>It,zerosLike:()=>Ke});var KA=Object.create,_x=Object.defineProperty,XA=Object.getOwnPropertyDescriptor,YA=Object.getOwnPropertyNames,QA=Object.getPrototypeOf,JA=Object.prototype.hasOwnProperty,ft=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Me=(e,t)=>{for(var n in t)_x(e,n,{get:t[n],enumerable:!0})},ZA=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of YA(t))!JA.call(e,r)&&r!==n&&_x(e,r,{get:()=>t[r],enumerable:!(a=XA(t,r))||a.enumerable});return e},bi=(e,t,n)=>(n=e!=null?KA(QA(e)):{},ZA(t||!e||!e.__esModule?_x(n,"default",{value:e,enumerable:!0}):n,e)),e$=ft((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,V){this.low=S|0,this.high=M|0,this.unsigned=!!V}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var V,j,q;return M?(S>>>=0,(q=0<=S&&S<256)&&(j=i[S],j)?j:(V=u(S,(S|0)<0?-1:0,!0),q&&(i[S]=V),V)):(S|=0,(q=-128<=S&&S<128)&&(j=s[S],j)?j:(V=u(S,S<0?-1:0,!1),q&&(s[S]=V),V))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?v:x;if(M){if(S<0)return v;if(S>=g)return A}else{if(S<=-y)return P;if(S+1>=y)return E}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,V){return new a(S,M,V)}a.fromBits=u;var p=Math.pow;function d(S,M,V){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(V=M,M=!1):M=!!M,V=V||10,V<2||36<V)throw RangeError("radix");var j;if((j=S.indexOf("-"))>0)throw Error("interior hyphen");if(j===0)return d(S.substring(1),M,V).neg();for(var q=l(p(V,8)),K=x,Z=0;Z<S.length;Z+=8){var ee=Math.min(8,S.length-Z),re=parseInt(S.substring(Z,Z+ee),V);if(ee<8){var Y=l(p(V,ee));K=K.mul(Y).add(l(re))}else K=K.mul(q),K=K.add(l(re))}return K.unsigned=M,K}a.fromString=d;function c(S,M){return typeof S=="number"?l(S,M):typeof S=="string"?d(S,M):u(S.low,S.high,typeof M=="boolean"?M:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,y=g/2,b=o(m),x=o(0);a.ZERO=x;var v=o(0,!0);a.UZERO=v;var k=o(1);a.ONE=k;var T=o(1,!0);a.UONE=T;var C=o(-1);a.NEG_ONE=C;var E=u(-1,2147483647,!1);a.MAX_VALUE=E;var A=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=A;var P=u(0,-2147483648,!1);a.MIN_VALUE=P;var $=a.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var M=l(S),V=this.div(M),j=V.mul(M).sub(this);return V.toString(S)+j.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var q=l(p(S,6),this.unsigned),K=this,Z="";;){var ee=K.div(q),re=K.sub(ee.mul(q)).toInt()>>>0,Y=re.toString(S);if(K=ee,K.isZero())return Y+Z;for(;Y.length<6;)Y="0"+Y;Z=""+Y+Z}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<<M)==0;M--);return this.high!=0?M+33:M+1},$.isZero=function(){return this.high===0&&this.low===0},$.eqz=$.isZero,$.isNegative=function(){return!this.unsigned&&this.high<0},$.isPositive=function(){return this.unsigned||this.high>=0},$.isOdd=function(){return(this.low&1)===1},$.isEven=function(){return(this.low&1)===0},$.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),V=S.isNegative();return M&&!V?-1:!M&&V?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(k)},$.neg=$.negate,$.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,V=this.high&65535,j=this.low>>>16,q=this.low&65535,K=S.high>>>16,Z=S.high&65535,ee=S.low>>>16,re=S.low&65535,Y=0,ie=0,ae=0,le=0;return le+=q+re,ae+=le>>>16,le&=65535,ae+=j+ee,ie+=ae>>>16,ae&=65535,ie+=V+Z,Y+=ie>>>16,ie&=65535,Y+=M+K,Y&=65535,u(ae<<16|le,Y<<16|ie,this.unsigned)},$.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(P))return S.isOdd()?P:x;if(S.eq(P))return this.isOdd()?P:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(b)&&S.lt(b))return l(this.toNumber()*S.toNumber(),this.unsigned);var V=this.high>>>16,j=this.high&65535,q=this.low>>>16,K=this.low&65535,Z=S.high>>>16,ee=S.high&65535,re=S.low>>>16,Y=S.low&65535,ie=0,ae=0,le=0,ue=0;return ue+=K*Y,le+=ue>>>16,ue&=65535,le+=q*Y,ae+=le>>>16,le&=65535,le+=K*re,ae+=le>>>16,le&=65535,ae+=j*Y,ie+=ae>>>16,ae&=65535,ae+=q*re,ie+=ae>>>16,ae&=65535,ae+=K*ee,ie+=ae>>>16,ae&=65535,ie+=V*Y+j*re+q*ee+K*Z,ie&=65535,u(le<<16|ue,ie<<16|ae,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?v:x;var V,j,q;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return v;if(S.gt(this.shru(1)))return T;q=v}else{if(this.eq(P)){if(S.eq(k)||S.eq(C))return P;if(S.eq(P))return k;var K=this.shr(1);return V=K.div(S).shl(1),V.eq(x)?S.isNegative()?k:C:(j=this.sub(S.mul(V)),q=V.add(j.div(S)),q)}else if(S.eq(P))return this.unsigned?v:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();q=x}for(j=this;j.gte(S);){V=Math.max(1,Math.floor(j.toNumber()/S.toNumber()));for(var Z=Math.ceil(Math.log(V)/Math.LN2),ee=Z<=48?1:p(2,Z-48),re=l(V),Y=re.mul(S);Y.isNegative()||Y.gt(j);)V-=ee,re=l(V,this.unsigned),Y=re.mul(S);re.isZero()&&(re=k),q=q.add(re),j=j.sub(Y)}return q},$.div=$.divide,$.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},$.shl=$.shiftLeft,$.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var V=this.low;return u(V>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,V){return V?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),t$=ft(()=>{}),n$=ft(()=>{}),a$=ft((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=d.toString();for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),r$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),s$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),i$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),o$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),l$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),gI=ft(()=>{}),u$=ft((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),p=a.pow(2,o),d=p*2,c=s-1,h;function m(k,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var A=b(y(T.entropy?[k,v(n)]:k==null?x():k,3),E),P=new f(E),$=function(){for(var S=P.g(i),M=u,V=0;S<p;)S=(S+V)*s,M*=s,V=P.g(1);for(;S>=d;)S/=2,M/=2,V>>>=1;return(S+V)/M};return $.int32=function(){return P.g(4)|0},$.quick=function(){return P.g(4)/4294967296},$.double=$,b(v(P.S),n),(T.pass||C||function(S,M,V,j){return j&&(j.S&&g(j,P),S.state=function(){return g(P,{})}),V?(a[l]=S,M):S})($,A,"global"in T?T.global:this==a,T.state)}a["seed"+l]=m;function f(k){var T,C=k.length,E=this,A=0,P=E.i=E.j=0,$=E.S=[];for(C||(k=[C++]);A<s;)$[A]=A++;for(A=0;A<s;A++)$[A]=$[P=c&P+k[A%C]+(T=$[A])],$[P]=T;(E.g=function(S){for(var M,V=0,j=E.i,q=E.j,K=E.S;S--;)M=K[j=c&j+1],V=V*s+K[c&(K[j]=K[q=c&q+M])+(K[q]=M)];return E.i=j,E.j=q,V})(s)}function g(k,T){return T.i=k.i,T.j=k.j,T.S=k.S.slice(),T}function y(k,T){var C=[],E=typeof k,A;if(T&&E=="object")for(A in k)try{C.push(y(k[A],T-1))}catch(P){}return C.length?C:E=="string"?k:k+"\0"}function b(k,T){for(var C=k+"",E,A=0;A<C.length;)T[c&A]=c&(E^=T[c&A]*19)+C.charCodeAt(A++);return v(T)}function x(){try{var k;return h&&(k=h.randomBytes)?k=k(s):(k=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(k)),v(k)}catch(E){var T=r.navigator,C=T&&T.plugins;return[+new Date,r,C,r.screen,v(n)]}}function v(k){return String.fromCharCode.apply(0,k)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=gI()}catch(k){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),yI=ft((e,t)=>{var n=a$(),a=r$(),r=s$(),s=i$(),i=o$(),o=l$(),l=u$();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),p$=ft((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),c$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),d$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),m$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),f$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),g$=ft((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(k,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var A=b(y(T.entropy?[k,v(a)]:k==null?x():k,3),E),P=new f(E),$=function(){for(var S=P.g(i),M=u,V=0;S<p;)S=(S+V)*s,M*=s,V=P.g(1);for(;S>=d;)S/=2,M/=2,V>>>=1;return(S+V)/M};return $.int32=function(){return P.g(4)|0},$.quick=function(){return P.g(4)/4294967296},$.double=$,b(v(P.S),a),(T.pass||C||function(S,M,V,j){return j&&(j.S&&g(j,P),S.state=function(){return g(P,{})}),V?(r[l]=S,M):S})($,A,"global"in T?T.global:this==r,T.state)}function f(k){var T,C=k.length,E=this,A=0,P=E.i=E.j=0,$=E.S=[];for(C||(k=[C++]);A<s;)$[A]=A++;for(A=0;A<s;A++)$[A]=$[P=c&P+k[A%C]+(T=$[A])],$[P]=T;(E.g=function(S){for(var M,V=0,j=E.i,q=E.j,K=E.S;S--;)M=K[j=c&j+1],V=V*s+K[c&(K[j]=K[q=c&q+M])+(K[q]=M)];return E.i=j,E.j=q,V})(s)}function g(k,T){return T.i=k.i,T.j=k.j,T.S=k.S.slice(),T}function y(k,T){var C=[],E=typeof k,A;if(T&&E=="object")for(A in k)try{C.push(y(k[A],T-1))}catch(P){}return C.length?C:E=="string"?k:k+"\0"}function b(k,T){for(var C=k+"",E,A=0;A<C.length;)T[c&A]=c&(E^=T[c&A]*19)+C.charCodeAt(A++);return v(T)}function x(){try{var k;return h&&(k=h.randomBytes)?k=k(s):(k=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(k)),v(k)}catch(E){var T=n.navigator,C=T&&T.plugins;return[+new Date,n,C,n.screen,v(a)]}}function v(k){return String.fromCharCode.apply(0,k)}if(b(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=gI()}catch(k){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),bI=ft((e,t)=>{var n=p$(),a=c$(),r=d$(),s=h$(),i=m$(),o=f$(),l=g$();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),xI=ft(()=>{}),Ex=ft(()=>{}),Bh=ft(()=>{}),y$=ft(()=>{}),b$=ft(()=>{}),x$=ft(()=>{}),v$=ft((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Te.buffer!=xn&&Ra(Te.buffer),Pd}function i(){return Te.buffer!=xn&&Ra(Te.buffer),Od}function o(){return Te.buffer!=xn&&Ra(Te.buffer),kp}function l(){return Te.buffer!=xn&&Ra(Te.buffer),Ld}function u(){return Te.buffer!=xn&&Ra(Te.buffer),zd}function p(){return Te.buffer!=xn&&Ra(Te.buffer),Bd}function d(){return Te.buffer!=xn&&Ra(Te.buffer),Wd}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(N,D){h=N,m=D});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),y=[],b="./this.program",x=(N,D)=>{throw D},v=typeof window=="object",k=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=c.ENVIRONMENT_IS_PTHREAD||!1,E="";function A(N){return c.locateFile?c.locateFile(N,E):E+N}var P,$,S,M;function V(N){N instanceof $p||Y("exiting due to exception: "+N)}var j,q,K;if(T){k?E=Bh().dirname(E)+"/":E=__dirname+"/",K=()=>{q||(j=Ex(),q=Bh())},P=function(D,U){return K(),D=q.normalize(D),j.readFileSync(D,U?void 0:"utf8")},S=D=>{var U=P(D,!0);return U.buffer||(U=new Uint8Array(U)),U},$=(D,U,Q)=>{K(),D=q.normalize(D),j.readFile(D,function(pe,he){pe?Q(pe):U(he.buffer)})},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(D){if(!(D instanceof $p))throw D}),process.on("unhandledRejection",function(D){throw D}),x=(D,U)=>{if(Ps())throw process.exitCode=D,U;V(U),process.exit(D)},c.inspect=function(){return"[Emscripten Module object]"};let N;try{N=y$()}catch(D){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),D}global.Worker=N.Worker}else(v||k)&&(k?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof a!="undefined"&&a&&(E=a),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(P=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.send(null),D.responseText},k&&(S=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),$=(N,D,U)=>{var Q=new XMLHttpRequest;Q.open("GET",N,!0),Q.responseType="arraybuffer",Q.onload=()=>{if(Q.status==200||Q.status==0&&Q.response){D(Q.response);return}U()},Q.onerror=U,Q.send(null)}),M=N=>document.title=N);T&&typeof performance=="undefined"&&(global.performance=b$().performance);var Z=console.log.bind(console),ee=console.warn.bind(console);T&&(K(),Z=N=>j.writeSync(1,N+`
|
|
`),ee=N=>j.writeSync(2,N+`
|
|
`));var re=c.print||Z,Y=c.printErr||ee;Object.assign(c,g),g=null,c.arguments&&(y=c.arguments),c.thisProgram&&(b=c.thisProgram),c.quit&&(x=c.quit);var ie=4;function ae(N){ae.shown||(ae.shown={}),ae.shown[N]||(ae.shown[N]=1,Y(N))}function le(N,D){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},Q={parameters:[],results:D[0]=="v"?[]:[U[D[0]]]},pe=1;pe<D.length;++pe)Q.parameters.push(U[D[pe]]);return new WebAssembly.Function(Q,N)}var he=[1,0,1,96],ve=D.slice(0,1),Ce=D.slice(1),_t={i:127,j:126,f:125,d:124};he.push(Ce.length);for(var pe=0;pe<Ce.length;++pe)he.push(_t[Ce[pe]]);ve=="v"?he.push(0):he=he.concat([1,_t[ve]]),he[1]=he.length-2;var La=new Uint8Array([0,97,115,109,1,0,0,0].concat(he,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),za=new WebAssembly.Module(La),fh=new WebAssembly.Instance(za,{e:{f:N}}),Dp=fh.exports.f;return Dp}var ue=[],ke;function ye(){if(ue.length)return ue.pop();try{la.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return la.length-1}function Ie(N,D){for(var U=N;U<N+D;U++){var Q=nl(U);Q&&ke.set(Q,U)}}var Ee=0,$e=N=>{Ee=N},Be=Atomics.load,je=Atomics.store,st=Atomics.compareExchange,nt;c.wasmBinary&&(nt=c.wasmBinary);var at=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Zo("no native wasm support detected");var Te,gt,pt=!1,bn;function Qt(N,D){N||Zo(D)}function Dn(N){var D=c["_"+N];return D}function Ut(N,D,U,Q,pe){var he={string:function(ua){var ul=0;if(ua!=null&&ua!==0){var G1=(ua.length<<2)+1;ul=ll(G1),Rs(ua,ul,G1)}return ul},array:function(ua){var ul=ll(ua.length);return kr(ua,ul),ul}};function ve(ua){return D==="string"?oa(ua):D==="boolean"?Boolean(ua):ua}var Ce=Dn(N),_t=[],La=0;if(Q)for(var za=0;za<Q.length;za++){var fh=he[U[za]];fh?(La===0&&(La=db()),_t[za]=fh(Q[za])):_t[za]=Q[za]}var Dp=Ce.apply(null,_t);function WA(ua){return La!==0&&ch(La),ve(ua)}return Dp=WA(Dp),Dp}function Jt(N,D,U,Q){U=U||[];var pe=U.every(function(ve){return ve==="number"}),he=D!=="string";return he&&pe&&!Q?Dn(N):function(){return Ut(N,D,U,arguments,Q)}}var Da=1;function Rn(N){var D=new TextDecoder(N);this.decode=U=>(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),D.decode.call(D,U))}var Gt=typeof TextDecoder!="undefined"?new Rn("utf8"):void 0;function ia(N,D,U){for(var Q=D+U,pe=D;N[pe]&&!(pe>=Q);)++pe;if(pe-D>16&&N.subarray&&Gt)return Gt.decode(N.subarray(D,pe));for(var he="";D<pe;){var ve=N[D++];if(!(ve&128)){he+=String.fromCharCode(ve);continue}var Ce=N[D++]&63;if((ve&224)==192){he+=String.fromCharCode((ve&31)<<6|Ce);continue}var _t=N[D++]&63;if((ve&240)==224?ve=(ve&15)<<12|Ce<<6|_t:ve=(ve&7)<<18|Ce<<12|_t<<6|N[D++]&63,ve<65536)he+=String.fromCharCode(ve);else{var La=ve-65536;he+=String.fromCharCode(55296|La>>10,56320|La&1023)}}return he}function oa(N,D){return N?ia(i(),N,D):""}function Hr(N,D,U,Q){if(!(Q>0))return 0;for(var pe=U,he=U+Q-1,ve=0;ve<N.length;++ve){var Ce=N.charCodeAt(ve);if(Ce>=55296&&Ce<=57343){var _t=N.charCodeAt(++ve);Ce=65536+((Ce&1023)<<10)|_t&1023}if(Ce<=127){if(U>=he)break;D[U++]=Ce}else if(Ce<=2047){if(U+1>=he)break;D[U++]=192|Ce>>6,D[U++]=128|Ce&63}else if(Ce<=65535){if(U+2>=he)break;D[U++]=224|Ce>>12,D[U++]=128|Ce>>6&63,D[U++]=128|Ce&63}else{if(U+3>=he)break;D[U++]=240|Ce>>18,D[U++]=128|Ce>>12&63,D[U++]=128|Ce>>6&63,D[U++]=128|Ce&63}}return D[U]=0,U-pe}function Rs(N,D,U){return Hr(N,i(),D,U)}function Md(N){for(var D=0,U=0;U<N.length;++U){var Q=N.charCodeAt(U);Q>=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|N.charCodeAt(++U)&1023),Q<=127?++D:Q<=2047?D+=2:Q<=65535?D+=3:D+=4}return D}var jr=typeof TextDecoder!="undefined"?new Rn("utf-16le"):void 0;function kr(N,D){s().set(N,D)}function wp(N,D,U){for(var Q=0;Q<N.length;++Q)s()[D++>>0]=N.charCodeAt(Q);U||(s()[D>>0]=0)}function Qo(N,D){return N%D>0&&(N+=D-N%D),N}var xn,Pd,Od,kp,Ld,zd,S1,Bd,Wd;C&&(xn=c.buffer);function Ra(N){xn=N,c.HEAP8=Pd=new Int8Array(N),c.HEAP16=kp=new Int16Array(N),c.HEAP32=zd=new Int32Array(N),c.HEAPU8=Od=new Uint8Array(N),c.HEAPU16=Ld=new Uint16Array(N),c.HEAPU32=S1=new Uint32Array(N),c.HEAPF32=Bd=new Float32Array(N),c.HEAPF64=Wd=new Float64Array(N)}var Vd=c.INITIAL_MEMORY||16777216;if(C)Te=c.wasmMemory,xn=c.buffer;else if(c.wasmMemory)Te=c.wasmMemory;else if(Te=new WebAssembly.Memory({initial:Vd/65536,maximum:32768,shared:!0}),!(Te.buffer instanceof SharedArrayBuffer))throw Y("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Te&&(xn=Te.buffer),Vd=xn.byteLength,Ra(xn);var la,Jo=[],qr=[],Og=[],Ud=[],Ms=!1,Lg=!1,Gd=0;function Ps(){return at||Gd>0}function vn(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)N1(c.preRun.shift());Kd(Jo)}function Ip(){Ms=!0,!C&&Kd(qr)}function zg(){C||(_e.terminateAllThreads(),Lg=!0)}function Bg(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Sp(c.postRun.shift());Kd(Ud)}}function N1(N){Jo.unshift(N)}function T1(N){qr.unshift(N)}function Sp(N){Ud.unshift(N)}var Kr=0,Hd=null,Ma=null;function Np(N){Kr++,c.monitorRunDependencies&&c.monitorRunDependencies(Kr)}function C1(N){if(Kr--,c.monitorRunDependencies&&c.monitorRunDependencies(Kr),Kr==0&&(Hd!==null&&(clearInterval(Hd),Hd=null),Ma)){var D=Ma;Ma=null,D()}}c.preloadedImages={},c.preloadedAudios={};function Zo(N){C?postMessage({cmd:"onAbort",arg:N}):c.onAbort&&c.onAbort(N),N="Aborted("+N+")",Y(N),pt=!0,bn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(N);throw m(D),D}var Wg="data:application/octet-stream;base64,";function Tp(N){return N.startsWith(Wg)}function jd(N){return N.startsWith("file://")}var wn;wn="tfjs-backend-wasm-threaded-simd.wasm",Tp(wn)||(wn=A(wn));function qd(N){try{if(N==wn&&nt)return new Uint8Array(nt);if(S)return S(N);throw"both async and sync fetching of the wasm failed"}catch(D){Zo(D)}}function el(){if(!nt&&(v||k)){if(typeof fetch=="function"&&!jd(wn))return fetch(wn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+wn+"'";return N.arrayBuffer()}).catch(function(){return qd(wn)});if($)return new Promise(function(N,D){$(wn,function(U){N(new Uint8Array(U))},D)})}return Promise.resolve().then(function(){return qd(wn)})}function Vg(){var N={env:ih,wasi_snapshot_preview1:ih};function D(ve,Ce){var _t=ve.exports;if(c.asm=_t,Xg(c.asm.emscripten_tls_init),la=c.asm.__indirect_function_table,T1(c.asm.__wasm_call_ctors),gt=Ce,!C){var La=_e.unusedWorkers.length;_e.unusedWorkers.forEach(function(za){_e.loadWasmModuleToWorker(za,function(){--La||C1("wasm-instantiate")})})}}C||Np("wasm-instantiate");function U(ve){D(ve.instance,ve.module)}function Q(ve){return el().then(function(Ce){return WebAssembly.instantiate(Ce,N)}).then(function(Ce){return Ce}).then(ve,function(Ce){Y("failed to asynchronously prepare wasm: "+Ce),Zo(Ce)})}function pe(){return!nt&&typeof WebAssembly.instantiateStreaming=="function"&&!Tp(wn)&&!jd(wn)&&typeof fetch=="function"?fetch(wn,{credentials:"same-origin"}).then(function(ve){var Ce=WebAssembly.instantiateStreaming(ve,N);return Ce.then(U,function(_t){return Y("wasm streaming compile failed: "+_t),Y("falling back to ArrayBuffer instantiation"),Q(U)})}):Q(U)}if(c.instantiateWasm)try{var he=c.instantiateWasm(N,D);return he}catch(ve){return Y("Module.instantiateWasm callback failed with error: "+ve),!1}return pe().catch(m),{}}var _1,E1,Ug={};function Kd(N){for(;N.length>0;){var D=N.shift();if(typeof D=="function"){D(c);continue}var U=D.func;typeof U=="number"?D.arg===void 0?nl(U)():nl(U)(D.arg):U(D.arg===void 0?null:D.arg)}}function tl(N){var D=db(),U=N();return ch(D),U}function XF(N){return N}function F1(N){var D=/\b_Z[\w\d_]+/g;return N.replace(D,function(U){var Q=U;return U===Q?U:Q+" ["+U+"]"})}function Gg(N){u()[N>>2]=0;var D=_e.pthreads[N];delete _e.pthreads[N],D.worker.terminate(),cb(N),_e.runningWorkers.splice(_e.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function Hg(N){var D=_e.pthreads[N];D.worker.postMessage({cmd:"cancel"})}function Xd(N){var D=_e.pthreads[N];if(D){u()[N>>2]=0;var U=D.worker;_e.returnWorkerToPool(U)}}function Yd(N){LA(N)}function jg(N){if(N instanceof $p||N=="unwind")return bn;x(1,N)}var _e={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){C?_e.initWorker():_e.initMainThread()},initMainThread:function(){for(var N=8,D=0;D<N;++D)_e.allocateUnusedWorker()},initWorker:function(){at=!1},pthreads:{},setExitStatus:function(N){bn=N},terminateAllThreads:function(){for(var N in _e.pthreads){var D=_e.pthreads[N];D&&D.worker&&_e.returnWorkerToPool(D.worker)}for(var U=0;U<_e.unusedWorkers.length;++U){var Q=_e.unusedWorkers[U];Q.terminate()}_e.unusedWorkers=[]},returnWorkerToPool:function(N){_e.runWithoutMainThreadQueuedCalls(function(){delete _e.pthreads[N.pthread.threadInfoStruct],_e.unusedWorkers.push(N),_e.runningWorkers.splice(_e.runningWorkers.indexOf(N),1),cb(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[U1>>2]=0;try{N()}finally{u()[U1>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in _e.tlsInitFunctions)_e.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,D){N.onmessage=U=>{var Q=U.data,pe=Q.cmd;if(N.pthread&&(_e.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=ph()){var he=_e.pthreads[Q.targetThread];he?he.worker.postMessage(Q,Q.transferList):Y('Internal error! Worker sent a message "'+pe+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),_e.currentProxiedOperationCallerThread=void 0;return}pe==="processQueuedMainThreadWork"?L1():pe==="spawnThread"?Jd(Q):pe==="cleanupThread"?Xd(Q.thread):pe==="killThread"?Gg(Q.thread):pe==="cancelThread"?Hg(Q.thread):pe==="loaded"?(N.loaded=!0,D&&D(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):pe==="print"?re("Thread "+Q.threadId+": "+Q.text):pe==="printErr"?Y("Thread "+Q.threadId+": "+Q.text):pe==="alert"?alert("Thread "+Q.threadId+": "+Q.text):Q.target==="setimmediate"?N.postMessage(Q):pe==="onAbort"?c.onAbort&&c.onAbort(Q.arg):Y("worker sent an unknown command "+pe),_e.currentProxiedOperationCallerThread=void 0},N.onerror=U=>{var Q="worker sent an error!";throw Y(Q+" "+U.filename+":"+U.lineno+": "+U.message),U},T&&(N.on("message",function(U){N.onmessage({data:U})}),N.on("error",function(U){N.onerror(U)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:Te,wasmModule:gt})},allocateUnusedWorker:function(){var N=A("tfjs-backend-wasm-threaded-simd.worker.js");_e.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return _e.unusedWorkers.length==0&&(_e.allocateUnusedWorker(),_e.loadWasmModuleToWorker(_e.unusedWorkers[0])),_e.unusedWorkers.pop()}};function qg(){var N=ph(),D=u()[N+44>>2],U=u()[N+48>>2],Q=D-U;V1(D,Q),ch(D)}c.establishStackSpace=qg;function Qd(N){if(C)return zs(1,0,N);try{Yd(N)}catch(D){jg(D)}}var Os=[];function nl(N){var D=Os[N];return D||(N>=Os.length&&(Os.length=N+1),Os[N]=D=la.get(N)),D}function Kg(N,D){return nl(N)(D)}c.invokeEntryPoint=Kg;function A1(){var N=new Error;if(!N.stack){try{throw new Error}catch(D){N=D}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function Xg(N,D,U){_e.tlsInitFunctions.push(N)}function $1(N,D){la.set(N,D),Os[N]=D}var Ls;T?Ls=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:C?Ls=()=>performance.now()-c.__performance_now_clock_drift:Ls=()=>performance.now();var Yg=!0;function Qg(N){return u()[O1()>>2]=N,N}function Jg(N,D){var U;if(N===0)U=Date.now();else if((N===1||N===4)&&Yg)U=Ls();else return Qg(28),-1;return u()[D>>2]=U/1e3|0,u()[D+4>>2]=U%1e3*1e3*1e3|0,0}function Zg(N,D){return Jg(N,D)}function ey(N){z1(N,!k,1,!v),_e.threadInit()}function ty(N){C?postMessage({cmd:"cleanupThread",thread:N}):Xd(N)}function Jd(N){var D=_e.getNewWorker();if(!D)return 6;_e.runningWorkers.push(D);var U=_e.pthreads[N.pthread_ptr]={worker:D,threadInfoStruct:N.pthread_ptr};D.pthread=U;var Q={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return D.runPthread=()=>{Q.time=performance.now(),D.postMessage(Q,N.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread),0}function ny(N,D,U,Q){if(typeof SharedArrayBuffer=="undefined")return Y("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var pe=[],he=0;if(C&&(pe.length===0||he))return B1(687865856,N,D,U,Q);if(he)return he;var ve={startRoutine:U,pthread_ptr:N,arg:Q,transferList:pe};return C?(ve.cmd="spawnThread",postMessage(ve,pe),0):Jd(ve)}function ay(){return 2097152}function ry(N,D){if(N==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(C)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var U=_e.pthreads[N],Q=U&&U.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function sy(){Zo("")}function iy(){T||k||ae("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Zd(){return 2147483648}function oy(N,D,U){i().copyWithin(N,D,D+U)}function ly(){return T?x$().cpus().length:navigator.hardwareConcurrency}function zs(N,D){var U=arguments.length-2,Q=arguments;return tl(function(){for(var pe=U,he=ll(pe*8),ve=he>>3,Ce=0;Ce<U;Ce++){var _t=Q[2+Ce];d()[ve+Ce]=_t}return W1(N,pe,he,D)})}var Cp=[];function uy(N,D,U){Cp.length=D;for(var Q=U>>3,pe=0;pe<D;pe++)Cp[pe]=d()[Q+pe];var he=N<0,ve=he?Ug[-N-1]:_y[N];return ve.apply(null,Cp)}function py(N){try{return Te.grow(N-xn.byteLength+65535>>>16),Ra(Te.buffer),1}catch(D){}}function cy(N){var D=i().length;if(N=N>>>0,N<=D)return!1;var U=Zd();if(N>U)return!1;for(var Q=1;Q<=4;Q*=2){var pe=D*(1+.2/Q);pe=Math.min(pe,N+100663296);var he=Math.min(U,Qo(Math.max(N,pe),65536)),ve=py(he);if(ve)return!0}return!1}var Ue={inEventHandler:0,removeAllEventListeners:function(){for(var N=Ue.eventHandlers.length-1;N>=0;--N)Ue._removeHandler(N);Ue.eventHandlers=[],Ue.deferredCalls=[]},registerRemoveEventListeners:function(){Ue.removeEventListenersRegistered||(Og.push(Ue.removeAllEventListeners),Ue.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,D,U){function Q(ve,Ce){if(ve.length!=Ce.length)return!1;for(var _t in ve)if(ve[_t]!=Ce[_t])return!1;return!0}for(var pe in Ue.deferredCalls){var he=Ue.deferredCalls[pe];if(he.targetFunction==N&&Q(he.argsList,U))return}Ue.deferredCalls.push({targetFunction:N,precedence:D,argsList:U}),Ue.deferredCalls.sort(function(ve,Ce){return ve.precedence<Ce.precedence})},removeDeferredCalls:function(N){for(var D=0;D<Ue.deferredCalls.length;++D)Ue.deferredCalls[D].targetFunction==N&&(Ue.deferredCalls.splice(D,1),--D)},canPerformEventHandlerRequests:function(){return Ue.inEventHandler&&Ue.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Ue.canPerformEventHandlerRequests())for(var N=0;N<Ue.deferredCalls.length;++N){var D=Ue.deferredCalls[N];Ue.deferredCalls.splice(N,1),--N,D.targetFunction.apply(null,D.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,D){for(var U=0;U<Ue.eventHandlers.length;++U)Ue.eventHandlers[U].target==N&&(!D||D==Ue.eventHandlers[U].eventTypeString)&&Ue._removeHandler(U--)},_removeHandler:function(N){var D=Ue.eventHandlers[N];D.target.removeEventListener(D.eventTypeString,D.eventListenerFunc,D.useCapture),Ue.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var D=function(Q){++Ue.inEventHandler,Ue.currentEventHandler=N,Ue.runDeferredCalls(),N.handlerFunc(Q),Ue.runDeferredCalls(),--Ue.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=D,N.target.addEventListener(N.eventTypeString,D,N.useCapture),Ue.eventHandlers.push(N),Ue.registerRemoveEventListeners();else for(var U=0;U<Ue.eventHandlers.length;++U)Ue.eventHandlers[U].target==N.target&&Ue.eventHandlers[U].eventTypeString==N.eventTypeString&&Ue._removeHandler(U--)},queueEventHandlerOnThread_iiii:function(N,D,U,Q,pe){tl(function(){var he=ll(12);u()[he>>2]=U,u()[he+4>>2]=Q,u()[he+8>>2]=pe,pb(N,637534208,D,Q,he)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return _e.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function dy(N){var D=Md(N)+1,U=ub(D);return Rs(N,U,D),U}function hy(N,D,U,Q){tl(function(){var pe=ll(12),he=0;D&&(he=dy(D)),u()[pe>>2]=he,u()[pe+4>>2]=U,u()[pe+8>>2]=Q,pb(N,657457152,0,he,pe)})}function my(N,D,U,Q){D=D?oa(D):"",hy(N,D,U,Q)}function fy(N){return N>2?oa(N):N}var gy=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function yy(N){N=fy(N);var D=gy[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return D}function _p(N){return yy(N)}function eh(N,D,U){var Q=_p(N);if(!Q)return-4;if(Q.canvasSharedPtr&&(u()[Q.canvasSharedPtr>>2]=D,u()[Q.canvasSharedPtr+4>>2]=U),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var pe=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var he=Q.GLctxObject.GLctx.getParameter(2978);pe=he[0]===0&&he[1]===0&&he[2]===Q.width&&he[3]===Q.height}Q.width=D,Q.height=U,pe&&Q.GLctxObject.GLctx.viewport(0,0,D,U)}else if(Q.canvasSharedPtr){var ve=u()[Q.canvasSharedPtr+8>>2];return my(ve,N,D,U),1}else return-4;return 0}function th(N,D,U){return C?zs(2,1,N,D,U):eh(N,D,U)}function by(N,D,U){var Q=_p(N);return Q?eh(N,D,U):th(N,D,U)}function xy(){throw"unwind"}function vy(N){var D=N.getExtension("ANGLE_instanced_arrays");if(D)return N.vertexAttribDivisor=function(U,Q){D.vertexAttribDivisorANGLE(U,Q)},N.drawArraysInstanced=function(U,Q,pe,he){D.drawArraysInstancedANGLE(U,Q,pe,he)},N.drawElementsInstanced=function(U,Q,pe,he,ve){D.drawElementsInstancedANGLE(U,Q,pe,he,ve)},1}function wy(N){var D=N.getExtension("OES_vertex_array_object");if(D)return N.createVertexArray=function(){return D.createVertexArrayOES()},N.deleteVertexArray=function(U){D.deleteVertexArrayOES(U)},N.bindVertexArray=function(U){D.bindVertexArrayOES(U)},N.isVertexArray=function(U){return D.isVertexArrayOES(U)},1}function ky(N){var D=N.getExtension("WEBGL_draw_buffers");if(D)return N.drawBuffers=function(U,Q){D.drawBuffersWEBGL(U,Q)},1}function Iy(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Ct={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(N){Ct.lastError||(Ct.lastError=N)},getNewId:function(N){for(var D=Ct.counter++,U=N.length;U<D;U++)N[U]=null;return D},getSource:function(N,D,U,Q){for(var pe="",he=0;he<D;++he){var ve=Q?u()[Q+he*4>>2]:-1;pe+=oa(u()[U+he*4>>2],ve<0?void 0:ve)}return pe},createContext:function(N,D){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(pe,he){var ve=N.getContextSafariWebGL2Fixed(pe,he);return pe=="webgl"==ve instanceof WebGLRenderingContext?ve:null});var U=N.getContext("webgl",D);if(!U)return 0;var Q=Ct.registerContext(U,D);return Q},registerContext:function(N,D){var U=ub(8);u()[U+4>>2]=ph();var Q={handle:U,attributes:D,version:D.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Q),Ct.contexts[U]=Q,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&&Ct.initExtensions(Q),U},makeContextCurrent:function(N){return Ct.currentContext=Ct.contexts[N],c.ctx=sh=Ct.currentContext&&Ct.currentContext.GLctx,!(N&&!sh)},getContext:function(N){return Ct.contexts[N]},deleteContext:function(N){Ct.currentContext===Ct.contexts[N]&&(Ct.currentContext=null),typeof Ue=="object"&&Ue.removeAllHandlersOnTarget(Ct.contexts[N].GLctx.canvas),Ct.contexts[N]&&Ct.contexts[N].GLctx.canvas&&(Ct.contexts[N].GLctx.canvas.GLctxObject=void 0),P1(Ct.contexts[N].handle),Ct.contexts[N]=null},initExtensions:function(N){if(N||(N=Ct.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var D=N.GLctx;vy(D),wy(D),ky(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),Iy(D);var U=D.getSupportedExtensions()||[];U.forEach(function(Q){!Q.includes("lose_context")&&!Q.includes("debug")&&D.getExtension(Q)})}}},Sy=["default","low-power","high-performance"];function Ny(N,D){var U=D>>2,Q=u()[U+6],pe={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:Sy[Q],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},he=_p(N);if(!he||pe.explicitSwapControl)return 0;var ve=Ct.createContext(he,pe);return ve}function Ty(N,D){return Ny(N,D)}var al={mappings:{},buffers:[null,[],[]],printChar:function(N,D){var U=al.buffers[N];D===0||D===10?((N===1?re:Y)(ia(U,0)),U.length=0):U.push(D)},varargs:void 0,get:function(){al.varargs+=4;var N=u()[al.varargs-4>>2];return N},getStr:function(N){var D=oa(N);return D},get64:function(N,D){return N}};function nh(N){return C?zs(3,1,N):0}function ah(N,D,U,Q,pe){if(C)return zs(4,1,N,D,U,Q,pe)}function rh(N,D,U,Q){if(C)return zs(5,1,N,D,U,Q);for(var pe=0,he=0;he<U;he++){var ve=u()[D>>2],Ce=u()[D+4>>2];D+=8;for(var _t=0;_t<Ce;_t++)al.printChar(N,i()[ve+_t]);pe+=Ce}return u()[Q>>2]=pe,0}function Cy(N){$e(N)}_e.init();var sh,_y=[null,Qd,th,nh,ah,rh],D1=!1,ih={__clock_gettime:Zg,__emscripten_init_main_thread_js:ey,__emscripten_thread_cleanup:ty,__pthread_create_js:ny,_emscripten_default_pthread_stack_size:ay,_emscripten_notify_thread_queue:ry,abort:sy,emscripten_check_blocking_allowed:iy,emscripten_get_heap_max:Zd,emscripten_get_now:Ls,emscripten_memcpy_big:oy,emscripten_num_logical_cores:ly,emscripten_receive_on_main_thread_js:uy,emscripten_resize_heap:cy,emscripten_set_canvas_element_size:by,emscripten_unwind_to_js_event_loop:xy,emscripten_webgl_create_context:Ty,exit:Yd,fd_close:nh,fd_seek:ah,fd_write:rh,memory:Te||c.wasmMemory,setTempRet0:Cy},R1=Vg(),Ey=c.___wasm_call_ctors=function(){return(Ey=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},Fy=c._init=function(){return(Fy=c._init=c.asm.init).apply(null,arguments)},Ay=c._init_with_threads_count=function(){return(Ay=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},$y=c._get_threads_count=function(){return($y=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},Dy=c._register_tensor=function(){return(Dy=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},Ry=c._dispose_data=function(){return(Ry=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},My=c._dispose=function(){return(My=c._dispose=c.asm.dispose).apply(null,arguments)},Py=c._Abs=function(){return(Py=c._Abs=c.asm.Abs).apply(null,arguments)},Oy=c._Add=function(){return(Oy=c._Add=c.asm.Add).apply(null,arguments)},Ly=c._AddN=function(){return(Ly=c._AddN=c.asm.AddN).apply(null,arguments)},zy=c._All=function(){return(zy=c._All=c.asm.All).apply(null,arguments)},By=c._Any=function(){return(By=c._Any=c.asm.Any).apply(null,arguments)},Wy=c._ArgMax=function(){return(Wy=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},Vy=c._AvgPool=function(){return(Vy=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},Uy=c._BatchMatMul=function(){return(Uy=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},Gy=c._Ceil=function(){return(Gy=c._Ceil=c.asm.Ceil).apply(null,arguments)},Hy=c._ClipByValue=function(){return(Hy=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},jy=c._Conv2D=function(){return(jy=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},qy=c._Conv2DBackpropInput=function(){return(qy=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},Ky=c._Cos=function(){return(Ky=c._Cos=c.asm.Cos).apply(null,arguments)},Xy=c._Cosh=function(){return(Xy=c._Cosh=c.asm.Cosh).apply(null,arguments)},Yy=c._CropAndResize=function(){return(Yy=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},Qy=c._Cumprod=function(){return(Qy=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},Jy=c._Cumsum=function(){return(Jy=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},Zy=c._DepthToSpace=function(){return(Zy=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},eb=c._DepthwiseConv2dNative=function(){return(eb=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},tb=c._Elu=function(){return(tb=c._Elu=c.asm.Elu).apply(null,arguments)},nb=c._Equal=function(){return(nb=c._Equal=c.asm.Equal).apply(null,arguments)},ab=c._Exp=function(){return(ab=c._Exp=c.asm.Exp).apply(null,arguments)},rb=c._FlipLeftRight=function(){return(rb=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},oh=c._Floor=function(){return(oh=c._Floor=c.asm.Floor).apply(null,arguments)},lh=c._FloorDiv=function(){return(lh=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},Ep=c._FusedBatchNorm=function(){return(Ep=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},sb=c._FusedConv2D=function(){return(sb=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},ib=c._FusedDepthwiseConv2D=function(){return(ib=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},rl=c._Gather=function(){return(rl=c._Gather=c.asm.Gather).apply(null,arguments)},Fp=c._GatherNd=function(){return(Fp=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},Ap=c._Greater=function(){return(Ap=c._Greater=c.asm.Greater).apply(null,arguments)},M1=c._GreaterEqual=function(){return(M1=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},sl=c._LeakyRelu=function(){return(sl=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},il=c._Less=function(){return(il=c._Less=c.asm.Less).apply(null,arguments)},ob=c._LessEqual=function(){return(ob=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},G=c._Log=function(){return(G=c._Log=c.asm.Log).apply(null,arguments)},te=c._LogicalAnd=function(){return(te=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},de=c._Max=function(){return(de=c._Max=c.asm.Max).apply(null,arguments)},Se=c._MaxPool=function(){return(Se=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Je=c._Maximum=function(){return(Je=c._Maximum=c.asm.Maximum).apply(null,arguments)},rt=c._Mean=function(){return(rt=c._Mean=c.asm.Mean).apply(null,arguments)},Ge=c._Min=function(){return(Ge=c._Min=c.asm.Min).apply(null,arguments)},We=c._Minimum=function(){return(We=c._Minimum=c.asm.Minimum).apply(null,arguments)},Lt=c._MirrorPad=function(){return(Lt=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Pa=c._Multiply=function(){return(Pa=c._Multiply=c.asm.Multiply).apply(null,arguments)},Oa=c._Neg=function(){return(Oa=c._Neg=c.asm.Neg).apply(null,arguments)},ol=c._NonMaxSuppressionV3=function(){return(ol=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},Bs=c._NonMaxSuppressionV4=function(){return(Bs=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},lb=c._NonMaxSuppressionV5=function(){return(lb=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},Mn=c._NotEqual=function(){return(Mn=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},Xr=c._OneHot=function(){return(Xr=c._OneHot=c.asm.OneHot).apply(null,arguments)},uh=c._PadV2=function(){return(uh=c._PadV2=c.asm.PadV2).apply(null,arguments)},YF=c._Pow=function(){return(YF=c._Pow=c.asm.Pow).apply(null,arguments)},QF=c._Prelu=function(){return(QF=c._Prelu=c.asm.Prelu).apply(null,arguments)},JF=c._Prod=function(){return(JF=c._Prod=c.asm.Prod).apply(null,arguments)},ZF=c._RealDiv=function(){return(ZF=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},eA=c._Relu=function(){return(eA=c._Relu=c.asm.Relu).apply(null,arguments)},tA=c._Relu6=function(){return(tA=c._Relu6=c.asm.Relu6).apply(null,arguments)},nA=c._ResizeBilinear=function(){return(nA=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},aA=c._Reverse=function(){return(aA=c._Reverse=c.asm.Reverse).apply(null,arguments)},rA=c._RotateWithOffset=function(){return(rA=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},sA=c._Round=function(){return(sA=c._Round=c.asm.Round).apply(null,arguments)},iA=c._Rsqrt=function(){return(iA=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},oA=c._ScatterNd=function(){return(oA=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},lA=c._SelectV2=function(){return(lA=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},uA=c._Sigmoid=function(){return(uA=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},pA=c._Sin=function(){return(pA=c._Sin=c.asm.Sin).apply(null,arguments)},cA=c._Softmax=function(){return(cA=c._Softmax=c.asm.Softmax).apply(null,arguments)},dA=c._SparseFillEmptyRows=function(){return(dA=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},hA=c._SparseReshape=function(){return(hA=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},mA=c._SparseSegmentReduction=function(){return(mA=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},fA=c._Sqrt=function(){return(fA=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},gA=c._Square=function(){return(gA=c._Square=c.asm.Square).apply(null,arguments)},yA=c._SquaredDifference=function(){return(yA=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},bA=c._Step=function(){return(bA=c._Step=c.asm.Step).apply(null,arguments)},xA=c._StridedSlice=function(){return(xA=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},vA=c._Sub=function(){return(vA=c._Sub=c.asm.Sub).apply(null,arguments)},wA=c._Sum=function(){return(wA=c._Sum=c.asm.Sum).apply(null,arguments)},kA=c._Tan=function(){return(kA=c._Tan=c.asm.Tan).apply(null,arguments)},IA=c._Tanh=function(){return(IA=c._Tanh=c.asm.Tanh).apply(null,arguments)},SA=c._Tile=function(){return(SA=c._Tile=c.asm.Tile).apply(null,arguments)},NA=c._TopK=function(){return(NA=c._TopK=c.asm.TopK).apply(null,arguments)},TA=c._Transform=function(){return(TA=c._Transform=c.asm.Transform).apply(null,arguments)},CA=c._Transpose=function(){return(CA=c._Transpose=c.asm.Transpose).apply(null,arguments)},_A=c.__FusedMatMul=function(){return(_A=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},ub=c._malloc=function(){return(ub=c._malloc=c.asm.malloc).apply(null,arguments)},P1=c._free=function(){return(P1=c._free=c.asm.free).apply(null,arguments)},EA=c._emscripten_tls_init=function(){return(EA=c._emscripten_tls_init=c.asm.emscripten_tls_init).apply(null,arguments)},O1=c.___errno_location=function(){return(O1=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},ph=c._pthread_self=function(){return(ph=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},L1=c._emscripten_main_thread_process_queued_calls=function(){return(L1=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},FA=c.__emscripten_thread_crashed=function(){return(FA=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},z1=c.__emscripten_thread_init=function(){return(z1=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},AA=c._emscripten_current_thread_process_queued_calls=function(){return(AA=c._emscripten_current_thread_process_queued_calls=c.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},$A=c._emscripten_main_browser_thread_id=function(){return($A=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},DA=c._emscripten_sync_run_in_main_thread_2=function(){return(DA=c._emscripten_sync_run_in_main_thread_2=c.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},B1=c._emscripten_sync_run_in_main_thread_4=function(){return(B1=c._emscripten_sync_run_in_main_thread_4=c.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},W1=c._emscripten_run_in_main_runtime_thread_js=function(){return(W1=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},pb=c._emscripten_dispatch_to_thread_=function(){return(pb=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},cb=c.__emscripten_thread_free_data=function(){return(cb=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},RA=c.__emscripten_thread_exit=function(){return(RA=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},MA=c._memalign=function(){return(MA=c._memalign=c.asm.memalign).apply(null,arguments)},V1=c._emscripten_stack_set_limits=function(){return(V1=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},db=c.stackSave=function(){return(db=c.stackSave=c.asm.stackSave).apply(null,arguments)},ch=c.stackRestore=function(){return(ch=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},ll=c.stackAlloc=function(){return(ll=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},PA=c.dynCall_iijjiiii=function(){return(PA=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},OA=c.dynCall_jiji=function(){return(OA=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)},U1=c.__emscripten_allow_main_runtime_queued_calls=21464;c.cwrap=Jt,c.keepRuntimeAlive=Ps,c.PThread=_e,c.PThread=_e,c.wasmMemory=Te,c.ExitStatus=$p;var dh;function $p(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Ma=function N(){dh||hb(),dh||(Ma=N)};function hb(N){if(N=N||y,Kr>0)return;if(C){h(c),Ip(),postMessage({cmd:"loaded"});return}if(vn(),Kr>0)return;function D(){dh||(dh=!0,c.calledRun=!0,!pt&&(Ip(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Bg()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),D()},1)):D()}c.run=hb;function LA(N,D){if(bn=N,!D&&C)throw Qd(N),"unwind";Ps()||zg(),zA(N)}function zA(N){bn=N,Ps()||(_e.terminateAllThreads(),c.onExit&&c.onExit(N),pt=!0),x(N,new $p(N))}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();hb();var hh;f&&(hh={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!f.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!f.unhandledRejection.indexOf(N)>-1})});var mh;if(typeof WasmBackendModule!="undefined")mh=WasmBackendModule;else if(typeof r!="undefined")mh=r;else throw new Error("Could not find wasm module in post.js");if(hh){var BA=mh._dispose;mh._dispose=function(){BA(),hh.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),hh.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),w$=ft((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(G,te){i=G,o=te});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(G,te)=>{throw te},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(G){return s.locateFile?s.locateFile(G,g):g+G}var b,x,v,k;function T(G){G instanceof Fp||$("exiting due to exception: "+G)}var C,E,A;f?(m?g=Bh().dirname(g)+"/":g=__dirname+"/",A=()=>{E||(C=Ex(),E=Bh())},b=function(G,te){return A(),G=E.normalize(G),C.readFileSync(G,te?void 0:"utf8")},v=G=>{var te=b(G,!0);return te.buffer||(te=new Uint8Array(te)),te},x=(G,te,de)=>{A(),G=E.normalize(G),C.readFile(G,function(Se,Je){Se?de(Se):te(Je.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(G){if(!(G instanceof Fp))throw G}),process.on("unhandledRejection",function(G){throw G}),c=(G,te)=>{if(kp())throw process.exitCode=G,te;T(te),process.exit(G)},s.inspect=function(){return"[Emscripten Module object]"}):(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",b=G=>{var te=new XMLHttpRequest;return te.open("GET",G,!1),te.send(null),te.responseText},m&&(v=G=>{var te=new XMLHttpRequest;return te.open("GET",G,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),x=(G,te,de)=>{var Se=new XMLHttpRequest;Se.open("GET",G,!0),Se.responseType="arraybuffer",Se.onload=()=>{if(Se.status==200||Se.status==0&&Se.response){te(Se.response);return}de()},Se.onerror=de,Se.send(null)},k=G=>document.title=G);var P=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var S=4;function M(G){M.shown||(M.shown={}),M.shown[G]||(M.shown[G]=1,$(G))}function V(G,te){if(typeof WebAssembly.Function=="function"){for(var de={i:"i32",j:"i64",f:"f32",d:"f64"},Se={parameters:[],results:te[0]=="v"?[]:[de[te[0]]]},Je=1;Je<te.length;++Je)Se.parameters.push(de[te[Je]]);return new WebAssembly.Function(Se,G)}var rt=[1,0,1,96],Ge=te.slice(0,1),We=te.slice(1),Lt={i:127,j:126,f:125,d:124};rt.push(We.length);for(var Je=0;Je<We.length;++Je)rt.push(Lt[We[Je]]);Ge=="v"?rt.push(0):rt=rt.concat([1,Lt[Ge]]),rt[1]=rt.length-2;var Pa=new Uint8Array([0,97,115,109,1,0,0,0].concat(rt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Oa=new WebAssembly.Module(Pa),ol=new WebAssembly.Instance(Oa,{e:{f:G}}),Bs=ol.exports.f;return Bs}var j=[],q;function K(){if(j.length)return j.pop();try{jr.grow(1)}catch(G){throw G instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":G}return jr.length-1}function Z(G,te){for(var de=G;de<G+te;de++){var Se=Np(de);Se&&q.set(Se,de)}}var ee=0,re=G=>{ee=G},Y;s.wasmBinary&&(Y=s.wasmBinary);var ie=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ms("no native wasm support detected");var ae,le=!1,ue;function ke(G,te){G||Ms(te)}function ye(G){var te=s["_"+G];return te}function Ie(G,te,de,Se,Je){var rt={string:function(Mn){var Xr=0;if(Mn!=null&&Mn!==0){var uh=(Mn.length<<2)+1;Xr=Ep(uh),at(Mn,Xr,uh)}return Xr},array:function(Mn){var Xr=Ep(Mn.length);return pt(Mn,Xr),Xr}};function Ge(Mn){return te==="string"?st(Mn):te==="boolean"?Boolean(Mn):Mn}var We=ye(G),Lt=[],Pa=0;if(Se)for(var Oa=0;Oa<Se.length;Oa++){var ol=rt[de[Oa]];ol?(Pa===0&&(Pa=oh()),Lt[Oa]=ol(Se[Oa])):Lt[Oa]=Se[Oa]}var Bs=We.apply(null,Lt);function lb(Mn){return Pa!==0&&lh(Pa),Ge(Mn)}return Bs=lb(Bs),Bs}function Ee(G,te,de,Se){de=de||[];var Je=de.every(function(Ge){return Ge==="number"}),rt=te!=="string";return rt&&Je&&!Se?ye(G):function(){return Ie(G,te,de,arguments,Se)}}var $e=1,Be=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function je(G,te,de){for(var Se=te+de,Je=te;G[Je]&&!(Je>=Se);)++Je;if(Je-te>16&&G.subarray&&Be)return Be.decode(G.subarray(te,Je));for(var rt="";te<Je;){var Ge=G[te++];if(!(Ge&128)){rt+=String.fromCharCode(Ge);continue}var We=G[te++]&63;if((Ge&224)==192){rt+=String.fromCharCode((Ge&31)<<6|We);continue}var Lt=G[te++]&63;if((Ge&240)==224?Ge=(Ge&15)<<12|We<<6|Lt:Ge=(Ge&7)<<18|We<<12|Lt<<6|G[te++]&63,Ge<65536)rt+=String.fromCharCode(Ge);else{var Pa=Ge-65536;rt+=String.fromCharCode(55296|Pa>>10,56320|Pa&1023)}}return rt}function st(G,te){return G?je(Jt,G,te):""}function nt(G,te,de,Se){if(!(Se>0))return 0;for(var Je=de,rt=de+Se-1,Ge=0;Ge<G.length;++Ge){var We=G.charCodeAt(Ge);if(We>=55296&&We<=57343){var Lt=G.charCodeAt(++Ge);We=65536+((We&1023)<<10)|Lt&1023}if(We<=127){if(de>=rt)break;te[de++]=We}else if(We<=2047){if(de+1>=rt)break;te[de++]=192|We>>6,te[de++]=128|We&63}else if(We<=65535){if(de+2>=rt)break;te[de++]=224|We>>12,te[de++]=128|We>>6&63,te[de++]=128|We&63}else{if(de+3>=rt)break;te[de++]=240|We>>18,te[de++]=128|We>>12&63,te[de++]=128|We>>6&63,te[de++]=128|We&63}}return te[de]=0,de-Je}function at(G,te,de){return nt(G,Jt,te,de)}function Te(G){for(var te=0,de=0;de<G.length;++de){var Se=G.charCodeAt(de);Se>=55296&&Se<=57343&&(Se=65536+((Se&1023)<<10)|G.charCodeAt(++de)&1023),Se<=127?++te:Se<=2047?te+=2:Se<=65535?te+=3:te+=4}return te}var gt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function pt(G,te){Ut.set(G,te)}function bn(G,te,de){for(var Se=0;Se<G.length;++Se)Ut[te++>>0]=G.charCodeAt(Se);de||(Ut[te>>0]=0)}function Qt(G,te){return G%te>0&&(G+=te-G%te),G}var Dn,Ut,Jt,Da,Rn,Gt,ia,oa,Hr;function Rs(G){Dn=G,s.HEAP8=Ut=new Int8Array(G),s.HEAP16=Da=new Int16Array(G),s.HEAP32=Gt=new Int32Array(G),s.HEAPU8=Jt=new Uint8Array(G),s.HEAPU16=Rn=new Uint16Array(G),s.HEAPU32=ia=new Uint32Array(G),s.HEAPF32=oa=new Float32Array(G),s.HEAPF64=Hr=new Float64Array(G)}var Md=s.INITIAL_MEMORY||16777216,jr,kr=[],wp=[],Qo=[],xn=!1,Pd=!1,Od=0;function kp(){return ie||Od>0}function Ld(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Wd(s.preRun.shift());Sp(kr)}function zd(){xn=!0,Sp(wp)}function S1(){Pd=!0}function Bd(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Vd(s.postRun.shift());Sp(Qo)}function Wd(G){kr.unshift(G)}function Ra(G){wp.unshift(G)}function Vd(G){Qo.unshift(G)}var la=0,Jo=null,qr=null;function Og(G){la++,s.monitorRunDependencies&&s.monitorRunDependencies(la)}function Ud(G){if(la--,s.monitorRunDependencies&&s.monitorRunDependencies(la),la==0&&(Jo!==null&&(clearInterval(Jo),Jo=null),qr)){var te=qr;qr=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Ms(G){s.onAbort&&s.onAbort(G),G="Aborted("+G+")",$(G),le=!0,ue=1,G+=". Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(G);throw o(te),te}var Lg="data:application/octet-stream;base64,";function Gd(G){return G.startsWith(Lg)}function Ps(G){return G.startsWith("file://")}var vn;vn="tfjs-backend-wasm.wasm",Gd(vn)||(vn=y(vn));function Ip(G){try{if(G==vn&&Y)return new Uint8Array(Y);if(v)return v(G);throw"both async and sync fetching of the wasm failed"}catch(te){Ms(te)}}function zg(){if(!Y&&(h||m)){if(typeof fetch=="function"&&!Ps(vn))return fetch(vn,{credentials:"same-origin"}).then(function(G){if(!G.ok)throw"failed to load wasm binary file at '"+vn+"'";return G.arrayBuffer()}).catch(function(){return Ip(vn)});if(x)return new Promise(function(G,te){x(vn,function(de){G(new Uint8Array(de))},te)})}return Promise.resolve().then(function(){return Ip(vn)})}function Bg(){var G={env:tl,wasi_snapshot_preview1:tl};function te(Ge,We){var Lt=Ge.exports;s.asm=Lt,ae=s.asm.memory,Rs(ae.buffer),jr=s.asm.__indirect_function_table,Ra(s.asm.__wasm_call_ctors),Ud("wasm-instantiate")}Og("wasm-instantiate");function de(Ge){te(Ge.instance)}function Se(Ge){return zg().then(function(We){return WebAssembly.instantiate(We,G)}).then(function(We){return We}).then(Ge,function(We){$("failed to asynchronously prepare wasm: "+We),Ms(We)})}function Je(){return!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!Gd(vn)&&!Ps(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(Ge){var We=WebAssembly.instantiateStreaming(Ge,G);return We.then(de,function(Lt){return $("wasm streaming compile failed: "+Lt),$("falling back to ArrayBuffer instantiation"),Se(de)})}):Se(de)}if(s.instantiateWasm)try{var rt=s.instantiateWasm(G,te);return rt}catch(Ge){return $("Module.instantiateWasm callback failed with error: "+Ge),!1}return Je().catch(o),{}}var N1,T1;function Sp(G){for(;G.length>0;){var te=G.shift();if(typeof te=="function"){te(s);continue}var de=te.func;typeof de=="number"?te.arg===void 0?Np(de)():Np(de)(te.arg):de(te.arg===void 0?null:te.arg)}}function Kr(G){return G}function Hd(G){var te=/\b_Z[\w\d_]+/g;return G.replace(te,function(de){var Se=de;return de===Se?de:Se+" ["+de+"]"})}var Ma=[];function Np(G){var te=Ma[G];return te||(G>=Ma.length&&(Ma.length=G+1),Ma[G]=te=jr.get(G)),te}function C1(){var G=new Error;if(!G.stack){try{throw new Error}catch(te){G=te}if(!G.stack)return"(no stack trace available)"}return G.stack.toString()}function Zo(G,te){jr.set(G,te),Ma[G]=te}function Wg(){Ms("")}function Tp(){return 2147483648}function jd(G,te,de){Jt.copyWithin(G,te,te+de)}function wn(G){try{return ae.grow(G-Dn.byteLength+65535>>>16),Rs(ae.buffer),1}catch(te){}}function qd(G){var te=Jt.length;G=G>>>0;var de=Tp();if(G>de)return!1;for(var Se=1;Se<=4;Se*=2){var Je=te*(1+.2/Se);Je=Math.min(Je,G+100663296);var rt=Math.min(de,Qt(Math.max(G,Je),65536)),Ge=wn(rt);if(Ge)return!0}return!1}var el={mappings:{},buffers:[null,[],[]],printChar:function(G,te){var de=el.buffers[G];te===0||te===10?((G===1?P:$)(je(de,0)),de.length=0):de.push(te)},varargs:void 0,get:function(){el.varargs+=4;var G=Gt[el.varargs-4>>2];return G},getStr:function(G){var te=st(G);return te},get64:function(G,te){return G}};function Vg(G){return 0}function _1(G,te,de,Se,Je){}function E1(G,te,de,Se){for(var Je=0,rt=0;rt<de;rt++){var Ge=Gt[te>>2],We=Gt[te+4>>2];te+=8;for(var Lt=0;Lt<We;Lt++)el.printChar(G,Jt[Ge+Lt]);Je+=We}return Gt[Se>>2]=Je,0}function Ug(G){re(G)}var Kd=!1,tl={abort:Wg,emscripten_get_heap_max:Tp,emscripten_memcpy_big:jd,emscripten_resize_heap:qd,fd_close:Vg,fd_seek:_1,fd_write:E1,setTempRet0:Ug},XF=Bg(),F1=s.___wasm_call_ctors=function(){return(F1=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},Gg=s._init=function(){return(Gg=s._init=s.asm.init).apply(null,arguments)},Hg=s._init_with_threads_count=function(){return(Hg=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},Xd=s._get_threads_count=function(){return(Xd=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},Yd=s._register_tensor=function(){return(Yd=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},jg=s._dispose_data=function(){return(jg=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},_e=s._dispose=function(){return(_e=s._dispose=s.asm.dispose).apply(null,arguments)},qg=s._Abs=function(){return(qg=s._Abs=s.asm.Abs).apply(null,arguments)},Qd=s._Add=function(){return(Qd=s._Add=s.asm.Add).apply(null,arguments)},Os=s._AddN=function(){return(Os=s._AddN=s.asm.AddN).apply(null,arguments)},nl=s._All=function(){return(nl=s._All=s.asm.All).apply(null,arguments)},Kg=s._Any=function(){return(Kg=s._Any=s.asm.Any).apply(null,arguments)},A1=s._ArgMax=function(){return(A1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},Xg=s._AvgPool=function(){return(Xg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},$1=s._BatchMatMul=function(){return($1=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Ls=s._Ceil=function(){return(Ls=s._Ceil=s.asm.Ceil).apply(null,arguments)},Yg=s._ClipByValue=function(){return(Yg=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Qg=s._Conv2D=function(){return(Qg=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Jg=s._Conv2DBackpropInput=function(){return(Jg=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Zg=s._Cos=function(){return(Zg=s._Cos=s.asm.Cos).apply(null,arguments)},ey=s._Cosh=function(){return(ey=s._Cosh=s.asm.Cosh).apply(null,arguments)},ty=s._CropAndResize=function(){return(ty=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Jd=s._Cumprod=function(){return(Jd=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},ny=s._Cumsum=function(){return(ny=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},ay=s._DepthToSpace=function(){return(ay=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},ry=s._DepthwiseConv2dNative=function(){return(ry=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},sy=s._Elu=function(){return(sy=s._Elu=s.asm.Elu).apply(null,arguments)},iy=s._Equal=function(){return(iy=s._Equal=s.asm.Equal).apply(null,arguments)},Zd=s._Exp=function(){return(Zd=s._Exp=s.asm.Exp).apply(null,arguments)},oy=s._FlipLeftRight=function(){return(oy=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},ly=s._Floor=function(){return(ly=s._Floor=s.asm.Floor).apply(null,arguments)},zs=s._FloorDiv=function(){return(zs=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},Cp=s._FusedBatchNorm=function(){return(Cp=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},uy=s._FusedConv2D=function(){return(uy=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},py=s._FusedDepthwiseConv2D=function(){return(py=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},cy=s._Gather=function(){return(cy=s._Gather=s.asm.Gather).apply(null,arguments)},Ue=s._GatherNd=function(){return(Ue=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},dy=s._Greater=function(){return(dy=s._Greater=s.asm.Greater).apply(null,arguments)},hy=s._GreaterEqual=function(){return(hy=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},my=s._LeakyRelu=function(){return(my=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},fy=s._Less=function(){return(fy=s._Less=s.asm.Less).apply(null,arguments)},gy=s._LessEqual=function(){return(gy=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},yy=s._Log=function(){return(yy=s._Log=s.asm.Log).apply(null,arguments)},_p=s._LogicalAnd=function(){return(_p=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},eh=s._Max=function(){return(eh=s._Max=s.asm.Max).apply(null,arguments)},th=s._MaxPool=function(){return(th=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},by=s._Maximum=function(){return(by=s._Maximum=s.asm.Maximum).apply(null,arguments)},xy=s._Mean=function(){return(xy=s._Mean=s.asm.Mean).apply(null,arguments)},vy=s._Min=function(){return(vy=s._Min=s.asm.Min).apply(null,arguments)},wy=s._Minimum=function(){return(wy=s._Minimum=s.asm.Minimum).apply(null,arguments)},ky=s._MirrorPad=function(){return(ky=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},Iy=s._Multiply=function(){return(Iy=s._Multiply=s.asm.Multiply).apply(null,arguments)},Ct=s._Neg=function(){return(Ct=s._Neg=s.asm.Neg).apply(null,arguments)},Sy=s._NonMaxSuppressionV3=function(){return(Sy=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Ny=s._NonMaxSuppressionV4=function(){return(Ny=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Ty=s._NonMaxSuppressionV5=function(){return(Ty=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},al=s._NotEqual=function(){return(al=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},nh=s._OneHot=function(){return(nh=s._OneHot=s.asm.OneHot).apply(null,arguments)},ah=s._PadV2=function(){return(ah=s._PadV2=s.asm.PadV2).apply(null,arguments)},rh=s._Pow=function(){return(rh=s._Pow=s.asm.Pow).apply(null,arguments)},Cy=s._Prelu=function(){return(Cy=s._Prelu=s.asm.Prelu).apply(null,arguments)},sh=s._Prod=function(){return(sh=s._Prod=s.asm.Prod).apply(null,arguments)},_y=s._RealDiv=function(){return(_y=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},D1=s._Relu=function(){return(D1=s._Relu=s.asm.Relu).apply(null,arguments)},ih=s._Relu6=function(){return(ih=s._Relu6=s.asm.Relu6).apply(null,arguments)},R1=s._ResizeBilinear=function(){return(R1=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},Ey=s._Reverse=function(){return(Ey=s._Reverse=s.asm.Reverse).apply(null,arguments)},Fy=s._RotateWithOffset=function(){return(Fy=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Ay=s._Round=function(){return(Ay=s._Round=s.asm.Round).apply(null,arguments)},$y=s._Rsqrt=function(){return($y=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Dy=s._ScatterNd=function(){return(Dy=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Ry=s._SelectV2=function(){return(Ry=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},My=s._Sigmoid=function(){return(My=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Py=s._Sin=function(){return(Py=s._Sin=s.asm.Sin).apply(null,arguments)},Oy=s._Softmax=function(){return(Oy=s._Softmax=s.asm.Softmax).apply(null,arguments)},Ly=s._SparseFillEmptyRows=function(){return(Ly=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},zy=s._SparseReshape=function(){return(zy=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},By=s._SparseSegmentReduction=function(){return(By=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},Wy=s._Sqrt=function(){return(Wy=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Vy=s._Square=function(){return(Vy=s._Square=s.asm.Square).apply(null,arguments)},Uy=s._SquaredDifference=function(){return(Uy=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Gy=s._Step=function(){return(Gy=s._Step=s.asm.Step).apply(null,arguments)},Hy=s._StridedSlice=function(){return(Hy=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},jy=s._Sub=function(){return(jy=s._Sub=s.asm.Sub).apply(null,arguments)},qy=s._Sum=function(){return(qy=s._Sum=s.asm.Sum).apply(null,arguments)},Ky=s._Tan=function(){return(Ky=s._Tan=s.asm.Tan).apply(null,arguments)},Xy=s._Tanh=function(){return(Xy=s._Tanh=s.asm.Tanh).apply(null,arguments)},Yy=s._Tile=function(){return(Yy=s._Tile=s.asm.Tile).apply(null,arguments)},Qy=s._TopK=function(){return(Qy=s._TopK=s.asm.TopK).apply(null,arguments)},Jy=s._Transform=function(){return(Jy=s._Transform=s.asm.Transform).apply(null,arguments)},Zy=s._Transpose=function(){return(Zy=s._Transpose=s.asm.Transpose).apply(null,arguments)},eb=s.__FusedMatMul=function(){return(eb=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},tb=s._malloc=function(){return(tb=s._malloc=s.asm.malloc).apply(null,arguments)},nb=s._free=function(){return(nb=s._free=s.asm.free).apply(null,arguments)},ab=s.___errno_location=function(){return(ab=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},rb=s._emscripten_main_thread_process_queued_calls=function(){return(rb=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},oh=s.stackSave=function(){return(oh=s.stackSave=s.asm.stackSave).apply(null,arguments)},lh=s.stackRestore=function(){return(lh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Ep=s.stackAlloc=function(){return(Ep=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},sb=s.dynCall_iijjiiii=function(){return(sb=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},ib=s.dynCall_jiji=function(){return(ib=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Ee;var rl;function Fp(G){this.name="ExitStatus",this.message="Program terminated with exit("+G+")",this.status=G}qr=function G(){rl||Ap(),rl||(qr=G)};function Ap(G){if(G=G||p,la>0||(Ld(),la>0))return;function te(){rl||(rl=!0,s.calledRun=!0,!le&&(zd(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Bd()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=Ap;function M1(G){ue=G,kp()||(s.onExit&&s.onExit(G),le=!0),c(G,new Fp(G))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Ap();var sl;l&&(sl={uncaughtException:process.listeners("uncaughtException").filter(function(G){return!l.uncaughtException.indexOf(G)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(G){return!l.unhandledRejection.indexOf(G)>-1})});var il;if(typeof r!="undefined")il=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")il=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(sl){var ob=il._dispose;il._dispose=function(){ob(),sl.uncaughtException.forEach(function(G){process.removeListener("uncaughtException",G)}),sl.unhandledRejection.forEach(function(G){process.removeListener("unhandledRejection",G)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),ym=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},gc=class{refCount(e){return pa("refCount")}incRef(e){return pa("incRef")}timerAvailable(){return!0}time(e){return pa("time")}read(e){return pa("read")}readSync(e){return pa("readSync")}readToGPU(e,t){return pa("readToGPU")}numDataIds(){return pa("numDataIds")}disposeData(e,t){return pa("disposeData")}write(e,t,n){return pa("write")}move(e,t,n,a,r){return pa("move")}memory(){return pa("memory")}floatPrecision(){return pa("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return pa("dispose")}};function pa(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function vI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Wh(e,t,n)}function k$(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,Wh(e,n,a),Wh(t,n,a)}function Jp(e,t,n){return Math.max(e,Math.min(t,n))}function I$(e){return e%2===0?e:e+1}function Wh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function S$(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function N$(e,t){let n=Math.random();return t*n+(1-n)*e}function T$(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function R(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Tn(e,t,n=""){R(gs(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function xi(e){R(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ti(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let a=0;a<e.length;++a)ti(e[a],t,n);else t.push(e);return t}function bt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function C$(e){return e.length===0}function gs(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function kl(e){return e%1===0}function _$(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function E$(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function F$(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return vI(t),t}function Kp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function A$(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function $$(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Ea(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),R(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),R(e.every(a=>kl(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function wI(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Ea(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function kI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function II(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function SI(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function NI(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function D$(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function hn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Eb(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function TI(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Zr(e){return typeof e=="string"||e instanceof String}function CI(e){return typeof e=="boolean"}function _I(e){return typeof e=="number"}function bm(e){return Array.isArray(e)?bm(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":_I(e)?"float32":Zr(e)?"string":CI(e)?"bool":"float32"}function ss(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Vh(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function Ol(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function EI(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=EI(e+l*o,i,n,a)}return r}function yl(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return EI(0,e,t,n)}function Fx(e,t){let n=xm(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function xm(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function R$(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return yl(e,new Float32Array(n));if(t==="int32")return yl(e,new Int32Array(n));if(t==="bool")return yl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Ax(e){e.forEach(t=>{R(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function M$(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function P$(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function $x(e){return e&&e.then&&typeof e.then=="function"}var H1="tfjsflags",FI=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=O$,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if($x(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);H1 in e&&e[H1].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=z$(n,a)})}};function O$(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(L$(t,a[0],a[1]),a.join("="))),t}function L$(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function z$(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function X(){return Dx}var Dx=null;function B$(e){Dx=e}var fb;function AI(){if(fb==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");fb=e}return fb}function W$(){let e=AI();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Rx(e,t){let n=W$();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Ll="Abs",zl="Acos",Bl="Acosh",ys="Add",vi="AddN",Wl="All",Vl="Any",wi="ArgMax",yc="ArgMin",Ul="Asin",Gl="Asinh",Hl="Atan",jl="Atanh",ql="Atan2",ki="AvgPool",vm="AvgPoolGrad",bc="AvgPool3D",wm="AvgPool3DGrad",Ii="BatchMatMul",Kl="BatchToSpaceND",km="Bincount",$I="BroadcastTo",Im="BroadcastArgs",Si="Cast",Ni="Ceil",bs="ClipByValue",Sm="Complex",xc="ComplexAbs",Xl="Concat",Ti="Conv2D",Nm="Conv2DBackpropFilter",Ci="Conv2DBackpropInput",vc="Conv3D",Tm="Conv3DBackpropFilterV2",Cm="Conv3DBackpropInputV2",_i="Cos",Ei="Cosh",Yl="Cumprod",Fi="Cumsum",Ql="CropAndResize",_m="DenseBincount",Jl="DepthToSpace",Ai="DepthwiseConv2dNative",Em="DepthwiseConv2dNativeBackpropFilter",Fm="DepthwiseConv2dNativeBackpropInput",Am="Diag",wc="Dilation2D",Uh="Dilation2DBackpropInput",Gh="Dilation2DBackpropFilter",$i="RealDiv",$m="Einsum",Di="Elu",Dm="EluGrad",Zl="Erf",eu="Equal",Ri="Exp",tu="ExpandDims",nu="Expm1",Rm="FFT",kc="Fill",au="FlipLeftRight",Mi="Floor",Pi="FloorDiv",Oi="FusedBatchNorm",ru="GatherV2",su="GatherNd",iu="Greater",Li="GreaterEqual",zi="Identity",Mm="IFFT",Pm="Imag",ou="IsFinite",lu="IsInf",uu="IsNan",Bi="LeakyRelu",pu="Less",cu="LessEqual",Om="LinSpace",Wi="Log",du="Log1p",hu="LogicalAnd",Ic="LogicalNot",Sc="LogicalOr",DI="LogSoftmax",V$="LowerBound",Nc="LRN",Lm="LRNGrad",Vi="Max",Ui="Maximum",Gi="MaxPool",zm="MaxPoolGrad",Tc="MaxPool3D",Bm="MaxPool3DGrad",Wm="MaxPoolWithArgmax",Hi="Mean",ji="Min",qi="Minimum",Ki="MirrorPad",mu="Mod",Vm="Multinomial",Xi="Multiply",fu="Neg",gu="NotEqual",yu="NonMaxSuppressionV3",bu="NonMaxSuppressionV4",xu="NonMaxSuppressionV5",vu="OnesLike",Yi="OneHot",wu="Pack",Qi="PadV2",U$="Pool",Ji="Pow",Zi="Prelu",eo="Prod",Cc="Range",Um="Real",ku="Reciprocal",to="Relu",Iu="Reshape",_c="ResizeNearestNeighbor",Gm="ResizeNearestNeighborGrad",no="ResizeBilinear",Hm="ResizeBilinearGrad",ao="Relu6",ro="Reverse",so="Round",io="Rsqrt",Su="ScatterNd",jm="SearchSorted",Nu="Select",Tu="Selu",Cu="Slice",oo="Sin",_u="Sinh",Eu="Sign",lo="Sigmoid",Fu="Softplus",uo="Sqrt",po="Sum",Au="SpaceToBatchND",$u="SplitV",co="Softmax",Ec="SparseFillEmptyRows",Du="SparseReshape",Fc="SparseSegmentMean",Ac="SparseSegmentSum",qm="SparseToDense",ho="SquaredDifference",$c="Square",Ru="StridedSlice",Km="StringNGrams",Xm="StringSplit",Ym="StringToHashBucketFast",mo="Sub",fo="Tan",go="Tanh",xs="Tile",Mu="TopK",Pu="Transform",yo="Transpose",Qm="Unique",Ou="Unpack",Dc="UnsortedSegmentSum",G$="UpperBound",Lu="ZerosLike",vs="Step",Hh="FromPixels",zu="RotateWithOffset",ni="_FusedMatMul",ai="FusedConv2D",ri="FusedDepthwiseConv2D";function Jr(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(...e)}function H$(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.log(...e)}var Il=Rx("kernelRegistry",()=>new Map),Zp=Rx("gradRegistry",()=>new Map);function jh(e,t){let n=Mx(e,t);return Il.get(n)}function Fb(e){return Zp.get(e)}function qh(e){let t=Il.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function Rc(e){let{kernelName:t,backendName:n}=e,a=Mx(t,n);Il.has(a)&&Jr(`The kernel '${t}' for backend '${n}' is already registered`),Il.set(a,e)}function RI(e){let{kernelName:t}=e;Zp.has(t)&&X().getBool("DEBUG")&&Jr(`Overriding the gradient for '${t}'`),Zp.set(t,e)}function j$(e,t){let n=Mx(e,t);if(!Il.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Il.delete(n)}function q$(e){if(!Zp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Zp.delete(e)}function K$(e,t){qh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});Rc(a)})}function Mx(e,t){return`${t}_${e}`}var w={};Me(w,{arraysEqual:()=>gs,assert:()=>R,assertNonNegativeIntegerDimensions:()=>Ax,assertNonNull:()=>xi,assertShapesMatch:()=>Tn,bytesFromStringArray:()=>TI,bytesPerElement:()=>Eb,checkConversionForErrors:()=>SI,clamp:()=>Jp,computeStrides:()=>Ol,createScalarValue:()=>eD,createShuffledIndices:()=>F$,decodeString:()=>Kh,distSquared:()=>T$,encodeString:()=>Pc,fetch:()=>nD,fingerPrint64:()=>Z$,flatten:()=>ti,getArrayFromDType:()=>II,getTypedArrayFromDType:()=>kI,hasEncodingLoss:()=>D$,hexToLong:()=>Mc,indexToLoc:()=>P$,inferDtype:()=>bm,inferFromImplicitShape:()=>$$,isBoolean:()=>CI,isFunction:()=>ss,isInt:()=>kl,isNumber:()=>_I,isPromise:()=>$x,isScalarShape:()=>C$,isString:()=>Zr,isTypedArray:()=>hn,isValidDtype:()=>NI,locToIndex:()=>M$,makeOnesTypedArray:()=>Fx,makeZerosNestedTypedArray:()=>R$,makeZerosTypedArray:()=>xm,nearestDivisor:()=>Vh,nearestLargerEven:()=>I$,now:()=>ec,parseAxisParam:()=>Ea,randUniform:()=>N$,repeatedTry:()=>A$,rightPad:()=>Kp,shuffle:()=>vI,shuffleCombo:()=>k$,sizeFromShape:()=>bt,sizeToSquarishShape:()=>E$,squeezeShape:()=>wI,sum:()=>S$,swap:()=>Wh,tanh:()=>_$,toNestedArray:()=>yl,toTypedArray:()=>Jm});var j1=bi(e$()),Hs=j1.default||j1;function Mc(e){return Hs.fromString(e,!0,16)}var MI=Mc("c3a5c85c97cb3127"),Us=Mc("b492b66fbe98f273"),kn=Mc("9ae16a3b2f90404f");function Ab(e){return e.xor(e.shru(47))}function PI(e,t,n){let a=e.slice(t,t+n);return Hs.fromBytes(Array.from(a),!0,!0)}function yt(e,t){return PI(e,t,8)}function q1(e,t){return PI(e,t,4)}function Zt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ns(e,t,n=Mc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function X$(e,t,n,a,r,s){r=r.add(e),s=Zt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Zt(r,44)),[r.add(a),s.add(i)]}function yh(e,t,n,a){return X$(yt(e,t),yt(e,t+8),yt(e,t+16),yt(e,t+24),n,a)}function Y$(e,t=e.length){if(t>=8){let n=kn.add(t*2),a=yt(e,0).add(kn),r=yt(e,t-8),s=Zt(r,37).mul(n).add(a),i=Zt(a,25).add(r).mul(n);return ns(s,i,n)}if(t>=4){let n=kn.add(t*2),a=q1(e,0);return ns(a.shl(3).add(t),q1(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return Ab(kn.mul(s).xor(MI.mul(i))).mul(kn)}return kn}function Q$(e,t=e.length){let n=kn.add(t*2),a=yt(e,0).mul(Us),r=yt(e,8),s=yt(e,t-8).mul(n),i=yt(e,t-16).mul(kn);return ns(Zt(a.add(r),43).add(Zt(s,30)).add(i),a.add(Zt(r.add(kn),18)).add(s),n)}function J$(e,t=e.length){let n=kn.add(t*2),a=yt(e,0).mul(kn),r=yt(e,8),s=yt(e,t-8).mul(n),i=yt(e,t-16).mul(kn),o=Zt(a.add(r),43).add(Zt(s,30)).add(i),l=ns(o,a.add(Zt(r.add(kn),18)).add(s),n),u=yt(e,16).mul(n),p=yt(e,24),d=o.add(yt(e,t-32)).mul(n),c=l.add(yt(e,t-24)).mul(n);return ns(Zt(u.add(p),43).add(Zt(d,30)).add(c),u.add(Zt(p.add(a),18)).add(d),n)}function Z$(e,t=e.length){let n=Hs.fromNumber(81,!0);if(t<=32)return t<=16?Y$(e,t):Q$(e,t);if(t<=64)return J$(e,t);let a=n,r=n.mul(Us).add(113),s=Ab(r.mul(kn).add(113)).mul(kn),i=[Hs.UZERO,Hs.UZERO],o=[Hs.UZERO,Hs.UZERO];a=a.mul(kn).add(yt(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Zt(a.add(r).add(i[0]).add(yt(e,l+8)),37).mul(Us),r=Zt(r.add(i[1]).add(yt(e,l+48)),42).mul(Us),a=a.xor(o[1]),r=r.add(i[0]).add(yt(e,l+40)),s=Zt(s.add(o[0]),33).mul(Us),i=yh(e,l,i[1].mul(Us),a.add(o[0])),o=yh(e,l+32,s.add(o[1]),r.add(yt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=Us.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Zt(a.add(r).add(i[0]).add(yt(e,l+8)),37).mul(d),r=Zt(r.add(i[1]).add(yt(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(yt(e,l+40))),s=Zt(s.add(o[0]),33).mul(d),i=yh(e,l,i[1].mul(d),a.add(o[0])),o=yh(e,l+32,s.add(o[1]),r.add(yt(e,l+16))),[s,a]=[a,s],ns(ns(i[0],o[0],d).add(Ab(r).mul(MI)).add(s),ns(i[1],o[1],d).add(a),d)}function eD(e,t){return t==="string"?Pc(e):Jm([e],t)}function tD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Jm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ti(e)),X().getBool("DEBUG")&&SI(e,t),tD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function ec(){return X().platform.now()}function nD(e,t){return X().platform.fetch(e,t)}function Pc(e,t="utf-8"){return t=t||"utf-8",X().platform.encode(e,t)}function Kh(e,t="utf-8"){return t=t||"utf-8",X().platform.decode(e,t)}var aD=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new sD)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=ec();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:ec()-i})}if(X().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{rD(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function rD(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var sD=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Kp(`${a}ms`,9):a.error,o=Kp(e,25),l=t.rank,u=t.size,p=Kp(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function iD(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function oD(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!gs(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var K1=20,Rp=3,gb=7;function lD(e,t,n,a){let r=Ol(t),s=uD(e,t,n,r),i=t.length,o=Eh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function uD(e,t,n,a){let r=bt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?zp(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],Lp(l[p+d],0,n).length)}return i}function Lp(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(gb))} + ${parseFloat(e[1].toFixed(gb))}j`:Zr(e)?a=`'${e}'`:n==="bool"?a=OI(e):a=parseFloat(e.toFixed(gb)).toString(),Kp(a,t)}function OI(e){return e===0?"false":"true"}function Eh(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=zp(e);return[Lp(f[0],0,n)]}return n==="bool"?[OI(e[0])]:[e[0].toString()]}if(l===1){if(o>K1){let g=Rp*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-Rp)*i,o*i));return n==="complex64"&&(y=zp(y),b=zp(b)),["["+y.map((x,v)=>Lp(x,r[v],n)).join(", ")+", ..., "+b.map((x,v)=>Lp(x,r[o-Rp+v],n)).join(", ")+"]"]}let f=n==="complex64"?zp(e):Array.from(e);return["["+f.map((g,y)=>Lp(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>K1){for(let f=0;f<Rp;f++){let g=f*d,y=g+d;c.push(...Eh(e.slice(g,y),u,n,p,r,!1))}c.push("...");for(let f=o-Rp;f<o;f++){let g=f*d,y=g+d;c.push(...Eh(e.slice(g,y),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,y=g+d;c.push(...Eh(e.slice(g,y),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function zp(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var jt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=bt(e),n!=null){let a=n.length;R(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||II(t,this.size),this.strides=Ol(e)}set(e,...t){t.length===0&&(t=[0]),R(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ba().makeTensor(this.values,this.shape,this.dtype)}},Ba=null,hl=null,pD=null;function cD(e){Ba=e}function dD(e){hl=e}function hD(e){pD=e}var Fe=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=bt(e),this.strides=Ol(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return hl.buffer(this.shape,this.dtype,e)}bufferSync(){return hl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return yl(this.shape,e,this.dtype==="complex64")}arraySync(){return yl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Ba().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Kh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Ba().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Ba().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Kh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ba().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ba().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return hl.print(this,e)}clone(){return this.throwIfDisposed(),hl.clone(this)}toString(e=!1){let t=this.dataSync();return lD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),hl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ba().makeVariable(this,e,t,n)}};Object.defineProperty(Fe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ne(){return Rx("Tensor",()=>Fe)}ne();var is=class extends Fe{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!gs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ba().disposeTensor(this),this.dataId=e.dataId,Ba().incRef(this,null)}dispose(){Ba().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(is,Symbol.hasInstance,{value:e=>e instanceof Fe&&e.assign!=null&&e.assign instanceof Function});var Ga={};Me(Ga,{assertTypesMatch:()=>LI,getTensorsInContainer:()=>Px,isTensorInList:()=>fD,makeTypesMatch:()=>At});var $b;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})($b||($b={}));var Db;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Db||(Db={}));var Rb;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Rb||(Rb={}));var Mb;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Mb||(Mb={}));var Pb;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Pb||(Pb={}));var mD={float32:Mb,int32:Db,bool:Rb,complex64:Pb};function fa(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return mD[e][t]}function Zm(e){return fa(e,"int32")}function At(e,t){if(e.dtype===t.dtype)return[e,t];let n=fa(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function LI(e,t){R(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function fD(e,t){return t.some(n=>n.id===e.id)}function Px(e){let t=[];return zI(e,t,new Set),t}function zI(e,t,n){if(e==null)return;if(e instanceof Fe){t.push(e);return}if(!gD(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),zI(s,t,n))}}function gD(e){return Array.isArray(e)||typeof e=="object"}function yb(e){return e.kernelName!=null}var X1=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},tc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new X1}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Jr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new aD(this.backendInstance),!0}setupRegisteredKernels(){qh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){qh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof gc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,Jr(`Initialization of backend ${e} failed`),Jr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Jr(`Initialization of backend ${e} failed`),Jr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return tc.nextTensorId++}nextVariableId(){return tc.nextVariableId++}clone(e){let t=L.runKernel(zi,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return L.runKernel(Si,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,jh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=yb(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(yb(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=jh(h,this.backendName);R(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(v=>v.rank!=null?v:this.makeTensorFromTensorInfo(v));if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=yb(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Fb(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(R(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Zr(e[0])&&(r=e.map(o=>Pc(o)));let s=a.write(r,t,n),i=new Fe(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=TI(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new Fe(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new is(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Eb(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof is||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Eb(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Fb(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=xm(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Px(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(R(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));R(r instanceof Fe,()=>"The result y returned by f() must be a tensor.");let s=iD(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?yD(r.shape):n,oD(i,s,l=>this.tidy(l),bD);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return R(ss(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{R(t.every(i=>i instanceof Fe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),R(n.value instanceof Fe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),R(ss(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];R(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),R(u.every(d=>d instanceof Fe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=ec(),n=await this.backend.time(e);return n.wallMs=ec()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new X1;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};tc.nextTensorId=0;tc.nextVariableId=0;function yD(e){let t=Fx(bt(e),"float32");return L.makeTensor(t,e,"float32")}function BI(){let e=AI();if(e._tfengine==null){let t=new FI(e);e._tfengine=new tc(t)}return B$(e._tfengine.ENV),cD(()=>e._tfengine),e._tfengine}var L=BI();function bD(e,t){let n={a:e,b:t};return L.runKernel(ys,n)}var Oc={};Me(Oc,{isBrowser:()=>WI,isMobile:()=>wD,mockIsMobile:()=>vD});function xD(){return typeof navigator!="undefined"&&navigator!=null}var Ob;function vD(e){Ob=e}function wD(e){if(Ob!==void 0)return Ob;if(e||xD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function WI(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ca=X();Ca.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ca.registerFlag("IS_BROWSER",()=>WI());Ca.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ca.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ca.registerFlag("PROD",()=>!1);Ca.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ca.getBool("DEBUG"));Ca.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ca.registerFlag("IS_TEST",()=>!1);Ca.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ca.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Ca.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function pr(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&X().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&VI(e,a,[]),a}function VI(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){R(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}R(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),R(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)VI(e[r],a,n.concat(r))}function Y1(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function F(e,t,n,a="numeric"){if(e instanceof Fe)return Y1(a,e.dtype,t,n),e;let r=bm(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),Y1(a,r,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=pr(e,r);!hn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Jm(e,r):ti(e,[],!0);return L.makeTensor(i,s,r)}function nc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>F(r,`${t}[${s}]`,n,a))}var UI="__op";function z(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+UI;let r=(...s)=>{L.startScope(n);try{let i=a(...s);return $x(i)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(i),i}catch(i){throw L.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function kD(e,t){let n=F(e,"real","complex"),a=F(t,"imag","complex");Tn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return L.runKernel(Sm,r)}var os=z({complex_:kD});function ws(e,t,n,a){if(a==null&&(a=bm(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Ax(t);let r=bt(t),s=bt(n);R(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==bt(t.slice(i)):!0;R(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Jm(e,a):ti(e,[],!0),L.makeTensor(e,t,a)}function Jn(e,t,n){let a=pr(e,n);return ws(e,t,a,n)}var Lb={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Xh=4;async function ID(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,y)=>g+y.length,0)+Xh*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let y=c[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=Xh,m.set(y,f),f+=y.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:SD(s),specs:n}}function GI(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=bt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Lb[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=FD()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=bt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+Xh))[0];r+=Xh;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=Lb[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let y=0;y<h.length;y++)h[y]=p[y*2],m[y]=p[y*2+1];let f=Jn(h,l,"float32"),g=Jn(m,l,"float32");n[i]=os(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=Jn(p,l,o))}return n}function SD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Ox=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Q1(e){return Ox?Buffer.byteLength(e):new Blob([e]).size}function ND(e){if(Ox)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function TD(e){if(Ox){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Lx(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function J1(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function HI(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function zx(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[a,r]=await t(e.weightsManifest);n.weightSpecs=a,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Lc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Q1(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Q1(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function CD(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)===0;)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function _D(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function ED(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function FD(){let e=CD(),t=_D(),n=ED();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Dt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Dt.instance==null&&(Dt.instance=new Dt),Dt.instance}static registerSaveRouter(e){Dt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Dt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Dt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Dt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Dt.getInstance().loadRouters:Dt.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},AD=e=>Dt.registerSaveRouter(e),$D=e=>Dt.registerLoadRouter(e),DD=e=>Dt.getSaveHandlers(e),RD=(e,t)=>Dt.getLoadHandlers(e,t),zb="tensorflowjs",Bb=1,Xs="models_store",es="model_info_store";function jI(){if(!X().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Wb(e){let t=e.result;t.createObjectStore(Xs,{keyPath:"modelPath"}),t.createObjectStore(es,{keyPath:"modelPath"})}var si=class{constructor(e){if(this.indexedDB=jI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(zb,Bb);r.onupgradeneeded=()=>Wb(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Xs,"readonly"),o=i.objectStore(Xs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Lc(t),o=s.transaction(es,"readwrite"),l=o.objectStore(es),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(Xs,"readwrite");let d=p.objectStore(Xs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=c=>{l=o.objectStore(es);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(d.error)),h.onerror=m=>(s.close(),a(d.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};si.URL_SCHEME="indexeddb://";var qI=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(si.URL_SCHEME)?MD(e.slice(si.URL_SCHEME.length)):null;Dt.registerSaveRouter(qI);Dt.registerLoadRouter(qI);function MD(e){return new si(e)}function PD(e){return e.startsWith(si.URL_SCHEME)?e.slice(si.URL_SCHEME.length):e}var OD=class{constructor(){this.indexedDB=jI()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(zb,Bb);n.onupgradeneeded=()=>Wb(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(es,"readonly"),s=r.objectStore(es).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=PD(e),new Promise((t,n)=>{let a=this.indexedDB.open(zb,Bb);a.onupgradeneeded=()=>Wb(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(es,"readwrite"),i=s.objectStore(es),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Xs,"readwrite");let d=l.objectStore(Xs).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Tr="/",ml="tensorflowjs_models",KI="info",LD="model_topology",zD="weight_specs",BD="weight_data",WD="model_metadata";function XI(e){return{info:[ml,e,KI].join(Tr),topology:[ml,e,LD].join(Tr),weightSpecs:[ml,e,zD].join(Tr),weightData:[ml,e,BD].join(Tr),modelMetadata:[ml,e,WD].join(Tr)}}function YI(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function VD(e){let t=e.split(Tr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Tr)}function UD(e){return e.startsWith(ii.URL_SCHEME)?e.slice(ii.URL_SCHEME.length):e}var ii=class{constructor(e){if(!X().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=XI(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Lc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,ND(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw YI(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=TD(s),t}};ii.URL_SCHEME="localstorage://";var QI=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ii.URL_SCHEME)?GD(e.slice(ii.URL_SCHEME.length)):null;Dt.registerSaveRouter(QI);Dt.registerLoadRouter(QI);function GD(e){return new ii(e)}var HD=class{constructor(){R(X().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),R(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=ml+Tr,n=Tr+KI;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=VD(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=UD(e);let t=XI(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return YI(t),n}},bl="://",ca=class{constructor(){this.managers={}}static getInstance(){return ca.instance==null&&(ca.instance=new ca),ca.instance}static registerManager(e,t){R(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(bl)&&(e=e.slice(0,e.indexOf(bl))),R(e.length>0,()=>"scheme must not be an empty string.");let n=ca.getInstance();R(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Fh(e){if(e.indexOf(bl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ca.getSchemes().join(",")}`);return{scheme:e.split(bl)[0],path:e.split(bl)[1]}}async function JI(e,t,n=!1){R(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Dt.getLoadHandlers(e);R(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),R(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Dt.getSaveHandlers(t);R(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),R(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Fh(e).scheme,l=Fh(e).path,u=o===Fh(e).scheme,p=await r.load();n&&u&&await ca.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await ca.getManager(o).removeModel(l),d.modelArtifactsInfo}async function jD(){let e=ca.getSchemes(),t={};for(let n of e){let a=await ca.getManager(n).listModels();for(let r in a){let s=n+bl+r;t[s]=a[r]}}return t}async function qD(e){let t=Fh(e);return ca.getManager(t.scheme).removeModel(t.path)}async function KD(e,t){return JI(e,t,!1)}async function XD(e,t){return JI(e,t,!0)}var YD=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(X().get("IS_BROWSER")){X().setPlatform("browser",new YD);try{ca.registerManager(ii.URL_SCHEME,new HD)}catch(e){}try{ca.registerManager(si.URL_SCHEME,new OD)}catch(e){}}var QD={importFetch:()=>t$()},bb,JD=class{constructor(){this.util=n$(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return X().global.fetch!=null?X().global.fetch(e,t):(bb==null&&(bb=QD.importFetch()),bb(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};X().get("IS_NODE")&&!X().get("IS_BROWSER")&&X().setPlatform("node",new JD);function Ve(e,t="float32",n){return t=t||"float32",Ax(e),new jt(e,t,n)}function ZD(e,t){let n=F(e,"x","cast");if(!NI(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return L.runKernel(Si,a,r)}var oe=z({cast_:ZD});function eR(e){let t={x:F(e,"x","clone","string_or_numeric")};return L.runKernel(zi,t)}var _r=z({clone_:eR});function ZI(e,t=!1){console.log(e.toString(t))}BI();var tR={buffer:Ve,cast:oe,clone:_r,print:ZI};dD(tR);var en={};Me(en,{browserFiles:()=>lR,browserHTTPRequest:()=>hR,concatenateArrayBuffers:()=>Lx,copyModel:()=>KD,decodeWeights:()=>GI,encodeWeights:()=>ID,fromMemory:()=>fR,getLoadHandlers:()=>RD,getModelArtifactsForJSON:()=>zx,getModelArtifactsInfoForJSON:()=>Lc,getSaveHandlers:()=>DD,http:()=>Wx,isHTTPScheme:()=>Vb,listModels:()=>jD,loadWeights:()=>uR,moveModel:()=>XD,registerLoadRouter:()=>$D,registerSaveRouter:()=>AD,removeModel:()=>qD,weightsLoaderFactory:()=>tS,withSaveHandler:()=>gR});var nR="model",aR=".json",rR=".weights.bin";function Z1(e){return new Promise(t=>setTimeout(t)).then(e)}var Sl=class{constructor(e){if(!X().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Sl.URL_SCHEME)&&(e=e.slice(Sl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=nR),this.modelJsonFileName=e+aR,this.weightDataFileName=e+rR}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=HI(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await Z1(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Z1(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Lc(e)}}}};Sl.URL_SCHEME="downloads://";var sR=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=zx(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Lx(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>J1(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=J1(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},iR=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Sl.URL_SCHEME)?oR(e.slice(Sl.URL_SCHEME.length)):null;Dt.registerSaveRouter(iR);function oR(e="model"){return new Sl(e)}function lR(e){return new sR(e)}function ek(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){R(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){R(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),R(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),R(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function eS(e,t){t==null&&(t={});let n=t.fetchFunc==null?X().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await ek(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await ek(i,t.onProgress,o,l)}async function uR(e,t="",n,a){return tS(r=>eS(r,{requestInit:a}))(e,t,n)}function tS(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=Lb[y]*bt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((v,k)=>{v===g.name&&(x(),i[k]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=p[c+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let v=new Uint8Array(p[c+x]);y.set(v,b),b+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),k=GI(v,[x.manifestEntry]);for(let T in k)d[T]=k[T]}),c+=m}),d}}var pR="application/octet-stream",cR="application/json",Bx=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(R(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=X().platform.fetch,R(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&R(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=HI(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:cR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:pR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Lc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return zx(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=dR(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await eS(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Lx(l)]}};Bx.URL_SCHEME_REGEX=/^https?:\/\//;function dR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Vb(e){return e.match(Bx.URL_SCHEME_REGEX)!=null}var nS=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Vb(a)):n=Vb(e),n)return Wx(e,t)}return null};Dt.registerSaveRouter(nS);Dt.registerLoadRouter(nS);function Wx(e,t){return new Bx(e,t)}function hR(e,t){return Wx(e,t)}var xb=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},mR=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function fR(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new xb(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new xb({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new xb({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function gR(e){return new mR(e)}var aS={};Me(aS,{confusionMatrix:()=>wR});function yR(e,t,n=!1,a=!1){let r=F(e,"a","matMul"),s=F(t,"b","matMul");[r,s]=At(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return L.runKernel(Ii,i,o)}var De=z({matMul_:yR});function bR(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:F(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return L.runKernel(Yi,r,s)}var Nl=z({oneHot_:bR});function xR(e,t){let n=F(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{R(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return L.runKernel(yo,a,r)}var Ae=z({transpose_:xR});function vR(e,t,n){let a=F(e,"labels","confusionMatrix"),r=F(t,"predictions","confusionMatrix");R(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),R(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),R(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),R(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),R(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Nl(oe(a,"int32"),n),i=Nl(oe(r,"int32"),n),o=Ae(s),l=De(o,i);return oe(l,"int32")}var wR=z({confusionMatrix_:vR}),bo={};Me(bo,{assertAndGetBroadcastShape:()=>dt,getBroadcastDims:()=>rS,getReductionAxes:()=>Wt});function rS(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function dt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}var xo={};Me(xo,{fromPixels:()=>_R,fromPixelsAsync:()=>TR,toPixels:()=>CR});function ef(e,t,n){if(xi(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=pr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}var Ws;function sS(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(jh(Hh,L.backendName)!=null){let c={pixels:e},h={numChannels:t};return L.runKernel(Hh,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Ws==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ws=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ws=document.createElement("canvas").getContext("2d");Ws.canvas.width=l,Ws.canvas.height=u,Ws.drawImage(e,0,0,l,u),p=Ws.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return ef(d,[u,l,t],"int32")}function kR(e){return e!=null&&e.data instanceof Uint8Array}function IR(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function SR(e){return e!=null&&e.width!==0&&e.height!==0}function NR(e){return IR()&&!(e instanceof ImageBitmap)&&SR(e)&&!kR(e)}async function TR(e,t=3){let n=null;if(X().getBool("WRAP_TO_IMAGEBITMAP")&&NR(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return sS(n,t)}async function CR(e,t){let n=F(e,"img","toPixels");if(!(e instanceof Fe)){let u=n;n=oe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var _R=z({fromPixels_:sS}),Vx={};Me(Vx,{prepareAndValidate:()=>iS});function iS(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(bt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...Ol(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var Ux={};Me(Ux,{calculateShapes:()=>oS,validateInput:()=>Hx,validateUpdateShape:()=>Gx});function Gx(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Hx(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Gx(n,t,e)}function oS(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=bt(t.shape)/o,u=[...Ol(n.slice(0,r)),1],p=bt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}var qt={};Me(qt,{assertParamsValid:()=>FR,computeFlatOffset:()=>MR,computeOutShape:()=>$R,getNormalizedAxes:()=>DR,isSliceContinous:()=>RR,maskToAxes:()=>AR,parseSliceParams:()=>gS,sliceInfo:()=>PR,startForAxis:()=>mS,startIndicesWithElidedDims:()=>cS,stopForAxis:()=>fS,stopIndicesWithElidedDims:()=>dS,stridesForAxis:()=>hS,stridesWithElidedDims:()=>lS});var Ub=-2,ER=-1;function FR(e,t,n){let a=e.shape.length;R(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),R(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)R(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function AR(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function $R(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function lS(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function uS(e,t,n){return n<=e?n:n-(t-1)}function pS(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function DR(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=cS(i,h,m,a,e),d=dS(o,h,m,r,e),c=lS(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=mS(i,a,s,e,h,l),d[h]=fS(o,r,s,e,h,l),c[h]=hS(s,h,l);return{begin:p,end:d,strides:c}}function cS(e,t,n,a,r){let s=[...r],i=pS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=uS(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function dS(e,t,n,a,r){let s=[...r],i=pS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=uS(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=Jp(0,s[o],r[o])}return s}function hS(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function mS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=Jp(0,i,l-1),i}function fS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=Jp(0,i,l):i=Jp(-1,i,l-1),i}function RR(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function MR(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function gS(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{R(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(R(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function PR(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let b=0;b<d.dims;b++)p&&(1<<b&o)!==0&&d.numAddAxisAfterEllipsis++,1<<b&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};OR(d,c);let h=!0,m=!0,f=!0,g=[],y=[];for(let b=0;b<e.length;++b){if(c.strides[b]===0)throw Error(`strides[${b}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<b),v=e[b];if(v===-1){g.push(x?1:-1);continue}let k=[c.beginMask&1<<b,c.endMask&1<<b],T=[c.strides[b]>0?0:-1,c.strides[b]>0?v:v-1];if(x&&c.strides[b]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[b]===1;let C=!!(c.beginMask&1<<b&&c.endMask&1<<b);if(c.beginValid&&c.endValid){if(x){let $=c.begin[b]<0?v+c.begin[b]:c.begin[b];if(c.begin[b]=$,c.end[b]=c.begin[b]+1,$<0||$>=v)throw Error(`slice index ${c.begin[b]} of dimension ${b} out of bounds.`)}else c.begin[b]=tk(c.begin[b],0,c.strides[b],v,k,T),c.end[b]=tk(c.end[b],1,c.strides[b],v,k,T);let P=c.strides[b]===1&&c.begin[b]===0&&c.end[b]===v;h=h&&P,m=m&&(b===0&&c.strides[b]===1||P)}else h=h&&c.strides[b]===1&&C,m=m&&(b===0&&c.strides[b]===1||C);let E,A=!1;if(c.beginValid&&c.endValid?(E=c.end[b]-c.begin[b],A=!0):x?(E=1,A=!0):C&&v>=0&&(c.strides[b]<0?E=-v:E=v,A=!0),A){let P;E===0||E<0!=c.strides[b]<0?P=0:P=Math.trunc(E/c.strides[b])+(E%c.strides[b]!==0?1:0),g.push(P)}else g.push(-1)}for(let b=0;b<c.finalShapeGatherIndices.length;++b){let x=c.finalShapeGatherIndices[b];x>=0?y.push(g[x]):x===Ub&&y.push(1)}return{finalShapeSparse:y.filter((b,x)=>c.finalShapeGatherIndices[x]!==Ub),finalShape:y,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function OR(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(Ub),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(ER),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function tk(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var se={};Me(se,{Serializable:()=>yS,SerializationMap:()=>js,registerClass:()=>ks});var yS=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},js=class{constructor(){this.classNameMap={}}static getMap(){return js.instance==null&&(js.instance=new js),js.instance}static register(e){js.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ks(e){R(e.className!=null,()=>"Class being registered does not have the static className property defined."),R(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),R(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),js.register(e)}var bS={};Me(bS,{TEST_EPSILON_FLOAT16:()=>xS,encodeStrings:()=>vS,expectArrayBuffersEqual:()=>GR,expectArraysClose:()=>zR,expectArraysEqual:()=>WR,expectNumbersClose:()=>VR,expectPromiseToFail:()=>BR,expectValuesInRange:()=>UR,testEpsilon:()=>jx});var LR=.001,xS=.1;function zR(e,t,n){return n==null&&(n=jx()),Gb(e,t,(a,r)=>qx(a,r,n))}function jx(){return L.backend.floatPrecision()===32?LR:xS}function Gb(e,t,n){let a=!0;if((hn(e)||hn(t))&&(a=!1),hn(e)&&hn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=pr(e),o=pr(t);if(!gs(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=hn(e)?e:ti(e),s=hn(t)?t:ti(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function BR(e,t){e().then(()=>t.fail(),()=>t())}function WR(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Zr(e)||Zr(e[0])||Zr(t)||Zr(t[0])?Gb(e,n,(a,r)=>a==r):Gb(e,t,(a,r)=>qx(a,r,0))}function VR(e,t,n){if(n==null&&(n=jx()),!qx(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function qx(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function UR(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function GR(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function vS(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?vS(n):e[t]=Pc(n)}return e}var HR="3.17.0";function jR(){X().set("PROD",!0)}function qR(){X().set("DEBUG",!0)}function KR(){X().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Kx(e){X().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}hD(Kx);function XR(){L.disposeVariables()}function sr(){return L}function Yh(){return L.memory()}function YR(e){return L.profile(e)}function O(e,t){return L.tidy(e,t)}function Re(e){Px(e).forEach(t=>t.dispose())}function tn(e){return L.keep(e)}function QR(e){return L.time(e)}function JR(e){return L.setBackend(e)}function ZR(){return L.ready()}function eM(){return L.backendName}function tM(e){L.removeBackend(e)}function nM(e){return L.findBackend(e)}function aM(e){return L.findBackendFactory(e)}function tf(e,t,n=1){return L.registerBackend(e,t,n)}function wS(){return L.backend}function rM(e,t){X().setPlatform(e,t)}function sM(e,t){let n=F(e,"a","add"),a=F(t,"b","add");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(ys,r)}var J=z({add_:sM});function iM(e,t){let n=F(e,"a","floorDiv"),a=F(t,"b","floorDiv");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Pi,r)}var nf=z({floorDiv_:iM});function oM(e,t){let n=F(e,"a","div"),a=F(t,"b","div");if([n,a]=At(n,a),n.dtype==="int32"&&a.dtype==="int32")return nf(n,a);let r={a:n,b:a},s={};return L.runKernel($i,r,s)}var fe=z({div_:oM});function lM(e,t){let n=F(e,"a","mul"),a=F(t,"b","mul");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Xi,r)}var B=z({mul_:lM});function uM(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(xc,n)}else{let n={x:t};return L.runKernel(Ll,n)}}var zt=z({abs_:uM});function pM(e){let t={x:F(e,"x","acos")};return L.runKernel(zl,t)}var Xx=z({acos_:pM});function cM(e){let t={x:F(e,"x","acosh")};return L.runKernel(Bl,t)}var Yx=z({acosh_:cM});function dM(e){R(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),R(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>F(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!gs(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return L.runKernel(vi,a)}var kS=z({addN_:dM});function hM(e,t=null,n=!1){let a={x:F(e,"x","all","bool")},r={axis:t,keepDims:n};return L.runKernel(Wl,a,r)}var af=z({all_:hM});function mM(e,t=null,n=!1){let a={x:F(e,"x","any","bool")},r={axis:t,keepDims:n};return L.runKernel(Vl,a,r)}var ac=z({any_:mM});function fM(e,t=0){let n={x:F(e,"x","argMax")},a={axis:t};return L.runKernel(wi,n,a)}var oi=z({argMax_:fM});function gM(e,t=0){let n={x:F(e,"x","argMin")},a={axis:t};return L.runKernel(yc,n,a)}var Qx=z({argMin_:gM});function yM(e){let t={x:F(e,"x","asin")};return L.runKernel(Ul,t)}var Jx=z({asin_:yM});function bM(e){let t={x:F(e,"x","asinh")};return L.runKernel(Gl,t)}var Zx=z({asinh_:bM});function xM(e){let t={x:F(e,"x","atan")};return L.runKernel(Hl,t)}var ev=z({atan_:xM});function vM(e,t){let n=F(e,"a","atan2"),a=F(t,"b","atan2");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(ql,r)}var tv=z({atan2_:vM});function wM(e){let t={x:F(e,"x","atanh")};return L.runKernel(jl,t)}var nv=z({atanh_:wM});function kM(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=NS(r);return zc(e,o,n,s,a,null,null,l)}function IS(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Qh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return zc(e,u,n,a,r,s,!1,i)}function IM(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Hb(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return SS(e,p,n,a,r,!1,d,s)}function zc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=Qh(n),[y,b]=Qh(a),x=xl(c,y),v=xl(h,b),{padInfo:k,outHeight:T,outWidth:C}=TM(r,u,p,f,g,x,v,s,o),E=i?m*d:m,A;return o==="channelsFirst"?A=[l,E,T,C]:o==="channelsLast"&&(A=[l,T,C,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:C,outChannels:E,padInfo:k,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:e,outShape:A,filterShape:t}}function SS(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=Hb(n),[v,k,T]=Hb(a),C=xl(h,v),E=xl(m,k),A=xl(f,T),{padInfo:P,outDepth:$,outHeight:S,outWidth:M}=CM(r,u,p,d,y,b,x,C,E,A,o),V=s?g*c:g,j;return i==="channelsFirst"?j=[l,V,$,S,M]:i==="channelsLast"&&(j=[l,$,S,M,V]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:$,outHeight:S,outWidth:M,outChannels:V,padInfo:P,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:A,dilationDepth:v,dilationHeight:k,dilationWidth:T,inShape:e,outShape:j,filterShape:t}}function SM(e,t,n,a,r){a==null&&(a=av(e,t,n));let s=e[0],i=e[1],o=Js((s-t+2*a)/n+1,r),l=Js((i-t+2*a)/n+1,r);return[o,l]}function NM(e,t,n,a,r,s){r==null&&(r=av(e,t,a));let i=e[0],o=e[1],l=e[2],u=Js((i-t+2*r)/a+1,s),p=Js((o-t+2*r)/a+1,s),d=Js((l-t+2*r)/a+1,s);return[u,p,d,n]}function av(e,t,n,a=1){let r=xl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Qh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Hb(e){return typeof e=="number"?[e,e,e]:e}function xl(e,t){return t<=1?e:e+(e-1)*(t-1)}function TM(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=SM([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),y=h-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=Js((t-s+c+h)/a+1,o),d=Js((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function CM(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=NM([t,n,a,1],o,1,r,e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+u-a,b=Math.floor(f/2),x=f-b,v=Math.floor(g/2),k=g-v,T=Math.floor(y/2),C=y-T;d={top:v,bottom:k,left:T,right:C,front:b,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function Js(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ls(e){let[t,n,a]=Qh(e);return t===1&&n===1&&a===1}function mr(e,t){return ls(e)||ls(t)}function NS(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Cn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")R(kl(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{R(kl(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function _M(e,t){let n={x:F(e,"x","reshape","string_or_numeric")},a={shape:t};return L.runKernel(Iu,n,a)}var W=z({reshape_:_M});function EM(e,t,n,a,r){let s=F(e,"x","avgPool","float32"),i=1;R(mr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Cn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(ki,u,p);return d=oe(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ga=z({avgPool_:EM});function FM(e,t,n,a,r,s="NDHWC"){let i=F(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Cn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(bc,u,p);return d=oe(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var rv=z({avgPool3d_:FM});function AM(e,t=0){R(e.length>=1,()=>"Pass at least one tensor to concat");let n=nc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return _r(n[0]);let a=n,r={axis:t};return L.runKernel(Xl,a,r)}var Ze=z({concat_:AM});function $M(e){let t={x:F(e,"x","sigmoid","float32")};return L.runKernel(lo,t)}var ma=z({sigmoid_:$M});function DM(e,t,n){let a=F(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return L.runKernel(Cu,r,s)}var He=z({slice_:DM});function RM(e){let t={x:F(e,"x","tanh","float32")};return L.runKernel(go,t)}var li=z({tanh_:RM});function MM(e,t,n,a,r,s){let i=F(e,"forgetBias","basicLSTMCell"),o=F(t,"lstmKernel","basicLSTMCell"),l=F(n,"lstmBias","basicLSTMCell"),u=F(a,"data","basicLSTMCell"),p=F(r,"c","basicLSTMCell"),d=F(s,"h","basicLSTMCell"),c=Ze([u,d],1),h=De(c,o),m=J(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=He(m,[0,0],y),x=He(m,[0,g],y),v=He(m,[0,g*2],y),k=He(m,[0,g*3],y),T=J(B(ma(b),li(x)),B(p,ma(J(i,v)))),C=B(li(T),ma(k));return[T,C]}var PM=z({basicLSTMCell_:MM});function OM(e,t,n){let a=F(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);R(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),R(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),R(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return L.runKernel(Kl,s,i)}var Bc=z({batchToSpaceND_:OM});function LM(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function zM(e,t,n,a,r,s){s==null&&(s=.001);let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let p;a!=null&&(p=F(a,"offset","batchNorm")),R(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),R(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),R(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:LM(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=L.runKernel(Oi,d,c);return W(h,i.shape)}var Fr=z({batchNorm_:zM});function BM(e,t,n,a,r,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let p;return a!=null&&(p=F(a,"offset","batchNorm")),R(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),R(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),R(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),Fr(i,o,l,p,u,s)}var TS=z({batchNorm2d_:BM});function WM(e,t,n,a,r,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let p;return a!=null&&(p=F(a,"offset","batchNorm")),R(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),R(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),R(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),Fr(i,o,l,p,u,s)}var CS=z({batchNorm3d_:WM});function VM(e,t,n,a,r,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let p;return a!=null&&(p=F(a,"offset","batchNorm")),R(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),R(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),R(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),Fr(i,o,l,p,u,s)}var _S=z({batchNorm4d_:VM});function UM(e,t,n){let a=F(e,"x","bincount"),r=F(t,"weights","bincount");R(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return L.runKernel(km,s,i)}var sv=z({bincount_:UM});function GM(e,t){let n=F(e,"s0","broadcastArgs","int32"),a=F(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return L.runKernel(Im,r)}var ES=z({broadcastArgs_:GM});function HM(e,t){let n=F(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=W(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return _r(n);let i={x:n},o={reps:s};return L.runKernel(xs,i,o)}var vl=z({broadcastTo_:HM});function jM(e){let t={x:F(e,"x","ceil","float32")};return L.runKernel(Ni,t)}var iv=z({ceil_:jM});function qM(e,t,n){let a=F(e,"x","clipByValue");R(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return L.runKernel(bs,r,s)}var an=z({clipByValue_:qM});function KM(e){return Ze(e,0)}var FS=z({concat1d_:KM});function XM(e,t){return Ze(e,t)}var AS=z({concat2d_:XM});function YM(e,t){return Ze(e,t)}var $S=z({concat3d_:YM});function QM(e,t){return Ze(e,t)}var DS=z({concat4d_:QM});function JM(e,t,n,a,r="NHWC",s=[1,1],i){let o=F(e,"x","conv2d","float32"),l=F(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Cn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];R(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),R(mr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=L.runKernel(Ti,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Rt=z({conv2d_:JM});function ZM(e,t,n,a,r="NWC",s=1,i){let o=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),R(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),R(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Cn("conv1d",a,i),R(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),R(mr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),R(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Rt(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var rf=z({conv1d_:ZM});function eP(e,t,n,a,r,s="NHWC",i){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),R(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),R(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),R(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];R(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),R(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Cn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=L.runKernel(Ci,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ov=z({conv2DBackpropInput_:eP});function tP(e,t,n,a,r,s){let i=F(e,"x","conv2dTranspose"),o=F(t,"filter","conv2dTranspose");return ov(n,i,o,a,r,"NHWC",s)}var sf=z({conv2dTranspose_:tP});function nP(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=F(e,"x","conv3d"),o=F(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),R(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),R(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),R(mr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),R(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=L.runKernel(vc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var lv=z({conv3d_:nP});function aP(e,t,n,a,r){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];R(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),R(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),R(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),R(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),R(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=L.runKernel(Cm,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var RS=z({conv3DBackpropInput_:aP});function rP(e,t,n,a,r){let s=F(e,"x","conv3dTranspose"),i=F(t,"filter","conv3dTranspose");return RS(n,s,i,a,r)}var MS=z({conv3dTranspose_:rP});function sP(e){let t={x:F(e,"x","cos","float32")};return L.runKernel(_i,t)}var Wc=z({cos_:sP});function iP(e){let t={x:F(e,"x","cosh","float32")};return L.runKernel(Ei,t)}var of=z({cosh_:iP});function oP(e,t=0,n=!1,a=!1){let r={x:F(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return L.runKernel(Yl,r,s)}var rc=z({cumprod_:oP});function lP(e,t=0,n=!1,a=!1){let r={x:F(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return L.runKernel(Fi,r,s)}var lf=z({cumsum_:lP});function uP(e,t,n,a=!1){let r=F(e,"x","denseBincount"),s=F(t,"weights","denseBincount");R(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),R(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return L.runKernel(_m,i,o)}var PS=z({denseBincount_:uP});function pP(e,t,n="NHWC"){let a=F(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];R(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),R(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),R(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),R(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return L.runKernel(Jl,o,l)}var uv=z({depthToSpace_:pP});function cP(e,t,n,a,r="NHWC",s=[1,1],i){let o=F(e,"x","depthwiseConv2d","float32"),l=F(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),R(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),Cn("depthwiseConv2d",a,i);let d={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=L.runKernel(Ai,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Is=z({depthwiseConv2d_:cP});function dP(e){let t={x:F(e,"x","diag")};return L.runKernel(Am,t)}var hP=z({diag_:dP});function mP(e,t,n,a,r=[1,1],s="NHWC"){let i=F(e,"x","dilation2d"),o=F(t,"filter","dilation2d");R(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),R(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),R(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=L.runKernel(wc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var pv=z({dilation2d_:mP});function fP(e,t){let n=F(e,"a","equal","string_or_numeric"),a=F(t,"b","equal","string_or_numeric");[n,a]=At(n,a),dt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(eu,r)}var Zn=z({equal_:fP});function gP(e,t,n){let a=F(t,"a","where"),r=F(n,"b","where"),s=F(e,"condition","where","bool"),i=dt(dt(s.shape,a.shape),r.shape),o=vl(s,i),l=vl(a,i),u=vl(r,i),p={condition:o,t:l,e:u};return L.runKernel(Nu,p)}var fn=z({where_:gP});function yP(e){let t={x:F(e,"x","zerosLike")};return L.runKernel(Lu,t)}var Ke=z({zerosLike_:yP});function bP(e,t){let n=F(e,"a","div"),a=F(t,"b","div");[n,a]=At(n,a);let r=fe(n,a),s=Ke(r),i=Zn(a,s);return fn(i,s,r)}var cv=z({divNoNan_:bP});function xP(e,t){let n=F(e,"t1","dot"),a=F(t,"t2","dot");R((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(R(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=De(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=De(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=De(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return De(n,i)}}var OS=z({dot_:xP});function vP(e,...t){let n=t.map((r,s)=>F(r,`tensors${s}`,"einsum")),a={equation:e};return L.runKernel($m,n,a)}var LS=z({einsum_:vP});function wP(e){let t={x:F(e,"x","elu","float32")};return L.runKernel(Di,t)}var Bu=z({elu_:wP});function kP(e){let t=F(e,"x","erf");R(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=oe(t,"float32"));let n={x:t};return L.runKernel(Zl,n)}var dv=z({erf_:kP});function hv(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function zS(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function BS(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function ui(e,t){let n=t.map(a=>1);return zS(e,n,t)}function IP(e,t,n){R(hv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function WS(e,t){if(hv(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function mv(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function SP(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function NP(e,t=null,n=!1){let a={x:F(e,"x","max")},r={reductionIndices:t,keepDims:n};return L.runKernel(Vi,a,r)}var Ta=z({max_:NP});function TP(e,t=null,n=!1){let a={x:F(e,"x","min")},r={axis:t,keepDims:n};return L.runKernel(ji,a,r)}var sc=z({min_:TP});function CP(e,t){let n=F(e,"base","pow"),a=F(t,"exp","pow");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Ji,r)}var Ar=z({pow_:CP});function we(e,t){if((hn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&hn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ws(e,[],[],t)}function _P(e){let t={x:F(e,"x","sqrt","float32")};return L.runKernel(uo,t)}var pn=z({sqrt_:_P});function EP(e){let t=F(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var ut=z({square_:EP});function FP(e,t=null,n=!1){let a=F(e,"x","sum");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(po,r,s)}var be=z({sum_:FP});function AP(e,t="euclidean",n=null,a=!1){e=F(e,"x","norm");let r=VS(e,t,n),s=r.shape;if(a){let i=Ea(n,e.shape);s=ui(r.shape,i)}return W(r,s)}function VS(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return VS(W(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return be(zt(e),n);if(t===1/0)return Ta(zt(e),n);if(t===-1/0)return sc(zt(e),n);if(t==="euclidean"||t===2)return pn(be(Ar(zt(e),we(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Ta(be(zt(e),n[0]),n[1]-1);if(t===1/0)return Ta(be(zt(e),n[1]),n[0]);if(t===-1/0)return sc(be(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return pn(be(ut(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Vc=z({norm_:AP});function $P(e,t=null,n=!1){return Vc(e,"euclidean",t,n)}var fv=z({euclideanNorm_:$P});function DP(e){let t={x:F(e,"x","exp")};return L.runKernel(Ri,t)}var gn=z({exp_:DP});function RP(e,t=0){let n=F(e,"x","expandDims","string_or_numeric");R(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return L.runKernel(tu,a,r)}var mn=z({expandDims_:RP});function MP(e){let t={x:F(e,"x","expm1")};return L.runKernel(nu,t)}var gv=z({expm1_:MP});function PP(e,t){let n=F(e,"x","tile","string_or_numeric");R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return L.runKernel(xs,a,r)}var On=z({tile_:PP});function OP(e,t,n,a="float32"){t==null&&(t=e);let r=Ve([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=W(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return On(mn(i,0),[n[0],1,1]);if(n.length===2)return On(mn(mn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return On(mn(mn(mn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var yv=z({eye_:OP});function _n(e,t,n){let a={shape:e,value:t,dtype:n};return L.runKernel(kc,{},a)}function LP(e){let t={x:F(e,"x","floor","float32")};return L.runKernel(Mi,t)}var Wu=z({floor_:LP});function zP(e,t,n=0,a=0){let r=F(e,"x","gather"),s=F(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return L.runKernel(ru,i,o)}var pi=z({gather_:zP});function BP(e,t){let n=F(e,"a","greater","string_or_numeric"),a=F(t,"b","greater","string_or_numeric");[n,a]=At(n,a),dt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(iu,r)}var Un=z({greater_:BP});function WP(e,t){let n=F(e,"a","greaterEqual","string_or_numeric"),a=F(t,"b","greaterEqual","string_or_numeric");[n,a]=At(n,a),dt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Li,r)}var Ss=z({greaterEqual_:WP});function VP(e){let t={input:F(e,"input","imag")};return L.runKernel(Pm,t)}var uf=z({imag_:VP});function UP(e){let t={x:F(e,"x","isFinite")};return L.runKernel(ou,t)}var US=z({isFinite_:UP});function GP(e){let t={x:F(e,"x","isInf")};return L.runKernel(lu,t)}var GS=z({isInf_:GP});function HP(e){let t={x:F(e,"x","isNaN")};return L.runKernel(uu,t)}var bv=z({isNaN_:HP});function jP(e,t=.2){let n={x:F(e,"x","leakyRelu")},a={alpha:t};return L.runKernel(Bi,n,a)}var Uc=z({leakyRelu_:jP});function qP(e,t){let n=F(e,"a","less","string_or_numeric"),a=F(t,"b","less","string_or_numeric");[n,a]=At(n,a),dt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(pu,r)}var pf=z({less_:qP});function KP(e,t){let n=F(e,"a","lessEqual","string_or_numeric"),a=F(t,"b","lessEqual","string_or_numeric");[n,a]=At(n,a),dt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(cu,r)}var Ns=z({lessEqual_:KP});function HS(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return L.runKernel(Om,{},a)}function XP(e,t=5,n=1,a=1,r=.5){let s=F(e,"x","localResponseNormalization");R(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),R(kl(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=L.runKernel(Nc,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var xv=z({localResponseNormalization_:XP});function YP(e){let t={x:F(e,"x","log","float32")};return L.runKernel(Wi,t)}var ea=z({log_:YP});function QP(e){let t={x:F(e,"x","log1p")};return L.runKernel(du,t)}var Gc=z({log1p_:QP});function JP(e){return R(ss(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=F(t,"x","tf.grad","string_or_numeric"),r=n!=null?F(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(a),[a],r);return r!=null&&Tn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),cf(i),i[0]})}}function ZP(e){return R(ss(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{R(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=nc(t,"args","tf.grads","string_or_numeric"),r=n!=null?F(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(...a),a,r);return r!=null&&Tn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),cf(i),i})}}function eO(e){return R(ss(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{R(t instanceof Fe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),R(n==null||n instanceof Fe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=L.gradients(()=>e(t),[t],n);return cf(a),{grad:a[0],value:r}}}function tO(e){return R(ss(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{R(Array.isArray(t)&&t.every(r=>r instanceof Fe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),R(n==null||n instanceof Fe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=L.gradients(()=>e(...t),t,n);return n!=null&&Tn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),cf(a.grads),a}}function jS(e,t){R(ss(e),()=>"The f passed in variableGrads(f) must be a function"),R(t==null||Array.isArray(t)&&t.every(u=>u instanceof is),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),R(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=L.gradients(e,t,null,s);R(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),R(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function cr(e){return L.customGrad(e)}function cf(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function nO(e){let t={x:F(e,"x","neg")};return L.runKernel(fu,t)}var Nt=z({neg_:nO});function aO(e){let t={x:F(e,"x","softplus")};return L.runKernel(Fu,t)}var vo=z({softplus_:aO});function rO(e){let t=F(e,"x","logSigmoid");return cr(n=>({value:Nt(vo(Nt(n))),gradFunc:a=>B(a,ma(Nt(n)))}))(t)}var qS=z({logSigmoid_:rO});function sO(e,t){let n=F(e,"a","sub"),a=F(t,"b","sub");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(mo,r)}var ce=z({sub_:sO});function iO(e,t=-1){let n=F(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return cr((a,r)=>{let s=Ta(a,t,!0),i=ce(a,s),o=ce(oe(i,"float32"),ea(be(gn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=gn(p);return ce(l,B(be(l,t,d),c))}}})(n)}var df=z({logSoftmax_:iO});function oO(e,t=null,n=!1){let a=F(e,"x","logSumExp"),r=Ea(t,a.shape),s=Ta(a,r,!0),i=ce(a,s),o=gn(i),l=be(o,r),u=ea(l),p=J(W(s,u.shape),u);if(n){let d=ui(p.shape,r);return W(p,d)}return p}var vv=z({logSumExp_:oO});function lO(e,t){let n=F(e,"a","logicalAnd","bool"),a=F(t,"b","logicalAnd","bool");dt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(hu,r)}var _a=z({logicalAnd_:lO});function uO(e){let t={x:F(e,"x","logicalNot","bool")};return L.runKernel(Ic,t)}var Hc=z({logicalNot_:uO});function pO(e,t){let n=F(e,"a","logicalOr","bool"),a=F(t,"b","logicalOr","bool");dt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Sc,r)}var hf=z({logicalOr_:pO});function cO(e,t){let n=F(e,"a","logicalXor","bool"),a=F(t,"b","logicalXor","bool");return dt(n.shape,a.shape),_a(hf(e,t),Hc(_a(e,t)))}var KS=z({logicalXor_:cO}),bh=2147483648;function dO(e,t,n="left"){let a=F(e,"sortedSequence","searchSorted"),r=F(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=W(a,[-1,s]),l=W(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(bt(l.shape)>=bh)throw new Error(`values tensor size must less than ${bh}`);if(o.shape[1]>=bh)throw new Error(`trailing dim_size must less than ${bh} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return L.runKernel(jm,u,p)}var wv=z({searchSorted_:dO});function XS(e,t){return wv(e,t,"left")}function hO(e,t,n,a,r){let s=F(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),R(mr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Cn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(Gi,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Pt=z({maxPool_:hO});function mO(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=F(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Cn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(Tc,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var kv=z({maxPool3d_:mO});function fO(e,t,n,a,r=!1){let s={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=L.runKernel(Wm,s,i);return{result:o[0],indexes:o[1]}}var YS=z({maxPoolWithArgmax_:fO});function gO(e,t){let n=F(e,"a","maximum"),a=F(t,"b","maximum");[n,a]=At(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),dt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Ui,r)}var fr=z({maximum_:gO});function yO(e,t=null,n=!1){let a={x:F(e,"x","mean")},r={axis:t,keepDims:n};return L.runKernel(Hi,a,r)}var Et=z({mean_:yO});function It(e,t="float32"){if(t==="complex64"){let a=It(e,"float32"),r=It(e,"float32");return os(a,r)}let n=xm(bt(e),t);return L.makeTensor(n,e,t)}function Qn(e,t="float32"){if(t==="complex64"){let a=Qn(e,"float32"),r=It(e,"float32");return os(a,r)}let n=Fx(bt(e),t);return L.makeTensor(n,e,t)}function bO(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=F(e,"x","meshgrid",e instanceof Fe?e.dtype:"float32");if(t===void 0)return[a];let r=F(t,"y","meshgrid",t instanceof Fe?t.dtype:"float32"),s=bt(a.shape),i=bt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[De(Qn([i,1],a.dtype),a),De(r,Qn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[De(a,Qn([1,i],a.dtype)),De(Qn([s,1],r.dtype),r)])}function xO(e,t){let n=F(e,"a","minimum"),a=F(t,"b","minimum");[n,a]=At(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),dt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(qi,r)}var Vu=z({minimum_:xO});function vO(e,t,n){R(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=F(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");R(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)R(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),R(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return L.runKernel(Ki,i,s)}var Iv=z({mirrorPad_:vO});function wO(e,t){let n=F(e,"a","mod"),a=F(t,"b","mod");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(mu,r)}var Sv=z({mod_:wO});function kO(e,t=null,n=!1){e=F(e,"x","moments");let a=Ea(t,e.shape),r=Et(e,a,n),s=r.shape;n||(s=ui(r.shape,a));let i=ut(ce(oe(e,"float32"),W(r,s))),o=Et(i,a,n);return{mean:r,variance:o}}var mf=z({moments_:kO});function IO(e,t,n,a){let r=F(t,"data","multiRNNCell"),s=nc(n,"c","multiRNNCell"),i=nc(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var SO=z({multiRNNCell_:IO});function NO(e,t,n,a=!1){let r=F(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=L.runKernel(Vm,o,l);return i===1?W(u,[u.size]):u}var QS=z({multinomial_:NO});function TO(e,t){let n=F(e,"a","notEqual","string_or_numeric"),a=F(t,"b","notEqual","string_or_numeric");[n,a]=At(n,a),dt(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(gu,r)}var ci=z({notEqual_:TO});function CO(e){let t={x:F(e,"x","onesLike")};return L.runKernel(vu,t)}var ta=z({onesLike_:CO});function _O(e,t){let n=F(e,"v1","outerProduct"),a=F(t,"v2","outerProduct");R(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return De(r,s)}var EO=z({outerProduct_:_O});function FO(e,t,n=0){let a=F(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return L.runKernel(Qi,s,r)}var ya=z({pad_:FO});function AO(e,t,n=0){return R(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ya(e,[t],n)}var $O=z({pad1d_:AO});function DO(e,t,n=0){return R(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var RO=z({pad2d_:DO});function MO(e,t,n=0){return R(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var PO=z({pad3d_:MO});function OO(e,t,n=0){return R(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var LO=z({pad4d_:OO});function zO(e,t,n){let a=F(e,"x","spaceToBatchND");R(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),R(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),R(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return L.runKernel(Au,r,s)}var jc=z({spaceToBatchND_:zO});function BO(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=F(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(mr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=IS(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=VO([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=WO([p.inHeight,p.inWidth],d,c),g=h?a:"valid",y=h?l:jc(l,d,m),b=(n==="avg"?()=>ga(y,t,s,g,i):()=>Pt(y,t,s,g,i))(),x=h?b:Bc(b,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function WO(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function VO(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var JS=z({pool_:BO});function UO(e,t){let n=F(e,"x","prelu"),a=F(t,"alpha","prelu"),r={x:n,alpha:a};return L.runKernel(Zi,r)}var qc=z({prelu_:UO});function GO(e,t=null,n=!1){let a=F(e,"x","prod");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(eo,r,s)}var ff=z({prod_:GO});function HO(e,t,n){let a=bt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return L.makeTensor(r,e,n)}var jO=z({rand_:HO}),Nv=bi(yI()),Tv=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=Nv.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},qO=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=Nv.alea(r.toString()),this.randn=new Tv(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},KO=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Nv.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function XO(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new qO(t,n,a,r),i=Ve(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var YO=z({randomGamma_:XO});function QO(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new Tv(t,n,a,!1,r),i=Ve(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var ZS=z({randomNormal_:QO});function JO(e,t=0,n=1,a="float32",r){let s=Ve(e,a),i=new KO(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Uu=z({randomUniform_:JO});function Tl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return L.runKernel(Cc,{},r)}function ZO(e){let t={input:F(e,"input","real")};return L.runKernel(Um,t)}var ic=z({real_:ZO});function e3(e){let t={x:F(e,"x","reciprocal")};return L.runKernel(ku,t)}var Cv=z({reciprocal_:e3});function t3(e){let t={x:F(e,"x","relu")};return L.runKernel(to,t)}var Xe=z({relu_:t3});function n3(e){let t={x:F(e,"x","relu6")};return L.runKernel(ao,t)}var gf=z({relu6_:n3});function a3(e,t){let n={x:F(e,"x","reverse")},a={dims:t};return L.runKernel(ro,n,a)}var na=z({reverse_:a3});function r3(e){let t=F(e,"x","reverse");return R(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),na(t,0)}var s3=z({reverse1d_:r3});function i3(e,t){let n=F(e,"x","reverse");return R(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),na(n,t)}var o3=z({reverse2d_:i3});function l3(e,t){let n=F(e,"x","reverse");return R(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),na(n,t)}var u3=z({reverse3d_:l3});function p3(e,t){let n=F(e,"x","reverse");return R(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),na(n,t)}var c3=z({reverse4d_:p3});function d3(e){let t={x:F(e,"x","round")};return L.runKernel(so,t)}var yf=z({round_:d3});function h3(e){let t={x:F(e,"x","rsqrt","float32")};return L.runKernel(io,t)}var bf=z({rsqrt_:h3});function m3(e){let t={x:F(e,"x","selu")};return L.runKernel(Tu,t)}var xf=z({selu_:m3});function f3(e,t,n,a,r,s=[1,1],i="NHWC"){let o=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),u=F(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");R(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),R(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),R(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),R(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];R(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=Is(p,l,a,r,i,s),f=Rt(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var wo=z({separableConv2d_:f3});async function g3(e,t){let n=F(e,"x","setdiff1d"),a=F(t,"y","setdiff1d");R(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),R(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),R(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new jt([o],n.dtype),u=new jt([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var e2=g3;function y3(e){let t={x:F(e,"x","sign")};return L.runKernel(Eu,t)}var _v=z({sign_:y3});function b3(e){let t={x:F(e,"x","sin","float32")};return L.runKernel(oo,t)}var vf=z({sin_:b3});function x3(e){let t={x:F(e,"x","sinh")};return L.runKernel(_u,t)}var wf=z({sinh_:x3});function v3(e,t,n){let a=F(e,"x","slice1d");return R(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),He(a,[t],[n])}var kf=z({slice1d_:v3});function w3(e,t,n){let a=F(e,"x","slice2d");return R(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var Ev=z({slice2d_:w3});function k3(e,t,n){let a=F(e,"x","slice3d");return R(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var Gu=z({slice3d_:k3});function I3(e,t,n){let a=F(e,"x","slice4d");return R(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var oc=z({slice4d_:I3});function S3(e,t=-1){let n=F(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return L.runKernel(co,a,r)}var Qa=z({softmax_:S3});function N3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Rm,t)}var Kc=z({fft_:N3});function T3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Mm,t)}var Cl=z({ifft_:T3});function C3(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=Cl(r)}else{let r=[n,2*(t-1)],s=W(ic(e),[n,t]),i=W(uf(e),[n,t]),o=na(He(s,[0,1],[n,t-2]),1),l=B(na(He(i,[0,1],[n,t-2]),1),we(-1)),u=Ze([s,o],1),p=Ze([i,l],1),d=W(os(u,p),[r[0],r[1]]);a=Cl(d)}if(a=ic(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var If=z({irfft_:C3});function _3(e,t,n=0){let a={x:F(e,"x","split")},r={numOrSizeSplits:t,axis:n};return L.runKernel($u,a,r)}var zn=z({split_:_3});function E3(e,t){R(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=He(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Ze([e,It(m)],e.shape.length-1),n=t}else r=e;let s=Ke(r),i=W(os(r,s),[a,n]),o=Kc(i),l=Math.floor(n/2)+1,u=ic(o),p=uf(o),d=zn(u,[l,n-l],u.shape.length-1),c=zn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W(os(d[0],c[0]),h)}var Xc=z({rfft_:E3});function F3(e,t){let n=F(e,"a","squaredDifference"),a=F(t,"b","squaredDifference");[n,a]=At(n,a),dt(n.shape,a.shape);let r={a:n,b:a},s={};return L.runKernel(ho,r,s)}var Sf=z({squaredDifference_:F3});function A3(e,t){let n=F(e,"x","squeeze");return W(n,wI(n.shape,t).newShape)}var dr=z({squeeze_:A3});function $3(e,t=0){let n=nc(e,"tensors","stack","string_or_numeric");R(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&R(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return L.runKernel(wu,a,r)}var Mt=z({stack_:$3});function D3(e,t=0){let n={x:F(e,"x","step")},a={alpha:t};return L.runKernel(vs,n,a)}var Hu=z({step_:D3});function R3(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:F(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return L.runKernel(Ru,u,p)}var Fv=z({stridedSlice_:R3});function M3(e){let t={x:F(e,"x","tan","float32")};return L.runKernel(fo,t)}var Av=z({tan_:M3});function qe(e,t){xi(e);let n=pr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ws(e,null,n,t)}function Ha(e,t,n){if(xi(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=pr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ws(e,t,a,n)}function Ja(e,t,n){if(xi(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=pr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}function P3(e,t,n){if(xi(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=pr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}function O3(e,t,n){if(xi(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=pr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,ws(e,t,a,n)}function L3(e,t=1,n=!0){let a=F(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=L.runKernel(Mu,s,i);return{values:o,indices:l}}var $v=z({topk_:L3});function z3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Tv(t,n,a,!0,r),i=Ve(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Nf=z({truncatedNormal_:z3});function B3(e,t=0){let n=F(e,"x","unique","string_or_numeric");R(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=L.runKernel(Qm,a,r);return{values:s,indices:i}}var Jh=z({unique_:B3});function W3(e,t,n){let a=F(e,"x","unsortedSegmentSum"),r=F(t,"segmentIds","unsortedSegmentSum","int32");R(kl(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return L.runKernel(Dc,s,i)}var Dv=z({unsortedSegmentSum_:W3});function V3(e,t=0){let n=F(e,"x","unstack","string_or_numeric");R(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return L.runKernel(Ou,a,r)}var ht=z({unstack_:V3});function t2(e,t){return wv(e,t,"right")}function n2(e,t=!0,n,a){return L.makeVariable(e,t,n,a)}function a2(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Ve(e,"int32"),r=Ve([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function U3(e){let t=F(e,"condition","whereAsync","bool"),n=await t.data(),a=a2(t.shape,n);return e!==t&&t.dispose(),a}var Rv=U3;async function G3(e,t,n){let a=F(e,"tensor","boolMask"),r=F(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;R(i>0,()=>"mask cannot be scalar"),Tn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=W(a,u),d=W(r,[-1]),c=await Rv(d),h=dr(c,[1]),m=pi(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var H3=G3;function j3(e,t,n,a,r=!0){let s=F(e,"v","movingAverage"),i=F(t,"x","movingAverage"),o=F(n,"decay","movingAverage");LI(s,i),R(gs(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=we(1),u=ce(l,o),p=B(ce(i,s),u);if(r){R(a!=null,()=>"When using zeroDebias: true, step is required.");let d=F(a,"step","movingAverage");p=fe(p,ce(l,Ar(o,d)))}return J(s,p)}var q3=z({movingAverage_:j3});function K3(e,t,n){let a=F(e,"indices","scatterND","int32"),r=F(t,"updates","scatterND");Hx(r,a,n);let s={indices:a,updates:r},i={shape:n};return L.runKernel(Su,s,i)}var r2=z({scatterND_:K3});function X3(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function Y3(e,t,n,a=0){let r=F(e,"sparseIndices","sparseToDense","int32"),s=F(t,"sparseValues","sparseToDense","string_or_numeric"),i=F(a,"defaultValue","sparseToDense",s.dtype);X3(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return L.runKernel(qm,o,l)}var Mv=z({sparseToDense_:Y3});function Q3(e,t){let n=F(t,"indices","gatherND","int32"),a={params:F(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(su,a)}var s2=z({gatherND_:Q3});function J3(e,t){if(t==null)return e.shape.slice();if(gs(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function Z3(e,t,n,a){let r=F(e,"x","dropout");if(R(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),R(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Fe?r.clone():r;let s=J3(r,n),i=1-t,o=fe(Wu(J(Uu(s,0,1,"float32",a),i)),i);return B(r,o)}var i2=z({dropout_:Z3});function o2(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Pv(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return qe(r,"float32")}async function eL(e,t,n=1){let a=F(e,"predictions","inTopK"),r=F(t,"targets","inTopK");R(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),R(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Tn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];R(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=kI("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Jn(p,r.shape,"bool")}var tL=eL,us={};Me(us,{conv2d:()=>rL,depthwiseConv2d:()=>lL,matMul:()=>pL});function nL(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),R(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),R(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),R(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];R(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),R(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Cn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return L.runKernel(Nm,d,c)}var Ov=z({conv2DBackpropFilter_:nL});function Tf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,Hu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Cf(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=be(n,a)),W(n,e.shape)}function _f(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Xe(e);if(t==="elu")return Bu(e);if(t==="relu6")return gf(e);if(t==="prelu")return qc(e,n);if(t==="leakyrelu")return Uc(e,a);if(t==="sigmoid")return ma(e);throw new Error(`Unknown fused activation ${t}.`)}var Ef=(e,t)=>!(e>0)||t==="linear";function aL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",Ef(L.state.gradientDepth,l)===!1){let k=Rt(e,t,n,a,r,s,i);return o!=null&&(k=J(k,o)),_f(k,l,u,p)}let d=F(e,"x","conv2d","float32"),c=F(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Cn("fused conv2d",a,i),R(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),R(mr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),R(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=zc(h.shape,c.shape,n,s,a,i),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=At(g,d),r==="NHWC"?dt(f.outShape,g.shape):(R(g.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${g.shape.length}.`),R(g.shape.length===0||g.shape[0]===f.outChannels||g.shape[0]===1,()=>`Error in fused conv2d: bias shape (${g.shape}) is not compatible with the number of output channels (${f.outChannels})`)));let y;u!=null&&(y=F(u,"prelu weights","fused conv2d"));let b=(k,T)=>{let[C,E,A,P]=T,$=Tf(k,A,l);R(ls(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let S=ov(E.shape,$,C,n,a),M=Ov(E,$,C.shape,n,a),V=[S,M];if(P!=null){let j=Cf(P,$);V.push(j)}return V},x={x:h,filter:c,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?cr((k,T,C)=>{let E=L.runKernel(ai,x,v);return C([T,k,E]),m&&(E=W(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:b}})(h,c):cr((k,T,C,E)=>{let A=L.runKernel(ai,x,v);return E([T,k,A,C]),m&&(A=W(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,c,g)}var rL=z({fusedConv2d_:aL});function sL(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return L.runKernel(Em,u,p)}var l2=z({depthwiseConv2dNativeBackpropFilter_:sL});function iL(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=L.runKernel(Fm,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var u2=z({depthwiseConv2dNativeBackpropInput_:iL});function oL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(Ef(L.state.gradientDepth,l)===!1){let k=Is(e,t,n,a,r,s,i);return o!=null&&(k=J(k,o)),_f(k,l,u,p)}let d=F(e,"x","depthwiseConv2d","float32"),c=F(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),R(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),R(mr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Cn("fused depthwiseConv2d",a,i);let f=zc(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=At(g,d),dt(f.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused depthwiseConv2d"));let b=(k,T)=>{R(ls(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,E,A,P]=T,$=Tf(k,A,l),S=u2(E.shape,$,C,n,a,s,i),M=l2(E,$,C.shape,n,a,s,i);if(P!=null){let V=Cf(g,$);return[S,M,V]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?cr((k,T,C)=>{let E=L.runKernel(ri,x,v);return C([T,k,E]),m&&(E=W(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:b}})(h,c):cr((k,T,C,E)=>{let A=L.runKernel(ri,x,v);return E([T,k,A,C]),m&&(A=W(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,c,g)}var lL=z({fusedDepthwiseConv2d_:oL});function uL({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Ef(L.state.gradientDepth,s)===!1){let P=De(e,t,n,a);return r!=null&&(P=J(P,r)),_f(P,s,i,o)}let l=F(e,"a","fused matMul"),u=F(t,"b","fused matMul");[l,u]=At(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=bt(m),y=bt(f);R(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=dt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),v=a?W(u,[y,h,d]):W(u,[y,d,h]),k;r!=null&&(k=F(r,"bias","fused matMul"),[k]=At(k,l),dt(b,k.shape));let T;i!=null&&(T=F(i,"prelu weights","fused matMul"));let C=(P,$)=>{let[S,M,V,j]=$,q=Tf(W(P,V.shape),V,s),K,Z;if(!n&&!a?(K=De(q,M,!1,!0),Z=De(S,q,!0,!1)):!n&&a?(K=De(q,M,!1,!1),Z=De(q,S,!0,!1)):n&&!a?(K=De(M,q,!1,!0),Z=De(S,q,!1,!1)):(K=De(M,q,!0,!0),Z=De(q,S,!0,!0)),r!=null){let ee=Cf(j,q);return[K,Z,ee]}else return[K,Z]},E={a:x,b:v,bias:k,preluActivationWeights:T},A={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?cr((P,$,S)=>{let M=L.runKernel(ni,E,A);return S([P,$,M]),{value:W(M,b),gradFunc:C}})(x,v):cr((P,$,S,M)=>{let V=L.runKernel(ni,E,A);return M([P,$,V,S]),{value:W(V,b),gradFunc:C}})(x,v,k)}var pL=z({fusedMatMul_:uL});function cL(e){return Pv(e,.54,.46)}var dL=z({hammingWindow_:cL});function hL(e){return Pv(e,.5,.5)}var p2=z({hannWindow_:hL});function mL(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(He(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Ze([He(e,s,t-o),_n([o],r)]);i.push(l),s+=n}return i.length===0?Ha([],[0,t]):W(Ze(i),[i.length,t])}var c2=z({frame_:mL});function fL(e,t,n,a,r=p2){a==null&&(a=o2(t));let s=c2(e,t,n),i=B(s,r(t));return Xc(i,a)}var gL=z({stft_:fL});function yL(e,t,n,a,r="bilinear",s=0){let i=F(e,"image","cropAndResize"),o=F(t,"boxes","cropAndResize","float32"),l=F(n,"boxInd","cropAndResize","int32"),u=o.shape[0];R(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),R(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),R(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),R(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),R(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return L.runKernel(Ql,p,d)}var bL=z({cropAndResize_:yL});function xL(e){let t=F(e,"image","flipLeftRight","float32");R(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(au,n,{})}var vL=z({flipLeftRight_:xL});function wL(e){let t=F(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];R(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),R(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,On(t,r)}var kL=z({grayscaleToRGB_:wL});function IL(e,t,n=0,a=.5){let r=F(e,"image","rotateWithOffset","float32");R(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return L.runKernel(zu,s,i)}var SL=z({rotateWithOffset_:IL});function ju(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),R(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),R(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),R(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),R(t.rank===1,()=>"scores must be a 1D tensor"),R(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),R(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function NL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppression","float32"),i=F(t,"scores","nonMaxSuppression","float32"),o=ju(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return L.runKernel(yu,{boxes:s,scores:i},l)}var TL=z({nonMaxSuppression_:NL});function CL(e,t,n){let a=_L(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function _L(e,t,n){return FL(e,t,n||EL)}function EL(e,t){return e>t?1:e<t?-1:0}function FL(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function d2(e,t,n,a,r){return Lv(e,t,n,a,r,0)}function h2(e,t,n,a,r,s){return Lv(e,t,n,a,r,0,!1,s,!0)}function m2(e,t,n,a,r,s){return Lv(e,t,n,a,r,s,!0)}function Lv(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(nk);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let k=d.length-1;k>=x;--k){let T=AL(e,b,d[k]);if(T>=a){v=!0;break}if(g.score=g.score*$L(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,v||(g.score===y?(d.push(b),c.push(g.score)):g.score>r&&CL(u,g,nk))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function AL(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),y=Math.min(o,d),b=Math.min(l,c),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function $L(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function nk(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function DL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),o=ju(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=d2(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),qe(d,"int32")}var RL=DL;function ML(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=ju(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=L.runKernel(xu,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var PL=z({nonMaxSuppressionWithScore_:ML});async function OL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=ju(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=m2(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:qe(c,"int32"),selectedScores:qe(h)}}var LL=OL;function zL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=ju(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=L.runKernel(bu,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var BL=z({nonMaxSuppressionPadded_:zL});async function WL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=ju(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=h2(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:qe(m,"int32"),validOutputs:we(f,"int32")}}var VL=WL;function UL(e,t,n=!1,a=!1){let r=F(e,"images","resizeBilinear");R(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),R(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(no,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var f2=z({resizeBilinear_:UL});function GL(e,t,n=!1,a=!1){let r=F(e,"images","resizeNearestNeighbor");R(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),R(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),R(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(_c,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var g2=z({resizeNearestNeighbor_:GL});function HL(e,t="binary",n=!1,a=.5){let r=F(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=B(qe([a]),255),p,d,c,h;if(R(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),R(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),R(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),R(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=zn(r,[1,1,1],-1);let f=B(p,s),g=B(d,i),y=B(c,o);h=J(J(f,g),y)}else h=e;if(t==="otsu"){let f=sv(oe(yf(h),"int32"),Jn([]),256);u=jL(f,l)}let m=n?Ns(h,u):Un(h,u);return oe(B(m,255),"int32")}function jL(e,t){let n=qe([-1]),a=qe([0]),r=qe([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=He(e,0,d+1),i=He(e,d+1),u=fe(be(s),t),p=fe(be(i),t);let c=be(B(s,Tl(0,s.size)));o=fe(c,be(s));let h=_n(i.shape,s.size),m=J(Tl(0,i.size),h),f=B(i,m);l=fe(be(f),be(i));let g=ce(o,l),y=ce(o,l),b=B(u,p);r=B(B(b,g),y);let x=Un(r,a);a=fn(x,r,a),n=fn(x,qe([d]),n)}return n}var qL=z({threshold_:HL});function KL(e,t,n="nearest",a="constant",r=0,s){let i=F(e,"image","transform","float32"),o=F(t,"transforms","transform","float32");R(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),R(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return L.runKernel(Pu,l,u)}var XL=z({transform_:KL});function YL(e,t,n){R(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),R(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=F(e,"a","bandPart");R(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=W(Tl(0,s,1,"int32"),[-1,1]),l=Tl(0,i,1,"int32"),u=ce(o,l),p=_a(Ns(u,we(+t,"int32")),Ss(u,we(-n,"int32"))),d=It([s,i],a.dtype);return W(Mt(ht(W(a,[-1,s,i])).map(c=>fn(p,c,d))),r)}var QL=z({bandPart_:YL});function JL(e){let t;if(Array.isArray(e)){t=!1,R(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)R(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>dr(r,[0]));R(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=B(be(B(n[i],s)),n[i]);s=ce(s,o)}return fe(s,Vc(s,"euclidean"))}));return t?Mt(n,0):n}var ZL=z({gramSchmidt_:JL});function ez(e,t=!1){if(R(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return ak(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ht(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=ak(l,t);r.push(u),s.push(p)});let i=W(Mt(r,0),e.shape),o=W(Mt(s,0),e.shape);return[i,o]}}function ak(e,t=!1){return L.tidy(()=>{R(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=yv(n),s=_r(e),i=Ha([[1]],[1,1]),o=_r(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=L.tidy(()=>{let h=He(s,[u,u],[n-u,1]),m=Vc(h),f=He(s,[u,u],[1,1]),g=fn(Un(f,0),Ha([[-1]]),Ha([[1]])),y=ce(f,B(g,m)),b=fe(h,y);b.shape[0]===1?o=_r(i):o=Ze([i,He(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=Nt(fe(De(g,y),m)),v=He(s,[u,0],[n-u,a]),k=B(x,o),T=Ae(o);if(u===0)s=ce(v,De(k,De(T,v)));else{let A=ce(v,De(k,De(T,v)));s=Ze([He(s,[0,0],[u,a]),A],0)}let C=Ae(k),E=He(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ce(E,De(De(E,o),C));else{let A=ce(E,De(De(E,o),C));r=Ze([He(r,[0,0],[n,u]),A],1)}return[o,s,r]}),Re([p,d,c])}return!t&&n>a&&(r=He(r,[0,0],[n,a]),s=He(s,[0,0],[a,a])),[r,s]})}var tz=z({qr_:ez}),In;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(In||(In={}));function nz(e,t,n=In.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=F(t,"weights","computeWeightedLoss"));let s=r==null?a:B(a,r);if(n===In.NONE)return s;if(n===In.SUM)return be(s);if(n===In.MEAN){if(r==null)return Et(s);{let i=a.size/r.size,o=fe(be(s),be(r));return i>1?fe(o,we(i)):o}}if(n===In.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(be(s),we(a.size));{let i=B(r,Qn(a.shape)),o=oe(be(ci(i,we(0))),"float32");return fe(be(s),o)}}throw Error(`Unknown reduction: ${n}`)}var $r=z({computeWeightedLoss_:nz});function az(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","absoluteDifference"),s=F(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=F(n,"weights","absoluteDifference")),Tn(r.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ce(r,s));return $r(o,i,a)}var rz=z({absoluteDifference_:az});function sz(e,t,n,a,r=In.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","cosineDistance"),i=F(t,"predictions","cosineDistance"),o=null;a!=null&&(o=F(a,"weights","cosineDistance")),Tn(s.shape,i.shape,"Error in cosineDistance: ");let l=we(1),u=ce(l,be(B(s,i),n,!0));return $r(u,o,r)}var iz=z({cosineDistance_:sz});function oz(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","hingeLoss"),s=F(t,"predictions","hingeLoss"),i=null;n!=null&&(i=F(n,"weights","hingeLoss")),Tn(r.shape,s.shape,"Error in hingeLoss: ");let o=we(1);r=ce(B(we(2),r),o);let l=Xe(ce(o,B(r,s)));return $r(l,i,a)}var lz=z({hingeLoss_:oz});function uz(e,t,n,a=1,r=In.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","huberLoss"),i=F(t,"predictions","huberLoss"),o=null;n!=null&&(o=F(n,"weights","huberLoss")),Tn(s.shape,i.shape,"Error in huberLoss: ");let l=we(a),u=zt(ce(i,s)),p=Vu(u,l),d=ce(u,p),c=J(B(we(.5),ut(p)),B(l,d));return $r(c,o,r)}var pz=z({huberLoss_:uz});function cz(e,t,n,a=1e-7,r=In.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","logLoss"),i=F(t,"predictions","logLoss"),o=null;n!=null&&(o=F(n,"weights","logLoss")),Tn(s.shape,i.shape,"Error in logLoss: ");let l=we(1),u=we(a),p=Nt(B(s,ea(J(i,u)))),d=B(ce(l,s),ea(J(ce(l,i),u))),c=ce(p,d);return $r(c,o,r)}var dz=z({logLoss_:cz});function hz(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","meanSquaredError"),s=F(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=F(n,"weights","meanSquaredError")),Tn(r.shape,s.shape,"Error in meanSquaredError: ");let o=Sf(r,s);return $r(o,i,a)}var mz=z({meanSquaredError_:hz});function fz(e,t){let n=F(e,"labels","sigmoidCrossEntropyWithLogits"),a=F(t,"logits","sigmoidCrossEntropyWithLogits");Tn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xe(a),s=B(a,n),i=Gc(gn(Nt(zt(a))));return J(ce(r,s),i)}function gz(e,t,n,a=0,r=In.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"multiClassLabels","sigmoidCrossEntropy"),i=F(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=F(n,"weights","sigmoidCrossEntropy")),Tn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=we(a),p=we(1),d=we(.5);s=J(B(s,ce(p,u)),B(d,u))}let l=fz(s,i);return $r(l,o,r)}var yz=z({sigmoidCrossEntropy_:gz});function bz(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return cr((a,r,s)=>{let i=vv(r,[n],!0),o=ce(oe(r,"float32"),i);s([a,o]);let l=Nt(B(o,a));return{value:be(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=ui(u.shape,[n]);return[B(W(u,h),ce(oe(d,"float32"),gn(c))),B(W(u,h),ce(gn(c),oe(d,"float32")))]}}})(e,t)}function xz(e,t,n,a=0,r=In.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"onehotLabels","softmaxCrossEntropy"),i=F(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=F(n,"weights","softmaxCrossEntropy")),Tn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=we(a),p=we(1),d=we(s.shape[1]);s=J(B(s,ce(p,u)),fe(u,d))}let l=bz(s,i);return $r(l,o,r)}var vz=z({softmaxCrossEntropy_:xz});function wz(e,t,n,a){let r=F(e,"indices","sparseFillEmptyRows","int32"),s=F(t,"values","sparseFillEmptyRows"),i=F(n,"denseShape","sparseFillEmptyRows","int32"),o=F(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=L.runKernel(Ec,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var kz=z({sparseFillEmptyRows_:wz});function Iz(e,t,n){let a=F(e,"inputIndices","sparseReshape","int32"),r=F(t,"inputShape","sparseReshape","int32"),s=F(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=L.runKernel(Du,i);return{outputIndices:o[0],outputShape:o[1]}}var Sz=z({sparseReshape_:Iz});function Nz(e,t,n){let a=F(e,"data","sparseSegmentMean"),r=F(t,"indices","sparseSegmentMean","int32"),s=F(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(Fc,i)}var Tz=z({sparseSegmentMean_:Nz});function Cz(e,t,n){let a=F(e,"data","sparseSegmentSum"),r=F(t,"indices","sparseSegmentSum","int32"),s=F(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(Ac,i)}var _z=z({sparseSegmentSum_:Cz});function Ez(e,t,n,a,r,s,i,o){let l=F(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=F(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=L.runKernel(Km,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var Fz=z({stringNGrams_:Ez});function Az(e,t,n=!0){let a=F(e,"input","stringSplit","string"),r=F(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=L.runKernel(Xm,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var $z=z({stringSplit_:Az});function Dz(e,t){let n=F(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(Ym,r,a)}var Rz=z({stringToHashBucketFast_:Dz}),Mz={fft:Kc,ifft:Cl,rfft:Xc,irfft:If},Pz={hammingWindow:dL,hannWindow:p2,frame:c2,stft:gL},Ln={flipLeftRight:vL,grayscaleToRGB:kL,resizeNearestNeighbor:g2,resizeBilinear:f2,rotateWithOffset:SL,cropAndResize:bL,nonMaxSuppression:TL,nonMaxSuppressionAsync:RL,nonMaxSuppressionWithScore:PL,nonMaxSuppressionWithScoreAsync:LL,nonMaxSuppressionPadded:BL,nonMaxSuppressionPaddedAsync:VL,threshold:qL,transform:XL},y2={bandPart:QL,gramSchmidt:ZL,qr:tz},Oz={absoluteDifference:rz,computeWeightedLoss:$r,cosineDistance:iz,hingeLoss:lz,huberLoss:pz,logLoss:dz,meanSquaredError:mz,sigmoidCrossEntropy:yz,softmaxCrossEntropy:vz},Bp={sparseFillEmptyRows:kz,sparseReshape:Sz,sparseSegmentMean:Tz,sparseSegmentSum:_z},Ah={stringNGrams:Fz,stringSplit:$z,stringToHashBucketFast:Rz},Dr=class extends yS{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Re(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return jS(e,t)}dispose(){this.iterations_!=null&&Re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:we(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Dr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Ff=class extends Dr{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:O(()=>Ke(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;O(()=>{let l=J(B(i,this.rho),B(ut(s),1-this.rho)),u=B(fe(pn(J(o,this.epsilon)),pn(J(i,this.epsilon))),s),p=J(B(o,this.rho),B(ut(u),1-this.rho));i.assign(l),o.assign(p);let d=J(B(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Re(this.accumulatedGrads.map(e=>e.variable)),Re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Ff.className="Adadelta";ks(Ff);var Af=class extends Dr{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:O(()=>_n(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;O(()=>{let i=J(s,ut(r));s.assign(i);let o=J(B(fe(r,pn(J(i,L.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Af.className="Adagrad";ks(Af);var $f=class extends Dr{constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],O(()=>{this.accBeta1=we(t).variable(),this.accBeta2=we(n).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=ce(1,this.accBeta2);t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:O(()=>Ke(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:O(()=>Ke(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=J(B(u,this.beta1),B(l,1-this.beta1)),c=J(B(p,this.beta2),B(ut(l),1-this.beta2)),h=fe(d,n),m=fe(c,a);u.assign(d),p.assign(c);let f=J(B(fe(h,J(pn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),O(()=>{this.accBeta1.assign(Ar(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ar(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};$f.className="Adam";ks($f);var Df=class extends Dr{constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],O(()=>{this.iteration=we(0).variable(),this.accBeta1=we(t).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=fe(-this.learningRate,J(B(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ke(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ke(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=J(B(u,this.beta1),B(l,1-this.beta1)),c=B(p,this.beta2),h=zt(l),m=fr(c,h);u.assign(d),p.assign(m);let f=J(B(fe(a,n),fe(d,J(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Df.className="Adamax";ks(Df);var Yc=class extends Dr{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=L.registeredVariables[t];O(()=>{let s=J(B(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=tn(we(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Yc.className="SGD";ks(Yc);var Rf=class extends Yc{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=we(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:O(()=>Ke(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&O(()=>{let i,o=J(B(this.m,r),s);this.useNesterov?i=J(B(this.c,J(s,B(o,this.m))),a):i=J(B(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Rf.className="Momentum";ks(Rf);var Mf=class extends Dr{constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:O(()=>Ke(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;O(()=>{let l=J(B(i,this.decay),B(ut(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=J(B(u,this.decay),B(s,1-this.decay)),d=fe(B(s,this.learningRate),pn(ce(l,J(ut(p),this.epsilon)))),c=J(B(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=ce(a,c);a.assign(h)}else{let u=J(B(i,this.decay),B(ut(s),1-this.decay)),p=J(B(o,this.momentum),fe(B(s,this.learningRate),pn(J(u,this.epsilon))));i.assign(u),o.assign(p);let d=ce(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Mf.className="RMSProp";ks(Mf);var Yr=class{static sgd(e){return new Yc(e)}static momentum(e,t,n=!1){return new Rf(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Mf(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new $f(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Ff(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Df(e,t,n,a,r)}static adagrad(e,t=.1){return new Af(e,t)}},Gs={sgd:Yr.sgd,momentum:Yr.momentum,adadelta:Yr.adadelta,adagrad:Yr.adagrad,rmsprop:Yr.rmsprop,adamax:Yr.adamax,adam:Yr.adam},Lz=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function zv(){return new Promise(e=>Lz(()=>e()))}var _={};Me(_,{ERF_A1:()=>Xz,ERF_A2:()=>Yz,ERF_A3:()=>Qz,ERF_A4:()=>Jz,ERF_A5:()=>Zz,ERF_P:()=>Kz,PARALLELIZE_THRESHOLD:()=>Bv,SELU_SCALE:()=>x2,SELU_SCALEALPHA:()=>b2,applyActivation:()=>_f,assertAndGetBroadcastShape:()=>dt,assertAxesAreInnerMostDims:()=>IP,assertParamsConsistent:()=>zz,assignToTypedArray:()=>sB,axesAreInnerMostDims:()=>hv,calculateShapes:()=>oS,checkEinsumDimSizes:()=>cB,checkPadOnDimRoundingMode:()=>Cn,combineLocations:()=>zS,complexWithEvenIndex:()=>nB,complexWithOddIndex:()=>aB,computeConv2DInfo:()=>zc,computeConv3DInfo:()=>SS,computeDefaultPad:()=>av,computeDilation2DInfo:()=>kM,computeOptimalWindowSize:()=>Wz,computeOutAndReduceShapes:()=>BS,computeOutShape:()=>Bz,computePool2DInfo:()=>IS,computePool3DInfo:()=>IM,convertConv2DDataFormat:()=>NS,decodeEinsumEquation:()=>uB,eitherStridesOrDilationsAreOne:()=>mr,expandShapeToKeepDim:()=>ui,exponent:()=>oB,exponents:()=>iB,fromStringArrayToUint8:()=>$B,fromUint8ToStringArray:()=>AB,getAxesPermutation:()=>WS,getBroadcastDims:()=>rS,getComplexWithIndex:()=>rB,getEinsumComputePath:()=>dB,getEinsumPermutation:()=>pB,getFusedBiasGradient:()=>Cf,getFusedDyActivation:()=>Tf,getImageCenter:()=>Vz,getInnerMostAxes:()=>SP,getPermuted:()=>Gz,getReductionAxes:()=>Wt,getReshaped:()=>Uz,getReshapedPermuted:()=>Hz,getSliceBeginCoords:()=>jz,getSliceSize:()=>qz,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>gB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>yB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>bB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>wB,getSparseReshapeInputOutputMismatchErrorMessage:()=>IB,getSparseReshapeInputOutputMultipleErrorMessage:()=>kB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>xB,getSparseReshapeNegativeOutputDimErrorMessage:()=>vB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>CB,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>SB,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>NB,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>TB,getUndoAxesPermutation:()=>mv,isIdentityPermutation:()=>hB,log:()=>H$,mergeRealAndImagArrays:()=>eB,prepareAndValidate:()=>iS,prepareSplitSize:()=>fB,segment_util:()=>v2,shouldFuse:()=>Ef,slice_util:()=>qt,splitRealAndImagArrays:()=>tB,tupleValuesAreOne:()=>ls,upcastType:()=>fa,validateInput:()=>Hx,validateUpdateShape:()=>Gx,warn:()=>Jr});function zz(e,t){let n=e[0].length;e.forEach((r,s)=>{R(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),R(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)R(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function Bz(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var Bv=30;function Wz(e){return e<=Bv?e:Vh(e,Math.floor(Math.sqrt(e)))}function Vz(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function Uz(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function Gz(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function Hz(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function jz(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function qz(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var b2=1.7580993408473768,x2=1.0507009873554805,Kz=.3275911,Xz=.254829592,Yz=-.284496736,Qz=1.421413741,Jz=-1.453152027,Zz=1.061405429;function eB(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function tB(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function nB(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function aB(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function rB(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function sB(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function iB(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function oB(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var vb="->",lB=/->/g,rk=",",sk="...";function uB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(lB,"").length)/vb.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${vb}").`);let[a,r]=e.split(vb);R(a.indexOf(sk)===-1,()=>`The ellipsis notation ("${sk}") is not supported yet.`);let s=a.split(rk),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==rk&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function pB(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function cB(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:R(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function dB(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=mB(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function hB(e){return e.every((t,n)=>t===n)}function mB(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function fB(e,t,n=0){let a=[];if(typeof t=="number")R(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);R(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}R(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function gB(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function yB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function bB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function xB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function vB(e,t){return`size ${e} must be non-negative, not ${t}`}function wB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function kB(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function IB(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function SB(){return"segment ids must be >= 0"}function NB(){return"segment ids are not increasing"}function TB(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function CB(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var v2={};Me(v2,{collectGatherOpShapeInfo:()=>FB,computeOutShape:()=>EB,segOpComputeOptimalWindowSize:()=>_B});function _B(e,t){let n=!1,a;for(e<=Bv?(a=e,n=!0):a=Vh(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Vh(e,a+1);return a}function EB(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function FB(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function AB(e){try{return e.map(t=>Kh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function $B(e){return e.map(t=>Pc(t))}var gr={};Me(gr,{nonMaxSuppressionV3Impl:()=>d2,nonMaxSuppressionV4Impl:()=>h2,nonMaxSuppressionV5Impl:()=>m2,whereImpl:()=>a2});var w2={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Hu(oe(n,"float32"),-1))}}},DB={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ut(oe(n,"float32")),r=pn(ce(we(1),a));return Nt(fe(e,r))}}}},RB={kernelName:Bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=pn(ce(ut(oe(n,"float32")),1));return fe(e,a)}}}},MB={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=dt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=be(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=be(s,i)),W(s,a.shape)}}}},PB={kernelName:vi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},OB={kernelName:wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},LB={kernelName:yc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},zB={kernelName:Ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,pn(ce(we(1),ut(oe(n,"float32")))))}}},BB={kernelName:Gl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=pn(J(we(1),ut(oe(n,"float32"))));return fe(e,a)}}}},WB={kernelName:ql,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=dt(n.shape,a.shape);return{a:()=>{let s=J(ut(n),ut(a)),i=B(e,fe(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=be(i,o)),W(i,n.shape)},b:()=>{let s=J(ut(n),ut(a)),i=Nt(B(e,fe(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=be(i,o)),W(i,a.shape)}}}},VB={kernelName:Hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,J(ut(oe(n,"float32")),1))}}},UB={kernelName:jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ce(we(1),ut(oe(n,"float32"))))}}};function GB(e,t,n,a,r,s){let i=F(e,"dy","avgPool3dGrad"),o=F(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),R(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),R(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Cn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=L.runKernel(wm,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var HB=z({avgPool3dGrad_:GB}),jB={kernelName:bc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>HB(e,a,r,s,i,o)}}};function qB(e,t,n,a,r){let s=F(e,"dy","avgPoolGrad"),i=F(t,"input","avgPoolGrad");R(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),R(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=L.runKernel(vm,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var KB=z({avgPoolGrad_:qB}),XB={kernelName:ki,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>KB(e,a,r,s,i)}}},YB={kernelName:Ii,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>De(e,r,!1,!0),b:()=>De(a,e,!0,!1)}:!s&&i?{a:()=>De(e,r,!1,!1),b:()=>De(e,a,!0,!1)}:s&&!i?{a:()=>De(r,e,!1,!0),b:()=>De(a,e,!1,!1)}:{a:()=>De(r,e,!0,!0),b:()=>De(e,a,!0,!0)}}},QB={kernelName:Kl,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>jc(e,a,r)}}},JB={kernelName:$I,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>be(e,o,!0)}}},ZB={kernelName:Si,gradFunc:e=>({x:()=>e.clone()})},eW={kernelName:Ni,gradFunc:e=>({x:()=>Ke(e)})},tW={kernelName:bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>fn(_a(Ss(a,r),Ns(a,s)),e,Ke(e))}}},nW={kernelName:xc,inputsToSave:["x"],gradFunc:w2.gradFunc},aW={kernelName:Xl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Ea(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},rW={kernelName:Ti,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return R(ls(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>ov(a.shape,e,r,i,o,l),filter:()=>Ov(a,e,r.shape,i,o,l)}}},sW={kernelName:Ci,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Rt(e,r,s,i,o,1,l),filter:()=>Ov(e,a,r.shape,s,i,o,l)}}};function iW(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),R(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),R(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),R(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),R(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),R(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return L.runKernel(Tm,o,l)}var oW=z({conv3DBackpropFilter_:iW}),lW={kernelName:vc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;R(ls(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>RS(i.shape,e,o,r,s),filter:()=>oW(i,e,o.shape,r,s)}}},uW={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Nt(vf(oe(n,"float32"))),e)}}},pW={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(wf(oe(n,"float32")),e)}}},cW={kernelName:Fi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=WS([r],a.rank),l=lf(e,r,s,!i);return o!=null&&(l=Ae(l,o)),l}}}},dW={kernelName:Ai,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;R(ls(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return R(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),R(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),R(mr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Cn("depthwiseConv2d",s,i),{x:()=>u2(l.shape,e,u,r,s,o,i),filter:()=>l2(l,e,u.shape,r,s,o,i)}}},hW={kernelName:wc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>L.runKernel(Uh,s,n),filter:()=>L.runKernel(Gh,i,n)}}},mW={kernelName:Di,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>L.runKernel(Dm,a)}}},fW={kernelName:Zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(gn(Nt(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,a)}}},gW={kernelName:Ri,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},yW={kernelName:tu,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},bW={kernelName:nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,gn(n))}}},xW={kernelName:Mi,gradFunc:e=>({x:()=>Ke(e)})},vW={kernelName:Pi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=dt(n.shape,a.shape);return{a:()=>{let s=fe(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,oe(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(be(s,i),a.shape));let o=ut(a);return Nt(fe(s,oe(o,"float32")))}}}},wW={kernelName:Oi,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?we(1):o,u=Wt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=ce(r,s),c=B(e,l),h=bf(J(i,we(a))),m=B(B(B(h,h),h),we(-.5));return{x:()=>s.rank===1?W(B(B(e,On(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(B(B(e,h),l),r.shape),mean:()=>{let f=B(B(h,we(-1)),c);return s.rank===1&&(f=be(f,u)),W(f,s.shape)},variance:()=>{let f=B(B(m,d),c);return s.rank===1&&(f=be(f,u)),W(f,s.shape)},scale:()=>{let f=B(d,h),g=B(e,f);return s.rank===1&&(g=be(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=be(f,u)),W(f,s.shape)}}}},kW={kernelName:ru,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Ea(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=ik(0,p),m=ik(p+1,p+1+c),f=ok([u,[l],d]),g=W(e,f),y=W(r,[l]),b=ok([[p],h,m]),x=Ae(g,b),v=Dv(x,y,a.shape[i]),k=mv(b);return v=Ae(v,k),v},indices:()=>r}}};function ik(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function ok(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var IW={kernelName:Li,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ke(n),b:()=>Ke(a)}}},SW={kernelName:zi,gradFunc:e=>({x:()=>oe(e,"float32")})},NW={kernelName:ou,gradFunc:e=>({x:()=>Ke(e)})},TW={kernelName:lu,gradFunc:e=>({x:()=>Ke(e)})},CW={kernelName:uu,gradFunc:e=>({x:()=>Ke(e)})},_W={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Un(a,0);return{x:()=>fn(s,e,B(e,r))}}},EW={kernelName:du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,J(n,1))}}},FW={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,oe(n,"float32"))}}},AW={kernelName:DI,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=gn(a);return ce(e,B(be(e,r,!0),s))}}}};function $W(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return L.runKernel(Lm,o,l)}var DW=z({localResponseNormalizationBackprop_:$W}),RW={kernelName:Nc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>DW(a,r,e,s,i,o,l)}}};function k2(e,t,n,a){return t.rank<n.rank&&(t=W(t,ui(t.shape,a))),e.rank<n.rank&&(e=W(e,ui(e.shape,a))),{x:()=>B(e,oe(Zn(n,t),e.dtype))}}var lk={kernelName:Vi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Ea(r,s.shape),l=k2(e,i,s,o);return{x:()=>l.x()}}},MW={kernelName:Ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,oe(Ss(n,a),"float32")),b:()=>B(e,oe(pf(n,a),"float32"))}}};function PW(e,t,n,a,r,s,i){let o=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),u=F(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),R(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),R(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),R(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Cn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=L.runKernel(Bm,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var OW=z({maxPool3dGrad_:PW}),LW={kernelName:Tc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>OW(e,a,r,s,i,o,l)}}};function zW(e,t,n,a,r,s,i){let o=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),u=F(n,"output","maxPoolGrad");R(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),R(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),R(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Cn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return L.runKernel(zm,p,d)}var BW=z({maxPoolGrad_:zW}),WW={kernelName:Gi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>BW(e,a,r,s,i,o)}}},VW={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Ea(r,a.shape),i=BS(a.shape,s)[1],o=bt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return fe(B(u,Qn(a.shape,"float32")),o)}}}},UW={kernelName:ji,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Ea(r,s.shape),l=k2(e,i,s,o);return{x:()=>l.x()}}},GW={kernelName:qi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,oe(Ns(n,a),"float32")),b:()=>B(e,oe(Un(n,a),"float32"))}}},HW={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>He(e,s,a.shape)}}},jW={kernelName:mu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=dt(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?W(be(e,s),n.shape):e},b:()=>{let s=B(e,Nt(Wu(fe(n,a)))),i=Wt(a.shape,r);return i.length>0?W(be(s,i),a.shape):s}}}},qW={kernelName:Xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=dt(n.shape,a.shape);return{a:()=>{let s=B(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,oe(n,"float32")),i=Wt(a.shape,r);return i.length>0?W(be(s,i),a.shape):s}}}},KW={kernelName:fu,gradFunc:e=>({x:()=>Nt(e)})},XW={kernelName:Yi,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>It(n.shape,"float32")}}},YW={kernelName:vu,gradFunc:e=>({x:()=>Ke(e)})},QW={kernelName:wu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ht(e,a).map(r=>()=>r)}},uk={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>He(e,s,a.shape)}}},JW={kernelName:Ji,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=dt(s.shape,i.shape);return{a:()=>{let l=oe(i,"float32"),u=B(e,B(l,Ar(s,ce(l,we(1))))),p=Wt(s.shape,o);return p.length>0&&(u=be(u,p)),W(u,s.shape)},b:()=>{let l=Un(s,0),u=fn(l,ea(s),Ke(s)),p=B(e,B(r,u)),d=Wt(i.shape,o);return d.length>0&&(p=be(p,d)),W(p,i.shape)}}}},ZW={kernelName:Zi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Un(n,0);return{x:()=>fn(r,e,B(e,a)),alpha:()=>{let s=fn(r,Ke(e),B(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=be(s,i)),W(s,a.shape)}}}};function e4(e,t,n){let a=e.shape.slice();a[n]=1;let r=W(t,a),s=rc(e,n,!0,!1),i=rc(e,n,!0,!0),o=B(s,i);return B(r,o)}function t4(e,t,n){let a=e.shape.length,r=a-n.length,s=_.getAxesPermutation(n,a),i=e;s!=null&&(i=Ae(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=e4(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=_.getUndoAxesPermutation(s);p=Ae(p,d)}return p}var n4={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>t4(a,e,s)}}},a4={kernelName:$i,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=dt(n.shape,a.shape);return{a:()=>{let s=fe(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,oe(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(be(s,i),a.shape));let o=ut(a);return Nt(fe(s,oe(o,"float32")))}}}},r4={kernelName:ku,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Nt(ut(n)))}}},s4={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(Ns(n,6),Hu(n));return{x:()=>B(e,oe(a,"float32"))}}},i4={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,oe(Hu(n),"float32"))}}},o4={kernelName:Iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},l4={kernelName:no,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(Hm,r,n)}}},u4={kernelName:_c,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(Gm,r,n)}}},p4={kernelName:ro,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Ea(a,e.shape);return{x:()=>na(e,r)}}},c4={kernelName:so,gradFunc:e=>({x:()=>Ke(e)})},d4={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Nt(fe(e,B(Ar(n,1.5),2)))}}},h4={kernelName:Nu,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>oe(Ke(n),"float32"),t:()=>B(e,oe(n,e.dtype)),e:()=>B(e,oe(Hc(n),e.dtype))}}},m4={kernelName:Tu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Un(n,we(0)),r=we(b2),s=we(x2),i=B(e,s),o=B(B(e,r),gn(oe(n,"float32")));return fn(a,i,o)}}}},f4={kernelName:lo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,ce(we(1),n)))}}},g4={kernelName:Eu,gradFunc:e=>({x:()=>Ke(e)})},y4={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Wc(oe(n,"float32")),e)}}},b4={kernelName:_u,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(of(oe(n,"float32")),e)}}},x4={kernelName:Cu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=gS(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>ya(e,u)}}},v4={kernelName:co,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=B(e,a);return{logits:()=>ce(i,B(be(i,[r],s),a))}}},w4={kernelName:Fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,ma(n))}}},pk={kernelName:Au,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Bc(e,a,r)}}},ck={kernelName:$u,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Ze(e,a)}}},k4={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,B(pn(oe(n,"float32")),2))}}},I4={kernelName:$c,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(oe(n,"float32"),2))}}},S4={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=we(2);return{a:()=>B(e,B(r,ce(n,a))),b:()=>B(e,B(r,ce(a,n)))}}},N4={kernelName:vs,gradFunc:e=>({x:()=>Ke(e)})},T4={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=dt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=be(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=be(s,i)),W(Nt(s),a.shape)}}}},C4={kernelName:po,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Ea(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=B(i,Qn(a.shape,"float32"));return{x:()=>o}}},_4={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ut(Wc(n)))}}},E4={kernelName:go,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(ce(we(1),ut(n)),e)}}},F4={kernelName:xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ke(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=J(s,He(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=J(s,He(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=J(s,He(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=J(s,He(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},A4={kernelName:yo,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=mv(r);return{x:()=>Ae(e,s)}}},$4={kernelName:Ou,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Mt(e,r)}}},D4={kernelName:Dc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>R4(e,n)}}};function R4(e,t){let n=fr(t,Ke(t)),a=pi(e,n),r=Ss(t,we(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=mn(r,o+1);r=_a(r,Qn(a.shape,"bool"));let i=Ke(a);return fn(r,a,i)}var M4={kernelName:Lu,gradFunc:e=>({x:()=>Ke(e)})},P4=[w2,DB,RB,MB,PB,OB,LB,zB,BB,WB,VB,UB,jB,XB,YB,QB,JB,ZB,eW,tW,nW,aW,sW,rW,lW,uW,pW,cW,dW,hW,a4,mW,fW,gW,yW,bW,vW,xW,wW,kW,IW,SW,NW,TW,CW,_W,EW,FW,AW,RW,lk,lk,MW,LW,WW,VW,UW,GW,HW,jW,qW,KW,XW,YW,QW,uk,uk,JW,ZW,n4,r4,s4,i4,o4,l4,u4,p4,c4,d4,h4,m4,f4,g4,y4,b4,x4,v4,w4,pk,pk,ck,ck,k4,S4,I4,N4,T4,C4,_4,E4,F4,A4,$4,D4,M4];for(let e of P4)RI(e);ne().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};ne().prototype.acos=function(){return this.throwIfDisposed(),Xx(this)};ne().prototype.acosh=function(){return this.throwIfDisposed(),Yx(this)};ne().prototype.add=function(e){return this.throwIfDisposed(),J(this,e)};ne().prototype.all=function(e,t){return this.throwIfDisposed(),af(this,e,t)};ne().prototype.any=function(e,t){return this.throwIfDisposed(),ac(this,e,t)};ne().prototype.argMax=function(e){return this.throwIfDisposed(),oi(this,e)};ne().prototype.argMin=function(e){return this.throwIfDisposed(),Qx(this,e)};ne().prototype.asScalar=function(){return this.throwIfDisposed(),R(this.size===1,()=>"The array must have only 1 element."),W(this,[])};ne().prototype.asType=function(e){return this.throwIfDisposed(),oe(this,e)};ne().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};ne().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};ne().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};ne().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};ne().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};ne().prototype.asin=function(){return this.throwIfDisposed(),Jx(this)};ne().prototype.asinh=function(){return this.throwIfDisposed(),Zx(this)};ne().prototype.atan=function(){return this.throwIfDisposed(),ev(this)};ne().prototype.atan2=function(e){return this.throwIfDisposed(),tv(this,e)};ne().prototype.atanh=function(){return this.throwIfDisposed(),nv(this)};ne().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ga(this,e,t,n,a)};ne().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Bc(this,e,t)};ne().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),Fr(this,e,t,n,a,r)};ne().prototype.broadcastTo=function(e){return this.throwIfDisposed(),vl(this,e)};ne().prototype.cast=function(e){return this.throwIfDisposed(),oe(this,e)};ne().prototype.ceil=function(){return this.throwIfDisposed(),iv(this)};ne().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),an(this,e,t)};ne().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Fe&&(e=[e]),Ze([this,...e],t)};ne().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),rf(this,e,t,n,a,r,s)};ne().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),sf(this,e,t,n,a,r)};ne().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Rt(this,e,t,n,a,r,s)};ne().prototype.cos=function(){return this.throwIfDisposed(),Wc(this)};ne().prototype.cosh=function(){return this.throwIfDisposed(),of(this)};ne().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),rc(this,e,t,n)};ne().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),lf(this,e,t,n)};ne().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),uv(this,e,t)};ne().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Is(this,e,t,n,a,r,s)};ne().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),pv(this,e,t,n,a,r)};ne().prototype.divNoNan=function(e){return this.throwIfDisposed(),cv(this,e)};ne().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};ne().prototype.dot=function(e){return this.throwIfDisposed(),OS(this,e)};ne().prototype.elu=function(){return this.throwIfDisposed(),Bu(this)};ne().prototype.equal=function(e){return this.throwIfDisposed(),Zn(this,e)};ne().prototype.erf=function(){return this.throwIfDisposed(),dv(this)};ne().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),fv(this,e,t)};ne().prototype.exp=function(){return this.throwIfDisposed(),gn(this)};ne().prototype.expandDims=function(e){return this.throwIfDisposed(),mn(this,e)};ne().prototype.expm1=function(){return this.throwIfDisposed(),gv(this)};ne().prototype.fft=function(){return this.throwIfDisposed(),Kc(this)};ne().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};ne().prototype.floor=function(){return this.throwIfDisposed(),Wu(this)};ne().prototype.floorDiv=function(e){return this.throwIfDisposed(),nf(this,e)};ne().prototype.gather=function(e,t){return this.throwIfDisposed(),pi(this,e,t)};ne().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Ss(this,e)};ne().prototype.greater=function(e){return this.throwIfDisposed(),Un(this,e)};ne().prototype.ifft=function(){return this.throwIfDisposed(),Cl(this)};ne().prototype.irfft=function(){return this.throwIfDisposed(),If(this)};ne().prototype.isFinite=function(){return this.throwIfDisposed(),US(this)};ne().prototype.isInf=function(){return this.throwIfDisposed(),GS(this)};ne().prototype.isNaN=function(){return this.throwIfDisposed(),bv(this)};ne().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Uc(this,e)};ne().prototype.lessEqual=function(e){return this.throwIfDisposed(),Ns(this,e)};ne().prototype.less=function(e){return this.throwIfDisposed(),pf(this,e)};ne().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),xv(this,e,t,n,a)};ne().prototype.logSigmoid=function(){return this.throwIfDisposed(),qS(this)};ne().prototype.logSoftmax=function(e){return this.throwIfDisposed(),df(this,e)};ne().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),vv(this,e,t)};ne().prototype.log=function(){return this.throwIfDisposed(),ea(this)};ne().prototype.log1p=function(){return this.throwIfDisposed(),Gc(this)};ne().prototype.logicalAnd=function(e){return this.throwIfDisposed(),_a(this,e)};ne().prototype.logicalNot=function(){return this.throwIfDisposed(),Hc(this)};ne().prototype.logicalOr=function(e){return this.throwIfDisposed(),hf(this,e)};ne().prototype.logicalXor=function(e){return this.throwIfDisposed(),KS(this,e)};ne().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),De(this,e,t,n)};ne().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Pt(this,e,t,n,a)};ne().prototype.max=function(e,t){return this.throwIfDisposed(),Ta(this,e,t)};ne().prototype.maximum=function(e){return this.throwIfDisposed(),fr(this,e)};ne().prototype.mean=function(e,t){return this.throwIfDisposed(),Et(this,e,t)};ne().prototype.min=function(e,t){return this.throwIfDisposed(),sc(this,e,t)};ne().prototype.minimum=function(e){return this.throwIfDisposed(),Vu(this,e)};ne().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Iv(this,e,t)};ne().prototype.mod=function(e){return this.throwIfDisposed(),Sv(this,e)};ne().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};ne().prototype.neg=function(){return this.throwIfDisposed(),Nt(this)};ne().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Vc(this,e,t,n)};ne().prototype.notEqual=function(e){return this.throwIfDisposed(),ci(this,e)};ne().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Nl(this,e,t,n)};ne().prototype.onesLike=function(){return this.throwIfDisposed(),ta(this)};ne().prototype.pad=function(e,t){return this.throwIfDisposed(),ya(this,e,t)};ne().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),JS(this,e,t,n,a,r,s)};ne().prototype.pow=function(e){return this.throwIfDisposed(),Ar(this,e)};ne().prototype.prelu=function(e){return this.throwIfDisposed(),qc(this,e)};ne().prototype.prod=function(e,t){return this.throwIfDisposed(),ff(this,e,t)};ne().prototype.reciprocal=function(){return this.throwIfDisposed(),Cv(this)};ne().prototype.relu=function(){return this.throwIfDisposed(),Xe(this)};ne().prototype.relu6=function(){return this.throwIfDisposed(),gf(this)};ne().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};ne().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};ne().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),f2(this,e,t,n)};ne().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),g2(this,e,t,n)};ne().prototype.reverse=function(e){return this.throwIfDisposed(),na(this,e)};ne().prototype.rfft=function(){return this.throwIfDisposed(),Xc(this)};ne().prototype.round=function(){return this.throwIfDisposed(),yf(this)};ne().prototype.rsqrt=function(){return this.throwIfDisposed(),bf(this)};ne().prototype.selu=function(){return this.throwIfDisposed(),xf(this)};ne().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),wo(this,e,t,n,a,r,s)};ne().prototype.sigmoid=function(){return this.throwIfDisposed(),ma(this)};ne().prototype.sign=function(){return this.throwIfDisposed(),_v(this)};ne().prototype.sin=function(){return this.throwIfDisposed(),vf(this)};ne().prototype.sinh=function(){return this.throwIfDisposed(),wf(this)};ne().prototype.slice=function(e,t){return this.throwIfDisposed(),He(this,e,t)};ne().prototype.softmax=function(e){return this.throwIfDisposed(),Qa(this,e)};ne().prototype.softplus=function(){return this.throwIfDisposed(),vo(this)};ne().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),jc(this,e,t)};ne().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};ne().prototype.sqrt=function(){return this.throwIfDisposed(),pn(this)};ne().prototype.square=function(){return this.throwIfDisposed(),ut(this)};ne().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Sf(this,e)};ne().prototype.squeeze=function(e){return this.throwIfDisposed(),dr(this,e)};ne().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Fe?[this,e]:[this,...e];return Mt(n,t)};ne().prototype.step=function(e){return this.throwIfDisposed(),Hu(this,e)};ne().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Fv(this,e,t,n,a,r,s,i,o)};ne().prototype.sub=function(e){return this.throwIfDisposed(),ce(this,e)};ne().prototype.sum=function(e,t){return this.throwIfDisposed(),be(this,e,t)};ne().prototype.tan=function(){return this.throwIfDisposed(),Av(this)};ne().prototype.tanh=function(){return this.throwIfDisposed(),li(this)};ne().prototype.tile=function(e){return this.throwIfDisposed(),On(this,e)};ne().prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};ne().prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};ne().prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};ne().prototype.topk=function(e,t){return this.throwIfDisposed(),$v(this,e,t)};ne().prototype.transpose=function(e){return this.throwIfDisposed(),Ae(this,e)};ne().prototype.unique=function(e){return this.throwIfDisposed(),Jh(this,e)};ne().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Dv(this,e,t)};ne().prototype.unstack=function(e){return this.throwIfDisposed(),ht(this,e)};ne().prototype.where=function(e,t){return this.throwIfDisposed(),fn(e,this,t)};ne().prototype.zerosLike=function(){return this.throwIfDisposed(),Ke(this)};var Ir=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ir.prototype)}},Va=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Va.prototype)}},H=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,H.prototype)}},Oe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Oe.prototype)}},I2=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,I2.prototype)}},S2=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function di(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ir(e,t){if(!e)throw new I2(t)}function dk(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Pn(e){return e.length===1?e[0]:e}function wt(e){return Array.isArray(e)?e:[e]}function Sr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function qs(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ka={};function Wv(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function jb(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>jb(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:jb(a))}}}function Qc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ka)i=ka[s];else if(i=t[s],i==null)throw new H(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new H(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ka?[o,l]=ka.className:i in t&&([o,l]=t[i]),o==null)throw new H(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ka))u[h]=ka[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},ka);for(let h of Object.keys(n))ka[h]=n[h];jb(s.config);let c=l(o,s.config,n,r);return ka=Object.assign({},d),c}else{let u=Object.assign({},ka);for(let d of Object.keys(n))ka[d]=n[d];let p=new o(s.config);return ka=Object.assign({},u),p}}}function O4(e,t){return e<t?-1:e>t?1:0}function xh(e,t){return-1*O4(e,t)}function as(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function L4(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function ko(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Vv(e,t,n=0,a=1/0){return ir(n>=0),ir(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function nn(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>nn(n,`element ${a+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${N2(e)}.`)}function N2(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>N2(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function z4(e,t,n){let a=n!=null?n():w.now(),r;return(...s)=>{let i=n!=null?n():w.now();return i-a<t||(a=i,r=e(...s)),r}}function T2(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var B4=0;function C2(){return B4++}var vh={};function Pf(e=""){return e in vh||(vh[e]=0),vh[e]+=1,e+vh[e].toString()}var W4=["channelsFirst","channelsLast"],V4=["nearest","bilinear"],U4=["valid","same","causal"],G4=["max","avg"],H4=["sum","mul","concat","ave"],pl=new Map;function Ot(e){ko(W4,"DataFormat",e)}function j4(e){ko(V4,"InterpolationFormat",e)}function ba(e){ko(U4,"PaddingMode",e)}function _2(e){ko(G4,"PoolMode",e)}var Xp=[],hk="/";function Zs(e,t){Xp.push(e);try{let n=t();return Xp.pop(),n}catch(n){throw Xp.pop(),n}}function q4(){return Xp.length===0?"":Xp.join(hk)+hk}function E2(e){if(!A2(e))throw new Error("Not a valid tensor name: '"+e+"'");return q4()+e}function F2(e){if(!A2(e))throw new Error("Not a valid tensor name: '"+e+"'");pl.has(e)||pl.set(e,0);let t=pl.get(e);if(pl.set(e,pl.get(e)+1),t>0){let n=`${e}_${t}`;return pl.set(n,1),n}else return e}var K4=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function A2(e){return!!e.match(K4)}function X4(e){return e===parseInt(e.toString(),10)}function rs(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function _l(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function ps(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function Ka(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var wb;function Ht(){return wb==null&&(wb=wS().epsilon()),wb}function Xa(){return"channelsLast"}function Of(e,t){return oe(e,t)}function Jc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),W(e,n)}function Y4(e,t){return O(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Jc(e,1);return qb(n,[1,t,1])})}function Q4(e){let t=[rs(e.shape)];return W(e,t)}function J4(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],rs(e.shape,1)];return W(e,t)}function ei(e,t,n){return O(()=>{switch(e.rank){case 1:return kf(e,t,n);case 2:return Ev(e,[t,0],[n,e.shape[1]]);case 3:return Gu(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return oc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return He(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return He(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function kb(e,t,n){return O(()=>{switch(e.rank){case 1:return kf(e,t,n);case 2:return Ev(e,[0,t],[e.shape[0],n]);case 3:return Gu(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return oc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function wh(e,t,n,a){return O(()=>{switch(e.rank){case 1:return kf(e,t,n);case 2:switch(a){case 1:return ei(e,t,n);case 2:return kb(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return ei(e,t,n);case 2:return Gu(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return kb(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return ei(e,t,n);case 2:return oc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return oc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return kb(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Uv(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ze(e,t)}function mk(e,t){switch(e.rank){case 1:return FS([e,t]);case 2:return AS([e,t],0);case 3:return $S([e,t],0);case 4:return DS([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function qb(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return On(e,t)}function Lf(e,t=0,n=1,a,r){return ZS(e,t,n,a,r)}function ur(e,t,n,a){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return us.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?Kb(e.rank,a,Xa()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W(Ae(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(us.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?Kb(e.rank,a,Xa()):null,activation:n}),d)}}function $2(e,t,n){return O(()=>(Array.isArray(t)?t=qe(t,"int32"):t=oe(t,"int32"),pi(e,t,n)))}function Zc(e){return B(e,e)}function Kb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function Za(e,t,n){return O(()=>(n==null&&(n=Xa()),Ot(n),J(e,Kb(e.rank,t,n))))}function Z4(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Bu(e)}function eV(e){return O(()=>fe(e,J(zt(e),1)))}function D2(e,t,n,a){return O(()=>i2(e,t,n,a))}function tV(e){return O(()=>{let t=J(.5,B(.2,e));return an(t,0,1)})}function ed(e,t,n=!1){return n?e():t()}var nV=["fanIn","fanOut","fanAvg"],aV=["normal","uniform","truncatedNormal"];function rV(e){ko(nV,"FanMode",e)}function sV(e){ko(aV,"Distribution",e)}var Fa=class extends se.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Gv=class extends Fa{apply(e,t){return It(e,t)}};Gv.className="Zeros";se.registerClass(Gv);var zf=class extends Fa{apply(e,t){return Qn(e,t)}};zf.className="Ones";se.registerClass(zf);var Hv=class extends Fa{constructor(e){if(super(),typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return O(()=>B(we(this.value),Qn(e,t)))}getConfig(){return{value:this.value}}};Hv.className="Constant";se.registerClass(Hv);var jv=class extends Fa{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Uu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};jv.className="RandomUniform";se.registerClass(jv);var qv=class extends Fa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return Lf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};qv.className="RandomNormal";se.registerClass(qv);var Kv=class extends Fa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Nf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Kv.className="TruncatedNormal";se.registerClass(Kv);var Xv=class extends Fa{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return O(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,yv(e[0]))})}getConfig(){return{gain:this.gain}}};Xv.className="Identity";se.registerClass(Xv);function iV(e,t="channelsLast"){let n,a;if(Ot(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=rs(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=rs(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=rs(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Wn=class extends Fa{constructor(e){if(super(),e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,rV(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,sV(this.distribution),this.seed=e.seed}apply(e,t){let n=iV(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Nf(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Uu(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Wn.className="VarianceScaling";se.registerClass(Wn);var Bf=class extends Wn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Bf.className="GlorotUniform";se.registerClass(Bf);var Wf=class extends Wn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Wf.className="GlorotNormal";se.registerClass(Wf);var Vf=class extends Wn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Vf.className="HeNormal";se.registerClass(Vf);var Uf=class extends Wn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Uf.className="HeUniform";se.registerClass(Uf);var Gf=class extends Wn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Gf.className="LeCunNormal";se.registerClass(Gf);var Hf=class extends Wn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Hf.className="LeCunNormal";se.registerClass(Hf);var Yv=class extends Fa{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return O(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Lf(n,0,1,"float32"),r=y2.gramSchmidt(a);return e[0]>e[1]&&(r=Ae(r)),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Yv.className="Orthogonal";se.registerClass(Yv);var fk={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function gk(e,t={}){return Qc(e,se.SerializationMap.getMap().classNameMap,t,"initializer")}function Ft(e){return Wv(e)}function St(e){if(typeof e=="string"){let t=e in fk?fk[e]:e;if(t==="GlorotNormal")return new Wf;if(t==="GlorotUniform")return new Bf;if(t==="HeNormal")return new Vf;if(t==="HeUniform")return new Uf;if(t==="LeCunNormal")return new Gf;if(t==="LeCunUniform")return new Hf;{let n={};return n.className=t,n.config={},gk(n)}}else return e instanceof Fa?e:gk(e)}function Xb(e){return Array.isArray(e)&&Array.isArray(e[0])}function Zh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function it(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function em(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var yk="Variable",R2=class{constructor(e,t="float32",n=yk,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=C2(),n=n==null?yk:n,this.originalName=E2(n),this.name=F2(this.originalName),this.trainable_=a,this.constraint=r,this.val=n2(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),oV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function oV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Yb(e){return e.map(t=>t.read())}function Qv(e){e.forEach(t=>{t[0].write(t[1])})}var Bt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ua=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=C2(),s!=null&&(this.originalName=E2(s),this.name=F2(this.originalName)),this.rank=t.length}},lV=0,jf=class{constructor(e,t){this.callArgs=t,this.id=lV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},uV=0,Ye=class extends se.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=uV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Sr(n)+"_"+Pf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Va(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Pn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Pn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} is not connected, no input to return.`);return Pn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Pn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=wt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=wt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=wt(e),a=!0;for(let s of n)if(!(s instanceof Ua)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ua){r=!1;break}if(a===r)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return Zs(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of wt(e))s.push(i.shape);this.build(Pn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=wt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Pn(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=pV(e),i=this.computeOutputShape(s),o,l=cV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Ua(l,u,this,wt(e),t,this.name,p)):o=new Ua(l,i,this,wt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ir(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ir(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Va(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return em(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Yb(e?this.trainableWeights:this.weights)}setWeights(e){O(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Yb(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!w.arraysEqual(s.shape,o.shape))throw new H(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Qv(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():St("zeros"));let l=a.apply(t,n),u=new R2(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=wt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=wt(e);t=wt(t),n=wt(n),a=wt(a),r=Zh(r),s=Zh(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new jf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function pV(e){e=wt(e);let t=[];for(let n of e)t.push(n.shape);return Pn(t)}function cV(e){return"float32"}function M2(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=M2(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var qu=class extends Ye{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:Pf("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ua(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new jf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};qu.className="InputLayer";se.registerClass(qu);function P2(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new qu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function dV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return oe(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Ys=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ys)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=dV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ua){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ua){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Re(this.id2Mask)}},tm=new S2,nm=new S2;function hV(e){tm!=null&&tm.setMaxEntries(e),nm!=null&&nm.setMaxEntries(e)}function Wp(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=tm.get(p),c;if(d==null){let m=mV(i,t);d=m.sorted,c=m.recipientCounts,tm.put(p,d),nm.put(p,c)}c={},r||Object.assign(c,nm.get(p));let h=new Ys(t);for(let m=0;m<d.length;++m){if(a!=null){let A=Yh().numTensors;A>a.maxNumTensors&&(a.maxNumTensors=A),A<a.minNumTensors&&(a.minNumTensors=A)}let f=d[m],g=f.sourceLayer;if(g instanceof qu)continue;let y=[],b=[],x=[],v=!1;for(let A of f.inputs){let P=h.getValue(A),$=h.getMask(A);y.push(P),b.push($),$!=null&&(v=!0),r||(c[A.name]--,c[A.name]===0&&!t.hasKey(A)&&o.indexOf(A.name)===-1&&!P.isDisposed&&A.sourceLayer.stateful!==!0&&x.push(P))}v&&(n=n||{},n.mask=b[0]);let k=wt(g.apply(y,n)),T=null;g.supportsMasking&&(T=g.computeMask(y,b));let C=gV(f),E=Array.isArray(C)?C:[C];for(let A=0;A<E.length;++A){h.hasKey(E[A])||h.add(E[A],k[A],Array.isArray(T)?T[0]:T);let P=o.indexOf(E[A].name);P!==-1&&(l[P]=k[A])}r||Re(x)}return h.disposeMasks(),s?l:l[0]}function mV(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=bk(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=bk(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:fV(a)}}function fV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function bk(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function gV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var yV=X();yV.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,hV);var O2={};Me(O2,{maxNorm:()=>bV,minMaxNorm:()=>wV,nonNeg:()=>vV,unitNorm:()=>xV});function Jv(e,t){return O(()=>pn(be(B(e,e),t,!0)))}var td=class extends se.Serializable{getConfig(){return{}}},Zv=class extends td{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=Jv(e,this.axis),n=an(t,0,this.maxValue);return B(e,fe(n,J(Ht(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Zv.className="MaxNorm";se.registerClass(Zv);var ew=class extends td{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>fe(e,J(Ht(),Jv(e,this.axis))))}getConfig(){return{axis:this.axis}}};ew.className="UnitNorm";se.registerClass(ew);var tw=class extends td{apply(e){return Xe(e)}};tw.className="NonNeg";se.registerClass(tw);var nw=class extends td{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=Jv(e,this.axis),n=J(B(this.rate,an(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,fe(n,J(Ht(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};nw.className="MinMaxNorm";se.registerClass(nw);var xk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Kt(e){return Wv(e)}function vk(e,t={}){return Qc(e,se.SerializationMap.getMap().classNameMap,t,"constraint")}function Xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in xk?xk[e]:e,config:{}};return vk(t)}else return e instanceof td?e:vk(e)}function bV(e){return new Zv(e)}function xV(e){return new ew(e)}function vV(){return new tw}function wV(e){return new nw(e)}var L2={};Me(L2,{constant:()=>SV,glorotNormal:()=>AV,glorotUniform:()=>FV,heNormal:()=>$V,heUniform:()=>DV,identity:()=>_V,leCunNormal:()=>RV,leCunUniform:()=>MV,ones:()=>IV,orthogonal:()=>PV,randomNormal:()=>TV,randomUniform:()=>NV,truncatedNormal:()=>CV,varianceScaling:()=>EV,zeros:()=>kV});function kV(){return new Gv}function IV(){return new zf}function SV(e){return new Hv(e)}function NV(e){return new jv(e)}function TV(e){return new qv(e)}function CV(e){return new Kv(e)}function _V(e){return new Xv(e)}function EV(e){return new Wn(e)}function FV(e){return new Bf(e)}function AV(e){return new Wf(e)}function $V(e){return new Vf(e)}function DV(e){return new Uf(e)}function RV(e){return new Gf(e)}function MV(e){return new Hf(e)}function PV(e){return new Yv(e)}var z2={};Me(z2,{Layer:()=>Ye,RNN:()=>yr,RNNCell:()=>id,activation:()=>lG,add:()=>yG,alphaDropout:()=>e6,average:()=>bG,averagePooling1d:()=>u0,averagePooling2d:()=>p0,averagePooling3d:()=>c0,avgPool1d:()=>CG,avgPool2d:()=>EG,avgPool3d:()=>AG,avgPooling1d:()=>_G,avgPooling2d:()=>FG,avgPooling3d:()=>$G,batchNormalization:()=>SG,bidirectional:()=>jG,concatenate:()=>xG,conv1d:()=>ZU,conv2d:()=>eG,conv2dTranspose:()=>tG,conv3d:()=>nG,conv3dTranspose:()=>aG,convLstm2d:()=>VG,convLstm2dCell:()=>UG,cropping2D:()=>sG,dense:()=>uG,depthwiseConv2d:()=>oG,dot:()=>IG,dropout:()=>pG,elu:()=>qU,embedding:()=>gG,flatten:()=>dG,gaussianDropout:()=>ZG,gaussianNoise:()=>JG,globalAveragePooling1d:()=>DG,globalAveragePooling2d:()=>RG,globalMaxPool1d:()=>KG,globalMaxPool2d:()=>XG,globalMaxPooling1d:()=>FN,globalMaxPooling2d:()=>AN,gru:()=>PG,gruCell:()=>OG,input:()=>aN,inputLayer:()=>jU,layerNormalization:()=>NG,leakyReLU:()=>XU,lstm:()=>LG,lstmCell:()=>zG,masking:()=>t6,maxPool1d:()=>YG,maxPool2d:()=>QG,maxPooling1d:()=>$N,maxPooling2d:()=>DN,maxPooling3d:()=>MG,maximum:()=>vG,minimum:()=>wG,multiply:()=>kG,permute:()=>fG,prelu:()=>YU,reLU:()=>KU,repeatVector:()=>hG,reshape:()=>mG,rnn:()=>GG,separableConv2d:()=>rG,simpleRNN:()=>BG,simpleRNNCell:()=>WG,softmax:()=>QU,spatialDropout1d:()=>cG,stackedRNNCells:()=>HG,thresholdedReLU:()=>JU,timeDistributed:()=>qG,upSampling2d:()=>iG,zeroPadding2d:()=>TG});async function Qr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Re(a)}}function B2(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var wk;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(wk||(wk={}));var OV=125,El=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},W2=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},LV=class extends El{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=O(()=>J(this.totals[a],B(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:O(()=>{let a=B(fe(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),tn(t[n])}))}},V2=class extends El{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},U2=class extends El{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||zv,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=OV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=z4(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Qr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Qr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Qr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Qr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Qr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Qr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Qr(e),await this.trainEnd(e))}};function G2(e,t){return e==null&&(e={}),e instanceof El?[e]:Array.isArray(e)&&e[0]instanceof El?e:wt(e).map(n=>new U2(n,t))}var Sa=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Sa.checkForDuplicate(t),Sa.constructors[e]==null&&(Sa.constructors[e]=[]),Sa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Sa.constructors)Sa.constructors[+t].forEach(n=>{if(n===e)throw new H("Duplicate callback constructor.")})}static clear(){Sa.constructors={}}static createCallbacks(e){let t=[];for(let n in Sa.constructors){let a=+n;e>=a&&t.push(...Sa.constructors[a])}return t.map(n=>new n)}};Sa.constructors={};function H2(e,t,n,a,r,s,i,o,l){let u=new V2,p=[new LV,...Sa.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new W2(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function ja(e,t={},n=!1){return Qc(e,se.SerializationMap.getMap().classNameMap,t,"layer",n)}function am(e,t){return O(()=>{e.dtype!=="float32"&&(e=oe(e,"float32"));let n=be(Zc(e),t,!0),a=_n(n.shape,Ht()),r=pn(fr(n,a));return fe(e,r)})}function Io(e,t){return O(()=>Et(Zc(ce(t,e)),-1))}function qf(e,t){return O(()=>Et(zt(ce(t,e)),-1))}function Ku(e,t){return O(()=>{let n=ce(e,t),a=an(zt(e),Ht(),Number.MAX_VALUE),r=zt(fe(n,a));return B(100,Et(r,-1))})}function zV(e,t){return O(()=>{let n=an(t,Ht(),Number.MAX_VALUE),a=ea(J(1,n)),r=an(e,Ht(),Number.MAX_VALUE),s=ea(J(1,r));return Et(Zc(ce(a,s)),-1)})}function BV(e,t){return O(()=>{let n=fr(0,ce(1,B(e,t)));return Et(Zc(n),-1)})}function WV(e,t){return O(()=>{let n=fr(0,ce(1,B(e,t)));return Et(n,-1)})}function VV(e,t){return O(()=>{let n=be(B(e,t),-1),a=Ta(B(ce(1,e),t),-1);return fr(0,J(1,ce(a,n)))})}function UV(e,t){return O(()=>{let n=Math.log(2),a=ce(t,e),r=ce(J(a,vo(B(-2,a))),n);return Et(r,-1)})}function lc(e,t,n=!1){return O(()=>{if(n)t=Qa(t);else{let a=be(t,t.shape.length-1,!0);t=fe(t,a)}return t=an(t,Ht(),1-Ht()),Nt(be(B(oe(e,"float32"),ea(t)),t.shape.length-1))})}function rm(e,t,n=!1){return O(()=>{let a=oe(Wu(Q4(e)),"int32");t=an(t,Ht(),1-Ht());let r=t.shape,s=W(Nl(a,r[r.length-1]),r);return lc(s,t,n)})}function GV(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return O(()=>{let n=Xe(t),a=Nt(zt(t));return J(ce(n,B(t,e)),Gc(gn(a)))})}function Kf(e,t){return O(()=>{let n;return n=an(t,Ht(),1-Ht()),n=ea(fe(n,ce(1,n))),Et(GV(e,n),-1)})}function HV(e,t){return O(()=>{let n=an(e,Ht(),1),a=an(t,Ht(),1);return be(B(e,ea(fe(n,a))),-1)})}function jV(e,t){return O(()=>{let n=ea(J(Ht(),t));return Et(ce(t,B(e,n)),-1)})}function aw(e,t){return O(()=>{let n=am(e,-1),a=am(t,-1),r=B(n,a);return Nt(be(r,-1))})}var sm={meanSquaredError:Io,meanAbsoluteError:qf,meanAbsolutePercentageError:Ku,meanSquaredLogarithmicError:zV,squaredHinge:BV,hinge:WV,categoricalHinge:VV,logcosh:UV,categoricalCrossentropy:lc,sparseCategoricalCrossentropy:rm,binaryCrossentropy:Kf,kullbackLeiblerDivergence:HV,poisson:jV,cosineProximity:aw};function Ib(e){if(typeof e=="string"){if(e in sm)return sm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function rw(e,t){return O(()=>{let n=B(.5,ta(t)),a=Of(Un(t,n),e.dtype);return Et(Zn(e,a),-1)})}function sw(e,t){return O(()=>Of(Zn(oi(e,-1),oi(t,-1)),"float32"))}function j2(e,t){return O(()=>oe(be(_a(Zn(e,1),Zn(t,1))),"float32"))}function qV(e,t){return O(()=>oe(be(_a(Zn(e,1),Zn(t,0))),"float32"))}function KV(e,t){return O(()=>oe(be(_a(Zn(e,0),Zn(t,1))),"float32"))}function q2(e,t){return O(()=>{let n=j2(e,t),a=KV(e,t),r=J(n,a);return oe(fn(Un(r,0),fe(n,r),0),"float32")})}function XV(e,t){return O(()=>{let n=j2(e,t),a=qV(e,t),r=J(n,a);return oe(fn(Un(r,0),fe(n,r),0),"float32")})}function K2(e,t){return Kf(e,t)}function X2(e,t){return e.rank===t.rank&&(e=dr(e,[e.rank-1])),t=oi(t,-1),t.dtype!==e.dtype&&(t=oe(t,e.dtype)),oe(Zn(e,t),"float32")}var YV=Io,QV=Io,JV=qf,ZV=qf,eU=Ku,tU=Ku,iw=lc,nU=aw,Y2=rm,im={binaryAccuracy:rw,categoricalAccuracy:sw,precision:q2,categoricalCrossentropy:iw,sparseCategoricalCrossentropy:Y2,mse:YV,MSE:QV,mae:JV,MAE:ZV,mape:eU,MAPE:tU,cosine:nU};function aU(e){if(typeof e=="string"&&e in im)return im[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function kh(e){if(ir(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(sm))if(sm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(im))if(im[n]===e){t=n;break}return t!==void 0?t:e.name}}function rU(e){let t={Adagrad:()=>Gs.adagrad(.01),Adadelta:()=>Gs.adadelta(1,.95,Ht()),Adam:()=>Gs.adam(.001,.9,.999,Ht()),Adamax:()=>Gs.adamax(.002,.9,.999,Ht(),0),RMSProp:()=>Gs.rmsprop(.001,.9,0,Ht()),SGD:()=>Gs.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}function kk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Qb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function Qb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Qb(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Qb(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function sU(e,t,n,a=console.log){let r=oU(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),om(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?lU(o[p],n,a):uU(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=iU(e),u=em(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function iU(e){let t;return e.collectedTrainableWeights!=null?t=em(e.collectedTrainableWeights):t=em(e.trainableWeights),t}function oU(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function om(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function lU(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];om(o,t,n)}function uU(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];om(p,t,a);for(let d=1;d<i.length;++d)om(["","","","",i[d]],t,a)}function Q2(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function uc(e,t){if(e===null)return null;if(typeof e=="string")return qs(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];Q2(t,r,s)?n.push(s):n.push(uc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=qs(a);n[s]=uc(r,s)}}return n}}function Jb(e,t){if(e==null)return null;if(typeof e=="string")return Sr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];Q2(t,r,s)?n.push(s):n.push(Jb(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Sr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=Jb(r,a)}return n}}var ow="3.17.0",rr=class extends Ye{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Pf(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],as(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);as(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;ir(x===0,"input layer has >1 nodes"),ir(v===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof qu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,v,k,T)=>{(v==null||k==null||T==null)&&(v=y.sourceLayer,k=y.nodeIndex,T=y.tensorIndex);let C=v.inboundNodes[k];if(x.indexOf(C)!==-1)throw new Va(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(b.indexOf(C)!==-1)return;this.containerNodes.add(rr.nodeKey(v,k)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(C)===-1&&x.push(C);let E=C.inboundLayers.length;for(let A=0;A<E;A++){let P=C.inputTensors[A],$=C.inboundLayers[A],S=C.nodeIndices[A],M=C.tensorIndices[A];o(P,b,x,$,S,M)}for(b.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);i.push(C)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let p=i.slice().reverse();for(let y of p){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let v=0;v<y.inboundLayers.length;v++){let k=y.inboundLayers[v],T=y.nodeIndices[v],C=k.inboundNodes[T],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(b+1,E),n[C.id]=C}}let d={};for(let y in t){let b=t[y];b in d||(d[b]=[]),d[b].push(n[y])}let c={};for(let y in a){let b=a[y];b in c||(c[b]=[]),c[b].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort(xh);this.layers=[];for(let y of h){let b=c[y];b.sort((x,v)=>{let k=s[x.id],T=s[v.id];return k<T?-1:k>T?1:0});for(let x of b)x instanceof rr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(y=>parseInt(y,10)).sort(xh);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of d[y]){let x=b.outboundLayer;if(x!=null){for(let v of b.inputTensors)if(m.indexOf(v)===-1)throw new Va(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of b.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new Va(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new jf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new H(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new H(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new H(`${s.length} of ${a} weights are not set: ${s}`)}Qv(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${ow}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Jb(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return O(()=>{e=wt(e);let n=new Ys;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Wp(this.outputs,n,t)})}computeMask(e,t){return O(()=>{e=wt(e);let n;return t==null?n=di(null,e.length):n=wt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Zh(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(xh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];p.push(x)}let d=u.computeOutputShape(Pn(p)),c=Zh(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];ir(o in n),r.push(n[o])}return Pn(r)}runInternalGraph(e,t){t==null&&(t=di(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(xh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,y,b;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=wt(p.call(x,m)),b=wt(p.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=wt(p.call(f,m)),b=wt(p.computeMask(f,g));if(p.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let v=c[x],k=y[x],T=b[x];n[v.id]=[k,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){ir(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof rr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=rr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return O(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=rr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=rr.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],y=d.nodeIndices[f],b=d.tensorIndices[f],x=rr.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,b,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=rr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=rr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let v=x[0],k=x[1],T=x[2];if(b=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let C=r[v];if(C.inboundNodes.length<=k){i(f,g);return}let E=C.inboundNodes[k];y.push(E.outputTensors[T])}y.length>0&&f.apply(Pn(y),b)}function l(f){let g=f.name,y=ja(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!L4(s);)for(let f of p){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];ir(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];ir(g in r);let x=r[g].inboundNodes[y].outputTensors;c.push(x[b])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){O(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function pU(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function J2(e,t){return pU(e,t,"classWeight")}async function Z2(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=O(()=>{if(e.shape.length===1)return _r(e);if(e.shape.length===2){if(e.shape[1]>1)return oi(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Re(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),qe(i,"float32")}else return null}function cU(e,t){return B(e,t)}var dU=32;function eN(e,t){let n,a,r=t;n=r.xs,a=r.ys,w.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=Ik("input",e.inputNames,n),i=Ik("output",e.outputNames,a),o=s[0].shape[0];w.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)w.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)w.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function Ik(e,t,n){if(n instanceof Fe)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function hU(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function mU(e,t,n){let a=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(Sk(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=hU(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=G2(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=H2(p,d,n.epochs,null,null,fU(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());!a||y<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:k}=eN(e,x.value),T={};T.batch=b,T.size=v[0].shape[0],await c.onBatchBegin(b,T);let C=[];if(n.classWeight!=null){let P=J2(n.classWeight,e.outputNames);for(let $=0;$<P.length;++$)C.push(await Z2(k[$],null,P[$]))}let E=v.concat(k).concat(C),A=o(E);Re(E);for(let P=0;P<l.length;++P){let $=l[P],S=A[P];T[$]=S,tn(S)}await c.onBatchEnd(b,T),B2(T),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;Sk(n.validationData)?v=wt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=wt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?dU:n.validationBatchSize,verbose:0}));for(let k=0;k<e.metricsNames.length;++k)g[`val_${e.metricsNames[k]}`]=v[k]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function fU(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Sk(e){return typeof e.iterator=="function"}function gU(e){return typeof e.next=="function"}async function yU(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");w.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=gU(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=O(()=>{if(u.value){let{xs:p,ys:d}=eN(e,u.value),c=p.concat(d),h=O(()=>r(c));if(Re(c),l===0)for(let f=0;f<h.length;++f)s.push(we(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=O(()=>J(s[f],B(m,g))),l>0&&Re(y)}Re(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=fe(s[u],o),Re(p)}return Pn(s)}function Zb(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Vp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>ei(a,t,n-t)):ei(e,t,n-t)}function lw(e,t){return O(()=>e==null?null:Array.isArray(e)?e.map(n=>lw(n,t)):$2(e,t.dtype==="int32"?t:oe(t,"int32")))}function ex(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function bU(e,t,n,a,r,s,i,o,l,u,p,d,c,h,m){r==null&&(r=32),s==null&&(s=1),p==null&&(p=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Ka(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=H2(o,i,s,c,g,h,r,f,d);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let v=c;v<s;++v){await b.onEpochBegin(v);let k={};if(h!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(p==="batch")throw new Oe("batch shuffling is not implemneted yet");p&&w.shuffle(y);let T=qe(y),C=ex(g,r);for(let E=0;E<C.length;++E){let A={};if(await b.onBatchBegin(E,A),O(()=>{let P=C[E][0],$=C[E][1],S=ei(T,P,$-P);A.batch=E,A.size=$-P;let M=lw(n,S),V=t(M);for(let j=0;j<a.length;++j){let q=a[j],K=V[j];A[q]=K,tn(K)}if(E===C.length-1&&f){let j=e.testLoop(l,u,r);for(let q=0;q<a.length;++q){let K=a[q],Z=j[q];tn(Z),k["val_"+K]=Z}}}),await b.onBatchEnd(E,A),B2(A),e.stopTraining_)break}T.dispose()}if(await b.onEpochEnd(v,k),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function xU(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,p,d,c;try{let h=a.batchSize==null?32:a.batchSize;Zb(h);let m=!1,f=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,m,h);r=f[0],s=f[1],c=f[2];let g=!1,y;if(a.validationData!=null&&a.validationData.length>0){if(g=!0,a.validationData.length===2)l=a.validationData[0],u=a.validationData[1];else throw a.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let E=!0,A=await e.standardizeUserData(l,u,null,null,E,h);p=A[0],d=A[1],y=p.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){g=!0;let E=Math.floor(r[0].shape[0]*(1-a.validationSplit)),A=r[0].shape[0];p=Vp(r,E,A),i=r,r=Vp(r,0,E),d=Vp(s,E,A),o=s,s=Vp(s,0,E),y=p.concat(d)}else a.validationSteps!=null&&(g=!0);let b=r.concat(s).concat(c);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),v=e.getDedupedMetricsNames(),k,T;g?(e.makeTestFunction(),k=e.testFunction,T=v.slice().concat(v.map(E=>"val_"+E))):(k=null,y=[],T=v.slice());let C=G2(a.callbacks,a.yieldEvery);return await bU(e,x,b,v,h,a.epochs,a.verbose,C,k,y,a.shuffle,T,a.initialEpoch,null,null)}finally{e.isTraining=!1,Wa(r,t),Wa(s,n),Wa(i,t),Wa(o,n),Wa(p,l),Wa(d,u),c!=null&&Re(c)}}function tN(e){let t=[];e instanceof Fe&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Jc(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Wa(e,t){if(e==null)return;let n=[];if(t instanceof Fe)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Fe)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function vU(e){return e instanceof Fe}function tx(e){return Array.isArray(e)}function Nk(e){return!vU(e)&&!tx(e)}function Tk(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(tx(e)&&e.length>0)i=!0;else if(Nk(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new H(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(Nk(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new H(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(tx(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new H(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=tN(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new H(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function wU(e,t,n){let a=as(e.map(s=>s.shape[0]));a.sort();let r=as(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!w.arraysEqual(a,r))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function kU(e,t,n){let a=[Io,Kf,lc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===lc&&s.shape[s.shape.length-1]===1)throw new H(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new H(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Ck(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new H(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function IU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var SU="layers-model",Er=class extends rr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");sU(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=rU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Dr))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new H(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Ib(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Ib(s))}else{let s=Ib(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Zs("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=IU(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Zs("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Kf?["accuracy","acc"].indexOf(c)!==-1?p=rw:["crossentropy","ce"].indexOf(c)!==-1&&(p=K2):this.lossFunctions[s]===rm?["accuracy","acc"].indexOf(c)!==-1?p=X2:["crossentropy","ce"].indexOf(c)!==-1&&(p=Y2):["accuracy","acc"].indexOf(c)!==-1?p=sw:["crossentropy","ce"].indexOf(c)!==-1&&(p=iw);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=aU(c),u=l+kh(c);let h;Zs(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;Zb(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Pn(l)}finally{Wa(s[0],e),Wa(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),yU(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new H(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Ys;if(e instanceof Fe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new H(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Wp(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=di(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return O(()=>{let a=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=ex(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)O(()=>{let o=r[i][0],l=r[i][1],u=Vp(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new Ys(p);return Wp(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return Pn(s.map(i=>Ze(i,0)))})}predict(e,t={}){let n=tN(e);Ck(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return Zb(a),this.predictLoop(n,a)}finally{Wa(n,e)}}predictOnBatch(e){Ck(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Va("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===rm?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=Tk(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Tk(t,this.feedOutputNames,r,!1,"target"),wU(e,t,null),kU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=J2(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await Z2(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return O(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=ex(s,n),l=qe(Ka(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=ei(l,p,d-p),h=lw(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(we(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=J(i[f],B(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=fe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;dk(e,a)>1&&(r+=`_${dk(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new Ys(u),d=Wp(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],d[h]);r[h]!=null&&(m=cU(m,r[h]));let f=Et(m);t.push(f),h===0?c=m:c=J(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Et(f(a[g],d[g]))}tn(m),s.push(m)}return c=Et(c),this.calculateLosses().forEach(h=>{c=J(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>O(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Ys(s),o=Wp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=Et(u(r[l],o[l]));l===0?n=p:n=J(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=Et(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){return xU(this,e,t,n)}async fitDataset(e,t){return mU(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Re(s),Wa(n[0],e),Wa(n[1],t),Pn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Yh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Yh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Sr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Sr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Sr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Sr(kh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Sr(kh(e)));{let e={};for(let t in this.metrics)e[t]=Sr(kh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=uc(e.optimizer_config),n=ja(t),a;if(typeof e.loss=="string")a=qs(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>qs(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=qs(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>qs(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=qs(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=en.getSaveHandlers(e);if(i.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new H(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await en.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:SU,generatedBy:`TensorFlow.js tfjs-layers v${ow}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await en.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=en.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(kk(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){kk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Er.className="Model";se.registerClass(Er);var nN=class extends Er{};nN.className="Functional";se.registerClass(nN);async function NU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=uc(n),r=ja(a,t);if(e.weightsManifest!=null){let s=await en.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Re(s)}return r}async function TU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=en.getLoadHandlers(e,t);if(n.length===0)n.push(en.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return CU(e,void 0,t)}async function CU(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=ja(uc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=_U(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),Re(u),Re(p.map(d=>d.tensor))}return o}function _U(e,t){let n=en.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Fl=class extends Er{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Pf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Fl||e instanceof Er,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=P2({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=M2(this.outputs[0])}this.inboundNodes=[],new jf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:di(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(it(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Er({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Fl))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=ja(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Fl.className="Sequential";se.registerClass(Fl);function EU(e){return new Er(e)}function FU(e){return new Fl(e)}function AU(e,t){return t==null&&(t={}),TU(e,t)}function aN(e){return P2(e)}function $U(e,t){Sa.registerCallbackConstructor(e,t)}var Gn=class extends se.Serializable{getConfig(){return{}}},rN=class extends Gn{apply(e,t=1){return Z4(e,t)}};rN.className="elu";se.registerClass(rN);var sN=class extends Gn{apply(e){return xf(e)}};sN.className="selu";se.registerClass(sN);var iN=class extends Gn{apply(e){return Xe(e)}};iN.className="relu";se.registerClass(iN);var oN=class extends Gn{apply(e){return O(()=>Vu(6,Xe(e)))}};oN.className="relu6";se.registerClass(oN);var lN=class extends Gn{apply(e){return e}};lN.className="linear";se.registerClass(lN);var uN=class extends Gn{apply(e){return ma(e)}};uN.className="sigmoid";se.registerClass(uN);var pN=class extends Gn{apply(e){return tV(e)}};pN.className="hardSigmoid";se.registerClass(pN);var cN=class extends Gn{apply(e){return vo(e)}};cN.className="softplus";se.registerClass(cN);var dN=class extends Gn{apply(e){return eV(e)}};dN.className="softsign";se.registerClass(dN);var hN=class extends Gn{apply(e){return li(e)}};hN.className="tanh";se.registerClass(hN);var uw=class extends Gn{apply(e,t=-1){return Qa(e,t)}};uw.className="softmax";se.registerClass(uw);var mN=class extends Gn{apply(e,t=-1){return df(e,t)}};mN.className="logSoftmax";se.registerClass(mN);var fN=class extends Gn{apply(e,t=1){return O(()=>B(ma(B(e,t)),e))}};fN.className="swish";se.registerClass(fN);var gN=class extends Gn{apply(e){return O(()=>B(e,li(vo(e))))}};gN.className="mish";se.registerClass(gN);function cs(e){return e.getClassName()}function Sb(e,t={}){return Qc(e,se.SerializationMap.getMap().classNameMap,t,"activation")}function ds(e){if(e==null){let t={};return t.className="linear",t.config={},Sb(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Sb(t)}else return e instanceof Gn?e:Sb(e)}function pw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var yN=class extends se.Serializable{},nd=class extends yN{constructor(e){super(),pw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return O(()=>{let t=It([1]);return this.hasL1&&(t=J(t,be(B(this.l1,zt(e))))),this.hasL2&&(t=J(t,be(B(this.l2,Zc(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};nd.className="L1L2";se.registerClass(nd);function DU(e){return pw(e),new nd({l1:e!=null?e.l1:null,l2:0})}function RU(e){return pw(e),new nd({l2:e!=null?e.l2:null,l1:0})}var _k={l1l2:"L1L2"};function ct(e){return Wv(e)}function Ek(e,t={}){return Qc(e,se.SerializationMap.getMap().classNameMap,t,"regularizer")}function Tt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in _k?_k[e]:e,config:{}};return Ek(t)}else return e instanceof yN?e:Ek(e)}var cw=class extends Ye{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Xe(e);return this.maxValue!=null&&(n=an(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};cw.className="ReLU";se.registerClass(cw);var dw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Uc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};dw.className="LeakyReLU";se.registerClass(dw);var hw=class extends Ye{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=St(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Tt(e.alphaRegularizer),this.alphaConstraint=Xt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=it(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Bt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),qc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ft(this.alphaInitializer),alphaRegularizer:ct(this.alphaRegularizer),alphaConstraint:Kt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};hw.className="PReLU";se.registerClass(hw);var mw=class extends Ye{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Bu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};mw.className="ELU";se.registerClass(mw);var fw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return B(n,oe(Un(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};fw.className="ThresholdedReLU";se.registerClass(fw);var gw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new uw().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};gw.className="Softmax";se.registerClass(gw);function wl(e,t,n){if(typeof e=="number")return di(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!X4(r))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function qa(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function or(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ps([n-t,0]);else if(a==="same")e=e*t;else throw new H(`Unsupport padding mode: ${a}.`);return e}function yw(e,t){return O(()=>(Ot(t),t==="channelsFirst"?Ae(e,[0,2,3,1]):e))}function bN(e,t){return O(()=>(Ot(t),t==="channelsFirst"?Ae(e,[0,2,3,4,1]):e))}function MU(e,t,n,a=1,r="valid",s,i=1){return O(()=>{if(s==null&&(s=Xa()),Ot(s),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ae(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=rf(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Za(o,n)),o})}function Fk(e,t,n,a=[1,1],r="valid",s,i,o=null){return O(()=>{if(s==null&&(s=Xa()),Ot(s),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=yw(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=us.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ae(l,[0,3,1,2])),l})}function PU(e,t,n,a=[1,1,1],r="valid",s,i){return O(()=>{if(s==null&&(s=Xa()),Ot(s),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=bN(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=lv(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Za(o,n)),s==="channelsFirst"&&(o=Ae(o,[0,4,1,2,3])),o})}var bw=class extends Ye{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",bw.verifyArgs(t),this.rank=e,nn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=wl(t.kernelSize,e,"kernelSize"),this.strides=wl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ba(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ot(this.dataFormat),this.activation=ds(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=St(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Xt(t.biasConstraint),this.biasRegularizer=Tt(t.biasRegularizer),this.activityRegularizer=Tt(t.activityRegularizer),this.dilationRate=wl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ir("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Vv(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:cs(this.activation),useBias:this.useBias,biasInitializer:Ft(this.biasInitializer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},ad=class extends bw{constructor(e,t){super(e,t),this.kernel=null,ad.verifyArgs(t),this.filters=t.filters,nn(this.filters,"filters"),this.kernelInitializer=St(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Xt(t.kernelConstraint),this.kernelRegularizer=Tt(t.kernelRegularizer)}build(e){e=it(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return O(()=>{e=ze(e);let n,a=this.bias==null?null:this.bias.read(),r=T2(this.activation.getClassName());if(r!=null&&this.rank===2)n=Fk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=MU(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Fk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=PU(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=it(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=qa(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Ft(this.kernelInitializer),kernelRegularizer:ct(this.kernelRegularizer),kernelConstraint:Kt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},rd=class extends ad{constructor(e){super(2,e),rd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Vv(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};rd.className="Conv2D";se.registerClass(rd);var sd=class extends ad{constructor(e){super(3,e),sd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};sd.className="Conv3D";se.registerClass(sd);var xw=class extends rd{constructor(e){if(super(e),this.inputSpec=[new Bt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=ze(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=or(o,d,u,this.padding),m=or(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ae(n,[0,2,3,1]));let g=sf(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ae(g,[0,3,1,2])),this.bias!=null&&(g=Za(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=or(t[a],o,s,this.padding),t[r]=or(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};xw.className="Conv2DTranspose";se.registerClass(xw);var vw=class extends sd{constructor(e){if(super(e),this.inputSpec=[new Bt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=ze(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=or(l,m,d,this.padding),b=or(u,f,c,this.padding),x=or(p,g,h,this.padding),v=[r,y,b,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ae(n,[0,2,3,4,1]));let k=MS(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(k=Ae(k,[0,4,1,2,3])),this.bias!==null&&(k=Za(k,this.bias.read(),this.dataFormat)),this.activation!==null&&(k=this.activation.apply(k)),k})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=or(t[a],u,i,this.padding),t[r]=or(t[r],p,o,this.padding),t[s]=or(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};vw.className="Conv3DTranspose";se.registerClass(vw);var xN=class extends ad{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Tt(t.depthwiseRegularizer),this.depthwiseConstraint=Xt(t.depthwiseConstraint),this.pointwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Tt(t.pointwiseRegularizer),this.pointwiseConstraint=Xt(t.pointwiseConstraint)}build(e){if(e=it(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Bt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{e=ze(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ae(e,[0,2,3,1])),n=wo(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Za(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ae(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ft(this.depthwiseInitializer),e.pointwiseInitializer=Ft(this.pointwiseInitializer),e.depthwiseRegularizer=ct(this.depthwiseRegularizer),e.pointwiseRegularizer=ct(this.pointwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseConstraint),e.pointwiseConstraint=Kt(this.pointwiseConstraint),e}};xN.className="SeparableConv";var ww=class extends xN{constructor(e){super(2,e)}};ww.className="SeparableConv2D";se.registerClass(ww);var Xf=class extends ad{constructor(e){super(1,e),Xf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Vv(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Xf.className="Conv1D";se.registerClass(Xf);var kw=class extends Ye{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return O(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=wh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return wh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=wh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return wh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};kw.className="Cropping2D";se.registerClass(kw);var Iw=class extends Ye{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,j4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return O(()=>{let n=ze(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ae(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?Ln.resizeNearestNeighbor(n,[r,s]):Ln.resizeBilinear(n,[r,s]);return Ae(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?Ln.resizeNearestNeighbor(n,[r,s]):Ln.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};Iw.className="UpSampling2D";se.registerClass(Iw);function OU(e,t,n=[1,1],a="valid",r,s){return O(()=>{r==null&&(r=Xa()),Ot(r);let i=yw(e,r);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Is(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ae(i,[0,3,1,2])),i})}var Sw=class extends bw{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=St(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Xt(e.depthwiseConstraint),this.depthwiseRegularizer=Tt(e.depthwiseRegularizer)}build(e){if(e=it(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{e=ze(e);let n=OU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Za(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=qa(t,this.kernelSize[0],this.padding,this.strides[0]),s=qa(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ft(this.depthwiseInitializer),e.depthwiseRegularizer=ct(this.depthwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseRegularizer),e}};Sw.className="DepthwiseConv2D";se.registerClass(Sw);function vN(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function wN(e,t,n,a=!1,r,s,i=!1,o=!1){return O(()=>{let l=t.shape.length;if(l<3)throw new H(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ka(2,l));if(t=Ae(t,u),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=oe(oe(r,"bool"),"float32"),r.rank===l-1&&(r=mn(r,-1)),r=Ae(r,u)),a&&(t=na(t,0),r!=null&&(r=na(r,0)));let p=[],d,c=n,h=t.shape[0],m=ht(t),f;r!=null&&(f=ht(r));for(let y=0;y<h;++y){let b=m[y],x=O(()=>e(b,c));if(r==null)d=x[0],c=x[1];else{let v=O(()=>{let k=f[y],T=ce(ta(k),k),C=J(B(x[0],k),B(c[0],T)),E=c.map((A,P)=>J(B(x[1][P],k),B(A,T)));return{output:C,newStates:E}});d=v.output,c=v.newStates}o&&p.push(d)}let g;return o&&(g=Mt(p,1)),[d,g,c]})}var yr=class extends Ye{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Jf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Bt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ka(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Xb(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return O(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");Xb(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new Bt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new Bt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_=[It([n,this.cell.stateSize])];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_[0]=It([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!w.arraysEqual(r.shape,i))throw new H(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>tn(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=vN(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Bt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ua){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=ze(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new H(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=wN((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return O(()=>{let t=It(e.shape);return t=be(t,[1,2]),t=Jc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?qb(t,[1,n]):t):this.cell.stateSize>1?[qb(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===yr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=ja(a,n);return new e(Object.assign(t,{cell:r}))}};yr.className="RNN";se.registerClass(yr);var id=class extends Ye{},Yf=class extends id{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,nn(this.units,"units"),this.activation=ds(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=_l([1,ps([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_l([1,ps([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>ta(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>ta(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=ur(B(e,s),this.kernel.read()):r=ur(e,this.kernel.read()),this.bias!=null&&(r=Za(r,this.bias.read())),i!=null&&(n=B(n,i));let o=J(r,ur(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:cs(this.activation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),recurrentInitializer:Ft(this.recurrentInitializer),biasInitializer:Ft(this.biasInitializer),kernelRegularizer:ct(this.kernelRegularizer),recurrentRegularizer:ct(this.recurrentRegularizer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Yf.className="SimpleRNNCell";se.registerClass(Yf);var Nw=class extends yr{constructor(e){e.cell=new Yf(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Nw.className="SimpleRNN";se.registerClass(Nw);var Qf=class extends id{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,nn(this.units,"units"),this.activation=ds(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ds(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=_l([1,ps([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_l([1,ps([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>ta(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>ta(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let u=ur(e,this.kernel.read());this.useBias&&(u=Za(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=zn(p,[2*this.units,this.units],p.rank-1),h=ur(a,d),[m,f,g]=zn(u,3,u.rank-1),[y,b]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(J(m,y)),o=this.recurrentActivation.apply(J(f,b));let x=ur(B(o,a),c);l=this.activation.apply(J(g,x));let v=J(B(i,a),B(J(1,Nt(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:cs(this.activation),recurrentActivation:cs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),recurrentInitializer:Ft(this.recurrentInitializer),biasInitializer:Ft(this.biasInitializer),kernelRegularizer:ct(this.kernelRegularizer),recurrentRegularizer:ct(this.recurrentRegularizer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Qf.className="GRUCell";se.registerClass(Qf);var Tw=class extends yr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Qf(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Tw.className="GRU";se.registerClass(Tw);var od=class extends id{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,nn(this.units,"units"),this.activation=ds(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ds(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=_l([1,ps([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_l([1,ps([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=it(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Fa{apply(i,o){let l=r.apply([s]),u=new zf().apply([s]),p=r.apply([s*2]);return mk(mk(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>ta(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>ta(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=B(e,s[0]));let d=ur(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,i[0])),d=J(d,ur(a,this.recurrentKernel.read())),this.useBias&&(d=Za(d,this.bias.read()));let[c,h,m,f]=zn(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=J(B(l,r),B(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=B(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:cs(this.activation),recurrentActivation:cs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),recurrentInitializer:Ft(this.recurrentInitializer),biasInitializer:Ft(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ct(this.kernelRegularizer),recurrentRegularizer:ct(this.recurrentRegularizer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};od.className="LSTMCell";se.registerClass(od);var Cw=class extends yr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new od(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Cw.className="LSTM";se.registerClass(Cw);var Jf=class extends id{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return O(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Xb(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Zs(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(ja(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Yb(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Qv(t)}};Jf.className="StackedRNNCells";se.registerClass(Jf);function hs(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):D2(t(),n),o=()=>ed(i,t,a);return!r||r<=1?tn(o().clone()):Array(r).fill(void 0).map(o).map(l=>tn(l.clone()))}var LU=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},kN=class extends yr{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Bt({ndim:5})]}call(e,t){return O(()=>{if(this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return O(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=It(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_=[It(r)];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_[0]=It(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!w.arraysEqual(i.shape,o))throw new H(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>tn(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=qa(l,a[0],r,s[0],i[0]),d=qa(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};kN.className="ConvRNN2D";var Zf=class extends od{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t})),this.filters=t,nn(this.filters,"filters"),this.kernelSize=wl(n,2,"kernelSize"),this.kernelSize.forEach(o=>nn(o,"kernelSize")),this.strides=wl(a||1,2,"strides"),this.strides.forEach(o=>nn(o,"strides")),this.padding=r||"valid",ba(this.padding),this.dataFormat=s||"channelsLast",Ot(this.dataFormat),this.dilationRate=wl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>nn(o,"dilationRate"))}build(e){var t;e=it(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Fa{apply(p,d){let c=l.apply([u]),h=Qn([u]),m=l.apply([u*2]);return Uv([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return O(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>ta(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(ee,re,Y)=>!re||!re[Y]?ee:B(re[Y],ee),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>ta(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,v,k,T]=zn(this.kernel.read(),i,b),[C,E,A,P]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,C,this.padding),p=this.inputConv(p,v,E,this.padding),d=this.inputConv(d,k,A,this.padding),c=this.inputConv(c,T,P,this.padding);let[$,S,M,V]=zn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,$),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),y=this.recurrentConv(y,V);let j=this.recurrentActivation.apply(J(u,m)),q=this.recurrentActivation.apply(J(p,f)),K=J(B(q,s),B(j,this.activation.apply(J(d,g)))),Z=B(this.recurrentActivation.apply(J(c,y)),this.activation.apply(K));return[Z,Z,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=LU(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=Rt(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Za(r,n,this.dataFormat):r}recurrentConv(e,t){return Rt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Zf.className="ConvLSTM2DCell";se.registerClass(Zf);var _w=class extends kN{constructor(e){let t=new Zf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};_w.className="ConvLSTM2D";se.registerClass(_w);var eg=class extends Ye{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return ed(()=>D2(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};eg.className="Dropout";se.registerClass(eg);var Ew=class extends eg{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Ew.className="SpatialDropout1D";se.registerClass(Ew);var Fw=class extends Ye{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,nn(this.units,"units"),this.activation=ds(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Xt(e.kernelConstraint),this.biasConstraint=Xt(e.biasConstraint),this.kernelRegularizer=Tt(e.kernelRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=it(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=it(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e),a=T2(this.activation.getClassName()),r;return a!=null?r=ur(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=ur(n,this.kernel.read()),this.bias!=null&&(r=Za(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:cs(this.activation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),biasInitializer:Ft(this.biasInitializer),kernelRegularizer:ct(this.kernelRegularizer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Fw.className="Dense";se.registerClass(Fw);var Aw=class extends Ye{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=it(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],rs(e,1)]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=Ae(n,a)}return J4(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Aw.className="Flatten";se.registerClass(Aw);var $w=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.activation=ds(e.activation)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:cs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};$w.className="Activation";se.registerClass($w);var Dw=class extends Ye{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return O(()=>(e=ze(e),Y4(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Dw.className="RepeatVector";se.registerClass(Dw);var Rw=class extends Ye{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new H("Can only specifiy one unknown dimension.");else r*=l}let i=rs(e);if(s!==null){if(r===0||i%r!==0)throw new H(n);a[s]=i/r}else if(i!==r)throw new H(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Rw.className="Reshape";se.registerClass(Rw);var Mw=class extends Ye{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ka(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Bt({ndim:this.dims.length+1})]}computeOutputShape(e){e=it(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ae(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Mw.className="Permute";se.registerClass(Mw);var Pw=class extends Ye{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),a=-1;return ac(ci(n,this.maskValue),a)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e),a=-1,r=!0,s=ac(ci(n,this.maskValue),a,r);return B(n,oe(s,n.dtype))})}};Pw.className="Masking";se.registerClass(Pw);var Ow=class extends Ye{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(wt(e.inputLength))}this.inputDim=e.inputDim,nn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,nn(this.outputDim,"outputDim"),this.embeddingsInitializer=St(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Tt(e.embeddingsRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.embeddingsConstraint=Xt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return O(()=>this.maskZero?(e=ze(e),ci(e,Ke(e))):null)}computeOutputShape(e){if(e=it(e),this.inputLength==null)return[...e,this.outputDim];let t=wt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);n.dtype!=="int32"&&(n=Of(n,"int32"));let a=$2(this.embeddings.read(),W(n,[n.size]));return W(a,it(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ft(this.embeddingsInitializer),embeddingsRegularizer:ct(this.embeddingsRegularizer),activityRegularizer:ct(this.activityRegularizer),embeddingsConstraint:Kt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Ow.className="Embedding";se.registerClass(Ow);var So=class extends Ye{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[it(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=as(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&as(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return O(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ps(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Jc(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=W(o,[p].concat(rs(u.slice(1))));c=Ae(c,[1,0]),c=W(c,d),n.push(c),r=!0}else if(l>1){let u=Ka(1,l).concat([0]);n.push(Ae(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W(Ae(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(Ka(0,i-1));s=Ae(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=as(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return O(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:mn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=_a(n,t[a]);return n})}},Lw=class extends So{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return t})}};Lw.className="Add";se.registerClass(Lw);var zw=class extends So{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};zw.className="Multiply";se.registerClass(zw);var Bw=class extends So{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return B(1/e.length,t)})}};Bw.className="Average";se.registerClass(Bw);var Ww=class extends So{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=fr(t,e[n]);return t})}};Ww.className="Maximum";se.registerClass(Ww);var Vw=class extends So{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Vu(t,e[n]);return t})}};Vw.className="Minimum";se.registerClass(Vw);var Uw=class extends So{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(w.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return O(()=>Uv(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return O(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(oe(ta(e[s]),"bool")):t[s].rank<e[s].rank?a.push(mn(t[s],-1)):a.push(t[s]);let r=Ze(a,this.axis);return af(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Uw.className="Concatenate";se.registerClass(Uw);function Mp(e,t){for(;e<0;)e+=t;return e}function zU(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return O(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=W(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=W(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=be(B(e,t),s[0]):o=be(B(Ae(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=De(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=dr(o,u)}return o.shape.length===1&&(o=mn(o,1)),o})}var Gw=class extends So{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new H(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Mp(r,e[s].shape.length)):a=[Mp(this.axes,t.shape.length),Mp(this.axes,n.shape.length)],this.normalize&&(t=am(t,a[0]),n=am(n,a[1])),zU(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Mp(this.axes,e.length),Mp(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Gw.className="Dot";se.registerClass(Gw);var Hw=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);return ed(()=>J(Lf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Hw.className="GaussianNoise";se.registerClass(Hw);var jw=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?ed(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return B(n,Lf(n.shape,1,a))},()=>n,t.training||!1):n})}};jw.className="GaussianDropout";se.registerClass(jw);var qw=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return ed(()=>{let a=ze(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Ss(Uu(n),this.rate);o=Of(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=J(B(a,o),B(J(o,-1),i));return J(B(p,l),u)},()=>ze(e),t.training||!1)}return e})}};qw.className="AlphaDropout";se.registerClass(qw);function pc(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=TS(e,t,n,a,r,s);else if(e.rank===3)i=CS(e,t,n,a,r,s);else if(e.rank===4)i=_S(e,t,n,a,r,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function BU(e,t,n,a,r=.001){return O(()=>{let s=mf(e,a),i=s.mean,o=s.variance;return[pc(e,i,o,n,t,r),i,o]})}function WU(e,t,n,a,r=.001){return O(()=>{let s=mf(e,a),i=s.mean,o=s.variance,l=[];for(let h of Ka(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[pc(e,u,p,c,d,r),i,o]})}function VU(e,t,n,a,r=.001){return w.arraysEqual(a.slice().sort(),Ka(0,e.rank-1))?BU(e,t,n,a,r):WU(e,t,n,a,r)}var Kw=class extends Ye{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.movingMeanInitializer=St(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=St(e.movingVarianceInitializer||"ones"),this.betaConstraint=Xt(e.betaConstraint),this.gammaConstraint=Xt(e.gammaConstraint),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer)}build(e){e=it(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Bt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training,a=ze(e),r=a.shape,s=r.length,i=Ka(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=di(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!w.arraysEqual(u,Ka(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),y=W(this.movingVariance.read(),l),b=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return pc(a,g,y,b,x,this.epsilon)}else return pc(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=VU(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{O(()=>{let x=1-b,v=g.read(),k=B(ce(v,y),x);g.write(ce(v,k))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ft(this.betaInitializer),gammaInitializer:Ft(this.gammaInitializer),movingMeanInitializer:Ft(this.movingMeanInitializer),movingVarianceInitializer:Ft(this.movingVarianceInitializer),betaRegularizer:ct(this.betaRegularizer),gammaRegularizer:ct(this.gammaRegularizer),betaConstraint:Kt(this.betaConstraint),gammaConstraint:Kt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Kw.className="BatchNormalization";se.registerClass(Kw);var Xw=class extends Ye{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=it(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==as(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=ze(e),a=n.shape,r=a.length;return O(()=>{let{mean:s,variance:i}=mf(n,this.axis,!0),o=di(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=On(s,d),i=On(i,d),u!=null&&(u=On(u,c)),p!=null&&(p=On(p,c)),pc(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ft(this.betaInitializer),gammaInitializer:Ft(this.gammaInitializer),betaRegularizer:ct(this.betaRegularizer),gammaRegularizer:ct(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Xw.className="LayerNormalization";se.registerClass(Xw);function UU(e,t,n){return O(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Xa()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ya(e,a)})}var Yw=class extends Ye{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Xa():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=it(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return O(()=>UU(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Yw.className="ZeroPadding2D";se.registerClass(Yw);function tg(e,t,n,a,r,s){return O(()=>{Ot(r),_2(s),ba(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Xa()),s==null&&(s="max"),e=yw(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Pt(e,t,n,o):i=ga(e,t,n,o),r==="channelsFirst"&&(i=Ae(i,[0,3,1,2])),i})}function IN(e,t,n,a,r,s){return O(()=>{Ot(r),_2(s),ba(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Xa()),s==null&&(s="max"),e=bN(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=kv(e,t,n,o):i=rv(e,t,n,o),r==="channelsFirst"&&(i=Ae(i,[0,4,1,2,3])),i})}var SN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(nn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ba(this.padding),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){e=it(e);let t=qa(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return O(()=>{this.invokeCallHook(e,t),e=Jc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return dr(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Qw=class extends SN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),tg(e,t,n,a,r,"max")}};Qw.className="MaxPooling1D";se.registerClass(Qw);var Jw=class extends SN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),tg(e,t,n,a,r,"avg")}};Jw.className="AveragePooling1D";se.registerClass(Jw);var NN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];nn(this.poolSize,"poolSize"),nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),ba(this.padding),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=qa(t,this.poolSize[0],this.padding,this.strides[0]),n=qa(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Zw=class extends NN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),tg(e,t,n,a,r,"max")}};Zw.className="MaxPooling2D";se.registerClass(Zw);var e0=class extends NN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),tg(e,t,n,a,r,"avg")}};e0.className="AveragePooling2D";se.registerClass(e0);var TN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];nn(this.poolSize,"poolSize"),nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),ba(this.padding),this.inputSpec=[new Bt({ndim:5})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=qa(t,this.poolSize[0],this.padding,this.strides[0]),n=qa(n,this.poolSize[1],this.padding,this.strides[1]),a=qa(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},t0=class extends TN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),IN(e,t,n,a,r,"max")}};t0.className="MaxPooling3D";se.registerClass(t0);var n0=class extends TN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),IN(e,t,n,a,r,"avg")}};n0.className="AveragePooling3D";se.registerClass(n0);var CN=class extends Ye{constructor(e){super(e),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},a0=class extends CN{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=ze(e);return Et(n,1)})}};a0.className="GlobalAveragePooling1D";se.registerClass(a0);var r0=class extends CN{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=ze(e);return Ta(n,1)})}};r0.className="GlobalMaxPooling1D";se.registerClass(r0);var _N=class extends Ye{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},s0=class extends _N{call(e,t){return O(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Et(n,[1,2]):Et(n,[2,3])})}};s0.className="GlobalAveragePooling2D";se.registerClass(s0);var i0=class extends _N{call(e,t){return O(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Ta(n,[1,2]):Ta(n,[2,3])})}};i0.className="GlobalMaxPooling2D";se.registerClass(i0);var EN=class extends Ye{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=ja(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},o0=class extends EN{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=it(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=it(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return O(()=>(e=ze(e),wN((n,a)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};o0.className="TimeDistributed";se.registerClass(o0);function GU(e){ko(H4,"BidirectionalMergeMode",e)}var HU="concat",l0=class extends EN{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=ja(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=ja(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?HU:e.mergeMode,GU(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Pn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=vN(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new Bt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ua;for(let l of s)if(l instanceof Ua!==o)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=na(r,1));let i;return this.mergeMode==="concat"?i=Uv([a,r]):this.mergeMode==="sum"?i=J(a,r):this.mergeMode==="ave"?i=B(.5,J(a,r)):this.mergeMode==="mul"?i=B(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Zs(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Zs(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=ja(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};l0.className="Bidirectional";se.registerClass(l0);function jU(e){return new qu(e)}function qU(e){return new mw(e)}function KU(e){return new cw(e)}function XU(e){return new dw(e)}function YU(e){return new hw(e)}function QU(e){return new gw(e)}function JU(e){return new fw(e)}function ZU(e){return new Xf(e)}function eG(e){return new rd(e)}function tG(e){return new xw(e)}function nG(e){return new sd(e)}function aG(e){return new vw(e)}function rG(e){return new ww(e)}function sG(e){return new kw(e)}function iG(e){return new Iw(e)}function oG(e){return new Sw(e)}function lG(e){return new $w(e)}function uG(e){return new Fw(e)}function pG(e){return new eg(e)}function cG(e){return new Ew(e)}function dG(e){return new Aw(e)}function hG(e){return new Dw(e)}function mG(e){return new Rw(e)}function fG(e){return new Mw(e)}function gG(e){return new Ow(e)}function yG(e){return new Lw(e)}function bG(e){return new Bw(e)}function xG(e){return new Uw(e)}function vG(e){return new Ww(e)}function wG(e){return new Vw(e)}function kG(e){return new zw(e)}function IG(e){return new Gw(e)}function SG(e){return new Kw(e)}function NG(e){return new Xw(e)}function TG(e){return new Yw(e)}function u0(e){return new Jw(e)}function CG(e){return u0(e)}function _G(e){return u0(e)}function p0(e){return new e0(e)}function EG(e){return p0(e)}function FG(e){return p0(e)}function c0(e){return new n0(e)}function AG(e){return c0(e)}function $G(e){return c0(e)}function DG(e){return new a0(e)}function RG(e){return new s0(e)}function FN(e){return new r0(e)}function AN(e){return new i0(e)}function $N(e){return new Qw(e)}function DN(e){return new Zw(e)}function MG(e){return new t0(e)}function PG(e){return new Tw(e)}function OG(e){return new Qf(e)}function LG(e){return new Cw(e)}function zG(e){return new od(e)}function BG(e){return new Nw(e)}function WG(e){return new Yf(e)}function VG(e){return new _w(e)}function UG(e){return new Zf(e)}function GG(e){return new yr(e)}function HG(e){return new Jf(e)}function jG(e){return new l0(e)}function qG(e){return new o0(e)}var KG=FN,XG=AN,YG=$N,QG=DN;function JG(e){return new Hw(e)}function ZG(e){return new jw(e)}function e6(e){return new qw(e)}function t6(e){return new Pw(e)}var RN={};Me(RN,{MAPE:()=>d6,MSE:()=>f6,binaryAccuracy:()=>n6,binaryCrossentropy:()=>a6,categoricalAccuracy:()=>s6,categoricalCrossentropy:()=>i6,cosineProximity:()=>u6,mape:()=>h6,meanAbsoluteError:()=>p6,meanAbsolutePercentageError:()=>c6,meanSquaredError:()=>m6,mse:()=>g6,precision:()=>o6,recall:()=>l6,sparseCategoricalAccuracy:()=>r6});function n6(e,t){return rw(e,t)}function a6(e,t){return K2(e,t)}function r6(e,t){return X2(e,t)}function s6(e,t){return sw(e,t)}function i6(e,t){return iw(e,t)}function o6(e,t){return q2(e,t)}function l6(e,t){return XV(e,t)}function u6(e,t){return aw(e,t)}function p6(e,t){return qf(e,t)}function c6(e,t){return Ku(e,t)}function d6(e,t){return Ku(e,t)}function h6(e,t){return Ku(e,t)}function m6(e,t){return Io(e,t)}function f6(e,t){return Io(e,t)}function g6(e,t){return Io(e,t)}var MN={};Me(MN,{modelFromJSON:()=>NU});var PN={};Me(PN,{l1:()=>b6,l1l2:()=>y6,l2:()=>x6});function y6(e){return new nd(e)}function b6(e){return DU(e)}function x6(e){return RU(e)}var ON=class extends El{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Er))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Ih(e,t){return e<t}function Ak(e,t){return e>t}var LN=class extends ON{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Ih:this.mode==="max"?this.monitorFunc=Ak:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Ak:this.monitorFunc=Ih,this.monitorFunc===Ih&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Ih?1/0:-1/0}async onEpochEnd(e,t){await Qr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function v6(e){return new LN(e)}var w6={earlyStopping:v6},k6=X();k6.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Ia;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Ia||(Ia={}));var $k;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})($k||($k={}));var d0={};function I6(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};d0[e]=n}function zN(e){return d0[e]}function S6(e){delete d0[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Sn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(d=>Sn(d,n,a,r));let u=Sn(t.inputNames.slice(o)[0],n,a,r),p=u.dataSync();return s.type==="number"?p[0]:w.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function Sn(e,t,n,a){let[r,s]=Xn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[lm(r,o)]);return i!==void 0?t[lm(r,i)][s]:void 0}function N6(e,t,n){return t[lm(e,n.currentContextId)]}function lr(e,t){let[n,a,r]=Xn(e);return[lm(n,t&&t.currentContextId),a,r]}function lm(e,t){return t?`${e}-${t}`:e}function Xn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function $h(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Nr(e){return e.kept?e:_r(e)}var BN={};Me(BN,{json:()=>T6});var T6=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],WN={};Me(WN,{json:()=>C6});var C6=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],VN={};Me(VN,{json:()=>_6});var _6=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],UN={};Me(UN,{json:()=>E6});var E6=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],GN={};Me(GN,{json:()=>F6});var F6=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],HN={};Me(HN,{json:()=>A6});var A6=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],jN={};Me(jN,{json:()=>$6});var $6=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],qN={};Me(qN,{json:()=>D6});var D6=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],KN={};Me(KN,{json:()=>R6});var R6=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],XN={};Me(XN,{json:()=>M6});var M6=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],YN={};Me(YN,{json:()=>P6});var P6=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],QN={};Me(QN,{json:()=>O6});var O6=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],JN={};Me(JN,{json:()=>L6});var L6=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],ZN={};Me(ZN,{json:()=>z6});var z6=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],eT={};Me(eT,{json:()=>B6});var B6=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],tT={};Me(tT,{json:()=>W6});var W6=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],nT={};Me(nT,{json:()=>V6});var V6=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],aT={};Me(aT,{json:()=>U6});var U6=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],rT={};Me(rT,{json:()=>G6});var G6=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Dk=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[BN,WN,VN,UN,GN,HN,jN,qN,KN,XN,YN,QN,JN,ZN,eT,tT,nT,aT,rT],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[b,,x]=lr(g),v=i[b];if(v.outputs!=null){let k=v.outputs.indexOf(x);if(k!==-1){let T=`${b}:${k}`;f.inputNames[y]=T}}f.inputs.push(v),v.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=lr(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=lr(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=zN(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=nx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=nx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=ux(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ux(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=rx(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=rx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=lx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=lx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=ax(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ax(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=cx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=cx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=ox(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ox(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=px(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=px(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=sx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=sx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=ix(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ix(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=Rk(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Rk(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=lr(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:h0(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=lr(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${h}:${g}`;p.inputNames[c]=y}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=lr(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function H6(e){let t=X().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function sT(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):H6(e);return t?n:n.toLowerCase()}function nx(e,t,n,a=!1){let r=e[t];return r!=null?sT(r.s,a):n}function ax(e,t,n){let a=e[t];return a?a.b:n}function rx(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function h0(e){switch(typeof e=="string"&&(e=Ia[e]),e){case Ia.DT_FLOAT:case Ia.DT_HALF:return"float32";case Ia.DT_INT32:case Ia.DT_INT64:case Ia.DT_INT8:case Ia.DT_UINT8:return"int32";case Ia.DT_BOOL:return"bool";case Ia.DT_DOUBLE:return"float32";case Ia.DT_STRING:return"string";default:return null}}function Rk(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function sx(e,t,n){let a=e[t];return a&&a.type?h0(a.type):n}function ix(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>h0(r)):n}function iT(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ox(e,t,n){let a=e[t];return a&&a.shape?iT(a.shape):n}function lx(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function ux(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>sT(s,a)):n}function px(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>iT(r)):n}function cx(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var j6=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return Sn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Sn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return rx(this.node.rawAttrs,e,t);if(n.s!=null)return nx(this.node.rawAttrs,e,t);if(n.b!=null)return ax(this.node.rawAttrs,e,t);if(n.shape!=null)return ox(this.node.rawAttrs,e,t);if(n.type!=null)return sx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return lx(this.node.rawAttrs,e,t);if(n.list.s!=null)return ux(this.node.rawAttrs,e,t);if(n.list.shape!=null)return px(this.node.rawAttrs,e,t);if(n.list.b!=null)return cx(this.node.rawAttrs,e,t);if(n.list.type!=null)return ix(this.node.rawAttrs,e,t)}return t}},q6=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[J(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[kS(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Sv(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[fe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[cv(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[nf(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ce(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Vu(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[fr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Ar(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Sf(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},K6=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[Xx(I("x",e,t,n))];case"Acosh":return[Yx(I("x",e,t,n))];case"Asin":return[Jx(I("x",e,t,n))];case"Asinh":return[Zx(I("x",e,t,n))];case"Atan":return[ev(I("x",e,t,n))];case"Atan2":return[tv(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[nv(I("x",e,t,n))];case"Ceil":return[iv(I("x",e,t,n))];case"Complex":return[os(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Wc(I("x",e,t,n))];case"Cosh":return[of(I("x",e,t,n))];case"Elu":return[Bu(I("x",e,t,n))];case"Erf":return[dv(I("x",e,t,n))];case"Exp":return[gn(I("x",e,t,n))];case"Expm1":return[gv(I("x",e,t,n))];case"Floor":return[Wu(I("x",e,t,n))];case"Log":return[ea(I("x",e,t,n))];case"Log1p":return[Gc(I("x",e,t,n))];case"Imag":return[uf(I("x",e,t,n))];case"Neg":return[Nt(I("x",e,t,n))];case"Reciprocal":return[Cv(I("x",e,t,n))];case"Real":return[ic(I("x",e,t,n))];case"Relu":return[Xe(I("x",e,t,n))];case"Round":return[yf(I("x",e,t,n))];case"Selu":return[xf(I("x",e,t,n))];case"Sigmoid":return[ma(I("x",e,t,n))];case"Sin":return[vf(I("x",e,t,n))];case"Sign":return[_v(I("x",e,t,n))];case"Sinh":return[wf(I("x",e,t,n))];case"Softplus":return[vo(I("x",e,t,n))];case"Sqrt":return[pn(I("x",e,t,n))];case"Square":return[ut(I("x",e,t,n))];case"Tanh":return[li(I("x",e,t,n))];case"Tan":return[Av(I("x",e,t,n))];case"ClipByValue":return[an(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[gf(I("x",e,t,n))];case"Rsqrt":return[bf(Sn(e.inputNames[0],t,n))];case"Prod":return[ff(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Uc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[qc(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[bv(Sn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Na(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];w.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function Mk(e){return!(typeof e=="number"||e.some(t=>t<0))}function Pp(e,t,n){let a=dx(e,n),r=!Mk(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=dx(s.shape,a)}),!Mk(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function dx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var X6=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=we(0),tn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Na(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,tn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Jn([],[0].concat(this.elementShape));let n=this.readMany(e);return Na(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Mt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Jn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Na(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Ze(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ht(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];O(()=>{t=W(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],p=[1,e[o],r];s[o]=W(He(t,u,p),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Al=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Na(t,r.shape,"TensorList shape mismatch: "),tn(r)}),this.idTensor=we(0),this.maxNumElements=a,tn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Al([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Na(e,this.elementShape,"TensorList shape mismatch: ");let a=Pp(this.elementShape,this.tensors,e);return O(()=>{let r=this.tensors.map(s=>W(s,a));return Mt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Pp(this.elementShape,this.tensors,e),a=this.tensors.pop();return Na(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Na(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");tn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new Al([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Na(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Pp(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Na(this.elementShape,t.shape,"TensorList shape mismatch: "),tn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Na(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Pp(this.elementShape,this.tensors,n);return e.length===0?Jn([],[0].concat(a)):O(()=>{let r=e.map(s=>W(this.tensors[s],a));return Mt(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Na(this.elementShape,t,"TensorList shape mismatch: ");let n=Pp(this.elementShape,this.tensors,t);return this.size()===0?Jn([],[0].concat(n)):O(()=>{let a=this.tensors.map(r=>W(r,n));return Ze(a,0)})}};function Y6(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Na(r,t,"TensorList shape mismatch: ");let s=ht(e);return new Al(s,t,a)}function Q6(e,t,n){return new Al([],e,t,n)}function J6(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Al([],n,e.dtype,a),i=ht(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Z6(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=dx(s,n),o=a===0?0:e.size/a,l=O(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=d===0?0:r[d-1],h=[0,c,0],m=[1,t[d],o];p[d]=W(He(e,h,m),i)}return e.dispose(),p}),u=new Al([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var eH=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=I("pred",e,t,n);return[Nr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Nr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>Sn(r,t,n)!==void 0);if(a){let r=Sn(a,t,n);return[Nr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[Nr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[Nr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[Nr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),p=new X6(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,we(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[we(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=J6(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=Q6(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=Y6(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=Z6(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id);return[we(r.size(),"int32")]}case"TensorListResize":{let a=I("tensorListId",e,t,n),r=I("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Pk(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=I("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=I("strides",e,t,n),d=$h(e,t,n),c=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[m,f]=I("args",e,t,n);i&&(f=m,m=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var tH=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[rf(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=$h(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Rt(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:p}=Pk(e,t,n);return[us.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:p}=Pk(e,t,n);return[us.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=$h(e,t,n);return[sf(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=$h(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[Is(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[lv(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[ga(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Pt(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=YS(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[rv(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[kv(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[pv(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},nH=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[_n(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[HS(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[QS(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Nl(a,r,s,i)]}case"Ones":return[Qn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[ta(I("x",e,t,n))];case"RandomUniform":return[Uu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[Tl(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Nf(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[It(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ke(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Nb(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var aH=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Nb(e,t,n),u=await Ln.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Nb(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await Ln.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Nb(e,t,n);return[await Ln.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=oe(I("condition",e,t,n),"bool"),r=[await Rv(a)];return a.dispose(),r}case"ListDiff":return e2(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},rH=(e,t,n)=>{switch(e.op){case"LowerBound":{let a=I("sortedSequence",e,t,n),r=I("values",e,t,n);return[XS(a,r)]}case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=$v(a,r,s);return[i.values,i.indices]}case"UpperBound":{let a=I("sortedSequence",e,t,n),r=I("values",e,t,n);return[t2(a,r)]}case"Unique":{let a=I("x",e,t,n),r=Jh(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Jh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},sH=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[Sn(e.name,t,n)||a];case"Placeholder":return[Sn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[Nr(u)]}case"IdentityN":return I("x",e,t,n).map(u=>Nr(u));case"Snapshot":let r=I("x",e,t,n);return[Nr(r)];case"Shape":return[qe(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>qe(u.shape));case"Size":return[we(I("x",e,t,n).size,"int32")];case"Rank":return[we(I("x",e,t,n).rank,"int32")];case"NoOp":return[we(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},iH=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=we(0),this.tensorMap=new Map,tn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return we(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),O(()=>{let a=ht(t),r=n.length,s=a.length;w.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];tn(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return O(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Mt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},oH=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new iH(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},lH=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ln.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ln.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ln.cropAndResize(a,r,s,i,o,l)]}case"ImageProjectiveTransformV3":{let a=I("images",e,t,n),r=I("transforms",e,t,n),s=I("outputShape",e,t,n),i=I("fillValue",e,t,n),o=I("interpolation",e,t,n),l=I("fillMode",e,t,n);return[Ln.transform(a,r,o.toLowerCase(),l.toLowerCase(),i,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},uH=(e,t,n)=>{switch(e.op){case"Equal":return[Zn(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ci(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Un(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Ss(I("a",e,t,n),I("b",e,t,n))];case"Less":return[pf(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Ns(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[_a(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Hc(I("a",e,t,n))];case"LogicalOr":return[hf(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[fn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},pH=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[De(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[LS(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ae(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,p]=I("args",e,t,n);return[us.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:p,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},cH=(e,t,n)=>{switch(e.op){case"EuclideanNorm":return[fv(I("x",e,t,n),I("axis",e,t,n),I("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[Fr(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Fr(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[xv(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Qa(I("x",e,t,n))];case"LogSoftmax":return[df(I("x",e,t,n))];case"SparseToDense":return[Mv(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},dH=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ta(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Et(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[sc(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[be(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[af(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ac(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[oi(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[Qx(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ff(I("x",e,t,n),i,o)]}case"Cumprod":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[rc(I("x",e,t,n),i,o,l)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[lf(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[sv(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[PS(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},hH=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[Ze(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[pi(a,oe(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[pi(s,oe(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[na(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[na(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[He(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),p=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[Fv(d,a,r,s,i,o,l,u,p)]}case"Pack":return O(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=dr(r[0]).shape,o=r.map(l=>{let u=w.arraysEqual(l.shape,s);if(!u&&!w.arraysEqual(dr(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:W(l,s)});return[Mt(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return ht(r,a)}case"Tile":{let a=I("reps",e,t,n);return[On(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return zn(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[r2(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[s2(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Mv(a,s,r,s.dtype===i.dtype?i:oe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mH=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:a,outputValues:r,emptyRowIndicator:s,reverseIndexMap:i}=Bp.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[a,r,s,i]}case"SparseReshape":{let{outputIndices:a,outputShape:r}=Bp.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[a,r]}case"SparseSegmentMean":return[Bp.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Bp.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},fH=(e,t,n)=>{switch(e.op){case"FFT":return[Kc(I("x",e,t,n))];case"IFFT":return[Cl(I("x",e,t,n))];case"RFFT":return[Xc(I("x",e,t,n))];case"IRFFT":return[If(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},gH=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:a,nGramsSplits:r}=Ah.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[a,r]}case"StringSplit":{let{indices:a,values:r,shape:s}=Ah.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[a,r,s]}case"StringToHashBucketFast":return[Ah.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yH=(e,t,n)=>{switch(e.op){case"Cast":return[oe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[mn(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[dr(I("x",e,t,n),a)]}case"Reshape":return[W(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Iv(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ya(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[jc(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Bc(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[uv(I("x",e,t,n),a,r)]}case"BroadcastTo":return[vl(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[ES(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ok(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return O(()=>q6(s,i,o));case"basic_math":return O(()=>K6(s,i,o));case"control":return eH(s,i,o);case"convolution":return O(()=>tH(s,i,o));case"creation":return O(()=>nH(s,i,o));case"dynamic":return aH(s,i,o);case"evaluation":return O(()=>rH(s,i,o));case"image":return O(()=>lH(s,i,o));case"graph":return O(()=>sH(s,i,o));case"logical":return O(()=>uH(s,i,o));case"matrices":return O(()=>pH(s,i,o));case"normalization":return O(()=>cH(s,i,o));case"reduction":return O(()=>dH(s,i,o));case"slice_join":return O(()=>hH(s,i,o));case"sparse":return O(()=>mH(s,i,o));case"spectral":return O(()=>fH(s,i,o));case"string":return O(()=>gH(s,i,o));case"transformation":return O(()=>yH(s,i,o));case"hash_table":return oH(s,i,o,a);case"custom":let l=zN(s.op);if(l&&l.customExecutor)return l.customExecutor(new j6(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var Lk=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function zk(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Xn(c)[0]),p=[];a!=null&&(p=a.map(c=>Xn(c.name)[0]));let d=[...t];for(;d.length>0;){let c=d.pop();if((oT(c)||kH(c)||IH(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&p.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function bH(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(p=>Xn(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{a.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{a.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{a.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(d=>{!l.has(d.name)&&a.has(d.name)&&d.inputs.every(c=>l.has(c.name))&&s.push(d)})}return u}var xH=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],vH=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],wH=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function oT(e){return xH.indexOf(e.op)>=0}function kH(e){return vH.indexOf(e.op)>=0}function IH(e){return wH.indexOf(e.op)>=0}var hx=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new hx(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=zk(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return bH(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(p=>this.graph.nodes[Xn(p)[0]]),r=t.map(p=>Xn(p)[0]),s=r.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return O(()=>{let p=new Lk(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Xn(m),y=[];y[g]=e[m],d[f]=y});let c=this.getFrozenTensorIds(d),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!d[f.name]){let g=Ok(f,d,p,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=g,this.checkTensorForDisposal(f.name,f,d,p,c,r,h)}}return this.parent==null&&p.dispose(c),t.map(m=>Sn(m,d,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=N6(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];if(p===1){if(!this.keepTensorForDebug)u.dispose();else{let[d,c]=lr(t.name,a);this.intermediateTensors[d]?this.intermediateTensors[d][c]=u:(this.intermediateTensors[d]=[],this.intermediateTensors[d][c]=u)}delete i[u.id]}else p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=X().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new Lk(this.weightMap,a,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,n);let i=t.map(u=>Sn(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Xn(b)[0]]),i=n.map(b=>Xn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:d}=zk(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,v]=Xn(b),k=[];k[v]=e[b],h[x]=k});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let b=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(b)}p==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!oT(b)&&!Sn(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw p!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&I("isConstant",p.node,a,n)&&([d]=lr(p.node.name,n)),a[p.node.name]==null){let c=Ok(p.node,a,n,this._resourceManager);d||([d]=lr(p.node.name,n));let h=n.currentContext;w.isPromise(c)?u.push(c.then(m=>(a[d]=m,n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=lr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Sn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!Sn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Xn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Xn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Xn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},SH=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},NH="?tfjs-format=file",TH="model.json",lT=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new SH}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=en.browserHTTPRequest(e,this.loadOptions);else{let t=en.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(en.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=en.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new hx(Dk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Dk.Instance.transformGraph(e.modelInitializer);this.initializer=new hx(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=en.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Fe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function CH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${TH}${NH}`);let n=new lT(e,t);return await n.load(),n}var _H="3.17.0",uT={};Me(uT,{CSVDataset:()=>bT,Dataset:()=>Xu,FileDataSource:()=>NT,TextLineDataset:()=>yT,URLDataSource:()=>TT,array:()=>QH,csv:()=>lj,func:()=>uj,generator:()=>pj,microphone:()=>dj,version_data:()=>hj,webcam:()=>cj,zip:()=>JH});var EH=bi(bI()),FH=bi(bI());function AH(e,t){return um(e,t)}function um(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if($l(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=um(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function $H(e,t=cT){return pT(e,t)}function pT(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if($l(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=pT(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function cT(e){return e===null?null:$l(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function dT(e,t){let n=new Map;um(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(w.isPromise(r)){let s=await r;n.set(a,s)}}return um(e,t,n)}function $l(e){let t=!1;if(X().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=xI();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Fe)&&!(e instanceof Promise)&&!t)}function DH(e){return e==null||RH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Fe||w.isTypedArray(e)}function RH(e){return e===null||typeof e!="object"&&typeof e!="function"}function MH(e){return AH(e,PH)}function PH(e){return e instanceof Fe?{value:e.clone(),recurse:!1}:$l(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var hT=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},m0=class extends hT{constructor(){super(m0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};m0.INITIAL_CAPACITY=32;function mT(e){return new zH(e)}function f0(e){return new BH(e)}function OH(e,t){return new fT(e,t)}function LH(e,t=ts.FAIL){return new XH(e,t)}var rn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new qH(this,e)}filter(e){return new HH(this,e)}map(e){return new jH(this,e)}mapAsync(e){return new Bk(this,e)}serialMapAsync(e){return new Bk(this,e).serial()}flatmap(e){return new KH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new GH(this,e,t)}columnMajorBatch(e,t=!0,n=cT){return this.rowMajorBatch(e,t).map(a=>$H(a,n))}concatenate(e,t){return new fT(mT([this,e]),t)}take(e){return e<0||e==null?this:new UH(this,e)}skip(e){return e<0||e==null?this:new VH(this,e)}prefetch(e){return new gT(this,e)}shuffle(e,t){return new YH(this,e,t)}serial(){return new WH(this)}},zH=class extends rn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:MH(e),done:!1}}},BH=class extends rn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},WH=class extends rn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},VH=class extends rn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Re(e.value)}return this.upstream.next()}},UH=class extends rn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},GH=class extends rn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},HH=class extends rn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Re(e.value)}}},jH=class extends rn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ga.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ga.getTensorsInContainer(n);for(let r of t)Ga.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},qH=class extends rn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Bk=class extends rn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ga.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ga.getTensorsInContainer(n);for(let r of t)Ga.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},g0=class extends rn{constructor(){super(),this.outputQueue=new m0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},KH=class extends g0{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ga.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ga.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ga.isTensorInList(r,a)||r.dispose();return!0}},fT=class extends rn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ts;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ts||(ts={}));var XH=class extends rn{constructor(e,t=ts.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof rn?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await dT(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ts.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ts.SHORTEST:return{value:null,done:!0};case ts.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},gT=class extends rn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new hT(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},YH=class extends gT{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=FH.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Xu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Kn(async()=>(await n.iterator()).columnMajorBatch(e,t,ZH),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Kn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Kn(async()=>(await t.iterator()).filter(a=>O(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Kn(async()=>(await t.iterator()).map(n=>O(()=>e(n))),this.size)}mapAsync(e){let t=this;return Kn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Kn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Kn(async()=>{let a=f0(async()=>({value:await t.iterator(),done:!1}));return OH(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Kn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=EH.alea(t||w.now().toString());return Kn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Kn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Xu.MAX_BUFFER_SIZE=1e4;function Kn(e,t=null){return new class extends Xu{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function QH(e){return Kn(async()=>mT(e),e.length)}function JH(e){if(!$l(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Kn(async()=>{let n=await dT(e,a=>{if(a instanceof Xu)return{value:a.iterator(),recurse:!1};if($l(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return LH(n,ts.SHORTEST)},t)}function ZH(e){if(e===null)return null;let t=e[0];return DH(t)?{value:ej(e),recurse:!1}:{value:null,recurse:!0}}function ej(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Fe?Mt(e):Jn(e)}var yT=class extends Xu{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Sh='"',Op=Symbol("out"),Wk=Symbol("field"),Nh=Symbol("quote"),Tb=Symbol("quoteafterquote"),Vk=Symbol("quoteinquote"),bT=class extends Xu{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new yT(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Op;for(let i=0;i<r;i++)switch(s){case Op:switch(e.charAt(i)){case Sh:a=i+1,s=Nh;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Op;break;default:s=Wk,a=i;break}break;case Wk:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Op,a=i+1;break;default:}break;case Nh:switch(e.charAt(i)){case Sh:s=Tb;break;default:}break;case Tb:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Op,a=i+1;break;case Sh:s=Nh;break;default:s=Vk;break}break;case Vk:switch(e.charAt(i)){case Sh:s=Nh;break;default:}break;default:}if(s===Tb?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},xT=class extends rn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!X().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new xT(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Jn(n,t)}},vT=class extends rn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=qe([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ha([s,r,o,i],[1,4])}else this.cropBox=Ha([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!X().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new vT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=xo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return O(()=>{let t=mn(oe(e,"float32"),0),n;n=Ln.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},wT=class{},kT=class extends rn{split(e){return new tj(this,e)}},tj=class extends kT{constructor(e,t){super(),this.upstream=e,this.impl=new nj(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},nj=class extends g0{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},aj=class extends rn{decodeUTF8(){return new rj(this)}},rj=class extends kT{constructor(e){super(),this.upstream=e,this.impl=new sj(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},sj=class extends g0{constructor(e){if(super(),this.upstream=e,X().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=xI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return X().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},IT=class extends aj{constructor(e,t={}){super(),this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(X().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function ij(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=oj(e));let s=await(n||w.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new IT(i,t)}else throw new Error(s.statusText)}var oj=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function ST(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var NT=class extends wT{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(ST(this.input)&&X().get("IS_NODE")){let e=Ex();this.input=e.readFileSync(this.input.slice(7))}return new IT(this.input,this.options)}},TT=class extends wT{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return ST(this.url)?new NT(this.url,this.fileOptions).iterator():ij(this.url,this.fileOptions)}};function lj(e,t={}){return new bT(new TT(e),t)}function uj(e){let t=f0(e);return Kn(async()=>t)}function pj(e){return Kn(async()=>{let t=await e();return f0(()=>t.next())})}async function cj(e,t){return vT.create(e,t)}async function dj(e){return xT.create(e)}var hj="3.17.0";function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var mj=gr.whereImpl,y0=class extends gc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new ym(this,sr())}nextDataId(){return y0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,X().get("IS_NODE")&&_.warn(`
|
|
============================
|
|
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>w.decodeString(a));return Ve(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,t)}makeOutput(e,t,n){return sr().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return mj(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};y0.nextDataId=0;var CT={};Me(CT,{addImpl:()=>ET,bincountImpl:()=>x0,bincountReduceImpl:()=>FT,ceilImpl:()=>AT,concatImpl:()=>v0,equalImpl:()=>$T,expImpl:()=>RT,expm1Impl:()=>PT,floorImpl:()=>OT,gatherNdImpl:()=>LT,gatherV2Impl:()=>zT,greaterEqualImpl:()=>WT,greaterImpl:()=>BT,lessEqualImpl:()=>UT,lessImpl:()=>VT,linSpaceImpl:()=>GT,logImpl:()=>HT,maxImpl:()=>jT,maximumImpl:()=>qT,minimumImpl:()=>KT,multiplyImpl:()=>w0,negImpl:()=>XT,notEqualImpl:()=>YT,prodImpl:()=>QT,rangeImpl:()=>I0,rsqrtImpl:()=>JT,scatterImpl:()=>gl,sigmoidImpl:()=>n5,simpleAbsImpl:()=>_T,sliceImpl:()=>cm,sparseFillEmptyRowsImpl:()=>eC,sparseReshapeImpl:()=>tC,sparseSegmentReductionImpl:()=>S0,sqrtImpl:()=>s5,squaredDifferenceImpl:()=>nC,stridedSliceImpl:()=>aC,stringNGramsImpl:()=>rC,stringSplitImpl:()=>sC,stringToHashBucketFastImpl:()=>iC,subImpl:()=>oC,tileImpl:()=>lC,topKImpl:()=>pC,transposeImpl:()=>k0,uniqueImpl:()=>cC});function _T(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var fj=e=>{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=_T(r),n.makeOutput(a,t.shape,t.dtype)},gj={kernelName:Ll,backendName:"cpu",kernelFunc:fj};function Vt(e){return(t,n,a,r,s)=>{let i=_.assertAndGetBroadcastShape(t,n),o=i.length,l=w.computeStrides(i),u=w.sizeFromShape(i),p=w.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=w.computeStrides(t),m=w.computeStrides(n),f=_.getBroadcastDims(t,i),g=_.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<p.length;++y)p[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<p.length;++y){let b=w.indexToLoc(y,o,l),x=b.slice(-d);f.forEach(C=>x[C]=0);let v=w.locToIndex(x,d,h),k=b.slice(-c);g.forEach(C=>k[C]=0);let T=w.locToIndex(k,c,m);p[y]=e(a[v],r[T])}return[p,i]}}function Yn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var yj={kernelName:Sm,backendName:"cpu",kernelFunc:Yn};function pm(e,t,n="float32"){if(n==="complex64"){let r=pm(e,t,"float32"),s=pm(e,t,"float32");return Yn({inputs:{real:r,imag:s},backend:e})}let a=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function hr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var bj={kernelName:zi,backendName:"cpu",kernelFunc:hr};function hi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var xj={kernelName:Um,backendName:"cpu",kernelFunc:hi};function ms(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return hr({inputs:{x:r},backend:n});let i=pm(n,r.shape,r.dtype),o=ms({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Yn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=hi({inputs:{input:r},backend:n}),o=ms({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=hr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[l,u]=Vt((p,d)=>p!==d?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var vj={kernelName:Si,backendName:"cpu",kernelFunc:ms};function sn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;xe([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?_.fromUint8ToStringArray(u):u,c=i.dtype==="string"?_.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=ms({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=ms({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(b.dataId).values,[k,T,C]=n(i.shape,o.shape,h,m,x,v),E=l.makeTensorInfo(C,"float32",k),A=l.makeTensorInfo(C,"float32",T),P=Yn({inputs:{real:E,imag:A},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(A),P}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function b0(e){return(t,n,a,r,s,i)=>{let o=_.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(o),u=o.length,p=w.computeStrides(o),d=w.getTypedArrayFromDType("float32",l),c=w.getTypedArrayFromDType("float32",l),h=_.getBroadcastDims(t,o),m=_.getBroadcastDims(n,o),f=_.mergeRealAndImagArrays(a,r),g=_.mergeRealAndImagArrays(s,i),y=t.length,b=w.computeStrides(t),x=n.length,v=w.computeStrides(n);if(h.length+m.length===0)for(let k=0;k<d.length;k++){let T=k%f.length,C=k%g.length,E=e(f[T*2],f[T*2+1],g[C*2],g[C*2+1]);d[k]=E.real,c[k]=E.imag}else for(let k=0;k<d.length;k++){let T=w.indexToLoc(k,u,p),C=T.slice(-y);h.forEach(S=>C[S]=0);let E=w.locToIndex(C,y,b),A=T.slice(-x);m.forEach(S=>A[S]=0);let P=w.locToIndex(A,x,v),$=e(f[E*2],f[E*2+1],g[P*2],g[P*2+1]);d[k]=$.real,c[k]=$.imag}return[d,c,o]}}var ET=Vt((e,t)=>e+t),wj=b0((e,t,n,a)=>({real:e+n,imag:t+a})),Dl=sn(ys,ET,wj),kj={kernelName:ys,backendName:"cpu",kernelFunc:Dl};function x0(e,t,n,a,r){let s=w.sizeFromShape(a),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function FT(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Ve([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Ts(e){return(t,n,a)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function ot(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=w.sizeFromShape(i.shape),p=n||i.dtype,d=w.getArrayFromDType(p,u);for(let c=0;c<u;++c)d[c]=t(l[c],r);return o.makeTensorInfo(i.shape,p,d)}}function Yu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var AT=Ts(e=>Math.ceil(e)),Ij=Yu(Ni,AT),Sj={kernelName:Ni,backendName:"cpu",kernelFunc:Ij};function v0(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var $T=Vt((e,t)=>e===t?1:0),DT=sn(eu,$T,null,"bool"),Nj={kernelName:eu,backendName:"cpu",kernelFunc:DT},RT=Ts(e=>Math.exp(e)),MT=Yu(Ri,RT,"float32"),Tj={kernelName:Ri,backendName:"cpu",kernelFunc:MT},PT=Ts(e=>Math.expm1(e)),Cj=Yu(nu,PT),_j={kernelName:nu,backendName:"cpu",kernelFunc:Cj},OT=Ts(e=>Math.floor(e)),Ej=Yu(Mi,OT),Fj={kernelName:Mi,backendName:"cpu",kernelFunc:Ej};function LT(e,t,n,a,r,s,i,o,l){let u=Ve([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function zT(e,t,n){let a=Ve(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var BT=Vt((e,t)=>e>t?1:0),Aj=sn(iu,BT,null,"bool"),$j={kernelName:iu,backendName:"cpu",kernelFunc:Aj},WT=Vt((e,t)=>e>=t?1:0),Dj=sn(Li,WT,null,"bool"),Rj={kernelName:Li,backendName:"cpu",kernelFunc:Dj},VT=Vt((e,t)=>e<t?1:0),Mj=sn(pu,VT,null,"bool"),Pj={kernelName:pu,backendName:"cpu",kernelFunc:Mj},UT=Vt((e,t)=>e<=t?1:0),Oj=sn(cu,UT,null,"bool"),Lj={kernelName:cu,backendName:"cpu",kernelFunc:Oj};function GT(e,t,n){let a=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var HT=Ts(e=>Math.log(e)),zj=Yu(Wi,HT),Bj={kernelName:Wi,backendName:"cpu",kernelFunc:zj};function jT(e,t,n,a){let r=w.getTypedArrayFromDType(a,w.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var qT=Vt((e,t)=>Math.max(e,t)),Wj=sn(Ui,qT),Vj={kernelName:Ui,backendName:"cpu",kernelFunc:Wj},KT=Vt((e,t)=>Math.min(e,t)),Uj=sn(qi,KT),Gj={kernelName:qi,backendName:"cpu",kernelFunc:Uj},w0=Vt((e,t)=>e*t),Hj=b0((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),ng=sn(Xi,w0,Hj),jj={kernelName:Xi,backendName:"cpu",kernelFunc:ng};function XT(e,t,n){let a=w.createScalarValue(-1,n);return w0([],t,a,e,n)}function qj(e){let{inputs:t,backend:n}=e,{x:a}=t;xe(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=XT(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var Kj={kernelName:fu,backendName:"cpu",kernelFunc:qj},YT=Vt((e,t)=>e!==t?1:0),Xj=sn(gu,YT,null,"bool"),Yj={kernelName:gu,backendName:"cpu",kernelFunc:Xj};function k0(e,t,n,a,r){let s=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),l=w.computeStrides(r),u=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let p=0;p<i;++p){let d=w.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=w.locToIndex(c,s,l);u[h]=e[p]}return u}function Vn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;xe(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=k0(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var Qj={kernelName:yo,backendName:"cpu",kernelFunc:Vn};function QT(e,t,n,a){let[r,s]=_.computeOutAndReduceShapes(e,a),i=fa(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),l=w.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function Jj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"prod");let o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=_.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=_.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=QT(d.shape,d.dtype,h,p),y=f;return i&&(y=_.expandShapeToKeepDim(f,l)),c.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var Zj={kernelName:eo,backendName:"cpu",kernelFunc:Jj};function I0(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var JT=Ts(e=>1/Math.sqrt(e)),e5=Yu(io,JT),t5={kernelName:io,backendName:"cpu",kernelFunc:e5};function gl(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return Ve(n,t.dtype);let h=Ve(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=d[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=c[m*r+y]:h.values[g*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}var n5=Ts(e=>1/(1+Math.exp(-e))),ZT=ot(lo,e=>1/(1+Math.exp(-e))),a5={kernelName:lo,backendName:"cpu",kernelFunc:ZT};function cm(e,t,n,a,r){let s=qt.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let d=qt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,u=Ve(a,r,l),p=Ve(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?_.fromStringArrayToUint8(p.values):p.values}function mi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;xe(r,"slice");let[o,l]=qt.parseSliceParams(r,s,i);qt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=cm(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var r5={kernelName:Cu,backendName:"cpu",kernelFunc:mi};function eC(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(_.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=w.getArrayFromDType(n,0),y=w.getArrayFromDType(r,0);return[g,[0,d],y,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*d];if(y<0)throw new Error(_.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(_.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++m[y],c=c&&y>=h,h=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,y=a;for(let b=0;b<o;++b)p[b]=b;return[g,[o,d],y,u,p]}else{let g=m[l-1],y=w.getArrayFromDType(n,g*d),b=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let v=0;v<o;++v){let k=e[v*d],T=x[k],C=(k===0?0:m[k-1])+T;x[k]++;for(let E=0;E<d;++E)y[C*d+E]=e[v*d+E];b[C]=a[v],p[v]=C}for(let v=0;v<l;++v)if(x[v]===0){let k=v===0?0:m[v-1];y[k*d+0]=v;for(let T=1;T<d;++T)y[k*d+T]=0;b[k]=i}return[y,[g,d],b,u,p]}}function tC(e,t,n,a,r){let s=w.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(_.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(_.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(_.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(_.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(w.sizeFromShape(l)!==s)throw new Error(_.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=w.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let y=0;y<d;++y)g+=e[f*d+y]*c[y];for(let y=0;y<o;++y)m[f*o+y]=Math.trunc(g/h[y]),g%=h[y]}return[m,[i,o],l]}function S0(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((b,x)=>b*x,1),h=w.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,y=r[m];for(;;){let b=0;if(f<o){if(b=r[f],y===b){++f;continue}if(y>=b)throw new Error(_.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=p)throw new Error(_.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,p));y>g&&h.fill(i,g*u,y*u);for(let x=m;x<f;++x){let v=a[x];if(v<0||v>=l[0])throw new Error(_.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let k=0;k<u;k++)h[y*u+k]+=e[v*u+k]}if(s)for(let x=0;x<u;x++)h[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=b,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var s5=Ts(e=>Math.sqrt(e)),i5=ot(uo,e=>Math.sqrt(e)),o5={kernelName:uo,backendName:"cpu",kernelFunc:i5},nC=Vt((e,t)=>{let n=e-t;return n*n}),l5=sn(ho,nC),u5={kernelName:ho,backendName:"cpu",kernelFunc:l5};function aC(e,t,n,a){let r=Ve(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var p5=class{constructor(e,t,n,a,r,s){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let g=0;g<p;++g)c+=e[d+g].length;c+=u*this.rightPad.length,c+=(l+u+p-1)*this.separator.length,n[a+i]=new Uint8Array(c);let h=n[a+i],m=0,f=g=>g.forEach(y=>h[m++]=y);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<p-1;++g)f(e[d+g]),f(this.separator);if(p>0){f(e[d+p-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=w.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function rC(e,t,n,a,r,s,i,o){return new p5(n,a,r,s,i,o).compute(e,t)}function c5(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function sC(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;c5(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=w.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function iC(e,t){let n=w.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=w.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var oC=Vt((e,t)=>e-t),d5=b0((e,t,n,a)=>({real:e-n,imag:t-a})),N0=sn(mo,oC,d5),h5={kernelName:mo,backendName:"cpu",kernelFunc:N0};function lC(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Ve(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var Up=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function uC(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));uC(e,t,c,h)}let r=e[t],s=n,i=a;for(w.swap(e,n,t),Up(e[a],r)>0&&w.swap(e,n,a);s<i;){for(w.swap(e,s,i),s++,i--;Up(e[s],r)<0;)s=s+1;for(;Up(e[i],r)>0;)i=i-1}Up(e[n],r)===0?w.swap(e,n,i):(i=i+1,w.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function pC(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=w.getTypedArrayFromDType(n,i*a),u=w.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((b,x)=>m[x]={value:b,index:x}),a<m.length&&(uC(m,a),m=m.slice(0,a)),r&&m.sort(Up);let f=d*a,g=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let p=t.slice();return p[p.length-1]=a,[Ve(p,n,l),Ve(p,"int32",u)]}function cC(e,t,n,a){let r=w.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new jt(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let d=s.slice();d[1]=Object.keys(i).length;let c=new jt(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)c.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}tf("cpu",()=>new y0,1);var dC=ot(Di,e=>e>=0?e:Math.exp(e)-1),m5={kernelName:Di,backendName:"cpu",kernelFunc:dC};function hC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;xe([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var f5={kernelName:Bi,backendName:"cpu",kernelFunc:hC},g5=Vt((e,t)=>e<0?t*e:e);function mC(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;xe([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=g5(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var y5={kernelName:Zi,backendName:"cpu",kernelFunc:mC},fC=ot(to,e=>Math.max(0,e)),b5={kernelName:to,backendName:"cpu",kernelFunc:fC},gC=ot(ao,e=>Math.min(Math.max(0,e),6)),x5={kernelName:ao,backendName:"cpu",kernelFunc:gC};function T0(e,t,n,a,r){if(n==="linear")return hr({inputs:{x:t},backend:e});if(n==="relu")return fC({inputs:{x:t},backend:e});if(n==="elu")return dC({inputs:{x:t},backend:e});if(n==="relu6")return gC({inputs:{x:t},backend:e});if(n==="prelu")return mC({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return hC({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return ZT({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function kt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,i),l=w.sizeFromShape(o);w.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var v5={kernelName:Iu,backendName:"cpu",kernelFunc:kt};function yC(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;xe([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=bo.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[y,h,d]:[y,d,h],k=kt({inputs:{x:r},backend:n,attrs:{shape:x}}),T=kt({inputs:{x:s},backend:n,attrs:{shape:v}}),C=i?k.shape[1]:k.shape[2],E=i?k.shape[2]:k.shape[1],A=o?T.shape[1]:T.shape[2],P=Math.max(g,y),$=n.data.get(k.dataId).values,S=n.data.get(T.dataId).values,M=w.computeStrides(k.shape),V=w.computeStrides(T.shape),[j,q,K]=i?[M[0],1,M[1]]:[M[0],M[1],1],[Z,ee,re]=o?[1,V[1],V[0]]:[V[1],1,V[0]],Y=E*A,ie=Ve([P,E,A],k.dtype),ae=ie.values,le=n.blockSize;for(let ue=0;ue<P;ue++)for(let ke=0;ke<E;ke+=le)for(let ye=0;ye<A;ye+=le)for(let Ie=0;Ie<C;Ie+=le){let Ee=Math.min(ke+le,E),$e=Math.min(ye+le,A),Be=Math.min(Ie+le,C);for(let je=ke;je<Ee;je++)for(let st=ye;st<$e;st++){let nt=0;for(let at=Ie;at<Be;at++){let Te=Math.min(ue,g-1)*j,gt=Math.min(ue,y-1)*re,pt=$[Te+je*q+at*K],bn=S[at*Z+st*ee+gt];nt+=pt*bn}ae[ue*Y+(je*A+st)]+=nt}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(b,ie.dtype,ie.values)}var w5={kernelName:Ii,backendName:"cpu",kernelFunc:yC};function k5(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=yC({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=Dl({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=T0(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var I5={kernelName:ni,backendName:"cpu",kernelFunc:k5},S5=ot(zl,e=>Math.acos(e)),N5={kernelName:zl,backendName:"cpu",kernelFunc:S5},T5=ot(Bl,e=>Math.acosh(e)),C5={kernelName:Bl,backendName:"cpu",kernelFunc:T5};function _5(e){let{inputs:t,backend:n}=e,a=t;xe(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Ve(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var E5={kernelName:vi,backendName:"cpu",kernelFunc:_5};function F5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"all");let o=w.parseAxisParam(s,r.shape),l=o,u=_.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=_.computeOutAndReduceShapes(p.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let k=f[b+v];x=x&&k}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=_.expandShapeToKeepDim(d,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var A5={kernelName:Wl,backendName:"cpu",kernelFunc:F5};function $5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"any");let o=w.parseAxisParam(s,r.shape),l=o,u=_.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=_.computeOutAndReduceShapes(p.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let k=f[b+v];x=x||k}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=_.expandShapeToKeepDim(d,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var D5={kernelName:Vl,backendName:"cpu",kernelFunc:$5};function R5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMax");let i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=_.computeOutAndReduceShapes(l.shape,i),c=w.sizeFromShape(p),h=w.makeZerosTypedArray(c,"int32"),m=w.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let k=f[y+v];k>b&&(b=k,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var M5={kernelName:wi,backendName:"cpu",kernelFunc:R5};function P5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMin");let i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=_.computeOutAndReduceShapes(l.shape,i),c=w.sizeFromShape(p),h=w.makeZerosTypedArray(c,"int32"),m=w.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let k=f[y+v];k<b&&(b=k,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var O5={kernelName:yc,backendName:"cpu",kernelFunc:P5},L5=ot(Ul,e=>Math.asin(e)),z5={kernelName:Ul,backendName:"cpu",kernelFunc:L5},B5=ot(Gl,e=>Math.asinh(e)),W5={kernelName:Gl,backendName:"cpu",kernelFunc:B5},V5=ot(Hl,e=>Math.atan(e)),U5={kernelName:Hl,backendName:"cpu",kernelFunc:V5},G5=Vt((e,t)=>Math.atan2(e,t)),H5=sn(ql,G5),j5={kernelName:ql,backendName:"cpu",kernelFunc:H5},q5=ot(jl,e=>Math.atanh(e)),K5={kernelName:jl,backendName:"cpu",kernelFunc:q5};function C0(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Ve(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let k=v*y,T=v*a[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let A=E*i-c,P=Math.max(0,A),$=Math.min(r.inHeight,p+A),S=k+E*b;for(let M=0;M<r.outWidth;++M){let V=M*o-h,j=Math.max(0,V),q=Math.min(r.inWidth,d+V),K=m,Z=0,ee=0;for(let Y=P;Y<$;Y+=l){let ie=T+Y*a[1];for(let ae=j;ae<q;ae+=u){let le=ie+ae*a[2],ue=e[le+C];s==="max"&&ue>K?K=ue:s==="avg"&&(Z+=ue,ee++)}if(isNaN(K))break}let re=S+M*x+C;g[re]=s==="avg"?Z/ee:K}}}return f}function bC(e,t,n,a,r=!1,s=!1){let i=Ve(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Ve(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,v=x;for(;v<0;)v+=u;let k=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let C=T*l-m,E=C;for(;E<0;)E+=p;let A=Math.min(a.inWidth,c+C),P=Number.NEGATIVE_INFINITY,$=-1;for(let S=v;S<k;S+=u){let M=S-x;for(let V=E;V<A;V+=p){let j=V-C,q=f.get(g,S,V,y);q>P&&(P=q,r?$=s?((g*a.inHeight+S)*a.inWidth+V)*a.inChannels+y:(S*a.inWidth+V)*a.inChannels+y:$=M*c+j)}}i.set($,g,b,T,y)}}return i}function xC(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Ve(r.outShape,n),v=x.values,k=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let A=0;A<r.batchSize;++A){let P=A*k,$=A*a[0];for(let S=0;S<r.inChannels;++S)for(let M=0;M<r.outDepth;++M){let V=M*i-f,j=V;for(;j<0;)j+=u;let q=Math.min(r.inDepth,c+V),K=P+M*T;for(let Z=0;Z<r.outHeight;++Z){let ee=Z*o-g,re=ee;for(;re<0;)re+=p;let Y=Math.min(r.inHeight,h+ee),ie=K+Z*C;for(let ae=0;ae<r.outWidth;++ae){let le=ae*l-y,ue=le;for(;ue<0;)ue+=d;let ke=Math.min(r.inWidth,m+le),ye=ie+ae*E,Ie=b,Ee=0,$e=0;for(let je=j;je<q;je+=u){let st=$+je*a[1];for(let nt=re;nt<Y;nt+=p){let at=st+nt*a[2];for(let Te=ue;Te<ke;Te+=d){let gt=at+Te*a[3],pt=e[gt+S];if(s==="max"&&pt>Ie?Ie=pt:s==="avg"&&(Ee+=pt,$e++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Be=ye+S;v[Be]=s==="avg"?Ee/$e:Ie}}}}return x}function X5(e,t){let n=Ve(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-c,x=b;for(;x<0;)x+=i;let v=Math.min(t.inDepth,u+b);for(let k=0;k<t.outHeight;++k){let T=k*r-h,C=T;for(;C<0;)C+=o;let E=Math.min(t.inHeight,p+T);for(let A=0;A<t.outWidth;++A){let P=A*s-m,$=P;for(;$<0;)$+=l;let S=Math.min(t.inWidth,d+P),M=Number.NEGATIVE_INFINITY,V=-1;for(let j=x;j<v;j+=i){let q=j-b;for(let K=C;K<E;K+=o){let Z=K-T;for(let ee=$;ee<S;ee+=l){let re=ee-P,Y=e.get(f,j,K,ee,g);Y>=M&&(M=Y,V=q*p*d+Z*p+re)}}}n.set(V,f,y,k,A,g)}}}return n}function Y5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))d=hr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=C0(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var Q5={kernelName:ki,backendName:"cpu",kernelFunc:Y5};function J5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;xe(r,"avgPool3d");let p=_.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=xC(d,r.shape,r.dtype,w.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var Z5={kernelName:bc,backendName:"cpu",kernelFunc:J5};function eq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;xe([r,s],"avgPool3DGrad");let p=_.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,y=p.dilationDepth,b=p.dilationHeight,x=p.dilationWidth,v=p.effectiveFilterDepth,k=p.effectiveFilterHeight,T=p.effectiveFilterWidth,C=v-1-p.padInfo.front,E=T-1-p.padInfo.left,A=k-1-p.padInfo.top,P=Ve(s.shape,"float32"),$=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let V=0;V<p.inChannels;++V)for(let j=0;j<p.inDepth;++j)for(let q=0;q<p.inHeight;++q)for(let K=0;K<p.inWidth;++K){let Z=j-C,ee=q-A,re=K-E,Y=0;for(let ie=0;ie<v;ie+=y){let ae=(Z+ie)/d;if(!(ae<0||ae>=p.outDepth||Math.floor(ae)!==ae))for(let le=0;le<k;le+=b){let ue=(ee+le)/c;if(!(ue<0||ue>=p.outHeight||Math.floor(ue)!==ue))for(let ke=0;ke<T;ke+=x){let ye=(re+ke)/h;ye<0||ye>=p.outWidth||Math.floor(ye)!==ye||(Y+=S.get(M,ae,ue,ye,V))}}}P.set(Y*$,M,j,q,K,V)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var tq={kernelName:wm,backendName:"cpu",kernelFunc:eq};function nq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;xe([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=_.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,x=b-1-p.padInfo.left,v=y-1-p.padInfo.top,k=Ve(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,E=Ve(r.shape,"float32",C);for(let A=0;A<p.batchSize;++A)for(let P=0;P<p.inChannels;++P)for(let $=0;$<p.inHeight;++$)for(let S=0;S<p.inWidth;++S){let M=$-v,V=S-x,j=0;for(let q=0;q<y;q+=f){let K=(M+q)/d;if(!(K<0||K>=p.outHeight||Math.floor(K)!==K))for(let Z=0;Z<b;Z+=g){let ee=(V+Z)/c;ee<0||ee>=p.outWidth||Math.floor(ee)!==ee||(j+=E.get(A,K,ee,P))}}k.set(j*T,A,$,S,P)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var aq={kernelName:vm,backendName:"cpu",kernelFunc:nq};function rq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;w.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,y=h.length,b=c.length,x=d.length,v=0,k=0,T=0,C=0;for(let E=0;E<p.length;++E)f[E]=m[v++]+(p[E]-d[k++])*h[T++]/Math.sqrt(c[C++]+u),v>=g&&(v=0),k>=x&&(k=0),T>=y&&(T=0),C>=b&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var sq={kernelName:Oi,backendName:"cpu",kernelFunc:rq};function iq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;xe([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=_.getReshaped(r.shape,s,o),u=_.getPermuted(l.length,s.length),p=_.getReshapedPermuted(r.shape,s,o),d=_.getSliceBeginCoords(i,s.length),c=_.getSliceSize(p,i,s.length),h=kt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=mi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var oq={kernelName:Kl,backendName:"cpu",kernelFunc:iq};function lq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=x0(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var uq={kernelName:km,backendName:"cpu",kernelFunc:lq};function pq(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=_.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var cq={kernelName:Im,backendName:"cpu",kernelFunc:pq},dq=ot(bs,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),hq={kernelName:bs,backendName:"cpu",kernelFunc:dq},mq=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},fq={kernelName:xc,backendName:"cpu",kernelFunc:mq};function Rl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var gq={kernelName:Pm,backendName:"cpu",kernelFunc:Rl};function Ml(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(f=>f.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>w.sizeFromShape(f.shape)>0);if(o.length===1)return hr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(_.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>hi({inputs:{input:v},backend:n})),g=o.map(v=>Rl({inputs:{input:v},backend:n})),y=Ml({inputs:f,backend:n,attrs:{axis:s}}),b=Ml({inputs:g,backend:n,attrs:{axis:s}}),x=Yn({inputs:{real:y,imag:b},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let u=o.map(f=>{let g=w.sizeFromShape(f.shape.slice(s));return kt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=_.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=v0(p,i,t[0].dtype,d),h=_.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var yq={kernelName:Xl,backendName:"cpu",kernelFunc:Ml};function vC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;xe([r,s],"conv2d");let d=_.convertConv2DDataFormat(l),c=_.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,y=c.padInfo.left,b=c.padInfo.top,x=c.dataFormat==="channelsLast",v=new jt(c.outShape,r.dtype),k=w.computeStrides(r.shape),T=w.computeStrides(s.shape),C=k[0],E=x?k[1]:k[2],A=x?k[2]:1,P=x?1:k[1],$=v.strides[0],S=x?v.strides[1]:v.strides[2],M=x?v.strides[2]:1,V=x?1:v.strides[1],j=n.data.get(r.dataId).values,q=n.data.get(s.dataId).values,K=v.values;for(let Z=0;Z<c.batchSize;++Z){let ee=Z*C,re=Z*$;for(let Y=0;Y<c.outHeight;++Y){let ie=re+Y*S,ae=Y*c.strideHeight-b;for(let le=0;le<h;++le){let ue=ae+le*f;if(ue<0||ue>=c.inHeight)continue;let ke=le*T[0],ye=ee+ue*E;for(let Ie=0;Ie<c.outWidth;++Ie){let Ee=ie+Ie*M,$e=Ie*c.strideWidth-y;for(let Be=0;Be<m;++Be){let je=$e+Be*g;if(je<0||je>=c.inWidth)continue;let st=ke+Be*T[1],nt=ye+je*A,at=st;for(let Te=0;Te<c.inChannels;++Te){let gt=j[nt+Te*P];for(let pt=0;pt<c.outChannels;++pt)K[Ee+pt*V]+=gt*q[at+pt];at+=c.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,K)}var bq={kernelName:Ti,backendName:"cpu",kernelFunc:vC};function xq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;xe([r,s],"conv2dBackpropFilter");let d=_.convertConv2DDataFormat(l),c=_.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,y=c.dataFormat==="channelsLast",b=new jt(c.filterShape,"float32"),x=c.padInfo.left,v=c.padInfo.top,k=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=new jt(r.shape,r.dtype,k),E=new jt(s.shape,s.dtype,T);for(let A=0;A<f;++A){let P=Math.max(0,Math.ceil((v-A)/h)),$=Math.min(c.outHeight,(c.inHeight+v-A)/h);for(let S=0;S<g;++S){let M=Math.max(0,Math.ceil((x-S)/m)),V=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let j=0;j<c.inChannels;++j)for(let q=0;q<c.outChannels;++q){let K=0;for(let Z=0;Z<c.batchSize;++Z)for(let ee=P;ee<$;++ee){let re=A+ee*h-v;for(let Y=M;Y<V;++Y){let ie=S+Y*m-x;y?K+=C.get(Z,re,ie,j)*E.get(Z,ee,Y,q):K+=C.get(Z,j,re,ie)*E.get(Z,q,ee,Y)}}b.set(K,A,S,j,q)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var vq={kernelName:Nm,backendName:"cpu",kernelFunc:xq};function wq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;xe([r,s],"conv2dBackpropInput");let d=w.computeStrides(s.shape),c=w.computeStrides(r.shape),h=_.convertConv2DDataFormat(u),m=_.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new jt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,v,k]=d,{batchSize:T,filterHeight:C,filterWidth:E,inChannels:A,inHeight:P,inWidth:$,outChannels:S,outHeight:M,outWidth:V,strideHeight:j,strideWidth:q}=m;h=m.dataFormat;let K=C-1-m.padInfo.top,Z=E-1-m.padInfo.left,ee=h==="channelsLast",re=f.strides[0],Y=ee?f.strides[1]:f.strides[2],ie=ee?f.strides[2]:1,ae=ee?1:f.strides[1],le=c[0],ue=ee?c[1]:c[2],ke=ee?c[2]:1,ye=ee?1:c[1];for(let Ie=0;Ie<T;++Ie)for(let Ee=0;Ee<A;++Ee)for(let $e=0;$e<P;++$e){let Be=$e-K,je=Math.max(0,Math.ceil(Be/j)),st=Math.min(M,(C+Be)/j);for(let nt=0;nt<$;++nt){let at=nt-Z,Te=Math.max(0,Math.ceil(at/q)),gt=Math.min(V,(E+at)/q),pt=0;for(let Qt=je;Qt<st;++Qt){let Dn=Qt*j-Be;for(let Ut=Te;Ut<gt;++Ut){let Jt=Ut*q-at,Da=le*Ie+ue*Qt+ke*Ut,Rn=x*(C-1-Dn)+v*(E-1-Jt)+k*Ee;for(let Gt=0;Gt<S;++Gt){let ia=y[Da+ye*Gt],oa=b[Rn+Gt];pt+=ia*oa}}}let bn=re*Ie+Y*$e+ie*nt+ae*Ee;g[bn]=pt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var kq={kernelName:Ci,backendName:"cpu",kernelFunc:wq};function Iq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;xe([r,s],"conv3d");let u=_.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,b=g.left,x=g.top,v=new jt(u.outShape,r.dtype),k=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=v.values,E=w.computeStrides(r.shape),A=w.computeStrides(s.shape);for(let P=0;P<u.batchSize;++P){let $=P*E[0],S=P*v.strides[0];for(let M=0;M<u.outDepth;++M){let V=S+M*v.strides[1],j=M*u.strideDepth-y;for(let q=0;q<p;++q){let K=j+q*h;if(K<0||K>=u.inDepth)continue;let Z=q*A[0],ee=$+K*E[1];for(let re=0;re<u.outHeight;++re){let Y=V+re*v.strides[2],ie=re*u.strideHeight-x;for(let ae=0;ae<d;++ae){let le=ie+ae*m;if(le<0||le>=u.inHeight)continue;let ue=Z+ae*A[1],ke=ee+le*E[2];for(let ye=0;ye<u.outWidth;++ye){let Ie=Y+ye*u.outChannels,Ee=ye*u.strideWidth-b;for(let $e=0;$e<c;++$e){let Be=Ee+$e*f;if(Be<0||Be>=u.inWidth)continue;let je=ue+$e*A[2],st=ke+Be*u.inChannels,nt=je;for(let at=0;at<u.inChannels;++at){let Te=k[st+at];for(let gt=0;gt<u.outChannels;++gt)C[Ie+gt]+=Te*T[nt+gt];nt+=u.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var Sq={kernelName:vc,backendName:"cpu",kernelFunc:Iq};function Nq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;xe([r,s],"conv3dBackpropFilterV2");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),d=_.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,y=d.filterWidth,b=new jt(d.filterShape,"float32"),x=b.values,[v,k,T,C]=b.strides,E=n.data.get(s.dataId).values,[A,P,$,S]=p,M=n.data.get(r.dataId).values,[V,j,q,K]=u,Z=d.padInfo.front,ee=d.padInfo.left,re=d.padInfo.top;for(let Y=0;Y<f;++Y){let ie=Math.max(0,Math.ceil((Z-Y)/c)),ae=Math.min(d.outDepth,(d.inDepth+Z-Y)/c),le=Y*v;for(let ue=0;ue<g;++ue){let ke=Math.max(0,Math.ceil((re-ue)/h)),ye=Math.min(d.outHeight,(d.inHeight+re-ue)/h),Ie=ue*k+le;for(let Ee=0;Ee<y;++Ee){let $e=Math.max(0,Math.ceil((ee-Ee)/m)),Be=Math.min(d.outWidth,(d.inWidth+ee-Ee)/m),je=Ee*T+Ie;for(let st=0;st<d.inChannels;++st){let nt=st*C+je;for(let at=0;at<d.outChannels;++at){let Te=0;for(let gt=0;gt<d.batchSize;++gt){let pt=gt*V,bn=gt*A;for(let Qt=ie;Qt<ae;++Qt){let Dn=(Y+Qt*c-Z)*j+pt,Ut=Qt*P+bn;for(let Jt=ke;Jt<ye;++Jt){let Da=(ue+Jt*h-re)*q+Dn,Rn=Jt*$+Ut;for(let Gt=$e;Gt<Be;++Gt){let ia=(Ee+Gt*m-ee)*K+Da,oa=Gt*S+Rn;Te+=M[ia+st]*E[oa+at]}}}}x[nt+at]=Te}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var Tq={kernelName:Tm,backendName:"cpu",kernelFunc:Nq};function Cq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;xe([r],"conv3dBackpropInputV2");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),d=_.computeConv3DInfo(l,s.shape,o,1,i),c=new jt(d.inShape,"float32"),h=c.values,[m,f,g,y]=c.strides,b=n.data.get(r.dataId).values,[x,v,k,T]=u,C=n.data.get(s.dataId).values,[E,A,P,$]=p,{batchSize:S,filterDepth:M,filterHeight:V,filterWidth:j,inChannels:q,inDepth:K,inHeight:Z,inWidth:ee,outChannels:re,outDepth:Y,outHeight:ie,outWidth:ae,strideDepth:le,strideHeight:ue,strideWidth:ke}=d,ye=M-1-d.padInfo.front,Ie=V-1-d.padInfo.top,Ee=j-1-d.padInfo.left;for(let $e=0;$e<S;++$e)for(let Be=0;Be<q;++Be)for(let je=0;je<K;++je){let st=je-ye,nt=Math.max(0,Math.ceil(st/le)),at=Math.min(Y,(M+st)/le);for(let Te=0;Te<Z;++Te){let gt=Te-Ie,pt=Math.max(0,Math.ceil(gt/ue)),bn=Math.min(ie,(V+gt)/ue);for(let Qt=0;Qt<ee;++Qt){let Dn=Qt-Ee,Ut=Math.max(0,Math.ceil(Dn/ke)),Jt=Math.min(ae,(j+Dn)/ke),Da=0;for(let Rn=nt;Rn<at;++Rn){let Gt=Rn*le-st;for(let ia=pt;ia<bn;++ia){let oa=ia*ue-gt;for(let Hr=Ut;Hr<Jt;++Hr){let Rs=Hr*ke-Dn,Md=x*$e+v*Rn+k*ia+T*Hr,jr=E*(M-1-Gt)+A*(V-1-oa)+P*(j-1-Rs)+$*Be;for(let kr=0;kr<re;++kr){let wp=b[Md+kr],Qo=C[jr+kr];Da+=wp*Qo}}}}h[m*$e+f*je+g*Te+y*Qt+Be]=Da}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var _q={kernelName:Cm,backendName:"cpu",kernelFunc:Cq},Eq=ot(_i,e=>Math.cos(e)),Fq={kernelName:_i,backendName:"cpu",kernelFunc:Eq},Aq=ot(Ei,e=>Math.cosh(e)),$q={kernelName:Ei,backendName:"cpu",kernelFunc:Aq};function Dq(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,y=Ve([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,k=w.computeStrides(r.shape),T=w.computeStrides(y.shape);for(let C=0;C<m;C++){let E=C*4,A=b[E],P=b[E+1],$=b[E+2],S=b[E+3],M=x[C];if(M>=p)continue;let V=f>1?($-A)*(d-1)/(f-1):0,j=g>1?(S-P)*(c-1)/(g-1):0;for(let q=0;q<f;q++){let K=f>1?A*(d-1)+q*V:.5*(A+$)*(d-1);if(K<0||K>d-1){for(let Z=0;Z<g;Z++)for(let ee=0;ee<h;ee++){let re=ee+Z*T[2]+q*T[1]+C*T[0];y.values[re]=u}continue}if(l==="bilinear"){let Z=Math.floor(K),ee=Math.ceil(K),re=K-Z;for(let Y=0;Y<g;Y++){let ie=g>1?P*(c-1)+Y*j:.5*(P+S)*(c-1);if(ie<0||ie>c-1){for(let ke=0;ke<h;ke++){let ye=ke+Y*T[2]+q*T[1]+C*T[0];y.values[ye]=u}continue}let ae=Math.floor(ie),le=Math.ceil(ie),ue=ie-ae;for(let ke=0;ke<h;ke++){let ye=ke+ae*k[2]+Z*k[1]+M*k[0],Ie=v[ye];ye=ke+le*k[2]+Z*k[1]+M*k[0];let Ee=v[ye];ye=ke+ae*k[2]+ee*k[1]+M*k[0];let $e=v[ye];ye=ke+le*k[2]+ee*k[1]+M*k[0];let Be=v[ye],je=Ie+(Ee-Ie)*ue,st=$e+(Be-$e)*ue;ye=ke+Y*T[2]+q*T[1]+C*T[0],y.values[ye]=je+(st-je)*re}}}else for(let Z=0;Z<g;++Z){let ee=g>1?P*(c-1)+Z*j:.5*(P+S)*(c-1);if(ee<0||ee>c-1){for(let ie=0;ie<h;ie++){let ae=ie+Z*T[2]+q*T[1]+C*T[0];y.values[ae]=u}continue}let re=Math.round(ee),Y=Math.round(K);for(let ie=0;ie<h;ie++){let ae=ie+re*k[2]+Y*k[1]+M*k[0],le=ie+Z*T[2]+q*T[1]+C*T[0];y.values[le]=v[ae]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var Rq={kernelName:Ql,backendName:"cpu",kernelFunc:Dq};function Mq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumprod");let l=_.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=_.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=fa(u.dtype,"int32"),c=w.makeOnesTypedArray(w.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?1:h[x];else{let v=f(y,b-1);c[x]=i?h[v]*c[v]:h[x]*c[v]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=_.getUndoAxesPermutation(l),b=Vn({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var Pq={kernelName:Yl,backendName:"cpu",kernelFunc:Mq};function Oq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumsum");let l=_.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=_.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=fa(u.dtype,"int32"),c=w.makeZerosTypedArray(w.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?0:h[x];else{let v=f(y,b-1);c[x]=i?h[v]+c[v]:h[x]+c[v]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=_.getUndoAxesPermutation(l),b=Vn({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var Lq={kernelName:Fi,backendName:"cpu",kernelFunc:Oq};function zq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=x0(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=FT(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Bq={kernelName:_m,backendName:"cpu",kernelFunc:zq};function Wq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<d;++b){let x=Math.floor(b/s),v=b%s;for(let k=0;k<c;++k){let T=Math.floor(k/s),C=k%s,E=(v*s+C)*h;for(let A=0;A<h;++A){let P=A+E+p*(T+u*(x+l*y));f[g++]=m[P]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var Vq={kernelName:Jl,backendName:"cpu",kernelFunc:Wq};function wC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;xe([r,s],"depthwiseConv2DNative");let p=w.computeStrides(r.shape),d=w.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,v=b.top,k=h.outChannels/h.inChannels,T=new jt(h.outShape,r.dtype),C=n.data.get(r.dataId).values,E=n.data.get(s.dataId).values,A=T.values;for(let P=0;P<h.batchSize;++P){let $=P*p[0],S=P*T.strides[0];for(let M=0;M<h.outHeight;++M){let V=S+M*T.strides[1],j=M*h.strideHeight-v;for(let q=0;q<m;++q){let K=j+q*g;if(K<0||K>=h.inHeight)continue;let Z=q*d[0],ee=$+K*p[1];for(let re=0;re<h.outWidth;++re){let Y=V+re*T.strides[2],ie=re*h.strideWidth-x;for(let ae=0;ae<f;++ae){let le=ie+ae*y;if(le<0||le>=h.inWidth)continue;let ue=Z+ae*d[1],ke=ee+le*h.inChannels,ye=Y,Ie=ue;for(let Ee=0;Ee<h.inChannels;++Ee){let $e=C[ke+Ee];for(let Be=0;Be<k;++Be)A[ye+Be]+=$e*E[Ie+Be];ye+=k,Ie+=k}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var Uq={kernelName:Ai,backendName:"cpu",kernelFunc:wC};function Gq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;xe([r,s],"depthwiseConv2dNativeBackpropFilter");let d=_.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new jt(d.filterShape,"float32"),y=d.padInfo.left,b=d.padInfo.top,x=d.outChannels/d.inChannels,v=n.data.get(r.dataId).values,k=new jt(r.shape,r.dtype,v),T=n.data.get(s.dataId).values,C=new jt(s.shape,s.dtype,T);for(let E=0;E<m;++E){let A=Math.max(0,Math.ceil((b-E)/c)),P=Math.min(d.outHeight,(d.inHeight+b-E)/c);for(let $=0;$<f;++$){let S=Math.max(0,Math.ceil((y-$)/h)),M=Math.min(d.outWidth,(d.inWidth+y-$)/h);for(let V=0;V<d.outChannels;++V){let j=Math.trunc(V/x),q=V%x,K=0;for(let Z=0;Z<d.batchSize;++Z)for(let ee=A;ee<P;++ee){let re=E+ee*c-b;for(let Y=S;Y<M;++Y){let ie=$+Y*h-y;K+=k.get(Z,re,ie,j)*C.get(Z,ee,Y,V)}}g.set(K,E,$,j,q)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var Hq={kernelName:Em,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;xe([r,s],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),c=w.computeStrides(s.shape),h=_.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new jt(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[v,k,T]=d,C=n.data.get(s.dataId).values,[E,A,P]=c,{batchSize:$,filterHeight:S,filterWidth:M,inChannels:V,inHeight:j,inWidth:q,outChannels:K,outHeight:Z,outWidth:ee,strideHeight:re,strideWidth:Y}=h,ie=S-1-h.padInfo.top,ae=M-1-h.padInfo.left,le=K/V;for(let ue=0;ue<$;++ue)for(let ke=0;ke<V;++ke)for(let ye=0;ye<j;++ye){let Ie=ye-ie,Ee=Math.max(0,Math.ceil(Ie/re)),$e=Math.min(Z,(S+Ie)/re);for(let Be=0;Be<q;++Be){let je=Be-ae,st=Math.max(0,Math.ceil(je/Y)),nt=Math.min(ee,(M+je)/Y),at=0;for(let Te=Ee;Te<$e;++Te){let gt=Te*re-Ie;for(let pt=st;pt<nt;++pt){let bn=pt*Y-je,Qt=v*ue+k*Te+T*pt,Dn=E*(S-1-gt)+A*(M-1-bn)+P*ke;for(let Ut=0;Ut<le;++Ut){let Jt=ke*le+Ut,Da=x[Qt+Jt],Rn=C[Dn+Ut];at+=Da*Rn}}}f[g*ue+y*ye+b*Be+ke]=at}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var qq={kernelName:Fm,backendName:"cpu",kernelFunc:jq};function Kq(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Ve([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var Xq={kernelName:Am,backendName:"cpu",kernelFunc:Kq},Yq={kernelName:wc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:v,strideWidth:k,filterHeight:T,filterWidth:C,dilationHeight:E,dilationWidth:A,outShape:P}=_.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),$=w.sizeFromShape(P),S=P.length,M=w.getArrayFromDType(a.dtype,$);for(let V=0;V<h;++V)for(let j=0;j<y;++j){let q=j*v-x.top;for(let K=0;K<b;++K){let Z=K*k-x.left;for(let ee=0;ee<g;++ee){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<T;++ie){let ae=q+ie*E;if(ae>=0&&ae<m)for(let le=0;le<C;++le){let ue=Z+le*A;if(ue>=0&&ue<f){let ke=w.locToIndex([V,ae,ue,ee],p,w.computeStrides(a.shape)),ye=w.locToIndex([ie,le,ee],c,w.computeStrides(r.shape)),Ie=u[ke]+d[ye];Ie>re&&(re=Ie)}}}let Y=w.locToIndex([V,j,K,ee],S,w.computeStrides(P));M[Y]=re}}}return{dataId:l.write(w.toTypedArray(M,a.dtype),P,a.dtype),shape:P,dtype:a.dtype}}},Qq={kernelName:Gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=w.toNestedArray(a.shape,u.data.get(a.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:k,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:A}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===A.length,()=>`Error in ${Gh}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let P=w.toNestedArray(A,u.data.get(s.dataId).values),$=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let V=M*x-b.top;for(let j=0;j<y;++j){let q=j*v-b.left;for(let K=0;K<f;++K){let Z=Number.MIN_SAFE_INTEGER,ee=0,re=0;for(let Y=0;Y<k;++Y){let ie=V+Y*C;if(ie>=0&&ie<h)for(let ae=0;ae<T;++ae){let le=q+ae*E;if(le>=0&&le<m){let ue=p[S][ie][le][K]+d[Y][ae][K];ue>Z&&(Z=ue,ee=Y,re=ae)}}}$[ee][re][K]+=P[S][M][j][K]}}}return{dataId:u.write(w.toTypedArray($,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Jq={kernelName:Uh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=w.toNestedArray(a.shape,u.data.get(a.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:k,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:A}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===A.length,()=>`Error in ${Uh}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let P=w.toNestedArray(A,u.data.get(s.dataId).values),$=w.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let V=M*x-b.top;for(let j=0;j<y;++j){let q=j*v-b.left;for(let K=0;K<f;++K){let Z=Number.MIN_SAFE_INTEGER,ee=V<0?0:V,re=q<0?0:q;for(let Y=0;Y<k;++Y){let ie=V+Y*C;if(ie>=0&&ie<h)for(let ae=0;ae<T;++ae){let le=q+ae*E;if(le>=0&&le<m){let ue=p[S][ie][le][K]+d[Y][ae][K];ue>Z&&(Z=ue,ee=ie,re=le)}}}$[S][ee][re][K]+=P[S][M][j][K]}}}return{dataId:u.write(w.toTypedArray($,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function ld(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"sum");let o;r.dtype==="bool"?o=ms({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=hr({inputs:{x:r},backend:n});let l=o.shape.length,u=w.parseAxisParam(s,o.shape),p=_.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Vn({inputs:{x:o},backend:n,attrs:{perm:p}}),d=_.getInnerMostAxes(d.length,l)),_.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=_.computeOutAndReduceShapes(c.shape,d),f=_.upcastType(c.dtype,"int32"),g=pm(n,h,f),y=w.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let v=0;v<b.length;++v){let k=v*y,T=0;for(let C=0;C<y;++C)T+=x[k+C];b[v]=T}if(i){let v=_.expandShapeToKeepDim(g.shape,u),k=g;g=kt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(k)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var Zq={kernelName:po,backendName:"cpu",kernelFunc:ld};function eK(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=_.decodeEinsumEquation(r,s.length);_.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=_.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=_.getEinsumPermutation(h,l[g]),x;_.isIdentityPermutation(y)?x=s[g]:(x=Vn({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let k=0;k<b.length;++k)v.splice(b[k],0,1);w.arraysEqual(x.shape,v)||(x=kt({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=ng({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=ld({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var tK={kernelName:$m,backendName:"cpu",kernelFunc:eK};function nK(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;xe([a,r],"eluGrad");let s=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var aK={kernelName:Dm,backendName:"cpu",kernelFunc:nK},rK=_.ERF_P,sK=_.ERF_A1,iK=_.ERF_A2,oK=_.ERF_A3,lK=_.ERF_A4,uK=_.ERF_A5,pK=ot(Zl,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+rK*n);return t*(1-((((uK*a+lK)*a+oK)*a+iK)*a+sK)*a*Math.exp(-n*n))}),cK={kernelName:Zl,backendName:"cpu",kernelFunc:pK};function dm(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),kt({inputs:{x:r},backend:n,attrs:{shape:o}})}var dK={kernelName:tu,backendName:"cpu",kernelFunc:dm},hK=Vt((e,t)=>e/t),_0=sn($i,hK),mx={kernelName:$i,backendName:"cpu",kernelFunc:_0};function kC(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=w.sizeFromShape(u),d=w.getTypedArrayFromDType("float32",p),c=w.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let y=mi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=mi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Yn({inputs:{real:y,imag:b},backend:n}),{real:v,imag:k}=mK(x,t,n),T=_.mergeRealAndImagArrays(v,k);for(let C=0;C<s;C++){let E=_.getComplexWithIndex(T,C);d[g*s+C]=E.real,c[g*s+C]=E.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Yn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function mK(e,t,n){let a=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(fK(a)){let o=fx(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),c=hr({inputs:{x:d},backend:n}),h=mx.kernelFunc({inputs:{a:u,b:d},backend:n}),m=mx.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=_.mergeRealAndImagArrays(s,i),l=gK(o,a,t);return _.splitRealAndImagArrays(l)}}function fK(e){return(e&e-1)===0}function fx(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=_.mergeRealAndImagArrays(e,t),i=n/2,o=_.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Yn({inputs:{real:d,imag:c},backend:r}),m=_.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=Yn({inputs:{real:b,imag:x},backend:r}),k=fx(l,u,i,a,r),T=k.real,C=k.imag,E=[T.length],A=r.makeTensorInfo(E,"float32",T),P=r.makeTensorInfo(E,"float32",C),$=Yn({inputs:{real:A,imag:P},backend:r}),S=fx(f,g,i,a,r),M=S.real,V=S.imag,j=[M.length],q=r.makeTensorInfo(j,"float32",M),K=r.makeTensorInfo(j,"float32",V),Z=Yn({inputs:{real:q,imag:K},backend:r}),ee=_.exponents(n,a),re=[ee.real.length],Y=r.makeTensorInfo(re,"float32",ee.real),ie=r.makeTensorInfo(re,"float32",ee.imag),ae=Yn({inputs:{real:Y,imag:ie},backend:r}),le=ng({inputs:{a:ae,b:Z},backend:r}),ue=Dl({inputs:{a:$,b:le},backend:r}),ke=N0({inputs:{a:$,b:le},backend:r}),ye=hi({inputs:{input:ue},backend:r}),Ie=hi({inputs:{input:ke},backend:r}),Ee=Rl({inputs:{input:ue},backend:r}),$e=Rl({inputs:{input:ke},backend:r}),Be=Ml({inputs:[ye,Ie],backend:r,attrs:{axis:0}}),je=Ml({inputs:[Ee,$e],backend:r,attrs:{axis:0}}),st=r.data.get(Be.dataId).values,nt=r.data.get(je.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(Y),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(je),{real:st,imag:nt}}function gK(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=_.exponent(r*o,t,n),u=_.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),_.assignToTypedArray(a,s,i,r)}return a}function yK(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=kt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=kC(o,!1,n),u=kt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var bK={kernelName:Rm,backendName:"cpu",kernelFunc:yK};function E0(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(a));return vK(o,r,i),t.makeTensorInfo(a,i,o)}var xK={kernelName:kc,backendName:"cpu",kernelFunc:E0};function vK(e,t,n){e.fill(t)}var wK={kernelName:au,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let b=Math.round(l-f-1),x=c+m+g+y,v=p[x];if(b>=0&&b<l){let k=b*u,T=c+m+k+y;v=p[T]}s[x]=v}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},kK=Vt((e,t)=>Math.floor(e/t)),IK=sn(Pi,kK,null,"int32"),SK={kernelName:Pi,backendName:"cpu",kernelFunc:IK};function NK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=vC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let y=kt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=Dl({inputs:{a:f,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else f=Dl({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=T0(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var TK={kernelName:ai,backendName:"cpu",kernelFunc:NK};function CK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=wC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=Dl({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=T0(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var _K={kernelName:ri,backendName:"cpu",kernelFunc:CK};function EK(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=w.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=_.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=LT(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var FK={kernelName:su,backendName:"cpu",kernelFunc:EK};function AK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;xe([r,s],"gatherV2");let l=w.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let v=0;v<u.length;++v){let k=u[v];w.assert(k<=p-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=w.sizeFromShape(s.shape),h=_.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=kt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=kt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],y=n.bufferSync(f),b=n.bufferSync(m),x=zT(b,y,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var $K={kernelName:ru,backendName:"cpu",kernelFunc:AK};function DK(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=kt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=kC(o,!0,n),u=kt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var RK={kernelName:Mm,backendName:"cpu",kernelFunc:DK},MK=ot(ou,e=>Number.isFinite(e)?1:0,"bool"),PK={kernelName:ou,backendName:"cpu",kernelFunc:MK},OK=ot(lu,e=>Math.abs(e)===1/0?1:0,"bool"),LK={kernelName:lu,backendName:"cpu",kernelFunc:OK},zK=ot(uu,e=>Number.isNaN(e)?1:0,"bool"),BK={kernelName:uu,backendName:"cpu",kernelFunc:zK};function WK(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=GT(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var VK={kernelName:Om,backendName:"cpu",kernelFunc:WK},UK=ot(du,e=>Math.log1p(e)),GK={kernelName:du,backendName:"cpu",kernelFunc:UK},HK=Vt((e,t)=>e&&t),jK=sn(hu,HK,null,"bool"),qK={kernelName:hu,backendName:"cpu",kernelFunc:jK},KK=ot(Ic,e=>e?0:1,"bool"),XK={kernelName:Ic,backendName:"cpu",kernelFunc:KK},YK=Vt((e,t)=>e||t),QK=sn(Sc,YK,null,"bool"),JK={kernelName:Sc,backendName:"cpu",kernelFunc:QK};function ZK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;xe(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,p),x=0;for(;y<=b;y++){let v=d[y];x+=v*v}return x}for(let f=0;f<c;f++){let g=m(f),y=d[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var e8={kernelName:Nc,backendName:"cpu",kernelFunc:ZK};function t8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;xe(i,"LRNGrad");let d=w.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),y=d;for(let b=0;b<y;b++){let x=b%c,v=b-x+Math.max(0,x-o),k=b-x+Math.min(c,x+o+1),T=0;for(let C=v;C<k;C++)T+=Math.pow(m[C],2);T=u*T+l;for(let C=v;C<k;C++){let E=-2*u*p*m[C]*f[b]/T;b===C&&(E+=Math.pow(T,-p)),E*=h[b],g[C]+=E}}return n.makeTensorInfo(i.shape,r.dtype,g)}var n8={kernelName:Lm,backendName:"cpu",kernelFunc:t8};function IC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=w.parseAxisParam(s,l),d=p,c=_.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let v=new Array(u);for(let k=0;k<v.length;k++)v[k]=l[c[k]];h=k0(h,l,r.dtype,c,v),d=_.getInnerMostAxes(d.length,u),l=v}xe(r,"max"),_.assertAxesAreInnerMostDims("max",d,u);let[m,f]=_.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(f),y=jT(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=_.expandShapeToKeepDim(m,p)),{dataId:b,shape:x,dtype:r.dtype}}var a8={kernelName:Vi,backendName:"cpu",kernelFunc:IC};function r8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))d=hr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=C0(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var s8={kernelName:Gi,backendName:"cpu",kernelFunc:r8};function i8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;xe(r,"maxPool3d");let p=_.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=xC(d,r.shape,r.dtype,w.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var o8={kernelName:Tc,backendName:"cpu",kernelFunc:i8};function l8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;xe([r,s],"maxPool3DGrad");let p=_.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=X5(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,y=p.dilationHeight,b=p.dilationWidth,x=p.effectiveFilterDepth,v=p.effectiveFilterHeight,k=p.effectiveFilterWidth,T=x-1-p.padInfo.front,C=k-1-p.padInfo.left,E=v-1-p.padInfo.top,A=Ve(s.shape,"float32"),P=n.bufferSync(r);for(let $=0;$<p.batchSize;++$)for(let S=0;S<p.inChannels;++S)for(let M=0;M<p.inDepth;++M)for(let V=0;V<p.inHeight;++V)for(let j=0;j<p.inWidth;++j){let q=M-T,K=V-E,Z=j-C,ee=0;for(let re=0;re<x;re+=g){let Y=(q+re)/h;if(!(Y<0||Y>=p.outDepth||Math.floor(Y)!==Y))for(let ie=0;ie<v;ie+=y){let ae=(K+ie)/m;if(!(ae<0||ae>=p.outHeight||Math.floor(ae)!==ae))for(let le=0;le<k;le+=b){let ue=(Z+le)/f;if(ue<0||ue>=p.outWidth||Math.floor(ue)!==ue)continue;let ke=x*v*k-1-c.get($,Y,ae,ue,S),ye=re*v*k+ie*k+le,Ie=ke===ye?1:0;Ie!==0&&(ee+=P.get($,Y,ae,ue,S)*Ie)}}}A.set(ee,$,M,V,j,S)}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var u8={kernelName:Bm,backendName:"cpu",kernelFunc:l8};function p8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=_.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=Ve(c.outShape,o.dtype,bC(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,y=c.dilationHeight,b=c.dilationWidth,x=c.effectiveFilterHeight,v=c.effectiveFilterWidth,k=v-1-c.padInfo.left,T=x-1-c.padInfo.top,C=Ve(o.shape,"float32"),E=n.data.get(r.dataId).values,A=Ve(r.shape,"float32",E);for(let P=0;P<c.batchSize;++P)for(let $=0;$<c.inChannels;++$)for(let S=0;S<c.inHeight;++S)for(let M=0;M<c.inWidth;++M){let V=S-T,j=M-k,q=0;for(let K=0;K<x;K+=y){let Z=(V+K)/f;if(!(Z<0||Z>=c.outHeight||Math.floor(Z)!==Z))for(let ee=0;ee<v;ee+=b){let re=(j+ee)/g;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let Y=x*v-1-m.get(P,Z,re,$),ie=K*v+ee,ae=Y===ie?1:0;ae!==0&&(q+=A.get(P,Z,re,$)*ae)}}C.set(q,P,S,M,$)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var c8={kernelName:zm,backendName:"cpu",kernelFunc:p8};function d8(e,t,n,a,r){let s=w.computeStrides(t),i=C0(e,t,n,s,r,"max"),o=bC(e,t,n,r,!0,a);return[i.values,o.values]}var h8={kernelName:Wm,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=_.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=d8(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function m8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=w.parseAxisParam(s,r.shape),l=_.computeOutAndReduceShapes(r.shape,o)[1],u=w.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=ms({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=_0({inputs:{a:c,b:d},backend:n});p.push(h);let m=ld({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var f8={kernelName:Hi,backendName:"cpu",kernelFunc:m8};function g8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"min");let o=w.parseAxisParam(s,r.shape),l=o,u=_.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=_.computeOutAndReduceShapes(p.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let k=f[b+v];(Number.isNaN(k)||k<x)&&(x=k)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=_.expandShapeToKeepDim(d,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var y8={kernelName:ji,backendName:"cpu",kernelFunc:g8};function b8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;xe(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),u=s.map((b,x)=>b[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=w.computeStrides(r.shape),m=w.sizeFromShape(o),f=o.length,g=w.computeStrides(o),y=w.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=w.indexToLoc(b,f,g);for(let k=0;k<f;k++)x[k]<l[k]?x[k]=l[k]*2-x[k]-p:x[k]>=u[k]&&(x[k]=(u[k]-1)*2-x[k]+p);x=x.map((k,T)=>k-l[T]);let v=w.locToIndex(x,c,h);y[b]=d[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var x8={kernelName:Ki,backendName:"cpu",kernelFunc:b8},v8=Vt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),w8=sn(mu,v8),k8={kernelName:mu,backendName:"cpu",kernelFunc:w8},I8=bi(yI());function SC(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=w.parseAxisParam([o],r.shape),u=IC({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=_.expandShapeToKeepDim(u.shape,l),d=kt({inputs:{x:u},backend:n,attrs:{shape:p}}),c=N0({inputs:{a:r,b:d},backend:n}),h=MT({inputs:{x:c},backend:n}),m=ld({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=_0({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var S8={kernelName:co,backendName:"cpu",kernelFunc:SC};function N8(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;xe(r,"multinomial");let l=o?r:SC({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=w.makeZerosTypedArray(w.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let y=I8.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let v=y();h[b+x]=g.length;for(let k=0;k<g.length;k++)if(v<g[k]){h[b+x]=k;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var T8={kernelName:Vm,backendName:"cpu",kernelFunc:N8},C8=gr.nonMaxSuppressionV3Impl;function _8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;xe(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=C8(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var E8={kernelName:yu,backendName:"cpu",kernelFunc:_8},F8=gr.nonMaxSuppressionV4Impl;function A8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;xe(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=F8(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var $8={kernelName:bu,backendName:"cpu",kernelFunc:A8},D8=gr.nonMaxSuppressionV5Impl;function R8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;xe(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=D8(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var M8={kernelName:xu,backendName:"cpu",kernelFunc:R8};function P8(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;xe(r,"oneHot");let l=w.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let p=n.data.get(r.dataId).values;for(let d=0;d<l;++d)p[d]>=0&&p[d]<s&&(u[d*s+p[d]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var O8={kernelName:Yi,backendName:"cpu",kernelFunc:P8};function hm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=hi({inputs:{input:a},backend:n}),s=hm({inputs:{x:r},backend:n}),i=Rl({inputs:{input:a},backend:n}),o=hm({inputs:{x:i},backend:n}),l=Yn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return E0({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var L8={kernelName:Lu,backendName:"cpu",kernelFunc:hm};function NC(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=hi({inputs:{input:a},backend:n}),s=NC({inputs:{x:r},backend:n}),i=Rl({inputs:{input:a},backend:n}),o=hm({inputs:{x:i},backend:n}),l=Yn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return E0({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var z8={kernelName:vu,backendName:"cpu",kernelFunc:NC};function TC(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return dm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=dm({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=Ml({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var B8={kernelName:wu,backendName:"cpu",kernelFunc:TC};function W8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;xe(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,p=w.sizeFromShape(r.shape),d=r.shape.length,c=w.computeStrides(r.shape),h=w.sizeFromShape(o),m=o.length,f=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<p;y++){let b=w.indexToLoc(y,d,c).map((v,k)=>v+l[k]),x=w.locToIndex(b,m,f);g[x]=u[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var CC={kernelName:Qi,backendName:"cpu",kernelFunc:W8},V8=Vt((e,t)=>Math.pow(e,t)),U8=sn(Ji,V8),G8={kernelName:Ji,backendName:"cpu",kernelFunc:U8};function H8(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=I0(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var j8={kernelName:Cc,backendName:"cpu",kernelFunc:H8},q8=ot(ku,e=>1/e),K8={kernelName:ku,backendName:"cpu",kernelFunc:q8};function X8(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeBilinear");let l=w.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,u,p,m])),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,v=y[0]/b[0],k=y[1]/b[1];for(let T=0;T<d;T++)for(let C=0;C<u;C++){let E;i?E=v*(C+.5)-.5:E=v*C;let A=Math.max(0,Math.floor(E)),P=E-A,$=Math.min(c-1,Math.ceil(E)),S=T*l[0]+A*l[1],M=T*l[0]+$*l[1];for(let V=0;V<p;V++){let j;i?j=k*(V+.5)-.5:j=k*V;let q=Math.max(0,Math.floor(j)),K=j-q,Z=Math.min(h-1,Math.ceil(j)),ee=S+q*l[2],re=M+q*l[2],Y=S+Z*l[2],ie=M+Z*l[2];for(let ae=0;ae<m;ae++){let le=f[ee+ae],ue=f[re+ae],ke=f[Y+ae],ye=f[ie+ae],Ie=le+(ke-le)*K,Ee=ue+(ye-ue)*K,$e=Ie+(Ee-Ie)*P;g[x++]=$e}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var Y8={kernelName:no,backendName:"cpu",kernelFunc:X8};function Q8(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let k=0;k<l;k++){let T=k*o[0];for(let C=0;C<c;C++){let E=C*y,A=Math.floor(E),P=Math.min(Math.ceil(E),u-1),$=T+A*o[1],S=T+P*o[1],M=E-A,V=1-M;for(let j=0;j<h;j++){let q=j*b,K=Math.floor(q),Z=Math.min(Math.ceil(q),p-1),ee=q-K,re=1-ee,Y=$+K*o[2],ie=$+Z*o[2],ae=S+K*o[2],le=S+Z*o[2],ue=V*re,ke=V*ee,ye=M*re,Ie=M*ee;for(let Ee=0;Ee<d;Ee++){let $e=x[v++];m[Y+Ee]+=$e*ue,m[ie+Ee]+=$e*ke,m[ae+Ee]+=$e*ye,m[le+Ee]+=$e*Ie}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var J8={kernelName:Hm,backendName:"cpu",kernelFunc:Q8};function Z8(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=y[0]/b[0],v=y[1]/b[1],k=0;for(let T=0;T<d;T++){let C=T*l[0];for(let E=0;E<u;E++){let A=i?x*(E+.5):x*E,P=Math.min(c-1,s?Math.round(A):Math.floor(A));i&&(P=Math.max(0,P));let $=C+P*l[1];for(let S=0;S<p;S++){let M=i?v*(S+.5):v*S,V=Math.min(h-1,s?Math.round(M):Math.floor(M));i&&(V=Math.max(0,V));let j=$+V*l[2];for(let q=0;q<m;q++){let K=f[j+q];g[k++]=K}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var eX={kernelName:_c,backendName:"cpu",kernelFunc:Z8};function tX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),l=w.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,y=[i&&h>1?p-1:p,i&&m>1?d-1:d],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],v=y[1]/b[1],k=1/x,T=1/v,C=Math.ceil(k)*2+2,E=Math.ceil(T)*2+2;for(let A=0;A<u;A++){let P=A*o[0];for(let $=0;$<p;$++){let S=P+$*o[1],M=Math.floor($*k),V=Math.floor(M-C/2);for(let j=0;j<d;j++){let q=S+j*o[2],K=Math.floor(j*T),Z=Math.floor(K-E/2);for(let ee=0;ee<c;ee++){let re=0;for(let Y=0;Y<C;Y++){let ie=Y+V;if(ie<0||ie>=h)continue;let ae=P+ie*l[1],le=ie*x,ue=Math.min(p-1,i?Math.round(le):Math.floor(le));if($===ue)for(let ke=0;ke<E;ke++){let ye=ke+Z;if(ye<0||ye>=m)continue;let Ie=ae+ye*l[2],Ee=ye*v,$e=Math.min(d-1,i?Math.round(Ee):Math.floor(Ee));j===$e&&(re+=g[Ie+ee])}}f[q+ee]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var nX={kernelName:Gm,backendName:"cpu",kernelFunc:tX};function aX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;xe(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return hr({inputs:{x:r},backend:n});let l=new jt(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var rX={kernelName:ro,backendName:"cpu",kernelFunc:aX},sX={kernelName:zu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=_.getImageCenter(i,p,d),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let v=x*d*p*c;for(let k=0;k<p;k++){let T=k*(d*c);for(let C=0;C<d;C++){let E=C*c;for(let A=0;A<c;A++){let P=[u,k,C,A],$=P[2],S=P[1],M=($-h)*y-(S-m)*g,V=($-h)*g+(S-m)*y;M=Math.round(M+h),V=Math.round(V+m);let j=s;if(typeof s!="number"&&(A===3?j=f:j=s[A]),M>=0&&M<d&&V>=0&&V<p){let K=V*(d*c),Z=M*c,ee=v+K+Z+A;j=b[ee]}let q=v+T+E+A;l[q]=j}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},iX=ot(so,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),oX={kernelName:so,backendName:"cpu",kernelFunc:iX};function lX(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=_.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=gl(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var uX={kernelName:Su,backendName:"cpu",kernelFunc:lX};function pX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<t?n=r+1:a=r;return a}function cX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<=t?n=r+1:a=r;return a}function dX(e,t,n,a,r,s){let i=w.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let l=e.slice(o*a,(o+1)*a),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?pX(l,t[p+u]):cX(l,t[p+u])}return i}function hX(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=dX(o,l,r.shape[0],r.shape[1],s.shape[1],i);return n.makeTensorInfo(s.shape,"int32",u)}var mX={kernelName:jm,backendName:"cpu",kernelFunc:hX};function fX(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;xe([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=fa(r.dtype,s.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var gX={kernelName:Nu,backendName:"cpu",kernelFunc:fX},yX=_.SELU_SCALEALPHA,bX=_.SELU_SCALE,xX=ot(Tu,e=>e>=0?bX*e:yX*(Math.exp(e)-1)),vX={kernelName:Tu,backendName:"cpu",kernelFunc:xX},wX=ot(Eu,e=>e<0?-1:e>0?1:0),kX={kernelName:Eu,backendName:"cpu",kernelFunc:wX},IX=ot(oo,e=>Math.sin(e)),SX={kernelName:oo,backendName:"cpu",kernelFunc:IX},NX=ot(_u,e=>Math.sinh(e)),TX={kernelName:_u,backendName:"cpu",kernelFunc:NX},CX=11920928955078125e-23,Uk=Math.log(CX)+2,_X=ot(Fu,e=>{let t=e>-Uk,n=e<Uk,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),EX={kernelName:Fu,backendName:"cpu",kernelFunc:_X};function FX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;xe([r],"spaceToBatchND");let o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=CC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=_.getReshaped(u.shape,s,o,!1),d=_.getPermuted(p.length,s.length,!1),c=_.getReshapedPermuted(u.shape,s,o,!1),h=kt({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:d}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var AX={kernelName:Au,backendName:"cpu",kernelFunc:FX};function $X(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=eC(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var DX={kernelName:Ec,backendName:"cpu",kernelFunc:$X};function RX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=tC(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var MX={kernelName:Du,backendName:"cpu",kernelFunc:RX};function PX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=S0(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var OX={kernelName:Fc,backendName:"cpu",kernelFunc:PX};function LX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=S0(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var zX={kernelName:Ac,backendName:"cpu",kernelFunc:LX};function BX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=_.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),y=Boolean(n.data.get(i.dataId).values[0]);f=gl(m,g,o,c,p,u,l,d,y,h);break}case"float32":{let g=n.bufferSync(s),y=n.data.get(i.dataId).values[0];f=gl(m,g,o,c,p,u,l,d,y,h);break}case"int32":{let g=n.bufferSync(s),y=n.data.get(i.dataId).values[0];f=gl(m,g,o,c,p,u,l,d,y,h);break}case"string":{let g=n.bufferSync(s),y=w.decodeString(n.data.get(i.dataId).values[0]);f=gl(m,g,o,c,p,u,l,d,y,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var WX={kernelName:qm,backendName:"cpu",kernelFunc:BX};function VX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=mi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var UX={kernelName:$u,backendName:"cpu",kernelFunc:VX},GX={kernelName:$c,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;xe(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},HX=ot(vs,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),jX={kernelName:vs,backendName:"cpu",kernelFunc:HX};function qX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;xe(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),k;if(f)k=kt({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=qt.computeOutShape(b,x,v),C=mi({inputs:{x:r},backend:n,attrs:{begin:b,size:T}});k=kt({inputs:{x:C},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(r),C=aC(h,T,v,b);k=n.makeTensorInfo(m,C.dtype,C.values)}return k}var KX={kernelName:Ru,backendName:"cpu",kernelFunc:qX};function XX(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=rC(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var YX={kernelName:Km,backendName:"cpu",kernelFunc:XX};function QX(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=sC(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var JX={kernelName:Xm,backendName:"cpu",kernelFunc:QX};function ZX(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=iC(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var e7={kernelName:Ym,backendName:"cpu",kernelFunc:ZX},t7=ot(fo,e=>Math.tan(e)),n7={kernelName:fo,backendName:"cpu",kernelFunc:t7},a7=ot(go,e=>Math.tanh(e)),r7={kernelName:go,backendName:"cpu",kernelFunc:a7};function s7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;xe(r,"tile");let i=lC(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var i7={kernelName:xs,backendName:"cpu",kernelFunc:s7};function o7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;xe(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=pC(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var l7={kernelName:Mu,backendName:"cpu",kernelFunc:o7};function u7(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=w.computeStrides(r.shape),b=y[0],x=y[1],v=y[2],k=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));k.fill(l);let T=a.data.get(r.dataId).values,C=a.data.get(s.dataId).values;for(let E=0;E<p;++E){let A=s.shape[0]===1?C:C.subarray(E*8,E*8+8);for(let P=0;P<m;++P)for(let $=0;$<f;++$)for(let S=0;S<h;++S){let M,V=A[6]*$+A[7]*P+1;if(V===0)continue;let j=(A[0]*$+A[1]*P+A[2])/V,q=(A[3]*$+A[4]*P+A[5])/V,K=Gk(j,c,o),Z=Gk(q,d,o);switch(i){case"nearest":M=f7(T,d,c,b,x,v,E,Z,K,S,l);break;case"bilinear":M=g7(T,d,c,b,x,v,E,Z,K,S,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let ee=E*b+P*x+$*v+S;k[ee]=M}return a.makeTensorInfo(g,r.dtype,k)}return{dataId:a.write(k,g,r.dtype),shape:r.shape,dtype:r.dtype}}var p7={kernelName:Pu,backendName:"cpu",kernelFunc:u7};function Gk(e,t,n){switch(n){case"reflect":return c7(e,t);case"wrap":return d7(e,t);case"nearest":return m7(e,t);case"constant":default:return h7(e,t)}}function c7(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return w.clamp(0,n,t-1)}function d7(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return w.clamp(0,n,t-1)}function h7(e,t){return e}function m7(e,t){return w.clamp(0,e,t-1)}function Gp(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function f7(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return Gp(e,t,n,a,r,s,i,d,c,u,p)}function g7(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*Gp(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*Gp(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*Gp(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*Gp(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function y7(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;xe(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=cC(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var b7={kernelName:Qm,backendName:"cpu",kernelFunc:y7};function x7(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=mi({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=kt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var v7={kernelName:Ou,backendName:"cpu",kernelFunc:x7};function w7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;xe(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=dm({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=w.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=DT({inputs:{a:g,b:c},backend:n}),b=ms({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=ng({inputs:{a:b,b:r},backend:n}),v=ld({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(v),p.push(g),p.push(y),p.push(b),p.push(x),p.push(v)}let h=TC({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var k7={kernelName:Dc,backendName:"cpu",kernelFunc:w7},I7=[I5,gj,N5,C5,kj,E5,A5,D5,M5,O5,z5,W5,U5,j5,K5,Q5,Z5,tq,aq,w5,sq,oq,uq,cq,vj,Sj,hq,yj,fq,yq,bq,vq,kq,Sq,Tq,_q,Fq,$q,Rq,Pq,Lq,Bq,Vq,Uq,Hq,qq,Xq,Yq,Qq,Jq,tK,m5,aK,Nj,cK,Tj,dK,_j,bK,xK,wK,Fj,SK,TK,_K,FK,$K,$j,Rj,bj,RK,gq,PK,LK,BK,f5,Pj,Lj,VK,Bj,GK,qK,XK,JK,e8,n8,a8,Vj,s8,o8,u8,c8,h8,f8,y8,Gj,x8,k8,T8,jj,Kj,E8,$8,M8,Yj,O8,z8,B8,CC,G8,y5,Zj,j8,xj,mx,K8,b5,x5,v5,Y8,J8,eX,nX,rX,sX,oX,t5,uX,mX,gX,vX,a5,kX,SX,TX,r5,S8,EX,AX,DX,MX,OX,zX,WX,UX,o5,GX,u5,jX,KX,YX,JX,e7,h5,Zq,n7,r7,i7,l7,p7,Qj,b7,v7,k7,L8];for(let e of I7)Rc(e);var _C={};Me(_C,{assertNotComplex:()=>Ju,bindCanvasToFramebuffer:()=>R7,bindColorTextureToFramebuffer:()=>Rh,bindTextureToProgramUniformSampler:()=>GC,bindTextureUnit:()=>WC,bindVertexBufferToProgramAttribute:()=>gx,callAndCheck:()=>ge,canBeRepresented:()=>FC,createFragmentShader:()=>DC,createFramebuffer:()=>BC,createProgram:()=>RC,createStaticIndexBuffer:()=>OC,createStaticVertexBuffer:()=>PC,createTexture:()=>LC,createVertexShader:()=>$C,getBatchDim:()=>fi,getExtensionOrThrow:()=>Hp,getFramebufferErrorMessage:()=>HC,getMaxTexturesInShader:()=>XC,getNumChannels:()=>$7,getProgramUniformLocation:()=>UC,getProgramUniformLocationOrThrow:()=>VC,getRowsCols:()=>gi,getShapeAs3D:()=>Mh,getTextureShapeFromLogicalShape:()=>qC,getWebGLDisjointQueryTimerVersion:()=>YC,getWebGLErrorMessage:()=>AC,getWebGLMaxTextureSize:()=>KC,hasExtension:()=>ha,isCapableOfRenderingToFloatTexture:()=>QC,isDownloadFloatTextureEnabled:()=>JC,isReshapeFree:()=>dc,isWebGLFenceEnabled:()=>ZC,isWebGLVersionEnabled:()=>bx,linkProgram:()=>MC,logShaderSourceAndInfoLog:()=>A0,resetMaxTextureSize:()=>M7,resetMaxTexturesInShader:()=>P7,unbindColorTextureFromFramebuffer:()=>yx,unbindTextureUnit:()=>D7,validateFramebuffer:()=>jp,validateProgram:()=>Dh,validateTextureSize:()=>zC});var Ks={},Cb={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function EC(e,t){Ks[e]=t}function Ya(e,t){if(!(e in Ks)||t!=null){let a=N7(e,t);if(a!==null)Ks[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Ks[e];return n==null||n.isContextLost()?(delete Ks[e],Ya(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Ks[e])}function S7(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function N7(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?S7(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Ks[e]},!1),e===1?n.getContext("webgl",Cb)||n.getContext("experimental-webgl",Cb):n.getContext("webgl2",Cb)}var cc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(cc||(cc={}));var da;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(da||(da={}));var un;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(un||(un={}));function ud(e,t){return[t,e]}function T7(e,t){return e*t}function Th(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function Qu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function C7(e,t){let[n,a]=Qu(e,t);return n*a*4}function F0(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return X().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function ge(e,t){let n=t();return X().getBool("DEBUG")&&_7(e),n}function _7(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+AC(e,t))}var E7=596e-10,F7=65504;function FC(e){return!!(X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||E7<Math.abs(e)&&Math.abs(e)<F7)}function AC(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Hp(e,t){return Rr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function $C(e,t){let n=Rr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function DC(e,t){let n=Rr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),X().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw A0(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var A7=/ERROR: [0-9]+:([0-9]+):/g;function A0(e,t){let n=A7.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((d,c)=>w.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
|
|
`))}function RC(e){return Rr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function MC(e,t){if(ge(e,()=>e.linkProgram(t)),!X().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Dh(e,t){if(ge(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function PC(e,t){let n=Rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function OC(e,t){let n=Rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function $7(){return X().getNumber("WEBGL_VERSION")===2?1:4}function LC(e){return Rr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function zC(e,t){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function BC(e){return Rr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function gx(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),ge(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),ge(e,()=>e.enableVertexAttribArray(o)),!0)}function WC(e,t,n){jC(e,n),ge(e,()=>e.activeTexture(e.TEXTURE0+n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function D7(e,t){jC(e,t),ge(e,()=>e.activeTexture(e.TEXTURE0+t)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function VC(e,t,n){return Rr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function UC(e,t,n){return e.getUniformLocation(t,n)}function GC(e,t,n,a){ge(e,()=>WC(e,t,a)),ge(e,()=>e.uniform1i(n,a))}function R7(e){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ge(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Rh(e,t,n){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function yx(e,t){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function jp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+HC(e,t))}function HC(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Rr(e,t,n){let a=ge(e,()=>t());if(a==null)throw new Error(n);return a}function jC(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function fi(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function gi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Mh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[fi(e),...gi(e)]),t}function qC(e,t=!1){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?w.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let a=w.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=fi(e),s=2,i=2;return e.length&&([s,i]=gi(e)),a=r*(s/2)*(i/2),w.sizeToSquarishShape(a).map(o=>o*2)}return w.sizeToSquarishShape(a)}function Ch(e){return e%2===0}function dc(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||Ch(n)&&Ch(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Ch(e[0])&&Ch(t[0])}var Ph,Oh;function KC(e){if(Ph==null){let t=Ya(e);Ph=t.getParameter(t.MAX_TEXTURE_SIZE)}return Ph}function M7(){Ph=null}function P7(){Oh=null}function XC(e){if(Oh==null){let t=Ya(e);Oh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Oh)}function YC(e){if(e===0)return 0;let t,n=Ya(e);return ha(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ha(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ha(e,t){return e.getExtension(t)!=null}function bx(e){try{if(Ya(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function QC(e){if(e===0)return!1;let t=Ya(e);if(e===1){if(!ha(t,"OES_texture_float"))return!1}else if(!ha(t,"EXT_color_buffer_float"))return!1;return xx(t)}function JC(e){if(e===0)return!1;let t=Ya(e);if(e===1){if(!ha(t,"OES_texture_float")||!ha(t,"WEBGL_color_buffer_float"))return!1}else{if(ha(t,"EXT_color_buffer_float"))return xx(t);let n="EXT_color_buffer_half_float";if(ha(t,n)){let a=t.getExtension(n);return O7(t,a)}return!1}return xx(t)}function xx(e){let t=F0(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function O7(e,t){let n=F0(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function ZC(e){return e!==2?!1:Ya(e).fenceSync!=null}function Ju(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=X();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>bx(2)?2:bx(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>KC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>XC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:YC(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Oc.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>QC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>JC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>ZC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Oc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function En(){let e,t,n,a,r,s,i,o,l,u;return X().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function No(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function ag(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function L7(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function z7(e,t,n="index"){let a=e.map((s,i)=>i),r=L7(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function $0(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function D0(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var e_=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:t_}=_;function B7(e,t,n){let a=[];if(e.forEach(c=>{let h=w.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=R0(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
|
|
`),s=e.map(c=>W7(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=En(),l=G7(o),u,p,d=q7(o);return t.isPacked?(u=V7(t.logicalShape,i,n.enableShapeUniforms),p=j7(o)):(u=U7(t.logicalShape,i,n.enableShapeUniforms),p=H7(o)),n.packedInputs&&(d+=Q7),[d,l,p,r,u,s,n.userCode].join(`
|
|
`)}function Zu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return uY(e,t);case 1:return cY(e,t);case 2:return hY(e,t);case 3:return fY(e,t);case 4:return yY(e,t);case 5:return bY(e);case 6:return xY(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function n_(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return lY(e);case 1:return pY(e,t);case 2:return dY(e,t);case 3:return mY(e,t);default:return gY(e,t)}}function W7(e,t,n=!1,a){let r="";n?r+=n_(e,a):r+=Zu(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=vY(e,t):r+=wY(e,t)),r}function V7(e,t,n){switch(e.length){case 0:return a_();case 1:return J7(e,t,n);case 2:return iY(e,t,n);case 3:return eY(e,t,n);default:return nY(e,t,n)}}function U7(e,t,n){switch(e.length){case 0:return a_();case 1:return Z7(e,t,n);case 2:return oY(e,t,n);case 3:return tY(e,t,n);case 4:return aY(e,t,n);case 5:return rY(e,t);case 6:return sY(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function G7(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function H7(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function j7(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function q7(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${K7}
|
|
${X7}
|
|
${Y7}
|
|
`}var K7=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,X7=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Y7=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Q7=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function a_(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function J7(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${a[1]}.0);
|
|
}
|
|
`:a[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${a[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
|
|
}
|
|
`}function Z7(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function eY(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function tY(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${ag(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let a=No(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function nY(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
|
|
int b${u} = index / ${i};
|
|
index -= b${u} * ${i};
|
|
`+o,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function aY(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${ag(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let a=No(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function rY(e,t){let n=No(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function sY(e,t){let n=No(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function iY(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function oY(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function To(e){return`offset${e}`}function lY(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=En();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function uY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=To(n);if(t)return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[o,l]=e.shapeInfo.texShape;return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function pY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=En();if(t)return`
|
|
vec4 ${a}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${a}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`}function cY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int index) {
|
|
${ep(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
|
|
float ${a}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=To(n);return i===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function dY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=En();if(s!=null&&w.arraysEqual(n,s))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`}function hY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&w.arraysEqual(n,s)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let c=s[0],h=s[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=w.squeezeShape(n),l=i;if(l.length<n.length){let c=tp(e,l),h=["row","col"];return`
|
|
${Zu(c,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${np(h,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${ep(e)}
|
|
}
|
|
`;let u=s[0],p=s[1],d=To(a);return p===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${p}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function mY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=tp(e,c),f=["b","row","col"];return`
|
|
${n_(m,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${np(f,h)});
|
|
}
|
|
`}let o=En();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${d}, ${p}, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`}function fY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=w.squeezeShape(n),u=o;if(u.length<n.length){let f=tp(e,u),g=["row","col","depth"];return`
|
|
${Zu(f,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${np(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${ep(e)}
|
|
}
|
|
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${a}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(c===i&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let m=To(a);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${a}Shape[1] * ${a}Shape[2];
|
|
int stride1 = ${a}Shape[2];
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${c}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function gY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=En();if(t)return`
|
|
vec4 ${a}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${m};
|
|
int texR = index / ${p};
|
|
int texC = index - texR * ${p};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function yY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=w.squeezeShape(n);if(l.length<n.length){let b=tp(e,l),x=["row","col","depth","depth2"];return`
|
|
${Zu(b,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${np(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, 1)));
|
|
${ep(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${m}
|
|
${f}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(h===s&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let y=To(a);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${m}
|
|
${f}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${y});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index + ${y});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function bY(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=w.squeezeShape(t);if(l.length<t.length){let f=tp(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Zu(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${np(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${ep(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&p==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=To(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function xY(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=w.squeezeShape(t);if(r.length<t.length){let g=tp(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Zu(g)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${np(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${p}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${ep(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&d==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=To(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${p} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function ep(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function vY(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=t_(e.shapeInfo.logicalShape,t.logicalShape),l=mt(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,y)=>`coords.${d[y+u]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,f=w.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${p}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function wY(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=mt(l),p=t_(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function mt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function R0(e,t,n){let{newShape:a,keptDims:r}=w.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!w.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function tp(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function np(e,t){return t.map(n=>e[n]).join(", ")}function kY(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=B7(r,i,t),l=DC(e.gl,o),u=e.createProgram(l);return X().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},r_(e,t,u))}function r_(e,t,n){let a={},r={},s={},i=[],o,l,u,p=null,d=null;d=e.getUniformLocation(n,"NAN",!1),X().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(n,"INFINITY",!1));let c=!1;for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h];a[m]=e.getUniformLocation(n,m,c),a[`offset${m}`]=e.getUniformLocation(n,`offset${m}`,c),t.enableShapeUniforms&&(r[`${m}Shape`]=e.getUniformLocation(n,`${m}Shape`,c),s[`${m}TexShape`]=e.getUniformLocation(n,`${m}TexShape`,c))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",c),u=e.getUniformLocation(n,"outShapeStrides",c),l=e.getUniformLocation(n,"outTexShape",c)),t.customUniforms&&t.customUniforms.forEach((h,m)=>{i[m]=e.getUniformLocation(n,h.name,c)}),{uniformLocations:a,customUniformLocations:i,infLoc:p,nanLoc:d,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function Hk(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!w.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function IY(e,t,n,a,r){t.program.enableShapeUniforms||(Hk(t.inShapeInfos,n),Hk([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),X().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let p=t.program.variableNames[u],d=t.uniformLocations[p],c=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],m=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:f}=R0(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,d,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(p,d);else if(l.type==="vec2")e.gl.uniform2fv(p,d);else if(l.type==="vec3")e.gl.uniform3fv(p,d);else if(l.type==="vec4")e.gl.uniform4fv(p,d);else if(l.type==="int")e.gl.uniform1iv(p,d);else if(l.type==="ivec2")e.gl.uniform2iv(p,d);else if(l.type==="ivec3")e.gl.uniform3iv(p,d);else if(l.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function SY(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=R0(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let k=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${k[0]>1}_${k[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let k=w.computeStrides(p);m=`${k[0]===l[1]}_${k[k.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&w.arraysEqual(i.shape,l),y=w.sizeFromShape(i.shape)===1,b=_.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&w.arraysEqual(l,n.texData.texShape),v=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${y}_${b}_${g}_${c}_${h}_${m}_${v}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${X().getNumber("WEBGL_VERSION")}`,s}function Hn(e){return X().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var NY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=cc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=En();this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?ag(["r","c","d"],e):No(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},TY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=cc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=En();this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?ag(["r","c","d"],e):No(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},CY=class{constructor(e){this.variableNames=["A"],this.outTexUsage=da.DOWNLOAD;let t=En();this.outputShape=e,this.userCode=`
|
|
${e_}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},_Y=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=da.DOWNLOAD;let t=En();this.outputShape=e,this.userCode=`
|
|
${e_}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},EY=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=En();this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length);let a="result";t&&(a="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?D0():$0(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${a}, 0., 0., 0.);
|
|
}
|
|
`}},FY=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=En();this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${s};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?D0():$0(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${a}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},s_={};Me(s_,{bindVertexProgramAttributeStreams:()=>m_,createBufferFromOutputTexture:()=>y_,createFloat16MatrixTexture:()=>p_,createFloat16PackedMatrixTexture:()=>h_,createFloat32MatrixTexture:()=>u_,createIndexBuffer:()=>l_,createPackedMatrixTexture:()=>d_,createUnsignedBytesMatrixTexture:()=>c_,createVertexBuffer:()=>o_,createVertexShader:()=>i_,downloadByteEncodedFloatMatrixFromOutputTexture:()=>x_,downloadFloat32MatrixFromBuffer:()=>b_,downloadMatrixFromPackedOutputTexture:()=>w_,downloadPackedMatrixFromBuffer:()=>v_,getInternalFormatForFloat16MatrixTexture:()=>P0,getInternalFormatForFloat16PackedMatrixTexture:()=>z0,getInternalFormatForFloat32MatrixTexture:()=>M0,getInternalFormatForPackedMatrixTexture:()=>L0,getInternalFormatForUnsignedBytesMatrixTexture:()=>O0,uploadDenseMatrixToTexture:()=>f_,uploadPixelDataToTexture:()=>g_});function i_(e){let t=En(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return $C(e,n)}function o_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return PC(e,t)}function l_(e){let t=new Uint16Array([0,1,2,2,1,3]);return OC(e,t)}function pd(e,t,n,a,r,s){zC(t,n);let i=LC(e),o=e.TEXTURE_2D;return ge(e,()=>e.bindTexture(o,i)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),X().getNumber("WEBGL_VERSION")===1?ge(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):ge(e,()=>e.texStorage2D(o,1,a,t,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function M0(e){return e.internalFormatFloat}function u_(e,t,n,a){let[r,s]=ud(t,n);return pd(e,r,s,M0(a),a.textureFormatFloat,e.FLOAT)}function P0(e){return e.internalFormatHalfFloat}function p_(e,t,n,a){let[r,s]=ud(t,n);return pd(e,r,s,P0(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function O0(e){return e.downloadTextureFormat}function c_(e,t,n,a){let[r,s]=ud(t,n);return pd(e,r,s,O0(a),e.RGBA,e.UNSIGNED_BYTE)}function L0(e){return e.internalFormatPackedFloat}function d_(e,t,n,a){let[r,s]=Qu(t,n);return pd(e,r,s,L0(a),e.RGBA,e.FLOAT)}function z0(e){return e.internalFormatPackedHalfFloat}function h_(e,t,n,a){let[r,s]=Qu(t,n);return pd(e,r,s,z0(a),e.RGBA,a.textureTypeHalfFloat)}function m_(e,t,n){return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),gx(e,t,"clipSpacePos",n,3,20,0)&&gx(e,t,"uv",n,2,20,12)}function f_(e,t,n,a,r,s){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function g_(e,t,n){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function y_(e,t,n,a){let r=e.createBuffer();ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return ge(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function b_(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function x_(e,t,n,a){let[r,s]=ud(t,n),i=4,o=new Uint8Array(T7(t*n,i));return ge(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function v_(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(C7(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function w_(e,t,n){let a=new Float32Array(t*n*4);return ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Lh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=X().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,EC(t,e)):this.gl=Ya(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),X().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Hp(this.gl,r),ha(this.gl,s))this.textureHalfFloatExtension=Hp(this.gl,s);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ha(this.gl,a))this.colorBufferHalfFloatExtension=Hp(this.gl,a);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ha(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ha(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=o_(this.gl),this.indexBuffer=l_(this.gl),this.framebuffer=BC(this.gl),this.textureConfig=F0(this.gl,this.textureHalfFloatExtension)}get debug(){return X().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ge(e,()=>e.finish()),ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.deleteFramebuffer(this.framebuffer)),ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ge(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),u_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),p_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),c_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),g_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),f_(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),h_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),d_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(yx(this.gl,this.framebuffer),this.outputTexture=null),ge(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>x_(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return v_(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return b_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=y_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(X().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>w_(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=i_(t));let n=RC(t);return ge(t,()=>t.attachShader(n,this.vertexShader)),ge(t,()=>t.attachShader(n,e)),MC(t,n),this.debug&&Dh(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=m_(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ge(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Dh(this.gl,this.program),ge(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?VC(this.gl,e,t):UC(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ge(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),GC(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Qu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Dh(this.gl,this.program),jp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ge(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ge(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Hp(this.gl,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=AY(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Rh(this.gl,e,this.framebuffer),this.debug&&jp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Rh(this.gl,this.outputTexture,this.framebuffer),this.debug&&jp(this.gl)):yx(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;Rh(a,e,this.framebuffer),this.debug&&jp(a),this.outputTexture=e,ge(a,()=>a.viewport(0,0,t,n)),ge(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),ge(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function AY(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:$Y,bincountImpl:k_,bincountReduceImpl:DY,ceilImpl:RY,concatImpl:MY,equalImpl:PY,expImpl:OY,expm1Impl:LY,floorImpl:zY,gatherNdImpl:BY,gatherV2Impl:WY,greaterImpl:VY,greaterEqualImpl:UY,lessImpl:GY,lessEqualImpl:HY,linSpaceImpl:jY,logImpl:qY,maxImpl:KY,maximumImpl:XY,minimumImpl:YY,multiplyImpl:QY,negImpl:JY,notEqualImpl:ZY,prodImpl:e9,rangeImpl:t9,rsqrtImpl:n9,scatterImpl:a9,sigmoidImpl:r9,simpleAbsImpl:I_,sliceImpl:s9,sparseFillEmptyRowsImpl:i9,sparseReshapeImpl:o9,sparseSegmentReductionImpl:S_,sqrtImpl:l9,stridedSliceImpl:u9,stringNGramsImpl:p9,stringSplitImpl:c9,stringToHashBucketFastImpl:d9,subImpl:h9,tileImpl:m9,topKImpl:f9,transposeImpl:B0,uniqueImpl:g9}=CT;function N_(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Nn(e,t){return t===1?[e]:N_(e,t)}function y9(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var b9=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=Hn(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=Nn("rc",this.rank),n=mt(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${s}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${a};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},T_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${x9(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?D0():$0(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function x9(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?z7(["r","c","d"],"inputShape"):No(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var v9=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=qk(t,n),r=Kk(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=jk(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===un.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===un.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===un.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===un.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===un.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=qk(n,a),s=Kk(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=jk(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=X().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function w9(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function jk(e,t,n,a,r){let s=k9(t,a),i;if(r){let[l,u]=Qu(e[0],e[1]);i=l*u}else{let[l,u]=ud(e[0],e[1]);i=l*u}let o=w9(n,s);return i*o}function k9(e,t){switch(e){case un.PACKED_2X2_FLOAT32:return L0(t);case un.PACKED_2X2_FLOAT16:return z0(t);case un.UNPACKED_FLOAT32:return M0(t);case un.UNPACKED_FLOAT16:return P0(t);case un.PACKED_4X1_UNSIGNED_BYTE:return O0(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function I9(e){return X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?un.PACKED_2X2_FLOAT32:un.UNPACKED_FLOAT32:e?un.PACKED_2X2_FLOAT16:un.UNPACKED_FLOAT16}function qk(e,t){if(e===da.UPLOAD)return un.PACKED_2X2_FLOAT32;if(e===da.RENDER||e==null)return I9(t);if(e===da.DOWNLOAD||e===da.PIXELS)return un.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Kk(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Cr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Aa="if (isnan(x)) return x;",S9="return x;",Xk="return abs(x);",N9="return (x >= 0.0) ? x : (exp(x) - 1.0);",T9=Aa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,C9=Aa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,cl="return x;",_9="return 1.0 / (1.0 + exp(-1.0 * x));",E9="return x;",F9=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,A9=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,$9=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,D9="return 1.0 / (1.0 + exp(-1.0 * x));",Qs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},R9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length);let t=e.length,n=Nn("rc",t),a=mt(t),r=y9(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},M9=gr.whereImpl,P9=1e-7,O9=1e-4,_b={};function L9(e){return e in _b||(_b[e]={}),_b[e]}var z9=X().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),B9=600;function W9(){return X().global.screen==null?1024:X().global.screen.height*X().global.screen.width*window.devicePixelRatio*B9/1024/1024}var rg=class extends gc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!X().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Lh)t=e;else{let n=Ya(X().getNumber("WEBGL_VERSION"),e);t=new Lh(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ya(X().getNumber("WEBGL_VERSION"));t=new Lh(n),this.binaryCache=L9(X().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new v9(this.gpgpu),this.numMBBeforeWarning=W9(),this.texData=new ym(this,sr())}nextDataId(){return rg.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((X().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||X().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:da.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(X().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:da.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new Qs(i,cl):d=new Cr(i,cl);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=w.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=_.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Qs(a,cl):h=new Cr(a,cl);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(X().getBool("DEBUG")&&!X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&X().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&X().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...Th(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=_.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ge(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&sr().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new Qs(r,cl):c=new Cr(r,cl);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=sr().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>w.decodeString(a));return Ve(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!FC(n))throw X().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=w.sizeFromShape(t);if(X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...Th(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=X().getBool("WEBGL_PACK")&&a===!0,i=s?Mh(t):t,o=s?new _Y(i):new CY(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=z9){return X().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return M9(e.shape,t)}packedUnaryOp(e,t,n){let a=new Qs(e.shape,t),r=this.compileAndRun(a,[e],n);return sr().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=I_(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(X().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Xk,e.dtype);let t=new Cr(e.shape,Xk),n=this.compileAndRun(t,[e]);return sr().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return sr().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new R9(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new b9(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[fi(e.shape),...gi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[fi(t),...gi(t)],s=new T_(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=w.sizeFromShape(r),c=t[0]*t[1]*4;w.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=Mh(r),o;a?o=new TY(i):o=new NY(i);let l=!0,u=[t!=null?t:Th(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===cc.DENSE){let g=s!=null?s:Th(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(i.shape)===0)return o.values=w.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&w.sizeFromShape(g.shape)<=X().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!dc(y.shape,g.shape)){let b=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),b.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=SY(e,u,p),c=this.getAndSaveBinary(d,()=>kY(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),X().get("ENGINE_COMPILE_ONLY")||IY(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=X().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=w.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!X().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(X().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=O(()=>{if(!X().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=X().getBool("DEBUG");X().set("DEBUG",!1);let t=this.abs(we(1e-8)).dataSync()[0];if(X().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?P9:O9}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=w.now());let p=t.texShape;if(p==null&&(p=qC(n,o),t.texShape=p),r!=null){let d=Mh(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=Qu(p[0],p[1])),o?c=new FY(d,f):c=new EY(d,f);let g=f?[m,h]:p,y=this.makeTensorInfo(g,a),b=this.texData.get(y.dataId);f?b.usage=da.PIXELS:b.usage=da.UPLOAD,b.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,m,r);let x=[[m,h]],v=!0,k=this.runWebGLProgram(c,[y],a,x,v),T=this.texData.get(k.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,X().get("ENGINE_COMPILE_ONLY")?this.disposeData(k.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(k.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=w.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=V9(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await zv(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(A0(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=r_(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};rg.nextDataId=0;function V9(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var U9="3.17.0";function C_(){X().set("WEBGL_FORCE_F16_TEXTURES",!0)}Oc.isBrowser()&&tf("webgl",()=>new rg,2);var G9={forceHalfFloat:C_},__=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Pl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Hn(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},sg=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,cd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Hn(r);let s="";if(a)if(r===0||w.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${mt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?s+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Nn("coords",r);this.enableShapeUniforms?s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function aa(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var H9={kernelName:zi,backendName:"webgl",kernelFunc:aa};function Cs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=aa({inputs:{x:a},backend:n}),l=aa({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var j9={kernelName:Sm,backendName:"webgl",kernelFunc:Cs},E_="return (a < 0.) ? b * a : a;",F_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function q9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),o=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cd(F_,r.shape,i.shape):new Pl(E_,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var K9={kernelName:Bi,backendName:"webgl",kernelFunc:q9},A_="return (a < 0.) ? b * a : a;",$_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function X9(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cd($_,a.shape,r.shape):new Pl(A_,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var Y9={kernelName:Zi,backendName:"webgl",kernelFunc:X9},ap="if (isnan(x)) return x;",Q9=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,J9=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=X().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new Qs(i.shape,t):p=new Cr(i.shape,e),o.runWebGLProgram(p,[i],l)}}function cn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,k]=x,T={dataId:v.dataId,dtype:v.dtype,shape:l.shape},C={dataId:k.dataId,dtype:k.dtype,shape:u.shape},E=new Pl(e,l.shape,u.shape);return p.runWebGLProgram(E,[T,C],fa(v.dtype,k.dtype))}),b=Cs({inputs:{real:g,imag:y},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(y),b}let d=s||fa(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?_.fromUint8ToStringArray(m):m,y=l.dtype==="string"?_.fromUint8ToStringArray(f):f,[b,x]=r(l.shape,u.shape,g,y,d),v=p.makeTensorInfo(x,d),k=p.texData.get(v.dataId);return k.values=b,v}let c=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new cd(t,l.shape,u.shape,n):h=new Pl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function ig(e,t=!1){if(e==="linear")return t?E9:S9;if(e==="relu")return t?A9:T9;if(e==="elu")return t?F9:N9;if(e==="relu6")return t?$9:C9;if(e==="prelu")return t?$_:A_;if(e==="leakyrelu")return t?F_:E_;if(e==="sigmoid")return t?D9:_9;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var D_=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Hn(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${p}; i++) {
|
|
int batchA = ${b};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Yk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Qk=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},Jk="return a * b;";function W0(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=_.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new Qk(Yk.REAL,a.shape,r.shape),p=new Qk(Yk.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Cs({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=QY(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new cd(Jk,a.shape,r.shape):i=new Pl(Jk,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var Z9={kernelName:Xi,backendName:"webgl",kernelFunc:W0};function eQ(e,t,n){let a=[fi(e.shape),...gi(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[fi(t),...gi(t)],i=new T_(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function me(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(s,o),u=w.sizeFromShape(l);w.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!dc(r.shape,l)&&!(p.texture!==null&&dc(p.shape,l))?eQ(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var tQ={kernelName:Iu,backendName:"webgl",kernelFunc:me},Zk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${w.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},nQ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function aQ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Co(e,t,n,a){let r=aQ(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new Zk({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new Zk({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new nQ({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var rQ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=mt(this.rank),r=sQ(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function sQ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var iQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=mt(this.rank),r=N_("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function og(e,t,n){let a=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new iQ(e.shape,t):new rQ(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function oQ(e,t,n,a){let r=t,s=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,l=_.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=og(e,l,a),o=_.getInnerMostAxes(o.length,s)),_.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=_.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=_.expandShapeToKeepDim(d,i));let m=w.sizeFromShape(c),f=w.sizeFromShape(e.shape)/m,g=me({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),y=Zm(e.dtype),b=Co(g,y,"sum",a),x=me({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),u&&a.disposeIntermediateTensorInfo(p),x}function lg(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return oQ(r,s,i,n)}var lQ={kernelName:po,backendName:"webgl",kernelFunc:lg};function Yt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=B0(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=og(r,s,i);return u}var uQ={kernelName:yo,backendName:"webgl",kernelFunc:Yt},R_=1e3;function mm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=w.sizeFromShape(f),b=w.sizeFromShape(g),x=bo.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);w.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let v=n?[y,d,h]:[y,h,d],k=a?[b,m,c]:[b,c,m],T=me({inputs:{x:e},backend:r,attrs:{shape:v}}),C=me({inputs:{x:t},backend:r,attrs:{shape:k}}),E=[T,C],A=Math.max(y,b),P=n?T.shape[1]:T.shape[2],$=s!=null,S=i!=null,M=l==="leakyrelu",V=l!=null?ig(l,!0):null,j=$||S||M||V!=null,q;if((h===1||m===1)&&P>R_&&j===!1){let Z=T,ee=C;n&&(Z=Yt({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),E.push(Z)),a&&(ee=Yt({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(ee));let re=m!==1,Y=m===1,ie=Z;re&&(ie=me({inputs:{x:Z},backend:r,attrs:{shape:[A,P,1]}}),E.push(ie));let ae=m===1?2:1,le=ee;Y&&(le=me({inputs:{x:ee},backend:r,attrs:{shape:[A,1,P]}}),E.push(le));let ue=W0({inputs:{a:ie,b:le},backend:r});q=lg({inputs:{x:ue},backend:r,attrs:{axis:ae,keepDims:!0}}),E.push(ue)}else{let Z=fa(e.dtype,t.dtype),ee=new D_(v,k,[A,h,m],n,a,$,V,S,M),re=[T,C];if(s!=null&&re.push(s),S&&re.push(i),M){let Y=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));re.push(Y),E.push(Y)}q=r.runWebGLProgram(ee,re,Z)}let K=me({inputs:{x:q},backend:r,attrs:{shape:x}});E.push(q);for(let Z of E)r.disposeIntermediateTensorInfo(Z);return K}function pQ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return mm({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var cQ={kernelName:ni,backendName:"webgl",kernelFunc:pQ},eI="return abs(x);";function dQ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=I_(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Qs(a.shape,eI):r=new Cr(a.shape,eI),n.runWebGLProgram(r,[a],a.dtype)}var hQ={kernelName:Ll,backendName:"webgl",kernelFunc:dQ},mQ=Aa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,fQ=Qe({opSnippet:mQ}),gQ={kernelName:zl,backendName:"webgl",kernelFunc:fQ},yQ=Aa+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,bQ=Qe({opSnippet:yQ}),xQ={kernelName:Bl,backendName:"webgl",kernelFunc:bQ},tI="return a + b;",vQ=cn({opSnippet:tI,packedOpSnippet:tI,supportsComplex:!0,cpuKernelImpl:$Y}),wQ={kernelName:ys,backendName:"webgl",kernelFunc:vQ},kQ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},IQ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function zh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return aa({inputs:{x:a[0]},backend:n});if(a.length>X().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=zh({inputs:a.slice(0,o),backend:n}),u=zh({inputs:a.slice(o),backend:n});return zh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>fa(o,l)),s=a.map(o=>o.shape),i=X().getBool("WEBGL_PACK")?new IQ(a[0].shape,s):new kQ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var SQ={kernelName:vi,backendName:"webgl",kernelFunc:zh};function NQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=Yt({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,o)),_.assertAxesAreInnerMostDims("all",u,o);let[c,h]=_.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Co(f,f.dtype,"all",n),y;if(i){let b=_.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var TQ={kernelName:Wl,backendName:"webgl",kernelFunc:NQ};function CQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=Yt({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,o)),_.assertAxesAreInnerMostDims("any",u,o);let[c,h]=_.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Co(f,f.dtype,"any",n),y;if(i){let b=_.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var _Q={kernelName:Vl,backendName:"webgl",kernelFunc:CQ},EQ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},FQ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=mt(o),u=Nn("coords",o),p,d;if(s===1){d=o+1;let C=mt(d);p=`
|
|
${C} sourceLocR = ${C}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${C} sourceLocG = ${C}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${C} sourceLocA = ${C}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${C} sourceLocB = ${C}(${u.join()}, 0);
|
|
--${u[o-2]};`}else d=o,p=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(C=>"int "+C),f=Nn("sourceLocR",d-1).concat("inIdx.r"),g=Nn("sourceLocG",d-1).concat("inIdx.g"),y=Nn("sourceLocB",d-1).concat("inIdx.b"),b=Nn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${b.join()})));`,k=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,T=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${T}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${k};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${v}
|
|
vec4 candidate = ${k};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function M_(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=_.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new EQ(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=M_(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function P_(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=_.computeOptimalWindowSize(s),o=new FQ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=P_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function O_(e,t,n,a){let r=[n];if(_.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!X().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=_.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(p),c=me({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=M_(e,c,a);s.push(h);let m=me({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return P_(e,t,a)}function AQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Yt({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=O_(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var $Q={kernelName:wi,backendName:"webgl",kernelFunc:AQ};function DQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Yt({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=O_(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var RQ={kernelName:yc,backendName:"webgl",kernelFunc:DQ},MQ=Aa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,PQ=Qe({opSnippet:MQ}),OQ={kernelName:Ul,backendName:"webgl",kernelFunc:PQ},LQ=Aa+"return log(x + sqrt(x * x + 1.0));",zQ=Qe({opSnippet:LQ}),BQ={kernelName:Gl,backendName:"webgl",kernelFunc:zQ},WQ=Aa+`
|
|
return atan(x);
|
|
`,VQ=Qe({opSnippet:WQ}),UQ={kernelName:Hl,backendName:"webgl",kernelFunc:VQ},GQ=Q9+`
|
|
return atan(a, b);
|
|
`,HQ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+J9+`
|
|
return result;
|
|
`,jQ=cn({opSnippet:GQ,packedOpSnippet:HQ}),qQ={kernelName:ql,backendName:"webgl",kernelFunc:jQ},KQ=Aa+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,XQ=Qe({opSnippet:KQ}),YQ={kernelName:jl,backendName:"webgl",kernelFunc:XQ},hc=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,k=s%4,T=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${k===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${k===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${k===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},V0=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let A=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${A} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let v="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / count");let T=Math.floor(s/4)*4,C=s%4,E=`
|
|
if (${b}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${v}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${T}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${T};
|
|
if (${C===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${C===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${C===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${k});
|
|
}
|
|
}
|
|
`}};function QQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Ju(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))return aa({inputs:{x:r},backend:n});let d=new hc(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var JQ={kernelName:ki,backendName:"webgl",kernelFunc:QQ};function ZQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=_.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new V0(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var eJ={kernelName:bc,backendName:"webgl",kernelFunc:ZQ},tJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${p});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},nJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function aJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=_.computePool3DInfo(i.shape,o,l,d,u,p),h=new nJ(c);return n.runWebGLProgram(h,[r],i.dtype)}var rJ={kernelName:wm,backendName:"webgl",kernelFunc:aJ};function sJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Ju([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=_.computePool2DInfo(i.shape,o,l,1,u),d=new tJ(p);return n.runWebGLProgram(d,[r],i.dtype)}var iJ={kernelName:vm,backendName:"webgl",kernelFunc:sJ};function oJ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return mm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var lJ={kernelName:Ii,backendName:"webgl",kernelFunc:oJ},uJ=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},pJ=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},cJ=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;w.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=X().getBool("WEBGL_PACK_NORMALIZATION")?new pJ(a.shape,r.shape,s.shape,p,d,l):new uJ(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},dJ={kernelName:Oi,backendName:"webgl",kernelFunc:cJ},hJ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=mt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=mJ(this.rank),a,r=e.map((s,i)=>`sourceLoc.${vx[i]} = start[${i}] + coords.${vx[i]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},vx=["x","y","z","w","u","v"];function mJ(e){if(e===1)return"sourceLoc";if(e<=6)return vx.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var fJ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=mt(this.rank),n=Nn("coords",this.rank),a=Nn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function gJ(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=qt.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function rp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=qt.parseSliceParams(r,s,i);if(qt.assertParamsValid(r,o,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=s9(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=qt.isSliceContinous(r.shape,o,l);if(u||!p){let d=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fJ(l):new hJ(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),gJ(r,o,l,n)}var yJ={kernelName:Cu,backendName:"webgl",kernelFunc:rp},bJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=_.getReshaped(r.shape,s,o),u=_.getPermuted(l.length,s.length),p=_.getReshapedPermuted(r.shape,s,o),d=_.getSliceBeginCoords(i,s.length),c=_.getSliceSize(p,i,s.length),h=[],m=me({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Yt({inputs:{x:m},backend:n,attrs:{perm:u}}),g=me({inputs:{x:f},backend:n,attrs:{shape:p}}),y=rp({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},xJ={kernelName:Kl,backendName:"webgl",kernelFunc:bJ};function vJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=k_(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var wJ={kernelName:km,backendName:"webgl",kernelFunc:vJ};function kJ(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=_.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var IJ={kernelName:Im,backendName:"webgl",kernelFunc:kJ},SJ="return float(a != b);",L_=cn({opSnippet:SJ,cpuKernelImpl:ZY,dtype:"bool"}),NJ={kernelName:gu,backendName:"webgl",kernelFunc:L_};function dd(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return aa({inputs:{x:r.complexTensorInfos.real},backend:n})}var TJ={kernelName:Um,backendName:"webgl",kernelFunc:dd},CJ="return float(int(x));";function _J(e,t){let n=new Cr(e.shape,CJ),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function wx(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return aa({inputs:{x:r},backend:n});let i=It(r.shape),o=wx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Cs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=dd({inputs:{input:r},backend:n}),o=wx({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=aa({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return _J(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=L_({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var EJ={kernelName:Si,backendName:"webgl",kernelFunc:wx},nI="return ceil(x);",FJ=Qe({opSnippet:nI,packedOpSnippet:nI,cpuKernelImpl:RY}),AJ={kernelName:Ni,backendName:"webgl",kernelFunc:FJ},$J=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},DJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function RJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;X().getBool("WEBGL_PACK_CLIP")?o=new DJ(r.shape):o=new $J(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var MJ={kernelName:bs,backendName:"webgl",kernelFunc:RJ},PJ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function aI(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function OJ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new PJ(a.shape),i=[aI(a,r.complexTensorInfos.real),aI(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var LJ={kernelName:xc,backendName:"webgl",kernelFunc:OJ},zJ=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},BJ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=mt(a),s=Nn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${_h(i,l,f)}),
|
|
vec2(${_h(u,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];d+=`
|
|
return getChannel(
|
|
getT${c}(${_h(i,l,h)}),
|
|
vec2(${_h(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function _h(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function ug(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return aa({inputs:{x:r.complexTensorInfos.imag},backend:n})}var WJ={kernelName:Pm,backendName:"webgl",kernelFunc:ug};function fl(e,t,n){let a=e[0].dtype;if(a==="complex64"){let p=e.map(f=>dd({inputs:{input:f},backend:n})),d=e.map(f=>ug({inputs:{input:f},backend:n})),c=fl(p,t,n),h=fl(d,t,n),m=Cs({inputs:{real:c,imag:h},backend:n});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),d.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let p=e.map(y=>{let b=w.sizeFromShape(y.shape.slice(t));return me({inputs:{x:y},backend:n,attrs:{shape:[-1,b]}})}),d=p.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),c=_.computeOutShape(p.map(y=>y.shape),1),h=p[0].shape[0]===1,m=MY(d,c,a,h),f=_.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(f,a,m);return p.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>X().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let p=Math.floor(e.length/2),d=fl(e.slice(0,p),t,n),c=fl(e.slice(p),t,n),h=fl([d,c],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),h}if(X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let p=new BJ(e.map(d=>d.shape),t);return n.runWebGLProgram(p,e,a)}let{tensors2D:s,outShape:i}=VJ(e,t,n),o=new zJ(s.map(p=>p.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(p=>n.disposeIntermediateTensorInfo(p));let u=me({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),u}function VJ(e,t,n){let a=_.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>me({inputs:{x:r},attrs:{shape:[-1,w.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function z_(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(u=>u.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>w.sizeFromShape(u.shape)>0);if(o.length===1)return aa({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return _.assertParamsConsistent(l,s),fl(o,s,n)}var UJ={kernelName:Xl,backendName:"webgl",kernelFunc:z_},B_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,v="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${b}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${k}
|
|
${v}
|
|
setOutput(result);
|
|
}
|
|
`}},GJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},HJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length);let{dataFormat:n}=t,a=En(),r=n==="channelsLast",s=r?0:1,i=r?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
|
|
blockIndex = rc.y + ${p};
|
|
pos = rc.x + ${u};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${s}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${a.output} = result;
|
|
}
|
|
`}};function W_(e,t,n,a){let r=e.shape;if(w.assert(r.length<=1||r.length===3,()=>`WebGL conv2d only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${r.length}.`),r.length===1){let s=n?t[3]:t[1];w.assert(r[0]===1||r[0]===s,()=>`WebGL conv2d PReLU activation weights (${r}) is not compatible with the number of output channels (${s}).`)}else if(r.length===3){try{bo.assertAndGetBroadcastShape(r,t)}catch(s){let i=`WebGL conv2d PReLU activation weights (${r}) is not compatible with the output shape of the conv2d (${t}).`;throw Error(i)}if(!n)return Yt({inputs:{x:e},backend:a,attrs:{perm:[1,2,0]}})}return e}function V_({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[];if(s!=null){let b=W_(s,n.outShape,h,a);b.dataId!==s.dataId&&(y.push(b),s=b)}if(!((d===1||c===1)&&p>R_)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&w.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},v=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,w.assert(dc(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let k=me({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let T=mm({a:x,b:k,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);w.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=v,C.shape=n.outShape,g=aa({inputs:{x:T},backend:a}),g.shape=n.outShape,y.push(T)}else{let b=h?e:Yt({inputs:{x:e},backend:a,attrs:{perm:[0,2,3,1]}}),x=b.shape,v=x[0]*x[1]*x[2],k=me({inputs:{x:b},backend:a,attrs:{shape:[1,v,n.inChannels]}}),T=me({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),C=mm({a:k,b:T,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=[n.batchSize,n.outHeight,n.outWidth,n.outChannels],A=me({inputs:{x:C},backend:a,attrs:{shape:E}});g=h?A:Yt({inputs:{x:A},backend:a,attrs:{perm:[0,3,1,2]}}),h||(y.push(b),y.push(A)),y.push(k),y.push(T),y.push(C)}for(let b of y)a.disposeIntermediateTensorInfo(b);return g}function U_({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,y=[f,g],b=!0,x=!1,v=[];if(s!=null){let Y=W_(s,n.outShape,m,a);Y.dataId!==s.dataId&&(v.push(Y),s=Y)}let k=me({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),T=me({inputs:{x:t},backend:a,attrs:{shape:[1,f,w.sizeFromShape(t.shape)/f]}});v.push(k),v.push(T);let C=new HJ(y,n),E=[k.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],A=a.runWebGLProgram(C,[k],"float32",E),P=me({inputs:{x:A},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push(A),v.push(P);let $=r!=null,S=s!=null,M=o==="leakyrelu",V=o?ig(o,!0):null,j=new D_(P.shape,T.shape,[1,g,n.outChannels],b,x,$,V,S,M),q=[P,T];if(r&&q.push(r),S&&q.push(s),M){let Y=a.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));q.push(Y),v.push(Y)}let K=a.runWebGLProgram(j,q,"float32"),Z=[1,c,d,n.outChannels],ee=me({inputs:{x:K},backend:a,attrs:{shape:Z}}),re=m?ee:Yt({inputs:{x:ee},backend:a,attrs:{perm:[0,3,1,2]}});m||v.push(ee),v.push(K);for(let Y of v)a.disposeIntermediateTensorInfo(Y);return re}function jJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=_.convertConv2DDataFormat(l),c=_.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=V_({x:r,filter:s,convInfo:c,backend:n});else if(X().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=U_({x:r,filter:s,convInfo:c,backend:n});else{let f=new B_(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=me({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var qJ={kernelName:Ti,backendName:"webgl",kernelFunc:jJ},KJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},XJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},YJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},QJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function JJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=_.convertConv2DDataFormat(l),c=_.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new KJ(c);return n.runWebGLProgram(h,[r,s],"float32")}var ZJ={kernelName:Nm,backendName:"webgl",kernelFunc:JJ};function eZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=_.convertConv2DDataFormat(u),c=_.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d),h=new XJ(c);return n.runWebGLProgram(h,[r,s],"float32")}var tZ={kernelName:Ci,backendName:"webgl",kernelFunc:eZ};function nZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=_.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new GJ(u);return n.runWebGLProgram(p,[r,s],"float32")}var aZ={kernelName:vc,backendName:"webgl",kernelFunc:nZ};function rZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=_.computeConv3DInfo(r.shape,l,i,1,o),p=new YJ(u);return n.runWebGLProgram(p,[r,s],"float32")}var sZ={kernelName:Tm,backendName:"webgl",kernelFunc:rZ};function iZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=_.computeConv3DInfo(l,s.shape,o,1,i),p=new QJ(u);return n.runWebGLProgram(p,[r,s],"float32")}var oZ={kernelName:Cm,backendName:"webgl",kernelFunc:iZ},lZ=ap+`
|
|
return cos(x);
|
|
`,uZ=Qe({opSnippet:lZ}),pZ={kernelName:_i,backendName:"webgl",kernelFunc:uZ},cZ=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,dZ=Qe({opSnippet:cZ}),hZ={kernelName:Ei,backendName:"webgl",kernelFunc:dZ},mZ=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,v]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${b});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${v};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},fZ=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new mZ(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},gZ={kernelName:Ql,backendName:"webgl",kernelFunc:fZ},mc;(function(e){e.Prod="*",e.Sum="+"})(mc||(mc={}));var rI=class{constructor(e,t,n,a){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.op=e,this.outputShape=t;let r=t.length,s=this.op===mc.Prod?"1.0":"0.0",i=n?s:`getX(${sI(r,"coords",this.op)})`,o=t[t.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${mt(r)} coords = getOutputCoords();
|
|
int end = ${iI(r,"coords",this.op)};
|
|
float val = ${i};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${l}) {
|
|
int idx = ${u};
|
|
${iI(r,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${sI(r,"coords",this.op)});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function sI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function iI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function G_(e,t,n,a,r,s){let i=t.shape.length,o=_.getAxesPermutation([a],i),l=t;o!=null&&(l=Yt({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=_.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=aa({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new rI(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new rI(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=_.getUndoAxesPermutation(o),h=Yt({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function yZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return G_(mc.Prod,r,n,s,i,o)}var bZ={kernelName:Yl,backendName:"webgl",kernelFunc:yZ};function xZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return G_(mc.Sum,r,n,s,i,o)}var vZ={kernelName:Fi,backendName:"webgl",kernelFunc:xZ};function wZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=k_(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=DY(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var kZ={kernelName:_m,backendName:"webgl",kernelFunc:wZ},IZ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function SZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new IZ(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var NZ={kernelName:Jl,backendName:"webgl",kernelFunc:SZ},H_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Hn(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${s}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${p}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},j_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Hn(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;c+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<p;g++)c+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;c+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let y=g*2;if(c+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,o===1){if(y<p&&(i%2===1?(c+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?c+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:c+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):c+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<p)){let b=i%2===0?w.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(c+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),c+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):b===1?c+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:c+=`
|
|
xCOffset = xC + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<p&&(i%2===1?(c+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<p&&(c+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(c+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<p&&(c+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<p&&(c+=`
|
|
wTexel = getW(r, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<p&&(c+=`
|
|
wTexel = getW(r, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}c+=`
|
|
}
|
|
`,c+=`
|
|
}
|
|
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${c}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${f}
|
|
${m}
|
|
setOutput(result);
|
|
}
|
|
`}};function TZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=_.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;X().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new j_(d):c=new H_(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var CZ={kernelName:Ai,backendName:"webgl",kernelFunc:TZ},_Z=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},EZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function FZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=_.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new _Z(d);return n.runWebGLProgram(c,[r,s],"float32")}var AZ={kernelName:Em,backendName:"webgl",kernelFunc:FZ};function $Z(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=_.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new EZ(d);return n.runWebGLProgram(c,[r,s],"float32")}var DZ={kernelName:Fm,backendName:"webgl",kernelFunc:$Z},RZ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function MZ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=w.sizeFromShape(a.shape),i=me({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new RZ(s),l=n.runWebGLProgram(o,[i],i.dtype),u=me({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var PZ={kernelName:Am,backendName:"webgl",kernelFunc:MZ},OZ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${p}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function LZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=_.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new OZ(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=me({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var zZ={kernelName:wc,backendName:"webgl",kernelFunc:LZ};function BZ(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=_.decodeEinsumEquation(r,s.length);_.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=_.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=_.getEinsumPermutation(h,l[g]),x;_.isIdentityPermutation(y)?x=s[g]:(x=Yt({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let k=0;k<b.length;++k)v.splice(b[k],0,1);w.arraysEqual(x.shape,v)||(x=me({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=W0({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=lg({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var WZ={kernelName:$m,backendName:"webgl",kernelFunc:BZ},VZ="return (x >= 0.0) ? x : (exp(x) - 1.0);",UZ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,GZ=Qe({opSnippet:VZ,packedOpSnippet:UZ}),HZ={kernelName:Di,backendName:"webgl",kernelFunc:GZ},jZ="return (b >= 1.0) ? a : a * (b + 1.0);",qZ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,KZ=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cd(qZ,a.shape,r.shape):new Pl(jZ,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},XZ={kernelName:Dm,backendName:"webgl",kernelFunc:KZ},YZ=`
|
|
return vec4(equal(a, b));
|
|
`,QZ="return float(a == b);",JZ=cn({opSnippet:QZ,packedOpSnippet:YZ,dtype:"bool",cpuKernelImpl:PY}),ZZ={kernelName:eu,backendName:"webgl",kernelFunc:JZ},eee=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${_.ERF_P};
|
|
float a1 = ${_.ERF_A1};
|
|
float a2 = ${_.ERF_A2};
|
|
float a3 = ${_.ERF_A3};
|
|
float a4 = ${_.ERF_A4};
|
|
float a5 = ${_.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,tee=Qe({opSnippet:eee}),nee={kernelName:Zl,backendName:"webgl",kernelFunc:tee},aee=ap+`
|
|
return exp(x);
|
|
`,ree=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,q_=Qe({opSnippet:aee,packedOpSnippet:ree,cpuKernelImpl:OY,dtype:"float32"}),see={kernelName:Ri,backendName:"webgl",kernelFunc:q_};function kx(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),me({inputs:{x:s},backend:a,attrs:{shape:o}})}var iee={kernelName:tu,backendName:"webgl",kernelFunc:kx},oI="return exp(x) - 1.0;",oee=Qe({opSnippet:oI,packedOpSnippet:oI,cpuKernelImpl:LY}),lee={kernelName:nu,backendName:"webgl",kernelFunc:oee},lI=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function K_(e,t,n){let a=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=me({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new lI("real",l,t),p=new lI("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Cs({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=me({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function uee(e){let{inputs:t,backend:n}=e,{input:a}=t;return K_(a,!1,n)}var pee={kernelName:Rm,backendName:"webgl",kernelFunc:uee},cee=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function hd(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||w.inferDtype(r),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new cee(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var dee={kernelName:kc,backendName:"webgl",kernelFunc:hd},hee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},mee={kernelName:au,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new hee(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},uI="return floor(x);",fee=Qe({opSnippet:uI,packedOpSnippet:uI,cpuKernelImpl:zY}),gee={kernelName:Mi,backendName:"webgl",kernelFunc:fee},yee=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,bee=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,xee=cn({opSnippet:yee,packedOpSnippet:bee,dtype:"int32"}),vee={kernelName:Pi,backendName:"webgl",kernelFunc:xee},wee=class{constructor(e){this.variableNames=["A"];let t=En(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},kee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=En(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Iee={kernelName:Hh,backendName:"webgl",kernelFunc:See},dl;function See(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];(o||i)&&(dl==null&&(dl=document.createElement("canvas").getContext("2d")),dl.canvas.width=l,dl.canvas.height=u,dl.drawImage(r,0,0,l,u),r=dl.canvas);let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=da.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=X().getBool("WEBGL_PACK")?new kee(d):new wee(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function Nee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=_.convertConv2DDataFormat(p),g=_.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=V_({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(X().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=U_({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,k=o!=null,T=h==="leakyrelu",C=h?ig(h,!1):null,E=new B_(g,v,C,k,T),A=[r,s];if(i&&A.push(i),o&&A.push(o),T){let P=n.makeTensorInfo([],"float32",w.createScalarValue(m,"float32"));A.push(P),b.push(P)}y=n.runWebGLProgram(E,A,"float32")}let x=me({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var Tee={kernelName:ai,backendName:"webgl",kernelFunc:Nee};function Cee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=_.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),y=X().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=c?ig(c,y):null,x=[r,s],v=i!=null,k=o!=null,T=c==="leakyrelu";if(v&&x.push(i),k&&x.push(o),T){let P=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(P),m.push(P)}let C;y?C=new j_(g,v,b,k,T):C=new H_(g,v,b,k,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],A=n.runWebGLProgram(C,x,"float32",E);return m.forEach(P=>n.disposeIntermediateTensorInfo(P)),A}var _ee={kernelName:ri,backendName:"webgl",kernelFunc:Cee},Eee=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=mt(t.length),r=mt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Fee(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=w.sizeFromShape(a.shape),[l,u,p,d]=_.prepareAndValidate(a,r),c=me({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=me({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let y=n.readSync(r.dataId),b=n.bufferSync(a),x=BY(y,b,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new Eee(i,d,[u,p]),f=n.runWebGLProgram(m,[h,c],h.dtype),g=me({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var Aee={kernelName:su,backendName:"webgl",kernelFunc:Fee},$ee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=mt(this.rank),a=Dee(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${a}));
|
|
}
|
|
`}};function Dee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function X_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0];if(X().get("DEBUG")){let b=n.readSync(s.dataId),x=r.shape[l];for(let v=0;v<b.length;++v){let k=b[v];w.assert(k<=x-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${x-1}]`)}}let u=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=w.sizeFromShape(s.shape),d=[],c=me({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=me({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(c),v=WY(x,b,m);return d.forEach(k=>n.disposeIntermediateTensorInfo(k)),n.makeTensorInfo(u.outputShape,v.dtype,v.values)}let f=new $ee(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let y=me({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Ree={kernelName:ru,backendName:"webgl",kernelFunc:X_},Mee="return float(a > b);",Pee=`
|
|
return vec4(greaterThan(a, b));
|
|
`,Oee=cn({opSnippet:Mee,packedOpSnippet:Pee,cpuKernelImpl:VY,dtype:"bool"}),Lee={kernelName:iu,backendName:"webgl",kernelFunc:Oee},zee="return float(a >= b);",Bee=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,Wee=cn({opSnippet:zee,packedOpSnippet:Bee,dtype:"bool",cpuKernelImpl:UY}),Vee={kernelName:Li,backendName:"webgl",kernelFunc:Wee};function Uee(e){let{inputs:t,backend:n}=e,{input:a}=t;return K_(a,!0,n)}var Gee={kernelName:Mm,backendName:"webgl",kernelFunc:Uee},Hee="return float(!isnan(x) && !isinf(x));",jee=Qe({opSnippet:Hee,dtype:"bool"}),qee={kernelName:ou,backendName:"webgl",kernelFunc:jee},Kee="return float(isinf(x));",Xee=Qe({opSnippet:Kee,dtype:"bool"}),Yee={kernelName:lu,backendName:"webgl",kernelFunc:Xee},Qee="return float(isnan(x));",Jee=Qe({opSnippet:Qee,dtype:"bool"}),Zee={kernelName:uu,backendName:"webgl",kernelFunc:Jee},ete="return float(a < b);",tte=`
|
|
return vec4(lessThan(a, b));
|
|
`,nte=cn({opSnippet:ete,packedOpSnippet:tte,cpuKernelImpl:GY,dtype:"bool"}),ate={kernelName:pu,backendName:"webgl",kernelFunc:nte},rte="return float(a <= b);",ste=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,ite=cn({opSnippet:rte,packedOpSnippet:ste,cpuKernelImpl:HY,dtype:"bool"}),ote={kernelName:cu,backendName:"webgl",kernelFunc:ite};function lte(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=jY(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var ute={kernelName:Om,backendName:"webgl",kernelFunc:lte},pte=ap+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,cte=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,dte=Qe({opSnippet:pte,packedOpSnippet:cte,cpuKernelImpl:qY}),hte={kernelName:Wi,backendName:"webgl",kernelFunc:dte},mte=ap+`
|
|
return log(1.0 + x);
|
|
`,fte=Qe({opSnippet:mte}),gte={kernelName:du,backendName:"webgl",kernelFunc:fte},yte="return float(a >= 1.0 && b >= 1.0);",bte=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,xte=cn({opSnippet:yte,packedOpSnippet:bte,dtype:"bool"}),vte={kernelName:hu,backendName:"webgl",kernelFunc:xte},wte="return float(!(x >= 1.0));",kte=Qe({opSnippet:wte}),Ite={kernelName:Ic,backendName:"webgl",kernelFunc:kte},Ste="return float(a >= 1.0 || b >= 1.0);",Nte=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Tte=cn({opSnippet:Ste,packedOpSnippet:Nte,dtype:"bool"}),Cte={kernelName:Sc,backendName:"webgl",kernelFunc:Tte},_te=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},Ete=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},Fte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=X().getBool("WEBGL_PACK_NORMALIZATION")?new Ete(r.shape,s,i,o,l):new _te(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},Ate={kernelName:Nc,backendName:"webgl",kernelFunc:Fte},$te=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Dte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new $te(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},Rte={kernelName:Lm,backendName:"webgl",kernelFunc:Dte};function Mte(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=me({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Co(i,e.dtype,"max",a),l=me({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function Y_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=_.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let v=B0(b,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let k=n.texData.get(h.dataId);k.values=v}else h=og(r,p,n);u=_.getInnerMostAxes(u.length,o)}_.assertAxesAreInnerMostDims("max",u,o);let[m,f]=_.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=_.expandShapeToKeepDim(m,l));let y;if(c){let b=n.texData.get(h.dataId).values,x=KY(b,w.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=Mte(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),y}var Pte={kernelName:Vi,backendName:"webgl",kernelFunc:Y_},Ote=__+`
|
|
return max(a, b);
|
|
`,Lte=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+sg+`
|
|
return result;
|
|
`,zte=cn({opSnippet:Ote,packedOpSnippet:Lte,cpuKernelImpl:XY}),Bte={kernelName:Ui,backendName:"webgl",kernelFunc:zte};function Wte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Ju(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))return aa({inputs:{x:r},backend:n});let d=new hc(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Vte={kernelName:Gi,backendName:"webgl",kernelFunc:Wte};function Ute(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new V0(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var Gte={kernelName:Tc,backendName:"webgl",kernelFunc:Ute},Hte=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},jte=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${d}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function qte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=_.computePool3DInfo(i.shape,o,l,d,u,p),h=new V0(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new jte(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var Kte={kernelName:Bm,backendName:"webgl",kernelFunc:qte};function Xte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Ju([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=_.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new hc(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new Hte(c),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var Yte={kernelName:zm,backendName:"webgl",kernelFunc:Xte};function Qte(e,t,n,a){let r=new hc(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new hc(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var Jte={kernelName:Wm,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;w.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];w.assert(_.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=_.computePool2DInfo(a.shape,r,s,u,i),[d,c]=Qte(a,o,p,l);return[d,c]}};function Zte(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=me({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Co(i,"float32","mean",a),l=me({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var ene={kernelName:Hi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),u=l,p=_.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let C=0;C<v.length;C++)v[C]=a.shape[p[C]];let k=B0(x,a.shape,a.dtype,p,v);m=i.makeTensorInfo(v,a.dtype);let T=i.texData.get(m.dataId);T.values=k}else m=og(a,p,i);h.push(m),u=_.getInnerMostAxes(u.length,o)}_.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=_.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=_.expandShapeToKeepDim(f,l));let b=Zte(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function tne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=Yt({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",u,o);let[c,h]=_.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Co(f,f.dtype,"min",n),y;if(i){let b=_.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var nne={kernelName:ji,backendName:"webgl",kernelFunc:tne},ane=__+`
|
|
return min(a, b);
|
|
`,rne=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+sg+`
|
|
return result;
|
|
`,sne=cn({opSnippet:ane,packedOpSnippet:rne,cpuKernelImpl:YY}),ine={kernelName:qi,backendName:"webgl",kernelFunc:sne},one=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=mt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},lne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=mt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=Nn("rc",a),l=Nn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},une=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new lne(a.shape,r,s):new one(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},pne={kernelName:Ki,backendName:"webgl",kernelFunc:une},cne=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,dne=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+sg+`
|
|
return result;
|
|
`,hne=cn({opSnippet:cne,packedOpSnippet:dne}),mne={kernelName:mu,backendName:"webgl",kernelFunc:hne},fne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},gne=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,yne=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,Q_=cn({opSnippet:gne,packedOpSnippet:yne,checkOutOfBounds:!0}),bne={kernelName:$i,backendName:"webgl",kernelFunc:Q_},pI="return a - b;",J_=cn({opSnippet:pI,packedOpSnippet:pI,supportsComplex:!0,cpuKernelImpl:h9}),xne={kernelName:mo,backendName:"webgl",kernelFunc:J_};function Z_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=w.parseAxisParam([s],r.shape),o=Y_({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=_.expandShapeToKeepDim(o.shape,i),u=me({inputs:{x:o},backend:n,attrs:{shape:l}}),p=J_({inputs:{a:r,b:u},backend:n}),d=q_({inputs:{x:p},backend:n}),c=lg({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=me({inputs:{x:c},backend:n,attrs:{shape:l}}),m=Q_({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var vne={kernelName:co,backendName:"webgl",kernelFunc:Z_};function wne(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:Z_({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new fne(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var kne={kernelName:Vm,backendName:"webgl",kernelFunc:wne},Ine=Aa+`
|
|
return -x;
|
|
`,Sne=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Nne(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=JY(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Qs(a.shape,Sne):r=new Cr(a.shape,Ine),n.runWebGLProgram(r,[a],a.dtype)}var Tne={kernelName:fu,backendName:"webgl",kernelFunc:Nne},Cne=gr.nonMaxSuppressionV3Impl;function _ne(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=Cne(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Ene={kernelName:yu,backendName:"webgl",kernelFunc:_ne},Fne=gr.nonMaxSuppressionV4Impl;function Ane(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=Fne(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var $ne={kernelName:bu,backendName:"webgl",kernelFunc:Ane},Dne=gr.nonMaxSuppressionV5Impl;function Rne(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=Dne(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Mne={kernelName:xu,backendName:"webgl",kernelFunc:Rne},Pne=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},One=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=w.sizeFromShape(r.shape),u=new Pne(l,s,i,o),p=me({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[p],r.dtype);n.disposeIntermediateTensorInfo(p);let c=[...r.shape,s],h=me({inputs:{x:d},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(d),h},Lne={kernelName:Yi,backendName:"webgl",kernelFunc:One};function fm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=dd({inputs:{input:a},backend:n}),s=fm({inputs:{x:r},backend:n}),i=ug({inputs:{input:a},backend:n}),o=fm({inputs:{x:i},backend:n}),l=Cs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return hd({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var zne={kernelName:Lu,backendName:"webgl",kernelFunc:fm};function eE(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=dd({inputs:{input:a},backend:n}),s=eE({inputs:{x:r},backend:n}),i=ug({inputs:{input:a},backend:n}),o=fm({inputs:{x:i},backend:n}),l=Cs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return hd({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var Bne={kernelName:vu,backendName:"webgl",kernelFunc:eE};function Wne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return kx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=kx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=z_({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var Vne={kernelName:wu,backendName:"webgl",kernelFunc:Wne},Une=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=mt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},Gne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=mt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=Nn("rc",a),l=Nn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${d[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},tE=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(w.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return hd({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Gne(r.shape,s,i):new Une(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},Hne={kernelName:Qi,backendName:"webgl",kernelFunc:tE},jne=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,qne=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+sg+`
|
|
return result;
|
|
`,Kne=cn({opSnippet:jne,packedOpSnippet:qne}),Xne={kernelName:Ji,backendName:"webgl",kernelFunc:Kne};function Yne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=w.parseAxisParam(s,r.shape),p=u,d=_.getAxesPermutation(p,o),c=r;d!=null&&(c=Yt({inputs:{x:r},backend:n,attrs:{perm:d}}),p=_.getInnerMostAxes(p.length,o),l.push(c)),_.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:y}=e9(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=_.computeOutAndReduceShapes(c.shape,p),g=w.sizeFromShape(f),y=me({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),b=Zm(r.dtype),x=Co(y,b,"prod",n);h=me({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=_.expandShapeToKeepDim(h.shape,u);h=me({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var Qne={kernelName:eo,backendName:"webgl",kernelFunc:Yne},nE=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=t9(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},Jne={kernelName:Cc,backendName:"webgl",kernelFunc:nE},Zne="return 1.0 / x;",eae=Qe({opSnippet:Zne}),tae={kernelName:ku,backendName:"webgl",kernelFunc:eae},nae=Aa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,aae=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,rae=Qe({opSnippet:nae,packedOpSnippet:aae}),sae={kernelName:to,backendName:"webgl",kernelFunc:rae},iae=Aa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,oae=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,lae=Qe({opSnippet:iae,packedOpSnippet:oae}),uae={kernelName:ao,backendName:"webgl",kernelFunc:lae},pae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},cae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function dae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new cae(r.shape,l,u,s,i):new pae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var hae={kernelName:no,backendName:"webgl",kernelFunc:dae},mae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function fae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new mae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var gae={kernelName:Hm,backendName:"webgl",kernelFunc:fae},yae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},bae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function xae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new bae(r.shape,l,u,s,i):new yae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var vae={kernelName:_c,backendName:"webgl",kernelFunc:xae},wae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function kae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new wae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Iae={kernelName:Gm,backendName:"webgl",kernelFunc:kae},Sae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=mt(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Nae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=Nn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=mt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${p(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((y,b)=>c(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Tae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return aa({inputs:{x:r},backend:n});let l=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Nae(r.shape,o):new Sae(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var Cae={kernelName:ro,backendName:"webgl",kernelFunc:Tae},_ae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Eae={kernelName:zu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new _ae(a.shape,s),[u,p]=_.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},Fae=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Aae=Qe({opSnippet:Fae}),$ae={kernelName:so,backendName:"webgl",kernelFunc:Aae},Dae="return inversesqrt(x);",Rae=Qe({opSnippet:Dae,cpuKernelImpl:n9}),Mae={kernelName:io,backendName:"webgl",kernelFunc:Rae},aE=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=mt(r.length),l=mt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let p=`getIndices(${u})`,d="";a===1?d="i":a===2&&(d="i, coords[1]");let c=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Pae(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=_.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=me({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=me({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new aE(l,o,h.shape.length,m.shape.length,p,c),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=me({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var Oae={kernelName:Su,backendName:"webgl",kernelFunc:Pae},Lae=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=X().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=`
|
|
int findBound(int batch, float value) {
|
|
int left = 0;
|
|
int right = numInputs;
|
|
int mid;
|
|
${i}
|
|
mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${o} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int valueIndex = coords[1];
|
|
|
|
float value = getValues(batch, valueIndex);
|
|
|
|
setOutput(float(findBound(batch, value)));
|
|
}
|
|
`}};function zae(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new Lae(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var Bae={kernelName:jm,backendName:"webgl",kernelFunc:zae},Wae=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=mt(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Vae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new Wae(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],fa(r.dtype,s.dtype))}var Uae={kernelName:Nu,backendName:"webgl",kernelFunc:Vae},Gae=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${_.SELU_SCALEALPHA};
|
|
float scale = ${_.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,Hae=Qe({opSnippet:Gae}),jae={kernelName:Tu,backendName:"webgl",kernelFunc:Hae},qae=ap+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,Kae=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Xae=Qe({opSnippet:qae,packedOpSnippet:Kae,cpuKernelImpl:r9}),Yae={kernelName:lo,backendName:"webgl",kernelFunc:Xae},Qae=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Jae=Qe({opSnippet:Qae}),Zae={kernelName:Eu,backendName:"webgl",kernelFunc:Jae},ere=ap+`
|
|
return sin(x);
|
|
`,tre=Qe({opSnippet:ere}),nre={kernelName:oo,backendName:"webgl",kernelFunc:tre},are=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,rre=Qe({opSnippet:are}),sre={kernelName:_u,backendName:"webgl",kernelFunc:rre},ire=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,ore=Qe({opSnippet:ire}),lre={kernelName:Fu,backendName:"webgl",kernelFunc:ore},ure=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],p=tE({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=_.getReshaped(p.shape,s,o,!1),c=_.getPermuted(d.length,s.length,!1),h=_.getReshapedPermuted(p.shape,s,o,!1),m=me({inputs:{x:p},backend:n,attrs:{shape:d}}),f=Yt({inputs:{x:m},backend:n,attrs:{perm:c}}),g=me({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},pre={kernelName:Au,backendName:"webgl",kernelFunc:ure};function cre(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=i9(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var dre={kernelName:Ec,backendName:"webgl",kernelFunc:cre};function hre(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=o9(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var mre={kernelName:Du,backendName:"webgl",kernelFunc:hre};function fre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=S_(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var gre={kernelName:Fc,backendName:"webgl",kernelFunc:fre};function yre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=S_(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var bre={kernelName:Ac,backendName:"webgl",kernelFunc:yre};function xre(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=_.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let y=n.bufferSync(r),b=n.bufferSync(s),x=w.decodeString(n.readSync(i.dataId)[0]),v=a9(y,b,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,v.dtype,v.values)}let m=new aE(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=me({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var vre={kernelName:qm,backendName:"webgl",kernelFunc:xre};function wre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=rp({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var kre={kernelName:$u,backendName:"webgl",kernelFunc:wre},cI="return sqrt(x);",Ire=Qe({opSnippet:cI,packedOpSnippet:cI,cpuKernelImpl:l9}),Sre={kernelName:uo,backendName:"webgl",kernelFunc:Ire},Nre="return x * x;",Tre=Qe({opSnippet:Nre}),Cre={kernelName:$c,backendName:"webgl",kernelFunc:Tre},dI="return (a - b) * (a - b);",_re=cn({opSnippet:dI,packedOpSnippet:dI}),Ere={kernelName:ho,backendName:"webgl",kernelFunc:_re};function Fre({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Aa+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Cr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var Are={kernelName:vs,backendName:"webgl",kernelFunc:Fre},$re=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=mt(n.length),s=mt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function Dre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),k;if(f)k=me({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=qt.computeOutShape(b,x,v),E=rp({inputs:{x:r},backend:n,attrs:{begin:b,size:C}});k=me({inputs:{x:E},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),E=Ve(r.shape,r.dtype,C),A=u9(h,E,v,b);k=n.makeTensorInfo(m,r.dtype,A.values)}else{let C=new $re(b,v,h);k=n.runWebGLProgram(C,[r],r.dtype)}let T=me({inputs:{x:k},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(k),T}var Rre={kernelName:Ru,backendName:"webgl",kernelFunc:Dre};function Mre(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=p9(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var Pre={kernelName:Km,backendName:"webgl",kernelFunc:Mre};function Ore(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=c9(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Lre={kernelName:Xm,backendName:"webgl",kernelFunc:Ore};function zre(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=d9(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var Bre={kernelName:Ym,backendName:"webgl",kernelFunc:zre},Wre="return tan(x);",Vre=Qe({opSnippet:Wre}),Ure={kernelName:fo,backendName:"webgl",kernelFunc:Vre},Gre=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Hre=Qe({opSnippet:Gre}),jre={kernelName:go,backendName:"webgl",kernelFunc:Hre},qre=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=mt(this.rank),r=Kre(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Kre(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function rE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>w.decodeString(d)):o,u=Ve(r.shape,r.dtype,l),p=m9(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new qre(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var Xre={kernelName:xs,backendName:"webgl",kernelFunc:rE},Yre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Qre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Vs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function hI(e){let t=1;for(;t<e;)t*=2;return t}function Jre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=X().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=X().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let A=n.readSync(r.dataId),[P,$]=f9(A,u,r.dtype,s,i);return[n.makeTensorInfo(P.shape,P.dtype,P.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,hd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=w.sizeFromShape(u)/p,f=me({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Vs(n,h);let g=hI(s),y=hI(p),b=null,x=()=>b===null?[f,f]:[f,b],v=(A,P,$)=>{let S=x(),M=new Yre($),V=[[p],[b===null?1:0],[Number.NEGATIVE_INFINITY],[A],[P]],j=b;b=n.runWebGLProgram(M,S,"int32",V),Vs(n,j)};for(let A=1;A<g;A*=2){let P=A*2;for(let $=A;$>=1;$/=2)v(P,$,[m,y])}for(let A=y;A>g;A/=2){let P=x(),$=new Qre([m,A/2]),S=[[p],[b===null?1:0],[g]],M=b;b=n.runWebGLProgram($,P,"int32",S),Vs(n,M);let V=g/2,j=V*2;for(let q=V;q>=1;q/=2)v(j,q,b.shape)}let k=b;b=rp({inputs:{x:b},backend:n,attrs:{begin:0,size:[m,s]}}),Vs(n,k);let T=X_({inputs:{x:f,indices:b},backend:n,attrs:{axis:1,batchDims:1}});Vs(n,f);let C=u.slice(0,-1);C.push(s),k=b,b=me({inputs:{x:b},attrs:{shape:C},backend:n}),Vs(n,k);let E=T;return T=me({inputs:{x:T},attrs:{shape:C},backend:n}),Vs(n,E),[T,b]}var Zre={kernelName:Mu,backendName:"webgl",kernelFunc:Jre},ese=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function tse(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new ese(d,c,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var nse={kernelName:Pu,backendName:"webgl",kernelFunc:tse};function ase(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Ju(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=g9(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var rse={kernelName:Qm,backendName:"webgl",kernelFunc:ase};function sse(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=rp({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=me({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=y,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var ise={kernelName:Ou,backendName:"webgl",kernelFunc:sse},ose=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function lse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=_.getAxesPermutation([u],o),d=r;p!=null&&(d=Yt({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=_.getInnerMostAxes(1,o)[0]);let c=_.segment_util.computeOutShape(d.shape,u,i),h=w.sizeFromShape([d.shape[u]]),m=me({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Zm(r.dtype),g=(v,k,T,C,E)=>{let A=v.shape[0],P=v.shape[1],$=_.segment_util.segOpComputeOptimalWindowSize(P,E),S={windowSize:$,inSize:P,batchSize:A,numSegments:E},M=new ose(S,k),V=n.compileAndRun(M,[v,T],C);if(l.push(V),V.shape[1]===E)return V;let j=nE({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),q=rE({inputs:{x:j},backend:n,attrs:{reps:[P/$]}});return l.push(j),l.push(q),g(V,k,q,C,E)},y=g(m,"unsortedSegmentSum",s,f,i),b=me({inputs:{x:y},backend:n,attrs:{shape:c}}),x=b;if(p!=null){l.push(b);let v=_.getUndoAxesPermutation(p);x=Yt({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var use={kernelName:Dc,backendName:"webgl",kernelFunc:lse},pse=[cQ,hQ,gQ,xQ,wQ,SQ,TQ,_Q,$Q,RQ,OQ,BQ,UQ,qQ,YQ,JQ,eJ,rJ,iJ,lJ,dJ,xJ,wJ,IJ,EJ,AJ,MJ,j9,LJ,UJ,qJ,ZJ,tZ,aZ,sZ,oZ,pZ,hZ,gZ,bZ,vZ,kZ,NZ,CZ,AZ,DZ,PZ,zZ,WZ,HZ,XZ,ZZ,nee,see,iee,lee,pee,dee,mee,gee,vee,Iee,Tee,_ee,Aee,Ree,Lee,Vee,H9,Gee,WJ,qee,Yee,Zee,K9,ate,ote,ute,hte,gte,vte,Ite,Cte,Ate,Rte,Pte,Bte,Vte,Gte,Kte,Yte,Jte,ene,nne,ine,pne,mne,kne,Z9,Tne,Ene,$ne,Mne,NJ,Lne,Bne,Vne,Hne,Xne,Y9,Qne,Jne,TJ,bne,tae,sae,uae,tQ,hae,gae,vae,Iae,Cae,Eae,$ae,Mae,Oae,Bae,Uae,jae,Yae,Zae,nre,sre,yJ,vne,lre,pre,dre,mre,gre,bre,vre,kre,Sre,Cre,Ere,Are,Rre,Pre,Lre,Bre,xne,lQ,Ure,jre,Xre,Zre,nse,uQ,rse,ise,use,zne];for(let e of pse)Rc(e);var $t;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})($t||($t={}));var fc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(fc||(fc={}));var sE;function cse(e){sE=e.wasm.cwrap(ni,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function dse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=n.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=fc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=u?s.shape[1]:s.shape[2],x=bo.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),v=n.makeOutput([...x,y,b],r.dtype),k=n.dataIdMap.get(v.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return sE(c,T,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,k),v}var hse={kernelName:ni,backendName:"wasm",setupFunc:cse,kernelFunc:dse};function dn(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return w.sizeFromShape(u.shape)===0||n(l,$t[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var mse=dn(Ll);function Fn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=_.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(p.shape).buffer),b=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,y,p.shape.length,$t[u.dtype],b),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var fse=!0,gse=Fn(ys,fse),iE;function yse(e){iE=e.wasm.cwrap(vi,null,["array","number","number","number"])}function bse(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return iE(s,r.length,$t[a.dtype],i),a}var xse={kernelName:vi,backendName:"wasm",setupFunc:yse,kernelFunc:bse};function pg(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var vse={kernelName:zi,backendName:"wasm",kernelFunc:pg},oE;function wse(e){oE=e.wasm.cwrap(yo,null,["number","array","number","number","number","array","number"])}function fs(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Ise(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=kse(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=pg({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return oE(p,h,l.shape.length,$t[l.dtype],d,c,s.length),u}function kse(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Ise(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Sse={kernelName:yo,backendName:"wasm",kernelFunc:fs,setupFunc:wse};function _s(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=_.getInnerMostAxes(i.length,r),l=fs({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var lE;function Nse(e){lE=e.wasm.cwrap(Wl,null,["number, number, number"])}function Tse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=_s(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("all",p,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;lE(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=_.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var Cse={kernelName:Wl,backendName:"wasm",setupFunc:Nse,kernelFunc:Tse},uE;function _se(e){uE=e.wasm.cwrap(Vl,null,["number, number, number"])}function Ese(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=_s(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("any",p,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;uE(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=_.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var Fse={kernelName:Vl,backendName:"wasm",setupFunc:_se,kernelFunc:Ese},pE;function Ase(e){pE=e.wasm.cwrap(wi,null,["number","number","number","number","number"])}function $se(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:d}=_s(s,r,t);if(d){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=w.sizeFromShape(h.shape),g=l.shape[p[0]];return pE(o,$t[l.dtype],f,g,m),d&&t.disposeData(u.dataId),h}var Dse={kernelName:wi,backendName:"wasm",kernelFunc:$se,setupFunc:Ase},cE;function Rse(e){cE=e.wasm.cwrap(ki,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Mse(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=_.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.strideHeight,b=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let v=a.makeOutput(p.outShape,"float32"),k=a.dataIdMap.get(v.dataId).id;return cE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,k),v}var Pse={kernelName:ki,backendName:"wasm",setupFunc:Rse,kernelFunc:Mse};function Bn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=w.sizeFromShape(a.shape),i=w.inferFromImplicitShape(r,s);return w.assert(s===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var Ose={kernelName:Iu,backendName:"wasm",kernelFunc:Bn},dE;function Lse(e){dE=e.wasm.cwrap(Ii,null,["number","array","number","number","array","number","number","number","number"])}function zse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=bo.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[y,h,d]:[y,d,h],k=Bn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Bn({inputs:{x:s},backend:n,attrs:{shape:v}}),C=n.dataIdMap.get(k.dataId).id,E=n.dataIdMap.get(T.dataId).id,A=i?k.shape[2]:k.shape[1],P=o?T.shape[1]:T.shape[2],$=Math.max(g,y),S=n.makeOutput([$,A,P],k.dtype),M=n.dataIdMap.get(S.dataId).id,V=new Uint8Array(new Int32Array(k.shape).buffer),j=new Uint8Array(new Int32Array(T.shape).buffer);return dE(C,V,k.shape.length,E,j,T.shape.length,i,o,M),n.disposeData(k.dataId),n.disposeData(T.dataId),S.shape=b,S}var Bse={kernelName:Ii,backendName:"wasm",setupFunc:Lse,kernelFunc:zse};function yi(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=qt.parseSliceParams(t,n,a),o=qt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=w.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=qt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+w.sizeFromShape(i))),u}if(t.dtype==="string"){let m=cm(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Wse(l,p[0],c,s,i);else if(h===3)Vse(l,p[0],p[1],c,s,i);else if(h===4)Use(l,p[0],p[1],p[2],c,s,i);else{let m=cm(l,s,i,t.shape,t.dtype);c.set(m)}return u}function Wse(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function Vse(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Use(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let y=p;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var Gse={kernelName:Cu,backendName:"wasm",kernelFunc:yi};function Hse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((y,b)=>y*b),l=_.getReshaped(r.shape,s,o),u=_.getPermuted(l.length,s.length),p=_.getReshapedPermuted(r.shape,s,o),d=_.getSliceBeginCoords(i,s.length),c=_.getSliceSize(p,i,s.length),h=Bn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=fs({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Bn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=yi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var jse={kernelName:Kl,backendName:"wasm",kernelFunc:Hse};function md(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var qse={kernelName:Si,backendName:"wasm",kernelFunc:md},Kse=dn(Ni),hE;function Xse(e){hE=e.wasm.cwrap(bs,null,["number","number","number","number"])}function Yse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return hE(o,s,i,u),l}var Qse={kernelName:bs,backendName:"wasm",setupFunc:Xse,kernelFunc:Yse};function mE(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>w.sizeFromShape(h.shape)>0);if(s.length===1)return pg({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=w.sizeFromShape(x.shape.slice(a));return Bn({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=_.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=v0(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=w.sizeFromShape(s[0].shape.slice(0,a)),u=0,p=s.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],y=h*g,b=d[f].subarray(y,y+g);c.set(b,m),m+=g}}return i}var Jse={kernelName:Xl,backendName:"wasm",kernelFunc:mE},fE;function Zse(e){fE=e.wasm.cwrap(Ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function eie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=_.convertConv2DDataFormat(c),m=_.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,k=m.dilationHeight,T=m.dilationWidth,C=m.strideHeight,E=m.strideWidth,A=m.inChannels,P=m.outChannels,$=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),M=a.dataIdMap.get(S.dataId).id;return fE(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,v,$,k,T,C,E,A,P,M),S}var tie={kernelName:Ti,backendName:"wasm",setupFunc:Zse,kernelFunc:eie},gE;function nie(e){gE=e.wasm.cwrap(Ci,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function aie(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:v,outHeight:k,outWidth:T,strideHeight:C,strideWidth:E}=h,A=f-1-h.padInfo.top,P=g-1-h.padInfo.left,$=h.dataFormat==="channelsLast",S=w.computeStrides(h.inShape),M=w.computeStrides(r.shape),[V,j,q]=w.computeStrides(s.shape),K=S[0],Z=$?S[1]:S[2],ee=$?S[2]:1,re=$?1:S[1],Y=M[0],ie=$?M[1]:M[2],ae=$?M[2]:1,le=$?1:M[1],ue=t.makeOutput(h.inShape,"float32"),ke=t.dataIdMap.get(ue.dataId).id,ye=t.dataIdMap.get(r.dataId).id,Ie=t.dataIdMap.get(s.dataId).id;return gE(ye,Ie,m,f,g,b,x,y,k,T,v,C,E,A,P,V,j,q,K,Z,ee,re,Y,ie,ae,le,ke),ue}var rie={kernelName:Ci,backendName:"wasm",setupFunc:nie,kernelFunc:aie},sie=dn(_i),iie=dn(Ei),Ix;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Ix||(Ix={}));var yE;function oie(e){yE=e.wasm.cwrap(Ql,null,["number","number","number","number","array","number","number","number","number","number"])}function lie(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=md({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,k=new Uint8Array(new Int32Array(o.shape).buffer);return yE(g,y,b,p,k,d,c,Ix[r],s,v),f!=null&&t.disposeData(f.dataId),x}var uie={kernelName:Ql,backendName:"wasm",setupFunc:oie,kernelFunc:lie},bE;function pie(e){bE=e.wasm.cwrap(Yl,null,["number","number","number","number","number","number"])}function cie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=_.getAxesPermutation([s],l),p=r;u!==null&&(p=fs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;bE(m,i?1:0,o?1:0,h,f,$t[r.dtype]);let g=c;if(u!==null){let y=_.getUndoAxesPermutation(u);g=fs({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var die={kernelName:Yl,backendName:"wasm",setupFunc:pie,kernelFunc:cie},xE;function hie(e){xE=e.wasm.cwrap(Fi,null,["number","number","number","number","number","number"])}function mie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=_.getAxesPermutation([s],l),p=r;u!==null&&(p=fs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;xE(m,i?1:0,o?1:0,h,f,$t[r.dtype]);let g=c;if(u!==null){let y=_.getUndoAxesPermutation(u);g=fs({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var fie={kernelName:Fi,backendName:"wasm",setupFunc:hie,kernelFunc:mie},vE;function gie(e){vE=e.wasm.cwrap(Jl,null,["number","number","number","array","number","array","array","number","number"])}function yie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return vE(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,v),f}var bie={kernelName:Jl,backendName:"wasm",setupFunc:gie,kernelFunc:yie},wE;function xie(e){wE=e.wasm.cwrap(Ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function vie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=_.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,k=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,E=h.inChannels,A=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get($.dataId).id;return wE(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,P,v,k,T,C,E,A,S),$}var wie={kernelName:Ai,backendName:"wasm",setupFunc:xie,kernelFunc:vie},kie=dn(Di),Iie=!1,Sie=Fn(eu,Iie,"bool"),Nie=dn(Ri,"float32");function Sx(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Bn({inputs:{x:r},backend:a,attrs:{shape:o}})}var Tie={kernelName:tu,backendName:"wasm",kernelFunc:Sx};function kE(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Cie={kernelName:kc,backendName:"wasm",kernelFunc:kE},IE;function _ie(e){IE=e.wasm.cwrap(au,null,["number","number","number","number","number","number"])}function Eie(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return IE(s,o,l,u,p,i),r}var Fie={kernelName:au,backendName:"wasm",kernelFunc:Eie,setupFunc:_ie},Aie=dn(Mi),$ie=!1,Die=Fn(Pi,$ie),SE;function Rie(e){SE=e.wasm.cwrap(Oi,null,["number","number","number","number","number","number","number"])}function Mie(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return SE(p,d,c,h,m,r,g),f}var Pie={kernelName:Oi,backendName:"wasm",setupFunc:Rie,kernelFunc:Mie},NE;function Oie(e){NE=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Lie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=fc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);v=ae.id}let k=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,A=f.padInfo.bottom,P=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,V=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Z=f.inHeight,ee=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),Y=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return NE(y,K,Z,ee,b,k,T,v,C,E,A,P,q,$,S,M,V,j,x,g,ie,m||0,Y),re}var zie={kernelName:ai,backendName:"wasm",setupFunc:Oie,kernelFunc:Lie},TE;function Bie(e){TE=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Wie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=fc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);v=ae.id}let k=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,A=f.padInfo.bottom,P=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,V=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Z=f.inHeight,ee=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),Y=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return TE(y,K,Z,ee,b,k,T,v,C,E,A,P,q,$,S,M,V,j,x,g,ie,m||0,Y),re}var Vie={kernelName:ri,backendName:"wasm",setupFunc:Bie,kernelFunc:Wie},CE;function Uie(e){CE=e.wasm.cwrap(su,null,["number","number","number","number","number","number","array","number"])}function Gie(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Vx.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return CE(c,$t[a.dtype],h,i,d,o,m,f),u}var Hie={kernelName:su,backendName:"wasm",setupFunc:Uie,kernelFunc:Gie},_E;function jie(e){_E=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function qie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let E=u[C];w.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let d=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Bn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(s.shape),m=Bn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let y=c.shape.length-1,b=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,v=t.dataIdMap.get(g.dataId).id,k=new Uint8Array(new Int32Array(w.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer);return _E(b,$t[r.dtype],k,y,x,d.batchSize,T,v),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var Kie={kernelName:ru,backendName:"wasm",setupFunc:jie,kernelFunc:qie},Xie=!1,Yie=Fn(iu,Xie,"bool"),Qie=!1,Jie=Fn(Li,Qie,"bool"),EE;function Zie(e){EE=e.wasm.cwrap(Bi,null,["number","number","number","number"])}function eoe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;EE(r,$t[t.dtype],n,i)}return s}var toe={kernelName:Bi,backendName:"wasm",setupFunc:Zie,kernelFunc:eoe},noe=!1,aoe=Fn(pu,noe,"bool"),roe=!1,soe=Fn(cu,roe,"bool"),ioe=dn(Wi),ooe=!1,loe=Fn(hu,ooe,"bool"),FE;function uoe(e){FE=e.wasm.cwrap(Vi,null,["number","number","number","number"])}function poe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=_s(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",p,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;FE(o,$t[i.dtype],g,b)}if(c&&t.disposeData(u.dataId),s){let b=_.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var coe={kernelName:Vi,backendName:"wasm",setupFunc:uoe,kernelFunc:poe},doe=!1,hoe=Fn(Ui,doe),AE;function moe(e){AE=e.wasm.cwrap(Gi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function foe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=_.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.dilationHeight,b=p.dilationWidth,x=p.strideHeight,v=p.strideWidth,k=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),E=a.dataIdMap.get(C.dataId).id;return AE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,v,k,T,E),C}var goe={kernelName:Gi,backendName:"wasm",setupFunc:moe,kernelFunc:foe},$E;function yoe(e){$E=e.wasm.cwrap(Hi,null,["number, number, number"])}function boe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t),m=d;if(h){let v=t.dataIdMap.get(p.dataId).id;v!==o&&(u=p,l=v,m=_.getInnerMostAxes(m.length,u.shape.length))}_.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=_.computeOutAndReduceShapes(u.shape,m),y=w.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=md({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;$E(l,y,v)}if(h&&t.disposeData(p.dataId),s){let v=_.expandShapeToKeepDim(x.shape,c);x.shape=v}return u.dtype!=="float32"&&t.disposeData(b.dataId),x}var xoe={kernelName:Hi,backendName:"wasm",setupFunc:yoe,kernelFunc:boe},DE;function voe(e){DE=e.wasm.cwrap(ji,null,["number","number","number","number"])}function woe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;_.assertAxesAreInnerMostDims("min",d,m);let[f,g]=_.computeOutAndReduceShapes(u.shape,d),y=w.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;DE(l,$t[i.dtype],y,x)}if(h&&t.disposeData(p.dataId),s){let x=_.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var koe={kernelName:ji,backendName:"wasm",setupFunc:voe,kernelFunc:woe},Ioe=!1,Soe=Fn(qi,Ioe),Nx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Nx||(Nx={}));var RE;function Noe(e){RE=e.wasm.cwrap(Ki,null,["number","array","number","number","array","array","number","number"])}function Toe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return RE(i,u,t.shape.length,$t[t.dtype],c,h,Nx[r],l),o}var Coe={kernelName:Ki,backendName:"wasm",kernelFunc:Toe,setupFunc:Noe},_oe=!0,Eoe=Fn(Xi,_oe),Foe=dn(fu);function U0(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var ME;function Aoe(e){ME=e.wasm.cwrap(yu,"number",["number","number","number","number","number"])}function $oe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=ME(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=U0(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var Doe={kernelName:yu,backendName:"wasm",setupFunc:Aoe,kernelFunc:$oe},PE;function Roe(e){PE=e.wasm.cwrap(bu,"number",["number","number","number","number","number","bool"])}function Moe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=PE(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=U0(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Poe={kernelName:bu,backendName:"wasm",setupFunc:Roe,kernelFunc:Moe},OE;function Ooe(e){OE=e.wasm.cwrap(xu,"number",["number","number","number","number","number","number"])}function Loe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=OE(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=U0(t,c);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var zoe={kernelName:xu,backendName:"wasm",setupFunc:Ooe,kernelFunc:Loe},Boe=!1,Woe=Fn(gu,Boe,"bool"),LE;function Voe(e){LE=e.wasm.cwrap(Yi,null,["number","number","number","number","number"])}function Uoe(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(r.dataId).id;return LE(p,s,i,o,u),l}var Goe={kernelName:Yi,backendName:"wasm",setupFunc:Voe,kernelFunc:Uoe};function Hoe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var joe={kernelName:vu,backendName:"wasm",kernelFunc:Hoe};function qoe(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Sx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Sx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=mE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var Koe={kernelName:wu,backendName:"wasm",kernelFunc:qoe},zE;function Xoe(e){zE=e.wasm.cwrap(Qi,null,["number","array","number","number","array","array","number","number"])}function Yoe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(w.sizeFromShape(t.shape)===0)return kE({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return zE(i,u,t.shape.length,$t[t.dtype],c,h,r,l),o}var BE={kernelName:Qi,backendName:"wasm",kernelFunc:Yoe,setupFunc:Xoe},Qoe=!1,Joe=Fn(Ji,Qoe),WE;function Zoe(e){WE=e.wasm.cwrap(Zi,null,["number","number","number"])}function ele(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=md({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return WE(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var tle={kernelName:Zi,backendName:"wasm",setupFunc:Zoe,kernelFunc:ele},VE;function nle(e){VE=e.wasm.cwrap(eo,null,["number","number","number","number"])}function ale(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=_.getInnerMostAxes(m.length,u.shape.length))}_.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=_.computeOutAndReduceShapes(u.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;VE(l,y,$t[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=_.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var rle={kernelName:eo,backendName:"wasm",setupFunc:nle,kernelFunc:ale},sle=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=I0(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},ile={kernelName:Cc,backendName:"wasm",kernelFunc:sle},ole=!0,lle=Fn($i,ole),ule=dn(to),ple=dn(ao),UE;function cle(e){UE=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number","number","number","number"])}function dle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=md({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return UE(y,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var hle={kernelName:no,backendName:"wasm",setupFunc:cle,kernelFunc:dle},GE;function mle(e){GE=e.wasm.cwrap(ro,null,["number","array","number","array","number","number"])}function fle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return pg({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);GE(l,p,i.length,d,r.shape.length,u);let c=Bn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var gle={kernelName:ro,backendName:"wasm",kernelFunc:fle,setupFunc:mle},HE;function yle(e){HE=e.wasm.cwrap(zu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function ble(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=_.getImageCenter(o,c,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(x).buffer);return HE(u,d,c,h,m,s,f,g,v,x.length,p),l}var xle={kernelName:zu,backendName:"wasm",kernelFunc:ble,setupFunc:yle},vle=dn(so),wle=dn(io),jE;function kle(e){jE=e.wasm.cwrap(Su,null,["number","number","number","number","number","number","array","number","number"])}function Ile(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=Ux.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return jE(h,m,$t[s.dtype],l,u,p,f,c,g),o}var Sle={kernelName:Su,backendName:"wasm",setupFunc:kle,kernelFunc:Ile},qE;function Nle(e){qE=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Tle(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:w.sizeFromShape(r.shape.slice(1));return qE(i,o,l,h,p),u}var Cle={kernelName:Nu,backendName:"wasm",kernelFunc:Tle,setupFunc:Nle},KE;function _le(e){KE=e.wasm.cwrap(lo,null,["number","number"])}function Ele(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||KE(a,s),r}var Fle={kernelName:"Sigmoid",backendName:"wasm",setupFunc:_le,kernelFunc:Ele},Ale=dn(oo),XE;function $le(e){XE=e.wasm.cwrap(co,null,["number","number","number","number"])}function Dle(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||XE(r,i,o,l),s}var Rle={kernelName:co,backendName:"wasm",setupFunc:$le,kernelFunc:Dle};function Mle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=BE.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=_.getReshaped(u.shape,s,o,!1),d=_.getPermuted(p.length,s.length,!1),c=_.getReshapedPermuted(u.shape,s,o,!1),h=Bn({inputs:{x:u},backend:n,attrs:{shape:p}}),m=fs({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Bn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var Ple={kernelName:Au,backendName:"wasm",kernelFunc:Mle},YE;function Ole(e){YE=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Lle(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([u],"bool"),x=t.dataIdMap.get(b.dataId).id,v=t.makeOutput([o],a.dtype),k=t.dataIdMap.get(v.dataId).id,T=t.makeOutput([4],"int32"),C=t.dataIdMap.get(T.dataId).id,E=YE(d,c,$t[r.dtype],o,u,l,h,f,y,x,k,C),A=t.readSync(T.dataId),P;switch(A[0]){case 1:{P=_.getSparseFillEmptyRowsIndicesDenseShapeMismatch(A[1]);break}case 2:{P=_.getSparseFillEmptyRowsNegativeIndexErrorMessage(A[1],A[2]);break}case 3:P=_.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(A[1],A[2],A[3]);break;default:P=""}if(t.disposeData(T.dataId),P)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(v.dataId),new Error(P);let $=m,S=g;return E!==p[0]&&($=yi({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=yi({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[$,S,b,v]}var zle={kernelName:Ec,backendName:"wasm",setupFunc:Ole,kernelFunc:Lle},QE;function Ble(e){QE=e.wasm.cwrap(Du,null,["number","number","number","number","number","number","number"])}function Wle(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=w.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;QE(i,o,l,u,c,m,g);let y=t.readSync(f.dataId),b;switch(y[0]){case 0:{b=_.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{b=_.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:b=_.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));b=_.getSparseReshapeInputOutputMultipleErrorMessage(x,v);break}case 4:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));b=_.getSparseReshapeInputOutputMismatchErrorMessage(x,v);break}default:b=""}if(t.disposeData(f.dataId),b)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(b);return[d,h]}var Vle={kernelName:Du,backendName:"wasm",setupFunc:Ble,kernelFunc:Wle},JE;function ZE(e){JE=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function eF(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),y=n.dataIdMap.get(g.dataId).id;JE(d,$t[r.dtype],r.shape[0],c,h,f,y,t,0);let b=n.readSync(g.dataId),x;switch(b[0]){case 0:{x=_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=_.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=_.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b[1],b[2]);break;case 3:x=_.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b[1],b[2],b[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Ule(e){return eF(e,!0)}var Gle={kernelName:Fc,backendName:"wasm",setupFunc:ZE,kernelFunc:Ule};function Hle(e){return eF(e,!1)}var jle={kernelName:Ac,backendName:"wasm",setupFunc:ZE,kernelFunc:Hle};function qle(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=yi({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var Kle={kernelName:$u,backendName:"wasm",kernelFunc:qle},Xle=dn(uo),Yle=dn($c),Qle=!0,Jle=Fn(ho,Qle),tF;function Zle(e){tF=e.wasm.cwrap(vs,null,["number","number","number","number"])}function eue(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return tF(i,r,$t[s.dtype],l),o}var tue={kernelName:vs,backendName:"wasm",setupFunc:Zle,kernelFunc:eue},nF;function nue(e){nF=e.wasm.cwrap(Ru,null,["number","array","number","array","array","array","array","array","number","number"])}function aue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),k;if(f)k=Bn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||y){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=qt.computeOutShape(b,x,v),C=yi({inputs:{x:r},backend:t,attrs:{begin:b,size:T}});k=Bn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(v).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),V=t.dataIdMap.get(T.dataId).id;nF(C,E,r.shape.length,A,P,$,S,M,h.length,V),k=Bn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return k}var rue={kernelName:Ru,backendName:"wasm",setupFunc:nue,kernelFunc:aue},sue=!0,iue=Fn(mo,sue),aF;function oue(e){aF=e.wasm.cwrap(po,null,["number","number","number","number"])}function lue(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=_.getInnerMostAxes(m.length,u.shape.length))}_.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=_.computeOutAndReduceShapes(u.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;aF(l,y,$t[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=_.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var uue={kernelName:po,backendName:"wasm",setupFunc:oue,kernelFunc:lue},pue=dn(fo),cue=dn(go),rF;function due(e){rF=e.wasm.cwrap(xs,null,["number","array","number","array","number","number"])}function hue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return rF(s,l,r.shape.length,u,o.length,$t[p.dtype],d),p}var mue={kernelName:xs,backendName:"wasm",setupFunc:due,kernelFunc:hue},sF;function fue(e){sF=e.wasm.cwrap(Mu,null,["number","array","number","number","number","bool","number","number"])}var gue=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return sF(i,o,a.shape.length,$t[a.dtype],r,s,p,c),[u,d]},yue={kernelName:Mu,backendName:"wasm",setupFunc:fue,kernelFunc:gue},iF;function bue(e){iF=e.wasm.cwrap(Pu,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function xue(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),b=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(b.dataId).id,v=t.dataIdMap.get(r.dataId).id,k=t.dataIdMap.get(s.dataId).id,T=i==="nearest"?1:2,C;switch(o){case"constant":C=1;break;case"reflect":C=2;break;case"wrap":C=3;break;case"nearest":C=4;break;default:C=1;break}return iF(v,k,s.shape[0]>1,p,m,f,h,c,d,y,r.shape.length-1,T,C,l,x),b}var vue={kernelName:Pu,backendName:"wasm",setupFunc:bue,kernelFunc:xue};function wue(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=yi({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var kue={kernelName:Ou,backendName:"wasm",kernelFunc:wue};function Iue(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Sue={kernelName:Lu,backendName:"wasm",kernelFunc:Iue},Nue=[hse,mse,gse,xse,Cse,Fse,Dse,Pse,Bse,jse,qse,Kse,Qse,Jse,tie,rie,sie,iie,uie,die,fie,bie,wie,kie,Sie,Nie,Tie,Cie,Fie,Aie,Die,Pie,zie,Vie,Hie,Kie,Yie,Jie,vse,toe,aoe,soe,ioe,loe,coe,hoe,goe,xoe,koe,Soe,Coe,Eoe,Foe,Doe,Poe,zoe,Woe,Goe,joe,Koe,BE,Joe,tle,rle,ile,lle,ule,ple,Ose,hle,gle,xle,vle,wle,Sle,Cle,Fle,Ale,Gse,Rle,Ple,zle,Vle,Gle,jle,Kle,Xle,Yle,Jle,tue,rue,iue,uue,pue,cue,mue,yue,vue,Sse,kue,Sue];for(let e of Nue)Rc(e);var Tx=X();Tx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Tx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Tx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var mI=bi(v$()),Tue=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,Cue=bi(w$()),oF=class extends gc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(lF),Cx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new ym(this,sr())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||w.sizeFromShape(s);let o=w.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return Fue(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function _ue(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function fI(e,t,n){if(gm!=null)return gm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Yp!=null&&Yp[a]!=null?Yp[a]:n+a}async function Eue(){let[e,t]=await Promise.all([X().getAsync("WASM_HAS_SIMD_SUPPORT"),X().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Tue.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?fI(e,t,qp!=null?qp:l):l+o},G0&&(r.instantiateWasm=_ue(fI(e,t,qp!=null?qp:"")));let s=!1;r.onAbort=()=>{s||Qp||(Qp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&gm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+mI.default.toString()],{type:"text/javascript"}),i=(0,mI.default)(r)):i=(0,Cue.default)(r),i.then(o=>{s=!0,Qp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function Fue(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Aue=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],gm=null,qp=null,Yp={},Qp=!1,G0=!1;function $ue(e,t=!1){if(Kx("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Qp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");gm=e,G0=t}function Due(e,t=!1){if(Qp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")qp=e;else{Yp=e;let n=Aue.filter(a=>Yp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}G0=t}var lF=-1,Cx=-1;function Rue(e){lF=e}function Mue(){if(Cx===-1)throw new Error("WASM backend not initialized.");return Cx}var Pue="3.17.0",Oue=2;tf("wasm",async()=>{let{wasm:e}=await Eue();return new oF(e)},Oue);var Lue="3.17.0",zue="3.17.0",Bue="3.17.0",Wue="3.17.0",Vue="3.17.0",Uue="3.17.0",Gue="3.17.0",Hue="3.17.0",jue={tfjs:Lue,"tfjs-core":zue,"tfjs-data":Bue,"tfjs-layers":Wue,"tfjs-converter":Vue,"tfjs-backend-cpu":Uue,"tfjs-backend-webgl":Gue,"tfjs-backend-wasm":Hue};var f1={};gh(f1,{AnchorPosition:()=>i1,DrawBox:()=>yd,DrawBoxOptions:()=>mg,DrawFaceLandmarks:()=>Ng,DrawFaceLandmarksOptions:()=>Sg,DrawTextField:()=>Lr,DrawTextFieldOptions:()=>lp,drawContour:()=>Mr,drawDetections:()=>tpe,drawFaceExpressions:()=>ipe,drawFaceLandmarks:()=>lpe});function Mr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var K0={};gh(K0,{computeReshapedDimensions:()=>q0,getCenterPoint:()=>Fo,isDimensions:()=>dg,isEven:()=>cg,isFloat:()=>j0,isTensor:()=>_o,isTensor1D:()=>que,isTensor2D:()=>H0,isTensor3D:()=>Pr,isTensor4D:()=>xa,isValidNumber:()=>er,isValidProbablitiy:()=>sp,range:()=>br,round:()=>Eo});var yn=class{constructor(t,n){if(!er(t)||!er(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new yn(1/this.width,1/this.height)}};function _o(e,t){return e instanceof Fe&&e.shape.length===t}function que(e){return _o(e,1)}function H0(e){return _o(e,2)}function Pr(e){return _o(e,3)}function xa(e){return _o(e,4)}function j0(e){return e%1!==0}function cg(e){return e%2===0}function Eo(e,t=2){let n=10**t;return Math.floor(e*n)/n}function dg(e){return e&&e.width&&e.height}function q0({width:e,height:t},n){let a=n/Math.max(t,e);return new yn(Math.round(e*a),Math.round(t*a))}function Fo(e){return e.reduce((t,n)=>t.add(n),new Pe(0,0)).div(new Pe(e.length,e.length))}function br(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function er(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function sp(e){return er(e)&&e>=0&&e<=1}var Pe=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Pe(this.x+t.x,this.y+t.y)}sub(t){return new Pe(this.x-t.x,this.y-t.y)}mul(t){return new Pe(this.x*t.x,this.y*t.y)}div(t){return new Pe(this.x/t.x,this.y/t.y)}abs(){return new Pe(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Pe(Math.floor(this.x),Math.floor(this.y))}};var lt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(er)}static assertIsValidBox(t,n,a=!1){if(!lt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(er),s=[a.x,a.y,a.width,a.height].every(er);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];lt.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Pe(this.left,this.top)}get topRight(){return new Pe(this.right,this.top)}get bottomLeft(){return new Pe(this.left,this.bottom)}get bottomRight(){return new Pe(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new lt({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new lt({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new lt({x:t,y:n,width:a,height:r})}rescale(t){let n=dg(t)?t.width:t,a=dg(t)?t.height:t;return new lt({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new lt({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new lt({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new lt({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new lt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ao=class extends lt{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Or=class{constructor(t,n,a,r,s){this._imageDims=new yn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new lt(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new lt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Or(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var xt=class extends Or{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new xt(a,r,s)}};function X0(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function Y0(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new Ao(a,r,s,i)}function Q0(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(X0(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function tr(e,t){return O(()=>{let[n,a,r]=t,s=_n([...e.shape.slice(0,3),1],n,"float32"),i=_n([...e.shape.slice(0,3),1],a,"float32"),o=_n([...e.shape.slice(0,3),1],r,"float32"),l=Ze([s,i,o],3);return ce(e,l)})}function J0(e,t=!1){return O(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,_n(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>oe(c,"float32"));return Ze(d,i)})}function Kue(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function fd(e){return 1/(1+Math.exp(-e))}function Xue(e){return Math.log(e/(1-e))}var $o=class extends lt{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Yue=.5,Que=.43,Jue=.45,ra=class{constructor(t,n,a=new Pe(0,0)){let{width:r,height:s}=n;this._imgDims=new yn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Pe(r,s)).add(a))}get shift(){return new Pe(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Pe(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Pe(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof xt?t.box.floor():new lt(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Jue),l=Fo(t),u=Math.floor(Math.max(0,l.x-Yue*o)),p=Math.floor(Math.max(0,l.y-Que*o));return new $o(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=Y0(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Z0=class extends ra{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Fo([t[3],t[4]])]}};var Do=class extends ra{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Fo)}};var ip=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Eo(this.distance)})`:""}`}};var op=class extends lt{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(lt.assertIsValidBox(n,a),!er(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var xr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new xr(t.label,n)}};var e1=class extends op{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(op.assertIsValidLabeledBox(n,a),!sp(n.score)||!sp(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function vr(e){return e.detection instanceof xt}function Ro(e,t){return{...e,...{detection:t}}}function t1(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function gd(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function hg(e){let t="";if(!e&&gd())try{e=HA("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function n1(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=hg();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function a1(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var on;function Zue(){if(!on)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return on}function r1(e){on=e}function s1(){return a1()?r1(t1()):gd()?r1(n1()):null}function epe(e){if(on||s1(),!on)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=on.Canvas,Image:n=on.Image}=e;on.Canvas=t,on.Image=n,on.createCanvasElement=e.createCanvasElement||(()=>new t),on.createImageElement=e.createImageElement||(()=>new n),on.ImageData=e.ImageData||on.ImageData,on.Video=e.Video||on.Video,on.fetch=e.fetch||on.fetch,on.readFile=e.readFile||on.readFile}var et={getEnv:Zue,setEnv:r1,initialize:s1,createBrowserEnv:t1,createFileSystem:hg,createNodejsEnv:n1,monkeyPatch:epe,isBrowser:a1,isNodejs:gd};s1();function Mo(e){return!et.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function jn(e){let{Canvas:t,CanvasRenderingContext2D:n}=et.getEnv();if(e instanceof n)return e;let a=Mo(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var i1=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(i1||{}),lp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},Lr=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof Lr?t.text:t,this.anchor=n,this.options=new lp(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=Mo(t),a=jn(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var mg=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new lp({...i,...s})}},yd=class{constructor(t,n={}){this.box=new lt(t),this.options=new mg(n)}draw(t){let n=jn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new Lr([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function tpe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof xt?a.score:vr(a)?a.detection.score:void 0,s=a instanceof xt?a.box:vr(a)?a.detection.box:new lt(a),i=r?`${Eo(r)}`:void 0;new yd(s,{label:i}).draw(e)})}function bd(e){let{Image:t,Video:n}=et.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function o1(e){return new Promise((t,n)=>{(e instanceof et.getEnv().Canvas||bd(e))&&t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function l1(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=et.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Po(e){let{Image:t,Video:n}=et.getEnv();return e instanceof t?new yn(e.naturalWidth,e.naturalHeight):e instanceof n?new yn(e.videoWidth,e.videoHeight):new yn(e.width,e.height)}function Oo({width:e,height:t}){let{createCanvasElement:n}=et.getEnv(),a=n();return a.width=e,a.height=t,a}function xd(e,t){let{ImageData:n}=et.getEnv();if(!(e instanceof n)&&!bd(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Po(e),s=Oo({width:a,height:r});return e instanceof n?jn(s).putImageData(e,0,0):jn(s).drawImage(e,0,0,a,r),s}async function u1(e,t){let n=t||et.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(xa(e)?1:0),i=O(()=>e.as3D(a,r,s).toInt());return await xo.toPixels(i,n),i.dispose(),n}function fg(e){let{Image:t,Canvas:n,Video:a}=et.getEnv();return e instanceof t||e instanceof n||e instanceof a}function p1(e,t,n=!1){let{Image:a,Canvas:r}=et.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Oo({width:1,height:1});let s=Po(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=Oo({width:t,height:t}),p=e instanceof r?e:xd(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&jn(u).drawImage(p,c,h,o,l),u}var wr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Pr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(xa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof et.getEnv().Canvas?a:xd(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return br(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return q0({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,O(()=>{let a=br(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Fe){let o=xa(i)?i:mn(i);return o=J0(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ln.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof et.getEnv().Canvas)return xo.fromPixels(p1(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Mt(a.map(s=>oe(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function vt(e){if(e instanceof wr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Mo);return a.forEach((r,s)=>{if(!fg(r)&&!Pr(r)&&!xa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(xa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>fg(r)&&o1(r))),new wr(a,Array.isArray(e))}async function up(e,t){let{Canvas:n}=et.getEnv(),a=e;if(!(e instanceof n)){let i=await vt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await u1(o)}let r=jn(a);return t.map(i=>i instanceof xt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=Oo({width:l,height:u});return l>0&&u>0&&jn(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function pp(e,t){if(!Pr(e)&&!xa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(xa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return O(()=>{let[n,a,r]=e.shape.slice(xa(e)?1:0);return t.map(o=>o instanceof xt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>Gu(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function zr(e,t){let{fetch:n}=et.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function npe(e){let t=await zr(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return l1(n)}async function c1(e){return(await zr(e)).json()}async function ape(e){return new Float32Array(await(await zr(e)).arrayBuffer())}function uF(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=et.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function rpe(e){let t=await zr(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return uF(n)}function gg(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function d1(e,t){let{manifestUri:n,modelBaseUri:a}=gg(e,t),r=await c1(n);return en.loadWeights(r,a)}function spe(e,t,n=!1){let{width:a,height:r}=n?Po(t):t;return e.width=a,e.height=r,{width:a,height:r}}var ln=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof is)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof is))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Jn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await d1(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=et.getEnv(),{manifestUri:a,modelBaseUri:r}=gg(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=en.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Fe))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function qn(e,t,n){return O(()=>{let a=wo(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=J(a,t.bias),a})}function yg(e,t,n=!1){return O(()=>{let a=Xe(n?J(Rt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):qn(e,t.conv0,[2,2])),r=qn(a,t.conv1,[1,1]),s=Xe(J(a,r)),i=qn(s,t.conv2,[1,1]);return Xe(J(a,J(r,i)))})}function vd(e,t,n=!1,a=!0){return O(()=>{let r=Xe(n?J(Rt(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):qn(e,t.conv0,a?[2,2]:[1,1])),s=qn(r,t.conv1,[1,1]),i=Xe(J(r,s)),o=qn(i,t.conv2,[1,1]),l=Xe(J(r,J(s,o))),u=qn(l,t.conv3,[1,1]);return Xe(J(r,J(s,J(o,u))))})}function Lo(e,t,n="same",a=!1){return O(()=>{let r=J(Rt(e,t.filters,[1,1],n),t.bias);return a?Xe(r):r})}function An(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function cp(e,t){return(n,a,r,s)=>{let i=Ja(e(n*a*r*r),[r,r,n,a]),o=qe(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function bg(e,t){return(n,a,r)=>{let s=Ha(e(n*a),[n,a]),i=qe(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var wd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function dp(e,t){return(n,a,r)=>{let s=Ja(e(9*n),[3,3,n,1]),i=Ja(e(n*a),[1,1,n,a]),o=qe(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new wd(s,i,o)}}function hp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new wd(n,a,r)}}function sa(e,t){return(n,a,r)=>{let s=e[n];if(!_o(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function $n(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function xg(e,t){let n=cp(e,t),a=dp(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function pF(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractDenseBlock4Params:r}=xg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function vg(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function wg(e,t){let n=sa(e,t),a=vg(n),r=hp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function cF(e){let t=[],{extractDenseBlock4Params:n}=wg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return An(e,t),{params:a,paramMappings:t}}var mp=class extends ln{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=tr(a,[122.782,117.001,104.298]).div(255),i=vd(s,n.dense0,!0);return i=vd(i,n.dense1),i=vd(i,n.dense2),i=vd(i,n.dense3),i=ga(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return cF(t)}extractParams(t){return pF(t)}};function kd(e,t){return O(()=>J(De(e,t.weights),t.bias))}function dF(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=$n(e),o=bg(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function hF(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return An(e,t),{params:r,paramMappings:t}}function kg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var fp=class extends ln{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return O(()=>{let r=n instanceof wr?this.faceFeatureExtractor.forwardInput(n):n;return kd(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return dF(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=kg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),hF(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var h1=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Br=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);h1.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return h1.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Id=class extends fp{constructor(t=new mp){super("FaceExpressionNet",t)}forwardInput(t){return O(()=>Qa(this.runNet(t)))}async forward(t){return this.forwardInput(await vt(t))}async predictExpressions(t){let n=await vt(t),a=await this.forwardInput(n),r=await Promise.all(ht(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Br(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function m1(e){return e.expressions instanceof Br}function Ig(e,t){return{...e,...{expressions:t}}}function ipe(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Br?s:m1(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=vr(s)?s.detection.box.bottomLeft:a||new Pe(0,0);new Lr(l.map(d=>`${d.expression} (${Eo(d.probability)})`),u).draw(e)})}function zo(e){return vr(e)&&e.landmarks instanceof ra&&e.unshiftedLandmarks instanceof ra&&e.alignedRect instanceof xt}function ope(e){let t=(o,l,u,p)=>Math.atan2(p-l,u-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,1/0),i=r.reduce((o,l)=>o>l._y?o:l._y,-1/0);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function gp(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new xt(e.detection.score,r.rescale(s.reverse()),s),o=ope(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var Sg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},Ng=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new Sg(n)}draw(t){let n=jn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof Do&&(n.strokeStyle=i,n.lineWidth=s,Mr(n,this.faceLandmarks.getJawOutline()),Mr(n,this.faceLandmarks.getLeftEyeBrow()),Mr(n,this.faceLandmarks.getRightEyeBrow()),Mr(n,this.faceLandmarks.getNose()),Mr(n,this.faceLandmarks.getLeftEye(),!0),Mr(n,this.faceLandmarks.getRightEye(),!0),Mr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function lpe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ra?a:zo(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new Ng(r).draw(e)})}var mF="1.6.9";function cpe(e,t){let n=cp(e,t),a=dp(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function fF(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=$n(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=cpe(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};br(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function dpe(e,t){let n=sa(e,t),a=vg(n),r=hp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function gF(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=dpe(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};br(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return An(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function yF(e,t,n){return J(Rt(e,t.filters,n,"same"),t.bias)}function g1(e,t,n=!0){let a=n?Xe(e):e;return a=qn(a,t.separable_conv0,[1,1]),a=qn(Xe(a),t.separable_conv1,[1,1]),a=Pt(a,[3,3],[2,2],"same"),a=J(a,yF(e,t.expansion_conv,[2,2])),a}function hpe(e,t){let n=qn(Xe(e),t.separable_conv0,[1,1]);return n=qn(Xe(n),t.separable_conv1,[1,1]),n=qn(Xe(n),t.separable_conv2,[1,1]),n=J(n,e),n}var Tg=class extends ln{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return O(()=>{let r=oe(n.toBatchTensor(112,!0),"float32"),i=tr(r,[122.782,117.001,104.298]).div(255),o=Xe(yF(i,a.entry_flow.conv_in,[2,2]));return o=g1(o,a.entry_flow.reduction_block_0,!1),o=g1(o,a.entry_flow.reduction_block_1),br(this._numMainBlocks,0,1).forEach(l=>{o=hpe(o,a.middle_flow[`main_block_${l}`])}),o=g1(o,a.exit_flow.reduction_block),o=Xe(qn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await vt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return gF(n,this._numMainBlocks)}extractParams(n){return fF(n,this._numMainBlocks)}};function bF(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),r=bg(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function xF(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return An(e,t),{params:r,paramMappings:t}}var Cg=(n=>(n.FEMALE="female",n.MALE="male",n))(Cg||{});var Sd=class extends ln{constructor(n=new Tg(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return O(()=>{let r=n instanceof wr?this.faceFeatureExtractor.forwardInput(n):n,s=ga(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=kd(s,a.fc.age).as1D(),o=kd(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return O(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Qa(r)}})}async forward(n){return this.forwardInput(await vt(n))}async predictAgeAndGender(n){let a=await vt(n),r=await this.forwardInput(a),s=ht(r.age),i=ht(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return bF(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=kg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),xF(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var yp=class extends fp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return O(()=>{let i=(d,c)=>Mt([_n([68],d,"float32"),_n([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(_n([s,136],n,"float32")).sub(Mt(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Mt(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return O(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await vt(t))}async detectLandmarks(t){let n=await vt(t),a=O(()=>ht(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>cg(d)),u=o.filter((p,d)=>!cg(d));return new Do(Array(68).fill(0).map((p,d)=>new Pe(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var Bo=class extends yp{constructor(t=new mp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function vF(e){let t=[],{extractDenseBlock3Params:n}=wg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return An(e,t),{params:a,paramMappings:t}}function wF(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractDenseBlock3Params:r}=xg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var _g=class extends ln{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=tr(a,[122.782,117.001,104.298]).div(255),i=yg(s,n.dense0,!0);return i=yg(i,n.dense1),i=yg(i,n.dense2),i=ga(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return vF(t)}extractParams(t){return wF(t)}};var Nd=class extends yp{constructor(t=new _g){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var y1=class extends Bo{};function kF(e,t){return J(B(e,t.weights),t.biases)}function b1(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Rt(e,s,n,r);return o=J(o,i),o=kF(o,t.scale),a?Xe(o):o}function IF(e,t){return b1(e,t,[1,1],!0)}function x1(e,t){return b1(e,t,[1,1],!1)}function Eg(e,t){return b1(e,t,[2,2],!0,"valid")}function mpe(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(j0(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return O(()=>Ae(Ja(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=qe(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=qe(e(o)),p=qe(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function SF(e){let{extractWeights:t,getRemainingWeights:n}=$n(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=mpe(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),k=O(()=>Ae(Ha(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:v,fc:k},paramMappings:a}}function fpe(e,t){let n=sa(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function NF(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=fpe(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!H0(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return An(e,t),{params:v,paramMappings:t}}function nr(e,t){let n=IF(e,t.conv1);return n=x1(n,t.conv2),n=J(n,e),n=Xe(n),n}function Td(e,t){let n=Eg(e,t.conv1);n=x1(n,t.conv2);let a=ga(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=Ze([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=Ze([n,p],2)}return a=s?Ze([a,r],3):a,n=J(a,n),n=Xe(n),n}var Wo=class extends ln{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(150,!0),"float32"),s=tr(a,[122.782,117.001,104.298]).div(255),i=Eg(s,n.conv32_down);i=Pt(i,3,2,"valid"),i=nr(i,n.conv32_1),i=nr(i,n.conv32_2),i=nr(i,n.conv32_3),i=Td(i,n.conv64_down),i=nr(i,n.conv64_1),i=nr(i,n.conv64_2),i=nr(i,n.conv64_3),i=Td(i,n.conv128_down),i=nr(i,n.conv128_1),i=nr(i,n.conv128_2),i=Td(i,n.conv256_down),i=nr(i,n.conv256_1),i=nr(i,n.conv256_2),i=Td(i,n.conv256_down_out);let o=i.mean([1,2]);return De(o,n.fc)})}async forward(t){return this.forwardInput(await vt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await vt(t),a=O(()=>ht(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return NF(t)}extractParams(t){return SF(t)}};function gpe(e){let t=new Wo;return t.extractWeights(e),t}function Fg(e,t){return{...e,...{descriptor:t}}}function ype(e){return typeof e.age=="number"}function Ag(e,t){return{...e,...{age:t}}}function bpe(e){return(e.gender==="male"||e.gender==="female")&&sp(e.genderProbability)}function $g(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function xpe(e,t){function n(l,u){let p=Ja(e(9*l),[3,3,l,1]),d=qe(e(l)),c=qe(e(l)),h=qe(e(l)),m=qe(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Ja(e(l*u*p*p),[p,p,l,u]),m=qe(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),k=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:v,conv_13:k}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),k=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),E=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),A=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),P=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:k},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:E,class_predictor:A},box_predictor_5:{box_encoding_predictor:P,class_predictor:$}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function TF(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=xpe(n,t),i=r(),o=s(),u={extra_dim:ef(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function vpe(e,t){let n=sa(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),y=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),b=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function CF(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=vpe(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Pr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return An(e,t),{params:s,paramMappings:t}}function $a(e,t,n){return O(()=>{let a=Rt(e,t.filters,n,"same");return a=J(a,t.batch_norm_offset),an(a,0,6)})}var wpe=.0010000000474974513;function kpe(e,t,n){return O(()=>{let a=Is(e,t.filters,n,"same");return a=Fr(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,wpe),an(a,0,6)})}function Ipe(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function _F(e,t){return O(()=>{let n,a=$a(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Ipe(o);a=kpe(a,s.depthwise_conv,l),a=$a(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Spe(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),y=Math.min(o,d),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(c+h-b)}function EF(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=Spe(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function Npe(e){let t=ht(Ae(e,[1,0])),n=[ce(t[2],t[0]),ce(t[3],t[1])],a=[J(t[0],fe(n[0],2)),J(t[1],fe(n[1],2))];return{sizes:n,centers:a}}function Tpe(e,t){let{sizes:n,centers:a}=Npe(e),r=ht(Ae(t,[1,0])),s=fe(B(gn(fe(r[2],5)),n[0]),2),i=J(B(fe(r[0],10),n[0]),a[0]),o=fe(B(gn(fe(r[3],5)),n[1]),2),l=J(B(fe(r[1],10),n[1]),a[1]);return Ae(Mt([ce(i,s),ce(l,o),J(i,s),J(l,o)]),[1,0])}function FF(e,t,n){return O(()=>{let a=e.shape[0],r=Tpe(W(On(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ma(He(t,[0,0,1],[-1,-1,-1])),i=He(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=ht(r),l=ht(i);return{boxes:o,scores:l}})}function Vo(e,t){return O(()=>{let n=e.shape[0],a=W(Lo(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(Lo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function AF(e,t,n){return O(()=>{let a=$a(e,n.conv_0,[1,1]),r=$a(a,n.conv_1,[2,2]),s=$a(r,n.conv_2,[1,1]),i=$a(s,n.conv_3,[2,2]),o=$a(i,n.conv_4,[1,1]),l=$a(o,n.conv_5,[2,2]),u=$a(l,n.conv_6,[1,1]),p=$a(u,n.conv_7,[2,2]),d=Vo(t,n.box_predictor_0),c=Vo(e,n.box_predictor_1),h=Vo(r,n.box_predictor_2),m=Vo(i,n.box_predictor_3),f=Vo(l,n.box_predictor_4),g=Vo(p,n.box_predictor_5),y=Ze([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Ze([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var va=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Es=class extends ln{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(512,!1),"float32"),r=ce(fe(a,127.5),1),s=_F(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=AF(s.out,s.conv11,n.prediction_layer);return FF(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await vt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new va(n),s=await vt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=EF(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=c.map(x=>{let[v,k]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(E=>E*g),[T,C]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(E=>E*f);return new xt(p[x],new $o(T,v,C-T,k-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return CF(t)}extractParams(t){return TF(t)}};function $F(e){let t=new Es;return t.extractWeights(e),t}function Cpe(e){return $F(e)}var v1=class extends Es{};var DF=.4,RF=[new Pe(.738768,.874946),new Pe(2.42204,2.65704),new Pe(4.30971,7.04493),new Pe(10.246,4.59428),new Pe(12.6868,11.8741)],MF=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],PF=[117.001,114.697,97.404],OF="tiny_yolov2_model",LF="tiny_yolov2_separable_conv_model";var Dg=e=>typeof e=="number";function w1(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Dg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Dg(t.x)&&Dg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Dg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function bp(e){return O(()=>{let t=B(e,we(.10000000149011612));return J(Xe(ce(e,t)),t)})}function Wr(e,t){return O(()=>{let n=ya(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Rt(n,t.conv.filters,[1,1],"valid"),n=ce(n,t.bn.sub),n=B(n,t.bn.truediv),n=J(n,t.conv.bias),bp(n)})}function Vr(e,t){return O(()=>{let n=ya(e,[[0,0],[1,1],[1,1],[0,0]]);return n=wo(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=J(n,t.bias),bp(n)})}function _pe(e,t){let n=cp(e,t);function a(i,o){let l=qe(e(i)),u=qe(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=dp(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function zF(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=$n(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=_pe(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,y,b,x]=a,v=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),k=u(c,h,"conv1"),T=u(h,m,"conv2"),C=u(m,f,"conv3"),E=u(f,g,"conv4"),A=u(g,y,"conv5"),P=b?u(y,b,"conv6"):void 0,$=x?u(b,x,"conv7"):void 0,S=o(x||b||y,5*n,1,"conv8");p={conv0:v,conv1:k,conv2:T,conv3:C,conv4:E,conv5:A,conv6:P,conv7:$,conv8:S}}else{let[d,c,h,m,f,g,y,b,x]=a,v=l(d,c,"conv0"),k=l(c,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),E=l(f,g,"conv4"),A=l(g,y,"conv5"),P=l(y,b,"conv6"),$=l(b,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:v,conv1:k,conv2:T,conv3:C,conv4:E,conv5:A,conv6:P,conv7:$,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function Epe(e,t){let n=sa(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=hp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function BF(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Epe(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return An(e,n),{params:i,paramMappings:n}}var ar=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var k1=class extends ln{constructor(n){super("TinyYolov2");w1(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=Wr(n,a.conv0);return r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv1),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv2),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv3),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv4),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv5),r=Pt(r,[2,2],[1,1],"same"),r=Wr(r,a.conv6),r=Wr(r,a.conv7),Lo(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?bp(Lo(n,a.conv0,"valid",!1)):Vr(n,a.conv0);return r=Pt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv1),r=Pt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv2),r=Pt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv3),r=Pt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv4),r=Pt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv5),r=Pt(r,[2,2],[1,1],"same"),r=a.conv6?Vr(r,a.conv6):r,r=a.conv7?Vr(r,a.conv7):r,Lo(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return O(()=>{let s=oe(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?tr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await vt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new ar(a),i=await vt(n),o=await this.forwardInput(i,r),l=O(()=>ht(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(y=>y.box),c=p.map(y=>y.score),h=p.map(y=>y.classScore),m=p.map(y=>this.config.classes[y.label]);return Q0(d.map(y=>y.rescale(r)),c,this.config.iouThreshold,!0).map(y=>new Or(c[y],h[y],m[y],d[y],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return BF(n,this.config)}extractParams(n){let a=this.config.filterSizes||k1.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return zF(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=O(()=>{let b=n.reshape([p,p,d,this.boxEncodingSize]),x=b.slice([0,0,0,0],[p,p,d,4]),v=b.slice([0,0,0,4],[p,p,d,1]),k=this.withClassScores?Qa(b.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):we(0);return[x,v,k]}),f=[],g=await h.array(),y=await c.array();for(let b=0;b<p;b++)for(let x=0;x<p;x++)for(let v=0;v<d;v++){let k=fd(g[b][x][v][0]);if(!r||k>r){let T=(x+fd(y[b][x][v][0]))/p*l,C=(b+fd(y[b][x][v][1]))/p*u,E=Math.exp(y[b][x][v][2])*this.config.anchors[v].x/p*l,A=Math.exp(y[b][x][v][3])*this.config.anchors[v].y/p*u,P=T-E/2,$=C-A/2,S={row:b,col:x,anchor:v},{classScore:M,label:V}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new Ao(P,$,P+E,$+A),score:k,classScore:k*M,label:V,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},Uo=k1;Uo.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Go=class extends Uo{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:DF,classes:["face"],...t?{anchors:MF,meanRgb:PF}:{anchors:RF,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new xt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?LF:OF}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Fpe(e,t=!0){let n=new Go(t);return n.extractWeights(e),n}var Cd=class extends ar{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var wa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function Ho(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>zo(l)?r(l):l.detection),i=a||(t instanceof Fe?await pp(t,s):await up(t,s)),o=await n(i);return i.forEach(l=>l instanceof Fe&&l.dispose()),o}async function xp(e,t,n,a,r){return Ho([e],t,async s=>n(s[0]),a,r)}var WF=.4,VF=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],UF=[117.001,114.697,97.404];var jo=class extends Uo{constructor(){let t={withSeparableConvs:!0,iouThreshold:WF,classes:["face"],anchors:VF,meanRgb:UF,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new xt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var tt={ssdMobilenetv1:new Es,tinyFaceDetector:new jo,tinyYolov2:new Go,faceLandmark68Net:new Bo,faceLandmark68TinyNet:new Nd,faceRecognitionNet:new Wo,faceExpressionNet:new Id,ageGenderNet:new Sd},GF=(e,t)=>tt.ssdMobilenetv1.locateFaces(e,t),Ape=(e,t)=>tt.tinyFaceDetector.locateFaces(e,t),$pe=(e,t)=>tt.tinyYolov2.locateFaces(e,t),HF=e=>tt.faceLandmark68Net.detectLandmarks(e),Dpe=e=>tt.faceLandmark68TinyNet.detectLandmarks(e),Rpe=e=>tt.faceRecognitionNet.computeFaceDescriptor(e),Mpe=e=>tt.faceExpressionNet.predictExpressions(e),Ppe=e=>tt.ageGenderNet.predictAgeAndGender(e),jF=e=>tt.ssdMobilenetv1.load(e),Ope=e=>tt.tinyFaceDetector.load(e),Lpe=e=>tt.tinyYolov2.load(e),zpe=e=>tt.faceLandmark68Net.load(e),Bpe=e=>tt.faceLandmark68TinyNet.load(e),Wpe=e=>tt.faceRecognitionNet.load(e),Vpe=e=>tt.faceExpressionNet.load(e),Upe=e=>tt.ageGenderNet.load(e),Gpe=jF,Hpe=GF,jpe=HF;var Rg=class extends wa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},qo=class extends Rg{async run(){let t=await this.parentTask,n=await Ho(t,this.input,async a=>Promise.all(a.map(r=>tt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>Ig(a,n[r]))}withAgeAndGender(){return new Xo(this,this.input)}},Ko=class extends Rg{async run(){let t=await this.parentTask;if(!t)return;let n=await xp(t,this.input,a=>tt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return Ig(t,n)}withAgeAndGender(){return new Yo(this,this.input)}},Fs=class extends qo{withAgeAndGender(){return new $s(this,this.input)}withFaceDescriptors(){return new Ur(this,this.input)}},As=class extends Ko{withAgeAndGender(){return new Ds(this,this.input)}withFaceDescriptor(){return new Gr(this,this.input)}};var Mg=class extends wa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Xo=class extends Mg{async run(){let t=await this.parentTask,n=await Ho(t,this.input,async a=>Promise.all(a.map(r=>tt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Ag($g(a,i,o),s)})}withFaceExpressions(){return new qo(this,this.input)}},Yo=class extends Mg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await xp(t,this.input,s=>tt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Ag($g(t,a,r),n)}withFaceExpressions(){return new Ko(this,this.input)}},$s=class extends Xo{withFaceExpressions(){return new Fs(this,this.input)}withFaceDescriptors(){return new Ur(this,this.input)}},Ds=class extends Yo{withFaceExpressions(){return new As(this,this.input)}withFaceDescriptor(){return new Gr(this,this.input)}};var _d=class extends wa{constructor(n,a){super();this.parentTask=n;this.input=a}},Ur=class extends _d{async run(){let t=await this.parentTask;return(await Ho(t,this.input,a=>Promise.all(a.map(r=>tt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Fg(t[r],a))}withFaceExpressions(){return new Fs(this,this.input)}withAgeAndGender(){return new $s(this,this.input)}},Gr=class extends _d{async run(){let t=await this.parentTask;if(!t)return;let n=await xp(t,this.input,a=>tt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Fg(t,n)}withFaceExpressions(){return new As(this,this.input)}withAgeAndGender(){return new Ds(this,this.input)}};var Ed=class extends wa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?tt.faceLandmark68TinyNet:tt.faceLandmark68Net}},Fd=class extends Ed{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Fe?await pp(this.input,n):await up(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Fe&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>gp(i,r[o]))}withFaceExpressions(){return new Fs(this,this.input)}withAgeAndGender(){return new $s(this,this.input)}withFaceDescriptors(){return new Ur(this,this.input)}},Ad=class extends Ed{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Fe?await pp(this.input,[n]):await up(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Fe&&s.dispose()),gp(t,r)}withFaceExpressions(){return new As(this,this.input)}withAgeAndGender(){return new Ds(this,this.input)}withFaceDescriptor(){return new Gr(this,this.input)}};var $d=class extends wa{constructor(n,a=new va){super();this.input=n;this.options=a}},vp=class extends $d{async run(){let{input:t,options:n}=this,a;if(n instanceof Cd)a=tt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof va)a=tt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof ar)a=tt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>Ro({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new Fd(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new qo(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Xo(this.runAndExtendWithFaceDetections(),this.input)}},Dd=class extends $d{async run(){let t=await new vp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Ro({},n):void 0)})}withFaceLandmarks(t=!1){return new Ad(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Ko(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Yo(this.runAndExtendWithFaceDetection(),this.input)}};function qpe(e,t=new va){return new Dd(e,t)}function Pg(e,t=new va){return new vp(e,t)}async function qF(e,t){return Pg(e,new va(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Kpe(e,t={}){return Pg(e,new ar(t)).withFaceLandmarks().withFaceDescriptors()}var Xpe=qF;function I1(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var Rd=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof xr)return i;if(i instanceof Float32Array)return new xr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new xr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>I1(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new ip(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new ip("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>xr.fromJSON(a));return new Rd(n,t.distanceThreshold)}};function Ype(e){let t=new jo;return t.extractWeights(e),t}function KF(e,t){let{width:n,height:a}=new yn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>KF(r,{width:n,height:a}));if(zo(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return gp(Ro(e,r),s)}return vr(e)?Ro(e,e.detection.forSize(n,a)):e instanceof ra||e instanceof xt?e.forSize(n,a):e}var Qpe=mF;return qA(Jpe);})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|