4342 lines
1.1 MiB
4342 lines
1.1 MiB
|
|
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var FA=Object.create,nd=Object.defineProperty,_A=Object.getPrototypeOf,EA=Object.prototype.hasOwnProperty,$A=Object.getOwnPropertyNames,DA=Object.getOwnPropertyDescriptor;var Uw=e=>nd(e,"__esModule",{value:!0});var MA=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),ad=(e,t)=>{for(var n in t)nd(e,n,{get:t[n],enumerable:!0})},RA=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of $A(t))!EA.call(e,a)&&a!=="default"&&nd(e,a,{get:()=>t[a],enumerable:!(n=DA(t,a))||n.enumerable});return e},PA=e=>RA(Uw(nd(e!=null?FA(_A(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e);var XS=MA((Ire,qS)=>{Uw(Ire);ad(Ire,{isNodejs:()=>Nre});function Nre(){return typeof global=="object"&&!0&&typeof qS!="undefined"&&typeof process!="undefined"&&!!process.version}});var Gw={};ad(Gw,{Abs:()=>So,Acos:()=>Co,Acosh:()=>Ao,AdadeltaOptimizer:()=>_h,AdagradOptimizer:()=>Eh,AdamOptimizer:()=>$h,AdamaxOptimizer:()=>Dh,Add:()=>Br,AddN:()=>Ns,All:()=>ud,Any:()=>cd,ArgMax:()=>Ts,ArgMin:()=>Ku,Asin:()=>Fo,Asinh:()=>_o,Atan:()=>Eo,Atan2:()=>Do,Atanh:()=>$o,AvgPool:()=>Ss,AvgPool3D:()=>Yu,AvgPool3DGrad:()=>dd,AvgPoolGrad:()=>pd,BackendWasm:()=>VS,BatchMatMul:()=>Cs,BatchToSpaceND:()=>Ju,Bincount:()=>hd,BroadcastTo:()=>s0,Callback:()=>WI,CallbackList:()=>Lk,Cast:()=>As,Ceil:()=>Fs,ClipByValue:()=>Vr,Complex:()=>md,ComplexAbs:()=>Qu,Concat:()=>Mo,Conv2D:()=>_s,Conv2DBackpropFilter:()=>fd,Conv2DBackpropInput:()=>Es,Conv3D:()=>Zu,Conv3DBackpropFilterV2:()=>gd,Conv3DBackpropInputV2:()=>yd,Cos:()=>$s,Cosh:()=>Ro,CropAndResize:()=>Po,Cumsum:()=>Ds,CustomCallback:()=>Wk,DataStorage:()=>sd,DenseBincount:()=>bd,DepthToSpace:()=>Oo,DepthwiseConv2dNative:()=>Ms,DepthwiseConv2dNativeBackpropFilter:()=>xd,DepthwiseConv2dNativeBackpropInput:()=>vd,Diag:()=>wd,Dilation2D:()=>ec,Dilation2DBackpropFilter:()=>Id,Dilation2DBackpropInput:()=>kd,ENV:()=>Ug,EarlyStopping:()=>VI,Elu:()=>Lo,EluGrad:()=>Nd,Environment:()=>a0,Equal:()=>Wo,Erf:()=>zo,Exp:()=>Ps,ExpandDims:()=>Bo,Expm1:()=>Vo,FFT:()=>Td,Fill:()=>tc,FlipLeftRight:()=>Uo,Floor:()=>Os,FloorDiv:()=>Ls,FromPixels:()=>Wd,FusedBatchNorm:()=>zs,FusedConv2D:()=>yi,FusedDepthwiseConv2D:()=>bi,GatherNd:()=>Ho,GatherV2:()=>Go,GraphModel:()=>bN,Greater:()=>jo,GreaterEqual:()=>Ws,History:()=>zk,IFFT:()=>Sd,Identity:()=>Bs,Imag:()=>Cd,InputSpec:()=>Yt,IsFinite:()=>qo,IsInf:()=>Xo,IsNan:()=>Ko,KernelBackend:()=>ju,LRN:()=>rc,LRNGrad:()=>Fd,LayerVariable:()=>Dk,LayersModel:()=>wr,LeakyRelu:()=>Vs,Less:()=>Yo,LessEqual:()=>Jo,LinSpace:()=>Ad,Log:()=>Us,Log1p:()=>Qo,LogSoftmax:()=>i0,LogicalAnd:()=>Zo,LogicalNot:()=>nc,LogicalOr:()=>ac,Max:()=>Gs,MaxPool:()=>js,MaxPool3D:()=>sc,MaxPool3DGrad:()=>Ed,MaxPoolGrad:()=>_d,MaxPoolWithArgmax:()=>$d,Maximum:()=>Hs,Mean:()=>qs,Min:()=>Xs,Minimum:()=>Ks,MirrorPad:()=>ic,Mod:()=>el,MomentumOptimizer:()=>Mh,Multinomial:()=>Dd,Multiply:()=>Ys,Neg:()=>tl,NonMaxSuppressionV3:()=>al,NonMaxSuppressionV4:()=>rl,NonMaxSuppressionV5:()=>sl,NotEqual:()=>nl,OP_SCOPE_SUFFIX:()=>y0,OneHot:()=>Js,OnesLike:()=>il,Optimizer:()=>br,Pack:()=>ol,PadV2:()=>Qs,Pool:()=>BF,Pow:()=>Zs,Prelu:()=>ei,Prod:()=>ll,RMSPropOptimizer:()=>Rh,RNN:()=>er,Range:()=>oc,Rank:()=>Yg,Real:()=>Md,RealDiv:()=>Rs,Reciprocal:()=>ul,Reduction:()=>hn,Relu:()=>ti,Relu6:()=>ai,Reshape:()=>cl,ResizeBilinear:()=>ni,ResizeBilinearGrad:()=>Pd,ResizeNearestNeighbor:()=>lc,ResizeNearestNeighborGrad:()=>Rd,Reverse:()=>ri,RotateWithOffset:()=>Nl,Round:()=>si,Rsqrt:()=>ii,SGDOptimizer:()=>Oc,ScatterNd:()=>pl,Select:()=>dl,Selu:()=>hl,Sequential:()=>Kl,Sigmoid:()=>li,Sign:()=>gl,Sin:()=>oi,Sinh:()=>fl,Slice:()=>ml,Softmax:()=>pi,Softplus:()=>yl,SpaceToBatchND:()=>uc,SparseToDense:()=>Od,SplitV:()=>bl,Sqrt:()=>ui,Square:()=>cc,SquaredDifference:()=>di,Step:()=>Gr,StridedSlice:()=>xl,Sub:()=>hi,Sum:()=>ci,SymbolicTensor:()=>Ea,Tan:()=>vl,Tanh:()=>mi,Tensor:()=>Fe,TensorBuffer:()=>Lt,Tile:()=>Ur,TopK:()=>wl,Transform:()=>Ld,Transpose:()=>fi,Unique:()=>zd,Unpack:()=>kl,UnsortedSegmentSum:()=>pc,Variable:()=>Hr,ZerosLike:()=>Il,_FusedMatMul:()=>gi,abs:()=>zt,acos:()=>wy,acosh:()=>ky,add:()=>J,addN:()=>e1,all:()=>eh,any:()=>Ic,argMax:()=>Nc,argMin:()=>Iy,asin:()=>Ny,asinh:()=>Ty,atan:()=>Sy,atan2:()=>Cy,atanh:()=>Ay,avgPool:()=>Qn,avgPool3d:()=>Ey,backend:()=>Z0,backend_util:()=>E,basicLSTMCell:()=>v$,batchNorm:()=>fr,batchNorm2d:()=>r1,batchNorm3d:()=>s1,batchNorm4d:()=>i1,batchToSpaceND:()=>Sc,bincount:()=>o1,booleanMaskAsync:()=>NR,broadcastTo:()=>Cc,browser:()=>ki,buffer:()=>Le,callbacks:()=>h4,cast:()=>ue,ceil:()=>$y,clipByValue:()=>Xt,clone:()=>Kr,complex:()=>jr,concat:()=>Je,concat1d:()=>l1,concat2d:()=>u1,concat3d:()=>c1,concat4d:()=>p1,constraints:()=>ik,conv1d:()=>nh,conv2d:()=>Et,conv2dTranspose:()=>ah,conv3d:()=>My,conv3dTranspose:()=>V$,copyRegisteredKernels:()=>GF,cos:()=>Ac,cosh:()=>rh,cosineWindow:()=>ib,cumsum:()=>sh,customGrad:()=>ja,data:()=>vN,denseBincount:()=>h1,deprecationWarn:()=>vy,depthToSpace:()=>Ry,depthwiseConv2d:()=>Qr,deregisterOp:()=>f4,device_util:()=>vc,diag:()=>Y$,dilation2d:()=>Py,disableDeprecationWarnings:()=>$E,dispose:()=>Ee,disposeVariables:()=>DE,div:()=>xe,divNoNan:()=>Oy,dot:()=>m1,dropout:()=>R1,elu:()=>Ml,enableDebugMode:()=>EE,enableProdMode:()=>_E,enclosingPowerOfTwo:()=>P1,engine:()=>Ua,env:()=>Z,equal:()=>Zr,erf:()=>Ly,exp:()=>dn,expandDims:()=>Rn,expm1:()=>zy,eye:()=>Wy,fft:()=>Rc,fill:()=>Sn,findBackend:()=>WE,findBackendFactory:()=>BE,floor:()=>Rl,floorDiv:()=>Zd,fused:()=>ns,gather:()=>Ti,gatherND:()=>M1,gather_util:()=>hy,getBackend:()=>LE,getGradient:()=>qg,getKernel:()=>Bd,getKernelsForBackend:()=>Vd,grad:()=>TD,grads:()=>SD,greater:()=>pa,greaterEqual:()=>es,ifft:()=>Bl,imag:()=>ih,image:()=>Ka,inTopKAsync:()=>RR,initializers:()=>hk,input:()=>Sk,io:()=>jt,irfft:()=>wh,isFinite:()=>f1,isInf:()=>g1,isNaN:()=>y1,keep:()=>qt,kernel_impls:()=>Ya,layers:()=>Tk,leakyRelu:()=>Fc,less:()=>oh,lessEqual:()=>Si,linalg:()=>X1,linspace:()=>b1,loadGraphModel:()=>mV,loadLayersModel:()=>DB,localResponseNormalization:()=>By,log:()=>Pn,log1p:()=>lh,logSigmoid:()=>v1,logSoftmax:()=>ch,logSumExp:()=>Gy,logicalAnd:()=>da,logicalNot:()=>_c,logicalOr:()=>ph,logicalXor:()=>N1,losses:()=>QP,matMul:()=>ze,math:()=>D0,max:()=>Zn,maxPool:()=>$t,maxPool3d:()=>Hy,maxPoolWithArgmax:()=>T1,maximum:()=>qa,mean:()=>Ct,memory:()=>Jd,metrics:()=>OI,min:()=>Ol,minimum:()=>Ll,mirrorPad:()=>jy,mod:()=>qy,model:()=>EB,models:()=>LI,moments:()=>dh,movingAverage:()=>CR,mul:()=>B,multiRNNCell:()=>tM,multinomial:()=>S1,neg:()=>St,nextFrame:()=>Ph,norm:()=>Th,notEqual:()=>Ai,oneHot:()=>_l,ones:()=>Xa,onesLike:()=>On,op:()=>O,outerProduct:()=>iM,pad:()=>ea,pad1d:()=>uM,pad2d:()=>pM,pad3d:()=>hM,pad4d:()=>fM,pool:()=>C1,pow:()=>gr,prelu:()=>$c,print:()=>C0,prod:()=>hh,profile:()=>ME,rand:()=>NM,randomGamma:()=>AM,randomNormal:()=>A1,randomUniform:()=>zl,range:()=>mh,ready:()=>OE,real:()=>Dc,reciprocal:()=>Yy,registerBackend:()=>Qd,registerCallbackConstructor:()=>MB,registerGradient:()=>o0,registerKernel:()=>hc,registerOp:()=>m4,regularizers:()=>zI,relu:()=>qe,relu6:()=>fh,removeBackend:()=>zE,reshape:()=>H,reverse:()=>Ln,reverse1d:()=>OM,reverse2d:()=>zM,reverse3d:()=>BM,reverse4d:()=>UM,rfft:()=>Pc,round:()=>Jy,rsqrt:()=>gh,scalar:()=>ce,scatterND:()=>D1,scatter_util:()=>my,selu:()=>yh,separableConv2d:()=>Fi,sequential:()=>$B,serialization:()=>re,setBackend:()=>PE,setPlatform:()=>VE,setWasmPath:()=>hre,setWasmPaths:()=>mre,setdiff1dAsync:()=>F1,sigmoid:()=>ca,sign:()=>Qy,signal:()=>JP,sin:()=>bh,sinh:()=>xh,slice:()=>Be,slice1d:()=>vh,slice2d:()=>Zy,slice3d:()=>Wl,slice4d:()=>Mc,slice_util:()=>pn,softmax:()=>Ta,softplus:()=>Pl,spaceToBatchND:()=>Ec,sparseToDense:()=>sb,spectral:()=>YP,split:()=>zn,sqrt:()=>an,square:()=>lt,squaredDifference:()=>kh,squeeze:()=>ts,stack:()=>Dt,step:()=>Vl,stridedSlice:()=>eb,sub:()=>me,sum:()=>Se,sumOutType:()=>jd,tan:()=>tb,tanh:()=>Dl,tensor:()=>Yn,tensor1d:()=>Qe,tensor2d:()=>Sa,tensor3d:()=>Kd,tensor4d:()=>Ca,tensor5d:()=>fR,tensor6d:()=>gR,tensor_util:()=>Ia,test_util:()=>K0,tidy:()=>M,tile:()=>Ha,time:()=>RE,topk:()=>nb,train:()=>Ei,transpose:()=>Ve,truncatedNormal:()=>Ih,unique:()=>Nh,unregisterGradient:()=>UF,unregisterKernel:()=>VF,unsortedSegmentSum:()=>ab,unstack:()=>ct,upcastType:()=>ua,util:()=>I,valueAndGrad:()=>CD,valueAndGrads:()=>AD,variable:()=>_1,variableGrads:()=>x1,version:()=>wee,version_converter:()=>xN,version_core:()=>Q0,version_layers:()=>im,version_wasm:()=>fre,where:()=>Tn,whereAsync:()=>rb,zeros:()=>vt,zerosLike:()=>Ge});var OA=Object.create,rd=Object.defineProperty,LA=Object.getPrototypeOf,zA=Object.prototype.hasOwnProperty,WA=Object.getOwnPropertyNames,BA=Object.getOwnPropertyDescriptor,VA=e=>rd(e,"__esModule",{value:!0}),tt=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Oe=(e,t)=>{for(var n in t)rd(e,n,{get:t[n],enumerable:!0})},UA=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of WA(t))!zA.call(e,a)&&a!=="default"&&rd(e,a,{get:()=>t[a],enumerable:!(n=BA(t,a))||n.enumerable});return e},Io=e=>UA(VA(rd(e!=null?OA(LA(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),GA=tt(()=>{}),HA=tt((e,t)=>{(function(n,a,r){function s(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var p=new s(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,c=function(p){p=p.toString();for(var d=0;d<p.length;d++){u+=p.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),jA=tt((e,t)=>{(function(n,a,r){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),qA=tt((e,t)=>{(function(n,a,r){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,p==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),XA=tt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,u.i=d+1&7,m};function c(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(p.x&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),KA=tt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,u.i=h,f+(p^p>>>16)|0};function c(p,d){var h,m,f,g,y,b=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,g=-32;g<x;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(p.X&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),YA=tt((e,t)=>{(function(n,a,r){function s(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p<c.length+20;p++)u.b^=c.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Lg=tt(()=>{}),JA=tt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),p=c*2,d=s-1,h;function m(k,w,S){var A=[];w=w==!0?{entropy:!0}:w||{};var F=b(y(w.entropy?[k,v(n)]:k==null?x():k,3),A),D=new f(A),R=function(){for(var L=D.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=D.g(1);for(;L>=p;)L/=2,W/=2,U>>>=1;return(L+U)/W};return R.int32=function(){return D.g(4)|0},R.quick=function(){return D.g(4)/4294967296},R.double=R,b(v(D.S),n),(w.pass||S||function(L,W,U,G){return G&&(G.S&&g(G,D),L.state=function(){return g(D,{})}),U?(a[l]=L,W):L})(R,F,"global"in w?w.global:this==a,w.state)}a["seed"+l]=m;function f(k){var w,S=k.length,A=this,F=0,D=A.i=A.j=0,R=A.S=[];for(S||(k=[S++]);F<s;)R[F]=F++;for(F=0;F<s;F++)R[F]=R[D=d&D+k[F%S]+(w=R[F])],R[D]=w;(A.g=function(L){for(var W,U=0,G=A.i,X=A.j,j=A.S;L--;)W=j[G=d&G+1],U=U*s+j[d&(j[G]=j[X=d&X+W])+(j[X]=W)];return A.i=G,A.j=X,U})(s)}function g(k,w){return w.i=k.i,w.j=k.j,w.S=k.S.slice(),w}function y(k,w){var S=[],A=typeof k,F;if(w&&A=="object")for(F in k)try{S.push(y(k[F],w-1))}catch(D){}return S.length?S:A=="string"?k:k+"\0"}function b(k,w){for(var S=k+"",A,F=0;F<S.length;)w[d&F]=d&(A^=w[d&F]*19)+S.charCodeAt(F++);return v(w)}function x(){try{var k;return h&&(k=h.randomBytes)?k=k(s):(k=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(k)),v(k)}catch(A){var w=r.navigator,S=w&&w.plugins;return[+new Date,r,S,r.screen,v(n)]}}function v(k){return String.fromCharCode.apply(0,k)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=Lg()}catch(k){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),QA=tt((e,t)=>{var n=HA(),a=jA(),r=qA(),s=XA(),i=KA(),o=YA(),l=JA();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),ZA=tt((e,t)=>{(function(n,a,r){function s(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var p=new s(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,c=function(p){p=p.toString();for(var d=0;d<p.length;d++){u+=p.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),eF=tt((e,t)=>{(function(n,a,r){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),tF=tt((e,t)=>{(function(n,a,r){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,p==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),nF=tt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,u.i=d+1&7,m};function c(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(p.x&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),aF=tt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,u.i=h,f+(p^p>>>16)|0};function c(p,d){var h,m,f,g,y,b=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,g=-32;g<x;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(p.X&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),rF=tt((e,t)=>{(function(n,a,r){function s(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p<c.length+20;p++)u.b^=c.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sF=tt((e,t)=>{(function(n,a){var r=(0,eval)("this"),s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),p=c*2,d=s-1,h;function m(k,w,S){var A=[];w=w==!0?{entropy:!0}:w||{};var F=b(y(w.entropy?[k,v(n)]:k==null?x():k,3),A),D=new f(A),R=function(){for(var L=D.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=D.g(1);for(;L>=p;)L/=2,W/=2,U>>>=1;return(L+U)/W};return R.int32=function(){return D.g(4)|0},R.quick=function(){return D.g(4)/4294967296},R.double=R,b(v(D.S),n),(w.pass||S||function(L,W,U,G){return G&&(G.S&&g(G,D),L.state=function(){return g(D,{})}),U?(a[l]=L,W):L})(R,F,"global"in w?w.global:this==a,w.state)}a["seed"+l]=m;function f(k){var w,S=k.length,A=this,F=0,D=A.i=A.j=0,R=A.S=[];for(S||(k=[S++]);F<s;)R[F]=F++;for(F=0;F<s;F++)R[F]=R[D=d&D+k[F%S]+(w=R[F])],R[D]=w;(A.g=function(L){for(var W,U=0,G=A.i,X=A.j,j=A.S;L--;)W=j[G=d&G+1],U=U*s+j[d&(j[G]=j[X=d&X+W])+(j[X]=W)];return A.i=G,A.j=X,U})(s)}function g(k,w){return w.i=k.i,w.j=k.j,w.S=k.S.slice(),w}function y(k,w){var S=[],A=typeof k,F;if(w&&A=="object")for(F in k)try{S.push(y(k[F],w-1))}catch(D){}return S.length?S:A=="string"?k:k+"\0"}function b(k,w){for(var S=k+"",A,F=0;F<S.length;)w[d&F]=d&(A^=w[d&F]*19)+S.charCodeAt(F++);return v(w)}function x(){try{var k;return h&&(k=h.randomBytes)?k=k(s):(k=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(k)),v(k)}catch(A){var w=r.navigator,S=w&&w.plugins;return[+new Date,r,S,r.screen,v(n)]}}function v(k){return String.fromCharCode.apply(0,k)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=Lg()}catch(k){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),Hw=tt((e,t)=>{var n=ZA(),a=eF(),r=tF(),s=nF(),i=aF(),o=rF(),l=sF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),iF=tt(()=>{}),oF=tt((e,t)=>{(function(n,a,r){function s(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var p=new s(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,c=function(p){p=p.toString();for(var d=0;d<p.length;d++){u+=p.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lF=tt((e,t)=>{(function(n,a,r){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),uF=tt((e,t)=>{(function(n,a,r){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,p==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),cF=tt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,u.i=d+1&7,m};function c(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(p.x&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),pF=tt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,u.i=h,f+(p^p>>>16)|0};function c(p,d){var h,m,f,g,y,b=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,g=-32;g<x;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(p.X&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),dF=tt((e,t)=>{(function(n,a,r){function s(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p<c.length+20;p++)u.b^=c.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),hF=tt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),p=c*2,d=s-1,h;function m(k,w,S){var A=[];w=w==!0?{entropy:!0}:w||{};var F=b(y(w.entropy?[k,v(n)]:k==null?x():k,3),A),D=new f(A),R=function(){for(var L=D.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=D.g(1);for(;L>=p;)L/=2,W/=2,U>>>=1;return(L+U)/W};return R.int32=function(){return D.g(4)|0},R.quick=function(){return D.g(4)/4294967296},R.double=R,b(v(D.S),n),(w.pass||S||function(L,W,U,G){return G&&(G.S&&g(G,D),L.state=function(){return g(D,{})}),U?(a[l]=L,W):L})(R,F,"global"in w?w.global:this==a,w.state)}a["seed"+l]=m;function f(k){var w,S=k.length,A=this,F=0,D=A.i=A.j=0,R=A.S=[];for(S||(k=[S++]);F<s;)R[F]=F++;for(F=0;F<s;F++)R[F]=R[D=d&D+k[F%S]+(w=R[F])],R[D]=w;(A.g=function(L){for(var W,U=0,G=A.i,X=A.j,j=A.S;L--;)W=j[G=d&G+1],U=U*s+j[d&(j[G]=j[X=d&X+W])+(j[X]=W)];return A.i=G,A.j=X,U})(s)}function g(k,w){return w.i=k.i,w.j=k.j,w.S=k.S.slice(),w}function y(k,w){var S=[],A=typeof k,F;if(w&&A=="object")for(F in k)try{S.push(y(k[F],w-1))}catch(D){}return S.length?S:A=="string"?k:k+"\0"}function b(k,w){for(var S=k+"",A,F=0;F<S.length;)w[d&F]=d&(A^=w[d&F]*19)+S.charCodeAt(F++);return v(w)}function x(){try{var k;return h&&(k=h.randomBytes)?k=k(s):(k=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(k)),v(k)}catch(A){var w=r.navigator,S=w&&w.plugins;return[+new Date,r,S,r.screen,v(n)]}}function v(k){return String.fromCharCode.apply(0,k)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=Lg()}catch(k){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),mF=tt((e,t)=>{var n=oF(),a=lF(),r=uF(),s=cF(),i=pF(),o=dF(),l=hF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Hu=tt(()=>{}),fF=tt(()=>{}),gF=tt(()=>{}),yF=tt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ee.buffer!=We&&tn(ee.buffer),vn}function i(){return ee.buffer!=We&&tn(ee.buffer),Nt}function o(){return ee.buffer!=We&&tn(ee.buffer),wn}function l(){return ee.buffer!=We&&tn(ee.buffer),Xn}function u(){return ee.buffer!=We&&tn(ee.buffer),cn}var c=typeof r!="undefined"?r:{},p,d;c.ready=new Promise(function(T,C){p=T,d=C});var h={},m;for(m in c)c.hasOwnProperty(m)&&(h[m]=c[m]);var f=[],g="./this.program",y=function(T,C){throw C},b=!1,x=!1,v=!1,k=!1;b=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",k=!b&&!v&&!x;var w=c.ENVIRONMENT_IS_PTHREAD||!1;w&&(We=c.buffer);var S="";function A(T){return c.locateFile?c.locateFile(T,S):S+T}var F,D,R,L,W,U;if(v){x?S=Hu().dirname(S)+"/":S=__dirname+"/",F=function(T,C){return W||(W=require("fs")),U||(U=Hu()),T=U.normalize(T),W.readFileSync(T,C?null:"utf8")},R=function(T){var C=F(T,!0);return C.buffer||(C=new Uint8Array(C)),fe(C.buffer),C},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(T){if(!(T instanceof Gu))throw T}),process.on("unhandledRejection",cr),y=function(T){process.exit(T)},c.inspect=function(){return"[Emscripten Module object]"};var G;try{G=fF()}catch(T){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),T}global.Worker=G.Worker}else k?(typeof read!="undefined"&&(F=function(T){return read(T)}),R=function(T){var C;return typeof readbuffer=="function"?new Uint8Array(readbuffer(T)):(C=read(T,"binary"),fe(typeof C=="object"),C)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(T){quit(T)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(b||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof a!="undefined"&&a&&(S=a),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",v?(F=function(T,C){return W||(W=require("fs")),U||(U=Hu()),T=U.normalize(T),W.readFileSync(T,C?null:"utf8")},R=function(T){var C=F(T,!0);return C.buffer||(C=new Uint8Array(C)),fe(C.buffer),C}):(F=function(T){var C=new XMLHttpRequest;return C.open("GET",T,!1),C.send(null),C.responseText},x&&(R=function(T){var C=new XMLHttpRequest;return C.open("GET",T,!1),C.responseType="arraybuffer",C.send(null),new Uint8Array(C.response)}),D=function(T,C,z){var q=new XMLHttpRequest;q.open("GET",T,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){C(q.response);return}z()},q.onerror=z,q.send(null)}),L=function(T){document.title=T});v&&typeof performance=="undefined"&&(global.performance=gF().performance);var X=c.print||console.log.bind(console),j=c.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(c[m]=h[m]);h=null,c.arguments&&(f=c.arguments),c.thisProgram&&(g=c.thisProgram),c.quit&&(y=c.quit);var te=Atomics.load,Q=Atomics.store,se=Atomics.compareExchange,ne;c.wasmBinary&&(ne=c.wasmBinary);var ie=c.noExitRuntime||!0;typeof WebAssembly!="object"&&cr("no native wasm support detected");var ee,de,oe=!1,ge;function fe(T,C){T||cr("Assertion failed: "+C)}function we(T){var C=c["_"+T];return fe(C,"Cannot call unknown function "+T+", make sure it is exported"),C}function Ne(T,C,z,q,he){var le={string:function(Nn){var ko=0;if(Nn!=null&&Nn!==0){var Vw=(Nn.length<<2)+1;ko=xo(Vw),at(Nn,ko,Vw)}return ko},array:function(Nn){var ko=xo(Nn.length);return Ke(Nn,ko),ko}};function pe(Nn){return C==="string"?_e(Nn):C==="boolean"?Boolean(Nn):Nn}var be=we(T),rt=[],Gt=0;if(q)for(var Pt=0;Pt<q.length;Pt++){var Lr=le[z[Pt]];Lr?(Gt===0&&(Gt=Uu()),rt[Pt]=Lr(q[Pt])):rt[Pt]=q[Pt]}var wo=be.apply(null,rt);return wo=pe(wo),Gt!==0&&bo(Gt),wo}function Ae(T,C,z,q){z=z||[];var he=z.every(function(pe){return pe==="number"}),le=C!=="string";return le&&he&&!q?we(T):function(){return Ne(T,C,z,arguments,q)}}function Me(T,C,z){for(var q=C+z,he="";!(C>=q);){var le=T[C++];if(!le)return he;if(!(le&128)){he+=String.fromCharCode(le);continue}var pe=T[C++]&63;if((le&224)==192){he+=String.fromCharCode((le&31)<<6|pe);continue}var be=T[C++]&63;if((le&240)==224?le=(le&15)<<12|pe<<6|be:le=(le&7)<<18|pe<<12|be<<6|T[C++]&63,le<65536)he+=String.fromCharCode(le);else{var rt=le-65536;he+=String.fromCharCode(55296|rt>>10,56320|rt&1023)}}return he}function _e(T,C){return T?Me(i(),T,C):""}function nt(T,C,z,q){if(!(q>0))return 0;for(var he=z,le=z+q-1,pe=0;pe<T.length;++pe){var be=T.charCodeAt(pe);if(be>=55296&&be<=57343){var rt=T.charCodeAt(++pe);be=65536+((be&1023)<<10)|rt&1023}if(be<=127){if(z>=le)break;C[z++]=be}else if(be<=2047){if(z+1>=le)break;C[z++]=192|be>>6,C[z++]=128|be&63}else if(be<=65535){if(z+2>=le)break;C[z++]=224|be>>12,C[z++]=128|be>>6&63,C[z++]=128|be&63}else{if(z+3>=le)break;C[z++]=240|be>>18,C[z++]=128|be>>12&63,C[z++]=128|be>>6&63,C[z++]=128|be&63}}return C[z]=0,z-he}function at(T,C,z){return nt(T,i(),C,z)}function ot(T){for(var C=0,z=0;z<T.length;++z){var q=T.charCodeAt(z);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|T.charCodeAt(++z)&1023),q<=127?++C:q<=2047?C+=2:q<=65535?C+=3:C+=4}return C}function Ke(T,C){s().set(T,C)}function ft(T,C){return T%C>0&&(T+=C-T%C),T}var We,vn,Nt,qn,en,wn,Xn,Mn,cn;function tn(T){We=T,c.HEAP8=vn=new Int8Array(T),c.HEAP16=qn=new Int16Array(T),c.HEAP32=wn=new Int32Array(T),c.HEAPU8=Nt=new Uint8Array(T),c.HEAPU16=en=new Uint16Array(T),c.HEAPU32=Xn=new Uint32Array(T),c.HEAPF32=Mn=new Float32Array(T),c.HEAPF64=cn=new Float64Array(T)}var Wa=c.INITIAL_MEMORY||16777216;if(w)ee=c.wasmMemory,We=c.buffer;else if(c.wasmMemory)ee=c.wasmMemory;else if(ee=new WebAssembly.Memory({initial:Wa/65536,maximum:2147483648/65536,shared:!0}),!(ee.buffer instanceof SharedArrayBuffer))throw j("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ee&&(We=ee.buffer),Wa=We.byteLength,tn(We);var sa,ia=[],$r=[],lr=[],Dr=[],co=[],ka=!1,Dp=!1;w||$r.push({func:function(){Kp()}}),w&&(ka=!0);function If(){if(!w){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Pp(c.preRun.shift());ho(ia)}}function Mp(){ka=!0,ho($r)}function Nf(){w||ho(lr)}function Rp(){w||(Dp=!0)}function kn(){if(!w){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Tf(c.postRun.shift());ho(co)}}function Pp(T){ia.unshift(T)}function Tf(T){co.unshift(T)}var ur=0,Mr=null,xs=null;function Sf(T){fe(!w,"addRunDependency cannot be used in a pthread worker"),ur++,c.monitorRunDependencies&&c.monitorRunDependencies(ur)}function Cf(T){if(ur--,c.monitorRunDependencies&&c.monitorRunDependencies(ur),ur==0&&(Mr!==null&&(clearInterval(Mr),Mr=null),xs)){var C=xs;xs=null,C()}}c.preloadedImages={},c.preloadedAudios={};function cr(T){c.onAbort&&c.onAbort(T),w&&console.error("Pthread aborting at "+new Error().stack),T+="",j(T),oe=!0,ge=1,T="abort("+T+"). Build with -s ASSERTIONS=1 for more info.";var C=new WebAssembly.RuntimeError(T);throw d(C),C}function Op(T,C){return String.prototype.startsWith?T.startsWith(C):T.indexOf(C)===0}var po="data:application/octet-stream;base64,";function Lp(T){return Op(T,po)}var Af="file://";function zp(T){return Op(T,Af)}var In="tfjs-backend-wasm-threaded-simd.wasm";Lp(In)||(In=A(In));function Ff(T){try{if(T==In&&ne)return new Uint8Array(ne);if(R)return R(T);throw"both async and sync fetching of the wasm failed"}catch(C){cr(C)}}function Wp(){if(!ne&&(b||x)){if(typeof fetch=="function"&&!zp(In))return fetch(In,{credentials:"same-origin"}).then(function(T){if(!T.ok)throw"failed to load wasm binary file at '"+In+"'";return T.arrayBuffer()}).catch(function(){return Ff(In)});if(D)return new Promise(function(T,C){D(In,function(z){T(new Uint8Array(z))},C)})}return Promise.resolve().then(function(){return Ff(In)})}function _f(){var T={a:vg};function C(pe,be){var rt=pe.exports;if(c.asm=rt,sa=c.asm.F,de=be,!w){var Gt=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Pt){ke.loadWasmModuleToWorker(Pt,function(){--Gt||Cf("wasm-instantiate")})})}}w||Sf("wasm-instantiate");function z(pe){C(pe.instance,pe.module)}function q(pe){return Wp().then(function(be){return WebAssembly.instantiate(be,T)}).then(pe,function(be){j("failed to asynchronously prepare wasm: "+be),cr(be)})}function he(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!Lp(In)&&!zp(In)&&typeof fetch=="function"?fetch(In,{credentials:"same-origin"}).then(function(pe){var be=WebAssembly.instantiateStreaming(pe,T);return be.then(z,function(rt){return j("wasm streaming compile failed: "+rt),j("falling back to ArrayBuffer instantiation"),q(z)})}):q(z)}if(c.instantiateWasm)try{var le=c.instantiateWasm(T,C);return le}catch(pe){return j("Module.instantiateWasm callback failed with error: "+pe),!1}return he().catch(d),{}}var Bp={8991:function(T,C){setTimeout(function(){Pw(T,C)},0)}};function Ef(){ke.initRuntime()}function ho(T){for(;T.length>0;){var C=T.shift();if(typeof C=="function"){C(c);continue}var z=C.func;typeof z=="number"?C.arg===void 0?sa.get(z)():sa.get(z)(C.arg):z(C.arg===void 0?null:C.arg)}}function mo(T,C){if(T<=0||T>s().length||T&!0||C<0)return-28;if(C==0)return 0;C>=2147483647&&(C=Infinity);var z=Atomics.load(o(),vo>>2),q=0;if(z==T){var he=Atomics.compareExchange(o(),vo>>2,z,0);if(he==z&&(--C,q=1,C<=0))return 1}var le=Atomics.notify(o(),T>>2,C);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}c._emscripten_futex_wake=mo;function $f(T){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in killThread!";o()[T+12>>2]=0;var C=ke.pthreads[T];C.worker.terminate(),ke.freeThreadData(C),ke.runningWorkers.splice(ke.runningWorkers.indexOf(C.worker),1),C.worker.pthread=void 0}function Df(T){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cancelThread!";var C=ke.pthreads[T];C.worker.postMessage({cmd:"cancel"})}function Mf(T){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[T+12>>2]=0;var C=ke.pthreads[T];if(C){var z=C.worker;ke.returnWorkerToPool(z)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var T=8,C=0;C<T;++C)ke.allocateUnusedWorker()},initRuntime:function(){for(var T=ws(228),C=0;C<228/4;++C)l()[T/4+C]=0;o()[T+12>>2]=T;var z=T+152;o()[z>>2]=z;for(var q=ws(512),C=0;C<128;++C)l()[q/4+C]=0;Atomics.store(l(),T+100>>2,q),Atomics.store(l(),T+40>>2,T),ed(T,!x,1),Rw(T)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();w&&yo()&&Mw()},threadExit:function(T){var C=yo();C&&(Atomics.store(l(),C+4>>2,T),Atomics.store(l(),C+0>>2,1),Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),ke.runExitHandlers(),mo(C+0,2147483647),ed(0,0,0),w&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlers();var T=yo();Atomics.store(l(),T+4>>2,-1),Atomics.store(l(),T+0>>2,1),mo(T+0,2147483647),ed(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var T in ke.pthreads){var C=ke.pthreads[T];C&&C.worker&&ke.returnWorkerToPool(C.worker)}ke.pthreads={};for(var z=0;z<ke.unusedWorkers.length;++z){var q=ke.unusedWorkers[z];q.terminate()}ke.unusedWorkers=[];for(var z=0;z<ke.runningWorkers.length;++z){var q=ke.runningWorkers[z],C=q.pthread;ke.freeThreadData(C),q.terminate()}ke.runningWorkers=[]},freeThreadData:function(T){if(T){if(T.threadInfoStruct){var C=o()[T.threadInfoStruct+100>>2];o()[T.threadInfoStruct+100>>2]=0,Vu(C),Vu(T.threadInfoStruct)}T.threadInfoStruct=0,T.allocatedOwnStack&&T.stackBase&&Vu(T.stackBase),T.stackBase=0,T.worker&&(T.worker.pthread=null)}},returnWorkerToPool:function(T){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[T.pthread.threadInfoStruct],ke.unusedWorkers.push(T),ke.runningWorkers.splice(ke.runningWorkers.indexOf(T),1),ke.freeThreadData(T.pthread),T.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(T){o()[Bw>>2]=0;try{T()}finally{o()[Bw>>2]=1}},receiveObjectTransfer:function(T){},loadWasmModuleToWorker:function(T,C){T.onmessage=function(z){var q=z.data,he=q.cmd;if(T.pthread&&(ke.currentProxiedOperationCallerThread=T.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=yo()){var le=ke.pthreads[q.targetThread];le?le.worker.postMessage(z.data,q.transferList):console.error('Internal error! Worker sent a message "'+he+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(he==="processQueuedMainThreadWork")Rg();else if(he==="spawnThread")qp(z.data);else if(he==="cleanupThread")Mf(q.thread);else if(he==="killThread")$f(q.thread);else if(he==="cancelThread")Df(q.thread);else if(he==="loaded")T.loaded=!0,C&&C(T),T.runPthread&&(T.runPthread(),delete T.runPthread);else if(he==="print")X("Thread "+q.threadId+": "+q.text);else if(he==="printErr")j("Thread "+q.threadId+": "+q.text);else if(he==="alert")alert("Thread "+q.threadId+": "+q.text);else if(he==="exit"){var pe=T.pthread&&Atomics.load(l(),T.pthread.threadInfoStruct+64>>2);pe&&ke.returnWorkerToPool(T)}else if(he==="exitProcess")try{AA(q.returnCode)}catch(be){if(be instanceof Gu)return;throw be}else he==="cancelDone"?ke.returnWorkerToPool(T):he==="objectTransfer"?ke.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?T.postMessage(z.data):j("worker sent an unknown command "+he);ke.currentProxiedOperationCallerThread=void 0},T.onerror=function(z){j("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},v&&(T.on("message",function(z){T.onmessage({data:z})}),T.on("error",function(z){T.onerror(z)}),T.on("exit",function(z){})),T.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:ee,wasmModule:de})},allocateUnusedWorker:function(){var T=A("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(T))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(T){for(var C=performance.now()+T;performance.now()<C;);}};function Rf(T,C){zw(T,C),bo(T)}c.establishStackSpace=Rf;function Pf(){return ie}c.getNoExitRuntime=Pf;function Of(T,C){return sa.get(T)(C)}c.invokeEntryPoint=Of;function Lf(T,C,z,q){cr("Assertion failed: "+_e(T)+", at: "+[C?_e(C):"unknown filename",z,q?_e(q):"unknown function"])}function zf(T,C){var z=_main(T,C)}var vs;v?vs=function(){var T=process.hrtime();return T[0]*1e3+T[1]/1e6}:w?vs=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?vs=dateNow:vs=function(){return performance.now()};function Wf(T){return o()[$w()>>2]=T,T}function Bf(T,C){if(w)return Rr(1,1,T,C)}function Vf(T,C){if(T==C)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:T,cmd:"processThreadQueue"});else{var z=ke.pthreads[T],q=z&&z.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function Uf(){cr()}function Gf(T,C,z){var q=Kf(C,z);return Bp[T].apply(null,q)}function Hf(T,C){}function jf(T,C,z){if(T<=0||T>s().length||T&!0)return-28;if(b){if(Atomics.load(o(),T>>2)!=C)return-6;for(var q=performance.now(),he=q+z,le=Atomics.exchange(o(),vo>>2,T);;){if(q=performance.now(),q>he)return le=Atomics.exchange(o(),vo>>2,0),-73;if(le=Atomics.exchange(o(),vo>>2,0),le==0)break;if(Rg(),Atomics.load(o(),T>>2)!=C)return-6;le=Atomics.exchange(o(),vo>>2,T)}return 0}else{var pe=Atomics.wait(o(),T>>2,C,z);if(pe==="timed-out")return-73;if(pe==="not-equal")return-6;if(pe==="ok")return 0;throw"Atomics.wait returned an unexpected value "+pe}}function qf(T,C,z){i().copyWithin(T,C,C+z)}function Xf(){return v?require("os").cpus().length:navigator.hardwareConcurrency}function Rr(T,C){for(var z=arguments.length-2,q=Uu(),he=z,le=xo(he*8),pe=le>>3,be=0;be<z;be++){var rt=arguments[2+be];u()[pe+be]=rt}var Gt=Lw(T,he,le,C);return bo(q),Gt}var Pu=[],Ou=[];function Kf(T,C){Ou.length=0;var z;for(C>>=2;z=i()[T++];){var q=z<105;q&&C&1&&C++,Ou.push(q?u()[C++>>1]:o()[C]),++C}return Ou}function Yf(T,C,z){Pu.length=C;for(var q=z>>3,he=0;he<C;he++)Pu[he]=u()[q+he];var le=T<0,pe=le?Bp[-T-1]:xg[T];return pe.apply(null,Pu)}function Jf(){return i().length}function Qf(T){try{return ee.grow(T-We.byteLength+65535>>>16),tn(ee.buffer),1}catch(C){}}function Zf(T){var C=Jf();if(T<=C)return!1;var z=2147483648;if(T>z)return!1;for(var q=1;q<=4;q*=2){var he=C*(1+.2/q);he=Math.min(he,T+100663296);var le=Math.min(z,ft(Math.max(T,he),65536)),pe=Qf(le);if(pe)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var T=Pe.eventHandlers.length-1;T>=0;--T)Pe._removeHandler(T);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(Dr.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(T,C,z){function q(pe,be){if(pe.length!=be.length)return!1;for(var rt in pe)if(pe[rt]!=be[rt])return!1;return!0}for(var he in Pe.deferredCalls){var le=Pe.deferredCalls[he];if(le.targetFunction==T&&q(le.argsList,z))return}Pe.deferredCalls.push({targetFunction:T,precedence:C,argsList:z}),Pe.deferredCalls.sort(function(pe,be){return pe.precedence<be.precedence})},removeDeferredCalls:function(T){for(var C=0;C<Pe.deferredCalls.length;++C)Pe.deferredCalls[C].targetFunction==T&&(Pe.deferredCalls.splice(C,1),--C)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var T=0;T<Pe.deferredCalls.length;++T){var C=Pe.deferredCalls[T];Pe.deferredCalls.splice(T,1),--T,C.targetFunction.apply(null,C.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(T,C){for(var z=0;z<Pe.eventHandlers.length;++z)Pe.eventHandlers[z].target==T&&(!C||C==Pe.eventHandlers[z].eventTypeString)&&Pe._removeHandler(z--)},_removeHandler:function(T){var C=Pe.eventHandlers[T];C.target.removeEventListener(C.eventTypeString,C.eventListenerFunc,C.useCapture),Pe.eventHandlers.splice(T,1)},registerOrRemoveHandler:function(T){var C=function(q){++Pe.inEventHandler,Pe.currentEventHandler=T,Pe.runDeferredCalls(),T.handlerFunc(q),Pe.runDeferredCalls(),--Pe.inEventHandler};if(T.callbackfunc)T.eventListenerFunc=C,T.target.addEventListener(T.eventTypeString,C,T.useCapture),Pe.eventHandlers.push(T),Pe.registerRemoveEventListeners();else for(var z=0;z<Pe.eventHandlers.length;++z)Pe.eventHandlers[z].target==T.target&&Pe.eventHandlers[z].eventTypeString==T.eventTypeString&&Pe._removeHandler(z--)},queueEventHandlerOnThread_iiii:function(T,C,z,q,he){var le=Uu(),pe=xo(12);o()[pe>>2]=z,o()[pe+4>>2]=q,o()[pe+8>>2]=he,Pg(0,T,637534208,C,q,pe),bo(le)},getTargetThreadForEventCallback:function(T){switch(T){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return T}},getNodeNameForTarget:function(T){return T?T==window?"#window":T==screen?"#screen":T&&T.nodeName?T.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function eg(T){var C=ot(T)+1,z=ws(C);return at(T,z,C),z}function tg(T,C,z,q){var he=Uu(),le=xo(12),pe=0;C&&(pe=eg(C)),o()[le>>2]=pe,o()[le+4>>2]=z,o()[le+8>>2]=q,Pg(0,T,657457152,0,pe,le),bo(he)}function ng(T,C,z,q){C=C?_e(C):"",tg(T,C,z,q)}function ag(T){return T>2?_e(T):T}var rg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function sg(T){T=ag(T);var C=rg[T]||(typeof document!="undefined"?document.querySelector(T):void 0);return C}function Lu(T){return sg(T)}function Vp(T,C,z){var q=Lu(T);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=C,o()[q.canvasSharedPtr+4>>2]=z),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var he=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);he=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=C,q.height=z,he&&q.GLctxObject.GLctx.viewport(0,0,C,z)}else if(q.canvasSharedPtr){var pe=o()[q.canvasSharedPtr+8>>2];return ng(pe,T,C,z),1}else return-4;return 0}function Up(T,C,z){return w?Rr(2,1,T,C,z):Vp(T,C,z)}function ig(T,C,z){var q=Lu(T);return q?Vp(T,C,z):Up(T,C,z)}function og(T){}function lg(T,C){}function ug(T){var C=T.getExtension("ANGLE_instanced_arrays");if(C)return T.vertexAttribDivisor=function(z,q){C.vertexAttribDivisorANGLE(z,q)},T.drawArraysInstanced=function(z,q,he,le){C.drawArraysInstancedANGLE(z,q,he,le)},T.drawElementsInstanced=function(z,q,he,le,pe){C.drawElementsInstancedANGLE(z,q,he,le,pe)},1}function cg(T){var C=T.getExtension("OES_vertex_array_object");if(C)return T.createVertexArray=function(){return C.createVertexArrayOES()},T.deleteVertexArray=function(z){C.deleteVertexArrayOES(z)},T.bindVertexArray=function(z){C.bindVertexArrayOES(z)},T.isVertexArray=function(z){return C.isVertexArrayOES(z)},1}function pg(T){var C=T.getExtension("WEBGL_draw_buffers");if(C)return T.drawBuffers=function(z,q){C.drawBuffersWEBGL(z,q)},1}function dg(T){return!!(T.multiDrawWebgl=T.getExtension("WEBGL_multi_draw"))}var et={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(T){et.lastError||(et.lastError=T)},getNewId:function(T){for(var C=et.counter++,z=T.length;z<C;z++)T[z]=null;return C},getSource:function(T,C,z,q){for(var he="",le=0;le<C;++le){var pe=q?o()[q+le*4>>2]:-1;he+=_e(o()[z+le*4>>2],pe<0?void 0:pe)}return he},createContext:function(T,C){var z=T.getContext("webgl",C);if(!z)return 0;var q=et.registerContext(z,C);return q},registerContext:function(T,C){var z=ws(8);o()[z+4>>2]=yo();var q={handle:z,attributes:C,version:C.majorVersion,GLctx:T};return T.canvas&&(T.canvas.GLctxObject=q),et.contexts[z]=q,(typeof C.enableExtensionsByDefault=="undefined"||C.enableExtensionsByDefault)&&et.initExtensions(q),z},makeContextCurrent:function(T){return et.currentContext=et.contexts[T],c.ctx=Pr=et.currentContext&&et.currentContext.GLctx,!(T&&!Pr)},getContext:function(T){return et.contexts[T]},deleteContext:function(T){et.currentContext===et.contexts[T]&&(et.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(et.contexts[T].GLctx.canvas),et.contexts[T]&&et.contexts[T].GLctx.canvas&&(et.contexts[T].GLctx.canvas.GLctxObject=void 0),Vu(et.contexts[T].handle),et.contexts[T]=null},initExtensions:function(T){if(T||(T=et.currentContext),!T.initExtensionsDone){T.initExtensionsDone=!0;var C=T.GLctx;ug(C),cg(C),pg(C),C.disjointTimerQueryExt=C.getExtension("EXT_disjoint_timer_query"),dg(C);var z=C.getSupportedExtensions()||[];z.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&C.getExtension(q)})}},populateUniformTable:function(T){for(var C=et.programs[T],z=et.programInfos[T]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=z.uniforms,he=Pr.getProgramParameter(C,35718),le=0;le<he;++le){var pe=Pr.getActiveUniform(C,le),be=pe.name;z.maxUniformLength=Math.max(z.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var rt=Pr.getUniformLocation(C,be);if(rt){var Gt=et.getNewId(et.uniforms);q[be]=[pe.size,Gt],et.uniforms[Gt]=rt;for(var Pt=1;Pt<pe.size;++Pt){var Lr=be+"["+Pt+"]";rt=Pr.getUniformLocation(C,Lr),Gt=et.getNewId(et.uniforms),et.uniforms[Gt]=rt}}}}},hg=["default","low-power","high-performance"];function mg(T,C){var z=C>>2,q=o()[z+(24>>2)],he={alpha:!!o()[z+(0>>2)],depth:!!o()[z+(4>>2)],stencil:!!o()[z+(8>>2)],antialias:!!o()[z+(12>>2)],premultipliedAlpha:!!o()[z+(16>>2)],preserveDrawingBuffer:!!o()[z+(20>>2)],powerPreference:hg[q],failIfMajorPerformanceCaveat:!!o()[z+(28>>2)],majorVersion:o()[z+(32>>2)],minorVersion:o()[z+(36>>2)],enableExtensionsByDefault:o()[z+(40>>2)],explicitSwapControl:o()[z+(44>>2)],proxyContextToMainThread:o()[z+(48>>2)],renderViaOffscreenBackBuffer:o()[z+(52>>2)]},le=Lu(T);if(!le||he.explicitSwapControl)return 0;var pe=et.createContext(le,he);return pe}function fg(T,C){return mg(T,C)}var fo={mappings:{},buffers:[null,[],[]],printChar:function(T,C){var z=fo.buffers[T];C===0||C===10?((T===1?X:j)(Me(z,0)),z.length=0):z.push(C)},varargs:void 0,get:function(){fo.varargs+=4;var T=o()[fo.varargs-4>>2];return T},getStr:function(T){var C=_e(T);return C},get64:function(T,C){return T}};function Gp(T){return w?Rr(3,1,T):0}function Hp(T,C,z,q,he){if(w)return Rr(4,1,T,C,z,q,he)}function jp(T,C,z,q){if(w)return Rr(5,1,T,C,z,q);for(var he=0,le=0;le<z;le++){for(var pe=o()[C+le*8>>2],be=o()[C+(le*8+4)>>2],rt=0;rt<be;rt++)fo.printChar(T,i()[pe+rt]);he+=be}return o()[q>>2]=he,0}function gg(T){var C=ke.threadExitHandlers.pop();T&&C()}function yg(T,C){ke.threadExitHandlers.push(function(){sa.get(T)(C)})}function qp(T){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var C=ke.getNewWorker();if(C.pthread!==void 0)throw"Internal error!";if(!T.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(C);for(var z=ws(128*4),q=0;q<128;++q)o()[z+q*4>>2]=0;var he=T.stackBase+T.stackSize,le=ke.pthreads[T.pthread_ptr]={worker:C,stackBase:T.stackBase,stackSize:T.stackSize,allocatedOwnStack:T.allocatedOwnStack,threadInfoStruct:T.pthread_ptr},pe=le.threadInfoStruct>>2;Atomics.store(l(),pe+(64>>2),T.detached),Atomics.store(l(),pe+(100>>2),z),Atomics.store(l(),pe+(40>>2),le.threadInfoStruct),Atomics.store(l(),pe+(80>>2),T.stackSize),Atomics.store(l(),pe+(76>>2),he),Atomics.store(l(),pe+(104>>2),T.stackSize),Atomics.store(l(),pe+(104+8>>2),he),Atomics.store(l(),pe+(104+12>>2),T.detached);var be=Dw(),rt=be+40;Atomics.store(l(),pe+(172>>2),rt),C.pthread=le;var Gt={cmd:"run",start_routine:T.startRoutine,arg:T.arg,threadInfoStruct:T.pthread_ptr,stackBase:T.stackBase,stackSize:T.stackSize};C.runPthread=function(){Gt.time=performance.now(),C.postMessage(Gt,T.transferList)},C.loaded&&(C.runPthread(),delete C.runPthread)}function bg(T,C,z,q){if(typeof SharedArrayBuffer=="undefined")return j("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!T)return j("pthread_create called with a null thread pointer!"),28;var he=[],le=0;if(w&&(he.length===0||le))return Ow(687865856,T,C,z,q);if(le)return le;var pe=0,be=0,rt=0;C&&C!=-1?(pe=o()[C>>2],pe+=81920,be=o()[C+8>>2],rt=o()[C+12>>2]!==0):pe=2097152;var Gt=be==0;Gt?be=Ww(16,pe):(be-=pe,fe(be>0));for(var Pt=ws(228),Lr=0;Lr<228>>2;++Lr)l()[(Pt>>2)+Lr]=0;o()[T>>2]=Pt,o()[Pt+12>>2]=Pt;var wo=Pt+152;o()[wo>>2]=wo;var Nn={stackBase:be,stackSize:pe,allocatedOwnStack:Gt,detached:rt,startRoutine:z,pthread_ptr:Pt,arg:q,transferList:he};return w?(Nn.cmd="spawnThread",postMessage(Nn,he)):qp(Nn),0}function Xp(T){if(w)return Rr(6,1,T);switch(T){case 30:return 16384;case 85:var C=2147483648;return C/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Wf(28),-1}w||ke.initMainThreadBlock();var Pr,xg=[null,Bf,Up,Gp,Hp,jp,Xp],vg={e:Lf,r:zf,x:Vf,b:Uf,y:Gf,j:Hf,c:jf,d:mo,f:vs,p:qf,z:Xf,u:Yf,q:Zf,v:ig,i:og,t:lg,w:fg,m:Gp,n:Hp,g:jp,o:Ef,a:ee||c.wasmMemory,k:gg,l:yg,h:bg,s:Xp},Ew=_f(),Kp=c.___wasm_call_ctors=function(){return(Kp=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},wg=c._init=function(){return(wg=c._init=c.asm.B).apply(null,arguments)},kg=c._register_tensor=function(){return(kg=c._register_tensor=c.asm.C).apply(null,arguments)},Ig=c._dispose_data=function(){return(Ig=c._dispose_data=c.asm.D).apply(null,arguments)},Ng=c._dispose=function(){return(Ng=c._dispose=c.asm.E).apply(null,arguments)},Tg=c._Abs=function(){return(Tg=c._Abs=c.asm.G).apply(null,arguments)},Sg=c._Add=function(){return(Sg=c._Add=c.asm.H).apply(null,arguments)},Cg=c._AddN=function(){return(Cg=c._AddN=c.asm.I).apply(null,arguments)},Ag=c._ArgMax=function(){return(Ag=c._ArgMax=c.asm.J).apply(null,arguments)},Fg=c._AvgPool=function(){return(Fg=c._AvgPool=c.asm.K).apply(null,arguments)},_g=c._BatchMatMul=function(){return(_g=c._BatchMatMul=c.asm.L).apply(null,arguments)},Eg=c._Ceil=function(){return(Eg=c._Ceil=c.asm.M).apply(null,arguments)},$g=c._ClipByValue=function(){return($g=c._ClipByValue=c.asm.N).apply(null,arguments)},Dg=c._Conv2D=function(){return(Dg=c._Conv2D=c.asm.O).apply(null,arguments)},Yp=c._Conv2DBackpropInput=function(){return(Yp=c._Conv2DBackpropInput=c.asm.P).apply(null,arguments)},Jp=c._Cos=function(){return(Jp=c._Cos=c.asm.Q).apply(null,arguments)},zu=c._CropAndResize=function(){return(zu=c._CropAndResize=c.asm.R).apply(null,arguments)},go=c._Cumsum=function(){return(go=c._Cumsum=c.asm.S).apply(null,arguments)},Mg=c._DepthToSpace=function(){return(Mg=c._DepthToSpace=c.asm.T).apply(null,arguments)},Wu=c._DepthwiseConv2dNative=function(){return(Wu=c._DepthwiseConv2dNative=c.asm.U).apply(null,arguments)},K=c._Equal=function(){return(K=c._Equal=c.asm.V).apply(null,arguments)},ae=c._Exp=function(){return(ae=c._Exp=c.asm.W).apply(null,arguments)},Te=c._FlipLeftRight=function(){return(Te=c._FlipLeftRight=c.asm.X).apply(null,arguments)},Ye=c._Floor=function(){return(Ye=c._Floor=c.asm.Y).apply(null,arguments)},Ft=c._FloorDiv=function(){return(Ft=c._FloorDiv=c.asm.Z).apply(null,arguments)},bt=c._FusedBatchNorm=function(){return(bt=c._FusedBatchNorm=c.asm._).apply(null,arguments)},Ue=c._FusedConv2D=function(){return(Ue=c._FusedConv2D=c.asm.$).apply(null,arguments)},He=c._FusedDepthwiseConv2D=function(){return(He=c._FusedDepthwiseConv2D=c.asm.aa).apply(null,arguments)},nn=c._Gather=function(){return(nn=c._Gather=c.asm.ba).apply(null,arguments)},pr=c._GatherNd=function(){return(pr=c._GatherNd=c.asm.ca).apply(null,arguments)},dr=c._Greater=function(){return(dr=c._Greater=c.asm.da).apply(null,arguments)},Qp=c._GreaterEqual=function(){return(Qp=c._GreaterEqual=c.asm.ea).apply(null,arguments)},Bu=c._LeakyRelu=function(){return(Bu=c._LeakyRelu=c.asm.fa).apply(null,arguments)},Kn=c._Less=function(){return(Kn=c._Less=c.asm.ga).apply(null,arguments)},Or=c._LessEqual=function(){return(Or=c._LessEqual=c.asm.ha).apply(null,arguments)},Zp=c._Log=function(){return(Zp=c._Log=c.asm.ia).apply(null,arguments)},OC=c._LogicalAnd=function(){return(OC=c._LogicalAnd=c.asm.ja).apply(null,arguments)},LC=c._Max=function(){return(LC=c._Max=c.asm.ka).apply(null,arguments)},zC=c._MaxPool=function(){return(zC=c._MaxPool=c.asm.la).apply(null,arguments)},WC=c._Maximum=function(){return(WC=c._Maximum=c.asm.ma).apply(null,arguments)},BC=c._Mean=function(){return(BC=c._Mean=c.asm.na).apply(null,arguments)},VC=c._Min=function(){return(VC=c._Min=c.asm.oa).apply(null,arguments)},UC=c._Minimum=function(){return(UC=c._Minimum=c.asm.pa).apply(null,arguments)},GC=c._Multiply=function(){return(GC=c._Multiply=c.asm.qa).apply(null,arguments)},HC=c._Neg=function(){return(HC=c._Neg=c.asm.ra).apply(null,arguments)},jC=c._NonMaxSuppressionV3=function(){return(jC=c._NonMaxSuppressionV3=c.asm.sa).apply(null,arguments)},qC=c._NonMaxSuppressionV4=function(){return(qC=c._NonMaxSuppressionV4=c.asm.ta).apply(null,arguments)},XC=c._NonMaxSuppressionV5=function(){return(XC=c._NonMaxSuppressionV5=c.asm.ua).apply(null,arguments)},KC=c._NotEqual=function(){return(KC=c._NotEqual=c.asm.va).apply(null,arguments)},YC=c._OneHot=function(){return(YC=c._OneHot=c.asm.wa).apply(null,arguments)},JC=c._PadV2=function(){return(JC=c._PadV2=c.asm.xa).apply(null,arguments)},QC=c._Pow=function(){return(QC=c._Pow=c.asm.ya).apply(null,arguments)},ZC=c._Prelu=function(){return(ZC=c._Prelu=c.asm.za).apply(null,arguments)},eA=c._Prod=function(){return(eA=c._Prod=c.asm.Aa).apply(null,arguments)},tA=c._RealDiv=function(){return(tA=c._RealDiv=c.asm.Ba).apply(null,arguments)},nA=c._Relu=function(){return(nA=c._Relu=c.asm.Ca).apply(null,arguments)},aA=c._Relu6=function(){return(aA=c._Relu6=c.asm.Da).apply(null,arguments)},rA=c._ResizeBilinear=function(){return(rA=c._ResizeBilinear=c.asm.Ea).apply(null,arguments)},sA=c._Reverse=function(){return(sA=c._Reverse=c.asm.Fa).apply(null,arguments)},iA=c._RotateWithOffset=function(){return(iA=c._RotateWithOffset=c.asm.Ga).apply(null,arguments)},oA=c._Round=function(){return(oA=c._Round=c.asm.Ha).apply(null,arguments)},lA=c._Rsqrt=function(){return(lA=c._Rsqrt=c.asm.Ia).apply(null,arguments)},uA=c._ScatterNd=function(){return(uA=c._ScatterNd=c.asm.Ja).apply(null,arguments)},cA=c._SelectV2=function(){return(cA=c._SelectV2=c.asm.Ka).apply(null,arguments)},pA=c._Sigmoid=function(){return(pA=c._Sigmoid=c.asm.La).apply(null,arguments)},dA=c._Sin=function(){return(dA=c._Sin=c.asm.Ma).apply(null,arguments)},hA=c._Softmax=function(){return(hA=c._Softmax=c.asm.Na).apply(null,arguments)},mA=c._Sqrt=function(){return(mA=c._Sqrt=c.asm.Oa).apply(null,arguments)},fA=c._Square=function(){return(fA=c._Square=c.asm.Pa).apply(null,arguments)},gA=c._SquaredDifference=function(){return(gA=c._SquaredDifference=c.asm.Qa).apply(null,arguments)},yA=c._Step=function(){return(yA=c._Step=c.asm.Ra).apply(null,arguments)},bA=c._StridedSlice=function(){return(bA=c._StridedSlice=c.asm.Sa).apply(null,arguments)},xA=c._Sub=function(){return(xA=c._Sub=c.asm.Ta).apply(null,arguments)},vA=c._Sum=function(){return(vA=c._Sum=c.asm.Ua).apply(null,arguments)},wA=c._Tanh=function(){return(wA=c._Tanh=c.asm.Va).apply(null,arguments)},kA=c._Tile=function(){return(kA=c._Tile=c.asm.Wa).apply(null,arguments)},IA=c._TopK=function(){return(IA=c._TopK=c.asm.Xa).apply(null,arguments)},NA=c._Transpose=function(){return(NA=c._Transpose=c.asm.Ya).apply(null,arguments)},TA=c.__FusedMatMul=function(){return(TA=c.__FusedMatMul=c.asm.Za).apply(null,arguments)},ws=c._malloc=function(){return(ws=c._malloc=c.asm._a).apply(null,arguments)},Vu=c._free=function(){return(Vu=c._free=c.asm.$a).apply(null,arguments)},$w=c.___errno_location=function(){return($w=c.___errno_location=c.asm.ab).apply(null,arguments)},Dw=c._emscripten_get_global_libc=function(){return(Dw=c._emscripten_get_global_libc=c.asm.bb).apply(null,arguments)},yo=c._pthread_self=function(){return(yo=c._pthread_self=c.asm.cb).apply(null,arguments)},Mw=c.___pthread_tsd_run_dtors=function(){return(Mw=c.___pthread_tsd_run_dtors=c.asm.db).apply(null,arguments)},Rg=c._emscripten_main_thread_process_queued_calls=function(){return(Rg=c._emscripten_main_thread_process_queued_calls=c.asm.eb).apply(null,arguments)},SA=c._emscripten_current_thread_process_queued_calls=function(){return(SA=c._emscripten_current_thread_process_queued_calls=c.asm.fb).apply(null,arguments)},Rw=c._emscripten_register_main_browser_thread_id=function(){return(Rw=c._emscripten_register_main_browser_thread_id=c.asm.gb).apply(null,arguments)},Pw=c.__emscripten_do_dispatch_to_thread=function(){return(Pw=c.__emscripten_do_dispatch_to_thread=c.asm.hb).apply(null,arguments)},Ow=c._emscripten_sync_run_in_main_thread_4=function(){return(Ow=c._emscripten_sync_run_in_main_thread_4=c.asm.ib).apply(null,arguments)},Lw=c._emscripten_run_in_main_runtime_thread_js=function(){return(Lw=c._emscripten_run_in_main_runtime_thread_js=c.asm.jb).apply(null,arguments)},Pg=c.__emscripten_call_on_thread=function(){return(Pg=c.__emscripten_call_on_thread=c.asm.kb).apply(null,arguments)},CA=c._emscripten_tls_init=function(){return(CA=c._emscripten_tls_init=c.asm.lb).apply(null,arguments)},ed=c.__emscripten_thread_init=function(){return(ed=c.__emscripten_thread_init=c.asm.mb).apply(null,arguments)},Uu=c.stackSave=function(){return(Uu=c.stackSave=c.asm.nb).apply(null,arguments)},bo=c.stackRestore=function(){return(bo=c.stackRestore=c.asm.ob).apply(null,arguments)},xo=c.stackAlloc=function(){return(xo=c.stackAlloc=c.asm.pb).apply(null,arguments)},zw=c._emscripten_stack_set_limits=function(){return(zw=c._emscripten_stack_set_limits=c.asm.qb).apply(null,arguments)},Ww=c._memalign=function(){return(Ww=c._memalign=c.asm.rb).apply(null,arguments)},Bw=c.__emscripten_allow_main_runtime_queued_calls=9880,vo=c.__emscripten_main_thread_futex=11368;c.cwrap=Ae,c.PThread=ke,c.PThread=ke,c.wasmMemory=ee,c.ExitStatus=Gu;var td;function Gu(T){this.name="ExitStatus",this.message="Program terminated with exit("+T+")",this.status=T}xs=function T(){td||Og(),td||(xs=T)};function Og(T){if(T=T||f,ur>0)return;if(w){p(c),postMessage({cmd:"loaded"});return}if(If(),ur>0)return;function C(){td||(td=!0,c.calledRun=!0,!oe&&(Mp(),Nf(),p(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),kn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),C()},1)):C()}c.run=Og;function AA(T,C){if(!(C&&ie&&T===0)){if(!C&&w)throw postMessage({cmd:"exitProcess",returnCode:T}),new Gu(T);ie||(ke.terminateAllThreads(),ge=T,Rp(),c.onExit&&c.onExit(T),oe=!0),y(T,new Gu(T))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return w&&(ie=!1,ke.initWorker()),Og(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),bF=tt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,ae){i=K,o=ae});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var c=[],p="./this.program",d=function(K,ae){throw ae},h=!1,m=!1,f=!1,g=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!f&&!m;var y="";function b(K){return s.locateFile?s.locateFile(K,y):y+K}var x,v,k,w,S,A;f?(m?y=Hu().dirname(y)+"/":y=__dirname+"/",x=function(K,ae){return S||(S=require("fs")),A||(A=Hu()),K=A.normalize(K),S.readFileSync(K,ae?null:"utf8")},k=function(K){var ae=x(K,!0);return ae.buffer||(ae=new Uint8Array(ae)),X(ae.buffer),ae},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof Mg))throw K}),process.on("unhandledRejection",ka),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(K){return read(K)}),k=function(K){var ae;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ae=read(K,"binary"),X(typeof ae=="object"),ae)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var ae=new XMLHttpRequest;return ae.open("GET",K,!1),ae.send(null),ae.responseText},m&&(k=function(K){var ae=new XMLHttpRequest;return ae.open("GET",K,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),v=function(K,ae,Te){var Ye=new XMLHttpRequest;Ye.open("GET",K,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){ae(Ye.response);return}Te()},Ye.onerror=Te,Ye.send(null)},w=function(K){document.title=K});var F=s.print||console.log.bind(console),D=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(c=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(d=s.quit);var R;s.wasmBinary&&(R=s.wasmBinary);var L=s.noExitRuntime||!0;typeof WebAssembly!="object"&&ka("no native wasm support detected");var W,U=!1,G;function X(K,ae){K||ka("Assertion failed: "+ae)}function j(K){var ae=s["_"+K];return X(ae,"Cannot call unknown function "+K+", make sure it is exported"),ae}function te(K,ae,Te,Ye,Ft){var bt={string:function(Kn){var Or=0;if(Kn!=null&&Kn!==0){var Zp=(Kn.length<<2)+1;Or=zu(Zp),de(Kn,Or,Zp)}return Or},array:function(Kn){var Or=zu(Kn.length);return oe(Kn,Or),Or}};function Ue(Kn){return ae==="string"?ie(Kn):ae==="boolean"?Boolean(Kn):Kn}var He=j(K),nn=[],pr=0;if(Ye)for(var dr=0;dr<Ye.length;dr++){var Qp=bt[Te[dr]];Qp?(pr===0&&(pr=Yp()),nn[dr]=Qp(Ye[dr])):nn[dr]=Ye[dr]}var Bu=He.apply(null,nn);return Bu=Ue(Bu),pr!==0&&Jp(pr),Bu}function Q(K,ae,Te,Ye){Te=Te||[];var Ft=Te.every(function(Ue){return Ue==="number"}),bt=ae!=="string";return bt&&Ft&&!Ye?j(K):function(){return te(K,ae,Te,arguments,Ye)}}var se=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(K,ae,Te){for(var Ye=ae+Te,Ft=ae;K[Ft]&&!(Ft>=Ye);)++Ft;if(Ft-ae>16&&K.subarray&&se)return se.decode(K.subarray(ae,Ft));for(var bt="";ae<Ft;){var Ue=K[ae++];if(!(Ue&128)){bt+=String.fromCharCode(Ue);continue}var He=K[ae++]&63;if((Ue&224)==192){bt+=String.fromCharCode((Ue&31)<<6|He);continue}var nn=K[ae++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|He<<6|nn:Ue=(Ue&7)<<18|He<<12|nn<<6|K[ae++]&63,Ue<65536)bt+=String.fromCharCode(Ue);else{var pr=Ue-65536;bt+=String.fromCharCode(55296|pr>>10,56320|pr&1023)}}return bt}function ie(K,ae){return K?ne(Ne,K,ae):""}function ee(K,ae,Te,Ye){if(!(Ye>0))return 0;for(var Ft=Te,bt=Te+Ye-1,Ue=0;Ue<K.length;++Ue){var He=K.charCodeAt(Ue);if(He>=55296&&He<=57343){var nn=K.charCodeAt(++Ue);He=65536+((He&1023)<<10)|nn&1023}if(He<=127){if(Te>=bt)break;ae[Te++]=He}else if(He<=2047){if(Te+1>=bt)break;ae[Te++]=192|He>>6,ae[Te++]=128|He&63}else if(He<=65535){if(Te+2>=bt)break;ae[Te++]=224|He>>12,ae[Te++]=128|He>>6&63,ae[Te++]=128|He&63}else{if(Te+3>=bt)break;ae[Te++]=240|He>>18,ae[Te++]=128|He>>12&63,ae[Te++]=128|He>>6&63,ae[Te++]=128|He&63}}return ae[Te]=0,Te-Ft}function de(K,ae,Te){return ee(K,Ne,ae,Te)}function oe(K,ae){we.set(K,ae)}function ge(K,ae){return K%ae>0&&(K+=ae-K%ae),K}var fe,we,Ne,Ae,Me,_e,nt,at,ot;function Ke(K){fe=K,s.HEAP8=we=new Int8Array(K),s.HEAP16=Ae=new Int16Array(K),s.HEAP32=_e=new Int32Array(K),s.HEAPU8=Ne=new Uint8Array(K),s.HEAPU16=Me=new Uint16Array(K),s.HEAPU32=nt=new Uint32Array(K),s.HEAPF32=at=new Float32Array(K),s.HEAPF64=ot=new Float64Array(K)}var ft=s.INITIAL_MEMORY||16777216,We,vn=[],Nt=[],qn=[],en=[],wn=!1;Nt.push({func:function(){Wp()}});function Xn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Wa(s.preRun.shift());Mr(vn)}function Mn(){wn=!0,Mr(Nt)}function cn(){Mr(qn)}function tn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)sa(s.postRun.shift());Mr(en)}function Wa(K){vn.unshift(K)}function sa(K){en.unshift(K)}var ia=0,$r=null,lr=null;function Dr(K){ia++,s.monitorRunDependencies&&s.monitorRunDependencies(ia)}function co(K){if(ia--,s.monitorRunDependencies&&s.monitorRunDependencies(ia),ia==0&&($r!==null&&(clearInterval($r),$r=null),lr)){var ae=lr;lr=null,ae()}}s.preloadedImages={},s.preloadedAudios={};function ka(K){s.onAbort&&s.onAbort(K),K+="",D(K),U=!0,G=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ae=new WebAssembly.RuntimeError(K);throw o(ae),ae}function Dp(K,ae){return String.prototype.startsWith?K.startsWith(ae):K.indexOf(ae)===0}var If="data:application/octet-stream;base64,";function Mp(K){return Dp(K,If)}var Nf="file://";function Rp(K){return Dp(K,Nf)}var kn="tfjs-backend-wasm.wasm";Mp(kn)||(kn=b(kn));function Pp(K){try{if(K==kn&&R)return new Uint8Array(R);if(k)return k(K);throw"both async and sync fetching of the wasm failed"}catch(ae){ka(ae)}}function Tf(){if(!R&&(h||m)){if(typeof fetch=="function"&&!Rp(kn))return fetch(kn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+kn+"'";return K.arrayBuffer()}).catch(function(){return Pp(kn)});if(v)return new Promise(function(K,ae){v(kn,function(Te){K(new Uint8Array(Te))},ae)})}return Promise.resolve().then(function(){return Pp(kn)})}function ur(){var K={a:In};function ae(Ue,He){var nn=Ue.exports;s.asm=nn,W=s.asm.g,Ke(W.buffer),We=s.asm.m,co("wasm-instantiate")}Dr("wasm-instantiate");function Te(Ue){ae(Ue.instance)}function Ye(Ue){return Tf().then(function(He){return WebAssembly.instantiate(He,K)}).then(Ue,function(He){D("failed to asynchronously prepare wasm: "+He),ka(He)})}function Ft(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!Mp(kn)&&!Rp(kn)&&typeof fetch=="function"?fetch(kn,{credentials:"same-origin"}).then(function(Ue){var He=WebAssembly.instantiateStreaming(Ue,K);return He.then(Te,function(nn){return D("wasm streaming compile failed: "+nn),D("falling back to ArrayBuffer instantiation"),Ye(Te)})}):Ye(Te)}if(s.instantiateWasm)try{var bt=s.instantiateWasm(K,ae);return bt}catch(Ue){return D("Module.instantiateWasm callback failed with error: "+Ue),!1}return Ft().catch(o),{}}function Mr(K){for(;K.length>0;){var ae=K.shift();if(typeof ae=="function"){ae(s);continue}var Te=ae.func;typeof Te=="number"?ae.arg===void 0?We.get(Te)():We.get(Te)(ae.arg):Te(ae.arg===void 0?null:ae.arg)}}function xs(){ka()}function Sf(K,ae,Te){Ne.copyWithin(K,ae,ae+Te)}function Cf(){return Ne.length}function cr(K){try{return W.grow(K-fe.byteLength+65535>>>16),Ke(W.buffer),1}catch(ae){}}function Op(K){var ae=Cf(),Te=2147483648;if(K>Te)return!1;for(var Ye=1;Ye<=4;Ye*=2){var Ft=ae*(1+.2/Ye);Ft=Math.min(Ft,K+100663296);var bt=Math.min(Te,ge(Math.max(K,Ft),65536)),Ue=cr(bt);if(Ue)return!0}return!1}var po={mappings:{},buffers:[null,[],[]],printChar:function(K,ae){var Te=po.buffers[K];ae===0||ae===10?((K===1?F:D)(ne(Te,0)),Te.length=0):Te.push(ae)},varargs:void 0,get:function(){po.varargs+=4;var K=_e[po.varargs-4>>2];return K},getStr:function(K){var ae=ie(K);return ae},get64:function(K,ae){return K}};function Lp(K){return 0}function Af(K,ae,Te,Ye,Ft){}function zp(K,ae,Te,Ye){for(var Ft=0,bt=0;bt<Te;bt++){for(var Ue=_e[ae+bt*8>>2],He=_e[ae+(bt*8+4)>>2],nn=0;nn<He;nn++)po.printChar(K,Ne[Ue+nn]);Ft+=He}return _e[Ye>>2]=Ft,0}var In={a:xs,d:Sf,e:Op,f:Lp,c:Af,b:zp},Ff=ur(),Wp=s.___wasm_call_ctors=function(){return(Wp=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},_f=s._init=function(){return(_f=s._init=s.asm.i).apply(null,arguments)},Bp=s._register_tensor=function(){return(Bp=s._register_tensor=s.asm.j).apply(null,arguments)},Ef=s._dispose_data=function(){return(Ef=s._dispose_data=s.asm.k).apply(null,arguments)},ho=s._dispose=function(){return(ho=s._dispose=s.asm.l).apply(null,arguments)},mo=s._Abs=function(){return(mo=s._Abs=s.asm.n).apply(null,arguments)},$f=s._Add=function(){return($f=s._Add=s.asm.o).apply(null,arguments)},Df=s._AddN=function(){return(Df=s._AddN=s.asm.p).apply(null,arguments)},Mf=s._ArgMax=function(){return(Mf=s._ArgMax=s.asm.q).apply(null,arguments)},ke=s._AvgPool=function(){return(ke=s._AvgPool=s.asm.r).apply(null,arguments)},Rf=s._BatchMatMul=function(){return(Rf=s._BatchMatMul=s.asm.s).apply(null,arguments)},Pf=s._Ceil=function(){return(Pf=s._Ceil=s.asm.t).apply(null,arguments)},Of=s._ClipByValue=function(){return(Of=s._ClipByValue=s.asm.u).apply(null,arguments)},Lf=s._Conv2D=function(){return(Lf=s._Conv2D=s.asm.v).apply(null,arguments)},zf=s._Conv2DBackpropInput=function(){return(zf=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},vs=s._Cos=function(){return(vs=s._Cos=s.asm.x).apply(null,arguments)},Wf=s._CropAndResize=function(){return(Wf=s._CropAndResize=s.asm.y).apply(null,arguments)},Bf=s._Cumsum=function(){return(Bf=s._Cumsum=s.asm.z).apply(null,arguments)},Vf=s._DepthToSpace=function(){return(Vf=s._DepthToSpace=s.asm.A).apply(null,arguments)},Uf=s._DepthwiseConv2dNative=function(){return(Uf=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},Gf=s._Equal=function(){return(Gf=s._Equal=s.asm.C).apply(null,arguments)},Hf=s._Exp=function(){return(Hf=s._Exp=s.asm.D).apply(null,arguments)},jf=s._FlipLeftRight=function(){return(jf=s._FlipLeftRight=s.asm.E).apply(null,arguments)},qf=s._Floor=function(){return(qf=s._Floor=s.asm.F).apply(null,arguments)},Xf=s._FloorDiv=function(){return(Xf=s._FloorDiv=s.asm.G).apply(null,arguments)},Rr=s._FusedBatchNorm=function(){return(Rr=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},Pu=s._FusedConv2D=function(){return(Pu=s._FusedConv2D=s.asm.I).apply(null,arguments)},Ou=s._FusedDepthwiseConv2D=function(){return(Ou=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},Kf=s._Gather=function(){return(Kf=s._Gather=s.asm.K).apply(null,arguments)},Yf=s._GatherNd=function(){return(Yf=s._GatherNd=s.asm.L).apply(null,arguments)},Jf=s._Greater=function(){return(Jf=s._Greater=s.asm.M).apply(null,arguments)},Qf=s._GreaterEqual=function(){return(Qf=s._GreaterEqual=s.asm.N).apply(null,arguments)},Zf=s._LeakyRelu=function(){return(Zf=s._LeakyRelu=s.asm.O).apply(null,arguments)},Pe=s._Less=function(){return(Pe=s._Less=s.asm.P).apply(null,arguments)},eg=s._LessEqual=function(){return(eg=s._LessEqual=s.asm.Q).apply(null,arguments)},tg=s._Log=function(){return(tg=s._Log=s.asm.R).apply(null,arguments)},ng=s._LogicalAnd=function(){return(ng=s._LogicalAnd=s.asm.S).apply(null,arguments)},ag=s._Max=function(){return(ag=s._Max=s.asm.T).apply(null,arguments)},rg=s._MaxPool=function(){return(rg=s._MaxPool=s.asm.U).apply(null,arguments)},sg=s._Maximum=function(){return(sg=s._Maximum=s.asm.V).apply(null,arguments)},Lu=s._Mean=function(){return(Lu=s._Mean=s.asm.W).apply(null,arguments)},Vp=s._Min=function(){return(Vp=s._Min=s.asm.X).apply(null,arguments)},Up=s._Minimum=function(){return(Up=s._Minimum=s.asm.Y).apply(null,arguments)},ig=s._Multiply=function(){return(ig=s._Multiply=s.asm.Z).apply(null,arguments)},og=s._Neg=function(){return(og=s._Neg=s.asm._).apply(null,arguments)},lg=s._NonMaxSuppressionV3=function(){return(lg=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},ug=s._NonMaxSuppressionV4=function(){return(ug=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},cg=s._NonMaxSuppressionV5=function(){return(cg=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},pg=s._NotEqual=function(){return(pg=s._NotEqual=s.asm.ca).apply(null,arguments)},dg=s._OneHot=function(){return(dg=s._OneHot=s.asm.da).apply(null,arguments)},et=s._PadV2=function(){return(et=s._PadV2=s.asm.ea).apply(null,arguments)},hg=s._Pow=function(){return(hg=s._Pow=s.asm.fa).apply(null,arguments)},mg=s._Prelu=function(){return(mg=s._Prelu=s.asm.ga).apply(null,arguments)},fg=s._Prod=function(){return(fg=s._Prod=s.asm.ha).apply(null,arguments)},fo=s._RealDiv=function(){return(fo=s._RealDiv=s.asm.ia).apply(null,arguments)},Gp=s._Relu=function(){return(Gp=s._Relu=s.asm.ja).apply(null,arguments)},Hp=s._Relu6=function(){return(Hp=s._Relu6=s.asm.ka).apply(null,arguments)},jp=s._ResizeBilinear=function(){return(jp=s._ResizeBilinear=s.asm.la).apply(null,arguments)},gg=s._Reverse=function(){return(gg=s._Reverse=s.asm.ma).apply(null,arguments)},yg=s._RotateWithOffset=function(){return(yg=s._RotateWithOffset=s.asm.na).apply(null,arguments)},qp=s._Round=function(){return(qp=s._Round=s.asm.oa).apply(null,arguments)},bg=s._Rsqrt=function(){return(bg=s._Rsqrt=s.asm.pa).apply(null,arguments)},Xp=s._ScatterNd=function(){return(Xp=s._ScatterNd=s.asm.qa).apply(null,arguments)},Pr=s._SelectV2=function(){return(Pr=s._SelectV2=s.asm.ra).apply(null,arguments)},xg=s._Sigmoid=function(){return(xg=s._Sigmoid=s.asm.sa).apply(null,arguments)},vg=s._Sin=function(){return(vg=s._Sin=s.asm.ta).apply(null,arguments)},Ew=s._Softmax=function(){return(Ew=s._Softmax=s.asm.ua).apply(null,arguments)},Kp=s._Sqrt=function(){return(Kp=s._Sqrt=s.asm.va).apply(null,arguments)},wg=s._Square=function(){return(wg=s._Square=s.asm.wa).apply(null,arguments)},kg=s._SquaredDifference=function(){return(kg=s._SquaredDifference=s.asm.xa).apply(null,arguments)},Ig=s._Step=function(){return(Ig=s._Step=s.asm.ya).apply(null,arguments)},Ng=s._StridedSlice=function(){return(Ng=s._StridedSlice=s.asm.za).apply(null,arguments)},Tg=s._Sub=function(){return(Tg=s._Sub=s.asm.Aa).apply(null,arguments)},Sg=s._Sum=function(){return(Sg=s._Sum=s.asm.Ba).apply(null,arguments)},Cg=s._Tanh=function(){return(Cg=s._Tanh=s.asm.Ca).apply(null,arguments)},Ag=s._Tile=function(){return(Ag=s._Tile=s.asm.Da).apply(null,arguments)},Fg=s._TopK=function(){return(Fg=s._TopK=s.asm.Ea).apply(null,arguments)},_g=s._Transpose=function(){return(_g=s._Transpose=s.asm.Fa).apply(null,arguments)},Eg=s.__FusedMatMul=function(){return(Eg=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},$g=s._malloc=function(){return($g=s._malloc=s.asm.Ha).apply(null,arguments)},Dg=s._free=function(){return(Dg=s._free=s.asm.Ia).apply(null,arguments)},Yp=s.stackSave=function(){return(Yp=s.stackSave=s.asm.Ja).apply(null,arguments)},Jp=s.stackRestore=function(){return(Jp=s.stackRestore=s.asm.Ka).apply(null,arguments)},zu=s.stackAlloc=function(){return(zu=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=Q;var go;function Mg(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}lr=function K(){go||Wu(),go||(lr=K)};function Wu(K){if(K=K||c,ia>0||(Xn(),ia>0))return;function ae(){go||(go=!0,s.calledRun=!0,!U&&(Mn(),cn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),tn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ae()},1)):ae()}if(s.run=Wu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Wu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),xF=1e-7,vF=1e-4,sd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ju=class{refCount(e){return oa("refCount")}incRef(e){return oa("incRef")}timerAvailable(){return!0}time(e){return oa("time")}read(e){return oa("read")}readSync(e){return oa("readSync")}numDataIds(){return oa("numDataIds")}disposeData(e,t){return oa("disposeData")}write(e,t,n){return oa("write")}move(e,t,n,a,r){return oa("move")}memory(){return oa("memory")}floatPrecision(){return oa("floatPrecision")}epsilon(){return this.floatPrecision()===32?xF:vF}dispose(){return oa("dispose")}};function oa(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function jw(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function wF(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function qu(e,t,n){return Math.max(e,Math.min(t,n))}function kF(e){return e%2==0?e:e+1}function IF(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function NF(e,t){let n=Math.random();return t*n+(1-n)*e}function TF(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function $(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function ln(e,t,n=""){$(hr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ks(e){$(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Is(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||un(e)&&!n)for(let a=0;a<e.length;++a)Is(e[a],t,n);else t.push(e);return t}function Ot(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function SF(e){return e.length===0}function hr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ht(e){return e%1==0}function CF(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function AF(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function FF(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return jw(t),t}function Xu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function _F(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function EF(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function la(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),$(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),$(e.every(a=>Ht(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function qw(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:la(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function Xw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Kw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Yw(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function Jw(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function $F(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function un(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function zg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Qw(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function zr(e){return typeof e=="string"||e instanceof String}function Zw(e){return typeof e=="boolean"}function e0(e){return typeof e=="number"}function id(e){return Array.isArray(e)?id(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":e0(e)?"float32":zr(e)?"string":Zw(e)?"bool":"float32"}function Wr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function od(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function No(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function t0(e,t,n){let a=new Array;if(t.length===1){let r=t[0];for(let s=0;s<r;s++)a[s]=n[e+s]}else{let r=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<r;o++)a[o]=t0(e+o*i,s,n)}return a}function To(e,t){if(e.length===0)return t[0];let n=e.reduce((a,r)=>a*r);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return t0(0,e,t)}function Wg(e,t){let n=ld(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function ld(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function DF(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return To(e,new Float32Array(n));if(t==="int32")return To(e,new Int32Array(n));if(t==="bool")return To(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Bg(e){e.forEach(t=>{$(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function MF(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function RF(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Vg(e){return e&&e.then&&typeof e.then=="function"}var n0="tfjsflags",a0=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Vg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=PF(this.global.location.search);n0 in e&&e[n0].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=OF(n,a)})}};function PF(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(LF(t,a[0],a[1]),a.join("="))),t}function LF(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function OF(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Z(){return Ug}var Ug=null;function zF(e){Ug=e}var Gg;function r0(){if(Gg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Gg=e}return Gg}function WF(){let e=r0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Hg(e,t){let n=WF();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var So="Abs",Co="Acos",Ao="Acosh",Br="Add",Ns="AddN",ud="All",cd="Any",Ts="ArgMax",Ku="ArgMin",Fo="Asin",_o="Asinh",Eo="Atan",$o="Atanh",Do="Atan2",Ss="AvgPool",pd="AvgPoolGrad",Yu="AvgPool3D",dd="AvgPool3DGrad",Cs="BatchMatMul",Ju="BatchToSpaceND",hd="Bincount",s0="BroadcastTo",As="Cast",Fs="Ceil",Vr="ClipByValue",md="Complex",Qu="ComplexAbs",Mo="Concat",_s="Conv2D",fd="Conv2DBackpropFilter",Es="Conv2DBackpropInput",Zu="Conv3D",gd="Conv3DBackpropFilterV2",yd="Conv3DBackpropInputV2",$s="Cos",Ro="Cosh",Ds="Cumsum",Po="CropAndResize",bd="DenseBincount",Oo="DepthToSpace",Ms="DepthwiseConv2dNative",xd="DepthwiseConv2dNativeBackpropFilter",vd="DepthwiseConv2dNativeBackpropInput",wd="Diag",ec="Dilation2D",kd="Dilation2DBackpropInput",Id="Dilation2DBackpropFilter",Rs="RealDiv",Lo="Elu",Nd="EluGrad",zo="Erf",Wo="Equal",Ps="Exp",Bo="ExpandDims",Vo="Expm1",Td="FFT",tc="Fill",Uo="FlipLeftRight",Os="Floor",Ls="FloorDiv",zs="FusedBatchNorm",Go="GatherV2",Ho="GatherNd",jo="Greater",Ws="GreaterEqual",Bs="Identity",Sd="IFFT",Cd="Imag",qo="IsFinite",Xo="IsInf",Ko="IsNan",Vs="LeakyRelu",Yo="Less",Jo="LessEqual",Ad="LinSpace",Us="Log",Qo="Log1p",Zo="LogicalAnd",nc="LogicalNot",ac="LogicalOr",i0="LogSoftmax",rc="LRN",Fd="LRNGrad",Gs="Max",Hs="Maximum",js="MaxPool",_d="MaxPoolGrad",sc="MaxPool3D",Ed="MaxPool3DGrad",$d="MaxPoolWithArgmax",qs="Mean",Xs="Min",Ks="Minimum",ic="MirrorPad",el="Mod",Dd="Multinomial",Ys="Multiply",tl="Neg",nl="NotEqual",al="NonMaxSuppressionV3",rl="NonMaxSuppressionV4",sl="NonMaxSuppressionV5",il="OnesLike",Js="OneHot",ol="Pack",Qs="PadV2",BF="Pool",Zs="Pow",ei="Prelu",ll="Prod",oc="Range",Md="Real",ul="Reciprocal",ti="Relu",cl="Reshape",lc="ResizeNearestNeighbor",Rd="ResizeNearestNeighborGrad",ni="ResizeBilinear",Pd="ResizeBilinearGrad",ai="Relu6",ri="Reverse",si="Round",ii="Rsqrt",pl="ScatterNd",dl="Select",hl="Selu",ml="Slice",oi="Sin",fl="Sinh",gl="Sign",li="Sigmoid",yl="Softplus",ui="Sqrt",ci="Sum",uc="SpaceToBatchND",bl="SplitV",pi="Softmax",di="SquaredDifference",cc="Square",hi="Sub",Od="SparseToDense",xl="StridedSlice",vl="Tan",mi="Tanh",Ur="Tile",wl="TopK",Ld="Transform",fi="Transpose",zd="Unique",kl="Unpack",pc="UnsortedSegmentSum",Il="ZerosLike",Gr="Step",Wd="FromPixels",Nl="RotateWithOffset",gi="_FusedMatMul",yi="FusedConv2D",bi="FusedDepthwiseConv2D",Tl=Hg("kernelRegistry",()=>new Map),dc=Hg("gradRegistry",()=>new Map);function Bd(e,t){let n=jg(e,t);return Tl.get(n)}function qg(e){return dc.get(e)}function Vd(e){let t=Tl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function hc(e){let{kernelName:t,backendName:n}=e,a=jg(t,n);Tl.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Tl.set(a,e)}function o0(e){let{kernelName:t}=e;dc.has(t)&&Z().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),dc.set(t,e)}function VF(e,t){let n=jg(e,t);if(!Tl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Tl.delete(n)}function UF(e){if(!dc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);dc.delete(e)}function GF(e,t){Vd(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});hc(a)})}function jg(e,t){return`${t}_${e}`}var I={};Oe(I,{arraysEqual:()=>hr,assert:()=>$,assertNonNegativeIntegerDimensions:()=>Bg,assertNonNull:()=>ks,assertShapesMatch:()=>ln,bytesFromStringArray:()=>Qw,bytesPerElement:()=>zg,checkConversionForErrors:()=>Yw,clamp:()=>qu,computeStrides:()=>No,createScalarValue:()=>HF,createShuffledIndices:()=>FF,decodeString:()=>Gd,distSquared:()=>TF,encodeString:()=>fc,fetch:()=>jF,flatten:()=>Is,getArrayFromDType:()=>Kw,getTypedArrayFromDType:()=>Xw,hasEncodingLoss:()=>$F,indexToLoc:()=>RF,inferDtype:()=>id,inferFromImplicitShape:()=>EF,isBoolean:()=>Zw,isFunction:()=>Wr,isInt:()=>Ht,isNumber:()=>e0,isPromise:()=>Vg,isScalarShape:()=>SF,isString:()=>zr,isTypedArray:()=>un,isValidDtype:()=>Jw,locToIndex:()=>MF,makeOnesTypedArray:()=>Wg,makeZerosNestedTypedArray:()=>DF,makeZerosTypedArray:()=>ld,nearestDivisor:()=>od,nearestLargerEven:()=>kF,now:()=>mc,parseAxisParam:()=>la,randUniform:()=>NF,repeatedTry:()=>_F,rightPad:()=>Xu,shuffle:()=>jw,shuffleCombo:()=>wF,sizeFromShape:()=>Ot,sizeToSquarishShape:()=>AF,squeezeShape:()=>qw,sum:()=>IF,tanh:()=>CF,toNestedArray:()=>To,toTypedArray:()=>Ud});function HF(e,t){return t==="string"?fc(e):Ud([e],t)}function qF(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ud(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Is(e)),Z().getBool("DEBUG")&&Yw(e,t),qF(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function mc(){return Z().platform.now()}function jF(e,t){return Z().platform.fetch(e,t)}function fc(e,t="utf-8"){return t=t||"utf-8",Z().platform.encode(e,t)}function Gd(e,t="utf-8"){return t=t||"utf-8",Z().platform.decode(e,t)}var YF=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new KF)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=mc();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:mc()-i})}if(Z().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{XF(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function XF(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var KF=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Xu(`${a}ms`,9):a.error,o=Xu(e,25),l=t.rank,u=t.size,c=Xu(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${d}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${c} %c${u} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function JF(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let p in c){let d=c[p],h=!1;for(let m=0;m<t.length;m++)if(a[d.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let d in c)s[c[d].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let c={};for(let d in u.inputs){let h=u.inputs[d];a[h.id]&&(c[d]=h)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,o.push(p)}}return o}function QF(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!hr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let p=e[c.id];e[c.id]=a(p,u),p.dispose()}}}}var l0=20,gc=3,Xg=7;function e_(e,t,n,a){let r=No(t),s=ZF(e,t,n,r),i=t.length,o=Hd(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function ZF(e,t,n,a){let r=Ot(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?bc(e):e;if(o>1)for(let u=0;u<r/s;u++){let c=u*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],yc(l[c+p],0,n).length)}return i}function yc(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Xg))} + ${parseFloat(e[1].toFixed(Xg))}j`:zr(e)?a=`'${e}'`:n==="bool"?a=u0(e):a=parseFloat(e.toFixed(Xg)).toString(),Xu(a,t)}function u0(e){return e===0?"false":"true"}function Hd(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=bc(e);return[yc(f[0],0,n)]}return n==="bool"?[u0(e[0])]:[e[0].toString()]}if(l===1){if(o>l0){let g=gc*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-gc)*i,o*i));return n==="complex64"&&(y=bc(y),b=bc(b)),["["+y.map((x,v)=>yc(x,r[v],n)).join(", ")+", ..., "+b.map((x,v)=>yc(x,r[o-gc+v],n)).join(", ")+"]"]}let f=n==="complex64"?bc(e):Array.from(e);return["["+f.map((g,y)=>yc(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),c=a.slice(1),p=a[0]*i,d=[];if(o>l0){for(let f=0;f<gc;f++){let g=f*p,y=g+p;d.push(...Hd(e.slice(g,y),u,n,c,r,!1))}d.push("...");for(let f=o-gc;f<o;f++){let g=f*p,y=g+p;d.push(...Hd(e.slice(g,y),u,n,c,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*p,y=g+p;d.push(...Hd(e.slice(g,y),u,n,c,r,f===o-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let f=1;f<d.length-1;f++)d[f]=" "+d[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function bc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Lt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ot(e),n!=null){let a=n.length;$(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Kw(t,this.size),this.strides=No(e)}set(e,...t){t.length===0&&(t=[0]),$(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ba().makeTensor(this.values,this.shape,this.dtype)}},Ba=null,Sl=null,t_=null;function n_(e){Ba=e}function a_(e){Sl=e}function r_(e){t_=e}var Fe=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ot(e),this.strides=No(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Sl.buffer(this.shape,this.dtype,e)}bufferSync(){return Sl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return To(this.shape,e)}arraySync(){return To(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Ba().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Gd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ba().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Gd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ba().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ba().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Sl.print(this,e)}clone(){return this.throwIfDisposed(),Sl.clone(this)}toString(e=!1){let t=this.dataSync();return e_(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Sl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ba().makeVariable(this,e,t,n)}};Object.defineProperty(Fe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Y(){return Hg("Tensor",()=>Fe)}Y();var Hr=class extends Fe{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!hr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ba().disposeTensor(this),this.dataId=e.dataId,Ba().incRef(this,null)}dispose(){Ba().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Hr,Symbol.hasInstance,{value:e=>e instanceof Fe&&e.assign!=null&&e.assign instanceof Function});var Ia={};Oe(Ia,{assertTypesMatch:()=>c0,getTensorsInContainer:()=>Kg,isTensorInList:()=>s_,makeTypesMatch:()=>Tt});var Yg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Yg||(Yg={}));var Jg;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Jg||(Jg={}));var Qg;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Qg||(Qg={}));var Zg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Zg||(Zg={}));var ey;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(ey||(ey={}));var i_={float32:Zg,int32:Jg,bool:Qg,complex64:ey};function ua(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return i_[e][t]}function jd(e){return ua(e,"int32")}function Tt(e,t){if(e.dtype===t.dtype)return[e,t];let n=ua(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function c0(e,t){$(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function s_(e,t){return t.some(n=>n.id===e.id)}function Kg(e){let t=[],n=new Set;return p0(e,t,n),t}function p0(e,t,n){if(e==null)return;if(e instanceof Fe){t.push(e);return}if(!o_(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),p0(s,t,n))}}function o_(e){return Array.isArray(e)||typeof e=="object"}function ty(e){return e.kernelName!=null}var d0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},xc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new d0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new YF(this.backendInstance),!0}setupRegisteredKernels(){Vd(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Vd(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ju)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return xc.nextTensorId++}nextVariableId(){return xc.nextVariableId++}clone(e){let t=P.runKernel(Bs,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return P.runKernel(As,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(Bd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=ty(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(ty(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=Bd(h,this.backendName);$(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(v=>{if(v.rank!=null)return v;let{dataId:k,shape:w,dtype:S}=v;return this.makeTensorFromDataId(k,w,S)});if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:c}=e,p=ty(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),a&&this.addTapeNode(l,u,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=qg(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?($(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&zr(e[0])&&(r=e.map(o=>fc(o)));let s=a.write(r,t,n),i=new Fe(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=Qw(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Fe(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Hr(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*zg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Hr||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*zg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=qg(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let p=n[c],d=ld(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Kg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if($(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));$(r instanceof Fe,()=>"The result y returned by f() must be a tensor.");let s=JF(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?l_(r.shape):n,QF(i,s,l=>this.tidy(l),u_);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return $(Wr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{$(t.every(i=>i instanceof Fe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),$(n.value instanceof Fe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),$(Wr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];$(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),$(u.every(p=>p instanceof Fe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=mc(),n=await this.backend.time(e);return n.wallMs=mc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new d0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};xc.nextTensorId=0;xc.nextVariableId=0;function l_(e){let t=Wg(Ot(e),"float32");return P.makeTensor(t,e,"float32")}function h0(){let e=r0();if(e._tfengine==null){let t=new a0(e);e._tfengine=new xc(t)}return zF(e._tfengine.ENV),n_(()=>e._tfengine),e._tfengine}var P=h0();function u_(e,t){let n={a:e,b:t};return P.runKernel(Br,n)}var vc={};Oe(vc,{isBrowser:()=>m0,isMobile:()=>c_});function p_(){return typeof navigator!="undefined"&&navigator!=null}function c_(){if(p_()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function m0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Na=Z();Na.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Na.registerFlag("IS_BROWSER",()=>m0());Na.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Na.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Na.registerFlag("PROD",()=>!1);Na.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Na.getBool("DEBUG"));Na.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Na.registerFlag("IS_TEST",()=>!1);Na.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Na.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Va(e,t){let n=e;if(un(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||un(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&Z().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&f0(e,a,[]),a}function f0(e,t,n){if(n=n||[],!Array.isArray(e)&&!un(e)){$(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}$(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),$(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)f0(e[r],a,n.concat(r))}function g0(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,a="numeric"){if(e instanceof Fe)return g0(a,e.dtype,t,n),e;let r=id(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),g0(a,r,t,n),e==null||!un(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Va(e,r);!un(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Ud(e,r):Is(e,[],!0);return P.makeTensor(i,s,r)}function wc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>_(r,`${t}[${s}]`,n,a))}var y0="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+y0;let r=(...s)=>{P.startScope(n);try{let i=a(...s);return Vg(i)&&console.error("Cannot return a Promise inside of tidy."),P.endScope(i),i}catch(i){throw P.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function d_(e,t){let n=_(e,"real","complex"),a=_(t,"imag","complex");ln(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return P.runKernel(md,r)}var jr=O({complex_:d_});function qr(e,t,n,a){if(a==null&&(a=id(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!un(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Bg(t);let r=Ot(t),s=Ot(n);$(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Ot(t.slice(i)):!0;$(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!un(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Ud(e,a):Is(e,[],!0),P.makeTensor(e,t,a)}function Yn(e,t,n){let a=Va(e,n);return qr(e,t,a,n)}var ny={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},qd=4;async function m_(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+qd*d.length,m=new Uint8Array(h),f=0;for(let g=0;g<d.length;g++){let y=d[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=qd,m.set(y,f),f+=y.length}p(m)});a.push(c)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:h_(s),specs:n}}function b0(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Ot(l),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=ny[p.dtype],h=e.slice(r,r+u*d),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];c[f]=g*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=f_()),c=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];c[f]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}else if(o==="string"){let p=Ot(s.shape);c=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+qd))[0];r+=qd;let m=new Uint8Array(e.slice(r,r+h));c.push(m),r+=h}}else{let p=ny[o],d=e.slice(r,r+u*p);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let h=new Float32Array(c.length/2),m=new Float32Array(c.length/2);for(let y=0;y<h.length;y++)h[y]=c[y*2],m[y]=c[y*2+1];let f=Yn(h,l,"float32"),g=Yn(m,l,"float32");n[i]=jr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*p}o!=="complex64"&&(n[i]=Yn(c,l,o))}return n}function h_(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var ay=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function x0(e){return ay?Buffer.byteLength(e):new Blob([e]).size}function g_(e){if(ay)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function y_(e){if(ay){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function ry(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function v0(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function kc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:x0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:x0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function b_(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function x_(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function v_(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function f_(){let e=b_(),t=x_(),n=v_();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var _t=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return _t.instance==null&&(_t.instance=new _t),_t.instance}static registerSaveRouter(e){_t.getInstance().saveRouters.push(e)}static registerLoadRouter(e){_t.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return _t.getHandlers(e,"save")}static getLoadHandlers(e,t){return _t.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?_t.getInstance().loadRouters:_t.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},w_=e=>_t.registerSaveRouter(e),k_=e=>_t.registerLoadRouter(e),I_=e=>_t.getSaveHandlers(e),N_=(e,t)=>_t.getLoadHandlers(e,t),sy="tensorflowjs",iy=1,xi="models_store",Xr="model_info_store";function w0(){if(!Z().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function oy(e){let t=e.result;t.createObjectStore(xi,{keyPath:"modelPath"}),t.createObjectStore(Xr,{keyPath:"modelPath"})}var vi=class{constructor(e){if(this.indexedDB=w0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(sy,iy);r.onupgradeneeded=()=>oy(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(xi,"readonly"),o=i.objectStore(xi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=kc(t),o=s.transaction(Xr,"readwrite"),l=o.objectStore(Xr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(xi,"readwrite");let p=c.objectStore(xi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=d=>{l=o.objectStore(Xr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},u.onerror=p=>(s.close(),a(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};vi.URL_SCHEME="indexeddb://";var k0=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(vi.URL_SCHEME)?T_(e.slice(vi.URL_SCHEME.length)):null;_t.registerSaveRouter(k0);_t.registerLoadRouter(k0);function T_(e){return new vi(e)}function S_(e){return e.startsWith(vi.URL_SCHEME)?e.slice(vi.URL_SCHEME.length):e}var C_=class{constructor(){this.indexedDB=w0()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(sy,iy);n.onupgradeneeded=()=>oy(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Xr,"readonly"),s=r.objectStore(Xr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=S_(e),new Promise((t,n)=>{let a=this.indexedDB.open(sy,iy);a.onupgradeneeded=()=>oy(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Xr,"readwrite"),i=s.objectStore(Xr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=r.transaction(xi,"readwrite");let p=l.objectStore(xi).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=p=>(c(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},mr="/",Cl="tensorflowjs_models",I0="info",A_="model_topology",F_="weight_specs",__="weight_data",E_="model_metadata";function N0(e){return{info:[Cl,e,I0].join(mr),topology:[Cl,e,A_].join(mr),weightSpecs:[Cl,e,F_].join(mr),weightData:[Cl,e,__].join(mr),modelMetadata:[Cl,e,E_].join(mr)}}function $_(e){let t=e.split(mr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(mr)}function D_(e){return e.startsWith(wi.URL_SCHEME)?e.slice(wi.URL_SCHEME.length):e}var wi=class{constructor(e){if(!Z().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=N0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=kc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,g_(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=y_(s),t}};wi.URL_SCHEME="localstorage://";var T0=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(wi.URL_SCHEME)?M_(e.slice(wi.URL_SCHEME.length)):null;_t.registerSaveRouter(T0);_t.registerLoadRouter(T0);function M_(e){return new wi(e)}var R_=class{constructor(){$(Z().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),$(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Cl+mr,n=mr+I0;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=$_(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=D_(e);let t=N0(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},Al="://",Jn=class{constructor(){this.managers={}}static getInstance(){return Jn.instance==null&&(Jn.instance=new Jn),Jn.instance}static registerManager(e,t){$(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Al)&&(e=e.slice(0,e.indexOf(Al))),$(e.length>0,()=>"scheme must not be an empty string.");let n=Jn.getInstance();$(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Xd(e){if(e.indexOf(Al)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Jn.getSchemes().join(",")}`);return{scheme:e.split(Al)[0],path:e.split(Al)[1]}}async function S0(e,t,n=!1){$(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=_t.getLoadHandlers(e);$(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),$(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=_t.getSaveHandlers(t);$(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),$(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Xd(e).scheme,l=Xd(e).path,u=o===Xd(e).scheme,c=await r.load();n&&u&&await Jn.getManager(o).removeModel(l);let p=await i.save(c);return n&&!u&&await Jn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function P_(){let e=Jn.getSchemes(),t={};for(let n of e){let a=await Jn.getManager(n).listModels();for(let r in a){let s=n+Al+r;t[s]=a[r]}}return t}async function O_(e){let t=Xd(e);return Jn.getManager(t.scheme).removeModel(t.path)}async function L_(e,t){return S0(e,t,!1)}async function z_(e,t){return S0(e,t,!0)}var W_=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Z().get("IS_BROWSER")){Z().setPlatform("browser",new W_);try{Jn.registerManager(wi.URL_SCHEME,new R_)}catch(e){}try{Jn.registerManager(vi.URL_SCHEME,new C_)}catch(e){}}var B_={importFetch:()=>GA()},ly,V_=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Z().global.fetch!=null?Z().global.fetch(e,t):(ly==null&&(ly=B_.importFetch()),ly(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Z().get("IS_NODE")&&Z().setPlatform("node",new V_);function Le(e,t="float32",n){return t=t||"float32",Bg(e),new Lt(e,t,n)}function U_(e,t){let n=_(e,"x","cast");if(!Jw(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return P.runKernel(As,a,r)}var ue=O({cast_:U_});function G_(e){let t={x:_(e,"x","clone","string_or_numeric")};return P.runKernel(Bs,t)}var Kr=O({clone_:G_});function C0(e,t=!1){console.log(e.toString(t))}h0();var H_={buffer:Le,cast:ue,clone:Kr,print:C0};a_(H_);var jt={};Oe(jt,{browserFiles:()=>j_,browserHTTPRequest:()=>X_,concatenateArrayBuffers:()=>ry,copyModel:()=>L_,decodeWeights:()=>b0,encodeWeights:()=>m_,fromMemory:()=>K_,getLoadHandlers:()=>N_,getModelArtifactsInfoForJSON:()=>kc,getSaveHandlers:()=>I_,http:()=>cy,isHTTPScheme:()=>uy,listModels:()=>P_,loadWeights:()=>q_,moveModel:()=>z_,registerLoadRouter:()=>k_,registerSaveRouter:()=>w_,removeModel:()=>O_,weightsLoaderFactory:()=>A0,withSaveHandler:()=>Y_});var J_="model",Q_=".json",Z_=".weights.bin";function F0(e){return new Promise(t=>setTimeout(t)).then(e)}var Fl=class{constructor(e){if(!Z().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Fl.URL_SCHEME)&&(e=e.slice(Fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=J_),this.modelTopologyFileName=e+Q_,this.weightDataFileName=e+Z_}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await F0(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await F0(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:kc(e)}}}};Fl.URL_SCHEME="downloads://";var eE=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let c=[],p=[],d=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),d.push(null)}),c.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=g=>{let y=g.target.result,b=p.indexOf(m);if(d[b]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:c,weightData:ry(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=g=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>v0(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=v0(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},nE=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Fl.URL_SCHEME)?tE(e.slice(Fl.URL_SCHEME.length)):null;_t.registerSaveRouter(nE);function tE(e="model"){return new Fl(e)}function j_(e){return new eE(e)}function _0(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let c=n+ ++r/e.length*(a-n);return t(c),u}),l);function i(l){$(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){$(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),$(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),$(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function E0(e,t){t==null&&(t={});let n=t.fetchFunc==null?Z().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await _0(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await _0(i,t.onProgress,o,l)}async function q_(e,t="",n,a){return A0(r=>E0(r,{requestInit:a}))(e,t,n)}function A0(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=ny[y]*Ot(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((v,k)=>{v===g.name&&(x(),i[k]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let c=await e(u),p={},d=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=c[d+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let v=new Uint8Array(c[d+x]);y.set(v,b),b+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),k=b0(v,[x.manifestEntry]);for(let w in k)p[w]=k[w]}),d+=m}),p}}var aE="application/octet-stream",rE="application/json",py=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?($(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Z().platform.fetch,$(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&$(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:rE}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:aE}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:kc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;a!=null&&([u,c]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(p.modelInitializer=d),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=sE(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(r+c+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await E0(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,ry(l)]}};py.URL_SCHEME_REGEX=/^https?:\/\//;function sE(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function uy(e){return e.match(py.URL_SCHEME_REGEX)!=null}var $0=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>uy(a)):n=uy(e),n)return cy(e,t)}return null};_t.registerSaveRouter($0);_t.registerLoadRouter($0);function cy(e,t){return new py(e,t)}function X_(e,t){return cy(e,t)}var dy=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},iE=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function K_(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new dy(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new dy({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new dy({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function Y_(e){return new iE(e)}var D0={};Oe(D0,{confusionMatrix:()=>oE});function lE(e,t,n=!1,a=!1){let r=_(e,"a","matMul"),s=_(t,"b","matMul");[r,s]=Tt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return P.runKernel(Cs,i,o)}var ze=O({matMul_:lE});function uE(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:_(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return P.runKernel(Js,r,s)}var _l=O({oneHot_:uE});function cE(e,t){let n=_(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),$(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{$(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return P.runKernel(fi,a,r)}var Ve=O({transpose_:cE});function pE(e,t,n){let a=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");$(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),$(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),$(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),$(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),$(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=_l(ue(a,"int32"),n),i=_l(ue(r,"int32"),n),o=Ve(s),l=ze(o,i);return ue(l,"int32")}var oE=O({confusionMatrix_:pE}),ki={};Oe(ki,{fromPixels:()=>mE,fromPixelsAsync:()=>dE,toPixels:()=>hE});function Kd(e,t,n){if(ks(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Va(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return qr(e,t,a,n)}var El;function M0(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let d=2;if(r&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Bd(Wd,P.backendName)!=null){let d={pixels:e},h={numChannels:t};return P.runKernel(Wd,d,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:a||n?c=e.data:(s||r||o)&&(El==null&&(El=document.createElement("canvas").getContext("2d")),El.canvas.width=l,El.canvas.height=u,El.drawImage(e,0,0,l,u),c=El.getImageData(0,0,l,u).data);let p;if(t===4)p=new Int32Array(c);else{let d=l*u;p=new Int32Array(d*t);for(let h=0;h<d;h++)for(let m=0;m<t;++m)p[h*t+m]=c[h*4+m]}return Kd(p,[u,l,t],"int32")}function fE(e){return e!=null&&e.data instanceof Uint8Array}function gE(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function yE(e){return e!=null&&e.width!==0&&e.height!==0}function bE(e){return gE()&&!(e instanceof ImageBitmap)&&yE(e)&&!fE(e)}async function dE(e,t=3){let n=null;if(Z().getBool("WRAP_TO_IMAGEBITMAP")&&bE(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return M0(n,t)}async function hE(e,t){let n=_(e,"img","toPixels");if(!(e instanceof Fe)){let u=n;n=ue(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let c=[0,0,0,255];for(let d=0;d<s;d++){let h=i[u*s+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(c[0]=h*o,c[1]=h*o,c[2]=h*o):c[d]=h*o}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),c=new ImageData(l,r,a);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var mE=O({fromPixels_:M0}),hy={};Oe(hy,{prepareAndValidate:()=>R0});function R0(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Ot(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let u=1;for(let p=s;p<n;++p)u*=o[p],l.push(o[p]);let c=[...No(e.shape).map(p=>p/u),1].slice(0,s);return[l,i,u,c]}var my={};Oe(my,{calculateShapes:()=>P0,validateInput:()=>gy,validateUpdateShape:()=>fy});function fy(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function gy(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}fy(n,t,e)}function P0(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Ot(t.shape)/o,u=[...No(n.slice(0,r)),1],c=Ot(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:c}}var pn={};Oe(pn,{assertParamsValid:()=>xE,computeFlatOffset:()=>wE,computeOutShape:()=>O0,getNormalizedAxes:()=>z0,isSliceContinous:()=>vE,maskToAxes:()=>Yd,parseSliceParams:()=>H0,sliceInfo:()=>kE,startForAxis:()=>U0,startIndicesWithElidedDims:()=>W0,stopForAxis:()=>G0,stopIndicesWithElidedDims:()=>B0,stridesForAxis:()=>V0,stridesWithElidedDims:()=>L0});function xE(e,t,n){let a=e.shape.length;$(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),$(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)$(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Yd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function O0(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function L0(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function j0(e,t,n){return n<=e?n:n-(t-1)}function q0(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function z0(e,t,n,a,r,s,i,o,l){let u=e.length,c=new Array(u),p=new Array(u),d=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;c=W0(i,h,m,a,e),p=B0(o,h,m,r,e),d=L0(s,h,m,e)}else for(let h=0;h<u;h++)c[h]=U0(i,a,s,e,h,l),p[h]=G0(o,r,s,e,h,l),d[h]=V0(s,h,l);return{begin:c,end:p,strides:d}}function W0(e,t,n,a,r){let s=[...r],i=q0(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=j0(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function B0(e,t,n,a,r){let s=[...r],i=q0(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=j0(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=qu(0,s[o],r[o])}return s}function V0(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function U0(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=qu(0,i,l-1),i}function G0(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=qu(0,i,l):i=qu(-1,i,l-1),i}function vE(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function wE(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function H0(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{$(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:($(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function kE(e,t,n,a,r,s,i,o,l){let u=t.slice(),c=n.slice(),p=a;a==null&&(p=new Array(u.length));let d=Yd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-u.length,m=Yd(o),f=e.slice();m.forEach(w=>{u[w]=0,c[w]=1,f.splice(w,0,1)});let{begin:g,end:y,strides:b}=z0(f,d,h,u,c,p,r,s,i);u=g,c=y,p=b;let x=Yd(l);x.forEach(w=>{c[w]=u[w]+1,p[w]=1});let v=O0(u,c,p),k=v.filter((w,S)=>x.indexOf(S)===-1);return{nonStrided:p.every(w=>w===1),$begin:u,$end:c,$strides:p,size:v,newShape:f,outShape:k}}var re={};Oe(re,{Serializable:()=>X0,SerializationMap:()=>Ii,registerClass:()=>Yr});var X0=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ii=class{constructor(){this.classNameMap={}}static getMap(){return Ii.instance==null&&(Ii.instance=new Ii),Ii.instance}static register(e){Ii.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Yr(e){$(e.className!=null,()=>"Class being registered does not have the static className property defined."),$(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),$(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ii.register(e)}var K0={};Oe(K0,{TEST_EPSILON_FLOAT16:()=>Y0,encodeStrings:()=>J0,expectArrayBuffersEqual:()=>AE,expectArraysClose:()=>IE,expectArraysEqual:()=>TE,expectNumbersClose:()=>SE,expectPromiseToFail:()=>NE,expectValuesInRange:()=>CE,testEpsilon:()=>yy});var FE=.001,Y0=.1;function IE(e,t,n){return n==null&&(n=yy()),by(e,t,(a,r)=>xy(a,r,n))}function yy(){return P.backend.floatPrecision()===32?FE:Y0}function by(e,t,n){let a=!0;if((un(e)||un(t))&&(a=!1),un(e)&&un(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Va(e),o=Va(t);if(!hr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=un(e)?e:Is(e),s=un(t)?t:Is(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function NE(e,t){e().then(()=>t.fail(),()=>t())}function TE(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return zr(e)||zr(e[0])||zr(t)||zr(t[0])?by(e,n,(a,r)=>a==r):by(e,t,(a,r)=>xy(a,r,0))}function SE(e,t,n){if(n==null&&(n=yy()),!xy(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function xy(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function CE(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function AE(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function J0(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?J0(n):e[t]=fc(n)}return e}var Q0="3.3.0";function _E(){Z().set("PROD",!0)}function EE(){Z().set("DEBUG",!0)}function $E(){Z().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function vy(e){Z().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}r_(vy);function DE(){P.disposeVariables()}function Ua(){return P}function Jd(){return P.memory()}function ME(e){return P.profile(e)}function M(e,t){return P.tidy(e,t)}function Ee(e){Kg(e).forEach(t=>t.dispose())}function qt(e){return P.keep(e)}function RE(e){return P.time(e)}function PE(e){return P.setBackend(e)}function OE(){return P.ready()}function LE(){return P.backendName}function zE(e){P.removeBackend(e)}function WE(e){return P.findBackend(e)}function BE(e){return P.findBackendFactory(e)}function Qd(e,t,n=1){return P.registerBackend(e,t,n)}function Z0(){return P.backend}function VE(e,t){Z().setPlatform(e,t)}function UE(e,t){let n=_(e,"a","add"),a=_(t,"b","add");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(Br,r)}var J=O({add_:UE});function GE(e,t){let n=_(e,"a","floorDiv"),a=_(t,"b","floorDiv");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(Ls,r)}var Zd=O({floorDiv_:GE});function HE(e,t){let n=_(e,"a","div"),a=_(t,"b","div");if([n,a]=Tt(n,a),n.dtype==="int32"&&a.dtype==="int32")return Zd(n,a);let r={a:n,b:a},s={};return P.runKernel(Rs,r,s)}var xe=O({div_:HE});function jE(e,t){let n=_(e,"a","mul"),a=_(t,"b","mul");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(Ys,r)}var B=O({mul_:jE});function qE(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return P.runKernel(Qu,n)}else{let n={x:t};return P.runKernel(So,n)}}var zt=O({abs_:qE});function XE(e){let t={x:_(e,"x","acos")};return P.runKernel(Co,t)}var wy=O({acos_:XE});function KE(e){let t={x:_(e,"x","acosh")};return P.runKernel(Ao,t)}var ky=O({acosh_:KE});function YE(e){$(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),$(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>_(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!hr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return P.runKernel(Ns,a)}var e1=O({addN_:YE});function JE(e,t=null,n=!1){let a={x:_(e,"x","all","bool")},r={axis:t,keepDims:n};return P.runKernel(ud,a,r)}var eh=O({all_:JE});function QE(e,t=null,n=!1){let a={x:_(e,"x","any","bool")},r={axis:t,keepDims:n};return P.runKernel(cd,a,r)}var Ic=O({any_:QE});function ZE(e,t=0){let n={x:_(e,"x","argMax")},a={axis:t};return P.runKernel(Ts,n,a)}var Nc=O({argMax_:ZE});function e$(e,t=0){let n={x:_(e,"x","argMin")},a={axis:t};return P.runKernel(Ku,n,a)}var Iy=O({argMin_:e$});function t$(e){let t={x:_(e,"x","asin")};return P.runKernel(Fo,t)}var Ny=O({asin_:t$});function n$(e){let t={x:_(e,"x","asinh")};return P.runKernel(_o,t)}var Ty=O({asinh_:n$});function a$(e){let t={x:_(e,"x","atan")};return P.runKernel(Eo,t)}var Sy=O({atan_:a$});function r$(e,t){let n=_(e,"a","atan2"),a=_(t,"b","atan2");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(Do,r)}var Cy=O({atan2_:r$});function s$(e){let t={x:_(e,"x","atanh")};return P.runKernel($o,t)}var Ay=O({atanh_:s$});function i$(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=t1(r);return Tc(e,o,n,s,a,null,null,l)}function n1(e,t,n,a,r,s,i="channelsLast"){let[o,l]=th(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Tc(e,u,n,a,r,s,!1,i)}function o$(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Fy(t),c,p;if(i==="NDHWC")p="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return a1(e,c,n,a,r,!1,p,s)}function Tc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,p]=e;else if(o==="channelsFirst")[l,p,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,m]=t,[f,g]=th(n),[y,b]=th(a),x=$l(d,y),v=$l(h,b),{padInfo:k,outHeight:w,outWidth:S}=l$(r,u,c,f,g,x,v,s,o),A=i?m*p:m,F;return o==="channelsFirst"?F=[l,A,w,S]:o==="channelsLast"&&(F=[l,w,S,A]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:p,outHeight:w,outWidth:S,outChannels:A,padInfo:k,strideHeight:f,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:e,outShape:F,filterShape:t}}function a1(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,c,p,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p,d]=e;else if(i==="channelsFirst")[l,d,u,c,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=Fy(n),[v,k,w]=Fy(a),S=$l(h,v),A=$l(m,k),F=$l(f,w),{padInfo:D,outDepth:R,outHeight:L,outWidth:W}=u$(r,u,c,p,y,b,x,S,A,F,o),U=s?g*d:g,G;return i==="channelsFirst"?G=[l,U,R,L,W]:i==="channelsLast"&&(G=[l,R,L,W,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:p,inChannels:d,outDepth:R,outHeight:L,outWidth:W,outChannels:U,padInfo:D,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:S,effectiveFilterHeight:A,effectiveFilterWidth:F,dilationDepth:v,dilationHeight:k,dilationWidth:w,inShape:e,outShape:G,filterShape:t}}function c$(e,t,n,a,r){a==null&&(a=_y(e,t,n));let s=e[0],i=e[1],o=Ni((s-t+2*a)/n+1,r),l=Ni((i-t+2*a)/n+1,r);return[o,l]}function p$(e,t,n,a,r,s){r==null&&(r=_y(e,t,a));let i=e[0],o=e[1],l=e[2],u=Ni((i-t+2*r)/a+1,s),c=Ni((o-t+2*r)/a+1,s),p=Ni((l-t+2*r)/a+1,s);return[u,c,p,n]}function _y(e,t,n,a=1){let r=$l(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function th(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Fy(e){return typeof e=="number"?[e,e,e]:e}function $l(e,t){return t<=1?e:e+(e-1)*(t-1)}function l$(e,t,n,a,r,s,i,o,l){let u,c,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=c$([t,n],s,a,e,o);c=d[0],p=d[1]}else if(e==="same"){c=Math.ceil(t/a),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(d/2),f=d-m,g=Math.floor(h/2),y=h-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:m,right:f,type:d===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},c=Ni((t-s+d+h)/a+1,o),p=Ni((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:p}}function u$(e,t,n,a,r,s,i,o,l,u,c){let p,d,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=p$([t,n,a,1],o,1,r,e,c);d=f[0],h=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(d-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+u-a,b=Math.floor(f/2),x=f-b,v=Math.floor(g/2),k=g-v,w=Math.floor(y/2),S=y-w;p={top:v,bottom:k,left:w,right:S,front:b,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:m}}function Ni(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Jr(e){let[t,n,a]=th(e);return t===1&&n===1&&a===1}function Ga(e,t){return Jr(e)||Jr(t)}function t1(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function d$(e,t){let n={x:_(e,"x","reshape","string_or_numeric")},a={shape:t};return P.runKernel(cl,n,a)}var H=O({reshape_:d$});function h$(e,t,n,a,r){let s=_(e,"x","avgPool","float32"),i=1;$(Ga(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&$(Ht(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},c={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=P.runKernel(Ss,u,c);return p=ue(p,s.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Qn=O({avgPool_:h$});function m$(e,t,n,a,r,s="NDHWC"){let i=_(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&$(Ht(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},c={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=P.runKernel(Yu,u,c);return p=ue(p,o.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Ey=O({avgPool3d_:m$});function f$(e,t=0){$(e.length>=1,()=>"Pass at least one tensor to concat");let n=wc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Kr(n[0]);let a=n,r={axis:t};return P.runKernel(Mo,a,r)}var Je=O({concat_:f$});function g$(e){let t={x:_(e,"x","sigmoid")};return P.runKernel(li,t)}var ca=O({sigmoid_:g$});function y$(e,t,n){let a=_(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return P.runKernel(ml,r,s)}var Be=O({slice_:y$});function b$(e){let t={x:_(e,"x","tanh")};return P.runKernel(mi,t)}var Dl=O({tanh_:b$});function x$(e,t,n,a,r,s){let i=_(e,"forgetBias","basicLSTMCell"),o=_(t,"lstmKernel","basicLSTMCell"),l=_(n,"lstmBias","basicLSTMCell"),u=_(a,"data","basicLSTMCell"),c=_(r,"c","basicLSTMCell"),p=_(s,"h","basicLSTMCell"),d=Je([u,p],1),h=ze(d,o),m=J(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=Be(m,[0,0],y),x=Be(m,[0,g],y),v=Be(m,[0,g*2],y),k=Be(m,[0,g*3],y),w=J(B(ca(b),Dl(x)),B(c,ca(J(i,v)))),S=B(Dl(w),ca(k));return[w,S]}var v$=O({basicLSTMCell_:x$});function w$(e,t,n){let a=_(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);$(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),$(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),$(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return P.runKernel(Ju,s,i)}var Sc=O({batchToSpaceND_:w$});function k$(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function I$(e,t,n,a,r,s){s==null&&(s=.001);let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let c;a!=null&&(c=_(a,"offset","batchNorm")),$(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),$(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),$(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:k$(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},h=P.runKernel(zs,p,d);return H(h,i.shape)}var fr=O({batchNorm_:I$});function N$(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let c;return a!=null&&(c=_(a,"offset","batchNorm")),$(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),$(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),$(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&$(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&$(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),fr(i,o,l,c,u,s)}var r1=O({batchNorm2d_:N$});function T$(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let c;return a!=null&&(c=_(a,"offset","batchNorm")),$(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),$(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),$(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&$(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&$(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),fr(i,o,l,c,u,s)}var s1=O({batchNorm3d_:T$});function S$(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let c;return a!=null&&(c=_(a,"offset","batchNorm")),$(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),$(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),$(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&$(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&$(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),fr(i,o,l,c,u,s)}var i1=O({batchNorm4d_:S$});function C$(e,t,n){let a=_(e,"x","bincount"),r=_(t,"weights","bincount");$(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return P.runKernel(hd,s,i)}var o1=O({bincount_:C$});function A$(e,t){let n=_(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=H(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Kr(n);let i={x:n},o={reps:s};return P.runKernel(Ur,i,o)}var Cc=O({broadcastTo_:A$});function F$(e){let t={x:_(e,"x","ceil")};return P.runKernel(Fs,t)}var $y=O({ceil_:F$});function _$(e,t,n){let a=_(e,"x","clipByValue");$(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return P.runKernel(Vr,r,s)}var Xt=O({clipByValue_:_$});function E$(e){return Je(e,0)}var l1=O({concat1d_:E$});function $$(e,t){return Je(e,t)}var u1=O({concat2d_:$$});function D$(e,t){return Je(e,t)}var c1=O({concat3d_:D$});function M$(e,t){return Je(e,t)}var p1=O({concat4d_:M$});function R$(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","conv2d"),l=_(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),$(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&$(Ht(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];$(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),$(Ga(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=P.runKernel(_s,d,h);return c?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Et=O({conv2d_:R$});function P$(e,t,n,a,r="NWC",s=1,i){let o=_(e,"x","conv1d"),l=_(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1]])),$(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),$(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&$(Ht(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),$(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),$(Ga(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),$(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Et(d,p,[1,n],a,"NHWC",[1,s],i);return c?H(h,[h.shape[2],h.shape[3]]):H(h,[h.shape[0],h.shape[2],h.shape[3]])}var nh=O({conv1d_:P$});function O$(e,t,n,a,r,s="NHWC",i){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),$(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),$(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),$(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];$(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),$(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&$(Ht(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let d={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=P.runKernel(Es,d,h);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Dy=O({conv2DBackpropInput_:O$});function L$(e,t,n,a,r,s){let i=_(e,"x","conv2dTranspose"),o=_(t,"filter","conv2dTranspose");return Dy(n,i,o,a,r,"NHWC",s)}var ah=O({conv2dTranspose_:L$});function z$(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=_(e,"x","conv3d"),o=_(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),$(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),$(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),$(Ga(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),$(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},d=P.runKernel(Zu,c,p);return u?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var My=O({conv3d_:z$});function W$(e,t,n,a,r){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];$(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),$(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),$(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),$(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),$(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},d=P.runKernel(yd,c,p);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var d1=O({conv3DBackpropInput_:W$});function B$(e,t,n,a,r){let s=_(e,"x","conv3dTranspose"),i=_(t,"filter","conv3dTranspose");return d1(n,s,i,a,r)}var V$=O({conv3dTranspose_:B$});function U$(e){let t={x:_(e,"x","cos")};return P.runKernel($s,t)}var Ac=O({cos_:U$});function G$(e){let t={x:_(e,"x","cosh")};return P.runKernel(Ro,t)}var rh=O({cosh_:G$});function H$(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return P.runKernel(Ds,r,s)}var sh=O({cumsum_:H$});function j$(e,t,n,a=!1){let r=_(e,"x","denseBincount"),s=_(t,"weights","denseBincount");$(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),$(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return P.runKernel(bd,i,o)}var h1=O({denseBincount_:j$});function q$(e,t,n="NHWC"){let a=_(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];$(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),$(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),$(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return P.runKernel(Oo,o,l)}var Ry=O({depthToSpace_:q$});function X$(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","depthwiseConv2d"),l=_(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),$(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),$(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&$(Ht(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:u,filter:l},d={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=P.runKernel(Ms,p,d);return c?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Qr=O({depthwiseConv2d_:X$});function K$(e){let t={x:_(e,"x","diag")};return P.runKernel(wd,t)}var Y$=O({diag_:K$});function J$(e,t,n,a,r=[1,1],s="NHWC"){let i=_(e,"x","dilation2d"),o=_(t,"filter","dilation2d");$(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),$(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),$(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},p={strides:n,pad:a,dilations:r},d=P.runKernel(ec,c,p);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Py=O({dilation2d_:J$});function Q$(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function xt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function Z$(e,t){let n=_(e,"a","equal"),a=_(t,"b","equal");[n,a]=Tt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Wo,r)}var Zr=O({equal_:Z$});function eD(e,t,n){let a=_(t,"a","where"),r=_(n,"b","where"),s=_(e,"condition","where","bool"),i=xt(a.shape,r.shape),o=Cc(a,i),l=Cc(r,i);s.rank===1&&$(s.shape[0]===a.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&ln(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return P.runKernel(dl,u)}var Tn=O({where_:eD});function tD(e){let t={x:_(e,"x","zerosLike")};return P.runKernel(Il,t)}var Ge=O({zerosLike_:tD});function nD(e,t){let n=_(e,"a","div"),a=_(t,"b","div");[n,a]=Tt(n,a);let r=xe(n,a),s=Ge(r),i=Zr(a,s);return Tn(i,s,r)}var Oy=O({divNoNan_:nD});function aD(e,t){let n=_(e,"t1","dot"),a=_(t,"t2","dot");$((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if($(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=H(n,[1,-1]),o=H(a,[-1,1]),l=ze(i,o);return H(l,[])}else if(n.rank===1&&a.rank===2){let i=H(n,[1,-1]),o=H(a,[a.shape[0],a.shape[1]]),l=ze(i,o);return H(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=H(a,[-1,1]),o=ze(n,i);return H(o,[o.size])}else{let i=H(a,[a.shape[0],a.shape[1]]);return ze(n,i)}}var m1=O({dot_:aD});function rD(e){let t={x:_(e,"x","elu")};return P.runKernel(Lo,t)}var Ml=O({elu_:rD});function sD(e){let t=_(e,"x","erf");$(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ue(t,"float32"));let n={x:t};return P.runKernel(zo,n)}var Ly=O({erf_:sD});function iD(e){let t={x:_(e,"x","exp")};return P.runKernel(Ps,t)}var dn=O({exp_:iD});function oD(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");$(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return P.runKernel(Bo,a,r)}var Rn=O({expandDims_:oD});function lD(e){let t={x:_(e,"x","expm1")};return P.runKernel(Vo,t)}var zy=O({expm1_:lD});function uD(e,t){let n=_(e,"x","tile","string_or_numeric");$(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return P.runKernel(Ur,a,r)}var Ha=O({tile_:uD});function cD(e,t,n,a="float32"){t==null&&(t=e);let r=Le([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=H(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ha(Rn(i,0),[n[0],1,1]);if(n.length===2)return Ha(Rn(Rn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ha(Rn(Rn(Rn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Wy=O({eye_:cD});function Sn(e,t,n){let a={shape:e,value:t,dtype:n};return P.runKernel(tc,{},a)}function pD(e){let t={x:_(e,"x","floor")};return P.runKernel(Os,t)}var Rl=O({floor_:pD});function dD(e,t,n=0,a=0){let r=_(e,"x","gather"),s=_(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return P.runKernel(Go,i,o)}var Ti=O({gather_:dD});function hD(e,t){let n=_(e,"a","greater"),a=_(t,"b","greater");[n,a]=Tt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(jo,r)}var pa=O({greater_:hD});function mD(e,t){let n=_(e,"a","greaterEqual"),a=_(t,"b","greaterEqual");[n,a]=Tt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Ws,r)}var es=O({greaterEqual_:mD});function fD(e){let t={input:_(e,"input","imag")};return P.runKernel(Cd,t)}var ih=O({imag_:fD});function gD(e){let t={x:_(e,"x","isFinite")};return P.runKernel(qo,t)}var f1=O({isFinite_:gD});function yD(e){let t={x:_(e,"x","isInf")};return P.runKernel(Xo,t)}var g1=O({isInf_:yD});function bD(e){let t={x:_(e,"x","isNaN")};return P.runKernel(Ko,t)}var y1=O({isNaN_:bD});function xD(e,t=.2){let n={x:_(e,"x","leakyRelu")},a={alpha:t};return P.runKernel(Vs,n,a)}var Fc=O({leakyRelu_:xD});function vD(e,t){let n=_(e,"a","less"),a=_(t,"b","less");[n,a]=Tt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Yo,r)}var oh=O({less_:vD});function wD(e,t){let n=_(e,"a","lessEqual"),a=_(t,"b","lessEqual");[n,a]=Tt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Jo,r)}var Si=O({lessEqual_:wD});function b1(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return P.runKernel(Ad,{},a)}function kD(e,t=5,n=1,a=1,r=.5){let s=_(e,"x","localResponseNormalization");$(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),$(Ht(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},c=P.runKernel(rc,l,u);return o?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var By=O({localResponseNormalization_:kD});function ID(e){let t={x:_(e,"x","log")};return P.runKernel(Us,t)}var Pn=O({log_:ID});function ND(e){let t={x:_(e,"x","log1p")};return P.runKernel(Qo,t)}var lh=O({log1p_:ND});function TD(e){return $(Wr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return P.tidy(()=>{let{value:s,grads:i}=P.gradients(()=>e(a),[a],r);return r!=null&&ln(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),uh(i),i[0]})}}function SD(e){return $(Wr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{$(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=wc(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return P.tidy(()=>{let{value:s,grads:i}=P.gradients(()=>e(...a),a,r);return r!=null&&ln(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),uh(i),i})}}function CD(e){return $(Wr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{$(t instanceof Fe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),$(n==null||n instanceof Fe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=P.gradients(()=>e(t),[t],n);return uh(a),{grad:a[0],value:r}}}function AD(e){return $(Wr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{$(Array.isArray(t)&&t.every(r=>r instanceof Fe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),$(n==null||n instanceof Fe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=P.gradients(()=>e(...t),t,n);return n!=null&&ln(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),uh(a.grads),a}}function x1(e,t){$(Wr(e),()=>"The f passed in variableGrads(f) must be a function"),$(t==null||Array.isArray(t)&&t.every(u=>u instanceof Hr),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in P.registeredVariables)t.push(P.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),$(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=P.gradients(e,t,null,s);$(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),$(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function ja(e){return P.customGrad(e)}function uh(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function FD(e){let t={x:_(e,"x","neg")};return P.runKernel(tl,t)}var St=O({neg_:FD});function _D(e){let t={x:_(e,"x","softplus")};return P.runKernel(yl,t)}var Pl=O({softplus_:_D});function ED(e){let t=_(e,"x","logSigmoid");return ja(n=>({value:St(Pl(St(n))),gradFunc:a=>B(a,ca(St(n)))}))(t)}var v1=O({logSigmoid_:ED});function $D(e,t=null,n=!1){let a={x:_(e,"x","max")},r={reductionIndices:t,keepDims:n};return P.runKernel(Gs,a,r)}var Zn=O({max_:$D});function DD(e,t){let n=_(e,"a","sub"),a=_(t,"b","sub");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(hi,r)}var me=O({sub_:DD});function MD(e,t=null,n=!1){let a=_(e,"x","sum");a.dtype==="bool"&&(a=ue(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return P.runKernel(ci,r,s)}var Se=O({sum_:MD});function RD(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ja((a,r)=>{let s=!0,i=Zn(a,t,!0),o=me(a,i),l=me(ue(o,"float32"),Pn(Se(dn(o),t,s)));return r([l]),{value:l,gradFunc:(u,c)=>{let[p]=c,d=!0,h=dn(p);return me(u,B(Se(u,t,d),h))}}})(n)}var ch=O({logSoftmax_:RD});function Vy(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function w1(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function k1(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function Ci(e,t){let n=t.map(a=>1);return w1(e,n,t)}function PD(e,t,n){$(Vy(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function I1(e,t){if(Vy(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function Uy(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function OD(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function LD(e,t=null,n=!1){let a=_(e,"x","logSumExp"),r=la(t,a.shape),s=Zn(a,r,!0),i=me(a,s),o=dn(i),l=Se(o,r),u=Pn(l),c=J(H(s,u.shape),u);if(n){let p=Ci(c.shape,r);return H(c,p)}return c}var Gy=O({logSumExp_:LD});function zD(e,t){let n=_(e,"a","logicalAnd","bool"),a=_(t,"b","logicalAnd","bool");xt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Zo,r)}var da=O({logicalAnd_:zD});function WD(e){let t={x:_(e,"x","logicalNot","bool")};return P.runKernel(nc,t)}var _c=O({logicalNot_:WD});function BD(e,t){let n=_(e,"a","logicalOr","bool"),a=_(t,"b","logicalOr","bool");xt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(ac,r)}var ph=O({logicalOr_:BD});function VD(e,t){let n=_(e,"a","logicalXor","bool"),a=_(t,"b","logicalXor","bool");return xt(n.shape,a.shape),da(ph(e,t),_c(da(e,t)))}var N1=O({logicalXor_:VD});function UD(e,t,n,a,r){let s=_(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),$(Ga(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&$(Ht(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},c={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=P.runKernel(js,u,c);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var $t=O({maxPool_:UD});function GD(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=_(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&$(Ht(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},c={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=P.runKernel(sc,u,c);return l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Hy=O({maxPool3d_:GD});function HD(e,t,n,a,r=!1){let s={x:_(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=P.runKernel($d,s,i);return{result:o[0],indexes:o[1]}}var T1=O({maxPoolWithArgmax_:HD});function jD(e,t){let n=_(e,"a","maximum"),a=_(t,"b","maximum");[n,a]=Tt(n,a),n.dtype==="bool"&&(n=ue(n,"int32"),a=ue(a,"int32")),xt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Hs,r)}var qa=O({maximum_:jD});function qD(e,t=null,n=!1){let a={x:_(e,"x","mean")},r={axis:t,keepDims:n};return P.runKernel(qs,a,r)}var Ct=O({mean_:qD});function XD(e,t=null,n=!1){let a={x:_(e,"x","min")},r={axis:t,keepDims:n};return P.runKernel(Xs,a,r)}var Ol=O({min_:XD});function KD(e,t){let n=_(e,"a","minimum"),a=_(t,"b","minimum");[n,a]=Tt(n,a),n.dtype==="bool"&&(n=ue(n,"int32"),a=ue(a,"int32")),xt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Ks,r)}var Ll=O({minimum_:KD});function YD(e,t,n){$(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=_(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");$(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)$(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),$(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return P.runKernel(ic,i,s)}var jy=O({mirrorPad_:YD});function JD(e,t){let n=_(e,"a","mod"),a=_(t,"b","mod");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(el,r)}var qy=O({mod_:JD});function QD(e){let t=_(e,"x","square"),n={};return P.runKernel("Square",{x:t},n)}var lt=O({square_:QD});function ZD(e,t=null,n=!1){e=_(e,"x","moments");let a=la(t,e.shape),r=Ct(e,a,n),s=r.shape;n||(s=Ci(r.shape,a));let i=lt(me(ue(e,"float32"),H(r,s))),o=Ct(i,a,n);return{mean:r,variance:o}}var dh=O({moments_:ZD});function eM(e,t,n,a){let r=_(t,"data","multiRNNCell"),s=wc(n,"c","multiRNNCell"),i=wc(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](o,s[p],i[p]);l.push(d[0]),l.push(d[1]),o=d[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var tM=O({multiRNNCell_:eM});function nM(e,t,n,a=!1){let r=_(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=P.runKernel(Dd,o,l);return i===1?H(u,[u.size]):u}var S1=O({multinomial_:nM});function aM(e,t){let n=_(e,"a","notEqual"),a=_(t,"b","notEqual");[n,a]=Tt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(nl,r)}var Ai=O({notEqual_:aM});function vt(e,t="float32"){if(t==="complex64"){let a=vt(e,"float32"),r=vt(e,"float32");return jr(a,r)}let n=ld(Ot(e),t);return P.makeTensor(n,e,t)}function Xa(e,t="float32"){if(t==="complex64"){let a=Xa(e,"float32"),r=vt(e,"float32");return jr(a,r)}let n=Wg(Ot(e),t);return P.makeTensor(n,e,t)}function rM(e){let t={x:_(e,"x","onesLike")};return P.runKernel(il,t)}var On=O({onesLike_:rM});function sM(e,t){let n=_(e,"v1","outerProduct"),a=_(t,"v2","outerProduct");$(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=H(n,[-1,1]),s=H(a,[1,-1]);return ze(r,s)}var iM=O({outerProduct_:sM});function oM(e,t,n=0){let a=_(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return P.runKernel(Qs,s,r)}var ea=O({pad_:oM});function lM(e,t,n=0){return $(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ea(e,[t],n)}var uM=O({pad1d_:lM});function cM(e,t,n=0){return $(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var pM=O({pad2d_:cM});function dM(e,t,n=0){return $(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var hM=O({pad3d_:dM});function mM(e,t,n=0){return $(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var fM=O({pad4d_:mM});function gM(e,t,n){let a=_(e,"x","spaceToBatchND");$(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),$(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),$(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return P.runKernel(uc,r,s)}var Ec=O({spaceToBatchND_:gM});function xM(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=_(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),$(Ga(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let u=n1(o.shape,t,s,r,a),c=[u.dilationHeight,u.dilationWidth],p;a==="same"?p=bM([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[h,m]=yM([u.inHeight,u.inWidth],c,p),f=d?a:"valid",g=d?o:Ec(o,c,h),y=(n==="avg"?()=>Qn(g,t,s,f):()=>$t(g,t,s,f))(),b=d?y:Sc(y,c,m);return l?H(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function yM(e,t,n){let a=n.map(c=>c[0]),r=n.map(c=>c[1]),s=e.concat(a,r),i=t.map((c,p)=>(c-s[p]%c)%c),o=r.map((c,p)=>c+i[p]),l=t.map((c,p)=>[a[p],o[p]]),u=t.map((c,p)=>[0,i[p]]);return[l,u]}function bM(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var C1=O({pool_:xM});function vM(e,t){let n=_(e,"base","pow"),a=_(t,"exp","pow");[n,a]=Tt(n,a);let r={a:n,b:a};return P.runKernel(Zs,r)}var gr=O({pow_:vM});function wM(e,t){let n=_(e,"x","prelu"),a=_(t,"alpha","prelu"),r={x:n,alpha:a};return P.runKernel(ei,r)}var $c=O({prelu_:wM});function kM(e,t=null,n=!1){let a=_(e,"x","prod");a.dtype==="bool"&&(a=ue(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return P.runKernel(ll,r,s)}var hh=O({prod_:kM});function IM(e,t,n){let a=Ot(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return P.makeTensor(r,e,n)}var NM=O({rand_:IM}),Xy=Io(QA()),Ky=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=Xy.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},TM=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=Xy.alea(r.toString()),this.randn=new Ky(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},SM=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Xy.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function CM(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new TM(t,n,a,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var AM=O({randomGamma_:CM});function FM(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new Ky(t,n,a,!1,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var A1=O({randomNormal_:FM});function _M(e,t=0,n=1,a="float32",r){let s=Le(e,a),i=new SM(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var zl=O({randomUniform_:_M});function mh(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return P.runKernel(oc,{},r)}function EM(e){let t={input:_(e,"input","real")};return P.runKernel(Md,t)}var Dc=O({real_:EM});function $M(e){let t={x:_(e,"x","reciprocal")};return P.runKernel(ul,t)}var Yy=O({reciprocal_:$M});function DM(e){let t={x:_(e,"x","relu")};return P.runKernel(ti,t)}var qe=O({relu_:DM});function MM(e){let t={x:_(e,"x","relu6")};return P.runKernel(ai,t)}var fh=O({relu6_:MM});function RM(e,t){let n={x:_(e,"x","reverse")},a={dims:t};return P.runKernel(ri,n,a)}var Ln=O({reverse_:RM});function PM(e){let t=_(e,"x","reverse");return $(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ln(t,0)}var OM=O({reverse1d_:PM});function LM(e,t){let n=_(e,"x","reverse");return $(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ln(n,t)}var zM=O({reverse2d_:LM});function WM(e,t){let n=_(e,"x","reverse");return $(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ln(n,t)}var BM=O({reverse3d_:WM});function VM(e,t){let n=_(e,"x","reverse");return $(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ln(n,t)}var UM=O({reverse4d_:VM});function GM(e){let t={x:_(e,"x","round")};return P.runKernel(si,t)}var Jy=O({round_:GM});function HM(e){let t={x:_(e,"x","rsqrt")};return P.runKernel(ii,t)}var gh=O({rsqrt_:HM});function ce(e,t){if((un(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&un(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return qr(e,[],[],t)}function jM(e){let t={x:_(e,"x","selu")};return P.runKernel(hl,t)}var yh=O({selu_:jM});function qM(e,t,n,a,r,s=[1,1],i="NHWC"){let o=_(e,"x","separableConv2d"),l=_(t,"depthwiseFilter","separableConv2d"),u=_(n,"pointwiseFilter","separableConv2d"),c=o,p=!1;if(o.rank===3&&(p=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");$(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),$(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),$(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),$(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),$(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];$(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let m=Qr(c,l,a,r,i,s),f=Et(m,u,1,"valid",i);return p?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Fi=O({separableConv2d_:qM});async function XM(e,t){let n=_(e,"x","setdiff1d"),a=_(t,"y","setdiff1d");$(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),$(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),$(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let c=0;c<r.length;c++)i.has(r[c])||o++;let l=new Lt([o],n.dtype),u=new Lt([o],"int32");for(let c=0,p=0;c<r.length;c++)i.has(r[c])||(l.values[p]=r[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var F1=XM;function KM(e){let t={x:_(e,"x","sign")};return P.runKernel(gl,t)}var Qy=O({sign_:KM});function YM(e){let t={x:_(e,"x","sin")};return P.runKernel(oi,t)}var bh=O({sin_:YM});function JM(e){let t={x:_(e,"x","sinh")};return P.runKernel(fl,t)}var xh=O({sinh_:JM});function QM(e,t,n){let a=_(e,"x","slice1d");return $(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Be(a,[t],[n])}var vh=O({slice1d_:QM});function ZM(e,t,n){let a=_(e,"x","slice2d");return $(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Zy=O({slice2d_:ZM});function eR(e,t,n){let a=_(e,"x","slice3d");return $(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Wl=O({slice3d_:eR});function tR(e,t,n){let a=_(e,"x","slice4d");return $(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Mc=O({slice4d_:tR});function nR(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return P.runKernel(pi,a,r)}var Ta=O({softmax_:nR});function aR(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return P.runKernel(Td,t)}var Rc=O({fft_:aR});function rR(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return P.runKernel(Sd,t)}var Bl=O({ifft_:rR});function sR(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=H(e,[n,t]);a=Bl(r)}else{let r=[n,2*(t-1)],s=H(Dc(e),[n,t]),i=H(ih(e),[n,t]),o=Ln(Be(s,[0,1],[n,t-2]),1),l=B(Ln(Be(i,[0,1],[n,t-2]),1),ce(-1)),u=Je([s,o],1),c=Je([i,l],1),p=H(jr(u,c),[r[0],r[1]]);a=Bl(p)}if(a=Dc(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=H(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var wh=O({irfft_:sR});function iR(e,t,n=0){let a={x:_(e,"x","split")},r={numOrSizeSplits:t,axis:n};return P.runKernel(bl,a,r)}var zn=O({split_:iR});function oR(e,t){$(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Be(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Je([e,vt(m)],e.shape.length-1),n=t}else r=e;let s=Ge(r),i=H(jr(r,s),[a,n]),o=Rc(i),l=Math.floor(n/2)+1,u=Dc(o),c=ih(o),p=zn(u,[l,n-l],u.shape.length-1),d=zn(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,H(jr(p[0],d[0]),h)}var Pc=O({rfft_:oR});function lR(e){let t={x:_(e,"x","sqrt")};return P.runKernel(ui,t)}var an=O({sqrt_:lR});function uR(e,t){let n=_(e,"a","squaredDifference"),a=_(t,"b","squaredDifference");[n,a]=Tt(n,a),xt(n.shape,a.shape);let r={a:n,b:a},s={};return P.runKernel(di,r,s)}var kh=O({squaredDifference_:uR});function cR(e,t){let n=_(e,"x","squeeze");return H(n,qw(n.shape,t).newShape)}var ts=O({squeeze_:cR});function pR(e,t=0){let n=wc(e,"tensors","stack","string_or_numeric");$(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&$(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return P.runKernel(ol,a,r)}var Dt=O({stack_:pR});function dR(e,t=0){let n={x:_(e,"x","step")},a={alpha:t};return P.runKernel(Gr,n,a)}var Vl=O({step_:dR});function hR(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:_(e,"x","stridedSlice")},c={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return P.runKernel(xl,u,c)}var eb=O({stridedSlice_:hR});function mR(e){let t={x:_(e,"x","tan")};return P.runKernel(vl,t)}var tb=O({tan_:mR});function Qe(e,t){ks(e);let n=Va(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return qr(e,null,n,t)}function Sa(e,t,n){if(ks(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Va(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return qr(e,t,a,n)}function Ca(e,t,n){if(ks(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Va(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return qr(e,t,a,n)}function fR(e,t,n){if(ks(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Va(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return qr(e,t,a,n)}function gR(e,t,n){if(ks(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Va(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,qr(e,t,a,n)}function yR(e,t=1,n=!0){let a=_(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=P.runKernel(wl,s,i);return{values:o,indices:l}}var nb=O({topk_:yR});function bR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Ky(t,n,a,!0,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Ih=O({truncatedNormal_:bR});function xR(e,t=0){let n=_(e,"x","unique","string_or_numeric");$(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=P.runKernel(zd,a,r);return{values:s,indices:i}}var Nh=O({unique_:xR});function vR(e,t,n){let a=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");$(Ht(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return P.runKernel(pc,s,i)}var ab=O({unsortedSegmentSum_:vR});function wR(e,t=0){let n=_(e,"x","unstack","string_or_numeric");$(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return P.runKernel(kl,a,r)}var ct=O({unstack_:wR});function _1(e,t=!0,n,a){return P.makeVariable(e,t,n,a)}function E1(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Le(e,"int32"),r=Le([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function kR(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),a=E1(t.shape,n);return e!==t&&t.dispose(),a}var rb=kR;async function IR(e,t,n){let a=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;$(i>0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),c=H(a,u),p=H(r,[-1]),d=await rb(p),h=ts(d,[1]),m=Ti(c,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),p.dispose(),d.dispose(),m}var NR=IR;function TR(e,t="euclidean",n=null,a=!1){e=_(e,"x","norm");let r=$1(e,t,n),s=r.shape;if(a){let i=la(n,e.shape);s=Ci(r.shape,i)}return H(r,s)}function $1(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return $1(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(zt(e),n);if(t===Infinity)return Zn(zt(e),n);if(t===-Infinity)return Ol(zt(e),n);if(t==="euclidean"||t===2)return an(Se(gr(zt(e),ce(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Zn(Se(zt(e),n[0]),n[1]-1);if(t===Infinity)return Zn(Se(zt(e),n[1]),n[0]);if(t===-Infinity)return Ol(Se(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return an(Se(lt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Th=O({norm_:TR});function SR(e,t,n,a,r=!0){let s=_(e,"v","movingAverage"),i=_(t,"x","movingAverage"),o=_(n,"decay","movingAverage");c0(s,i),$(hr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ce(1),u=me(l,o),c=B(me(i,s),u);if(r){$(a!=null,()=>"When using zeroDebias: true, step is required.");let p=_(a,"step","movingAverage");c=xe(c,me(l,gr(o,p)))}return J(s,c)}var CR=O({movingAverage_:SR});function AR(e,t,n){let a=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");gy(r,a,n);let s={indices:a,updates:r},i={shape:n};return P.runKernel(pl,s,i)}var D1=O({scatterND_:AR});function FR(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function _R(e,t,n,a=0){let r=_(e,"sparseIndices","sparseToDense","int32"),s=_(t,"sparseValues","sparseToDense"),i=_(a,"defaultValue","sparseToDense",s.dtype);FR(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return P.runKernel(Od,o,l)}var sb=O({sparseToDense_:_R});function ER(e,t){let n=_(t,"indices","gatherND","int32"),a={params:_(e,"x","gatherND"),indices:n};return P.runKernel(Ho,a)}var M1=O({gatherND_:ER});function $R(e,t){if(t==null)return e.shape.slice();if(hr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function DR(e,t,n,a){let r=_(e,"x","dropout");if($(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),$(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Fe?r.clone():r;let s=$R(r,n),i=1-t,o=xe(Rl(J(zl(s,0,1,"float32",a),i)),i);return B(r,o)}var R1=O({dropout_:DR});function P1(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function ib(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Qe(r,"float32")}async function MR(e,t,n=1){let a=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");$(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),$(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),ln(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];$(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],c=Xw("bool",l);for(let p=0;p<l;p++){let d=p*u,h=i.subarray(d,d+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),c[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){c[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Yn(c,r.shape,"bool")}var RR=MR,ns={};Oe(ns,{conv2d:()=>PR,depthwiseConv2d:()=>OR,matMul:()=>LR});function zR(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),$(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),$(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),$(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];$(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),$(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&$(Ht(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},d={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return P.runKernel(fd,p,d)}var ob=O({conv2DBackpropFilter_:zR});function Sh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,Vl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Ch(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=Se(n,a)),H(n,e.shape)}function Ah(e,t,n,a){if(t==="linear")return e;if(t==="relu")return qe(e);if(t==="elu")return Ml(e);if(t==="relu6")return fh(e);if(t==="prelu")return $c(e,n);if(t==="leakyrelu")return Fc(e,a);throw new Error(`Unknown fused activation ${t}.`)}var Fh=(e,t)=>!(e>0)||t==="linear";function WR({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Fh(P.state.gradientDepth,l)===!1){let k=Et(e,t,n,a,r,s,i);return o!=null&&(k=J(k,o)),Ah(k,l,u,c)}let p=_(e,"x","conv2d"),d=_(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),$(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),$(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&$(Ht(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),$(h.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${d.shape[2]}.`),$(Ga(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),$(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=Tc(h.shape,d.shape,n,s,a,i),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=Tt(g,p),xt(f.outShape,g.shape));let y;u!=null&&(y=_(u,"prelu weights","fused conv2d"));let b=(k,w)=>{let[S,A,F,D]=w,R=Sh(k,F,l);$(Jr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=Dy(A.shape,R,S,n,a),W=ob(A,R,S.shape,n,a),U=[L,W];if(D!=null){let G=Ch(D,R);U.push(G)}return U},x={x:h,filter:d,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?ja((k,w,S)=>{let A=P.runKernel(yi,x,v);return S([w,k,A]),m&&(A=H(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,d):ja((k,w,S,A)=>{let F=P.runKernel(yi,x,v);return A([w,k,F,S]),m&&(F=H(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d,g)}var PR=O({fusedConv2d_:WR});function BR(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return P.runKernel(xd,u,c)}var O1=O({depthwiseConv2dNativeBackpropFilter_:BR});function VR(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=P.runKernel(vd,u,c);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var L1=O({depthwiseConv2dNativeBackpropInput_:VR});function UR({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Fh(P.state.gradientDepth,l)===!1){let k=Qr(e,t,n,a,r,s,i);return o!=null&&(k=J(k,o)),Ah(k,l,u,c)}let p=_(e,"x","depthwiseConv2d"),d=_(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),$(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),$(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),$(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),$(Ga(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&$(Ht(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=Tc(h.shape,d.shape,n,s,a,i,!0),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=Tt(g,p),xt(f.outShape,g.shape));let y;u!=null&&(y=_(u,"prelu weights","fused depthwiseConv2d"));let b=(k,w)=>{$(Jr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[S,A,F,D]=w,R=Sh(k,F,l),L=L1(A.shape,R,S,n,a,s,i),W=O1(A,R,S.shape,n,a,s,i);if(D!=null){let U=Ch(g,R);return[L,W,U]}return[L,W]},x={x:h,filter:d,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?ja((k,w,S)=>{let A=P.runKernel(bi,x,v);return S([w,k,A]),m&&(A=H(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,d):ja((k,w,S,A)=>{let F=P.runKernel(bi,x,v);return A([w,k,F,S]),m&&(F=H(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d,g)}var OR=O({fusedDepthwiseConv2d_:UR});function GR({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Fh(P.state.gradientDepth,s)===!1){let D=ze(e,t,n,a);return r!=null&&(D=J(D,r)),Ah(D,s,i,o)}let l=_(e,"a","fused matMul"),u=_(t,"b","fused matMul");[l,u]=Tt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=Ot(m),y=Ot(f);$(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),$(hr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),$(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=l.shape.slice(0,-2).concat([d,h]),x=n?H(l,[g,c,d]):H(l,[g,d,c]),v=a?H(u,[y,h,p]):H(u,[y,p,h]),k;r!=null&&(k=_(r,"bias","fused matMul"),[k]=Tt(k,l),xt(b,k.shape));let w;i!=null&&(w=_(i,"prelu weights","fused matMul"));let S=(D,R)=>{let[L,W,U,G]=R,X=Sh(H(D,U.shape),U,s),j,te;if(!n&&!a?(j=ze(X,W,!1,!0),te=ze(L,X,!0,!1)):!n&&a?(j=ze(X,W,!1,!1),te=ze(X,L,!0,!1)):n&&!a?(j=ze(W,X,!1,!0),te=ze(L,X,!1,!1)):(j=ze(W,X,!0,!0),te=ze(X,L,!0,!0)),r!=null){let Q=Ch(G,X);return[j,te,Q]}else return[j,te]},A={a:x,b:v,bias:k,preluActivationWeights:w},F={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ja((D,R,L)=>{let W=P.runKernel(gi,A,F);return L([D,R,W]),{value:H(W,b),gradFunc:S}})(x,v):ja((D,R,L,W)=>{let U=P.runKernel(gi,A,F);return W([D,R,U,L]),{value:H(U,b),gradFunc:S}})(x,v,k)}var LR=O({fusedMatMul_:GR});function HR(e){return ib(e,.54,.46)}var jR=O({hammingWindow_:HR});function qR(e){return ib(e,.5,.5)}var z1=O({hannWindow_:qR});function XR(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Be(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Je([Be(e,s,t-o),Sn([o],r)]);i.push(l),s+=n}return i.length===0?Sa([],[0,t]):H(Je(i),[i.length,t])}var W1=O({frame_:XR});function KR(e,t,n,a,r=z1){a==null&&(a=P1(t));let s=W1(e,t,n),i=B(s,r(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Pc(Be(i,[l,0],[1,t]),a));return Je(o)}var YR=O({stft_:KR});function JR(e,t,n,a,r="bilinear",s=0){let i=_(e,"image","cropAndResize"),o=_(t,"boxes","cropAndResize","float32"),l=_(n,"boxInd","cropAndResize","int32"),u=o.shape[0];$(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),$(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),$(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),$(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),$(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return P.runKernel(Po,c,p)}var QR=O({cropAndResize_:JR});function ZR(e){let t=_(e,"image","flipLeftRight","float32");$(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return P.runKernel(Uo,n,{})}var eP=O({flipLeftRight_:ZR});function tP(e,t,n=0,a=.5){let r=_(e,"image","rotateWithOffset","float32");$(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return P.runKernel(Nl,s,i)}var nP=O({rotateWithOffset_:tP});function Ul(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),$(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),$(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),$(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),$(t.rank===1,()=>"scores must be a 1D tensor"),$(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),$(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function aP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppression"),i=_(t,"scores","nonMaxSuppression"),o=Ul(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return P.runKernel(al,{boxes:s,scores:i},l)}var rP=O({nonMaxSuppression_:aP});function iP(e,t,n){let a=sP(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function sP(e,t,n){return lP(e,t,n||oP)}function oP(e,t){return e>t?1:e<t?-1:0}function lP(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function B1(e,t,n,a,r){return lb(e,t,n,a,r,0)}function V1(e,t,n,a,r,s){return lb(e,t,n,a,r,0,!1,s,!0)}function U1(e,t,n,a,r,s){return lb(e,t,n,a,r,s,!0)}function lb(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(G1);let c=s>0?-.5/s:0,p=[],d=[];for(;p.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let k=p.length-1;k>=x;--k){let w=uP(e,b,p[k]);if(w>=a){v=!0;break}if(g.score=g.score*cP(a,c,w),g.score<=r)break}g.suppressBeginIndex=p.length,v||(g.score===y?(p.push(b),d.push(g.score)):g.score>r&&iP(u,g,G1))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=d),l&&(f.validOutputs=h),f}function uP(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-u)*(d-c);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,c),y=Math.min(o,p),b=Math.min(l,d),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function cP(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function G1(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function pP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),o=Ul(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:p}=B1(u,c,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Qe(p,"int32")}var dP=pP;function hP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=Ul(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=P.runKernel(sl,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var mP=O({nonMaxSuppressionWithScore_:hP});async function fP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=Ul(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],p=u[1],{selectedIndices:d,selectedScores:h}=U1(c,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qe(d,"int32"),selectedScores:Qe(h)}}var gP=fP;function yP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=Ul(i,o,n,a,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},m=P.runKernel(rl,d,h);return{selectedIndices:m[0],validOutputs:m[1]}}var bP=O({nonMaxSuppressionPadded_:yP});async function xP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=Ul(i,o,n,a,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=V1(d,h,u,c,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qe(m,"int32"),validOutputs:ce(f,"int32")}}var vP=xP;function wP(e,t,n=!1,a=!1){let r=_(e,"images","resizeBilinear");$(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),$(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=P.runKernel(ni,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var H1=O({resizeBilinear_:wP});function kP(e,t,n=!1,a=!1){let r=_(e,"images","resizeNearestNeighbor");$(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),$(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),$(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=P.runKernel(lc,o,l);return i?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var j1=O({resizeNearestNeighbor_:kP});function IP(e,t,n="nearest",a="constant",r=0,s){let i=_(e,"image","transform","float32"),o=_(t,"transforms","transform","float32");$(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),$(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return P.runKernel(Ld,l,u)}var NP=O({transform_:IP});function TP(e,t,n){$(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),$(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=_(e,"a","bandPart");$(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(mh(0,s,1,"int32"),[-1,1]),l=mh(0,i,1,"int32"),u=me(o,l),c=da(Si(u,ce(+t,"int32")),es(u,ce(-n,"int32"))),p=vt([s,i],a.dtype);return H(Dt(ct(H(a,[-1,s,i])).map(d=>Tn(c,d,p))),r)}var SP=O({bandPart_:TP});function CP(e){let t;if(Array.isArray(e)){t=!1,$(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)$(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>ts(r,[0]));$(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(P.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=B(Se(B(n[i],s)),n[i]);s=me(s,o)}return xe(s,Th(s,"euclidean"))}));return t?Dt(n,0):n}var AP=O({gramSchmidt_:CP});function FP(e,t=!1){if($(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return q1(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ct(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,c]=q1(l,t);r.push(u),s.push(c)});let i=H(Dt(r,0),e.shape),o=H(Dt(s,0),e.shape);return[i,o]}}function q1(e,t=!1){return P.tidy(()=>{$(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=Wy(n),s=Kr(e),i=Sa([[1]],[1,1]),o=Kr(i),l=n>=a?a:n;for(let u=0;u<l;++u){let c=s,p=o,d=r;[o,s,r]=P.tidy(()=>{let h=Be(s,[u,u],[n-u,1]),m=Th(h),f=Be(s,[u,u],[1,1]),g=Tn(pa(f,0),Sa([[-1]]),Sa([[1]])),y=me(f,B(g,m)),b=xe(h,y);b.shape[0]===1?o=Kr(i):o=Je([i,Be(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=St(xe(ze(g,y),m)),v=Be(s,[u,0],[n-u,a]),k=B(x,o),w=Ve(o);if(u===0)s=me(v,ze(k,ze(w,v)));else{let F=me(v,ze(k,ze(w,v)));s=Je([Be(s,[0,0],[u,a]),F],0)}let S=Ve(k),A=Be(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=me(A,ze(ze(A,o),S));else{let F=me(A,ze(ze(A,o),S));r=Je([Be(r,[0,0],[n,u]),F],1)}return[o,s,r]}),Ee([c,p,d])}return!t&&n>a&&(r=Be(r,[0,0],[n,a]),s=Be(s,[0,0],[a,a])),[r,s]})}var _P=O({qr_:FP}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function EP(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let s=r==null?a:B(a,r);if(n===hn.NONE)return s;if(n===hn.SUM)return Se(s);if(n===hn.MEAN){if(r==null)return Ct(s);{let i=a.size/r.size,o=xe(Se(s),Se(r));return i>1?xe(o,ce(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return xe(Se(s),ce(a.size));{let i=B(r,Xa(a.shape)),o=ue(Se(Ai(i,ce(0))),"float32");return xe(Se(s),o)}}throw Error(`Unknown reduction: ${n}`)}var yr=O({computeWeightedLoss_:EP});function $P(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","absoluteDifference"),s=_(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=_(n,"weights","absoluteDifference")),ln(r.shape,s.shape,"Error in absoluteDifference: ");let o=zt(me(r,s));return yr(o,i,a)}var DP=O({absoluteDifference_:$P});function MP(e,t,n,a,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","cosineDistance"),i=_(t,"predictions","cosineDistance"),o=null;a!=null&&(o=_(a,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let l=ce(1),u=me(l,Se(B(s,i),n,!0));return yr(u,o,r)}var RP=O({cosineDistance_:MP});function PP(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","hingeLoss"),s=_(t,"predictions","hingeLoss"),i=null;n!=null&&(i=_(n,"weights","hingeLoss")),ln(r.shape,s.shape,"Error in hingeLoss: ");let o=ce(1);r=me(B(ce(2),r),o);let l=qe(me(o,B(r,s)));return yr(l,i,a)}var OP=O({hingeLoss_:PP});function LP(e,t,n,a=1,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","huberLoss"),i=_(t,"predictions","huberLoss"),o=null;n!=null&&(o=_(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let l=ce(a),u=zt(me(i,s)),c=Ll(u,l),p=me(u,c),d=J(B(ce(.5),lt(c)),B(l,p));return yr(d,o,r)}var zP=O({huberLoss_:LP});function WP(e,t,n,a=1e-7,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","logLoss"),i=_(t,"predictions","logLoss"),o=null;n!=null&&(o=_(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let l=ce(1),u=ce(a),c=St(B(s,Pn(J(i,u)))),p=B(me(l,s),Pn(J(me(l,i),u))),d=me(c,p);return yr(d,o,r)}var BP=O({logLoss_:WP});function VP(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","meanSquaredError"),s=_(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=_(n,"weights","meanSquaredError")),ln(r.shape,s.shape,"Error in meanSquaredError: ");let o=kh(r,s);return yr(o,i,a)}var UP=O({meanSquaredError_:VP});function GP(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),a=_(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=qe(a),s=B(a,n),i=lh(dn(St(zt(a))));return J(me(r,s),i)}function HP(e,t,n,a=0,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"multiClassLabels","sigmoidCrossEntropy"),i=_(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ce(a),c=ce(1),p=ce(.5);s=J(B(s,me(c,u)),B(p,u))}let l=GP(s,i);return yr(l,o,r)}var jP=O({sigmoidCrossEntropy_:HP});function qP(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ja((a,r,s)=>{let i=Gy(r,[n],!0),o=me(ue(r,"float32"),i);s([a,o]);let l=St(B(o,a));return{value:Se(l,[n]),gradFunc:(u,c)=>{let[p,d]=c,h=Ci(u.shape,[n]);return[B(H(u,h),me(ue(p,"float32"),dn(d))),B(H(u,h),me(dn(d),ue(p,"float32")))]}}})(e,t)}function XP(e,t,n,a=0,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"onehotLabels","softmaxCrossEntropy"),i=_(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ce(a),c=ce(1),p=ce(s.shape[1]);s=J(B(s,me(c,u)),xe(u,p))}let l=qP(s,i);return yr(l,o,r)}var KP=O({softmaxCrossEntropy_:XP}),YP={fft:Rc,ifft:Bl,rfft:Pc,irfft:wh},JP={hammingWindow:jR,hannWindow:z1,frame:W1,stft:YR},Ka={flipLeftRight:eP,resizeNearestNeighbor:j1,resizeBilinear:H1,rotateWithOffset:nP,cropAndResize:QR,nonMaxSuppression:rP,nonMaxSuppressionAsync:dP,nonMaxSuppressionWithScore:mP,nonMaxSuppressionWithScoreAsync:gP,nonMaxSuppressionPadded:bP,nonMaxSuppressionPaddedAsync:vP,transform:NP},X1={bandPart:SP,gramSchmidt:AP,qr:_P},QP={absoluteDifference:DP,computeWeightedLoss:yr,cosineDistance:RP,hingeLoss:OP,huberLoss:zP,logLoss:BP,meanSquaredError:UP,sigmoidCrossEntropy:jP,softmaxCrossEntropy:KP},br=class extends X0{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ee(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return x1(e,t)}dispose(){this.iterations_!=null&&Ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ce(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(br,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var _h=class extends br{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:M(()=>Ge(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:M(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;M(()=>{let l=J(B(i,this.rho),B(lt(s),1-this.rho)),u=B(xe(an(J(o,this.epsilon)),an(J(i,this.epsilon))),s),c=J(B(o,this.rho),B(lt(u),1-this.rho));i.assign(l),o.assign(c);let p=J(B(u,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ee(this.accumulatedGrads.map(e=>e.variable)),Ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};_h.className="Adadelta";Yr(_h);var Eh=class extends br{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:M(()=>Sn(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;M(()=>{let i=J(s,lt(r));s.assign(i);let o=J(B(xe(r,an(J(i,P.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Eh.className="Adagrad";Yr(Eh);var $h=class extends br{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],M(()=>{this.accBeta1=ce(t).variable(),this.accBeta2=ce(n).variable()}),a==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);M(()=>{let n=me(1,this.accBeta1),a=me(1,this.accBeta2);t.forEach((r,s)=>{let i=P.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:M(()=>Ge(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:M(()=>Ge(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,p=J(B(u,this.beta1),B(l,1-this.beta1)),d=J(B(c,this.beta2),B(lt(l),1-this.beta2)),h=xe(p,n),m=xe(d,a);u.assign(p),c.assign(d);let f=J(B(xe(h,J(an(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),M(()=>{this.accBeta1.assign(gr(this.beta1,this.iterations_+1)),this.accBeta2.assign(gr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};$h.className="Adam";Yr($h);var Dh=class extends br{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],M(()=>{this.iteration=ce(0).variable(),this.accBeta1=ce(t).variable()}),a==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);M(()=>{let n=me(1,this.accBeta1),a=xe(-this.learningRate,J(B(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=P.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ge(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ge(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,p=J(B(u,this.beta1),B(l,1-this.beta1)),d=B(c,this.beta2),h=zt(l),m=qa(d,h);u.assign(p),c.assign(m);let f=J(B(xe(a,n),xe(p,J(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Dh.className="Adamax";Yr(Dh);var Oc=class extends br{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=P.registeredVariables[t];M(()=>{let s=J(B(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=qt(ce(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Oc.className="SGD";Yr(Oc);var Mh=class extends Oc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ce(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:M(()=>Ge(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&M(()=>{let i,o=J(B(this.m,r),s);this.useNesterov?i=J(B(this.c,J(s,B(o,this.m))),a):i=J(B(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Mh.className="Momentum";Yr(Mh);var Rh=class extends br{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=P.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:M(()=>Ge(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:M(()=>Ge(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:M(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;M(()=>{let l=J(B(i,this.decay),B(lt(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=J(B(u,this.decay),B(s,1-this.decay)),p=xe(B(s,this.learningRate),an(me(l,J(lt(c),this.epsilon)))),d=J(B(o,this.momentum),p);i.assign(l),u.assign(c),o.assign(d);let h=me(a,d);a.assign(h)}else{let u=J(B(i,this.decay),B(lt(s),1-this.decay)),c=J(B(o,this.momentum),xe(B(s,this.learningRate),an(J(u,this.epsilon))));i.assign(u),o.assign(c);let p=me(a,c);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Rh.className="RMSProp";Yr(Rh);var _i=class{static sgd(e){return new Oc(e)}static momentum(e,t,n=!1){return new Mh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Rh(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new $h(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new _h(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Dh(e,t,n,a,r)}static adagrad(e,t=.1){return new Eh(e,t)}},Ei={sgd:_i.sgd,momentum:_i.momentum,adadelta:_i.adadelta,adagrad:_i.adagrad,rmsprop:_i.rmsprop,adamax:_i.adamax,adam:_i.adam},ZP=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Ph(){return new Promise(e=>ZP(()=>e()))}var E={};Oe(E,{ERF_A1:()=>cO,ERF_A2:()=>pO,ERF_A3:()=>dO,ERF_A4:()=>hO,ERF_A5:()=>mO,ERF_P:()=>uO,PARALLELIZE_THRESHOLD:()=>ub,SELU_SCALE:()=>Y1,SELU_SCALEALPHA:()=>K1,applyActivation:()=>Ah,assertAndGetBroadcastShape:()=>xt,assertAxesAreInnerMostDims:()=>PD,assertParamsConsistent:()=>eO,assignToTypedArray:()=>kO,axesAreInnerMostDims:()=>Vy,calculateShapes:()=>P0,combineLocations:()=>w1,complexWithEvenIndex:()=>xO,complexWithOddIndex:()=>vO,computeConv2DInfo:()=>Tc,computeConv3DInfo:()=>a1,computeDefaultPad:()=>_y,computeDilation2DInfo:()=>i$,computeOptimalWindowSize:()=>nO,computeOutAndReduceShapes:()=>k1,computeOutShape:()=>tO,computePool2DInfo:()=>n1,computePool3DInfo:()=>o$,convertConv2DDataFormat:()=>t1,eitherStridesOrDilationsAreOne:()=>Ga,expandShapeToKeepDim:()=>Ci,exponent:()=>NO,exponents:()=>IO,fromStringArrayToUint8:()=>CO,fromUint8ToStringArray:()=>SO,getAxesPermutation:()=>I1,getBroadcastDims:()=>Q$,getComplexWithIndex:()=>wO,getFusedBiasGradient:()=>Ch,getFusedDyActivation:()=>Sh,getImageCenter:()=>aO,getInnerMostAxes:()=>OD,getPermuted:()=>sO,getReductionAxes:()=>Wt,getReshaped:()=>rO,getReshapedPermuted:()=>iO,getSliceBeginCoords:()=>oO,getSliceSize:()=>lO,getUndoAxesPermutation:()=>Uy,log:()=>gO,mergeRealAndImagArrays:()=>yO,prepareAndValidate:()=>R0,prepareSplitSize:()=>TO,segment_util:()=>J1,shouldFuse:()=>Fh,slice_util:()=>pn,splitRealAndImagArrays:()=>bO,tupleValuesAreOne:()=>Jr,upcastType:()=>ua,validateInput:()=>gy,validateUpdateShape:()=>fy,warn:()=>fO});function eO(e,t){let n=e[0].length;e.forEach((r,s)=>{$(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),$(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)$(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function tO(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var ub=30;function nO(e){return e<=ub?e:od(e,Math.floor(Math.sqrt(e)))}function aO(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function rO(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function sO(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function iO(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function oO(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function lO(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var K1=1.7580993408473768,Y1=1.0507009873554805,uO=.3275911,cO=.254829592,pO=-.284496736,dO=1.421413741,hO=-1.453152027,mO=1.061405429;function fO(...e){Z().getBool("IS_TEST")||console.warn(...e)}function gO(...e){Z().getBool("IS_TEST")||console.log(...e)}function yO(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function bO(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function xO(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function vO(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function wO(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function kO(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function IO(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function NO(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}function TO(e,t,n=0){let a=[];if(typeof t=="number")$(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);$(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}$(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var J1={};Oe(J1,{collectGatherOpShapeInfo:()=>_O,computeOutShape:()=>FO,segOpComputeOptimalWindowSize:()=>AO});function AO(e,t){let n=!1,a;for(e<=ub?(a=e,n=!0):a=od(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=od(e,a+1);return a}function FO(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function _O(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,u=1,c=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),u*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),c*=e.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:i,outputShape:o}}function SO(e){try{return e.map(t=>Gd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function CO(e){return e.map(t=>fc(t))}var Ya={};Oe(Ya,{nonMaxSuppressionV3Impl:()=>B1,nonMaxSuppressionV4Impl:()=>V1,nonMaxSuppressionV5Impl:()=>U1,whereImpl:()=>E1});var Q1={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Vl(ue(n,"float32"),-1))}}},EO={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=lt(ue(n,"float32")),r=an(me(ce(1),a));return St(xe(e,r))}}}},$O={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=an(me(lt(ue(n,"float32")),1));return xe(e,a)}}}},DO={kernelName:Br,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Se(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Se(s,i)),H(s,a.shape)}}}},MO={kernelName:Ns,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},RO={kernelName:Ts,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},PO={kernelName:Ku,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},OO={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,an(me(ce(1),lt(ue(n,"float32")))))}}},LO={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=an(J(ce(1),lt(ue(n,"float32"))));return xe(e,a)}}}},zO={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=J(lt(n),lt(a)),i=B(e,xe(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=Se(i,o)),H(i,n.shape)},b:()=>{let s=J(lt(n),lt(a)),i=St(B(e,xe(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=Se(i,o)),H(i,a.shape)}}}},WO={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,J(lt(ue(n,"float32")),1))}}},BO={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,me(ce(1),lt(ue(n,"float32"))))}}};function VO(e,t,n,a,r,s){let i=_(e,"dy","avgPool3dGrad"),o=_(t,"input","avgPool3dGrad"),l=i,u=o,c=!1;o.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),$(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),$(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&$(Ht(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:u},d={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=P.runKernel(dd,p,d);return c?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var UO=O({avgPool3dGrad_:VO}),GO={kernelName:Yu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>UO(e,a,r,s,i,o)}}};function HO(e,t,n,a,r){let s=_(e,"dy","avgPoolGrad"),i=_(t,"input","avgPoolGrad");$(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),$(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:l,input:o},p={filterSize:n,strides:a,pad:r},d=P.runKernel(pd,c,p);return u?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var jO=O({avgPoolGrad_:HO}),qO={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>jO(e,a,r,s,i)}}},XO={kernelName:Cs,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>ze(e,r,!1,!0),b:()=>ze(a,e,!0,!1)}:!s&&i?{a:()=>ze(e,r,!1,!1),b:()=>ze(e,a,!0,!1)}:s&&!i?{a:()=>ze(r,e,!1,!0),b:()=>ze(a,e,!1,!1)}:{a:()=>ze(r,e,!0,!0),b:()=>ze(e,a,!0,!0)}}},KO={kernelName:Ju,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Ec(e,a,r)}}},YO={kernelName:s0,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Se(e,o,!0)}}},JO={kernelName:As,gradFunc:e=>({x:()=>e.clone()})},QO={kernelName:Fs,gradFunc:e=>({x:()=>Ge(e)})},ZO={kernelName:Vr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>Tn(da(es(a,r),Si(a,s)),e,Ge(e))}}},eL={kernelName:Qu,inputsToSave:["x"],gradFunc:Q1.gradFunc},tL={kernelName:Mo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=la(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},nL={kernelName:_s,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return $(Jr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Dy(a.shape,e,r,i,o,l),filter:()=>ob(a,e,r.shape,i,o,l)}}},aL={kernelName:Es,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Et(e,r,s,i,o,1,l),filter:()=>ob(e,a,r.shape,s,i,o,l)}}};function rL(e,t,n,a,r){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),$(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),$(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),$(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),$(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),$(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return P.runKernel(gd,o,l)}var sL=O({conv3DBackpropFilter_:rL}),iL={kernelName:Zu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;$(Jr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>d1(i.shape,e,o,r,s),filter:()=>sL(i,e,o.shape,r,s)}}},oL={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(St(bh(ue(n,"float32"))),e)}}},lL={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(xh(ue(n,"float32")),e)}}},uL={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=I1([r],a.rank),l=sh(e,r,s,!i);return o!=null&&(l=Ve(l,o)),l}}}},cL={kernelName:Ms,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;$(Jr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return $(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),$(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),$(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),$(Ga(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&$(Ht(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>L1(l.shape,e,u,r,s,a,i),filter:()=>O1(l,e,u.shape,r,s,a,i)}}},pL={kernelName:ec,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>P.runKernel(kd,s,n),filter:()=>P.runKernel(Id,i,n)}}},dL={kernelName:Lo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>P.runKernel(Nd,a)}}},hL={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(dn(St(lt(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,a)}}},mL={kernelName:Ps,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},fL={kernelName:Bo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},gL={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,dn(n))}}},yL={kernelName:Os,gradFunc:e=>({x:()=>Ge(e)})},bL={kernelName:Ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=xe(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?H(Se(s,i),n.shape):s},b:()=>{let s=B(e,ue(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=H(Se(s,i),a.shape));let o=lt(a);return St(xe(s,ue(o,"float32")))}}}},xL={kernelName:zs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ce(1):o,u=Wt(s.shape,r.shape),c=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)c.push(r.shape[f]);c.push(1)}let p=me(r,s),d=B(e,l),h=gh(J(i,ce(a))),m=B(B(B(h,h),h),ce(-.5));return{x:()=>s.rank===1?H(B(B(e,Ha(H(h,[1,1,1,s.shape[0]]),c)),l),r.shape):H(B(B(e,h),l),r.shape),mean:()=>{let f=B(B(h,ce(-1)),d);return s.rank===1&&(f=Se(f,u)),H(f,s.shape)},variance:()=>{let f=B(B(m,p),d);return s.rank===1&&(f=Se(f,u)),H(f,s.shape)},scale:()=>{let f=B(p,h),g=B(e,f);return s.rank===1&&(g=Se(g,u)),H(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Se(f,u)),H(f,s.shape)}}}},vL={kernelName:Go,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=la(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),c=u.length,p=o.slice(s,o.length).slice(1),d=p.length,h=Z1(0,c),m=Z1(c+1,c+1+d),f=ek([u,[l],p]),g=H(e,f),y=H(r,[l]),b=ek([[c],h,m]),x=Ve(g,b),v=ab(x,y,a.shape[i]),k=Uy(b);return v=Ve(v,k),v},indices:()=>r}}};function Z1(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function ek(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var wL={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ge(n),b:()=>Ge(a)}}},kL={kernelName:Bs,gradFunc:e=>({x:()=>ue(e,"float32")})},IL={kernelName:qo,gradFunc:e=>({x:()=>Ge(e)})},NL={kernelName:Xo,gradFunc:e=>({x:()=>Ge(e)})},TL={kernelName:Ko,gradFunc:e=>({x:()=>Ge(e)})},SL={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=pa(a,0);return{x:()=>Tn(s,e,B(e,r))}}},CL={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,J(n,1))}}},AL={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ue(n,"float32"))}}},FL={kernelName:i0,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=dn(a);return me(e,B(Se(e,r,s),i))}}}};function _L(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return P.runKernel(Fd,o,l)}var EL=O({localResponseNormalizationBackprop_:_L}),$L={kernelName:rc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>EL(a,r,e,s,i,o,l)}}};function tk(e,t,n,a){return t.rank<n.rank&&(t=H(t,Ci(t.shape,a))),e.rank<n.rank&&(e=H(e,Ci(e.shape,a))),{x:()=>B(e,ue(Zr(n,t),e.dtype))}}var nk={kernelName:Gs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=la(r,s.shape),l=tk(e,i,s,o);return{x:()=>l.x()}}},DL={kernelName:Hs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,ue(es(n,a),"float32")),b:()=>B(e,ue(oh(n,a),"float32"))}}};function ML(e,t,n,a,r,s,i){let o=_(e,"dy","maxPool3dGrad"),l=_(t,"input","maxPool3dGrad"),u=_(n,"output","maxPool3dGrad"),c=o,p=l,d=u,h=!1;l.rank===4&&(h=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),$(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),$(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),$(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&$(Ht(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:c,input:p,output:d},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=P.runKernel(Ed,m,f);return h?H(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var RL=O({maxPool3dGrad_:ML}),PL={kernelName:sc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>RL(e,a,r,s,i,o,l)}}};function OL(e,t,n,a,r,s,i){let o=_(e,"dy","maxPoolGrad"),l=_(t,"input","maxPoolGrad"),u=_(n,"output","maxPoolGrad");$(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),$(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),$(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&$(Ht(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let c={dy:o,input:l,output:u},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return P.runKernel(_d,c,p)}var LL=O({maxPoolGrad_:OL}),zL={kernelName:js,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>LL(e,a,r,s,i,o)}}},WL={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=la(r,a.shape),i=k1(a.shape,s)[1],o=Ot(i);return{x:()=>{let l=a.shape.slice();s.forEach(c=>{l[c]=1});let u=H(e,l);return xe(B(u,Xa(a.shape,"float32")),o)}}}},BL={kernelName:Xs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=la(r,s.shape),l=tk(e,i,s,o);return{x:()=>l.x()}}},VL={kernelName:Ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,ue(Si(n,a),"float32")),b:()=>B(e,ue(pa(n,a),"float32"))}}},UL={kernelName:ic,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},GL={kernelName:el,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?H(Se(e,s),n.shape):e},b:()=>{let s=B(e,St(Rl(xe(n,a)))),i=Wt(a.shape,r);return i.length>0?H(Se(s,i),a.shape):s}}}},HL={kernelName:Ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=B(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?H(Se(s,i),n.shape):s},b:()=>{let s=B(e,ue(n,"float32")),i=Wt(a.shape,r);return i.length>0?H(Se(s,i),a.shape):s}}}},jL={kernelName:tl,gradFunc:e=>({x:()=>St(e)})},qL={kernelName:Js,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>vt(n.shape,"float32")}}},XL={kernelName:il,gradFunc:e=>({x:()=>Ge(e)})},KL={kernelName:ol,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ct(e,a).map(r=>()=>r)}},ak={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},YL={kernelName:Zs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=xt(s.shape,i.shape);return{a:()=>{let l=ue(i,"float32"),u=B(e,B(l,gr(s,me(l,ce(1))))),c=Wt(s.shape,o);return c.length>0&&(u=Se(u,c)),H(u,s.shape)},b:()=>{let l=pa(s,0),u=Tn(l,Pn(s),Ge(s)),c=B(e,B(r,u)),p=Wt(i.shape,o);return p.length>0&&(c=Se(c,p)),H(c,i.shape)}}}},JL={kernelName:ei,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=pa(n,0);return{x:()=>Tn(r,e,B(e,a)),alpha:()=>{let s=Tn(r,Ge(e),B(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=Se(s,i)),H(s,a.shape)}}}},QL={kernelName:Rs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=xe(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?H(Se(s,i),n.shape):s},b:()=>{let s=B(e,ue(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=H(Se(s,i),a.shape));let o=lt(a);return St(xe(s,ue(o,"float32")))}}}},ZL={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,St(lt(n)))}}},e3={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(Si(n,6),Vl(n));return{x:()=>B(e,ue(a,"float32"))}}},t3={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,ue(Vl(n),"float32"))}}},n3={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},a3={kernelName:ni,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>P.runKernel(Pd,r,n)}}},r3={kernelName:lc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>P.runKernel(Rd,r,n)}}},s3={kernelName:ri,gradFunc:(e,t,n)=>{let{dims:a}=n,r=la(a,e.shape);return{x:()=>Ln(e,r)}}},i3={kernelName:si,gradFunc:e=>({x:()=>Ge(e)})},o3={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(xe(e,B(gr(n,1.5),2)))}}},l3={kernelName:dl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ue(Ge(n),"float32"),t:()=>B(e,ue(n,e.dtype)),e:()=>B(e,ue(_c(n),e.dtype))}}},u3={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=pa(n,ce(0)),r=ce(K1),s=ce(Y1),i=B(e,s),o=B(B(e,r),dn(ue(n,"float32")));return Tn(a,i,o)}}}},c3={kernelName:li,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,me(ce(1),n)))}}},p3={kernelName:gl,gradFunc:e=>({x:()=>Ge(e)})},d3={kernelName:oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Ac(ue(n,"float32")),e)}}},h3={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(rh(ue(n,"float32")),e)}}},m3={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=H0(a,r,s),u=[];for(let c=0;c<e.rank;c++)u.push([o[c],i[c]-o[c]-l[c]]);return{x:()=>ea(e,u)}}},f3={kernelName:pi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=B(e,a);return{logits:()=>me(i,B(Se(i,[r],s),a))}}},g3={kernelName:yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,ca(n))}}},rk={kernelName:uc,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Sc(e,a,r)}}},sk={kernelName:bl,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Je(e,a)}}},y3={kernelName:ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,B(an(ue(n,"float32")),2))}}},b3={kernelName:cc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(ue(n,"float32"),2))}}},x3={kernelName:di,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ce(2);return{a:()=>B(e,B(r,me(n,a))),b:()=>B(e,B(r,me(a,n)))}}},v3={kernelName:Gr,gradFunc:e=>({x:()=>Ge(e)})},w3={kernelName:hi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Se(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Se(s,i)),H(St(s),a.shape)}}}},k3={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;la(s,a.shape).forEach(l=>{r[l]=1});let i=H(e,r),o=B(i,Xa(a.shape,"float32"));return{x:()=>o}}},I3={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,lt(Ac(n)))}}},N3={kernelName:mi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(me(ce(1),lt(n)),e)}}},T3={kernelName:Ur,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ge(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=J(s,Be(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},S3={kernelName:fi,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=Uy(r);return{x:()=>Ve(e,s)}}},C3={kernelName:kl,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Dt(e,r)}}},F3={kernelName:pc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>A3(e,n)}}};function A3(e,t){let n=qa(t,Ge(t)),a=Ti(e,n),r=es(t,ce(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=Rn(r,o+1);r=da(r,Xa(a.shape,"bool"));let i=Ge(a);return Tn(r,a,i)}var _3={kernelName:Il,gradFunc:e=>({x:()=>Ge(e)})},E3=[Q1,EO,$O,DO,MO,RO,PO,OO,LO,zO,WO,BO,GO,qO,XO,KO,YO,JO,QO,ZO,eL,tL,aL,nL,iL,oL,lL,uL,cL,pL,QL,dL,hL,mL,fL,gL,bL,yL,xL,vL,wL,kL,IL,NL,TL,SL,CL,AL,FL,$L,nk,nk,DL,PL,zL,WL,BL,VL,UL,GL,HL,jL,qL,XL,KL,ak,ak,YL,JL,ZL,e3,t3,n3,a3,r3,s3,i3,o3,l3,u3,c3,p3,d3,h3,m3,f3,g3,rk,rk,sk,sk,y3,x3,b3,v3,w3,k3,I3,N3,T3,S3,C3,F3,_3];for(let e of E3)o0(e);Y().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Y().prototype.acos=function(){return this.throwIfDisposed(),wy(this)};Y().prototype.acosh=function(){return this.throwIfDisposed(),ky(this)};Y().prototype.add=function(e){return this.throwIfDisposed(),J(this,e)};Y().prototype.all=function(e,t){return this.throwIfDisposed(),eh(this,e,t)};Y().prototype.any=function(e,t){return this.throwIfDisposed(),Ic(this,e,t)};Y().prototype.argMax=function(e){return this.throwIfDisposed(),Nc(this,e)};Y().prototype.argMin=function(e){return this.throwIfDisposed(),Iy(this,e)};Y().prototype.asScalar=function(){return this.throwIfDisposed(),$(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Y().prototype.asType=function(e){return this.throwIfDisposed(),ue(this,e)};Y().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Y().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Y().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Y().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),H(this,[e,t,n,a])};Y().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),H(this,[e,t,n,a,r])};Y().prototype.asin=function(){return this.throwIfDisposed(),Ny(this)};Y().prototype.asinh=function(){return this.throwIfDisposed(),Ty(this)};Y().prototype.atan=function(){return this.throwIfDisposed(),Sy(this)};Y().prototype.atan2=function(e){return this.throwIfDisposed(),Cy(this,e)};Y().prototype.atanh=function(){return this.throwIfDisposed(),Ay(this)};Y().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),Qn(this,e,t,n,a)};Y().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Sc(this,e,t)};Y().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),fr(this,e,t,n,a,r)};Y().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Cc(this,e)};Y().prototype.cast=function(e){return this.throwIfDisposed(),ue(this,e)};Y().prototype.ceil=function(){return this.throwIfDisposed(),$y(this)};Y().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Xt(this,e,t)};Y().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Fe&&(e=[e]),Je([this,...e],t)};Y().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),nh(this,e,t,n,a,r,s)};Y().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),ah(this,e,t,n,a,r)};Y().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Et(this,e,t,n,a,r,s)};Y().prototype.cos=function(){return this.throwIfDisposed(),Ac(this)};Y().prototype.cosh=function(){return this.throwIfDisposed(),rh(this)};Y().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),sh(this,e,t,n)};Y().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Ry(this,e,t)};Y().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Qr(this,e,t,n,a,r,s)};Y().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),Py(this,e,t,n,a,r)};Y().prototype.divNoNan=function(e){return this.throwIfDisposed(),Oy(this,e)};Y().prototype.div=function(e){return this.throwIfDisposed(),xe(this,e)};Y().prototype.dot=function(e){return this.throwIfDisposed(),m1(this,e)};Y().prototype.elu=function(){return this.throwIfDisposed(),Ml(this)};Y().prototype.equal=function(e){return this.throwIfDisposed(),Zr(this,e)};Y().prototype.erf=function(){return this.throwIfDisposed(),Ly(this)};Y().prototype.exp=function(){return this.throwIfDisposed(),dn(this)};Y().prototype.expandDims=function(e){return this.throwIfDisposed(),Rn(this,e)};Y().prototype.expm1=function(){return this.throwIfDisposed(),zy(this)};Y().prototype.fft=function(){return this.throwIfDisposed(),Rc(this)};Y().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Y().prototype.floor=function(){return this.throwIfDisposed(),Rl(this)};Y().prototype.floorDiv=function(e){return this.throwIfDisposed(),Zd(this,e)};Y().prototype.gather=function(e,t){return this.throwIfDisposed(),Ti(this,e,t)};Y().prototype.greaterEqual=function(e){return this.throwIfDisposed(),es(this,e)};Y().prototype.greater=function(e){return this.throwIfDisposed(),pa(this,e)};Y().prototype.ifft=function(){return this.throwIfDisposed(),Bl(this)};Y().prototype.irfft=function(){return this.throwIfDisposed(),wh(this)};Y().prototype.isFinite=function(){return this.throwIfDisposed(),f1(this)};Y().prototype.isInf=function(){return this.throwIfDisposed(),g1(this)};Y().prototype.isNaN=function(){return this.throwIfDisposed(),y1(this)};Y().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Fc(this,e)};Y().prototype.lessEqual=function(e){return this.throwIfDisposed(),Si(this,e)};Y().prototype.less=function(e){return this.throwIfDisposed(),oh(this,e)};Y().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),By(this,e,t,n,a)};Y().prototype.logSigmoid=function(){return this.throwIfDisposed(),v1(this)};Y().prototype.logSoftmax=function(e){return this.throwIfDisposed(),ch(this,e)};Y().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Gy(this,e,t)};Y().prototype.log=function(){return this.throwIfDisposed(),Pn(this)};Y().prototype.log1p=function(){return this.throwIfDisposed(),lh(this)};Y().prototype.logicalAnd=function(e){return this.throwIfDisposed(),da(this,e)};Y().prototype.logicalNot=function(){return this.throwIfDisposed(),_c(this)};Y().prototype.logicalOr=function(e){return this.throwIfDisposed(),ph(this,e)};Y().prototype.logicalXor=function(e){return this.throwIfDisposed(),N1(this,e)};Y().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),ze(this,e,t,n)};Y().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),$t(this,e,t,n,a)};Y().prototype.max=function(e,t){return this.throwIfDisposed(),Zn(this,e,t)};Y().prototype.maximum=function(e){return this.throwIfDisposed(),qa(this,e)};Y().prototype.mean=function(e,t){return this.throwIfDisposed(),Ct(this,e,t)};Y().prototype.min=function(e,t){return this.throwIfDisposed(),Ol(this,e,t)};Y().prototype.minimum=function(e){return this.throwIfDisposed(),Ll(this,e)};Y().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),jy(this,e,t)};Y().prototype.mod=function(e){return this.throwIfDisposed(),qy(this,e)};Y().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};Y().prototype.neg=function(){return this.throwIfDisposed(),St(this)};Y().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Th(this,e,t,n)};Y().prototype.notEqual=function(e){return this.throwIfDisposed(),Ai(this,e)};Y().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),_l(this,e,t,n)};Y().prototype.onesLike=function(){return this.throwIfDisposed(),On(this)};Y().prototype.pad=function(e,t){return this.throwIfDisposed(),ea(this,e,t)};Y().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),C1(this,e,t,n,a,r)};Y().prototype.pow=function(e){return this.throwIfDisposed(),gr(this,e)};Y().prototype.prelu=function(e){return this.throwIfDisposed(),$c(this,e)};Y().prototype.prod=function(e,t){return this.throwIfDisposed(),hh(this,e,t)};Y().prototype.reciprocal=function(){return this.throwIfDisposed(),Yy(this)};Y().prototype.relu=function(){return this.throwIfDisposed(),qe(this)};Y().prototype.relu6=function(){return this.throwIfDisposed(),fh(this)};Y().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Y().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Y().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),H1(this,e,t,n)};Y().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),j1(this,e,t,n)};Y().prototype.reverse=function(e){return this.throwIfDisposed(),Ln(this,e)};Y().prototype.rfft=function(){return this.throwIfDisposed(),Pc(this)};Y().prototype.round=function(){return this.throwIfDisposed(),Jy(this)};Y().prototype.rsqrt=function(){return this.throwIfDisposed(),gh(this)};Y().prototype.selu=function(){return this.throwIfDisposed(),yh(this)};Y().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Fi(this,e,t,n,a,r,s)};Y().prototype.sigmoid=function(){return this.throwIfDisposed(),ca(this)};Y().prototype.sign=function(){return this.throwIfDisposed(),Qy(this)};Y().prototype.sin=function(){return this.throwIfDisposed(),bh(this)};Y().prototype.sinh=function(){return this.throwIfDisposed(),xh(this)};Y().prototype.slice=function(e,t){return this.throwIfDisposed(),Be(this,e,t)};Y().prototype.softmax=function(e){return this.throwIfDisposed(),Ta(this,e)};Y().prototype.softplus=function(){return this.throwIfDisposed(),Pl(this)};Y().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Ec(this,e,t)};Y().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};Y().prototype.sqrt=function(){return this.throwIfDisposed(),an(this)};Y().prototype.square=function(){return this.throwIfDisposed(),lt(this)};Y().prototype.squaredDifference=function(e){return this.throwIfDisposed(),kh(this,e)};Y().prototype.squeeze=function(e){return this.throwIfDisposed(),ts(this,e)};Y().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Fe?[this,e]:[this,...e];return Dt(n,t)};Y().prototype.step=function(e){return this.throwIfDisposed(),Vl(this,e)};Y().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),eb(this,e,t,n,a,r,s,i,o)};Y().prototype.sub=function(e){return this.throwIfDisposed(),me(this,e)};Y().prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};Y().prototype.tan=function(){return this.throwIfDisposed(),tb(this)};Y().prototype.tanh=function(){return this.throwIfDisposed(),Dl(this)};Y().prototype.tile=function(e){return this.throwIfDisposed(),Ha(this,e)};Y().prototype.toBool=function(){return this.throwIfDisposed(),ue(this,"bool")};Y().prototype.toFloat=function(){return this.throwIfDisposed(),ue(this,"float32")};Y().prototype.toInt=function(){return this.throwIfDisposed(),ue(this,"int32")};Y().prototype.topk=function(e,t){return this.throwIfDisposed(),nb(this,e,t)};Y().prototype.transpose=function(e){return this.throwIfDisposed(),Ve(this,e)};Y().prototype.unique=function(e){return this.throwIfDisposed(),Nh(this,e)};Y().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),ab(this,e,t)};Y().prototype.unstack=function(e){return this.throwIfDisposed(),ct(this,e)};Y().prototype.where=function(e,t){return this.throwIfDisposed(),Tn(e,this,t)};Y().prototype.zerosLike=function(){return this.throwIfDisposed(),Ge(this)};var ik={};Oe(ik,{maxNorm:()=>$3,minMaxNorm:()=>R3,nonNeg:()=>M3,unitNorm:()=>D3});var cb;function Bt(){return cb==null&&(cb=Z0().epsilon()),cb}function Aa(){return"channelsLast"}var xr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xr.prototype)}},Fa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Fa.prototype)}},V=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,V.prototype)}},$e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$e.prototype)}},ok=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ok.prototype)}};function $i(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Ja(e,t){if(!e)throw new ok(t)}function lk(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Cn(e){return e.length===1?e[0]:e}function gt(e){return Array.isArray(e)?e:[e]}function vr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Di(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ha={};function pb(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function db(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>db(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:db(a))}}}function Lc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ha)i=ha[s];else if(i=t[s],i==null)throw new V(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ha?[o,l]=ha.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ha))u[h]=ha[h];for(let h of Object.keys(n))u[h]=n[h];let c=s.config;c.customObjects=u;let p=Object.assign({},ha);for(let h of Object.keys(n))ha[h]=n[h];db(s.config);let d=l(o,s.config,n,r);return ha=Object.assign({},p),d}else{let u=Object.assign({},ha);for(let p of Object.keys(n))ha[p]=n[p];let c=new o(s.config);return ha=Object.assign({},u),c}}}function P3(e,t){return e<t?-1:e>t?1:0}function Oh(e,t){return-1*P3(e,t)}function as(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function O3(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Mi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function hb(e,t,n=0,a=Infinity){return Ja(n>=0),Ja(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Kt(e,t){Array.isArray(e)?(I.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Kt(n,`element ${a+1} of ${t}`))):I.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${uk(e)}.`)}function uk(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>uk(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function L3(e,t){let n=I.now(),a;return(...r)=>{let s=I.now();return s-n<t||(n=s,a=e(...r)),a}}function ck(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function mb(e,t){return M(()=>an(Se(B(e,e),t,!0)))}var zc=class extends re.Serializable{getConfig(){return{}}},fb=class extends zc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>{let t=mb(e,this.axis),n=Xt(t,0,this.maxValue);return B(e,xe(n,J(Bt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};fb.className="MaxNorm";re.registerClass(fb);var gb=class extends zc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>xe(e,J(Bt(),mb(e,this.axis))))}getConfig(){return{axis:this.axis}}};gb.className="UnitNorm";re.registerClass(gb);var yb=class extends zc{apply(e){return qe(e)}};yb.className="NonNeg";re.registerClass(yb);var bb=class extends zc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>{let t=mb(e,this.axis),n=J(B(this.rate,Xt(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,xe(n,J(Bt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};bb.className="MinMaxNorm";re.registerClass(bb);var pk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Vt(e){return pb(e)}function dk(e,t={}){return Lc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Ut(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in pk?pk[e]:e,config:{}};return dk(t)}else return e instanceof zc?e:dk(e)}function $3(e){return new fb(e)}function D3(e){return new gb(e)}function M3(){return new yb}function R3(e){return new bb(e)}var hk={};Oe(hk,{constant:()=>B3,glorotNormal:()=>X3,glorotUniform:()=>q3,heNormal:()=>K3,heUniform:()=>Y3,identity:()=>H3,leCunNormal:()=>J3,leCunUniform:()=>Q3,ones:()=>W3,orthogonal:()=>Z3,randomNormal:()=>U3,randomUniform:()=>V3,truncatedNormal:()=>G3,varianceScaling:()=>j3,zeros:()=>z3});var ez=["channelsFirst","channelsLast"],tz=["nearest","bilinear"],nz=["valid","same","causal"],az=["max","avg"],rz=["sum","mul","concat","ave"],Gl=new Map;function Mt(e){Mi(ez,"DataFormat",e)}function sz(e){Mi(tz,"InterpolationFormat",e)}function ta(e){Mi(nz,"PaddingMode",e)}function mk(e){Mi(az,"PoolMode",e)}var Wc=[],fk="/";function Ri(e,t){Wc.push(e);try{let n=t();return Wc.pop(),n}catch(n){throw Wc.pop(),n}}function iz(){return Wc.length===0?"":Wc.join(fk)+fk}function yk(e){if(!gk(e))throw new Error("Not a valid tensor name: '"+e+"'");return iz()+e}function bk(e){if(!gk(e))throw new Error("Not a valid tensor name: '"+e+"'");Gl.has(e)||Gl.set(e,0);let t=Gl.get(e);if(Gl.set(e,Gl.get(e)+1),t>0){let n=`${e}_${t}`;return Gl.set(n,1),n}else return e}var oz=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function gk(e){return!!e.match(oz)}function lz(e){return e===parseInt(e.toString(),10)}function rs(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function xk(e){return e=Array.isArray(e)?new Float32Array(e):e,Qe(e)}function Hl(e){return Ol(xk(e)).dataSync()[0]}function ss(e){return Zn(xk(e)).dataSync()[0]}function _a(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Bc(e,t){return e.asType(t)}function Vc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function uz(e,t){return M(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Vc(e,1);return xb(n,[1,t,1])})}function cz(e){let t=[rs(e.shape)];return e.reshape(t)}function pz(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],rs(e.shape,1)];return e.reshape(t)}function Pi(e,t,n){return M(()=>{switch(e.rank){case 1:return vh(e,t,n);case 2:return Zy(e,[t,0],[n,e.shape[1]]);case 3:return Wl(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Mc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Be(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Be(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function vb(e,t,n){return M(()=>{switch(e.rank){case 1:return vh(e,t,n);case 2:return Zy(e,[0,t],[e.shape[0],n]);case 3:return Wl(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Mc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Lh(e,t,n,a){return M(()=>{switch(e.rank){case 1:return vh(e,t,n);case 2:switch(a){case 1:return Pi(e,t,n);case 2:return vb(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Pi(e,t,n);case 2:return Wl(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return vb(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Pi(e,t,n);case 2:return Mc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Mc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return vb(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function wb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Je(e,t)}function vk(e,t){switch(e.rank){case 1:return l1([e,t]);case 2:return u1([e,t],0);case 3:return c1([e,t],0);case 4:return p1([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function xb(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ha(e,t)}function zh(e,t=0,n=1,a,r){return A1(e,t,n,a,r)}function Qa(e,t,n,a){if(e.rank<2||t.rank<2)throw new $e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new $e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return ns.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?kb(e.rank,a,Aa()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],c=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(c).reshape([l,-1]);let p=[...r,...u],d=!1,h=!1;return ns.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:a?kb(e.rank,a,Aa()):null,activation:n}).reshape(p)}}function wk(e,t,n){return M(()=>(Array.isArray(t)?t=Qe(t,"int32"):t=t.toInt(),Ti(e,t,n)))}function Uc(e){return B(e,e)}function kb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Za(e,t,n){return M(()=>(n==null&&(n=Aa()),Mt(n),e.add(kb(e.rank,t,n))))}function dz(e,t=1){if(t!==1)throw new $e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Ml(e)}function hz(e){return M(()=>xe(e,zt(e).add(1)))}function kk(e,t,n,a){return M(()=>R1(e,t,n,a))}function mz(e){return M(()=>{let t=J(.5,B(.2,e));return Xt(t,0,1)})}function Gc(e,t,n=!1){return n?e():t()}var fz=["fanIn","fanOut","fanAvg"],gz=["normal","uniform","truncatedNormal"];function yz(e){Mi(fz,"FanMode",e)}function bz(e){Mi(gz,"Distribution",e)}var ma=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Ib=class extends ma{apply(e,t){return vt(e,t)}};Ib.className="Zeros";re.registerClass(Ib);var Wh=class extends ma{apply(e,t){return Xa(e,t)}};Wh.className="Ones";re.registerClass(Wh);var Nb=class extends ma{constructor(e){super();if(typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return M(()=>B(ce(this.value),Xa(e,t)))}getConfig(){return{value:this.value}}};Nb.className="Constant";re.registerClass(Nb);var Tb=class extends ma{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return zl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Tb.className="RandomUniform";re.registerClass(Tb);var Sb=class extends ma{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`randomNormal does not support dType ${t}.`);return zh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Sb.className="RandomNormal";re.registerClass(Sb);var Cb=class extends ma{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`truncatedNormal does not support dType ${t}.`);return Ih(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Cb.className="TruncatedNormal";re.registerClass(Cb);var Ab=class extends ma{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return M(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,Wy(e[0]))})}getConfig(){return{gain:this.gain}}};Ab.className="Identity";re.registerClass(Ab);function xz(e,t="channelsLast"){let n,a;if(Mt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=rs(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=rs(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=rs(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var An=class extends ma{constructor(e){super();if(e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,yz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,bz(this.distribution),this.seed=e.seed}apply(e,t){let n=xz(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`${this.getClassName()} does not support dType ${t}.`);return Ih(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return zl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};An.className="VarianceScaling";re.registerClass(An);var Bh=class extends An{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return An.className}};Bh.className="GlorotUniform";re.registerClass(Bh);var Vh=class extends An{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return An.className}};Vh.className="GlorotNormal";re.registerClass(Vh);var Uh=class extends An{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return An.className}};Uh.className="HeNormal";re.registerClass(Uh);var Gh=class extends An{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return An.className}};Gh.className="HeUniform";re.registerClass(Gh);var Hh=class extends An{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return An.className}};Hh.className="LeCunNormal";re.registerClass(Hh);var jh=class extends An{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return An.className}};jh.className="LeCunNormal";re.registerClass(jh);var Fb=class extends ma{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new $e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return M(()=>{if(e.length<2)throw new $e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=zh(n,0,1,"float32"),r=X1.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Fb.className="Orthogonal";re.registerClass(Fb);var Ik={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Nk(e,t={}){return Lc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function At(e){return pb(e)}function wt(e){if(typeof e=="string"){let t=e in Ik?Ik[e]:e;if(t==="GlorotNormal")return new Vh;if(t==="GlorotUniform")return new Bh;if(t==="HeNormal")return new Uh;if(t==="HeUniform")return new Gh;if(t==="LeCunNormal")return new Hh;if(t==="LeCunUniform")return new jh;{let n={};return n.className=t,n.config={},Nk(n)}}else return e instanceof ma?e:Nk(e)}function z3(){return new Ib}function W3(){return new Wh}function B3(e){return new Nb(e)}function V3(e){return new Tb(e)}function U3(e){return new Sb(e)}function G3(e){return new Cb(e)}function H3(e){return new Ab(e)}function j3(e){return new An(e)}function q3(e){return new Bh(e)}function X3(e){return new Vh(e)}function K3(e){return new Uh(e)}function Y3(e){return new Gh(e)}function J3(e){return new Hh(e)}function Q3(e){return new jh(e)}function Z3(e){return new Fb(e)}var Tk={};Oe(Tk,{Layer:()=>je,RNN:()=>er,RNNCell:()=>Hc,activation:()=>Rz,add:()=>Gz,alphaDropout:()=>CW,average:()=>Hz,averagePooling1d:()=>_b,averagePooling2d:()=>Eb,averagePooling3d:()=>$b,avgPool1d:()=>eW,avgPool2d:()=>nW,avgPool3d:()=>rW,avgPooling1d:()=>tW,avgPooling2d:()=>aW,avgPooling3d:()=>sW,batchNormalization:()=>Jz,bidirectional:()=>xW,concatenate:()=>jz,conv1d:()=>Cz,conv2d:()=>Az,conv2dTranspose:()=>Fz,conv3d:()=>_z,convLstm2d:()=>fW,convLstm2dCell:()=>gW,cropping2D:()=>$z,dense:()=>Pz,depthwiseConv2d:()=>Mz,dot:()=>Yz,dropout:()=>Oz,elu:()=>wz,embedding:()=>Uz,flatten:()=>zz,gaussianDropout:()=>SW,gaussianNoise:()=>TW,globalAveragePooling1d:()=>iW,globalAveragePooling2d:()=>oW,globalMaxPool1d:()=>wW,globalMaxPool2d:()=>kW,globalMaxPooling1d:()=>Ck,globalMaxPooling2d:()=>Ak,gru:()=>uW,gruCell:()=>cW,input:()=>Sk,inputLayer:()=>vz,layerNormalization:()=>Qz,leakyReLU:()=>Iz,lstm:()=>pW,lstmCell:()=>dW,masking:()=>AW,maxPool1d:()=>IW,maxPool2d:()=>NW,maxPooling1d:()=>Fk,maxPooling2d:()=>_k,maxPooling3d:()=>lW,maximum:()=>qz,minimum:()=>Xz,multiply:()=>Kz,permute:()=>Vz,prelu:()=>Nz,reLU:()=>kz,repeatVector:()=>Wz,reshape:()=>Bz,rnn:()=>yW,separableConv2d:()=>Ez,simpleRNN:()=>hW,simpleRNNCell:()=>mW,softmax:()=>Tz,spatialDropout1d:()=>Lz,stackedRNNCells:()=>bW,thresholdedReLU:()=>Sz,timeDistributed:()=>vW,upSampling2d:()=>Dz,zeroPadding2d:()=>Zz});var FW=0;function Ek(){return FW++}var qh={};function Xh(e=""){return e in qh||(qh[e]=0),qh[e]+=1,e+qh[e].toString()}function Db(e){return Array.isArray(e)&&Array.isArray(e[0])}function Kh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Re(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function pt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Yh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var $k="Variable",Dk=class{constructor(e,t="float32",n=$k,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Ek(),n=n==null?$k:n,this.originalName=yk(n),this.name=bk(this.originalName),this.trainable_=a,this.constraint=r,this.val=_1(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),_W(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function _W(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Mb(e){return e.map(t=>t.read())}function Rb(e){e.forEach(t=>{t[0].write(t[1])})}var Yt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ea=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=Ek(),s!=null&&(this.originalName=yk(s),this.name=bk(this.originalName)),this.rank=t.length}},EW=0,Jh=class{constructor(e,t){this.callArgs=t,this.id=EW++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},$W=0,je=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=$W++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=vr(n)+"_"+Xh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Fa(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Cn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Cn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new xr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new xr(`Layer ${this.name} is not connected, no input to return.`);return Cn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new xr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new xr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Cn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=gt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=gt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],c=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=gt(e),a=!0;for(let s of n)if(!(s instanceof Ea)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ea){r=!1;break}if(a===r)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ri(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of gt(e))s.push(i.shape);this.build(Cn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=gt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Cn(o),this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=DW(e),i=this.computeOutputShape(s),o,l=MW(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,c)=>new Ea(l,u,this,gt(e),t,this.name,c)):o=new Ea(l,i,this,gt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new xr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new xr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Fa(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Yh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Mb(e?this.trainableWeights:this.weights)}setWeights(e){M(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Mb(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!I.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Rb(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=wt("zeros"));let o=a.apply(t,n),l=new Dk(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=gt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=gt(e);t=gt(t),n=gt(n),a=gt(a),r=Kh(r),s=Kh(s);let l=[],u=[],c=[];for(let p of o)l.push(p.sourceLayer),u.push(p.nodeIndex),c.push(p.tensorIndex);new Jh({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function DW(e){e=gt(e);let t=[];for(let n of e)t.push(n.shape);return Cn(t)}function MW(e){return"float32"}function Mk(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=Mk(i,o,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var jl=class extends je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Xh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ea(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Jh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};jl.className="InputLayer";re.registerClass(jl);function Rk(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new jl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function is(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ee(a)}}function Pk(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Ok;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Ok||(Ok={}));var RW=125,ql=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Lk=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},PW=class extends ql{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=M(()=>J(this.totals[a],B(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:M(()=>{let a=B(xe(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),qt(t[n])}))}},zk=class extends ql{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},Wk=class extends ql{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=RW),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");I.isNumber(this.yieldEvery)&&(this.maybeWait=L3(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await is(n),a.push(this.yield(e,t,n))),a.push(Ph()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await is(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await is(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Ph()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await is(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await is(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Ph()):I.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await is(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await is(e),await this.trainEnd(e))}};function Bk(e,t){return e==null&&(e={}),e instanceof ql?[e]:Array.isArray(e)&&e[0]instanceof ql?e:gt(e).map(n=>new Wk(n,t))}var fa=class{constructor(){}static registerCallbackConstructor(e,t){I.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),fa.checkForDuplicate(t),fa.constructors[e]==null&&(fa.constructors[e]=[]),fa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in fa.constructors)fa.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){fa.constructors={}}static createCallbacks(e){let t=[];for(let n in fa.constructors){let a=+n;e>=a&&t.push(...fa.constructors[a])}return t.map(n=>new n)}};fa.constructors={};function Vk(e,t,n,a,r,s,i,o,l){let u=new zk,c=[new PW,...fa.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let p=new Lk(c);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:u}}function $a(e,t={},n=!1){return Lc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Qh(e,t){return M(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Se(Uc(e),t,!0),a=Sn(n.shape,Bt()),r=an(qa(n,a));return xe(e,r)})}function Oi(e,t){return M(()=>Ct(Uc(me(t,e)),-1))}function Zh(e,t){return M(()=>Ct(zt(me(t,e)),-1))}function Xl(e,t){return M(()=>{let n=me(e,t),a=Xt(zt(e),Bt(),Number.MAX_VALUE),r=zt(xe(n,a));return B(100,Ct(r,-1))})}function OW(e,t){return M(()=>{let n=Xt(t,Bt(),Number.MAX_VALUE),a=Pn(J(1,n)),r=Xt(e,Bt(),Number.MAX_VALUE),s=Pn(J(1,r));return Ct(Uc(me(a,s)),-1)})}function LW(e,t){return M(()=>{let n=qa(0,me(1,B(e,t)));return Ct(Uc(n),-1)})}function zW(e,t){return M(()=>{let n=qa(0,me(1,B(e,t)));return Ct(n,-1)})}function WW(e,t){return M(()=>{let n=Se(B(e,t),-1),a=Zn(B(me(1,e),t),-1);return qa(0,J(1,me(a,n)))})}function BW(e,t){return M(()=>{let n=Math.log(2),a=me(t,e),r=me(J(a,Pl(B(-2,a))),n);return Ct(r,-1)})}function jc(e,t,n=!1){return M(()=>{if(n)t=Ta(t);else{let a=Se(t,t.shape.length-1,!0);t=xe(t,a)}return t=Xt(t,Bt(),1-Bt()),St(Se(B(e.toFloat(),Pn(t)),t.shape.length-1))})}function em(e,t,n=!1){return M(()=>{let a=Rl(cz(e)).toInt();t=Xt(t,Bt(),1-Bt());let r=t.shape,s=_l(a,r[r.length-1]).reshape(r);return jc(s,t,n)})}function VW(e,t){if(!I.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return M(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function tm(e,t){return M(()=>{let n;return n=Xt(t,Bt(),1-Bt()),n=Pn(xe(n,me(1,n))),Ct(VW(e,n),-1)})}function UW(e,t){return M(()=>{let n=Xt(e,Bt(),1),a=Xt(t,Bt(),1);return Se(B(e,Pn(xe(n,a))),-1)})}function GW(e,t){return M(()=>{let n=Pn(J(Bt(),t));return Ct(me(t,B(e,n)),-1)})}function Pb(e,t){return M(()=>{let n=Qh(e,-1),a=Qh(t,-1),r=B(n,a);return St(Se(r,-1))})}var nm={meanSquaredError:Oi,meanAbsoluteError:Zh,meanAbsolutePercentageError:Xl,meanSquaredLogarithmicError:OW,squaredHinge:LW,hinge:zW,categoricalHinge:WW,logcosh:BW,categoricalCrossentropy:jc,sparseCategoricalCrossentropy:em,binaryCrossentropy:tm,kullbackLeiblerDivergence:UW,poisson:GW,cosineProximity:Pb};function Ob(e){if(typeof e=="string"){if(e in nm)return nm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function Lb(e,t){return M(()=>{let n=B(.5,On(t)),a=Bc(pa(t,n),e.dtype);return Ct(Zr(e,a),-1)})}function zb(e,t){return M(()=>Bc(Zr(Nc(e,-1),Nc(t,-1)),"float32"))}function Uk(e,t){return M(()=>da(e.equal(1),t.equal(1)).sum().cast("float32"))}function HW(e,t){return M(()=>da(e.equal(1),t.equal(0)).sum().cast("float32"))}function jW(e,t){return M(()=>da(e.equal(0),t.equal(1)).sum().cast("float32"))}function Gk(e,t){return M(()=>{let n=Uk(e,t),a=jW(e,t),r=n.add(a);return Tn(pa(r,0),n.div(r),0).cast("float32")})}function qW(e,t){return M(()=>{let n=Uk(e,t),a=HW(e,t),r=n.add(a);return Tn(pa(r,0),n.div(r),0).cast("float32")})}function Hk(e,t){return tm(e,t)}function jk(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Zr(e,t).asType("float32")}var XW=Oi,KW=Oi,YW=Zh,JW=Zh,QW=Xl,ZW=Xl,Wb=jc,eB=Pb,qk=em,am={binaryAccuracy:Lb,categoricalAccuracy:zb,precision:Gk,categoricalCrossentropy:Wb,sparseCategoricalCrossentropy:qk,mse:XW,MSE:KW,mae:YW,MAE:JW,mape:QW,MAPE:ZW,cosine:eB};function tB(e){if(typeof e=="string"&&e in am)return am[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function rm(e){if(Ja(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(nm))if(nm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(am))if(am[n]===e){t=n;break}return t!==void 0?t:e.name}}function nB(e){let t={Adagrad:()=>Ei.adagrad(.01),Adadelta:()=>Ei.adadelta(1,.95,Bt()),Adam:()=>Ei.adam(.001,.9,.999,Bt()),Adamax:()=>Ei.adamax(.002,.9,.999,Bt(),0),RMSProp:()=>Ei.rmsprop(.001,.9,0,Bt()),SGD:()=>Ei.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}var Xk=1*1024*1024;function Kk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Bb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>Xk&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Xk}.`)}}function Bb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Bb(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Bb(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function oB(e,t,n,a=console.log){let r=rB(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!r){s.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}a("_".repeat(t)),sm(s,n,a),a("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)r?sB(o[c],n,a):iB(o[c],n,i,a),a((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=aB(e),u=Yh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function aB(e){let t;return e.collectedTrainableWeights!=null?t=Yh(e.collectedTrainableWeights):t=Yh(e.trainableWeights),t}function rB(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function sm(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function sB(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];sm(i,t,n)}function iB(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(c){r="multiple"}let s=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let p=0;p<c.inboundLayers.length;++p){let d=c.inboundLayers[p].name,h=c.nodeIndices[p],m=c.tensorIndices[p];s.push(`${d}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,r,e.countParams().toString(),l];sm(u,t,a);for(let c=1;c<s.length;++c)sm(["","","",s[c]],t,a)}function Yk(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function qc(e,t){if(e===null)return null;if(typeof e=="string")return Di(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];Yk(t,r,s)?n.push(s):n.push(qc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Di(a);n[s]=qc(r,s)}}return n}}function Vb(e,t){if(e==null)return null;if(typeof e=="string")return vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];Yk(t,r,s)?n.push(s):n.push(Vb(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=vr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=Vb(r,a)}return n}}var im="3.3.0";function lB(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ue(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Li=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Li)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=lB(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ea){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ea){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ee(this.id2Mask)}},Ub={},Jk={};function Xc(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let c=o.join(",")+"|"+t.names().join(","),p,d;if(Ub[c]==null){let m=uB(i,t);p=m.sorted,d=m.recipientCounts,Ub[c]=p,Jk[c]=d}p=Ub[c],d={},r||Object.assign(d,Jk[c]);let h=new Li(t);for(let m=0;m<p.length;++m){if(a!=null){let F=Jd().numTensors;F>a.maxNumTensors&&(a.maxNumTensors=F),F<a.minNumTensors&&(a.minNumTensors=F)}let f=p[m],g=f.sourceLayer;if(g instanceof jl)continue;let y=[],b=[],x=[],v=!1;for(let F of f.inputs){let D=h.getValue(F),R=h.getMask(F);y.push(D),b.push(R),R!=null&&(v=!0),r||(d[F.name]--,d[F.name]===0&&!t.hasKey(F)&&o.indexOf(F.name)===-1&&!D.isDisposed&&F.sourceLayer.stateful!==!0&&x.push(D))}v&&(n=n||{},n.mask=b[0]);let k=gt(g.apply(y,n)),w=null;g.supportsMasking&&(w=g.computeMask(y,b));let S=cB(f),A=Array.isArray(S)?S:[S];for(let F=0;F<A.length;++F){h.hasKey(A[F])||h.add(A[F],k[F],Array.isArray(w)?w[0]:w);let D=o.indexOf(A[F].name);D!==-1&&(l[D]=k[F])}r||Ee(x)}return h.disposeMasks(),s?l:l[0]}function uB(e,t){I.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=Qk(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=Qk(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:pB(a)}}function pB(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Qk(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function cB(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var tr=class extends je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Xh(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],as(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);as(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Ja(x===0,"input layer has >1 nodes"),Ja(v===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof jl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,v,k,w)=>{(v==null||k==null||w==null)&&(v=y.sourceLayer,k=y.nodeIndex,w=y.tensorIndex);let S=v.inboundNodes[k];if(x.indexOf(S)!==-1)throw new Fa(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(b.indexOf(S)!==-1)return;this.containerNodes.add(tr.nodeKey(v,k)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(S)===-1&&x.push(S);let A=S.inboundLayers.length;for(let F=0;F<A;F++){let D=S.inputTensors[F],R=S.inboundLayers[F],L=S.nodeIndices[F],W=S.tensorIndices[F];o(D,b,x,R,L,W)}for(b.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);i.push(S)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let c=i.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let v=0;v<y.inboundLayers.length;v++){let k=y.inboundLayers[v],w=y.nodeIndices[v],S=k.inboundNodes[w],A=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(b+1,A),n[S.id]=S}}let p={};for(let y in t){let b=t[y];b in p||(p[b]=[]),p[b].push(n[y])}let d={};for(let y in a){let b=a[y];b in d||(d[b]=[]),d[b].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(Oh);this.layers=[];for(let y of h){let b=d[y];b.sort((x,v)=>{let k=s[x.id],w=s[v.id];return k<w?-1:k>w?1:0});for(let x of b)x instanceof tr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Oh);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of p[y]){let x=b.outboundLayer;if(x!=null){for(let v of b.inputTensors)if(m.indexOf(v)===-1)throw new Fa(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of b.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new Fa(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Jh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${a} weights are not set: ${s}`)}Rb(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${im}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Vb(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return M(()=>{e=gt(e);let n=new Li;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Xc(this.outputs,n,t)})}computeMask(e,t){return M(()=>{e=gt(e);let n;return t==null?n=$i(null,e.length):n=gt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Kh(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Oh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let c=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];c.push(x)}let p=u.computeOutputShape(Cn(c)),d=Kh(p),h=u.inboundNodes.indexOf(l);for(let m=0;m<d.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=d[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],c=`${o.name}_${l}_${u}`;s.push(c)}for(let i=0;i<s.length;i++){let o=s[i];Ja(o in n),r.push(n[o])}return Cn(r)}runInternalGraph(e,t){t==null&&(t=$i(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],c=t[o];n[l.id]=[u,c]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Oh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let c=u.outboundLayer,p=u.inputTensors,d=u.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,g,y,b;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=gt(c.call(x,m)),b=gt(c.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=gt(c.call(f,m)),b=gt(c.computeMask(f,g));if(c.activityRegularizer)throw new $e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<d.length;++x){let v=d[x],k=y[x],w=b[x];n[v.id]=[k,w]}}}}let r=[],s=[],i=[];for(let o of this.outputs){Ja(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof tr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=tr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return M(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=tr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let c=0;c<s.inboundNodes.length;c++){let p=s.inboundNodes[c],d=tr.nodeKey(s,c),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let g=p.inboundLayers[f],y=p.nodeIndices[f],b=p.tensorIndices[f],x=tr.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,b,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=tr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[s];a.push([i.name,u,c])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=tr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[s];r.push([i.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let v=x[0],k=x[1],w=x[2];if(b=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let S=r[v];if(S.inboundNodes.length<=k){i(f,g);return}let A=S.inboundNodes[k];y.push(A.outputTensors[w])}y.length>0&&f.apply(Cn(y),b)}function l(f){let g=f.name,y=$a(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let u=t.name,c=t.layers;for(let f of c)l(f);for(;!O3(s);)for(let f of c){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let p=[],d=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];Ja(g in r);let x=r[g].inboundNodes[y].outputTensors;p.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];Ja(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}return new e({inputs:p,outputs:d,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){M(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function dB(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Zk(e,t){return dB(e,t,"classWeight")}async function eI(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=M(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ee(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Qe(i,"float32")}else return null}function hB(e,t){return B(e,t)}var mB=32;function nI(e,t){let n,a,r=t;n=r.xs,a=r.ys,I.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=tI("input",e.inputNames,n),i=tI("output",e.outputNames,a),o=s[0].shape[0];I.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),I.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)I.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)I.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function tI(e,t,n){if(n instanceof Fe)return[n];if(Array.isArray(n))return I.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function fB(e){if(e.length===3)throw new $e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function yB(e,t,n){let a=n.batchesPerEpoch!=null;if(I.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),I.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),I.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),I.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),I.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(aI(n.validationData))I.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=fB(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=Bk(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=Vk(c,p,n.epochs,null,null,gB(t,n),null,r,u);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await d.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:k}=nI(e,x.value),w={};w.batch=b,w.size=v[0].shape[0],await d.onBatchBegin(b,w);let S=[];if(n.classWeight!=null){let D=Zk(n.classWeight,e.outputNames);for(let R=0;R<D.length;++R)S.push(await eI(k[R],null,D[R]))}let A=v.concat(k).concat(S),F=o(A);Ee(A);for(let D=0;D<l.length;++D){let R=l[D],L=F[D];w[R]=L,qt(L)}await d.onBatchEnd(b,w),Pk(w),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;aI(n.validationData)?v=gt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=gt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?mB:n.validationBatchSize,verbose:0}));for(let k=0;k<e.metricsNames.length;++k)g[`val_${e.metricsNames[k]}`]=v[k]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(m,g),m++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function gB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function aI(e){return typeof e.iterator=="function"}function bB(e){return typeof e.next=="function"}async function xB(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new $e("Verbose mode is not implemented yet.");I.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=bB(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let u=await i.next();if(s=M(()=>{if(u.value){let{xs:c,ys:p}=nI(e,u.value),d=c.concat(p),h=M(()=>r(d));if(Ee(d),l===0)for(let f=0;f<h.length;++f)s.push(ce(0));let m=d[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=M(()=>J(s[f],B(m,g))),l>0&&Ee(y)}Ee(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=xe(s[u],o),Ee(c)}return Cn(s)}function Gb(e){I.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Kc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Pi(a,t,n-t)):Pi(e,t,n-t)}function Hb(e,t){return M(()=>e==null?null:Array.isArray(e)?e.map(n=>Hb(n,t)):wk(e,t.dtype==="int32"?t:t.toInt()))}function jb(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function vB(e,t,n,a,r,s,i,o,l,u,c,p,d,h,m){r==null&&(r=32),s==null&&(s=1),c==null&&(c=!0),d==null&&(d=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=_a(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=Vk(o,i,s,d,g,h,r,f,p);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v<s;++v){await b.onEpochBegin(v);let k={};if(h!=null)throw new $e("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new $e("batch shuffling is not implemneted yet");c&&I.shuffle(y);let w=Qe(y),S=jb(g,r);for(let A=0;A<S.length;++A){let F={};if(await b.onBatchBegin(A,F),M(()=>{let D=S[A][0],R=S[A][1],L=Pi(w,D,R-D);F.batch=A,F.size=R-D;let W=Hb(n,L),U=t(W);for(let G=0;G<a.length;++G){let X=a[G],j=U[G];F[X]=j,qt(j)}if(A===S.length-1&&f){let G=e.testLoop(l,u,r);for(let X=0;X<a.length;++X){let j=a[X],te=G[X];qt(te),k["val_"+j]=te}}}),await b.onBatchEnd(A,F),Pk(F),e.stopTraining_)break}w.dispose()}if(await b.onEpochEnd(v,k),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function wB(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,c;try{let p=a.batchSize==null?32:a.batchSize;Gb(p);let d=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,d,p);r=h[0],s=h[1],c=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new $e("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let w=!0,S=await e.standardizeUserData(i,o,null,null,w,p);l=S[0],u=S[1],f=l.concat(u)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let w=Math.floor(r[0].shape[0]*(1-a.validationSplit)),S=r[0].shape[0];l=Kc(r,w,S),r=Kc(r,0,w),u=Kc(s,w,S),s=Kc(s,0,w),f=l.concat(u)}else a.validationSteps!=null&&(m=!0);let g=r.concat(s).concat(c);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=b.slice().concat(b.map(w=>"val_"+w))):(x=null,f=[],v=b.slice());let k=Bk(a.callbacks,a.yieldEvery);return await vB(e,y,g,b,p,a.epochs,a.verbose,k,x,f,a.shuffle,v,a.initialEpoch,null,null)}finally{e.isTraining=!1,zi(r,t),zi(s,n),zi(l,i),zi(u,o),c!=null&&Ee(c)}}function rI(e){let t=[];e instanceof Fe&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Vc(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function zi(e,t){if(e==null)return;let n=[];if(t instanceof Fe)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Fe)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function kB(e){return e instanceof Fe}function qb(e){return Array.isArray(e)}function sI(e){return!kB(e)&&!qb(e)}function iI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(qb(e)&&e.length>0)i=!0;else if(sI(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(sI(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(qb(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=rI(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c>=0&&u!==c)throw new V(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function IB(e,t,n){let a=as(e.map(s=>s.shape[0]));a.sort();let r=as(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!I.arraysEqual(a,r))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function NB(e,t,n){let a=[Oi,tm,jc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===jc&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let c=0;c<l.length;++c){let p=l[c],d=u[c];if(d!=null&&p!==d)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function oI(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c!==u)throw new V(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function TB(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var SB="layers-model",wr=class extends tr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");oB(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=nB(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof br))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Ob(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Ob(s))}else{let s=Ob(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ri("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=TB(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ri("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,c,p;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===tm?["accuracy","acc"].indexOf(d)!==-1?c=Lb:["crossentropy","ce"].indexOf(d)!==-1&&(c=Hk):this.lossFunctions[s]===em?["accuracy","acc"].indexOf(d)!==-1?c=jk:["crossentropy","ce"].indexOf(d)!==-1&&(c=qk):["accuracy","acc"].indexOf(d)!==-1?c=zb:["crossentropy","ce"].indexOf(d)!==-1&&(c=Wb);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),p=c,u=l+f}else p=tB(d),u=l+rm(d);let h;Ri(u,()=>{h=p}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;Gb(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Cn(l)}finally{zi(s[0],e),zi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),xB(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new V(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Li;if(e instanceof Fe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Xc(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=$i(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return M(()=>{let a=this.checkNumSamples(e);if(n)throw new $e("Verbose predictLoop() is not implemented yet.");let r=jb(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)M(()=>{let o=r[i][0],l=r[i][1],u=Kc(e,o,l),c=[];if(Array.isArray(u))for(let d=0;d<u.length;++d)c.push({key:this.inputs[d],value:u[d]});else c.push({key:this.inputs[0],value:u});let p=new Li(c);return Xc(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return Cn(s.map(i=>Je(i,0)))})}predict(e,t={}){let n=rI(e);oI(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return Gb(a),this.predictLoop(n,a)}finally{zi(n,e)}}predictOnBatch(e){oI(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Fa("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===em?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=iI(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=iI(t,this.feedOutputNames,r,!1,"target"),IB(e,t,null),NB(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=Zk(a,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await eI(o[c],null,u[c]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return M(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new $e("Verbose mode is not implemented yet.");if(r!=null)throw new $e("steps mode in testLoop() is not implemented yet");{let o=jb(s,n),l=Qe(_a(0,s));for(let u=0;u<o.length;++u){let c=o[u][0],p=o[u][1],d=Pi(l,c,p-c),h=Hb(t,d),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ce(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=J(i[f],B(p-c,g))}}for(let u=0;u<i.length;++u)i[u]=xe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;lk(e,a)>1&&(r+=`_${lk(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let c=new Li(u),p=Xc(this.outputs,c,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=hB(m,r[h]));let f=Ct(m);t.push(f),h===0?d=m:d=J(d,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Ct(f(a[g],p[g]))}qt(m),s.push(m)}return d=Ct(d),this.calculateLosses().forEach(h=>{d=J(d,h)}),d},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>M(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Li(s),o=Xc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Ct(u(r[l],o[l]));l===0?n=c:n=J(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],p=Ct(u(r[c],o[c]));t.push(p)}return t})}async fit(e,t,n={}){return wB(this,e,t,n)}async fitDataset(e,t){return yB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ee(s),Cn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Jd().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Jd().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=vr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[vr(rm(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>vr(rm(e)));{let e={};for(let t in this.metrics)e[t]=vr(rm(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=qc(e.optimizer_config),n=$a(t),a;if(typeof e.loss=="string")a=Di(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Di(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Di(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Di(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Di(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=jt.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await jt.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:SB,generatedBy:`TensorFlow.js tfjs-layers v${im}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await jt.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=jt.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;Kk(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){Kk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};wr.className="Model";re.registerClass(wr);var lI=class extends wr{};lI.className="Functional";re.registerClass(lI);async function CB(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=qc(n),r=$a(a,t);if(e.weightsManifest!=null){let s=await jt.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ee(s)}return r}async function FB(e,t){if(t==null&&(t={}),typeof e=="string"){let n=jt.getLoadHandlers(e,t);if(n.length===0)n.push(jt.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return AB(e,void 0,t)}async function AB(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=$a(qc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=_B(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),Ee(u),Ee(c.map(p=>p.tensor))}return o}function _B(e,t){let n=jt.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Kl=class extends wr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Xh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Kl||e instanceof wr,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=Rk({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Mk(this.outputs[0])}this.inboundNodes=[],new Jh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:$i(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(pt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new wr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Fa("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Fa("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Fa("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Fa("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");r=t}else I.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Kl))throw new $e(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=$a(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Kl.className="Sequential";re.registerClass(Kl);function EB(e){return new wr(e)}function $B(e){return new Kl(e)}function DB(e,t){return t==null&&(t={}),FB(e,t)}function Sk(e){return Rk(e)}function MB(e,t){fa.registerCallbackConstructor(e,t)}var Wn=class extends re.Serializable{getConfig(){return{}}},uI=class extends Wn{apply(e,t=1){return dz(e,t)}};uI.className="elu";re.registerClass(uI);var cI=class extends Wn{apply(e){return yh(e)}};cI.className="selu";re.registerClass(cI);var pI=class extends Wn{apply(e){return qe(e)}};pI.className="relu";re.registerClass(pI);var dI=class extends Wn{apply(e){return M(()=>Ll(6,qe(e)))}};dI.className="relu6";re.registerClass(dI);var hI=class extends Wn{apply(e){return e}};hI.className="linear";re.registerClass(hI);var mI=class extends Wn{apply(e){return ca(e)}};mI.className="sigmoid";re.registerClass(mI);var fI=class extends Wn{apply(e){return mz(e)}};fI.className="hardSigmoid";re.registerClass(fI);var gI=class extends Wn{apply(e){return Pl(e)}};gI.className="softplus";re.registerClass(gI);var yI=class extends Wn{apply(e){return hz(e)}};yI.className="softsign";re.registerClass(yI);var bI=class extends Wn{apply(e){return Dl(e)}};bI.className="tanh";re.registerClass(bI);var Xb=class extends Wn{apply(e,t=-1){return Ta(e,t)}};Xb.className="softmax";re.registerClass(Xb);var xI=class extends Wn{apply(e,t=-1){return ch(e,t)}};xI.className="logSoftmax";re.registerClass(xI);var vI=class extends Wn{apply(e,t=1){return M(()=>ca(e.mul(t)).mul(e))}};vI.className="swish";re.registerClass(vI);function os(e){return e.getClassName()}function Kb(e,t={}){return Lc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ls(e){if(e==null){let t={};return t.className="linear",t.config={},Kb(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Kb(t)}else return e instanceof Wn?e:Kb(e)}function Yb(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var wI=class extends re.Serializable{},Yc=class extends wI{constructor(e){super();Yb(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return M(()=>{let t=vt([1]);return this.hasL1&&(t=J(t,Se(B(this.l1,zt(e))))),this.hasL2&&(t=J(t,Se(B(this.l2,Uc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Yc.className="L1L2";re.registerClass(Yc);function RB(e){return Yb(e),new Yc({l1:e!=null?e.l1:null,l2:0})}function PB(e){return Yb(e),new Yc({l2:e!=null?e.l2:null,l1:0})}var kI={l1l2:"L1L2"};function dt(e){return pb(e)}function II(e,t={}){return Lc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function kt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in kI?kI[e]:e,config:{}};return II(t)}else return e instanceof wI?e:II(e)}var Jb=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Re(e);let n=qe(e);return this.maxValue!=null&&(n=Xt(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Jb.className="ReLU";re.registerClass(Jb);var Qb=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Re(e);return Fc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Qb.className="LeakyReLU";re.registerClass(Qb);var Zb=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=wt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=kt(e.alphaRegularizer),this.alphaConstraint=Ut(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=pt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Yt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Re(e),$c(e,this.alpha.read())}getConfig(){let e={alphaInitializer:At(this.alphaInitializer),alphaRegularizer:dt(this.alphaRegularizer),alphaConstraint:Vt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Zb.className="PReLU";re.registerClass(Zb);var ex=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new $e(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Re(e);return Ml(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ex.className="ELU";re.registerClass(ex);var tx=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Re(e);return n.mul(Bc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};tx.className="ThresholdedReLU";re.registerClass(tx);var nx=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Xb().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Re(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};nx.className="Softmax";re.registerClass(nx);function Yl(e,t,n){if(typeof e=="number")return $i(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!lz(r))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Da(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function om(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ss([n-t,0]);else if(a==="same")e=e*t;else throw new V(`Unsupport padding mode: ${a}.`);return e}function ax(e,t){return M(()=>(Mt(t),t==="channelsFirst"?Ve(e,[0,2,3,1]):e))}function NI(e,t){return M(()=>(Mt(t),t==="channelsFirst"?Ve(e,[0,2,3,4,1]):e))}function OB(e,t,n,a=1,r="valid",s,i=1){return M(()=>{if(s==null&&(s=Aa()),Mt(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ve(e,[0,2,1])),r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=nh(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Za(o,n)),o})}function TI(e,t,n,a=[1,1],r="valid",s,i,o=null){return M(()=>{if(s==null&&(s=Aa()),Mt(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=ax(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ns.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ve(l,[0,3,1,2])),l})}function LB(e,t,n,a=[1,1,1],r="valid",s,i){return M(()=>{if(s==null&&(s=Aa()),Mt(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=NI(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=My(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Za(o,n)),s==="channelsFirst"&&(o=Ve(o,[0,4,1,2,3])),o})}var rx=class extends je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",rx.verifyArgs(t),this.rank=e,Kt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new $e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yl(t.kernelSize,e,"kernelSize"),this.strides=Yl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ta(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Mt(this.dataFormat),this.activation=ls(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=wt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ut(t.biasConstraint),this.biasRegularizer=kt(t.biasRegularizer),this.activityRegularizer=kt(t.activityRegularizer),this.dilationRate=Yl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ja("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!hb(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:os(this.activation),useBias:this.useBias,biasInitializer:At(this.biasInitializer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Jc=class extends rx{constructor(e,t){super(e,t);this.kernel=null,Jc.verifyArgs(t),this.filters=t.filters,Kt(this.filters,"filters"),this.kernelInitializer=wt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ut(t.kernelConstraint),this.kernelRegularizer=kt(t.kernelRegularizer)}build(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return M(()=>{e=Re(e);let n,a=this.bias==null?null:this.bias.read(),r=ck(this.activation.getClassName());if(r!=null&&this.rank===2)n=TI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=OB(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=TI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=LB(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new $e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=pt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Da(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:At(this.kernelInitializer),kernelRegularizer:dt(this.kernelRegularizer),kernelConstraint:Vt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Qc=class extends Jc{constructor(e){super(2,e);Qc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!hb(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Qc.className="Conv2D";re.registerClass(Qc);var lm=class extends Jc{constructor(e){super(3,e);lm.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};lm.className="Conv3D";re.registerClass(lm);var sx=class extends Qc{constructor(e){super(e);if(this.inputSpec=[new Yt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=pt(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Yt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{let n=Re(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=om(o,p,u,this.padding),m=om(l,d,c,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ve(n,[0,2,3,1]));let g=ah(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ve(g,[0,3,1,2])),this.bias!=null&&(g=Za(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=pt(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=om(t[a],o,s,this.padding),t[r]=om(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};sx.className="Conv2DTranspose";re.registerClass(sx);var SI=class extends Jc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=kt(t.depthwiseRegularizer),this.depthwiseConstraint=Ut(t.depthwiseConstraint),this.pointwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=kt(t.pointwiseRegularizer),this.pointwiseConstraint=Ut(t.pointwiseConstraint)}build(e){if(e=pt(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Yt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{e=Re(e);let n;if(this.rank===1)throw new $e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ve(e,[0,2,3,1])),n=Fi(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Za(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ve(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=At(this.depthwiseInitializer),e.pointwiseInitializer=At(this.pointwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.pointwiseRegularizer=dt(this.pointwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseConstraint),e.pointwiseConstraint=Vt(this.pointwiseConstraint),e}};SI.className="SeparableConv";var ix=class extends SI{constructor(e){super(2,e)}};ix.className="SeparableConv2D";re.registerClass(ix);var um=class extends Jc{constructor(e){super(1,e);um.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!hb(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};um.className="Conv1D";re.registerClass(um);var ox=class extends je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return M(()=>{if(e=Re(e),this.dataFormat==="channelsLast"){let n=Lh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Lh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Lh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Lh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ox.className="Cropping2D";re.registerClass(ox);var lx=class extends je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,sz(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return M(()=>{let n=Re(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ve(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ve(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};lx.className="UpSampling2D";re.registerClass(lx);function zB(e,t,n=[1,1],a="valid",r,s){return M(()=>{r==null&&(r=Aa()),Mt(r);let i=ax(e,r);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Qr(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ve(i,[0,3,1,2])),i})}var ux=class extends rx{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=wt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ut(e.depthwiseConstraint),this.depthwiseRegularizer=kt(e.depthwiseRegularizer)}build(e){if(e=pt(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{e=Re(e);let n=zB(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Za(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Da(t,this.kernelSize[0],this.padding,this.strides[0]),s=Da(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=At(this.depthwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseRegularizer),e}};ux.className="DepthwiseConv2D";re.registerClass(ux);function CI(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function AI(e,t,n,a=!1,r,s,i=!1,o=!1){return M(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(_a(2,l));if(t=Ve(t,u),s!=null)throw new $e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=Rn(r,-1)),r=Ve(r,u)),a&&(t=Ln(t,0),r!=null&&(r=Ln(r,0)));let c=[],p,d=n,h=t.shape[0],m=ct(t),f;r!=null&&(f=ct(r));for(let y=0;y<h;++y){let b=m[y],x=M(()=>e(b,d));if(r==null)p=x[0],d=x[1];else{let v=M(()=>{let k=f[y],w=On(k).sub(k),S=x[0].mul(k).add(d[0].mul(w)),A=d.map((F,D)=>x[1][D].mul(k).add(F.mul(w)));return{output:S,newStates:A}});p=v.output,d=v.newStates}o&&c.push(p)}let g;return o&&(g=Dt(c,1)),[p,g,d]})}var er=class extends je{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new cm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Yt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return _a(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Db(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return M(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new $e("Constants support is not implemented in RNN yet.");Db(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Yt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new $e("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!I.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Yt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){M(()=>{if(!this.stateful)throw new xr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>vt([n,a])):this.states_=[vt([n,this.cell.stateSize])];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>vt([n,a])):this.states_[0]=vt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!I.arraysEqual(r.shape,i))throw new V(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>qt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=CI(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Yt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ea){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let c=super.apply(o,t);return this.inputSpec=u,c}else return super.apply(e,t)}call(e,t){return M(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Re(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=AI((d,h)=>{let m=this.cell.call([d].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],c=o[2];this.stateful&&this.resetStates(c,a);let p=this.returnSequences?u:l;return this.returnState?[p].concat(c):p})}getInitialState(e){return M(()=>{let t=vt(e.shape);return t=Se(t,[1,2]),t=Vc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?xb(t,[1,n]):t):this.cell.stateSize>1?[xb(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===er.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=$a(a,n);return new e(Object.assign(t,{cell:r}))}};er.className="RNN";re.registerClass(er);var Hc=class extends je{},pm=class extends Hc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=Hl([1,ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=Qa(B(e,s),this.kernel.read()):r=Qa(e,this.kernel.read()),this.bias!=null&&(r=Za(r,this.bias.read())),i!=null&&(n=B(n,i));let o=J(r,Qa(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};pm.className="SimpleRNNCell";re.registerClass(pm);var cx=class extends er{constructor(e){e.cell=new pm(e),super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};cx.className="SimpleRNN";re.registerClass(cx);var dm=class extends Hc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=Hl([1,ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let u=Qa(e,this.kernel.read());this.useBias&&(u=Za(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,s[0]));let c=this.recurrentKernel.read(),[p,d]=zn(c,[2*this.units,this.units],c.rank-1),h=Qa(a,p),[m,f,g]=zn(u,3,u.rank-1),[y,b]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(J(m,y)),o=this.recurrentActivation.apply(J(f,b));let x=Qa(B(o,a),d);l=this.activation.apply(J(g,x));let v=J(B(i,a),B(J(1,St(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),recurrentActivation:os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};dm.className="GRUCell";re.registerClass(dm);var px=class extends er{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new dm(e),super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};px.className="GRU";re.registerClass(px);var Zc=class extends Hc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=Hl([1,ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=pt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends ma{apply(i,o){let l=r.apply([s]),u=new Wh().apply([s]),c=r.apply([s*2]);return vk(vk(l,u),c)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return M(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,c;0<this.dropout&&this.dropout<1&&(e=B(e,s[0]));let p=Qa(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,i[0])),p=J(p,Qa(a,this.recurrentKernel.read())),this.useBias&&(p=Za(p,this.bias.read()));let[d,h,m,f]=zn(p,4,p.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),u=J(B(l,r),B(o,this.activation.apply(m))),c=this.recurrentActivation.apply(f);let g=B(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),recurrentActivation:os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Zc.className="LSTMCell";re.registerClass(Zc);var dx=class extends er{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Zc(e),super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};dx.className="LSTM";re.registerClass(dx);var cm=class extends Hc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return M(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Db(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Ri(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push($a(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Mb(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Rb(t)}};cm.className="StackedRNNCells";re.registerClass(cm);function us(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>kk(t(),n),i=()=>Gc(s,t,a);return!r||r<=1?qt(i().clone()):Array(r).fill(void 0).map(i).map(o=>qt(o.clone()))}var WB=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},FI=class extends er{constructor(e){if(e.unroll)throw new $e("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new $e("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Yt({ndim:5})]}call(e,t){return M(()=>{if(this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return M(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=vt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){M(()=>{if(!this.stateful)throw new xr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>vt(r)):this.states_=[vt(r)];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>vt(r)):this.states_[0]=vt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!I.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>qt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],c=Da(l,a[0],r,s[0],i[0]),p=Da(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,c,p]:[c,p,n]]}};FI.className="ConvRNN2D";var hm=class extends Zc{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Kt(this.filters,"filters"),this.kernelSize=Yl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Kt(o,"kernelSize")),this.strides=Yl(a||1,2,"strides"),this.strides.forEach(o=>Kt(o,"strides")),this.padding=r||"valid",ta(this.padding),this.dataFormat=s||"channelsLast",Mt(this.dataFormat),this.dilationRate=Yl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Kt(o,"dilationRate"))}build(e){var t;e=pt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends ma{apply(c,p){let d=l.apply([u]),h=Xa([u]),m=l.apply([u*2]);return wb([d,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return M(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Q,se,ne)=>!se||!se[ne]?Q:B(se[ne],Q),u=l(a,o,0),c=l(a,o,1),p=l(a,o,2),d=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,v,k,w]=zn(this.kernel.read(),i,b),[S,A,F,D]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,S,this.padding),c=this.inputConv(c,v,A,this.padding),p=this.inputConv(p,k,F,this.padding),d=this.inputConv(d,w,D,this.padding);let[R,L,W,U]=zn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,R),f=this.recurrentConv(f,L),g=this.recurrentConv(g,W),y=this.recurrentConv(y,U);let G=this.recurrentActivation.apply(J(u,m)),X=this.recurrentActivation.apply(J(c,f)),j=J(B(X,s),B(G,this.activation.apply(J(p,g)))),te=B(this.recurrentActivation.apply(J(d,y)),this.activation.apply(j));return[te,te,j]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=WB(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=Et(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Za(r,n,this.dataFormat):r}recurrentConv(e,t){return Et(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};hm.className="ConvLSTM2DCell";re.registerClass(hm);var hx=class extends FI{constructor(e){let t=new hm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};hx.className="ConvLSTM2D";re.registerClass(hx);var mm=class extends je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Re(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Gc(()=>kk(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};mm.className="Dropout";re.registerClass(mm);var mx=class extends mm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};mx.className="SpatialDropout1D";re.registerClass(mx);var fx=class extends je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ut(e.kernelConstraint),this.biasConstraint=Ut(e.biasConstraint),this.kernelRegularizer=kt(e.kernelRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=pt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=pt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Re(e),a=ck(this.activation.getClassName()),r;return a!=null?r=Qa(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=Qa(n,this.kernel.read()),this.bias!=null&&(r=Za(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:os(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};fx.className="Dense";re.registerClass(fx);var gx=class extends je{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=pt(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],rs(e,1)]}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Re(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return pz(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};gx.className="Flatten";re.registerClass(gx);var yx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.activation=ls(e.activation)}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Re(e);return this.activation.apply(n)})}getConfig(){let e={activation:os(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};yx.className="Activation";re.registerClass(yx);var bx=class extends je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return M(()=>(e=Re(e),uz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};bx.className="RepeatVector";re.registerClass(bx);var xx=class extends je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else r*=l}let i=rs(e);if(s!==null){if(r===0||i%r!=0)throw new V(n);a[s]=i/r}else if(i!==r)throw new V(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Re(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};xx.className="Reshape";re.registerClass(xx);var vx=class extends je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=_a(1,e.dims.length+1);if(!I.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Yt({ndim:this.dims.length+1})]}computeOutputShape(e){e=pt(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ve(Re(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};vx.className="Permute";re.registerClass(vx);var wx=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Re(e),a=-1;return Ic(Ai(n,this.maskValue),a)}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Re(e),a=-1,r=!0,s=Ic(Ai(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};wx.className="Masking";re.registerClass(wx);var kx=class extends je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(gt(e.inputLength))}this.inputDim=e.inputDim,Kt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Kt(this.outputDim,"outputDim"),this.embeddingsInitializer=wt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=kt(e.embeddingsRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.embeddingsConstraint=Ut(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return M(()=>this.maskZero?(e=Re(e),Ai(e,Ge(e))):null)}computeOutputShape(e){if(e=pt(e),this.inputLength==null)return[...e,this.outputDim];let t=gt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Re(e);return n.dtype!=="int32"&&(n=Bc(n,"int32")),wk(this.embeddings.read(),n.as1D()).reshape(pt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:At(this.embeddingsInitializer),embeddingsRegularizer:dt(this.embeddingsRegularizer),activityRegularizer:dt(this.activityRegularizer),embeddingsConstraint:Vt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};kx.className="Embedding";re.registerClass(kx);var Wi=class extends je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new $e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[pt(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=as(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&as(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return M(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ss(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Vc(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,c=u[0],p=u.slice(1).concat([c]),d=o.reshape([c].concat(rs(u.slice(1))));d=Ve(d,[1,0]),d=d.reshape(p),n.push(d),r=!0}else if(l>1){let u=_a(1,l).concat([0]);n.push(Ve(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],c=[u].concat(o.slice(0,o.length-1));s=Ve(s.reshape([-1,u]),[1,0]).reshape(c)}else if(i>1){let o=[i-1].concat(_a(0,i-1));s=Ve(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=as(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return M(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:Rn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=da(n,t[a]);return n})}},Ix=class extends Wi{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return t})}};Ix.className="Add";re.registerClass(Ix);var Nx=class extends Wi{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};Nx.className="Multiply";re.registerClass(Nx);var Tx=class extends Wi{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return B(1/e.length,t)})}};Tx.className="Average";re.registerClass(Tx);var Sx=class extends Wi{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=qa(t,e[n]);return t})}};Sx.className="Maximum";re.registerClass(Sx);var Cx=class extends Wi{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ll(t,e[n]);return t})}};Cx.className="Minimum";re.registerClass(Cx);var Ax=class extends Wi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(I.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return M(()=>wb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return M(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(On(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(Rn(t[s],-1)):a.push(t[s]);let r=Je(a,this.axis);return eh(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ax.className="Concatenate";re.registerClass(Ax);function ep(e,t){for(;e<0;)e+=t;return e}function BB(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new $e("batchDot is not implemented for tensors of 4D or higher rank yet");if(I.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),I.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new $e("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return M(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let c=l;c<l+i;++c)u.push(c);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var Fx=class extends Wi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){I.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new V(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>ep(r,e[s].shape.length)):a=[ep(this.axes,t.shape.length),ep(this.axes,n.shape.length)],this.normalize&&(t=Qh(t,a[0]),n=Qh(n,a[1])),BB(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[ep(this.axes,e.length),ep(this.axes,t.length)],n}computeOutputShape(e){I.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Fx.className="Dot";re.registerClass(Fx);var _x=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Re(e);return Gc(()=>zh(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};_x.className="GaussianNoise";re.registerClass(_x);var Ex=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Re(e);return this.rate>0&&this.rate<1?Gc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(zh(n.shape,1,a))},()=>n,t.training||!1):n})}};Ex.className="GaussianDropout";re.registerClass(Ex);var $x=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Re(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return M(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Gc(()=>{let a=Re(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=es(zl(n),this.rate);o=Bc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>Re(e),t.training||!1)}return e})}};$x.className="AlphaDropout";re.registerClass($x);function tp(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=r1(e,t,n,a,r,s);else if(e.rank===3)i=s1(e,t,n,a,r,s);else if(e.rank===4)i=i1(e,t,n,a,r,s);else throw new $e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function VB(e,t,n,a,r=.001){return M(()=>{let s=dh(e,a),i=s.mean,o=s.variance;return[tp(e,i,o,n,t,r),i,o]})}function UB(e,t,n,a,r=.001){return M(()=>{let s=dh(e,a),i=s.mean,o=s.variance,l=[];for(let h of _a(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=i.reshape(l),c=o.reshape(l),p=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[tp(e,u,c,d,p,r),i,o]})}function GB(e,t,n,a,r=.001){return I.arraysEqual(a.slice().sort(),_a(0,e.rank-1))?VB(e,t,n,a,r):UB(e,t,n,a,r)}var Dx=class extends je{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.movingMeanInitializer=wt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=wt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Ut(e.betaConstraint),this.gammaConstraint=Ut(e.gammaConstraint),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer)}build(e){e=pt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Yt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return M(()=>{let n=t.training==null?!1:t.training,a=Re(e),r=a.shape,s=r.length,i=_a(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=$i(1,s);l[o]=r[o];let u=i.slice();u.sort();let c=!I.arraysEqual(u,_a(0,s).slice(0,s-1)),p=()=>{if(c){let g=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),b=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return tp(a,g,y,b,x,this.epsilon)}else return tp(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,m]=GB(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{M(()=>{let x=1-b,v=g.read(),k=v.sub(y).mul(x);g.write(v.sub(k))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),movingMeanInitializer:At(this.movingMeanInitializer),movingVarianceInitializer:At(this.movingVarianceInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer),betaConstraint:Vt(this.betaConstraint),gammaConstraint:Vt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Dx.className="BatchNormalization";re.registerClass(Dx);var Mx=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=pt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==as(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Re(e),a=n.shape,r=a.length;return M(()=>{let s=!0,{mean:i,variance:o}=dh(n,this.axis,s),l=$i(1,r);for(let m of this.axis)l[m]=a[m];let u=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,c=u(this.gamma.read()),p=u(this.beta.read()),d=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(d.push(a[m]),h.push(1)):(d.push(1),h.push(a[m]));return i=i.tile(d),o=o.tile(d),c=c.tile(h),p=p.tile(h),tp(n,i,o,p,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Mx.className="LayerNormalization";re.registerClass(Mx);function HB(e,t,n){return M(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Aa()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ea(e,a)})}var Rx=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Aa():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=pt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return M(()=>HB(Re(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Rx.className="ZeroPadding2D";re.registerClass(Rx);function fm(e,t,n,a,r,s){return M(()=>{Mt(r),mk(s),ta(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Aa()),s==null&&(s="max"),e=ax(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=$t(e,t,n,o):i=Qn(e,t,n,o),r==="channelsFirst"&&(i=Ve(i,[0,3,1,2])),i})}function _I(e,t,n,a,r,s){return M(()=>{Mt(r),mk(s),ta(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Aa()),s==null&&(s="max"),e=NI(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Hy(e,t,n,o):i=Ey(e,t,n,o),r==="channelsFirst"&&(i=Ve(i,[0,4,1,2,3])),i})}var EI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Kt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ta(this.padding),this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){e=pt(e);let t=Da(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return M(()=>{this.invokeCallHook(e,t),e=Vc(Re(e),2);let n=this.poolingFunction(Re(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ts(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Px=class extends EI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Mt(r),ta(a),fm(e,t,n,a,r,"max")}};Px.className="MaxPooling1D";re.registerClass(Px);var Ox=class extends EI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Mt(r),ta(a),fm(e,t,n,a,r,"avg")}};Ox.className="AveragePooling1D";re.registerClass(Ox);var $I=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),ta(this.padding),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Da(t,this.poolSize[0],this.padding,this.strides[0]),n=Da(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return M(()=>(this.invokeCallHook(e,t),this.poolingFunction(Re(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Lx=class extends $I{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Mt(r),ta(a),fm(e,t,n,a,r,"max")}};Lx.className="MaxPooling2D";re.registerClass(Lx);var zx=class extends $I{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Mt(r),ta(a),fm(e,t,n,a,r,"avg")}};zx.className="AveragePooling2D";re.registerClass(zx);var DI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),ta(this.padding),this.inputSpec=[new Yt({ndim:5})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Da(t,this.poolSize[0],this.padding,this.strides[0]),n=Da(n,this.poolSize[1],this.padding,this.strides[1]),a=Da(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return M(()=>(this.invokeCallHook(e,t),this.poolingFunction(Re(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Wx=class extends DI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Mt(r),ta(a),_I(e,t,n,a,r,"max")}};Wx.className="MaxPooling3D";re.registerClass(Wx);var Bx=class extends DI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Mt(r),ta(a),_I(e,t,n,a,r,"avg")}};Bx.className="AveragePooling3D";re.registerClass(Bx);var MI=class extends je{constructor(e){super(e);this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new $e}},Vx=class extends MI{constructor(e){super(e||{})}call(e,t){return M(()=>{let n=Re(e);return Ct(n,1)})}};Vx.className="GlobalAveragePooling1D";re.registerClass(Vx);var Ux=class extends MI{constructor(e){super(e||{})}call(e,t){return M(()=>{let n=Re(e);return Zn(n,1)})}};Ux.className="GlobalMaxPooling1D";re.registerClass(Ux);var RI=class extends je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new $e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Gx=class extends RI{call(e,t){return M(()=>{let n=Re(e);return this.dataFormat==="channelsLast"?Ct(n,[1,2]):Ct(n,[2,3])})}};Gx.className="GlobalAveragePooling2D";re.registerClass(Gx);var Hx=class extends RI{call(e,t){return M(()=>{let n=Re(e);return this.dataFormat==="channelsLast"?Zn(n,[1,2]):Zn(n,[2,3])})}};Hx.className="GlobalMaxPooling2D";re.registerClass(Hx);var PI=class extends je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=$a(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},jx=class extends PI{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=pt(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=pt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return M(()=>(e=Re(e),AI((n,a)=>[Re(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};jx.className="TimeDistributed";re.registerClass(jx);function jB(e){Mi(rz,"BidirectionalMergeMode",e)}var qB="concat",qx=class extends PI{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=$a(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=$a(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?qB:e.mergeMode,jB(this.mergeMode),e.weights)throw new $e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Cn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=CI(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(c=>new Yt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new $e("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ea;for(let l of s)if(l instanceof Ea!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return M(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=Ln(r,1));let i;return this.mergeMode==="concat"?i=wb([a,r]):this.mergeMode==="sum"?i=J(a,r):this.mergeMode==="ave"?i=B(.5,J(a,r)):this.mergeMode==="mul"?i=B(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ri(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ri(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=$a(t.layer);if(delete t.layer,t.numConstants!=null)throw new $e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};qx.className="Bidirectional";re.registerClass(qx);function vz(e){return new jl(e)}function wz(e){return new ex(e)}function kz(e){return new Jb(e)}function Iz(e){return new Qb(e)}function Nz(e){return new Zb(e)}function Tz(e){return new nx(e)}function Sz(e){return new tx(e)}function Cz(e){return new um(e)}function Az(e){return new Qc(e)}function Fz(e){return new sx(e)}function _z(e){return new lm(e)}function Ez(e){return new ix(e)}function $z(e){return new ox(e)}function Dz(e){return new lx(e)}function Mz(e){return new ux(e)}function Rz(e){return new yx(e)}function Pz(e){return new fx(e)}function Oz(e){return new mm(e)}function Lz(e){return new mx(e)}function zz(e){return new gx(e)}function Wz(e){return new bx(e)}function Bz(e){return new xx(e)}function Vz(e){return new vx(e)}function Uz(e){return new kx(e)}function Gz(e){return new Ix(e)}function Hz(e){return new Tx(e)}function jz(e){return new Ax(e)}function qz(e){return new Sx(e)}function Xz(e){return new Cx(e)}function Kz(e){return new Nx(e)}function Yz(e){return new Fx(e)}function Jz(e){return new Dx(e)}function Qz(e){return new Mx(e)}function Zz(e){return new Rx(e)}function _b(e){return new Ox(e)}function eW(e){return _b(e)}function tW(e){return _b(e)}function Eb(e){return new zx(e)}function nW(e){return Eb(e)}function aW(e){return Eb(e)}function $b(e){return new Bx(e)}function rW(e){return $b(e)}function sW(e){return $b(e)}function iW(e){return new Vx(e)}function oW(e){return new Gx(e)}function Ck(e){return new Ux(e)}function Ak(e){return new Hx(e)}function Fk(e){return new Px(e)}function _k(e){return new Lx(e)}function lW(e){return new Wx(e)}function uW(e){return new px(e)}function cW(e){return new dm(e)}function pW(e){return new dx(e)}function dW(e){return new Zc(e)}function hW(e){return new cx(e)}function mW(e){return new pm(e)}function fW(e){return new hx(e)}function gW(e){return new hm(e)}function yW(e){return new er(e)}function bW(e){return new cm(e)}function xW(e){return new qx(e)}function vW(e){return new jx(e)}var wW=Ck,kW=Ak,IW=Fk,NW=_k;function TW(e){return new _x(e)}function SW(e){return new Ex(e)}function CW(e){return new $x(e)}function AW(e){return new wx(e)}var OI={};Oe(OI,{MAPE:()=>r4,MSE:()=>o4,binaryAccuracy:()=>XB,binaryCrossentropy:()=>KB,categoricalAccuracy:()=>JB,categoricalCrossentropy:()=>QB,cosineProximity:()=>t4,mape:()=>s4,meanAbsoluteError:()=>n4,meanAbsolutePercentageError:()=>a4,meanSquaredError:()=>i4,mse:()=>l4,precision:()=>ZB,recall:()=>e4,sparseCategoricalAccuracy:()=>YB});function XB(e,t){return Lb(e,t)}function KB(e,t){return Hk(e,t)}function YB(e,t){return jk(e,t)}function JB(e,t){return zb(e,t)}function QB(e,t){return Wb(e,t)}function ZB(e,t){return Gk(e,t)}function e4(e,t){return qW(e,t)}function t4(e,t){return Pb(e,t)}function n4(e,t){return Zh(e,t)}function a4(e,t){return Xl(e,t)}function r4(e,t){return Xl(e,t)}function s4(e,t){return Xl(e,t)}function i4(e,t){return Oi(e,t)}function o4(e,t){return Oi(e,t)}function l4(e,t){return Oi(e,t)}var LI={};Oe(LI,{modelFromJSON:()=>CB});var zI={};Oe(zI,{l1:()=>c4,l1l2:()=>u4,l2:()=>p4});function u4(e){return new Yc(e)}function c4(e){return RB(e)}function p4(e){return PB(e)}var WI=class extends ql{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof wr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function gm(e,t){return e<t}function BI(e,t){return e>t}var VI=class extends WI{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new $e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=gm:this.mode==="max"?this.monitorFunc=BI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=BI:this.monitorFunc=gm,this.monitorFunc===gm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===gm?Infinity:-Infinity}async onEpochEnd(e,t){await is(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function d4(e){return new VI(e)}var h4={earlyStopping:d4},Ma;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ma||(Ma={}));var UI;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(UI||(UI={}));var Xx={};function m4(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Xx[e]=n}function GI(e){return Xx[e]}function f4(e){delete Xx[e]}function N(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Fn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>Fn(p,n,a,r));let u=Fn(t.inputNames.slice(o)[0],n,a,r),c=u.dataSync();return s.type==="number"?c[0]:I.toNestedArray(u.shape,c)}let i=t.attrParams[e];return i&&i.value}function Fn(e,t,n,a){let[r,s]=Bn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[ym(r,o)]);return i!==void 0?t[ym(r,i)][s]:void 0}function g4(e,t,n){return t[ym(e,n.currentContextId)]}function kr(e,t){let[n,a]=Bn(e);return[ym(n,t&&t.currentContextId),a]}function ym(e,t){return t?`${e}-${t}`:e}function Bn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function bm(e,t,n){let a=N("pad",e,t,n);if(a==="explicit"){a=N("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Ir(e){return e.kept?e:Kr(e)}var HI={};Oe(HI,{json:()=>y4});var y4=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],jI={};Oe(jI,{json:()=>b4});var b4=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],qI={};Oe(qI,{json:()=>x4});var x4=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],XI={};Oe(XI,{json:()=>v4});var v4=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],KI={};Oe(KI,{json:()=>w4});var w4=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],YI={};Oe(YI,{json:()=>k4});var k4=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],JI={};Oe(JI,{json:()=>I4});var I4=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],QI={};Oe(QI,{json:()=>N4});var N4=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],ZI={};Oe(ZI,{json:()=>T4});var T4=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],eN={};Oe(eN,{json:()=>S4});var S4=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],tN={};Oe(tN,{json:()=>C4});var C4=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],nN={};Oe(nN,{json:()=>A4});var A4=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],aN={};Oe(aN,{json:()=>F4});var F4=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],rN={};Oe(rN,{json:()=>_4});var _4=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],sN={};Oe(sN,{json:()=>E4});var E4=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],iN={};Oe(iN,{json:()=>$4});var $4=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],oN={};Oe(oN,{json:()=>D4});var D4=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],uN=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[HI,jI,qI,XI,KI,YI,JI,tN,eN,QI,nN,aN,rN,sN,iN,oN,ZI],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(g=>{let[y]=kr(g);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(c).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(c).forEach(m=>{let[f]=kr(m),g=i[f];g!=null&&(g.signatureKey=c[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=kr(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:d};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=GI(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Kx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Kx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=av(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=av(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Jx(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=Jx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=nv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=nv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Yx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Yx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=sv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=sv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=tv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=tv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=rv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=rv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Zx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Zx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=ev(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ev(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=lN(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=lN(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,c)=>(u[c.name]=this.mapNode(c),c.op==="Const"&&a.push(u[c.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[c]=kr(u.name),p={name:c,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Qx(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,s.push(p),r[c]=p}),Object.keys(r).forEach(u=>{let c=r[u];c.inputNames.forEach(p=>{let[d]=kr(p);c.inputs.push(r[d]),r[d].children.push(c)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[c,p]=kr(o[u.name]),d=r[c];d!=null&&(d.defaultOutput=p,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function M4(e){let t=Z().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function cN(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):M4(e);return t?n:n.toLowerCase()}function Kx(e,t,n,a=!1){let r=e[t];return r!=null?cN(r.s,a):n}function Yx(e,t,n){let a=e[t];return a?a.b:n}function Jx(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function Qx(e){switch(typeof e=="string"&&(e=Ma[e]),e){case Ma.DT_FLOAT:return"float32";case Ma.DT_INT32:case Ma.DT_INT64:case Ma.DT_INT8:case Ma.DT_UINT8:return"int32";case Ma.DT_BOOL:return"bool";case Ma.DT_DOUBLE:return"float32";case Ma.DT_STRING:return"string";default:return null}}function lN(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function Zx(e,t,n){let a=e[t];return a&&a.type?Qx(a.type):n}function ev(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>Qx(r)):n}function pN(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function tv(e,t,n){let a=e[t];return a&&a.shape?pN(a.shape):n}function nv(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function av(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>cN(s,a)):n}function rv(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>pN(r)):n}function sv(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var R4=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return Fn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Fn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Jx(this.node.rawAttrs,e,t);if(n.s!=null)return Kx(this.node.rawAttrs,e,t);if(n.b!=null)return Yx(this.node.rawAttrs,e,t);if(n.shape!=null)return tv(this.node.rawAttrs,e,t);if(n.type!=null)return Zx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return nv(this.node.rawAttrs,e,t);if(n.list.s!=null)return av(this.node.rawAttrs,e,t);if(n.list.shape!=null)return rv(this.node.rawAttrs,e,t);if(n.list.b!=null)return sv(this.node.rawAttrs,e,t);if(n.list.type!=null)return ev(this.node.rawAttrs,e,t)}return t}},P4=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[J(N("a",e,t,n),N("b",e,t,n))];case"AddN":return[e1(N("tensors",e,t,n))];case"FloorMod":case"Mod":return[qy(N("a",e,t,n),N("b",e,t,n))];case"Mul":return[B(N("a",e,t,n),N("b",e,t,n))];case"RealDiv":case"Div":return[xe(N("a",e,t,n),N("b",e,t,n))];case"DivNoNan":return[Oy(N("a",e,t,n),N("b",e,t,n))];case"FloorDiv":return[Zd(N("a",e,t,n),N("b",e,t,n))];case"Sub":return[me(N("a",e,t,n),N("b",e,t,n))];case"Minimum":return[Ll(N("a",e,t,n),N("b",e,t,n))];case"Maximum":return[qa(N("a",e,t,n),N("b",e,t,n))];case"Pow":return[gr(N("a",e,t,n),N("b",e,t,n))];case"SquaredDifference":return[kh(N("a",e,t,n),N("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},O4=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(N("x",e,t,n))];case"Acos":return[wy(N("x",e,t,n))];case"Acosh":return[ky(N("x",e,t,n))];case"Asin":return[Ny(N("x",e,t,n))];case"Asinh":return[Ty(N("x",e,t,n))];case"Atan":return[Sy(N("x",e,t,n))];case"Atan2":return[Cy(N("x",e,t,n),N("y",e,t,n))];case"Atanh":return[Ay(N("x",e,t,n))];case"Ceil":return[$y(N("x",e,t,n))];case"Complex":return[jr(N("real",e,t,n),N("imag",e,t,n))];case"Cos":return[Ac(N("x",e,t,n))];case"Cosh":return[rh(N("x",e,t,n))];case"Elu":return[Ml(N("x",e,t,n))];case"Erf":return[Ly(N("x",e,t,n))];case"Exp":return[dn(N("x",e,t,n))];case"Expm1":return[zy(N("x",e,t,n))];case"Floor":return[Rl(N("x",e,t,n))];case"Log":return[Pn(N("x",e,t,n))];case"Log1p":return[lh(N("x",e,t,n))];case"Imag":return[ih(N("x",e,t,n))];case"Neg":return[St(N("x",e,t,n))];case"Reciprocal":return[Yy(N("x",e,t,n))];case"Real":return[Dc(N("x",e,t,n))];case"Relu":return[qe(N("x",e,t,n))];case"Round":return[Jy(N("x",e,t,n))];case"Selu":return[yh(N("x",e,t,n))];case"Sigmoid":return[ca(N("x",e,t,n))];case"Sin":return[bh(N("x",e,t,n))];case"Sign":return[Qy(N("x",e,t,n))];case"Sinh":return[xh(N("x",e,t,n))];case"Softplus":return[Pl(N("x",e,t,n))];case"Sqrt":return[an(N("x",e,t,n))];case"Square":return[lt(N("x",e,t,n))];case"Tanh":return[Dl(N("x",e,t,n))];case"Tan":return[tb(N("x",e,t,n))];case"ClipByValue":return[Xt(N("x",e,t,n),N("clipValueMin",e,t,n),N("clipValueMax",e,t,n))];case"Relu6":return[fh(N("x",e,t,n))];case"Rsqrt":return[gh(Fn(e.inputNames[0],t,n))];case"Prod":return[hh(N("x",e,t,n),N("axes",e,t,n))];case"LeakyRelu":return[Fc(N("x",e,t,n),N("alpha",e,t,n))];case"Prelu":return[$c(N("x",e,t,n),N("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ga(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){I.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];I.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function dN(e){return!(typeof e=="number"||e.some(t=>t<0))}function np(e,t,n){let a=iv(e,n),r=!dN(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=iv(s.shape,a)}),!dN(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function iv(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var L4=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ce(0),qt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ga(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,qt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Yn([],[0].concat(this.elementShape));let n=this.readMany(e);return ga(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Dt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Yn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ga(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Je(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ct(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];M(()=>{t=H(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],c=[1,e[o],r];s[o]=H(Be(t,u,c),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},ap=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ga(t,r.shape,"TensorList shape mismatch: "),qt(r)}),this.idTensor=ce(0),this.maxNumElements=a,qt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new ap([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ga(e,this.elementShape,"TensorList shape mismatch: ");let a=np(this.elementShape,this.tensors,e);return M(()=>{let r=this.tensors.map(s=>H(s,a));return Dt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=np(this.elementShape,this.tensors,e),a=this.tensors.pop();return ga(a.shape,e,"TensorList shape mismatch: "),H(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ga(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");qt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ga(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=np(this.elementShape,this.tensors,t);return H(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ga(this.elementShape,t.shape,"TensorList shape mismatch: "),qt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ga(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=np(this.elementShape,this.tensors,n);return e.length===0?Yn([],[0].concat(a)):M(()=>{let r=e.map(s=>H(this.tensors[s],a));return Dt(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ga(this.elementShape,t,"TensorList shape mismatch: ");let n=np(this.elementShape,this.tensors,t);return this.size()===0?Yn([],[0].concat(n)):M(()=>{let a=this.tensors.map(r=>H(r,n));return Je(a,0)})}};function z4(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ga(r,t,"TensorList shape mismatch: ");let s=ct(e);return new ap(s,t,a)}function W4(e,t,n){return new ap([],e,t,n)}function B4(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new ap([],n,e.dtype,a),i=ct(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function V4(e,t,n){let a=0,r=t.map(c=>(a+=c,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=iv(s,n),o=a===0?0:e.size/a,l=M(()=>{let c=[];e=H(e,[1,a,o]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],m=[1,t[p],o];c[p]=H(Be(e,h,m),i)}return e.dispose(),c}),u=new ap([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var U4=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=N("thenBranch",e,t,n),r=N("elseBranch",e,t,n),s=N("cond",e,t,n),i=N("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=N("body",e,t,n),r=N("cond",e,t,n),s=N("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(c=>c.id),l=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=N("pred",e,t,n);return[Ir(a)]}case"Switch":{let a=N("pred",e,t,n),r=N("data",e,t,n);return r.kept||(r=Ir(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>Fn(r,t,n)!==void 0);if(a){let r=Fn(a,t,n);return[Ir(r)]}return}case"Enter":{let a=N("frameName",e,t,n),r=N("tensor",e,t,n);return n.enterFrame(a),[Ir(r)]}case"Exit":{let a=N("tensor",e,t,n);return n.exitFrame(),[Ir(a)]}case"NextIteration":{let a=N("tensor",e,t,n);return n.nextIteration(),[Ir(a)]}case"TensorArrayV3":{let a=N("size",e,t,n),r=N("dtype",e,t,n),s=N("elementShape",e,t,n),i=N("dynamicSize",e,t,n),o=N("clearAfterRead",e,t,n),l=N("identicalElementShapes",e,t,n),u=N("name",e,t,n),c=new L4(u,r,a,s,l,i,o);return n.addTensorArray(c),[c.idTensor,ce(1)]}case"TensorArrayWriteV3":{let a=N("tensorArrayId",e,t,n),r=N("index",e,t,n),s=N("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=N("tensorArrayId",e,t,n),r=N("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=N("tensorArrayId",e,t,n),r=N("indices",e,t,n),s=N("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=N("tensorArrayId",e,t,n),r=N("indices",e,t,n),s=N("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=N("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=N("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=N("tensorArrayId",e,t,n),r=N("tensor",e,t,n),s=N("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=N("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ce(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=N("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=N("tensorListId",e,t,n),r=N("index",e,t,n),s=N("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=N("tensorListId",e,t,n),r=N("index",e,t,n),s=N("elementShape",e,t,n),i=N("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=N("indices",e,t,n),r=N("tensor",e,t,n),s=N("elementShape",e,t,n),i=N("numElements",e,t,n),o=B4(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=N("elementShape",e,t,n),r=N("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=N(s,e,t,n),o=W4(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=N("tensorListId",e,t,n),r=N("indices",e,t,n),s=N("elementShape",e,t,n),i=N("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=N("tensorListId",e,t,n),r=N("elementShape",e,t,n),s=N("elementDType",e,t,n),i=N("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=N("tensor",e,t,n),r=N("elementShape",e,t,n),s=N("elementDType",e,t,n),i=z4(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=N("tensorListId",e,t,n),r=n.getTensorList(a.id),s=N("dtype",e,t,n),i=N("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=N("tensorListId",e,t,n),r=N("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=N("tensorListId",e,t,n),r=N("elementShape",e,t,n),s=N("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=N("tensor",e,t,n),r=N("elementShape",e,t,n),s=N("lengths",e,t,n),i=V4(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function hN(e,t,n){let[a,r]=N("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=N("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=N("strides",e,t,n),c=bm(e,t,n),p=N("dataFormat",e,t,n).toUpperCase(),d=N("dilations",e,t,n),[h,m]=N("args",e,t,n),f=N("leakyreluAlpha",e,t,n);return{stride:u,pad:c,dataFormat:p,dilations:d,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var G4=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=N("stride",e,t,n),r=N("pad",e,t,n),s=N("dataFormat",e,t,n).toUpperCase(),i=N("dilation",e,t,n);return[nh(N("x",e,t,n),N("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=N("strides",e,t,n),r=bm(e,t,n),s=N("dataFormat",e,t,n).toUpperCase(),i=N("dilations",e,t,n);return[Et(N("x",e,t,n),N("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=hN(e,t,n);return[ns.conv2d({x:N("x",e,t,n),filter:N("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=hN(e,t,n);return[ns.depthwiseConv2d({x:N("x",e,t,n),filter:N("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=N("outputShape",e,t,n),r=N("strides",e,t,n),s=bm(e,t,n);return[ah(N("x",e,t,n),N("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=N("strides",e,t,n),r=bm(e,t,n),s=N("dilations",e,t,n),i=N("dataFormat",e,t,n).toUpperCase();return[Qr(N("input",e,t,n),N("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("dataFormat",e,t,n).toUpperCase(),i=N("dilations",e,t,n);return[My(N("x",e,t,n),N("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[Qn(N("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[$t(N("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("kernelSize",e,t,n),i=N("includeBatchInIndex",e,t,n),{result:o,indexes:l}=T1(N("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[Ey(N("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("kernelSize",e,t,n);return[Hy(N("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=N("strides",e,t,n),r=N("pad",e,t,n),s=N("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[Py(N("x",e,t,n),N("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},H4=(e,t,n)=>{switch(e.op){case"Fill":{let a=N("shape",e,t,n),r=N("dtype",e,t,n),s=N("value",e,t,n);return[Sn(a,s,r)]}case"LinSpace":{let a=N("start",e,t,n),r=N("stop",e,t,n),s=N("num",e,t,n);return[b1(a,r,s)]}case"Multinomial":{let a=N("logits",e,t,n),r=N("numSamples",e,t,n),s=N("seed",e,t,n);return[S1(a,r,s)]}case"OneHot":{let a=N("indices",e,t,n),r=N("depth",e,t,n),s=N("onValue",e,t,n),i=N("offValue",e,t,n);return[_l(a,r,s,i)]}case"Ones":return[Xa(N("shape",e,t,n),N("dtype",e,t,n))];case"OnesLike":return[On(N("x",e,t,n))];case"RandomUniform":return[zl(N("shape",e,t,n),N("minval",e,t,n),N("maxval",e,t,n),N("dtype",e,t,n))];case"Range":{let a=N("start",e,t,n),r=N("stop",e,t,n),s=N("step",e,t,n);return[mh(a,r,s,N("dtype",e,t,n))]}case"TruncatedNormal":{let a=N("shape",e,t,n),r=N("mean",e,t,n),s=N("stdDev",e,t,n),i=N("seed",e,t,n);return[Ih(a,r,s,N("dtype",e,t,n),i)]}case"Zeros":return[vt(N("shape",e,t,n),N("dtype",e,t,n))];case"ZerosLike":return[Ge(N("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ov(e,t,n){let a=N("boxes",e,t,n),r=N("scores",e,t,n),s=N("maxOutputSize",e,t,n),i=N("iouThreshold",e,t,n),o=N("scoreThreshold",e,t,n),l=N("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var j4=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=ov(e,t,n),u=await Ka.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=ov(e,t,n),l=N("padToMaxOutputSize",e,t,n),u=await Ka.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=ov(e,t,n);return[await Ka.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=ue(N("condition",e,t,n),"bool"),r=[await rb(a)];return a.dispose(),r}case"ListDiff":return F1(N("x",e,t,n),N("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},q4=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=N("x",e,t,n),r=N("k",e,t,n),s=N("sorted",e,t,n),i=nb(a,r,s);return[i.values,i.indices]}case"Unique":{let a=N("x",e,t,n),r=Nh(a);return[r.values,r.indices]}case"UniqueV2":{let a=N("x",e,t,n),r=N("axis",e,t,n),s=Nh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},X4=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=N("default",e,t,n);return[Fn(e.name,t,n)||a];case"Placeholder":return[Fn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=N("x",e,t,n);return[Ir(u)]}case"IdentityN":return N("x",e,t,n).map(u=>Ir(u));case"Snapshot":let r=N("x",e,t,n);return[Ir(r)];case"Shape":return[Qe(N("x",e,t,n).shape,"int32")];case"ShapeN":return N("x",e,t,n).map(u=>Qe(u.shape));case"Size":return[ce(N("x",e,t,n).size,"int32")];case"Rank":return[ce(N("x",e,t,n).rank,"int32")];case"NoOp":return[ce(1)];case"Print":let s=N("x",e,t,n),i=N("data",e,t,n),o=N("message",e,t,n),l=N("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},K4=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ce(0),this.tensorMap=new Map,qt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ce(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),M(()=>{let a=ct(t),r=n.length,s=a.length;I.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];qt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return M(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Dt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Y4=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=N("keyDType",e,t,n),s=N("valueDType",e,t,n),i=new K4(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=N("tableHandle",e,t,n,a),s=N("keys",e,t,n),i=N("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=N("tableHandle",e,t,n,a),s=N("keys",e,t,n),i=N("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=N("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},J4=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=N("images",e,t,n),r=N("size",e,t,n),s=N("alignCorners",e,t,n),i=N("halfPixelCenters",e,t,n);return[Ka.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=N("images",e,t,n),r=N("size",e,t,n),s=N("alignCorners",e,t,n),i=N("halfPixelCenters",e,t,n);return[Ka.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=N("image",e,t,n),r=N("boxes",e,t,n),s=N("boxInd",e,t,n),i=N("cropSize",e,t,n),o=N("method",e,t,n),l=N("extrapolationValue",e,t,n);return[Ka.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Q4=(e,t,n)=>{switch(e.op){case"Equal":return[Zr(N("a",e,t,n),N("b",e,t,n))];case"NotEqual":return[Ai(N("a",e,t,n),N("b",e,t,n))];case"Greater":return[pa(N("a",e,t,n),N("b",e,t,n))];case"GreaterEqual":return[es(N("a",e,t,n),N("b",e,t,n))];case"Less":return[oh(N("a",e,t,n),N("b",e,t,n))];case"LessEqual":return[Si(N("a",e,t,n),N("b",e,t,n))];case"LogicalAnd":return[da(N("a",e,t,n),N("b",e,t,n))];case"LogicalNot":return[_c(N("a",e,t,n))];case"LogicalOr":return[ph(N("a",e,t,n),N("b",e,t,n))];case"Select":case"SelectV2":return[Tn(N("condition",e,t,n),N("a",e,t,n),N("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Z4=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ze(N("a",e,t,n),N("b",e,t,n),N("transposeA",e,t,n),N("transposeB",e,t,n))];case"Transpose":return[Ve(N("x",e,t,n),N("perm",e,t,n))];case"_FusedMatMul":let[a,r]=N("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=N("numArgs",e,t,n),l=N("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=N("args",e,t,n);return[ns.matMul({a:N("a",e,t,n),b:N("b",e,t,n),transposeA:N("transposeA",e,t,n),transposeB:N("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},eV=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[fr(N("x",e,t,n),N("mean",e,t,n),N("variance",e,t,n),N("offset",e,t,n),N("scale",e,t,n),N("epsilon",e,t,n))];case"FusedBatchNormV3":return[fr(N("x",e,t,n),N("mean",e,t,n),N("variance",e,t,n),N("offset",e,t,n),N("scale",e,t,n),N("epsilon",e,t,n))];case"LRN":return[By(N("x",e,t,n),N("radius",e,t,n),N("bias",e,t,n),N("alpha",e,t,n),N("beta",e,t,n))];case"Softmax":return[Ta(N("x",e,t,n))];case"LogSoftmax":return[ch(N("x",e,t,n))];case"SparseToDense":return[sb(N("sparseIndices",e,t,n),N("outputShape",e,t,n),N("sparseValues",e,t,n),N("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tV=(e,t,n)=>{switch(e.op){case"Max":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Zn(N("x",e,t,n),i,o)]}case"Mean":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Ct(N("x",e,t,n),i,o)]}case"Min":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Ol(N("x",e,t,n),i,o)]}case"Sum":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Se(N("x",e,t,n),i,o)]}case"All":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[eh(N("x",e,t,n),i,o)]}case"Any":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[Ic(N("x",e,t,n),i,o)]}case"ArgMax":{let i=N("axis",e,t,n);return[Nc(N("x",e,t,n),i)]}case"ArgMin":{let i=N("axis",e,t,n);return[Iy(N("x",e,t,n),i)]}case"Prod":{let i=N("axis",e,t,n),o=N("keepDims",e,t,n);return[hh(N("x",e,t,n),i,o)]}case"Cumsum":{let i=N("axis",e,t,n),o=N("exclusive",e,t,n),l=N("reverse",e,t,n);return[sh(N("x",e,t,n),i,o,l)]}case"Bincount":let a=N("x",e,t,n),r=N("weights",e,t,n),s=N("size",e,t,n);return[o1(a,r,s)];case"DenseBincount":{let i=N("x",e,t,n),o=N("weights",e,t,n),l=N("size",e,t,n),u=N("binaryOutput",e,t,n);return[h1(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},nV=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=N("n",e,t,n),r=N("axis",e,t,n),s=N("tensors",e,t,n);return s=s.slice(0,a),[Je(s,r)]}case"Gather":{let a=N("x",e,t,n),r=N("indices",e,t,n);return[Ti(a,ue(r,"int32"),0)]}case"GatherV2":{let a=N("axis",e,t,n),r=N("batchDims",e,t,n),s=N("x",e,t,n),i=N("indices",e,t,n);return[Ti(s,ue(i,"int32"),a,r)]}case"Reverse":{let a=N("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=N("x",e,t,n);return[Ln(s,r)]}case"ReverseV2":{let a=N("axis",e,t,n),r=N("x",e,t,n);return[Ln(r,a)]}case"Slice":{let a=N("begin",e,t,n),r=N("size",e,t,n);return[Be(N("x",e,t,n),a,r)]}case"StridedSlice":{let a=N("begin",e,t,n),r=N("end",e,t,n),s=N("strides",e,t,n),i=N("beginMask",e,t,n),o=N("endMask",e,t,n),l=N("ellipsisMask",e,t,n),u=N("newAxisMask",e,t,n),c=N("shrinkAxisMask",e,t,n),p=N("x",e,t,n);return[eb(p,a,r,s,i,o,l,u,c)]}case"Pack":return M(()=>{let a=N("axis",e,t,n),r=N("tensors",e,t,n),s=r[0].shape,i=ts(r[0]).shape,o=r.map(l=>{let u=I.arraysEqual(l.shape,s);if(!u&&!I.arraysEqual(ts(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:H(l,s)});return[Dt(o,a)]});case"Unpack":{let a=N("axis",e,t,n),r=N("tensor",e,t,n);return ct(r,a)}case"Tile":{let a=N("reps",e,t,n);return[Ha(N("x",e,t,n),a)]}case"Split":case"SplitV":{let a=N("axis",e,t,n),r=N("numOrSizeSplits",e,t,n),s=N("x",e,t,n);return zn(s,r,a)}case"ScatterNd":{let a=N("indices",e,t,n),r=N("values",e,t,n),s=N("shape",e,t,n);return[D1(a,r,s)]}case"GatherNd":{let a=N("x",e,t,n),r=N("indices",e,t,n);return[M1(a,r)]}case"SparseToDense":{let a=N("sparseIndices",e,t,n),r=N("outputShape",e,t,n),s=N("sparseValues",e,t,n),i=N("defaultValue",e,t,n);return[sb(a,s,r,s.dtype===i.dtype?i:ue(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},aV=(e,t,n)=>{switch(e.op){case"FFT":return[Rc(N("x",e,t,n))];case"IFFT":return[Bl(N("x",e,t,n))];case"RFFT":return[Pc(N("x",e,t,n))];case"IRFFT":return[wh(N("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},rV=(e,t,n)=>{switch(e.op){case"Cast":return[ue(N("x",e,t,n),N("dtype",e,t,n))];case"ExpandDims":{let a=N("axis",e,t,n);return[Rn(N("x",e,t,n),a)]}case"Squeeze":{let a=N("axis",e,t,n);return[ts(N("x",e,t,n),a)]}case"Reshape":return[H(N("x",e,t,n),N("shape",e,t,n))];case"MirrorPad":return[jy(N("x",e,t,n),N("padding",e,t,n),N("mode",e,t,n))];case"PadV2":case"Pad":return[ea(N("x",e,t,n),N("padding",e,t,n),N("constantValue",e,t,n))];case"SpaceToBatchND":{let a=N("blockShape",e,t,n),r=N("paddings",e,t,n);return[Ec(N("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=N("blockShape",e,t,n),r=N("crops",e,t,n);return[Sc(N("x",e,t,n),a,r)]}case"DepthToSpace":{let a=N("blockSize",e,t,n),r=N("dataFormat",e,t,n).toUpperCase();return[Ry(N("x",e,t,n),a,r)]}case"BroadcastTo":return[Cc(N("x",e,t,n),N("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function mN(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return M(()=>P4(s,i,o));case"basic_math":return M(()=>O4(s,i,o));case"control":return U4(s,i,o);case"convolution":return M(()=>G4(s,i,o));case"creation":return M(()=>H4(s,i,o));case"dynamic":return j4(s,i,o);case"evaluation":return M(()=>q4(s,i,o));case"image":return M(()=>J4(s,i,o));case"graph":return M(()=>X4(s,i,o));case"logical":return M(()=>Q4(s,i,o));case"matrices":return M(()=>Z4(s,i,o));case"normalization":return M(()=>eV(s,i,o));case"reduction":return M(()=>tV(s,i,o));case"slice_join":return M(()=>nV(s,i,o));case"spectral":return M(()=>aV(s,i,o));case"transformation":return M(()=>rV(s,i,o));case"hash_table":return Y4(s,i,o,a);case"custom":let l=GI(s.op);if(l&&l.customExecutor)return l.customExecutor(new R4(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return I.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var fN=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function yN(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>Bn(d)[0]),c=[];a!=null&&(c=a.map(d=>Bn(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((gN(d)||sV(d)||iV(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function oV(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(c=>Bn(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{a.has(c.name)&&s.push(c)}),e.weights.forEach(c=>{a.has(c.name)&&s.push(c)}),o!=null&&o.forEach(c=>{a.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&s.push(p)})}return u}var lV=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],uV=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],cV=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function gN(e){return lV.indexOf(e.op)>=0}function sV(e){return uV.indexOf(e.op)>=0}function iV(e){return cV.indexOf(e.op)>=0}var lv=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new lv(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=yN(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return oV(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(c=>this.graph.nodes[Bn(c)[0]]),r=t.map(c=>Bn(c)[0]),s=r.map(c=>this.graph.nodes[c]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return M(()=>{let c=new fN(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Bn(m),y=[];y[g]=e[m],p[f]=y});let d=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let g=mN(f,p,c,this._resourceManager);if(I.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=g,this.checkTensorForDisposal(f.name,f,p,c,d,r,h)}}return this.parent==null&&c.dispose(d),t.map(m=>Fn(m,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=g4(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!r.has(u.id)){let c=i[u.id];c===1?(u.dispose(),delete i[u.id]):c!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new fN(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>Fn(p,i,s)),l=o.map(p=>p.id),u=Object.keys(e).map(p=>e[p].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(d=>{d&&!d.isDisposed&&!c.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(c),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Bn(b)[0]]),i=n.map(b=>Bn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:p}=yN(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,v]=Bn(b),k=[];k[v]=e[b],h[x]=k});let m={},f=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let b=this.processStack(s,d,t,h,g,f,i,m,l);await Promise.all(b)}c==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!gN(b)&&!Fn(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw c!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&N("isConstant",c.node,a,n)&&([p]=kr(c.node.name,n)),a[c.node.name]==null){let d=mN(c.node,a,n,this._resourceManager);p||([p]=kr(c.node.name,n));let h=n.currentContext;I.isPromise(d)?u.push(d.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,c.node,a,n,s,i,o),this.processChildNodes(c.node,t,n,a,r,l),m))):(a[p]=d,this.checkTensorForDisposal(p,c.node,a,n,s,i,o),this.processChildNodes(c.node,t,n,a,r,l))}else this.processChildNodes(c.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=kr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Fn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!Fn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Bn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);I.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&I.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Bn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Bn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},pV=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},dV="?tfjs-format=file",hV="model.json",bN=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new pV}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=jt.browserHTTPRequest(e,this.loadOptions);else{let t=jt.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(jt.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=jt.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new lv(uN.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=uN.Instance.transformGraph(e.modelInitializer);this.initializer=new lv(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=jt.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Fe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function mV(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${hV}${dV}`);let n=new bN(e,t);return await n.load(),n}var xN="3.3.0",vN={};Oe(vN,{CSVDataset:()=>kN,Dataset:()=>Jl,FileDataSource:()=>IN,TextLineDataset:()=>wN,URLDataSource:()=>NN,array:()=>fV,csv:()=>yV,func:()=>bV,generator:()=>xV,microphone:()=>wV,version_data:()=>TN,webcam:()=>vV,zip:()=>gV});var kV=Io(Hw()),IV=Io(Hw());function NV(e,t){return xm(e,t)}function xm(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Ql(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=xm(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function TV(e,t=CN){return SN(e,t)}function SN(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Ql(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=SN(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function CN(e){return e===null?null:Ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function AN(e,t){let n=new Map;xm(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(I.isPromise(r)){let s=await r;n.set(a,s)}}return xm(e,t,n)}function Ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Fe))}function CV(e){return e==null||SV(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Fe||I.isTypedArray(e)}function SV(e){return e===null||typeof e!="object"&&typeof e!="function"}function FV(e){return NV(e,AV)}function AV(e){return e instanceof Fe?{value:e.clone(),recurse:!1}:Ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var FN=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},uv=class extends FN{constructor(){super(uv.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};uv.INITIAL_CAPACITY=32;function _N(e){return new _V(e)}function cv(e){return new EV(e)}function $V(e,t){return new EN(e,t)}function MV(e,t=cs.FAIL){return new DV(e,t)}var Jt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new BV(this,e)}filter(e){return new zV(this,e)}map(e){return new WV(this,e)}mapAsync(e){return new $N(this,e)}serialMapAsync(e){return new $N(this,e).serial()}flatmap(e){return new VV(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new LV(this,e,t)}columnMajorBatch(e,t=!0,n=CN){return this.rowMajorBatch(e,t).map(a=>TV(a,n))}concatenate(e,t){return new EN(_N([this,e]),t)}take(e){return e<0||e==null?this:new OV(this,e)}skip(e){return e<0||e==null?this:new PV(this,e)}prefetch(e){return new DN(this,e)}shuffle(e,t){return new UV(this,e,t)}serial(){return new RV(this)}},_V=class extends Jt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:FV(e),done:!1}}},EV=class extends Jt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},RV=class extends Jt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},PV=class extends Jt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ee(e.value)}return this.upstream.next()}},OV=class extends Jt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},LV=class extends Jt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},zV=class extends Jt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ee(e.value)}}},WV=class extends Jt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ia.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ia.getTensorsInContainer(n);for(let r of t)Ia.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},BV=class extends Jt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},$N=class extends Jt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ia.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ia.getTensorsInContainer(n);for(let r of t)Ia.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},pv=class extends Jt{constructor(){super();this.outputQueue=new uv,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},VV=class extends pv{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ia.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ia.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ia.isTensorInList(r,a)||r.dispose();return!0}},EN=class extends Jt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},cs;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(cs||(cs={}));var DV=class extends Jt{constructor(e,t=cs.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Jt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await AN(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case cs.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case cs.SHORTEST:return{value:null,done:!0};case cs.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},DN=class extends Jt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new FN(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},UV=class extends DN{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=IV.alea(n||I.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;I.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Vn(async()=>(await n.iterator()).columnMajorBatch(e,t,GV),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Vn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Vn(async()=>(await t.iterator()).filter(a=>M(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Vn(async()=>(await t.iterator()).map(n=>M(()=>e(n))),this.size)}mapAsync(e){let t=this;return Vn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Vn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Vn(async()=>{let a=cv(async()=>({value:await t.iterator(),done:!1}));return $V(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Vn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=kV.alea(t||I.now().toString());return Vn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Vn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Vn(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function fV(e){return Vn(async()=>_N(e),e.length)}function gV(e){if(!Ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Vn(async()=>{let n=await AN(e,a=>{if(a instanceof Jl)return{value:a.iterator(),recurse:!1};if(Ql(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return MV(n,cs.SHORTEST)},t)}function GV(e){if(e===null)return null;let t=e[0];return CV(t)?{value:HV(e),recurse:!1}:{value:null,recurse:!0}}function HV(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Fe?Dt(e):Yn(e)}var wN=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},vm='"',rp=Symbol("out"),MN=Symbol("field"),wm=Symbol("quote"),dv=Symbol("quoteafterquote"),RN=Symbol("quoteinquote"),kN=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new wN(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(I.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&I.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(I.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=rp;for(let i=0;i<r;i++)switch(s){case rp:switch(e.charAt(i)){case vm:a=i+1,s=wm;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=rp;break;default:s=MN,a=i;break}break;case MN:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=rp,a=i+1;break;default:}break;case wm:switch(e.charAt(i)){case vm:s=dv;break;default:}break;case dv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=rp,a=i+1;break;case vm:s=wm;break;default:s=RN;break}break;case RN:switch(e.charAt(i)){case vm:s=wm;break;default:}break;default:}if(s===dv?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},PN=class extends Jt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Z().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new PN(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(I.sizeFromShape(t));return n.set(e,n.length-e.length),Yn(n,t)}},ON=class extends Jt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Qe([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Sa([s,r,o,i],[1,4])}else this.cropBox=Sa([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Z().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new ON(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&I.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ki.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return M(()=>{let t=Rn(ue(e,"float32"),0),n;n=Ka.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return H(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},LN=class{},zN=class extends Jt{split(e){return new jV(this,e)}},jV=class extends zN{constructor(e,t){super();this.upstream=e,this.impl=new qV(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},qV=class extends pv{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},KV=class extends Jt{decodeUTF8(){return new XV(this)}},XV=class extends zN{constructor(e){super();this.upstream=e,this.impl=new YV(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},YV=class extends pv{constructor(e){super();if(this.upstream=e,Z().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=iF();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Z().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},WN=class extends KV{constructor(e,t={}){super();this.file=e,this.options=t,I.assert(e instanceof Uint8Array||(Z().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function QV(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=JV(e));let r=await I.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new WN(s,t)}else throw new Error(r.statusText)}var JV=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function BN(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var IN=class extends LN{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(BN(this.input)&&Z().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new WN(this.input,this.options)}},NN=class extends LN{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return BN(this.url)?new IN(this.url,this.fileOptions).iterator():QV(this.url,this.fileOptions)}};function yV(e,t={}){return new kN(new NN(e),t)}function bV(e){let t=cv(e);return Vn(async()=>t)}function xV(e){return Vn(async()=>{let t=await e();return cv(()=>t.next())})}async function vV(e,t){return ON.create(e,t)}async function wV(e){return PN.create(e)}var TN="3.3.0";function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&I.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var ZV=Ya.whereImpl,hv=class extends ju{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new sd(this,Ua())}nextDataId(){return hv.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Z().get("IS_NODE")&&E.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&I.isString(n[0])){let r=n.map(s=>I.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>I.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return Ua().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=I.now();return e(),{kernelMs:I.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return ZV(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};hv.nextDataId=0;var VN={};Oe(VN,{addImpl:()=>GN,bincountImpl:()=>mv,bincountReduceImpl:()=>HN,ceilImpl:()=>jN,concatImpl:()=>fv,expImpl:()=>qN,expm1Impl:()=>XN,floorImpl:()=>KN,gatherV2Impl:()=>YN,greaterImpl:()=>JN,lessImpl:()=>QN,linSpaceImpl:()=>ZN,logImpl:()=>e2,maxImpl:()=>t2,maximumImpl:()=>n2,minimumImpl:()=>a2,multiplyImpl:()=>gv,negImpl:()=>r2,notEqualImpl:()=>s2,prodImpl:()=>i2,rangeImpl:()=>bv,rsqrtImpl:()=>o2,simpleAbsImpl:()=>UN,sliceImpl:()=>km,squaredDifferenceImpl:()=>l2,stridedSliceImpl:()=>u2,subImpl:()=>c2,tileImpl:()=>p2,topKImpl:()=>d2,transposeImpl:()=>yv,uniqueImpl:()=>h2});function UN(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var eU=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let a=new Float32Array(I.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=UN(r),n.makeOutput(a,t.shape,"float32")},tU={kernelName:So,backendName:"cpu",kernelFunc:eU};function Rt(e){return(t,n,a,r,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=I.computeStrides(i),u=I.sizeFromShape(i),c=I.getTypedArrayFromDType(s,u),p=t.length,d=n.length,h=I.computeStrides(t),m=I.computeStrides(n),f=E.getBroadcastDims(t,i),g=E.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<c.length;++y){let b=I.indexToLoc(y,o,l),x=b.slice(-p);f.forEach(S=>x[S]=0);let v=I.locToIndex(x,p,h),k=b.slice(-d);g.forEach(S=>k[S]=0);let w=I.locToIndex(k,d,m);c[y]=e(a[v],r[w])}return[c,i]}}function Un(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var nU={kernelName:md,backendName:"cpu",kernelFunc:Un};function Im(e,t,n="float32"){if(n==="complex64"){let r=Im(e,t,"float32"),s=Im(e,t,"float32");return Un({inputs:{real:r,imag:s},backend:e})}let a=I.makeZerosTypedArray(I.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function nr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var aU={kernelName:Bs,backendName:"cpu",kernelFunc:nr};function Bi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var rU={kernelName:Md,backendName:"cpu",kernelFunc:Bi};function ps(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return nr({inputs:{x:r},backend:n});let i=Im(n,r.shape,r.dtype),o=ps({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Un({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Bi({inputs:{input:r},backend:n}),o=ps({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!I.hasEncodingLoss(r.dtype,s)){let i=nr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=I.toTypedArray([0],r.dtype),[l,u]=Rt((c,p)=>c!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var sU={kernelName:As,backendName:"cpu",kernelFunc:ps};function Qt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ve([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,u,c,p);return l.makeTensorInfo(h,p,d)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=ps({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(d.dataId).values,f=ps({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(b.dataId).values,[k,w,S]=n(i.shape,o.shape,h,m,x,v),A=l.makeTensorInfo(S,"float32",k),F=l.makeTensorInfo(S,"float32",w),D=Un({inputs:{real:A,imag:F},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(A),l.disposeIntermediateTensorInfo(F),D}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function xv(e){return(t,n,a,r,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=I.sizeFromShape(o),u=o.length,c=I.computeStrides(o),p=I.getTypedArrayFromDType("float32",l),d=I.getTypedArrayFromDType("float32",l),h=E.getBroadcastDims(t,o),m=E.getBroadcastDims(n,o),f=E.mergeRealAndImagArrays(a,r),g=E.mergeRealAndImagArrays(s,i),y=t.length,b=I.computeStrides(t),x=n.length,v=I.computeStrides(n);if(h.length+m.length===0)for(let k=0;k<p.length;k++){let w=k%f.length,S=k%g.length,A=e(f[w*2],f[w*2+1],g[S*2],g[S*2+1]);p[k]=A.real,d[k]=A.imag}else for(let k=0;k<p.length;k++){let w=I.indexToLoc(k,u,c),S=w.slice(-y);h.forEach(L=>S[L]=0);let A=I.locToIndex(S,y,b),F=w.slice(-x);m.forEach(L=>F[L]=0);let D=I.locToIndex(F,x,v),R=e(f[A*2],f[A*2+1],g[D*2],g[D*2+1]);p[k]=R.real,d[k]=R.imag}return[p,d,o]}}var GN=Rt((e,t)=>e+t),iU=xv((e,t,n,a)=>({real:e+n,imag:t+a})),sp=Qt(Br,GN,iU),oU={kernelName:Br,backendName:"cpu",kernelFunc:sp};function mv(e,t,n,a,r){let s=I.sizeFromShape(a),i=I.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function HN(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Le([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Zl(e){return(t,n,a)=>{let r=I.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function it(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=I.sizeFromShape(i.shape),c=n||i.dtype,p=I.getArrayFromDType(c,u);for(let d=0;d<u;++d)p[d]=t(l[d],r);return o.makeTensorInfo(i.shape,c,p)}}function eu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,r);return o.makeTensorInfo(i.shape,u,c)}}var jN=Zl(e=>Math.ceil(e)),lU=eu(Fs,jN),uU={kernelName:Fs,backendName:"cpu",kernelFunc:lU};function fv(e,t,n,a){let r=I.getArrayFromDType(n,I.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=I.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let c=u*t[1]+s;for(let p=0;p<i.shape[1];++p)r[c+p]=o[l++]}s+=i.shape[1]})}return r}var qN=Zl(e=>Math.exp(e)),m2=eu(Ps,qN),cU={kernelName:Ps,backendName:"cpu",kernelFunc:m2},XN=Zl(e=>Math.expm1(e)),pU=eu(Vo,XN),dU={kernelName:Vo,backendName:"cpu",kernelFunc:pU},KN=Zl(e=>Math.floor(e)),hU=eu(Os,KN),mU={kernelName:Os,backendName:"cpu",kernelFunc:hU};function YN(e,t,n){let a=Le(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);a.values[r]=e.values[u]}return a}var JN=Rt((e,t)=>e>t?1:0),fU=Qt(jo,JN,null,"bool"),gU={kernelName:jo,backendName:"cpu",kernelFunc:fU},QN=Rt((e,t)=>e<t?1:0),yU=Qt(Yo,QN,null,"bool"),bU={kernelName:Yo,backendName:"cpu",kernelFunc:yU};function ZN(e,t,n){let a=(t-e)/(n-1),r=I.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var e2=Zl(e=>Math.log(e)),xU=eu(Us,e2),vU={kernelName:Us,backendName:"cpu",kernelFunc:xU};function t2(e,t,n,a){let r=I.getTypedArrayFromDType(a,I.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}r[s]=o}return r}var n2=Rt((e,t)=>Math.max(e,t)),wU=Qt(Hs,n2),kU={kernelName:Hs,backendName:"cpu",kernelFunc:wU},a2=Rt((e,t)=>Math.min(e,t)),IU=Qt(Ks,a2),NU={kernelName:Ks,backendName:"cpu",kernelFunc:IU},gv=Rt((e,t)=>e*t),TU=xv((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),vv=Qt(Ys,gv,TU),SU={kernelName:Ys,backendName:"cpu",kernelFunc:vv};function r2(e,t,n){let a=I.createScalarValue(-1,n);return gv([],t,a,e,n)}function CU(e){let{inputs:t,backend:n}=e,{x:a}=t;ve(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=r2(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var AU={kernelName:tl,backendName:"cpu",kernelFunc:CU},s2=Rt((e,t)=>e!==t?1:0),FU=Qt(nl,s2,null,"bool"),_U={kernelName:nl,backendName:"cpu",kernelFunc:FU};function yv(e,t,n,a,r){let s=t.length,i=I.sizeFromShape(t),o=I.computeStrides(t),l=I.computeStrides(r),u=I.getTypedArrayFromDType(n,I.sizeFromShape(r));for(let c=0;c<i;++c){let p=I.indexToLoc(c,s,o),d=new Array(p.length);for(let m=0;m<d.length;m++)d[m]=p[a[m]];let h=I.locToIndex(d,s,l);u[h]=e[c]}return u}function ya(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ve(r,"transpose");let i=r.shape.length,o=new Array(i);for(let c=0;c<o.length;c++)o[c]=r.shape[s[c]];let l=a.data.get(r.dataId).values,u=yv(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var EU={kernelName:fi,backendName:"cpu",kernelFunc:ya};function i2(e,t,n,a){let[r,s]=E.computeOutAndReduceShapes(e,a),i=ua(t,"int32"),o=I.makeZerosTypedArray(I.sizeFromShape(r),i),l=I.sizeFromShape(s);for(let u=0;u<o.length;++u){let c=u*l,p=1;for(let d=0;d<l;++d)p*=n[c+d];o[u]=p}return{outVals:o,outShape:r,outDtype:i}}function $U(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"prod");let o=r.shape.length,l=I.parseAxisParam(s,r.shape),u=E.getAxesPermutation(l,o),c=l,p=r,d=[];u!=null&&(p=ya({inputs:{x:r},backend:n,attrs:{perm:u}}),d.push(p),c=E.getInnerMostAxes(c.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:g}=i2(p.shape,p.dtype,h,c),y=f;return i&&(y=E.expandShapeToKeepDim(f,l)),d.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var DU={kernelName:ll,backendName:"cpu",kernelFunc:$U};function bv(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return I.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=I.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var o2=Zl(e=>1/Math.sqrt(e)),MU=eu(ii,o2),RU={kernelName:ii,backendName:"cpu",kernelFunc:MU};function km(e,t,n,a,r){let s=pn.isSliceContinous(a,t,n),i=I.sizeFromShape(n),o=I.computeStrides(a);if(s){let p=pn.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?E.fromUint8ToStringArray(e):e,u=Le(a,r,l),c=Le(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((m,f)=>m+t[f]);c.set(u.get(...h),...d)}return r==="string"?E.fromStringArrayToUint8(c.values):c.values}function Vi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ve(r,"slice");let[o,l]=pn.parseSliceParams(r,s,i);pn.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,c=km(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var PU={kernelName:ml,backendName:"cpu",kernelFunc:Vi},l2=Rt((e,t)=>{let n=e-t;return n*n}),OU=Qt(di,l2),LU={kernelName:di,backendName:"cpu",kernelFunc:OU};function u2(e,t,n,a){let r=Le(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var c2=Rt((e,t)=>e-t),zU=xv((e,t,n,a)=>({real:e-n,imag:t-a})),wv=Qt(hi,c2,zU),WU={kernelName:hi,backendName:"cpu",kernelFunc:wv};function p2(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Le(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function d2(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=I.getTypedArrayFromDType(n,i*a),u=I.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let d=p*o,h=e.subarray(d,d+o),m=[];for(let b=0;b<h.length;b++)m.push({value:h[b],index:b});m.sort((b,x)=>x.value-b.value);let f=p*a,g=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let c=t.slice();return c[c.length-1]=a,[Le(c,n,l),Le(c,"int32",u)]}function h2(e,t,n,a){let r=I.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Lt(s,a,e),u=[],c=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(c)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let d=new Lt(p,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)d.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:o}}var BU="3.3.0";Qd("cpu",()=>new hv,1);var f2=it(Lo,e=>e>=0?e:Math.exp(e)-1),VU={kernelName:Lo,backendName:"cpu",kernelFunc:f2};function g2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ve([r],"leakyRelu");let i=I.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=I.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var UU={kernelName:Vs,backendName:"cpu",kernelFunc:g2},GU=Rt((e,t)=>e<0?t*e:e);function y2(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ve([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=GU(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var HU={kernelName:ei,backendName:"cpu",kernelFunc:y2},b2=it(ti,e=>Math.max(0,e)),jU={kernelName:ti,backendName:"cpu",kernelFunc:b2},x2=it(ai,e=>Math.min(Math.max(0,e),6)),qU={kernelName:ai,backendName:"cpu",kernelFunc:x2};function kv(e,t,n,a,r){if(n==="linear")return nr({inputs:{x:t},backend:e});if(n==="relu")return b2({inputs:{x:t},backend:e});if(n==="elu")return f2({inputs:{x:t},backend:e});if(n==="relu6")return x2({inputs:{x:t},backend:e});if(n==="prelu")return y2({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return g2({inputs:{x:t},backend:e,attrs:{alpha:r}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function It(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=I.sizeFromShape(r.shape),o=I.inferFromImplicitShape(s,i),l=I.sizeFromShape(o);I.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var XU={kernelName:cl,backendName:"cpu",kernelFunc:It};function v2(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ve([r,s],"matMul");let l=r.shape.length,u=s.shape.length,c=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=I.sizeFromShape(m),y=I.sizeFromShape(f),b=g===y||g===1||y===1;I.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);I.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,c,d]:[g,d,c],k=o?[y,h,p]:[y,p,h],w=It({inputs:{x:r},backend:n,attrs:{shape:v}}),S=It({inputs:{x:s},backend:n,attrs:{shape:k}}),A=i?w.shape[1]:w.shape[2],F=i?w.shape[2]:w.shape[1],D=o?S.shape[1]:S.shape[2],R=Math.max(g,y),L=n.data.get(w.dataId).values,W=n.data.get(S.dataId).values,U=I.computeStrides(w.shape),G=I.computeStrides(S.shape),[X,j,te]=i?[U[0],1,U[1]]:[U[0],U[1],1],[Q,se,ne]=o?[1,G[1],G[0]]:[G[1],1,G[0]],ie=F*D,ee=Le([R,F,D],w.dtype),de=ee.values,oe=n.blockSize;for(let ge=0;ge<R;ge++)for(let fe=0;fe<F;fe+=oe)for(let we=0;we<D;we+=oe)for(let Ne=0;Ne<A;Ne+=oe){let Ae=Math.min(fe+oe,F),Me=Math.min(we+oe,D),_e=Math.min(Ne+oe,A);for(let nt=fe;nt<Ae;nt++)for(let at=we;at<Me;at++){let ot=0;for(let Ke=Ne;Ke<_e;Ke++){let ft=Math.min(ge,g-1)*X,We=Math.min(ge,y-1)*ne,vn=L[ft+nt*j+Ke*te],Nt=W[Ke*Q+at*se+We];ot+=vn*Nt}de[ge*ie+(nt*D+at)]+=ot}}return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(S),n.makeTensorInfo(x,ee.dtype,ee.values)}var KU={kernelName:Cs,backendName:"cpu",kernelFunc:v2};function YU(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=a,d,h,m,f=[];d=v2({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=sp({inputs:{a:d,b:i},backend:n}),f.push(d),d=h),c&&(m=kv(n,d,c,o,p),f.push(d),d=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return d}var JU={kernelName:gi,backendName:"cpu",kernelFunc:YU},QU=it(Co,e=>Math.acos(e)),ZU={kernelName:Co,backendName:"cpu",kernelFunc:QU},eG=it(Ao,e=>Math.acosh(e)),tG={kernelName:Ao,backendName:"cpu",kernelFunc:eG};function nG(e){let{inputs:t,backend:n}=e,a=t;ve(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Le(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var aG={kernelName:Ns,backendName:"cpu",kernelFunc:nG};function rG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"all");let o=I.parseAxisParam(s,r.shape),l=o,u=E.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ya({inputs:{x:r},backend:n,attrs:{perm:u}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,d]=E.computeOutAndReduceShapes(c.shape,l),h=I.sizeFromShape(d),m=I.makeZerosTypedArray(I.sizeFromShape(p),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let k=f[b+v];x=x&&k}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,m);if(i){let y=E.expandShapeToKeepDim(p,o),b=It({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var sG={kernelName:ud,backendName:"cpu",kernelFunc:rG};function iG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"any");let o=I.parseAxisParam(s,r.shape),l=o,u=E.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ya({inputs:{x:r},backend:n,attrs:{perm:u}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,d]=E.computeOutAndReduceShapes(c.shape,l),h=I.sizeFromShape(d),m=I.makeZerosTypedArray(I.sizeFromShape(p),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let k=f[b+v];x=x||k}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,m);if(i){let y=E.expandShapeToKeepDim(p,o),b=It({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var oG={kernelName:cd,backendName:"cpu",kernelFunc:iG};function lG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMax");let i=I.parseAxisParam(s,r.shape),o=E.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=ya({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[c,p]=E.computeOutAndReduceShapes(l.shape,i),d=I.sizeFromShape(c),h=I.makeZerosTypedArray(d,"int32"),m=I.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let k=f[y+v];k>b&&(b=k,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var uG={kernelName:Ts,backendName:"cpu",kernelFunc:lG};function cG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMin");let i=I.parseAxisParam(s,r.shape),o=E.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=ya({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,p]=E.computeOutAndReduceShapes(l.shape,i),d=I.sizeFromShape(c),h=I.makeZerosTypedArray(d,"int32"),m=I.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let k=f[y+v];k<b&&(b=k,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var pG={kernelName:Ku,backendName:"cpu",kernelFunc:cG},dG=it(Fo,e=>Math.asin(e)),hG={kernelName:Fo,backendName:"cpu",kernelFunc:dG},mG=it(_o,e=>Math.asinh(e)),fG={kernelName:_o,backendName:"cpu",kernelFunc:mG},gG=it(Eo,e=>Math.atan(e)),yG={kernelName:Eo,backendName:"cpu",kernelFunc:gG},bG=Rt((e,t)=>Math.atan2(e,t)),xG=Qt(Do,bG),vG={kernelName:Do,backendName:"cpu",kernelFunc:xG},wG=it($o,e=>Math.atanh(e)),kG={kernelName:$o,backendName:"cpu",kernelFunc:wG};function Iv(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Le(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let k=v*y,w=v*a[0];for(let S=0;S<r.inChannels;++S)for(let A=0;A<r.outHeight;++A){let F=A*i-d,D=Math.max(0,F),R=Math.min(r.inHeight,c+F),L=k+A*b;for(let W=0;W<r.outWidth;++W){let U=W*o-h,G=Math.max(0,U),X=Math.min(r.inWidth,p+U),j=m,te=0,Q=0;for(let ne=D;ne<R;ne+=l){let ie=w+ne*a[1];for(let ee=G;ee<X;ee+=u){let de=ie+ee*a[2],oe=e[de+S];s==="max"&&oe>j?j=oe:s==="avg"&&(te+=oe,Q++)}if(isNaN(j))break}let se=L+W*x+S;g[se]=s==="avg"?te/Q:j}}}return f}function w2(e,t,n,a,r=!1,s=!1){let i=Le(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,c=a.dilationWidth,p=a.effectiveFilterHeight,d=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Le(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,v=x;for(;v<0;)v+=u;let k=Math.min(a.inHeight,p+x);for(let w=0;w<a.outWidth;++w){let S=w*l-m,A=S;for(;A<0;)A+=c;let F=Math.min(a.inWidth,d+S),D=Number.NEGATIVE_INFINITY,R=-1;for(let L=v;L<k;L+=u){let W=L-x;for(let U=A;U<F;U+=c){let G=U-S,X=f.get(g,L,U,y);X>D&&(D=X,r?R=s?((g*a.inHeight+L)*a.inWidth+U)*a.inChannels+y:(L*a.inWidth+U)*a.inChannels+y:R=W*d+G)}}i.set(R,g,b,w,y)}}return i}function k2(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Le(r.outShape,n),v=x.values,k=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],w=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],A=r.outShape[4];for(let F=0;F<r.batchSize;++F){let D=F*k,R=F*a[0];for(let L=0;L<r.inChannels;++L)for(let W=0;W<r.outDepth;++W){let U=W*i-f,G=U;for(;G<0;)G+=u;let X=Math.min(r.inDepth,d+U),j=D+W*w;for(let te=0;te<r.outHeight;++te){let Q=te*o-g,se=Q;for(;se<0;)se+=c;let ne=Math.min(r.inHeight,h+Q),ie=j+te*S;for(let ee=0;ee<r.outWidth;++ee){let de=ee*l-y,oe=de;for(;oe<0;)oe+=p;let ge=Math.min(r.inWidth,m+de),fe=ie+ee*A,we=b,Ne=0,Ae=0;for(let _e=G;_e<X;_e+=u){let nt=R+_e*a[1];for(let at=se;at<ne;at+=c){let ot=nt+at*a[2];for(let Ke=oe;Ke<ge;Ke+=p){let ft=ot+Ke*a[3],We=e[ft+L];if(s==="max"&&We>we?we=We:s==="avg"&&(Ne+=We,Ae++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let Me=fe+L;v[Me]=s==="avg"?Ne/Ae:we}}}}return x}function IG(e,t){let n=Le(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-d,x=b;for(;x<0;)x+=i;let v=Math.min(t.inDepth,u+b);for(let k=0;k<t.outHeight;++k){let w=k*r-h,S=w;for(;S<0;)S+=o;let A=Math.min(t.inHeight,c+w);for(let F=0;F<t.outWidth;++F){let D=F*s-m,R=D;for(;R<0;)R+=l;let L=Math.min(t.inWidth,p+D),W=Number.NEGATIVE_INFINITY,U=-1;for(let G=x;G<v;G+=i){let X=G-b;for(let j=S;j<A;j+=o){let te=j-w;for(let Q=R;Q<L;Q+=l){let se=Q-D,ne=e.get(f,G,j,Q,g);ne>=W&&(W=ne,U=X*c*p+te*c+se)}}}n.set(U,f,y,k,F,g)}}}return n}function NG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;I.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=E.computePool2DInfo(r.shape,s,i,u,o,l),p;if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))p=nr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=I.computeStrides(r.shape),m=Iv(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,m.values)}return p}var TG={kernelName:Ss,backendName:"cpu",kernelFunc:NG};function SG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ve(r,"avgPool3d");let c=E.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,d=k2(p,r.shape,r.dtype,I.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var CG={kernelName:Yu,backendName:"cpu",kernelFunc:SG};function AG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ve([r,s],"avgPool3DGrad");let c=E.computePool3DInfo(s.shape,i,o,1,l,u),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,m=c.filterDepth,f=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,b=c.dilationHeight,x=c.dilationWidth,v=c.effectiveFilterDepth,k=c.effectiveFilterHeight,w=c.effectiveFilterWidth,S=v-1-c.padInfo.front,A=w-1-c.padInfo.left,F=k-1-c.padInfo.top,D=Le(s.shape,"float32"),R=1/(m*f*g),L=n.bufferSync(r);for(let W=0;W<c.batchSize;++W)for(let U=0;U<c.inChannels;++U)for(let G=0;G<c.inDepth;++G)for(let X=0;X<c.inHeight;++X)for(let j=0;j<c.inWidth;++j){let te=G-S,Q=X-F,se=j-A,ne=0;for(let ie=0;ie<v;ie+=y){let ee=(te+ie)/p;if(!(ee<0||ee>=c.outDepth||Math.floor(ee)!==ee))for(let de=0;de<k;de+=b){let oe=(Q+de)/d;if(!(oe<0||oe>=c.outHeight||Math.floor(oe)!==oe))for(let ge=0;ge<w;ge+=x){let fe=(se+ge)/h;fe<0||fe>=c.outWidth||Math.floor(fe)!==fe||(ne+=L.get(W,ee,oe,fe,U))}}}D.set(ne*R,W,G,X,j,U)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var FG={kernelName:dd,backendName:"cpu",kernelFunc:AG};function _G(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ve([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,c=E.computePool2DInfo(i.shape,o,l,1,u),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,b=c.effectiveFilterWidth,x=b-1-c.padInfo.left,v=y-1-c.padInfo.top,k=Le(i.shape,"float32"),w=1/(h*m),S=n.data.get(r.dataId).values,A=Le(r.shape,"float32",S);for(let F=0;F<c.batchSize;++F)for(let D=0;D<c.inChannels;++D)for(let R=0;R<c.inHeight;++R)for(let L=0;L<c.inWidth;++L){let W=R-v,U=L-x,G=0;for(let X=0;X<y;X+=f){let j=(W+X)/p;if(!(j<0||j>=c.outHeight||Math.floor(j)!==j))for(let te=0;te<b;te+=g){let Q=(U+te)/d;Q<0||Q>=c.outWidth||Math.floor(Q)!==Q||(G+=A.get(F,j,Q,D))}}k.set(G*w,F,R,L,D)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var EG={kernelName:pd,backendName:"cpu",kernelFunc:_G};function $G(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;I.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let c=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(c.length),g=m.length,y=h.length,b=d.length,x=p.length,v=0,k=0,w=0,S=0;for(let A=0;A<c.length;++A)f[A]=m[v++]+(c[A]-p[k++])*h[w++]/Math.sqrt(d[S++]+u),v>=g&&(v=0),k>=x&&(k=0),w>=y&&(w=0),S>=b&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var DG={kernelName:zs,backendName:"cpu",kernelFunc:$G};function MG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ve([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=E.getReshaped(r.shape,s,o),u=E.getPermuted(l.length,s.length),c=E.getReshapedPermuted(r.shape,s,o),p=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(c,i,s.length),h=It({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ya({inputs:{x:h},backend:n,attrs:{perm:u}}),f=It({inputs:{x:m},backend:n,attrs:{shape:c}}),g=Vi({inputs:{x:f},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var RG={kernelName:Ju,backendName:"cpu",kernelFunc:MG};function PG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=mv(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var OG={kernelName:hd,backendName:"cpu",kernelFunc:PG},LG=it(Vr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),zG={kernelName:Vr,backendName:"cpu",kernelFunc:LG},WG=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(I.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let c=o[u],p=l[u];a[u]=Math.hypot(c,p)}return n.makeOutput(a,t.shape,"float32")},BG={kernelName:Qu,backendName:"cpu",kernelFunc:WG};function tu(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var VG={kernelName:Cd,backendName:"cpu",kernelFunc:tu};function nu(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=I.parseAxisParam(r,t[0].shape)[0],i=E.computeOutShape(t.map(f=>f.shape),s);if(I.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>I.sizeFromShape(f.shape)>0);if(o.length===1)return nr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>Bi({inputs:{input:v},backend:n})),g=o.map(v=>tu({inputs:{input:v},backend:n})),y=nu({inputs:f,backend:n,attrs:{axis:s}}),b=nu({inputs:g,backend:n,attrs:{axis:s}}),x=Un({inputs:{real:y,imag:b},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let u=o.map(f=>{let g=I.sizeFromShape(f.shape.slice(s));return It({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=E.computeOutShape(u.map(f=>f.shape),1);let p=u[0].shape[0]===1,d=fv(c,i,t[0].dtype,p),h=E.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,d);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var UG={kernelName:Mo,backendName:"cpu",kernelFunc:nu};function I2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=a;ve([r,s],"conv2d");let p=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(r.shape,s.shape,i,u,o,c,!1,p),h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,b=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Lt(d.outShape,r.dtype),k=I.computeStrides(r.shape),w=I.computeStrides(s.shape),S=k[0],A=x?k[1]:k[2],F=x?k[2]:1,D=x?1:k[1],R=v.strides[0],L=x?v.strides[1]:v.strides[2],W=x?v.strides[2]:1,U=x?1:v.strides[1],G=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,j=v.values;for(let te=0;te<d.batchSize;++te){let Q=te*S,se=te*R;for(let ne=0;ne<d.outHeight;++ne){let ie=se+ne*L,ee=ne*d.strideHeight-b;for(let de=0;de<h;++de){let oe=ee+de*f;if(oe<0||oe>=d.inHeight)continue;let ge=de*w[0],fe=Q+oe*A;for(let we=0;we<d.outWidth;++we){let Ne=ie+we*W,Ae=we*d.strideWidth-y;for(let Me=0;Me<m;++Me){let _e=Ae+Me*g;if(_e<0||_e>=d.inWidth)continue;let nt=ge+Me*w[1],at=fe+_e*F,ot=nt;for(let Ke=0;Ke<d.inChannels;++Ke){let ft=G[at+Ke*D];for(let We=0;We<d.outChannels;++We)j[Ne+We*U]+=ft*X[ot+We];ot+=d.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,j)}var GG={kernelName:_s,backendName:"cpu",kernelFunc:I2};function HG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=a;ve([r,s],"conv2dBackpropFilter");let p=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(r.shape,c,i,1,o,u,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=d,y=d.dataFormat==="channelsLast",b=new Lt(d.filterShape,"float32"),x=d.padInfo.left,v=d.padInfo.top,k=n.data.get(r.dataId).values,w=n.data.get(s.dataId).values,S=new Lt(r.shape,r.dtype,k),A=new Lt(s.shape,s.dtype,w);for(let F=0;F<f;++F){let D=Math.max(0,Math.ceil((v-F)/h)),R=Math.min(d.outHeight,(d.inHeight+v-F)/h);for(let L=0;L<g;++L){let W=Math.max(0,Math.ceil((x-L)/m)),U=Math.min(d.outWidth,(d.inWidth+x-L)/m);for(let G=0;G<d.inChannels;++G)for(let X=0;X<d.outChannels;++X){let j=0;for(let te=0;te<d.batchSize;++te)for(let Q=D;Q<R;++Q){let se=F+Q*h-v;for(let ne=W;ne<U;++ne){let ie=L+ne*m-x;y?j+=S.get(te,se,ie,G)*A.get(te,Q,ne,X):j+=S.get(te,G,se,ie)*A.get(te,X,Q,ne)}}b.set(j,F,L,G,X)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var jG={kernelName:fd,backendName:"cpu",kernelFunc:HG};function qG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=a;ve([r,s],"conv2dBackpropInput");let p=I.computeStrides(s.shape),d=I.computeStrides(r.shape),h=E.convertConv2DDataFormat(u),m=E.computeConv2DInfo(i,s.shape,o,1,l,c,!1,h),f=new Lt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,v,k]=p,{batchSize:w,filterHeight:S,filterWidth:A,inChannels:F,inHeight:D,inWidth:R,outChannels:L,outHeight:W,outWidth:U,strideHeight:G,strideWidth:X}=m;h=m.dataFormat;let j=S-1-m.padInfo.top,te=A-1-m.padInfo.left,Q=h==="channelsLast",se=f.strides[0],ne=Q?f.strides[1]:f.strides[2],ie=Q?f.strides[2]:1,ee=Q?1:f.strides[1],de=d[0],oe=Q?d[1]:d[2],ge=Q?d[2]:1,fe=Q?1:d[1];for(let we=0;we<w;++we)for(let Ne=0;Ne<F;++Ne)for(let Ae=0;Ae<D;++Ae){let Me=Ae-j,_e=Math.max(0,Math.ceil(Me/G)),nt=Math.min(W,(S+Me)/G);for(let at=0;at<R;++at){let ot=at-te,Ke=Math.max(0,Math.ceil(ot/X)),ft=Math.min(U,(A+ot)/X),We=0;for(let Nt=_e;Nt<nt;++Nt){let qn=Nt*G-Me;for(let en=Ke;en<ft;++en){let wn=en*X-ot,Xn=de*we+oe*Nt+ge*en,Mn=x*(S-1-qn)+v*(A-1-wn)+k*Ne;for(let cn=0;cn<L;++cn){let tn=y[Xn+fe*cn],Wa=b[Mn+cn];We+=tn*Wa}}}let vn=se*we+ne*Ae+ie*at+ee*Ne;g[vn]=We}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var XG={kernelName:Es,backendName:"cpu",kernelFunc:qG};function KG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ve([r,s],"conv3d");let u=E.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:c,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,b=g.left,x=g.top,v=new Lt(u.outShape,r.dtype),k=n.data.get(r.dataId).values,w=n.data.get(s.dataId).values,S=v.values,A=I.computeStrides(r.shape),F=I.computeStrides(s.shape);for(let D=0;D<u.batchSize;++D){let R=D*A[0],L=D*v.strides[0];for(let W=0;W<u.outDepth;++W){let U=L+W*v.strides[1],G=W*u.strideDepth-y;for(let X=0;X<c;++X){let j=G+X*h;if(j<0||j>=u.inDepth)continue;let te=X*F[0],Q=R+j*A[1];for(let se=0;se<u.outHeight;++se){let ne=U+se*v.strides[2],ie=se*u.strideHeight-x;for(let ee=0;ee<p;++ee){let de=ie+ee*m;if(de<0||de>=u.inHeight)continue;let oe=te+ee*F[1],ge=Q+de*A[2];for(let fe=0;fe<u.outWidth;++fe){let we=ne+fe*u.outChannels,Ne=fe*u.strideWidth-b;for(let Ae=0;Ae<d;++Ae){let Me=Ne+Ae*f;if(Me<0||Me>=u.inWidth)continue;let _e=oe+Ae*F[2],nt=ge+Me*u.inChannels,at=_e;for(let ot=0;ot<u.inChannels;++ot){let Ke=k[nt+ot];for(let ft=0;ft<u.outChannels;++ft)S[we+ft]+=Ke*w[at+ft];at+=u.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var YG={kernelName:Zu,backendName:"cpu",kernelFunc:KG};function JG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ve([r,s],"conv3dBackpropFilterV2");let u=I.computeStrides(r.shape),c=I.computeStrides(s.shape),p=E.computeConv3DInfo(r.shape,l,i,1,o),d=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,g=p.filterHeight,y=p.filterWidth,b=new Lt(p.filterShape,"float32"),x=b.values,[v,k,w,S]=b.strides,A=n.data.get(s.dataId).values,[F,D,R,L]=c,W=n.data.get(r.dataId).values,[U,G,X,j]=u,te=p.padInfo.front,Q=p.padInfo.left,se=p.padInfo.top;for(let ne=0;ne<f;++ne){let ie=Math.max(0,Math.ceil((te-ne)/d)),ee=Math.min(p.outDepth,(p.inDepth+te-ne)/d),de=ne*v;for(let oe=0;oe<g;++oe){let ge=Math.max(0,Math.ceil((se-oe)/h)),fe=Math.min(p.outHeight,(p.inHeight+se-oe)/h),we=oe*k+de;for(let Ne=0;Ne<y;++Ne){let Ae=Math.max(0,Math.ceil((Q-Ne)/m)),Me=Math.min(p.outWidth,(p.inWidth+Q-Ne)/m),_e=Ne*w+we;for(let nt=0;nt<p.inChannels;++nt){let at=nt*S+_e;for(let ot=0;ot<p.outChannels;++ot){let Ke=0;for(let ft=0;ft<p.batchSize;++ft){let We=ft*U,vn=ft*F;for(let Nt=ie;Nt<ee;++Nt){let qn=(ne+Nt*d-te)*G+We,en=Nt*D+vn;for(let wn=ge;wn<fe;++wn){let Xn=(oe+wn*h-se)*X+qn,Mn=wn*R+en;for(let cn=Ae;cn<Me;++cn){let tn=(Ne+cn*m-Q)*j+Xn,Wa=cn*L+Mn;Ke+=W[tn+nt]*A[Wa+ot]}}}}x[at+ot]=Ke}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var QG={kernelName:gd,backendName:"cpu",kernelFunc:JG};function ZG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ve([r],"conv3dBackpropInputV2");let u=I.computeStrides(r.shape),c=I.computeStrides(s.shape),p=E.computeConv3DInfo(l,s.shape,o,1,i),d=new Lt(p.inShape,"float32"),h=d.values,[m,f,g,y]=d.strides,b=n.data.get(r.dataId).values,[x,v,k,w]=u,S=n.data.get(s.dataId).values,[A,F,D,R]=c,{batchSize:L,filterDepth:W,filterHeight:U,filterWidth:G,inChannels:X,inDepth:j,inHeight:te,inWidth:Q,outChannels:se,outDepth:ne,outHeight:ie,outWidth:ee,strideDepth:de,strideHeight:oe,strideWidth:ge}=p,fe=W-1-p.padInfo.front,we=U-1-p.padInfo.top,Ne=G-1-p.padInfo.left;for(let Ae=0;Ae<L;++Ae)for(let Me=0;Me<X;++Me)for(let _e=0;_e<j;++_e){let nt=_e-fe,at=Math.max(0,Math.ceil(nt/de)),ot=Math.min(ne,(W+nt)/de);for(let Ke=0;Ke<te;++Ke){let ft=Ke-we,We=Math.max(0,Math.ceil(ft/oe)),vn=Math.min(ie,(U+ft)/oe);for(let Nt=0;Nt<Q;++Nt){let qn=Nt-Ne,en=Math.max(0,Math.ceil(qn/ge)),wn=Math.min(ee,(G+qn)/ge),Xn=0;for(let Mn=at;Mn<ot;++Mn){let cn=Mn*de-nt;for(let tn=We;tn<vn;++tn){let Wa=tn*oe-ft;for(let sa=en;sa<wn;++sa){let ia=sa*ge-qn,$r=x*Ae+v*Mn+k*tn+w*sa,lr=A*(W-1-cn)+F*(U-1-Wa)+D*(G-1-ia)+R*Me;for(let Dr=0;Dr<se;++Dr){let co=b[$r+Dr],ka=S[lr+Dr];Xn+=co*ka}}}}h[m*Ae+f*_e+g*Ke+y*Nt+Me]=Xn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var eH={kernelName:yd,backendName:"cpu",kernelFunc:ZG},tH=it($s,e=>Math.cos(e)),nH={kernelName:$s,backendName:"cpu",kernelFunc:tH},aH=it(Ro,e=>Math.cosh(e)),rH={kernelName:Ro,backendName:"cpu",kernelFunc:aH};function sH(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[c,p,d,h]=r.shape,m=s.shape[0],[f,g]=o,y=Le([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,k=I.computeStrides(r.shape),w=I.computeStrides(y.shape);for(let S=0;S<m;S++){let A=S*4,F=b[A],D=b[A+1],R=b[A+2],L=b[A+3],W=x[S];if(W>=c)continue;let U=f>1?(R-F)*(p-1)/(f-1):0,G=g>1?(L-D)*(d-1)/(g-1):0;for(let X=0;X<f;X++){let j=f>1?F*(p-1)+X*U:.5*(F+R)*(p-1);if(j<0||j>p-1){for(let te=0;te<g;te++)for(let Q=0;Q<h;Q++){let se=Q+te*w[2]+X*w[1]+S*w[0];y.values[se]=u}continue}if(l==="bilinear"){let te=Math.floor(j),Q=Math.ceil(j),se=j-te;for(let ne=0;ne<g;ne++){let ie=g>1?D*(d-1)+ne*G:.5*(D+L)*(d-1);if(ie<0||ie>d-1){for(let ge=0;ge<h;ge++){let fe=ge+ne*w[2]+X*w[1]+S*w[0];y.values[fe]=u}continue}let ee=Math.floor(ie),de=Math.ceil(ie),oe=ie-ee;for(let ge=0;ge<h;ge++){let fe=ge+ee*k[2]+te*k[1]+W*k[0],we=v[fe];fe=ge+de*k[2]+te*k[1]+W*k[0];let Ne=v[fe];fe=ge+ee*k[2]+Q*k[1]+W*k[0];let Ae=v[fe];fe=ge+de*k[2]+Q*k[1]+W*k[0];let Me=v[fe],_e=we+(Ne-we)*oe,nt=Ae+(Me-Ae)*oe;fe=ge+ne*w[2]+X*w[1]+S*w[0],y.values[fe]=_e+(nt-_e)*se}}}else for(let te=0;te<g;++te){let Q=g>1?D*(d-1)+te*G:.5*(D+L)*(d-1);if(Q<0||Q>d-1){for(let ie=0;ie<h;ie++){let ee=ie+te*w[2]+X*w[1]+S*w[0];y.values[ee]=u}continue}let se=Math.round(Q),ne=Math.round(j);for(let ie=0;ie<h;ie++){let ee=ie+se*k[2]+ne*k[1]+W*k[0],de=ie+te*w[2]+X*w[1]+S*w[0];y.values[de]=v[ee]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var iH={kernelName:Po,backendName:"cpu",kernelFunc:sH};function oH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ve(r,"cumsum");let l=E.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=ya({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=E.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=ua(u.dtype,"int32"),d=I.makeZerosTypedArray(I.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)d[x]=i?0:h[x];else{let v=f(y,b-1);d[x]=i?h[v]+d[v]:h[x]+d[v]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=E.getUndoAxesPermutation(l),b=ya({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var lH={kernelName:Ds,backendName:"cpu",kernelFunc:oH};function uH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,c=mv(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),c=HN(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var cH={kernelName:bd,backendName:"cpu",kernelFunc:uH};function pH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;I.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),I.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],p=l*s,d=u*s,h=c/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*d*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<p;++b){let x=Math.floor(b/s),v=b%s;for(let k=0;k<d;++k){let w=Math.floor(k/s),S=k%s,A=(v*s+S)*h;for(let F=0;F<h;++F){let D=F+A+c*(w+u*(x+l*y));f[g++]=m[D]}}}return n.makeTensorInfo([o,p,d,h],r.dtype,f)}var dH={kernelName:Oo,backendName:"cpu",kernelFunc:pH};function N2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ve([r,s],"depthwiseConv2DNative");let c=I.computeStrides(r.shape),p=I.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),I.assert(E.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=E.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,v=b.top,k=h.outChannels/h.inChannels,w=new Lt(h.outShape,r.dtype),S=n.data.get(r.dataId).values,A=n.data.get(s.dataId).values,F=w.values;for(let D=0;D<h.batchSize;++D){let R=D*c[0],L=D*w.strides[0];for(let W=0;W<h.outHeight;++W){let U=L+W*w.strides[1],G=W*h.strideHeight-x;for(let X=0;X<m;++X){let j=G+X*g;if(j<0||j>=h.inHeight)continue;let te=X*p[0],Q=R+j*c[1];for(let se=0;se<h.outWidth;++se){let ne=U+se*w.strides[2],ie=se*h.strideWidth-v;for(let ee=0;ee<f;++ee){let de=ie+ee*y;if(de<0||de>=h.inWidth)continue;let oe=te+ee*p[1],ge=Q+de*h.inChannels,fe=ne,we=oe;for(let Ne=0;Ne<h.inChannels;++Ne){let Ae=S[ge+Ne];for(let Me=0;Me<k;++Me)F[fe+Me]+=Ae*A[we+Me];fe+=k,we+=k}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var hH={kernelName:Ms,backendName:"cpu",kernelFunc:N2};function mH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=a;ve([r,s],"depthwiseConv2dNativeBackpropFilter");let p=E.computeConv2DInfo(r.shape,c,i,o,l,u,!0),{strideHeight:d,strideWidth:h,filterHeight:m,filterWidth:f}=p,g=new Lt(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,x=p.outChannels/p.inChannels,v=n.data.get(r.dataId).values,k=new Lt(r.shape,r.dtype,v),w=n.data.get(s.dataId).values,S=new Lt(s.shape,s.dtype,w);for(let A=0;A<m;++A){let F=Math.max(0,Math.ceil((b-A)/d)),D=Math.min(p.outHeight,(p.inHeight+b-A)/d);for(let R=0;R<f;++R){let L=Math.max(0,Math.ceil((y-R)/h)),W=Math.min(p.outWidth,(p.inWidth+y-R)/h);for(let U=0;U<p.outChannels;++U){let G=Math.trunc(U/x),X=U%x,j=0;for(let te=0;te<p.batchSize;++te)for(let Q=F;Q<D;++Q){let se=A+Q*d-b;for(let ne=L;ne<W;++ne){let ie=R+ne*h-y;j+=k.get(te,se,ie,G)*S.get(te,Q,ne,U)}}g.set(j,A,R,G,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var fH={kernelName:xd,backendName:"cpu",kernelFunc:mH};function gH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=a;ve([r,s],"depthwiseConv2DNativeBackpropInput");let p=I.computeStrides(r.shape),d=I.computeStrides(s.shape),h=E.computeConv2DInfo(c,s.shape,i,o,l,u,!0),m=new Lt(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[v,k,w]=p,S=n.data.get(s.dataId).values,[A,F,D]=d,{batchSize:R,filterHeight:L,filterWidth:W,inChannels:U,inHeight:G,inWidth:X,outChannels:j,outHeight:te,outWidth:Q,strideHeight:se,strideWidth:ne}=h,ie=L-1-h.padInfo.top,ee=W-1-h.padInfo.left,de=j/U;for(let oe=0;oe<R;++oe)for(let ge=0;ge<U;++ge)for(let fe=0;fe<G;++fe){let we=fe-ie,Ne=Math.max(0,Math.ceil(we/se)),Ae=Math.min(te,(L+we)/se);for(let Me=0;Me<X;++Me){let _e=Me-ee,nt=Math.max(0,Math.ceil(_e/ne)),at=Math.min(Q,(W+_e)/ne),ot=0;for(let Ke=Ne;Ke<Ae;++Ke){let ft=Ke*se-we;for(let We=nt;We<at;++We){let vn=We*ne-_e,Nt=v*oe+k*Ke+w*We,qn=A*(L-1-ft)+F*(W-1-vn)+D*ge;for(let en=0;en<de;++en){let wn=ge*de+en,Xn=x[Nt+wn],Mn=S[qn+en];ot+=Xn*Mn}}}f[g*oe+y*fe+b*Me+ge]=ot}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var yH={kernelName:vd,backendName:"cpu",kernelFunc:gH};function bH(e){let{inputs:t,backend:n}=e,{x:a}=t,r=I.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Le([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var xH={kernelName:wd,backendName:"cpu",kernelFunc:bH},vH={kernelName:ec,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,c=a.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:v,strideWidth:k,filterHeight:w,filterWidth:S,dilationHeight:A,dilationWidth:F,outShape:D}=E.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),R=I.sizeFromShape(D),L=D.length,W=I.getArrayFromDType(a.dtype,R);for(let U=0;U<h;++U)for(let G=0;G<y;++G){let X=G*v-x.top;for(let j=0;j<b;++j){let te=j*k-x.left;for(let Q=0;Q<g;++Q){let se=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<w;++ie){let ee=X+ie*A;if(ee>=0&&ee<m)for(let de=0;de<S;++de){let oe=te+de*F;if(oe>=0&&oe<f){let ge=I.locToIndex([U,ee,oe,Q],c,I.computeStrides(a.shape)),fe=I.locToIndex([ie,de,Q],d,I.computeStrides(r.shape)),we=u[ge]+p[fe];we>se&&(se=we)}}}let ne=I.locToIndex([U,G,j,Q],L,I.computeStrides(D));W[ne]=se}}}return{dataId:l.write(I.toTypedArray(W,a.dtype),D,a.dtype),shape:D,dtype:a.dtype}}},wH={kernelName:Id,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=I.toNestedArray(a.shape,u.data.get(a.dataId).values),p=I.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:k,filterWidth:w,dilationHeight:S,dilationWidth:A,outShape:F}=E.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);I.assert(s.rank===F.length,()=>`Error in ${Id}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let D=I.toNestedArray(F,u.data.get(s.dataId).values),R=I.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L<d;++L)for(let W=0;W<g;++W){let U=W*x-b.top;for(let G=0;G<y;++G){let X=G*v-b.left;for(let j=0;j<f;++j){let te=Number.MIN_SAFE_INTEGER,Q=0,se=0;for(let ne=0;ne<k;++ne){let ie=U+ne*S;if(ie>=0&&ie<h)for(let ee=0;ee<w;++ee){let de=X+ee*A;if(de>=0&&de<m){let oe=c[L][ie][de][j]+p[ne][ee][j];oe>te&&(te=oe,Q=ne,se=ee)}}}R[Q][se][j]+=D[L][W][G][j]}}}return{dataId:u.write(I.toTypedArray(R,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},kH={kernelName:kd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=I.toNestedArray(a.shape,u.data.get(a.dataId).values),p=I.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:k,filterWidth:w,dilationHeight:S,dilationWidth:A,outShape:F}=E.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);I.assert(s.rank===F.length,()=>`Error in ${kd}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let D=I.toNestedArray(F,u.data.get(s.dataId).values),R=I.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L<d;++L)for(let W=0;W<g;++W){let U=W*x-b.top;for(let G=0;G<y;++G){let X=G*v-b.left;for(let j=0;j<f;++j){let te=Number.MIN_SAFE_INTEGER,Q=U<0?0:U,se=X<0?0:X;for(let ne=0;ne<k;++ne){let ie=U+ne*S;if(ie>=0&&ie<h)for(let ee=0;ee<w;++ee){let de=X+ee*A;if(de>=0&&de<m){let oe=c[L][ie][de][j]+p[ne][ee][j];oe>te&&(te=oe,Q=ie,se=de)}}}R[L][Q][se][j]+=D[L][W][G][j]}}}return{dataId:u.write(I.toTypedArray(R,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function IH(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ve([a,r],"eluGrad");let s=new Float32Array(I.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var NH={kernelName:Nd,backendName:"cpu",kernelFunc:IH},TH=Rt((e,t)=>e===t?1:0),T2=Qt(Wo,TH,null,"bool"),SH={kernelName:Wo,backendName:"cpu",kernelFunc:T2},CH=E.ERF_P,AH=E.ERF_A1,FH=E.ERF_A2,_H=E.ERF_A3,EH=E.ERF_A4,$H=E.ERF_A5,DH=it(zo,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+CH*n);return t*(1-(((($H*a+EH)*a+_H)*a+FH)*a+AH)*a*Math.exp(-n*n))}),MH={kernelName:zo,backendName:"cpu",kernelFunc:DH};function Nm(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(I.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),It({inputs:{x:r},backend:n,attrs:{shape:o}})}var RH={kernelName:Bo,backendName:"cpu",kernelFunc:Nm},PH=Rt((e,t)=>e/t),Nv=Qt(Rs,PH),Tv={kernelName:Rs,backendName:"cpu",kernelFunc:Nv};function S2(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],c=I.sizeFromShape(u),p=I.getTypedArrayFromDType("float32",c),d=I.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let y=Vi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=Vi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Un({inputs:{real:y,imag:b},backend:n}),{real:v,imag:k}=OH(x,t,n),w=E.mergeRealAndImagArrays(v,k);for(let S=0;S<s;S++){let A=E.getComplexWithIndex(w,S);p[g*s+S]=A.real,d[g*s+S]=A.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",p),m=n.makeTensorInfo(u,"float32",d),f=Un({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function OH(e,t,n){let a=I.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(LH(a)){let o=Sv(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),c=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",I.createScalarValue(a,"float32")),d=nr({inputs:{x:p},backend:n}),h=Tv.kernelFunc({inputs:{a:u,b:p},backend:n}),m=Tv.kernelFunc({inputs:{a:c,b:d},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=E.mergeRealAndImagArrays(s,i),l=zH(o,a,t);return E.splitRealAndImagArrays(l)}}function LH(e){return(e&e-1)==0}function Sv(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=E.mergeRealAndImagArrays(e,t),i=n/2,o=E.complexWithEvenIndex(s),l=o.real,u=o.imag,c=[l.length],p=r.makeTensorInfo(c,"float32",l),d=r.makeTensorInfo(c,"float32",u),h=Un({inputs:{real:p,imag:d},backend:r}),m=E.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=Un({inputs:{real:b,imag:x},backend:r}),k=Sv(l,u,i,a,r),w=k.real,S=k.imag,A=[w.length],F=r.makeTensorInfo(A,"float32",w),D=r.makeTensorInfo(A,"float32",S),R=Un({inputs:{real:F,imag:D},backend:r}),L=Sv(f,g,i,a,r),W=L.real,U=L.imag,G=[W.length],X=r.makeTensorInfo(G,"float32",W),j=r.makeTensorInfo(G,"float32",U),te=Un({inputs:{real:X,imag:j},backend:r}),Q=E.exponents(n,a),se=[Q.real.length],ne=r.makeTensorInfo(se,"float32",Q.real),ie=r.makeTensorInfo(se,"float32",Q.imag),ee=Un({inputs:{real:ne,imag:ie},backend:r}),de=vv({inputs:{a:ee,b:te},backend:r}),oe=sp({inputs:{a:R,b:de},backend:r}),ge=wv({inputs:{a:R,b:de},backend:r}),fe=Bi({inputs:{input:oe},backend:r}),we=Bi({inputs:{input:ge},backend:r}),Ne=tu({inputs:{input:oe},backend:r}),Ae=tu({inputs:{input:ge},backend:r}),Me=nu({inputs:[fe,we],backend:r,attrs:{axis:0}}),_e=nu({inputs:[Ne,Ae],backend:r,attrs:{axis:0}}),nt=r.data.get(Me.dataId).values,at=r.data.get(_e.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ge),r.disposeIntermediateTensorInfo(fe),r.disposeIntermediateTensorInfo(Ne),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(Ae),r.disposeIntermediateTensorInfo(Me),r.disposeIntermediateTensorInfo(_e),{real:nt,imag:at}}function zH(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=E.exponent(r*o,t,n),u=E.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),E.assignToTypedArray(a,s,i,r)}return a}function WH(e){let{inputs:t,backend:n}=e,{input:a}=t,r=I.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=It({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=S2(o,!1,n),u=It({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var BH={kernelName:Td,backendName:"cpu",kernelFunc:WH};function Cv(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||I.inferDtype(r),o=I.getArrayFromDType(i,I.sizeFromShape(a));return VH(o,r,i),t.makeTensorInfo(a,i,o)}var UH={kernelName:tc,backendName:"cpu",kernelFunc:Cv};function VH(e,t,n){e.fill(t)}var GH={kernelName:Uo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=I.getTypedArrayFromDType(a.dtype,I.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,c=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let d=p*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let b=[i,h,f,y][2],x=Math.round(l-b),v=d+m+g+y,k=c[v];if(x>=0&&x<l){let w=x*u,S=d+m+w+y;k=c[S]}s[v]=k}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},HH=Rt((e,t)=>Math.floor(e/t)),jH=Qt(Ls,HH,null,"int32"),qH={kernelName:Ls,backendName:"cpu",kernelFunc:jH};function XH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=I2({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=sp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=kv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var KH={kernelName:yi,backendName:"cpu",kernelFunc:XH};function YH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=N2({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=sp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=kv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var JH={kernelName:bi,backendName:"cpu",kernelFunc:YH};function QH(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=I.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,c,p]=E.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let d=Le([u,c],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<u;f++){let g=[],y=0;for(let b=0;b<o;b++){let x=h[f*o+b];y+=x*p[b],g.push(x)}if(y<0||y>=s/c)throw new Error(`Invalid indices: ${g} does not index into ${a.shape}`);for(let b=0;b<c;b++)d.values[f*c+b]=m[y*c+b]}return n.makeTensorInfo(l,d.dtype,d.values)}var ZH={kernelName:Ho,backendName:"cpu",kernelFunc:QH};function e6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ve([r,s],"gatherV2");let l=o;o==null&&(l=0);let u=I.sizeFromShape(s.shape),c=I.parseAxisParam(i,r.shape)[0],p=E.segment_util.collectGatherOpShapeInfo(r,s,c,l),d=It({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=It({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,u/p.batchSize]}}),m=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],f=n.bufferSync(h),g=n.bufferSync(d),y=YN(g,f,m);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var t6={kernelName:Go,backendName:"cpu",kernelFunc:e6},n6=Rt((e,t)=>e>=t?1:0),a6=Qt(Ws,n6,null,"bool"),r6={kernelName:Ws,backendName:"cpu",kernelFunc:a6};function s6(e){let{inputs:t,backend:n}=e,{input:a}=t,r=I.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=It({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=S2(o,!0,n),u=It({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var i6={kernelName:Sd,backendName:"cpu",kernelFunc:s6},o6=it(qo,e=>Number.isFinite(e)?1:0,"bool"),l6={kernelName:qo,backendName:"cpu",kernelFunc:o6},u6=it(Xo,e=>Math.abs(e)===Infinity?1:0,"bool"),c6={kernelName:Xo,backendName:"cpu",kernelFunc:u6},p6=it(Ko,e=>Number.isNaN(e)?1:0,"bool"),d6={kernelName:Ko,backendName:"cpu",kernelFunc:p6},h6=Rt((e,t)=>e<=t?1:0),m6=Qt(Jo,h6,null,"bool"),f6={kernelName:Jo,backendName:"cpu",kernelFunc:m6};function g6(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=ZN(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var y6={kernelName:Ad,backendName:"cpu",kernelFunc:g6},b6=it(Qo,e=>Math.log1p(e)),x6={kernelName:Qo,backendName:"cpu",kernelFunc:b6},v6=Rt((e,t)=>e&&t),w6=Qt(Zo,v6,null,"bool"),k6={kernelName:Zo,backendName:"cpu",kernelFunc:w6},I6=it(nc,e=>e?0:1,"bool"),N6={kernelName:nc,backendName:"cpu",kernelFunc:I6},T6=Rt((e,t)=>e||t),S6=Qt(ac,T6,null,"bool"),C6={kernelName:ac,backendName:"cpu",kernelFunc:S6};function A6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ve(r,"LRN");let u=r.shape[3],c=u-1,p=n.data.get(r.dataId).values,d=I.sizeFromShape(r.shape),h=new Float32Array(d);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,c),x=0;for(;y<=b;y++){let v=p[y];x+=v*v}return x}for(let f=0;f<d;f++){let g=m(f),y=p[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var F6={kernelName:rc,backendName:"cpu",kernelFunc:A6};function _6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=a;ve(i,"LRNGrad");let p=I.sizeFromShape(i.shape),d=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let b=0;b<y;b++){let x=b%d,v=b-x+Math.max(0,x-o),k=b-x+Math.min(d,x+o+1),w=0;for(let S=v;S<k;S++)w+=Math.pow(m[S],2);w=u*w+l;for(let S=v;S<k;S++){let A=-2*u*c*m[S]*f[b]/w;b===S&&(A+=Math.pow(w,-c)),A*=h[b],g[S]+=A}}return n.makeTensorInfo(i.shape,r.dtype,g)}var E6={kernelName:Fd,backendName:"cpu",kernelFunc:_6};function C2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,c=I.parseAxisParam(s,l),p=c,d=E.getAxesPermutation(p,u),h=o.data.get(r.dataId).values;if(d!=null){let v=new Array(u);for(let k=0;k<v.length;k++)v[k]=l[d[k]];h=yv(h,l,r.dtype,d,v),p=E.getInnerMostAxes(p.length,u),l=v}ve(r,"max"),E.assertAxesAreInnerMostDims("max",p,u);let[m,f]=E.computeOutAndReduceShapes(l,p),g=I.sizeFromShape(f),y=t2(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=E.expandShapeToKeepDim(m,c)),{dataId:b,shape:x,dtype:r.dtype}}var $6={kernelName:Gs,backendName:"cpu",kernelFunc:C2};function D6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;I.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=E.computePool2DInfo(r.shape,s,i,u,o,l),p;if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))p=nr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=I.computeStrides(r.shape),m=Iv(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,m.values)}return p}var M6={kernelName:js,backendName:"cpu",kernelFunc:D6};function R6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ve(r,"maxPool3d");let c=E.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,d=k2(p,r.shape,r.dtype,I.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var P6={kernelName:sc,backendName:"cpu",kernelFunc:R6};function O6(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ve([r,s],"maxPool3DGrad");let c=E.computePool3DInfo(s.shape,i,o,1,l,u),p=n.bufferSync(s),d=IG(p,c),h=c.strideDepth,m=c.strideHeight,f=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,b=c.dilationWidth,x=c.effectiveFilterDepth,v=c.effectiveFilterHeight,k=c.effectiveFilterWidth,w=x-1-c.padInfo.front,S=k-1-c.padInfo.left,A=v-1-c.padInfo.top,F=Le(s.shape,"float32"),D=n.bufferSync(r);for(let R=0;R<c.batchSize;++R)for(let L=0;L<c.inChannels;++L)for(let W=0;W<c.inDepth;++W)for(let U=0;U<c.inHeight;++U)for(let G=0;G<c.inWidth;++G){let X=W-w,j=U-A,te=G-S,Q=0;for(let se=0;se<x;se+=g){let ne=(X+se)/h;if(!(ne<0||ne>=c.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<v;ie+=y){let ee=(j+ie)/m;if(!(ee<0||ee>=c.outHeight||Math.floor(ee)!==ee))for(let de=0;de<k;de+=b){let oe=(te+de)/f;if(oe<0||oe>=c.outWidth||Math.floor(oe)!==oe)continue;let ge=x*v*k-1-d.get(R,ne,ee,oe,L),fe=se*v*k+ie*k+de,we=ge===fe?1:0;we!==0&&(Q+=D.get(R,ne,ee,oe,L)*we)}}}F.set(Q,R,W,U,G,L)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var L6={kernelName:Ed,backendName:"cpu",kernelFunc:O6};function z6(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=a,d=E.computePool2DInfo(o.shape,l,u,1,c,p),h=n.data.get(o.dataId).values,m=Le(d.outShape,o.dtype,w2(h,o.shape,o.dtype,d).values),f=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,b=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,k=v-1-d.padInfo.left,w=x-1-d.padInfo.top,S=Le(o.shape,"float32"),A=n.data.get(r.dataId).values,F=Le(r.shape,"float32",A);for(let D=0;D<d.batchSize;++D)for(let R=0;R<d.inChannels;++R)for(let L=0;L<d.inHeight;++L)for(let W=0;W<d.inWidth;++W){let U=L-w,G=W-k,X=0;for(let j=0;j<x;j+=y){let te=(U+j)/f;if(!(te<0||te>=d.outHeight||Math.floor(te)!==te))for(let Q=0;Q<v;Q+=b){let se=(G+Q)/g;if(se<0||se>=d.outWidth||Math.floor(se)!==se)continue;let ne=x*v-1-m.get(D,te,se,R),ie=j*v+Q,ee=ne===ie?1:0;ee!==0&&(X+=F.get(D,te,se,R)*ee)}}S.set(X,D,L,W,R)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var W6={kernelName:_d,backendName:"cpu",kernelFunc:z6};function B6(e,t,n,a,r){let s=I.computeStrides(t),i=Iv(e,t,n,s,r,"max"),o=w2(e,t,n,r,!0,a);return[i.values,o.values]}var V6={kernelName:$d,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,c=E.computePool2DInfo(a.shape,r,s,[1,1],i),[p,d]=B6(u,a.shape,a.dtype,o,c),h=l.write(p,c.outShape,a.dtype),m=l.write(d,c.outShape,a.dtype);return[{dataId:h,shape:c.outShape,dtype:a.dtype},{dataId:m,shape:c.outShape,dtype:"int32"}]}};function Tm(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"sum");let o;r.dtype==="bool"?o=ps({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=nr({inputs:{x:r},backend:n});let l=o.shape.length,u=I.parseAxisParam(s,o.shape),c=E.getAxesPermutation(u,l),p=u,d=o;c!=null&&(d=ya({inputs:{x:o},backend:n,attrs:{perm:c}}),p=E.getInnerMostAxes(p.length,l)),E.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,m]=E.computeOutAndReduceShapes(d.shape,p),f=E.upcastType(d.dtype,"int32"),g=Im(n,h,f),y=I.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v<b.length;++v){let k=v*y,w=0;for(let S=0;S<y;++S)w+=x[k+S];b[v]=w}if(i){let v=E.expandShapeToKeepDim(g.shape,u),k=g;g=It({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(k)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),g}var U6={kernelName:ci,backendName:"cpu",kernelFunc:Tm};function G6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=I.parseAxisParam(s,r.shape),l=E.computeOutAndReduceShapes(r.shape,o)[1],u=I.sizeFromShape(l),c=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));c.push(p);let d=ps({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});c.push(d);let h=Nv({inputs:{a:d,b:p},backend:n});c.push(h);let m=Tm({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var H6={kernelName:qs,backendName:"cpu",kernelFunc:G6};function j6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"min");let o=I.parseAxisParam(s,r.shape),l=o,u=E.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=ya({inputs:{x:r},backend:n,attrs:{perm:u}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,d]=E.computeOutAndReduceShapes(c.shape,l),h=I.sizeFromShape(d),m=I.makeZerosTypedArray(I.sizeFromShape(p),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let k=f[b+v];k<x&&(x=k)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,m);if(i){let y=E.expandShapeToKeepDim(p,o),b=It({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var q6={kernelName:Xs,backendName:"cpu",kernelFunc:j6};function X6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ve(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),u=s.map((b,x)=>b[0]+r.shape[x]),c=i==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=I.computeStrides(r.shape),m=I.sizeFromShape(o),f=o.length,g=I.computeStrides(o),y=I.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=I.indexToLoc(b,f,g);for(let k=0;k<f;k++)x[k]<l[k]?x[k]=l[k]*2-x[k]-c:x[k]>=u[k]&&(x[k]=(u[k]-1)*2-x[k]+c);x=x.map((k,w)=>k-l[w]);let v=I.locToIndex(x,d,h);y[b]=p[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var K6={kernelName:ic,backendName:"cpu",kernelFunc:X6},Y6=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),J6=Qt(el,Y6),Q6={kernelName:el,backendName:"cpu",kernelFunc:J6},Z6=Io(mF());function A2(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=I.parseAxisParam([o],r.shape),u=C2({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=E.expandShapeToKeepDim(u.shape,l),p=It({inputs:{x:u},backend:n,attrs:{shape:c}}),d=wv({inputs:{a:r,b:p},backend:n}),h=m2({inputs:{x:d},backend:n}),m=Tm({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=It({inputs:{x:m},backend:n,attrs:{shape:c}}),g=Nv({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var ej={kernelName:pi,backendName:"cpu",kernelFunc:A2};function tj(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ve(r,"multinomial");let l=o?r:A2({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=n.data.get(l.dataId).values,d=[u,s],h=I.makeZerosTypedArray(I.sizeFromShape(d),"int32");for(let m=0;m<u;++m){let f=m*c,g=new Float32Array(c-1);g[0]=p[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+p[f+x];let y=Z6.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let v=y();h[b+x]=g.length;for(let k=0;k<g.length;k++)if(v<g[k]){h[b+x]=k;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var nj={kernelName:Dd,backendName:"cpu",kernelFunc:tj},aj=Ya.nonMaxSuppressionV3Impl;function rj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ve(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,{selectedIndices:p}=aj(u,c,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var sj={kernelName:al,backendName:"cpu",kernelFunc:rj},ij=Ya.nonMaxSuppressionV4Impl;function oj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ve(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:h}=ij(c,p,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var lj={kernelName:rl,backendName:"cpu",kernelFunc:oj},uj=Ya.nonMaxSuppressionV5Impl;function cj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ve(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=uj(c,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var pj={kernelName:sl,backendName:"cpu",kernelFunc:cj};function dj(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;ve(r,"oneHot");let l=I.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let c=n.data.get(r.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<s&&(u[p*s+c[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var hj={kernelName:Js,backendName:"cpu",kernelFunc:dj};function Sm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Bi({inputs:{input:a},backend:n}),s=Sm({inputs:{x:r},backend:n}),i=tu({inputs:{input:a},backend:n}),o=Sm({inputs:{x:i},backend:n}),l=Un({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Cv({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var mj={kernelName:Il,backendName:"cpu",kernelFunc:Sm};function F2(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Bi({inputs:{input:a},backend:n}),s=F2({inputs:{x:r},backend:n}),i=tu({inputs:{input:a},backend:n}),o=Sm({inputs:{x:i},backend:n}),l=Un({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Cv({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var fj={kernelName:il,backendName:"cpu",kernelFunc:F2};function _2(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Nm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let p=Nm({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),u=nu({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var gj={kernelName:ol,backendName:"cpu",kernelFunc:_2};function yj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ve(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,c=I.sizeFromShape(r.shape),p=r.shape.length,d=I.computeStrides(r.shape),h=I.sizeFromShape(o),m=o.length,f=I.computeStrides(o),g=I.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<c;y++){let b=I.indexToLoc(y,p,d).map((v,k)=>v+l[k]),x=I.locToIndex(b,m,f);g[x]=u[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var E2={kernelName:Qs,backendName:"cpu",kernelFunc:yj},bj=Rt((e,t)=>Math.pow(e,t)),xj=Qt(Zs,bj),vj={kernelName:Zs,backendName:"cpu",kernelFunc:xj};function wj(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=bv(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var kj={kernelName:oc,backendName:"cpu",kernelFunc:wj},Ij=it(ul,e=>1/e),Nj={kernelName:ul,backendName:"cpu",kernelFunc:Ij};function Tj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeBilinear");let l=I.computeStrides(r.shape),[u,c]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(I.sizeFromShape([p,u,c,m])),y=[s&&u>1?d-1:d,s&&c>1?h-1:h],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],x=0,v=y[0]/b[0],k=y[1]/b[1];for(let w=0;w<p;w++)for(let S=0;S<u;S++){let A;i?A=v*(S+.5)-.5:A=v*S;let F=Math.max(0,Math.floor(A)),D=A-F,R=Math.min(d-1,Math.ceil(A)),L=w*l[0]+F*l[1],W=w*l[0]+R*l[1];for(let U=0;U<c;U++){let G;i?G=k*(U+.5)-.5:G=k*U;let X=Math.max(0,Math.floor(G)),j=G-X,te=Math.min(h-1,Math.ceil(G)),Q=L+X*l[2],se=W+X*l[2],ne=L+te*l[2],ie=W+te*l[2];for(let ee=0;ee<m;ee++){let de=f[Q+ee],oe=f[se+ee],ge=f[ne+ee],fe=f[ie+ee],we=de+(ge-de)*j,Ne=oe+(fe-oe)*j,Ae=we+(Ne-we)*D;g[x++]=Ae}}}return n.makeTensorInfo([p,u,c,m],"float32",g)}var Sj={kernelName:ni,backendName:"cpu",kernelFunc:Tj};function Cj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeBilinearGrad");let o=I.computeStrides(r.shape),[l,u,c,p]=r.shape,[,d,h]=s.shape,m=new Float32Array(l*u*c*p),f=[i&&d>1?u-1:u,i&&h>1?c-1:c],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let k=0;k<l;k++){let w=k*o[0];for(let S=0;S<d;S++){let A=S*y,F=Math.floor(A),D=Math.min(Math.ceil(A),u-1),R=w+F*o[1],L=w+D*o[1],W=A-F,U=1-W;for(let G=0;G<h;G++){let X=G*b,j=Math.floor(X),te=Math.min(Math.ceil(X),c-1),Q=X-j,se=1-Q,ne=R+j*o[2],ie=R+te*o[2],ee=L+j*o[2],de=L+te*o[2],oe=U*se,ge=U*Q,fe=W*se,we=W*Q;for(let Ne=0;Ne<p;Ne++){let Ae=x[v++];m[ne+Ne]+=Ae*oe,m[ie+Ne]+=Ae*ge,m[ee+Ne]+=Ae*fe,m[de+Ne]+=Ae*we}}}}return n.makeTensorInfo([l,c,u,p],"float32",m)}var Aj={kernelName:Pd,backendName:"cpu",kernelFunc:Cj};function Fj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeNearestNeighbor");let l=I.computeStrides(r.shape),[u,c]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(p*u*c*m),y=[s&&u>1?d-1:d,s&&c>1?h-1:h],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],x=y[0]/b[0],v=y[1]/b[1],k=0;for(let w=0;w<p;w++){let S=w*l[0];for(let A=0;A<u;A++){let F=i?x*(A+.5):x*A,D=Math.min(d-1,s?Math.round(F):Math.floor(F));i&&(D=Math.max(0,D));let R=S+D*l[1];for(let L=0;L<c;L++){let W=i?v*(L+.5):v*L,U=Math.min(h-1,s?Math.round(W):Math.floor(W));i&&(U=Math.max(0,U));let G=R+U*l[2];for(let X=0;X<m;X++){let j=f[G+X];g[k++]=j}}}}return n.makeTensorInfo([p,u,c,m],r.dtype,g)}var _j={kernelName:lc,backendName:"cpu",kernelFunc:Fj};function Ej(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeNearestNeighborGrad");let o=I.computeStrides(r.shape),l=I.computeStrides(s.shape),[u,c,p,d]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*c*p*d),g=n.data.get(s.dataId).values,y=[i&&h>1?c-1:c,i&&m>1?p-1:p],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],v=y[1]/b[1],k=1/x,w=1/v,S=Math.ceil(k)*2+2,A=Math.ceil(w)*2+2;for(let F=0;F<u;F++){let D=F*o[0];for(let R=0;R<c;R++){let L=D+R*o[1],W=Math.floor(R*k),U=Math.floor(W-S/2);for(let G=0;G<p;G++){let X=L+G*o[2],j=Math.floor(G*w),te=Math.floor(j-A/2);for(let Q=0;Q<d;Q++){let se=0;for(let ne=0;ne<S;ne++){let ie=ne+U;if(ie<0||ie>=h)continue;let ee=D+ie*l[1],de=ie*x,oe=Math.min(c-1,i?Math.round(de):Math.floor(de));if(R===oe)for(let ge=0;ge<A;ge++){let fe=ge+te;if(fe<0||fe>=m)continue;let we=ee+fe*l[2],Ne=fe*v,Ae=Math.min(p-1,i?Math.round(Ne):Math.floor(Ne));G===Ae&&(se+=g[we+Q])}}f[X+Q]=se}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var $j={kernelName:Rd,backendName:"cpu",kernelFunc:Ej};function Dj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ve(r,"reverse");let i=r.shape.length,o=I.parseAxisParam(s,r.shape);if(i===0)return nr({inputs:{x:r},backend:n});let l=new Lt(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),d=p.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Mj={kernelName:ri,backendName:"cpu",kernelFunc:Dj},Rj={kernelName:Nl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=I.getTypedArrayFromDType(a.dtype,I.sizeFromShape(a.shape)),[u,c,p,d]=a.shape,[h,m]=E.getImageCenter(i,c,p),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let v=x*p*c*d;for(let k=0;k<c;k++){let w=k*(p*d);for(let S=0;S<p;S++){let A=S*d;for(let F=0;F<d;F++){let D=[u,k,S,F],R=D[2],L=D[1],W=(R-h)*y-(L-m)*g,U=(R-h)*g+(L-m)*y;W=Math.round(W+h),U=Math.round(U+m);let G=s;if(typeof s!="number"&&(F===3?G=f:G=s[F]),W>=0&&W<p&&U>=0&&U<c){let j=U*(p*d),te=W*d,Q=v+j+te+F;G=b[Q]}let X=v+w+A+F;l[X]=G}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},Pj=it(si,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),Oj={kernelName:si,backendName:"cpu",kernelFunc:Pj};function $2(e,t,n,a,r,s,i,o,l,u){let c=[a/r,r],p=e.values,d=t.values;if(a===0)return Le(n,t.dtype);let h=Le(c,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=p[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=d[m*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[m*r+y]}return h}function Lj(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=E.calculateShapes(s,r,i),d=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=$2(h,m,i,p,u,l,o,c,0,d);return n.makeTensorInfo(i,f.dtype,f.values)}var zj={kernelName:pl,backendName:"cpu",kernelFunc:Lj};function Wj(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ve([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,c=ua(r.dtype,s.dtype),p=I.makeZerosTypedArray(I.sizeFromShape(r.shape),c),d=0,h=i===0||i>1||r.shape.length===1?1:I.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[d++]=l[m]:p[d++]=u[m];return n.makeTensorInfo(r.shape,c,p)}var Bj={kernelName:dl,backendName:"cpu",kernelFunc:Wj},Vj=E.SELU_SCALEALPHA,Uj=E.SELU_SCALE,Gj=it(hl,e=>e>=0?Uj*e:Vj*(Math.exp(e)-1)),Hj={kernelName:hl,backendName:"cpu",kernelFunc:Gj},jj=it(li,e=>1/(1+Math.exp(-e))),qj={kernelName:li,backendName:"cpu",kernelFunc:jj},Xj=it(gl,e=>e<0?-1:e>0?1:0),Kj={kernelName:gl,backendName:"cpu",kernelFunc:Xj},Yj=it(oi,e=>Math.sin(e)),Jj={kernelName:oi,backendName:"cpu",kernelFunc:Yj},Qj=it(fl,e=>Math.sinh(e)),Zj={kernelName:fl,backendName:"cpu",kernelFunc:Qj},eq=11920928955078125e-23,D2=Math.log(eq)+2,tq=it(yl,e=>{let t=e>-D2,n=e<D2,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),nq={kernelName:yl,backendName:"cpu",kernelFunc:tq};function aq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ve([r],"spaceToBatchND");let o=I.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=E2.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=E.getReshaped(u.shape,s,o,!1),p=E.getPermuted(c.length,s.length,!1),d=E.getReshapedPermuted(u.shape,s,o,!1),h=It({inputs:{x:u},backend:n,attrs:{shape:c}}),m=ya({inputs:{x:h},backend:n,attrs:{perm:p}}),f=It({inputs:{x:m},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var rq={kernelName:uc,backendName:"cpu",kernelFunc:aq};function sq(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=E.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],y=$2(m,f,o,d,c,u,l,p,g,h);return n.makeTensorInfo(o,y.dtype,y.values)}var iq={kernelName:Od,backendName:"cpu",kernelFunc:sq};function oq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=I.parseAxisParam(i,r.shape)[0],l=E.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[o]=p;let h=Vi({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});return u[o]+=p,h})}var lq={kernelName:bl,backendName:"cpu",kernelFunc:oq},uq=it(ui,e=>Math.sqrt(e)),cq={kernelName:ui,backendName:"cpu",kernelFunc:uq},pq={kernelName:cc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ve(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},dq=it(Gr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),hq={kernelName:Gr,backendName:"cpu",kernelFunc:dq};function mq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=a;ve(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=pn.sliceInfo(r.shape,s,i,o,l,u,c,p,d),x=It({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let w=Vi({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=It({inputs:{x:w},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}else if(b.some(w=>w===0))v=n.makeTensorInfo(b,r.dtype,[]);else{let w=n.bufferSync(x),S=u2(b,w,f,m);v=n.makeTensorInfo(S.shape,S.dtype,S.values)}let k=It({inputs:{x:v},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),k}var fq={kernelName:xl,backendName:"cpu",kernelFunc:mq},gq=it(vl,e=>Math.tan(e)),yq={kernelName:vl,backendName:"cpu",kernelFunc:gq},bq=it(mi,e=>Math.tanh(e)),xq={kernelName:mi,backendName:"cpu",kernelFunc:bq};function vq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ve(r,"tile");let i=p2(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var wq={kernelName:Ur,backendName:"cpu",kernelFunc:vq};function kq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ve(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=d2(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var Iq={kernelName:wl,backendName:"cpu",kernelFunc:kq};function Sq(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[c,p,d,h]=r.shape,[m,f]=u!=null?u:[p,d],g=[c,m,f,h],y=I.computeStrides(r.shape),b=y[0],x=y[1],v=y[2],k=I.getTypedArrayFromDType(r.dtype,I.sizeFromShape(g));k.fill(l);let w=a.data.get(r.dataId).values,S=a.data.get(s.dataId).values;for(let A=0;A<c;++A){let F=s.shape[0]===1?S:S.subarray(A*8,A*8+8);for(let D=0;D<m;++D)for(let R=0;R<f;++R)for(let L=0;L<h;++L){let W,U=F[6]*R+F[7]*D+1;if(U===0)continue;let G=(F[0]*R+F[1]*D+F[2])/U,X=(F[3]*R+F[4]*D+F[5])/U,j=M2(G,d,o),te=M2(X,p,o);switch(i){case"nearest":W=Nq(w,p,d,b,x,v,A,te,j,L,l);break;case"bilinear":W=Tq(w,p,d,b,x,v,A,te,j,L,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Q=A*b+D*x+R*v+L;k[Q]=W}return a.makeTensorInfo(g,r.dtype,k)}return{dataId:a.write(k,g,r.dtype),shape:r.shape,dtype:r.dtype}}var Cq={kernelName:Ld,backendName:"cpu",kernelFunc:Sq};function M2(e,t,n){switch(n){case"reflect":return Aq(e,t);case"wrap":return Fq(e,t);case"nearest":return Eq(e,t);case"constant":default:return _q(e,t)}}function Aq(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return I.clamp(0,n,t-1)}function Fq(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return I.clamp(0,n,t-1)}function _q(e,t){return e}function Eq(e,t){return I.clamp(0,e,t-1)}function ip(e,t,n,a,r,s,i,o,l,u,c){let p=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[p]:c}function Nq(e,t,n,a,r,s,i,o,l,u,c){let p=Math.round(o),d=Math.round(l);return ip(e,t,n,a,r,s,i,p,d,u,c)}function Tq(e,t,n,a,r,s,i,o,l,u,c){let p=Math.floor(o),d=Math.floor(l),h=p+1,m=d+1,f=(m-l)*ip(e,t,n,a,r,s,i,p,d,u,c)+(l-d)*ip(e,t,n,a,r,s,i,p,m,u,c),g=(m-l)*ip(e,t,n,a,r,s,i,h,d,u,c)+(l-d)*ip(e,t,n,a,r,s,i,h,m,u,c);return(h-o)*f+(o-p)*g}function $q(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ve(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=h2(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var Dq={kernelName:zd,backendName:"cpu",kernelFunc:$q};function Mq(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let c=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let d=new Array(o);for(let h=0;h<d.length;h++){c[s]=h;let m=Vi({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});d[h]=It({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return d}var Rq={kernelName:kl,backendName:"cpu",kernelFunc:Mq};function Pq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ve(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],c=[],p=o-l,d=s;for(let m=0;m<p;++m){let f=Nm({inputs:{input:d},backend:n,attrs:{dim:m+1}});d=f,c.push(f)}for(let m=0;m<i;++m){let f=I.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=T2({inputs:{a:g,b:d},backend:n}),b=ps({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=vv({inputs:{a:b,b:r},backend:n}),v=Tm({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(v),c.push(g),c.push(y),c.push(b),c.push(x),c.push(v)}let h=_2({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var Oq={kernelName:pc,backendName:"cpu",kernelFunc:Pq},Lq=[JU,tU,ZU,tG,oU,aG,sG,oG,uG,pG,hG,fG,yG,vG,kG,TG,CG,FG,EG,KU,DG,RG,OG,sU,uU,zG,nU,BG,UG,jG,XG,GG,QG,eH,YG,nH,rH,iH,lH,cH,dH,hH,fH,yH,xH,vH,kH,wH,Tv,VU,NH,SH,MH,cU,RH,dU,BH,UH,GH,mU,qH,KH,JH,ZH,t6,gU,r6,aU,i6,VG,l6,c6,d6,UU,bU,f6,y6,vU,x6,k6,N6,C6,F6,E6,kU,M6,P6,L6,W6,V6,$6,H6,q6,NU,K6,Q6,nj,SU,AU,sj,lj,pj,_U,hj,fj,gj,E2,vj,HU,DU,kj,rU,Nj,jU,qU,XU,Sj,Aj,_j,$j,Mj,Rj,Oj,RU,zj,Bj,Hj,qj,Kj,Jj,Zj,PU,ej,nq,rq,iq,lq,cq,pq,LU,hq,fq,WU,U6,yq,xq,wq,Iq,EU,Cq,Dq,Rq,Oq,mj];for(let e of Lq)hc(e);var Ui={},Av={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function zq(e,t){Ui[e]=t}function ar(e){if(!(e in Ui)){let n=Wq(e);if(n!==null)Ui[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ui[e];return t.isContextLost()?(delete Ui[e],ar(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ui[e])}function Bq(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Wq(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=Bq(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ui[e]},!1),e===1?t.getContext("webgl",Av)||t.getContext("experimental-webgl",Av):t.getContext("webgl2",Av)}var op;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(op||(op={}));var na;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(na||(na={}));var rn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(rn||(rn={}));function lp(e,t){return[t,e]}function Vq(e,t){return e*t}function up(e){let t=I.sizeFromShape(e),n=Math.ceil(t/4);return I.sizeToSquarishShape(n)}function au(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Uq(e,t){let[n,a]=au(e,t);return n*a*4}function Fv(e,t){let n=e,a,r,s,i,o,l,u,c,p,d;return Z().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ie(e,t){let n=t();return Z().getBool("DEBUG")&&Gq(e),n}function Gq(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Hq(e,t))}var jq=596e-10,qq=65504;function Xq(e){return!!(Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||jq<Math.abs(e)&&Math.abs(e)<qq)}function Hq(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Cm(e,t){return Nr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Kq(e,t){let n=Nr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Jq(e,t){let n=Nr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Yq(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Qq=/ERROR: [0-9]+:([0-9]+):/g;function Yq(e,t){let n=Qq.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((p,d)=>I.rightPad((d+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),c=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${I.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function Zq(e){return Nr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function e5(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function _v(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function t5(e,t){let n=Nr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function n5(e,t){let n=Nr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function a5(e){return Nr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function r5(e,t){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function s5(e){return Nr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function R2(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),Ie(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),Ie(e,()=>e.enableVertexAttribArray(o)),!0)}function o5(e,t,n){i5(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function l5(e,t,n){return Nr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function u5(e,t,n){return e.getUniformLocation(t,n)}function c5(e,t,n,a){Ie(e,()=>o5(e,t,a)),Ie(e,()=>e.uniform1i(n,a))}function Ev(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function P2(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Am(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+p5(e,t))}function p5(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Nr(e,t,n){let a=Ie(e,()=>t());if(a==null)throw new Error(n);return a}function i5(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function ru(e,t=2){return I.sizeFromShape(e.slice(0,e.length-t))}function su(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function $v(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ru(e),...su(e)]),t}function d5(e,t=!1){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?I.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=I.squeezeShape(e).newShape);let a=I.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=ru(e),s=2,i=2;return e.length&&([s,i]=su(e)),a=r*(s/2)*(i/2),I.sizeToSquarishShape(a).map(o=>o*2)}return I.sizeToSquarishShape(a)}function Fm(e){return e%2==0}function _m(e,t){if(e=e.slice(-2),t=t.slice(-2),I.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||Fm(n)&&Fm(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Fm(e[0])&&Fm(t[0])}var Dv,Mv;function h5(e){if(Dv==null){let t=ar(e);Dv=t.getParameter(t.MAX_TEXTURE_SIZE)}return Dv}function m5(e){if(Mv==null){let t=ar(e);Mv=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Mv)}function f5(e){if(e===0)return 0;let t,n=ar(e);return ba(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ba(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ba(e,t){return e.getExtension(t)!=null}function O2(e){try{if(ar(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function g5(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ba(t,"OES_texture_float"))return!1}else if(!ba(t,"EXT_color_buffer_float"))return!1;return Rv(t)}function b5(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ba(t,"OES_texture_float")||!ba(t,"WEBGL_color_buffer_float"))return!1}else{if(ba(t,"EXT_color_buffer_float"))return Rv(t);let n="EXT_color_buffer_half_float";if(ba(t,n)){let a=t.getExtension(n);return y5(t,a)}return!1}return Rv(t)}function Rv(e){let t=Fv(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function y5(e,t){let n=Fv(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function x5(e){return e!==2?!1:ar(e).fenceSync!=null}function cp(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&I.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=Z();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>O2(2)?2:O2(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>h5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>m5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:f5(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!vc.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>g5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>b5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>x5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>vc.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function mn(){let e,t,n,a,r,s,i,o,l,u;return Z().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Gi(e,t,n="index"){let a=I.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Pv(e){let t=I.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var L2=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,v5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=op.DENSE;let t=up(e),n=mn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Gi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},w5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=op.DENSE;let t=up(e),n=mn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Gi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},k5=class{constructor(e){this.variableNames=["A"],this.outTexUsage=na.DOWNLOAD;let t=mn();this.outputShape=e,this.userCode=`
|
|
${L2}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},I5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=na.DOWNLOAD;let t=mn();this.outputShape=e,this.userCode=`
|
|
${L2}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},N5=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=mn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${Pv(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
vec4 values = ${a.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${a.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},T5=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=mn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
values = ${a.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${c}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${c}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${c}] = values[2];
|
|
} else {
|
|
result[${c}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${Pv(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${a.output} = ${o};
|
|
}
|
|
`}};function S5(e){let t=mn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Kq(e,n)}function C5(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return t5(e,t)}function A5(e){let t=new Uint16Array([0,1,2,2,1,3]);return n5(e,t)}function pp(e,t,n,a,r,s){r5(t,n);let i=a5(e),o=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(o,i)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function z2(e){return e.internalFormatFloat}function F5(e,t,n,a){let[r,s]=lp(t,n);return pp(e,r,s,z2(a),a.textureFormatFloat,e.FLOAT)}function W2(e){return e.internalFormatHalfFloat}function _5(e,t,n,a){let[r,s]=lp(t,n);return pp(e,r,s,W2(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function B2(e){return e.downloadTextureFormat}function E5(e,t,n,a){let[r,s]=lp(t,n);return pp(e,r,s,B2(a),e.RGBA,e.UNSIGNED_BYTE)}function V2(e){return e.internalFormatPackedFloat}function $5(e,t,n,a){let[r,s]=au(t,n);return pp(e,r,s,V2(a),e.RGBA,e.FLOAT)}function U2(e){return e.internalFormatPackedHalfFloat}function D5(e,t,n,a){let[r,s]=au(t,n);return pp(e,r,s,U2(a),e.RGBA,a.textureTypeHalfFloat)}function M5(e,t,n){let a=0,r=3*4,s=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),R2(e,t,"clipSpacePos",n,3,s,a)&&R2(e,t,"uv",n,2,s,r)}function R5(e,t,n,a,r,s){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function P5(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function O5(e,t,n,a){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function L5(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function z5(e,t,n,a){let[r,s]=lp(t,n),i=4,o=new Uint8Array(Vq(t*n,i));return Ie(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function W5(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(Uq(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function B5(e,t,n){let a=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var U5=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Z().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,zq(t,e)):this.gl=ar(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(Z().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Cm(this.gl,r),ba(this.gl,s))this.textureHalfFloatExtension=Cm(this.gl,s);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ba(this.gl,a))this.colorBufferHalfFloatExtension=Cm(this.gl,a);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ba(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ba(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=C5(this.gl),this.indexBuffer=A5(this.gl),this.framebuffer=s5(this.gl),this.textureConfig=Fv(this.gl,this.textureHalfFloatExtension)}get debug(){return Z().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),F5(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),_5(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),E5(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),P5(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),R5(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),D5(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),$5(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(P2(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>z5(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return W5(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return L5(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=O5(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Z().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>B5(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Jq(t,e),a=S5(t),r=Zq(t);return Ie(t,()=>t.attachShader(r,a)),Ie(t,()=>t.attachShader(r,n)),e5(t,r),this.debug&&_v(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=M5(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&_v(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?l5(this.gl,e,t):u5(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),c5(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=au(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&_v(this.gl,this.program),Am(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Cm(this.gl,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await I.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=V5(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&I.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Ev(this.gl,e,this.framebuffer),this.debug&&Am(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Ev(this.gl,this.outputTexture,this.framebuffer),this.debug&&Am(this.gl)):P2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;Ev(a,e,this.framebuffer),this.debug&&Am(a),this.outputTexture=e,Ie(a,()=>a.viewport(0,0,t,n)),Ie(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function V5(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:G2}=E;function Q5(e,t,n,a){let r=[];e.forEach(h=>{let m=I.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
|
|
`),i=e.map(h=>G5(h,t,a)).join(`
|
|
`),o=t.texShape,l=mn(),u=q5(l),c,p,d=Y5(l);return t.isPacked?(c=H5(t.logicalShape,o),p=K5(l)):(c=j5(t.logicalShape,o),p=X5(l)),a&&(d+=J5),[d,u,p,s,c,i,n].join(`
|
|
`)}function iu(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return Z5(e);case 1:return e8(e);case 2:return t8(e);case 3:return n8(e);case 4:return a8(e);case 5:return r8(e);case 6:return s8(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function H2(e){switch(e.shapeInfo.logicalShape.length){case 0:return i8(e);case 1:return o8(e);case 2:return l8(e);case 3:return u8(e);default:return c8(e)}}function G5(e,t,n=!1){let a="";n?a+=H2(e):a+=iu(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=p8(e,t):a+=d8(e,t)),a}function H5(e,t){switch(e.length){case 0:return j2();case 1:return h8(e,t);case 2:return g8(e,t);case 3:return m8(e,t);default:return f8(e,t)}}function j5(e,t){switch(e.length){case 0:return j2();case 1:return y8(e,t);case 2:return k8(e,t);case 3:return b8(e,t);case 4:return x8(e,t);case 5:return v8(e,t);case 6:return w8(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function q5(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function X5(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function K5(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function Y5(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${I8}
|
|
${N8}
|
|
${T8}
|
|
`}var I8=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,N8=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,T8=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,J5=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function j2(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function h8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function y8(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function m8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function b8(e,t){let n=Gi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function f8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function x8(e,t){let n=Gi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function v8(e,t){let n=Gi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function w8(e,t){let n=Gi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function g8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(I.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function k8(e,t){return I.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Hi(e){return`offset${e}`}function i8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=mn();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function Z5(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=Hi(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function o8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=mn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${r[0]}, ${r[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function e8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${ou(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=Hi(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:r===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function l8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=mn();if(r!=null&&I.arraysEqual(t,r))return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function t8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&I.arraysEqual(t,r)){let p=r[0],d=r[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=I.squeezeShape(t),o=s;if(o.length<t.length){let p=lu(e,o),d=["row","col"];return`
|
|
${iu(p)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${uu(d,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${ou(e)}
|
|
}
|
|
`;let l=r[0],u=r[1],c=Hi(n);return u===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${c};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function u8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),d=[1,2],h=lu(e,p),m=["b","row","col"];return`
|
|
${H2(h)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${uu(m,d)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),c=mn();return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${c.texture2D}(${n}, uv);
|
|
}
|
|
`}function n8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=I.squeezeShape(t),l=i;if(l.length<t.length){let m=lu(e,l),f=["row","col","depth"];return`
|
|
${iu(m)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${uu(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${r}, ${s}, 1)));
|
|
${ou(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,c=u[0],p=u[1],d=e.shapeInfo.flatOffset;if(p===r&&d==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===s&&d==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Hi(n);return`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r} + col * ${s} + depth + ${h};
|
|
vec2 uv = uvFromFlat(${c}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function c8(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),c=u*Math.ceil(t[n-2]/2),p="int b, int row, int col",d=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,c*=t[n-m-1],d=`b${m} * ${c} + `+d;let h=mn();return`
|
|
vec4 ${r}(${p}) {
|
|
int index = ${d};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${h.texture2D}(${a}, uv);
|
|
}
|
|
`}function a8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=I.squeezeShape(t);if(o.length<t.length){let m=lu(e,o),f=["row","col","depth","depth2"];return`
|
|
${iu(m)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${uu(f,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${r}, 1)));
|
|
${ou(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,p=c[0],d=c[1];if(d===i&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(d===r&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Hi(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${r} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${d}, index + ${h});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function r8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=I.squeezeShape(t);if(l.length<t.length){let f=lu(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${iu(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${uu(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${ou(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===o&&c==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&c==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Hi(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function s8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=I.squeezeShape(t);if(r.length<t.length){let g=lu(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${iu(g)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${uu(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${ou(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],m=d[1];if(m===c&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Hi(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function ou(e){let t=e.name,n=I.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function p8(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=G2(e.shapeInfo.logicalShape,t.logicalShape),l=ht(i),u=i-s,c,p=["x","y","z","w","u","v"];s===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(g=>`coords.${p[g+u]} = 0;`).join(`
|
|
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((g,y)=>`coords.${p[y+u]}`).join(", ");let h="return outputValue;",m=I.sizeFromShape(e.shapeInfo.logicalShape)===1,f=I.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${a}(${d});
|
|
${h}
|
|
}
|
|
`}function d8(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&I.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ht(l),c=G2(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,d,h=["x","y","z","w","u","v"];o===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(f=>`coords.${h[f+p]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
return get${a}(${m});
|
|
}
|
|
`}function ht(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function lu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function uu(e,t){return t.map(n=>e[n]).join(", ")}function S8(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=Q5(s,o,r,t.packedInputs),u=e.createProgram(l),c=null,p=e.getUniformLocation(u,"NAN",!1);Z().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(u,"INFINITY",!1));let d={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;d[m]=e.getUniformLocation(u,m,f),d[`offset${m}`]=e.getUniformLocation(u,`offset${m}`,f)}return{program:t,source:l,webGLProgram:u,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:c,nanLoc:p}}function q2(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!I.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!I.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function C8(e,t,n,a,r){q2(t.inShapeInfos,n),q2([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),Z().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],c=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`];if(c!=null){if(o.isUniform){if(I.sizeFromShape(o.shape)<2)e.gl.uniform1f(c,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(c,d)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,c,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function A8(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:F8,bincountImpl:X2,bincountReduceImpl:_8,ceilImpl:E8,concatImpl:$8,expImpl:D8,expm1Impl:M8,floorImpl:R8,gatherV2Impl:P8,greaterImpl:O8,lessImpl:L8,linSpaceImpl:z8,logImpl:W8,maxImpl:B8,maximumImpl:V8,minimumImpl:U8,multiplyImpl:G8,negImpl:H8,prodImpl:j8,rangeImpl:q8,rsqrtImpl:X8,simpleAbsImpl:K2,sliceImpl:K8,stridedSliceImpl:Y8,subImpl:J8,tileImpl:Q8,topKImpl:Z8,transposeImpl:Ov,uniqueImpl:eX}=VN;function Y2(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function fn(e,t){return t===1?[e]:Y2(e,t)}function tX(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var sX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=fn("rc",t),a=ht(t),r=nX(t,e,n),s=aX(t,e[e.length-1],e[e.length-2],n),i=rX(e,n);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function iX(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function nX(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function aX(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function rX(e,t){let n=e.length,a=iX(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${a[0]}),
|
|
cEdge ? 0. : getA(${a[1]}),
|
|
rEdge ? 0. : getA(${a[2]}),
|
|
rEdge || cEdge ? 0. : getA(${a[3]})`}var J2=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${oX(t)}
|
|
${Pv(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function oX(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Gi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var lX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=Z2(t,n),r=eT(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=Q2(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===rn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===rn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===rn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===rn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===rn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=Z2(n,a),s=eT(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Q2(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=Z().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function uX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function Q2(e,t,n,a,r){let s=cX(t,a),i;if(r){let[l,u]=au(e[0],e[1]);i=l*u}else{let[l,u]=lp(e[0],e[1]);i=l*u}let o=uX(n,s);return i*o}function cX(e,t){switch(e){case rn.PACKED_2X2_FLOAT32:return V2(t);case rn.PACKED_2X2_FLOAT16:return U2(t);case rn.UNPACKED_FLOAT32:return z2(t);case rn.UNPACKED_FLOAT16:return W2(t);case rn.PACKED_4X1_UNSIGNED_BYTE:return B2(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function pX(e){return Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?rn.PACKED_2X2_FLOAT32:rn.UNPACKED_FLOAT32:e?rn.PACKED_2X2_FLOAT16:rn.UNPACKED_FLOAT16}function Z2(e,t){if(e===na.UPLOAD)return rn.PACKED_2X2_FLOAT32;if(e===na.RENDER||e==null)return pX(t);if(e===na.DOWNLOAD||e===na.PIXELS)return rn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function eT(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ds=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Ra="if (isnan(x)) return x;",dX="return x;",tT="return abs(x);",hX="return (x >= 0.0) ? x : (exp(x) - 1.0);",mX=Ra+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,fX=Ra+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Em="return x;",gX="return x;",yX=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,bX=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,xX=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,cu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},vX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=fn("rc",t),a=ht(t),r=tX(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},wX=Ya.whereImpl,kX=1e-7,IX=1e-4,Lv={};function NX(e){return e in Lv||(Lv[e]={}),Lv[e]}var TX=128,SX=600;function CX(){return Z().global.screen==null?1024:Z().global.screen.height*Z().global.screen.width*window.devicePixelRatio*SX/1024/1024}var zv=class extends ju{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!Z().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=ar(Z().getNumber("WEBGL_VERSION"));this.binaryCache=NX(Z().getNumber("WEBGL_VERSION")),this.gpgpu=new U5(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new lX(this.gpgpu),this.numMBBeforeWarning=CX(),this.texData=new sd(this,Ua())}nextDataId(){return zv.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((Z().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Z().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:na.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(Z().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:na.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new cu(i,Em):p=new ds(i,Em);let d=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=I.now());let c;if(a==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=E.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=I.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new cu(a,Em):h=new ds(a,Em);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Z().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&Z().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...up(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];c=E.mergeRealAndImagArrays(m,f)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=I.sizeFromShape(a);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}u!=null&&this.disposeIntermediateTensorInfo(u);let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ua().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>I.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Xq(n))throw Z().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=I.sizeFromShape(t);if(Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...up(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=Z().getBool("WEBGL_PACK")&&a===!0,i=s?$v(t):t,o=s?new I5(i):new k5(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=I.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=I.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=I.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:I.now(),endMs:null}}endTimer(e){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=I.now(),e)}async getQueryTime(e){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return Z().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Ua().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=TX){let n=this.getCPUBackend();return!Z().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(a=>this.texData.get(a.dataId).texture==null&&I.sizeFromShape(a.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){E.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return wX(e.shape,t)}packedUnaryOp(e,t,n){let a=new cu(e.shape,t),r=this.compileAndRun(a,[e],n);return Ua().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=K2(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(Z().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,tT,e.dtype);let t=new ds(e.shape,tT),n=this.compileAndRun(t,[e]);return Ua().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&I.isString(n[0])){let r=n.map(s=>I.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return Ua().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new vX(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new sX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ru(e.shape),...su(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[ru(t),...su(t)],s=new J2(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=$v(a),i;n?i=new w5(s):i=new v5(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===op.DENSE){let f=up(e.outputShape);i.texShape=f.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),I.sizeFromShape(s.shape)===0)return i.values=I.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(f.dataId);if(g.texture==null){if(!e.packedInputs&&I.sizeFromShape(f.shape)<=Z().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=f.shape)}else if(!!g.isPacked!=!!e.packedInputs)f=g.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),g=this.texData.get(f.dataId);else if(g.isPacked&&!_m(g.shape,f.shape)){let y=f,b=f.shape;f.shape=g.shape,f=this.packedReshape(f,b),o.push(f),g=this.texData.get(f.dataId),y.shape=b}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:g,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},c=A8(e,l,u),p=this.getAndSaveBinary(c,()=>S8(this.gpgpu,e,l,u)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),C8(this.gpgpu,p,l,u,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=Z().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=I.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!Z().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Z().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=M(()=>{if(!Z().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Z().getBool("DEBUG");Z().set("DEBUG",!1);let t=this.abs(ce(1e-8)).dataSync()[0];if(Z().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?kX:IX}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=I.now());let c=t.texShape;if(c==null&&(c=d5(n,o),t.texShape=c),r!=null){let p=$v(n),d,h=c[1],m=c[0],f=r instanceof Uint8Array;o?([h,m]=au(c[0],c[1]),d=new T5(p,[m,h],f)):d=new N5(p,[m,h],f);let g=this.makeTensorInfo([m,h],a);f?this.texData.get(g.dataId).usage=na.PIXELS:this.texData.get(g.dataId).usage=na.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,m,r);let y=!0,b=this.runWebGLProgram(d,[g],a,null,y),x=this.texData.get(b.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(b.dataId),t.values=null,l&&(this.uploadWaitMs+=I.now()-u)}else{let p=this.acquireTexture(c,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=AX(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*I.bytesPerElement(t)}};zv.nextDataId=0;function AX(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var FX="3.3.0";vc.isBrowser()&&Qd("webgl",()=>new zv,2);var nT=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,pu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},$m=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,dp=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||I.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ht(r)} coords = getOutputCoords();
|
|
`,r===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=fn("coords",r);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Gn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var _X={kernelName:Bs,backendName:"webgl",kernelFunc:Gn};function hs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Gn({inputs:{x:a},backend:n}),l=Gn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var EX={kernelName:md,backendName:"webgl",kernelFunc:hs},aT="return (a < 0.) ? b * a : a;",rT=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function $X(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",I.createScalarValue(s,"float32")),o=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(rT,r.shape,i.shape):new pu(aT,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var DX={kernelName:Vs,backendName:"webgl",kernelFunc:$X},sT="return (a < 0.) ? b * a : a;",iT=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function MX(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(iT,a.shape,r.shape):new pu(sT,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var RX={kernelName:ei,backendName:"webgl",kernelFunc:MX},oT="if (isnan(x)) return x;",PX=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,OX=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),d=n(p.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new cu(i.shape,t):c=new ds(i.shape,e),o.runWebGLProgram(c,[i],l)}}function sn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,c=o;if(a&&l.dtype==="complex64"){let m=c.texData.get(l.dataId),f=c.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,k]=x,w={dataId:v.dataId,dtype:v.dtype,shape:l.shape},S={dataId:k.dataId,dtype:k.dtype,shape:u.shape},A=new pu(e,l.shape,u.shape);return c.runWebGLProgram(A,[w,S],ua(v.dtype,k.dtype))}),b=hs({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),b}let p=s||ua(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&r!=null){let m=c.texData.get(l.dataId),f=c.texData.get(u.dataId),[g,y]=r(l.shape,u.shape,m.values,f.values,p),b=c.makeTensorInfo(y,p),x=c.texData.get(b.dataId);return x.values=g,b}let d=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new dp(t,l.shape,u.shape,n):h=new pu(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],p)}}function Dm(e,t=!1){if(e==="linear")return t?gX:dX;if(e==="relu")return t?bX:mX;if(e==="elu")return t?yX:hX;if(e==="relu6")return t?xX:fX;if(e==="prelu")return t?iT:sT;if(e==="leakyrelu")return t?rT:aT;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var lT=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=a?e[1]:e[2],c=Math.ceil(u/2),p=a?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${b};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},uT={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},cT=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},pT="return a * b;";function dT(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=E.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new cT(uT.REAL,a.shape,r.shape),c=new cT(uT.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),m=hs({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,c]=G8(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(c,s),d=n.texData.get(p.dataId);return d.values=u,p}let i;return Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new dp(pT,a.shape,r.shape):i=new pu(pT,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var LX={kernelName:Ys,backendName:"webgl",kernelFunc:dT};function zX(e,t,n){let a=[ru(e.shape),...su(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[ru(t),...su(t)],i=new J2(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ye(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=I.sizeFromShape(r.shape),l=I.inferFromImplicitShape(s,o),u=I.sizeFromShape(l);I.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(r.dataId);return c.isPacked&&!_m(r.shape,l)&&!(c.texture!==null&&_m(c.shape,l))?zX(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var WX={kernelName:cl,backendName:"webgl",kernelFunc:ye},hT=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${I.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},BX=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function VX(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function ji(e,t,n,a){let r=VX(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],c,p;n==="mean"?c=i===0?new hT({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new hT({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):c=new BX({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),p=s,s=a.runWebGLProgram(c,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var GX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=ht(this.rank),r=UX(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function UX(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var HX=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=ht(this.rank),r=Y2("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Mm(e,t,n){let a=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new HX(e.shape,t):new GX(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function jX(e,t,n,a){let r=t,s=e.shape.length,i=I.parseAxisParam(r,e.shape),o=i,l=E.getAxesPermutation(o,s),u=l!=null,c=e;u&&(c=Mm(e,l,a),o=E.getInnerMostAxes(o.length,s)),E.assertAxesAreInnerMostDims("sum",o,s);let[p,d]=E.computeOutAndReduceShapes(c.shape,o),h=p;n&&(h=E.expandShapeToKeepDim(p,i));let m=I.sizeFromShape(d),f=I.sizeFromShape(e.shape)/m,g=ye({inputs:{x:c},attrs:{shape:[f,m]},backend:a}),y=jd(e.dtype),b=ji(g,y,"sum",a),x=ye({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),u&&a.disposeIntermediateTensorInfo(c),x}function Wv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return jX(r,s,i,n)}var qX={kernelName:ci,backendName:"webgl",kernelFunc:Wv};function _n(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let c=0;c<l.length;c++)l[c]=r.shape[s[c]];let u;if(i.shouldExecuteOnCPU([r])){let c=i.texData.get(r.dataId).values,p=Ov(c,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let d=i.texData.get(u.dataId);d.values=p}else u=Mm(r,s,i);return u}var XX={kernelName:fi,backendName:"webgl",kernelFunc:_n},mT=1e3;function Rm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=a?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[c-2]:t.shape[c-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=I.sizeFromShape(f),b=I.sizeFromShape(g),x=y===b||y===1||b===1;I.assert(u>=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let v=(y>b?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);I.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let k=n?[y,p,h]:[y,h,p],w=a?[b,m,d]:[b,d,m],S=ye({inputs:{x:e},backend:r,attrs:{shape:k}}),A=ye({inputs:{x:t},backend:r,attrs:{shape:w}}),F=[S,A],D=Math.max(y,b),R=n?S.shape[1]:S.shape[2],L=s!=null,W=i!=null,U=l==="leakyrelu",G=l!=null?Dm(l,!0):null,X=L||W||U||G!=null,j;if((h===1||m===1)&&R>mT&&X===!1){let Q=S,se=A;n&&(Q=_n({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),F.push(Q)),a&&(se=_n({inputs:{x:A},backend:r,attrs:{perm:[0,2,1]}}),F.push(se));let ne=m!==1,ie=m===1,ee=Q;ne&&(ee=ye({inputs:{x:Q},backend:r,attrs:{shape:[D,R,1]}}),F.push(ee));let de=m===1?2:1,oe=se;ie&&(oe=ye({inputs:{x:se},backend:r,attrs:{shape:[D,1,R]}}),F.push(oe));let ge=dT({inputs:{a:ee,b:oe},backend:r});j=Wv({inputs:{x:ge},backend:r,attrs:{axis:de,keepDims:!0}}),F.push(ge)}else{let Q=ua(e.dtype,t.dtype),se=new lT(k,w,[D,h,m],n,a,L,G,W,U),ne=[S,A];if(s!=null&&ne.push(s),W&&ne.push(i),U){let ie=r.makeTensorInfo([],"float32",I.createScalarValue(o,"float32"));ne.push(ie),F.push(ie)}j=r.runWebGLProgram(se,ne,Q)}let te=ye({inputs:{x:j},backend:r,attrs:{shape:v}});F.push(j);for(let Q of F)r.disposeIntermediateTensorInfo(Q);return te}function KX(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=a;return Rm({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:c})}var YX={kernelName:gi,backendName:"webgl",kernelFunc:KX},fT="return abs(x);";function JX(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=K2(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new cu(a.shape,fT):r=new ds(a.shape,fT),n.runWebGLProgram(r,[a],a.dtype)}var QX={kernelName:So,backendName:"webgl",kernelFunc:JX},ZX=Ra+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,eK=Xe({opSnippet:ZX}),tK={kernelName:Co,backendName:"webgl",kernelFunc:eK},nK=Ra+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,aK=Xe({opSnippet:nK}),rK={kernelName:Ao,backendName:"webgl",kernelFunc:aK},gT="return a + b;",sK=sn({opSnippet:gT,packedOpSnippet:gT,supportsComplex:!0,cpuKernelImpl:F8}),iK={kernelName:Br,backendName:"webgl",kernelFunc:sK},oK=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},lK=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function Pm(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Gn({inputs:{x:a[0]},backend:n});if(a.length>Z().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Pm({inputs:a.slice(0,o),backend:n}),u=Pm({inputs:a.slice(o),backend:n});return Pm({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ua(o,l)),s=a.map(o=>o.shape),i=Z().getBool("WEBGL_PACK")?new lK(a[0].shape,s):new oK(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var uK={kernelName:Ns,backendName:"webgl",kernelFunc:Pm};function cK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=I.parseAxisParam(s,r.shape),u=l,c=E.getAxesPermutation(u,o),p=r;c!=null&&(p=_n({inputs:{x:r},backend:n,attrs:{perm:c}}),u=E.getInnerMostAxes(u.length,o)),E.assertAxesAreInnerMostDims("all",u,o);let[d,h]=E.computeOutAndReduceShapes(p.shape,u),m=I.sizeFromShape(h),f=ye({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=ji(f,f.dtype,"all",n),y;if(i){let b=E.expandShapeToKeepDim(d,l);y=ye({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ye({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var pK={kernelName:ud,backendName:"webgl",kernelFunc:cK};function dK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=I.parseAxisParam(s,r.shape),u=l,c=E.getAxesPermutation(u,o),p=r;c!=null&&(p=_n({inputs:{x:r},backend:n,attrs:{perm:c}}),u=E.getInnerMostAxes(u.length,o)),E.assertAxesAreInnerMostDims("any",u,o);let[d,h]=E.computeOutAndReduceShapes(p.shape,u),m=I.sizeFromShape(h),f=ye({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=ji(f,f.dtype,"any",n),y;if(i){let b=E.expandShapeToKeepDim(d,l);y=ye({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ye({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var hK={kernelName:cd,backendName:"webgl",kernelFunc:dK},mK=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},fK=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,I.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ht(o),u=fn("coords",o),c,p;if(s===1){p=o+1;let S=ht(p);c=`
|
|
${S} sourceLocR = ${S}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${S} sourceLocG = ${S}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${S} sourceLocA = ${S}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${S} sourceLocB = ${S}(${u.join()}, 0);
|
|
--${u[o-2]};`}else p=o,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],m=d.map(S=>"int "+S),f=fn("sourceLocR",p-1).concat("inIdx.r"),g=fn("sourceLocG",p-1).concat("inIdx.g"),y=fn("sourceLocB",p-1).concat("inIdx.b"),b=fn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${b.join()})));`,k=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,w=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${w}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${k};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${v}
|
|
vec4 candidate = ${k};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function yT(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new mK(o,n,a==null),u=[t];a!=null&&u.push(a);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=yT(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function bT(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=E.computeOptimalWindowSize(s),o=new fK(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let c=bT(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function xT(e,t,n,a){let r=[n];if(E.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!Z().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=E.computeOutAndReduceShapes(t.shape,r),l=I.sizeFromShape(o),u=ye({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let c=yT(e,u,a);s.push(c);let p=ye({inputs:{x:c},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),p}return bT(e,t,a)}function gK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=I.parseAxisParam(s,r.shape),o=E.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=_n({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let c=xT(n,l,i[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var yK={kernelName:Ts,backendName:"webgl",kernelFunc:gK};function bK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=I.parseAxisParam(s,r.shape),o=E.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=_n({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let c=xT(n,l,i[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var xK={kernelName:Ku,backendName:"webgl",kernelFunc:bK},vK=Ra+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,wK=Xe({opSnippet:vK}),kK={kernelName:Fo,backendName:"webgl",kernelFunc:wK},IK=Ra+"return log(x + sqrt(x * x + 1.0));",NK=Xe({opSnippet:IK}),TK={kernelName:_o,backendName:"webgl",kernelFunc:NK},SK=Ra+`
|
|
return atan(x);
|
|
`,CK=Xe({opSnippet:SK}),AK={kernelName:Eo,backendName:"webgl",kernelFunc:CK},FK=PX+`
|
|
return atan(a, b);
|
|
`,_K=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+OX+`
|
|
return result;
|
|
`,EK=sn({opSnippet:FK,packedOpSnippet:_K}),$K={kernelName:Do,backendName:"webgl",kernelFunc:EK},DK=Ra+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,MK=Xe({opSnippet:DK}),RK={kernelName:$o,backendName:"webgl",kernelFunc:MK},hp=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:g:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,k=s%4,w=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${w}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${k===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
} else if (${k===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
} else if (${k===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},Bv=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let F=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${F} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let v="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / count");let w=Math.floor(s/4)*4,S=s%4,A=`
|
|
if (${b}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${v}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${A}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${A}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${A}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${A}
|
|
}
|
|
}
|
|
setOutput(${k});
|
|
}
|
|
}
|
|
`}};function PK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;cp(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;I.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=E.computePool2DInfo(r.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))return Gn({inputs:{x:r},backend:n});let p=new hp(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var OK={kernelName:Ss,backendName:"webgl",kernelFunc:PK};function LK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,c=[1,1,1],p=E.computePool3DInfo(r.shape,s,i,c,o,l,u),d=new Bv(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var zK={kernelName:Yu,backendName:"webgl",kernelFunc:LK},WK=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,c=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},BK=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,m=p-1-e.padInfo.top,f=d-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function VK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=a,p=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,p,u,c),h=new BK(d);return n.runWebGLProgram(h,[r],i.dtype)}var UK={kernelName:dd,backendName:"webgl",kernelFunc:VK};function GK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;cp([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,c=E.computePool2DInfo(i.shape,o,l,1,u),p=new WK(c);return n.runWebGLProgram(p,[r],i.dtype)}var HK={kernelName:pd,backendName:"webgl",kernelFunc:GK};function jK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Rm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var qK={kernelName:Cs,backendName:"webgl",kernelFunc:jK},XK=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},KK=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},YK=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;I.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),I.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),I.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],c=null;i!=null&&(c=i.shape,u.push(i));let p=null;o!=null&&(p=o.shape,u.push(o));let d=Z().getBool("WEBGL_PACK_NORMALIZATION")?new KK(a.shape,r.shape,s.shape,c,p,l):new XK(a.shape,r.shape,s.shape,c,p,l);return t.runWebGLProgram(d,u,u[0].dtype)},JK={kernelName:zs,backendName:"webgl",kernelFunc:YK},ZK=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ht(this.rank),n=`uniform int start[${this.rank}];`,a=QK(this.rank),r,s=e.map((i,o)=>`sourceLoc.${Vv[o]} = start[${o}] + coords.${Vv[o]};`);r=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${r}
|
|
setOutput(getSource(${a}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Vv=["x","y","z","w","u","v"];function QK(e){if(e===1)return"sourceLoc";if(e<=6)return Vv.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var e7=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ht(this.rank),n=fn("coords",this.rank),a=fn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${a[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function t7(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=pn.computeFlatOffset(t,I.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function mp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=pn.parseSliceParams(r,s,i);if(pn.assertParamsValid(r,o,l),I.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=K8(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=n.texData.get(r.dataId),c=pn.isSliceContinous(r.shape,o,l);if(u||!c){let p=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new e7(l):new ZK(l),d=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),t7(r,o,l,n)}var n7={kernelName:ml,backendName:"webgl",kernelFunc:mp},a7=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;I.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=E.getReshaped(r.shape,s,o),u=E.getPermuted(l.length,s.length),c=E.getReshapedPermuted(r.shape,s,o),p=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(c,i,s.length),h=[],m=ye({inputs:{x:r},backend:n,attrs:{shape:l}}),f=_n({inputs:{x:m},backend:n,attrs:{perm:u}}),g=ye({inputs:{x:f},backend:n,attrs:{shape:c}}),y=mp({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},r7={kernelName:Ju,backendName:"webgl",kernelFunc:a7};function s7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=X2(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var i7={kernelName:hd,backendName:"webgl",kernelFunc:s7},o7="return float(a != b);",vT=sn({opSnippet:o7,dtype:"bool"}),l7={kernelName:nl,backendName:"webgl",kernelFunc:vT};function fp(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Gn({inputs:{x:r.complexTensorInfos.real},backend:n})}var u7={kernelName:Md,backendName:"webgl",kernelFunc:fp},c7="return float(int(x));";function p7(e,t){let n=new ds(e.shape,c7),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function Uv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Gn({inputs:{x:r},backend:n});let i=vt(r.shape),o=Uv({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=hs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=fp({inputs:{input:r},backend:n}),o=Uv({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!I.hasEncodingLoss(r.dtype,s)){let i=Gn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return p7(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",I.getTypedArrayFromDType("bool",1)),o=vT({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var d7={kernelName:As,backendName:"webgl",kernelFunc:Uv},wT="return ceil(x);",h7=Xe({opSnippet:wT,packedOpSnippet:wT,cpuKernelImpl:E8}),m7={kernelName:Fs,backendName:"webgl",kernelFunc:h7},f7=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},g7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function y7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;Z().getBool("WEBGL_PACK_CLIP")?o=new g7(r.shape):o=new f7(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var b7={kernelName:Vr,backendName:"webgl",kernelFunc:y7},x7=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function kT(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function v7(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new x7(a.shape),i=[kT(a,r.complexTensorInfos.real),kT(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var w7={kernelName:Qu,backendName:"webgl",kernelFunc:v7},k7=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},I7=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=E.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=ht(a),s=fn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),c=i.join(),p=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${Om(i,l,f)}),
|
|
vec2(${Om(u,l,f)}));
|
|
}`}let d=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${d}(${Om(i,l,h)}),
|
|
vec2(${Om(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Om(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Lm(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Gn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var N7={kernelName:Cd,backendName:"webgl",kernelFunc:Lm};function du(e,t,n){let a=e[0].dtype;if(a==="complex64"){let u=e.map(m=>fp({inputs:{input:m},backend:n})),c=e.map(m=>Lm({inputs:{input:m},backend:n})),p=du(u,t,n),d=du(c,t,n),h=hs({inputs:{real:p,imag:d},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),c.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(a==="string"){let{tensors2D:u,outShape:c}=IT(e,t,n),p=u.map(g=>({vals:n.readSync(g.dataId),shape:g.shape})),d=u[0].shape[0]===1,h=$8(p,c,a,d),m=E.computeOutShape(e.map(g=>g.shape),t),f=n.makeTensorInfo(m,a,h);return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),f}if(e.length>Z().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),c=du(e.slice(0,u),t,n),p=du(e.slice(u),t,n),d=du([c,p],t,n);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),d}if(Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new I7(e.map(c=>c.shape),t);return n.runWebGLProgram(u,e,a)}let{tensors2D:r,outShape:s}=IT(e,t,n),i=new k7(r.map(u=>u.shape)),o=n.runWebGLProgram(i,r,a);r.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=ye({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function IT(e,t,n){let a=E.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>ye({inputs:{x:r},attrs:{shape:[-1,I.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function NT(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=I.parseAxisParam(r,t[0].shape)[0],i=E.computeOutShape(t.map(u=>u.shape),s);if(I.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>I.sizeFromShape(u.shape)>0);if(o.length===1)return Gn({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return E.assertParamsConsistent(l,s),du(o,s,n)}var T7={kernelName:Mo,backendName:"webgl",kernelFunc:NT},TT=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,v="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${b}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${k}
|
|
${v}
|
|
setOutput(result);
|
|
}
|
|
`}},S7=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},C7=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:p}=n,{left:d,top:h}=o,m=r*a,f=mn(),g=p==="channelsLast",y=g?0:1,b=g?1:2,x="";for(let v=0;v<=1;v++)for(let k=0;k<=1;k++)x+=`
|
|
blockIndex = rc.y + ${k};
|
|
pos = rc.x + ${v};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
|
|
d0 = offsetY + ${c} * (pos / ${m});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${m}.) / ${r}.));
|
|
|
|
if(d1 < ${t[b]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${g}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${v*2+k}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${v*2+k}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function ST({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),c=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[],b=(p===1||d===1)&&c>mT,x=l[2]%2!=0&&!!u.isPacked;if(b||!Z().getBool("WEBGL_LAZILY_UNPACK")||!Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],k=ye({inputs:{x:e},backend:a,attrs:{shape:[1,v,n.inChannels]}}),w=ye({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Rm({a:k,b:w,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ye({inputs:{x:S},backend:a,attrs:{shape:n.outShape}}),y.push(k),y.push(w),y.push(S)}else{let v=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),k={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,I.assert(_m(u.shape,k.shape),()=>`packed reshape ${u.shape} to ${k.shape} isn't free`);let S=ye({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let A=Rm({a:k,b:S,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),F=a.texData.get(A.dataId);I.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,F.shape=n.outShape,g=Gn({inputs:{x:A},backend:a}),g.shape=n.outShape,y.push(A)}for(let v of y)a.disposeIntermediateTensorInfo(v);return g}function CT({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,m=h==="channelsLast",f=l*u*c,g=d*p,y=[f,g],b=!0,x=!1,v=[],k=ye({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),w=ye({inputs:{x:t},backend:a,attrs:{shape:[1,f,I.sizeFromShape(t.shape)/f]}});v.push(k),v.push(w);let S=new C7(y,k.shape,n),A=a.runWebGLProgram(S,[k],"float32"),F=ye({inputs:{x:A},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push(A),v.push(F);let D=r!=null,R=s!=null,L=o==="leakyrelu",W=o?Dm(o,!0):null,U=new lT(F.shape,w.shape,[1,g,n.outChannels],b,x,D,W,R,L),G=[F,w];if(r&&G.push(r),R&&G.push(s),L){let Q=a.makeTensorInfo([],"float32",I.createScalarValue(i,"float32"));G.push(Q),v.push(Q)}let X=a.runWebGLProgram(U,G,"float32"),j=m?[1,d,p,n.outChannels]:[1,n.outChannels,d,p],te=ye({inputs:{x:X},backend:a,attrs:{shape:j}});v.push(X);for(let Q of v)a.disposeIntermediateTensorInfo(Q);return te}function A7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=a,p=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(r.shape,s.shape,i,u,o,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=ST({x:r,filter:s,convInfo:d,backend:n});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=CT({x:r,filter:s,convInfo:d,backend:n});else{let f=new TT(d);h=n.runWebGLProgram(f,[r,s],"float32")}let m=ye({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),m}var F7={kernelName:_s,backendName:"webgl",kernelFunc:A7},_7=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},E7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,c=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},$7=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},D7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function M7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=a,p=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(r.shape,c,i,1,o,u,!1,p),h=new _7(d);return n.runWebGLProgram(h,[r,s],"float32")}var R7={kernelName:fd,backendName:"webgl",kernelFunc:M7};function P7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=a,p=E.convertConv2DDataFormat(u),d=E.computeConv2DInfo(i,s.shape,o,1,l,c,!1,p),h=new E7(d);return n.runWebGLProgram(h,[r,s],"float32")}var O7={kernelName:Es,backendName:"webgl",kernelFunc:P7};function L7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=E.computeConv3DInfo(r.shape,s.shape,i,l,o),c=new S7(u);return n.runWebGLProgram(c,[r,s],"float32")}var z7={kernelName:Zu,backendName:"webgl",kernelFunc:L7};function W7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=E.computeConv3DInfo(r.shape,l,i,1,o),c=new $7(u);return n.runWebGLProgram(c,[r,s],"float32")}var B7={kernelName:gd,backendName:"webgl",kernelFunc:W7};function V7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=E.computeConv3DInfo(l,s.shape,o,1,i),c=new D7(u);return n.runWebGLProgram(c,[r,s],"float32")}var U7={kernelName:yd,backendName:"webgl",kernelFunc:V7},G7=oT+`
|
|
return cos(x);
|
|
`,H7=Xe({opSnippet:G7}),j7={kernelName:$s,backendName:"webgl",kernelFunc:H7},q7=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,X7=Xe({opSnippet:q7}),K7={kernelName:Ro,backendName:"webgl",kernelFunc:X7},Y7=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[c,p]=n;this.outputShape=[u,c,p,l];let d=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,v]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${b});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${v};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},J7=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,c=new Y7(r.shape,s.shape,o,l,u);return n.runWebGLProgram(c,[r,s,i],"float32")},Q7={kernelName:Po,backendName:"webgl",kernelFunc:J7},_T=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${AT(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${ht(a)} coords = getOutputCoords();
|
|
int end = ${FT(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${FT(a,"coords")} = idx;
|
|
val += getX(${AT(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function AT(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function FT(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Z7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,u=E.getAxesPermutation([s],l),c=r;u!=null&&(c=_n({inputs:{x:r},backend:n,attrs:{perm:u}}));let p=E.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let d=c.shape[p],h=Gn({inputs:{x:c},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new _T(c.shape,!1,o),g=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new _T(c.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=E.getUndoAxesPermutation(u),f=_n({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(c),f}return h}var eY={kernelName:Ds,backendName:"webgl",kernelFunc:Z7};function tY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),c=X2(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),c=_8(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var nY={kernelName:bd,backendName:"webgl",kernelFunc:tY},aY=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function rY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;I.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=u*s,h=c/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=new aY(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var sY={kernelName:Oo,backendName:"webgl",kernelFunc:rY},ET=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,g="",y="";n&&(a?g=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?g=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:g=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${g}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${p};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},$T=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=m,g="int xR; int xC; int xCOffset;";for(let v=0;v<h;v++)for(let k=0;k<m;k++)g+=`
|
|
vec4 xTexelR${v}C${k*2} = vec4(0.);
|
|
vec4 wR${v}C${k} = vec4(0.);
|
|
vec4 xR${v}C${k} = vec4(0.);`;for(let v=0;v<h;v++)for(let k=0;k<f;k++){let w=k*2;if(g+=`
|
|
xR = xRCorner + ${v*p};
|
|
xC = xCCorner + ${w*d};
|
|
`,c===1){if(w<m&&(l%2==1?g+=`
|
|
xCOffset = xC + 1;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${w} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
xTexelR${v}C${w}.zw = vec2(0.);
|
|
}
|
|
} else {
|
|
xTexelR${v}C${w} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + 1 - 2;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
vec4 previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.);
|
|
}
|
|
|
|
xR${v}C${w} = vec4(previous.zw, xTexelR${v}C${w}.xy);
|
|
} else {
|
|
xR${v}C${w} = vec4(0, 0, xTexelR${v}C${w}.xy);
|
|
}
|
|
`:g+=`
|
|
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
|
|
xTexelR${v}C${w} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${v}C${w} = vec4(0.);
|
|
}
|
|
|
|
xR${v}C${w} = xTexelR${v}C${w};
|
|
`,w+1<m)){let S=l%2==0?I.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(g+=`
|
|
xCOffset = xC + ${l%2} + ${S};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${w+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`,d>1&&(g+=`
|
|
xCOffset -= 2;
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${w} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${v}C${w} = vec4(0.);
|
|
}
|
|
`),g+=`
|
|
xR${v}C${w+1} = vec4(
|
|
xTexelR${v}C${w}.zw, xTexelR${v}C${w+2}.xy);
|
|
`):g+=`
|
|
xCOffset = xC + ${S};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${w+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
|
|
xR${v}C${w+1} = xTexelR${v}C${w+2};
|
|
`}}else w<m&&(g+=`
|
|
if(xR >= 0 && xR < ${s}) {
|
|
`,l%2==1?(g+=`
|
|
xCOffset = xC + 1 - ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${w} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${v}C${w} = vec4(0.);
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i}) {
|
|
xTexelR${v}C${w+2} = getX(batch, xR, xC + 1, d1);
|
|
} else {
|
|
xTexelR${v}C${w+2} = vec4(0.);
|
|
}
|
|
|
|
xR${v}C${w} = vec4(
|
|
xTexelR${v}C${w}.zw, xTexelR${v}C${w+2}.zw);
|
|
`,w+1<m&&(g+=`
|
|
vec4 final = vec4(0.);
|
|
xCOffset = xC + 1 + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xR${v}C${w+1} = vec4(xTexelR${v}C${w+2}.xy, final.xy);
|
|
`)):(g+=`
|
|
if(xC >= 0 && xC < ${i}) {
|
|
xTexelR${v}C${w} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${v}C${w} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${w+2} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${v}C${w+2} = vec4(0.);
|
|
}
|
|
|
|
xR${v}C${w} = vec4(
|
|
xTexelR${v}C${w}.xy, xTexelR${v}C${w+2}.xy);
|
|
`,w+1<m&&(g+=`
|
|
xR${v}C${w+1} = vec4(
|
|
xTexelR${v}C${w}.zw, xTexelR${v}C${w+2}.zw);
|
|
`)),g+="}");w<m&&(g+=`
|
|
vec4 wTexelR${v}C${w} = getW(${v}, ${w}, d1, q);
|
|
wR${v}C${w} = vec4(wTexelR${v}C${w}.xz, wTexelR${v}C${w}.xz);
|
|
`,w+1<m&&(g+=`
|
|
vec4 wTexelR${v}C${w+1} = getW(${v}, ${w+1}, d1, q);
|
|
wR${v}C${w+1} =
|
|
vec4(wTexelR${v}C${w+1}.xz, wTexelR${v}C${w+1}.xz);`))}for(let v=0;v<h;v++)for(let k=0;k<m;k++)g+=`dotProd += xR${v}C${k} * wR${v}C${k};`;let y="",b="";n&&(a?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,b="result = activation(result);");let x=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2;
|
|
int q = 0;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
vec4 dotProd = vec4(0.);
|
|
|
|
${g}
|
|
|
|
vec4 result = dotProd;
|
|
${x}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}};function iY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,c=l;c==null&&(c=[1,1]),I.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=E.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),d;return Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?d=new $T(p):d=new ET(p),n.runWebGLProgram(d,[r,s],"float32")}var oY={kernelName:Ms,backendName:"webgl",kernelFunc:iY},lY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},uY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function cY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=a,p=E.computeConv2DInfo(r.shape,c,i,o,l,u,!0),d=new lY(p);return n.runWebGLProgram(d,[r,s],"float32")}var pY={kernelName:xd,backendName:"webgl",kernelFunc:cY};function dY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=a,p=E.computeConv2DInfo(c,s.shape,i,o,l,u,!0),d=new uY(p);return n.runWebGLProgram(d,[r,s],"float32")}var hY={kernelName:vd,backendName:"webgl",kernelFunc:dY},mY=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function fY(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=I.sizeFromShape(a.shape),i=ye({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new mY(s),l=n.runWebGLProgram(o,[i],i.dtype),u=ye({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var gY={kernelName:wd,backendName:"webgl",kernelFunc:fY},yY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:c,left:p}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function bY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=E.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),c,p=new yY(u);c=n.runWebGLProgram(p,[r,s],"float32");let d=ye({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var xY={kernelName:ec,backendName:"webgl",kernelFunc:bY},vY="return (x >= 0.0) ? x : (exp(x) - 1.0);",wY=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,kY=Xe({opSnippet:vY,packedOpSnippet:wY}),IY={kernelName:Lo,backendName:"webgl",kernelFunc:kY},NY="return (b >= 1.0) ? a : a * (b + 1.0);",TY=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,SY=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(TY,a.shape,r.shape):new pu(NY,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},CY={kernelName:Nd,backendName:"webgl",kernelFunc:SY},AY=`
|
|
return vec4(equal(a, b));
|
|
`,FY="return float(a == b);",_Y=sn({opSnippet:FY,packedOpSnippet:AY,dtype:"bool"}),EY={kernelName:Wo,backendName:"webgl",kernelFunc:_Y},$Y=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${E.ERF_P};
|
|
float a1 = ${E.ERF_A1};
|
|
float a2 = ${E.ERF_A2};
|
|
float a3 = ${E.ERF_A3};
|
|
float a4 = ${E.ERF_A4};
|
|
float a5 = ${E.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,DY=Xe({opSnippet:$Y}),MY={kernelName:zo,backendName:"webgl",kernelFunc:DY},DT="return exp(x);",MT=Xe({opSnippet:DT,packedOpSnippet:DT,cpuKernelImpl:D8}),RY={kernelName:Ps,backendName:"webgl",kernelFunc:MT};function Gv(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(I.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),ye({inputs:{x:s},backend:a,attrs:{shape:o}})}var PY={kernelName:Bo,backendName:"webgl",kernelFunc:Gv},RT="return exp(x) - 1.0;",OY=Xe({opSnippet:RT,packedOpSnippet:RT,cpuKernelImpl:M8}),LY={kernelName:Vo,backendName:"webgl",kernelFunc:OY},PT=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function OT(e,t,n){let a=n.texData.get(e.dataId),r=I.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=ye({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new PT("real",l,t),c=new PT("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),m=hs({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let f=ye({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function zY(e){let{inputs:t,backend:n}=e,{input:a}=t;return OT(a,!1,n)}var WY={kernelName:Td,backendName:"webgl",kernelFunc:zY},BY=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Hv(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||I.inferDtype(r),s==="string"){let i=I.getArrayFromDType(s,I.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new BY(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var VY={kernelName:tc,backendName:"webgl",kernelFunc:Hv},UY=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},GY={kernelName:Uo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new UY(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},LT="return floor(x);",HY=Xe({opSnippet:LT,packedOpSnippet:LT,cpuKernelImpl:R8}),jY={kernelName:Os,backendName:"webgl",kernelFunc:HY},qY=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,XY=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,KY=sn({opSnippet:qY,packedOpSnippet:XY,dtype:"int32"}),YY={kernelName:Ls,backendName:"webgl",kernelFunc:KY},JY=class{constructor(e){this.variableNames=["A"];let t=mn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},QY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=mn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},e9={kernelName:Wd,backendName:"webgl",kernelFunc:ZY},hu;function ZY(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],p=[u,l,s];(o||i)&&(hu==null&&(hu=document.createElement("canvas").getContext("2d")),hu.canvas.width=l,hu.canvas.height=u,hu.drawImage(r,0,0,l,u),r=hu.canvas);let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=na.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=Z().getBool("WEBGL_PACK")?new QY(p):new JY(p),m=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),m}function t9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=E.convertConv2DDataFormat(c),g=E.computeConv2DInfo(r.shape,s.shape,l,p,u,d,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=ST({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=CT({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,k=o!=null,w=h==="leakyrelu",S=h?Dm(h,!1):null,A=new TT(g,v,S,k,w),F=[r,s];if(i&&F.push(i),o&&F.push(o),w){let D=n.makeTensorInfo([],"float32",I.createScalarValue(m,"float32"));F.push(D),b.push(D)}y=n.runWebGLProgram(A,F,"float32")}let x=ye({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var n9={kernelName:yi,backendName:"webgl",kernelFunc:t9};function a9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=a,m=[],f=c;f==null&&(f=[1,1]),I.assert(E.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=E.computeConv2DInfo(r.shape,s.shape,l,f,u,p,!0),y=Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=d?Dm(d,y):null,x=[r,s],v=i!=null,k=o!=null,w=d==="leakyrelu";if(v&&x.push(i),k&&x.push(o),w){let F=n.makeTensorInfo([],"float32",I.createScalarValue(h,"float32"));x.push(F),m.push(F)}let S;y?S=new $T(g,v,b,k,w):S=new ET(g,v,b,k,w);let A=n.runWebGLProgram(S,x,"float32");return m.forEach(F=>n.disposeIntermediateTensorInfo(F)),A}var r9={kernelName:bi,backendName:"webgl",kernelFunc:a9},s9=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=ht(t.length),r=ht(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function i9(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,u,c]=E.prepareAndValidate(a,r),p=ye({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),d=ye({inputs:{x:a},backend:n,attrs:{shape:[I.sizeFromShape(a.shape)/u,u]}}),h=new s9(i,c,[l,u]),m=n.runWebGLProgram(h,[d,p],d.dtype),f=ye({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var o9={kernelName:Ho,backendName:"webgl",kernelFunc:i9},u9=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ht(this.rank),a=l9(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function l9(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function c9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=I.parseAxisParam(i,r.shape)[0],u=E.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=I.sizeFromShape(s.shape),p=[],d=ye({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ye({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let m=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(d),v=P8(x,b,m);return p.forEach(k=>n.disposeIntermediateTensorInfo(k)),n.makeTensorInfo(u.outputShape,v.dtype,v.values)}let f=new u9(d.shape,m),g=n.runWebGLProgram(f,[d,h],d.dtype);p.push(g);let y=ye({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var p9={kernelName:Go,backendName:"webgl",kernelFunc:c9},d9="return float(a > b);",h9=`
|
|
return vec4(greaterThan(a, b));
|
|
`,m9=sn({opSnippet:d9,packedOpSnippet:h9,cpuKernelImpl:O8,dtype:"bool"}),f9={kernelName:jo,backendName:"webgl",kernelFunc:m9},g9="return float(a >= b);",y9=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,b9=sn({opSnippet:g9,packedOpSnippet:y9,dtype:"bool"}),x9={kernelName:Ws,backendName:"webgl",kernelFunc:b9};function v9(e){let{inputs:t,backend:n}=e,{input:a}=t;return OT(a,!0,n)}var w9={kernelName:Sd,backendName:"webgl",kernelFunc:v9},k9="return float(!isnan(x) && !isinf(x));",I9=Xe({opSnippet:k9,dtype:"bool"}),N9={kernelName:qo,backendName:"webgl",kernelFunc:I9},T9="return float(isinf(x));",S9=Xe({opSnippet:T9,dtype:"bool"}),C9={kernelName:Xo,backendName:"webgl",kernelFunc:S9},A9="return float(isnan(x));",F9=Xe({opSnippet:A9,dtype:"bool"}),_9={kernelName:Ko,backendName:"webgl",kernelFunc:F9},E9="return float(a < b);",$9=`
|
|
return vec4(lessThan(a, b));
|
|
`,D9=sn({opSnippet:E9,packedOpSnippet:$9,cpuKernelImpl:L8,dtype:"bool"}),M9={kernelName:Yo,backendName:"webgl",kernelFunc:D9},R9="return float(a <= b);",P9=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,O9=sn({opSnippet:R9,packedOpSnippet:P9,dtype:"bool"}),L9={kernelName:Jo,backendName:"webgl",kernelFunc:O9};function z9(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=z8(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var W9={kernelName:Ad,backendName:"webgl",kernelFunc:z9},B9=`if (x < 0.0) return NAN;
|
|
return log(x);`,V9=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,U9=Xe({opSnippet:B9,packedOpSnippet:V9,cpuKernelImpl:W8}),G9={kernelName:Us,backendName:"webgl",kernelFunc:U9},H9="return log(1.0 + x);",j9=Xe({opSnippet:H9}),q9={kernelName:Qo,backendName:"webgl",kernelFunc:j9},X9="return float(a >= 1.0 && b >= 1.0);",K9=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,Y9=sn({opSnippet:X9,packedOpSnippet:K9,dtype:"bool"}),J9={kernelName:Zo,backendName:"webgl",kernelFunc:Y9},Q9="return float(!(x >= 1.0));",Z9=Xe({opSnippet:Q9}),eJ={kernelName:nc,backendName:"webgl",kernelFunc:Z9},tJ="return float(a >= 1.0 || b >= 1.0);",nJ=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,aJ=sn({opSnippet:tJ,packedOpSnippet:nJ,dtype:"bool"}),rJ={kernelName:ac,backendName:"webgl",kernelFunc:aJ},sJ=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},iJ=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},oJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=Z().getBool("WEBGL_PACK_NORMALIZATION")?new iJ(r.shape,s,i,o,l):new sJ(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},lJ={kernelName:rc,backendName:"webgl",kernelFunc:oJ},uJ=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},cJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=a,p=new uJ(r.shape,o,l,u,c);return n.runWebGLProgram(p,[r,s,i],r.dtype)},pJ={kernelName:Fd,backendName:"webgl",kernelFunc:cJ};function dJ(e,t,n,a){let r=I.sizeFromShape(t),s=I.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=ji(i,e.dtype,"max",a),l=ye({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function zT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=I.parseAxisParam(s,r.shape),u=l,c=E.getAxesPermutation(u,o),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let w=0;w<x.length;w++)x[w]=r.shape[c[w]];let v=Ov(b,r.shape,r.dtype,c,x);h=n.makeTensorInfo(x,r.dtype);let k=n.texData.get(h.dataId);k.values=v}else h=Mm(r,c,n);u=E.getInnerMostAxes(u.length,o)}E.assertAxesAreInnerMostDims("max",u,o);let[m,f]=E.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=E.expandShapeToKeepDim(m,l));let y;if(d){let b=n.texData.get(h.dataId).values,x=B8(b,I.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=dJ(h,f,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var hJ={kernelName:Gs,backendName:"webgl",kernelFunc:zT},mJ=nT+`
|
|
return max(a, b);
|
|
`,fJ=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+$m+`
|
|
return result;
|
|
`,gJ=sn({opSnippet:mJ,packedOpSnippet:fJ,cpuKernelImpl:V8}),yJ={kernelName:Hs,backendName:"webgl",kernelFunc:gJ};function bJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;cp(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;I.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=E.computePool2DInfo(r.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&I.arraysEqual(c.inShape,c.outShape))return Gn({inputs:{x:r},backend:n});let p=new hp(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var xJ={kernelName:js,backendName:"webgl",kernelFunc:bJ};function vJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,c=[1,1,1],p=E.computePool3DInfo(r.shape,s,i,c,o,u,l),d=new Bv(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var wJ={kernelName:sc,backendName:"webgl",kernelFunc:vJ},kJ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},IJ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=o-1-e.padInfo.front,p=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${p}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function NJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=a,p=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,p,u,c),h=new Bv(d,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new IJ(d),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var TJ={kernelName:Ed,backendName:"webgl",kernelFunc:NJ};function SJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;cp([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=a,d=E.computePool2DInfo(o.shape,l,u,1,c,p),h=!0,m=new hp(d,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new kJ(d),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var CJ={kernelName:_d,backendName:"webgl",kernelFunc:SJ};function AJ(e,t,n,a){let r=new hp(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new hp(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var FJ={kernelName:$d,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;I.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];I.assert(E.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=E.computePool2DInfo(a.shape,r,s,u,i),[p,d]=AJ(a,o,c,l);return[p,d]}};function _J(e,t,n,a){let r=I.sizeFromShape(t),s=I.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=ji(i,"float32","mean",a),l=ye({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var EJ={kernelName:qs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=I.parseAxisParam(s,a.shape),u=l,c=E.getAxesPermutation(u,o),p=c!=null,d=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let S=0;S<v.length;S++)v[S]=a.shape[c[S]];let k=Ov(x,a.shape,a.dtype,c,v);m=i.makeTensorInfo(v,a.dtype);let w=i.texData.get(m.dataId);w.values=k}else m=Mm(a,c,i);h.push(m),u=E.getInnerMostAxes(u.length,o)}E.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=E.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=E.expandShapeToKeepDim(f,l));let b=_J(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function $J(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=I.parseAxisParam(s,r.shape),u=l,c=E.getAxesPermutation(u,o),p=r;c!=null&&(p=_n({inputs:{x:r},backend:n,attrs:{perm:c}}),u=E.getInnerMostAxes(u.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",u,o);let[d,h]=E.computeOutAndReduceShapes(p.shape,u),m=I.sizeFromShape(h),f=ye({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=ji(f,f.dtype,"min",n),y;if(i){let b=E.expandShapeToKeepDim(d,l);y=ye({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ye({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var DJ={kernelName:Xs,backendName:"webgl",kernelFunc:$J},MJ=nT+`
|
|
return min(a, b);
|
|
`,RJ=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+$m+`
|
|
return result;
|
|
`,PJ=sn({opSnippet:MJ,packedOpSnippet:RJ,cpuKernelImpl:U8}),OJ={kernelName:Ks,backendName:"webgl",kernelFunc:PJ},LJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let a=e.length,r=ht(a),s=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},zJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=ht(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=fn("rc",a),l=fn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,c=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},WJ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zJ(a.shape,r,s):new LJ(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},BJ={kernelName:ic,backendName:"webgl",kernelFunc:WJ},VJ=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,UJ=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+$m+`
|
|
return result;
|
|
`,GJ=sn({opSnippet:VJ,packedOpSnippet:UJ}),HJ={kernelName:el,backendName:"webgl",kernelFunc:GJ},jJ=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},qJ=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,XJ=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,WT=sn({opSnippet:qJ,packedOpSnippet:XJ,checkOutOfBounds:!0}),KJ={kernelName:Rs,backendName:"webgl",kernelFunc:WT},BT="return a - b;",VT=sn({opSnippet:BT,packedOpSnippet:BT,supportsComplex:!0,cpuKernelImpl:J8}),YJ={kernelName:hi,backendName:"webgl",kernelFunc:VT};function UT(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=I.parseAxisParam([s],r.shape),o=zT({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),u=ye({inputs:{x:o},backend:n,attrs:{shape:l}}),c=VT({inputs:{a:r,b:u},backend:n}),p=MT({inputs:{x:c},backend:n}),d=Wv({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=ye({inputs:{x:d},backend:n,attrs:{shape:l}}),m=WT({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}var JJ={kernelName:pi,backendName:"webgl",kernelFunc:UT};function QJ(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:UT({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new jJ(u,c,s),d=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),h}var ZJ={kernelName:Dd,backendName:"webgl",kernelFunc:QJ},GT="return -x;";function eQ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=H8(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new cu(a.shape,GT):r=new ds(a.shape,GT),n.runWebGLProgram(r,[a],a.dtype)}var tQ={kernelName:tl,backendName:"webgl",kernelFunc:eQ},nQ=Ya.nonMaxSuppressionV3Impl;function aQ(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),c=n.readSync(s.dataId),{selectedIndices:p}=nQ(u,c,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var rQ={kernelName:al,backendName:"webgl",kernelFunc:aQ},sQ=Ya.nonMaxSuppressionV4Impl;function iQ(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,c=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d,validOutputs:h}=sQ(c,p,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var oQ={kernelName:rl,backendName:"webgl",kernelFunc:iQ},lQ=Ya.nonMaxSuppressionV5Impl;function uQ(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,c=n.readSync(r.dataId),p=n.readSync(s.dataId),d=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=lQ(c,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var cQ={kernelName:sl,backendName:"webgl",kernelFunc:uQ},pQ=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},dQ=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=I.sizeFromShape(r.shape),u=new pQ(l,s,i,o),c=ye({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let d=[...r.shape,s],h=ye({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},hQ={kernelName:Js,backendName:"webgl",kernelFunc:dQ};function zm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=fp({inputs:{input:a},backend:n}),s=zm({inputs:{x:r},backend:n}),i=Lm({inputs:{input:a},backend:n}),o=zm({inputs:{x:i},backend:n}),l=hs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Hv({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var mQ={kernelName:Il,backendName:"webgl",kernelFunc:zm};function HT(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=fp({inputs:{input:a},backend:n}),s=HT({inputs:{x:r},backend:n}),i=Lm({inputs:{input:a},backend:n}),o=zm({inputs:{x:i},backend:n}),l=hs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Hv({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var fQ={kernelName:il,backendName:"webgl",kernelFunc:HT};function gQ(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Gv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let p=Gv({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),u=NT({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var yQ={kernelName:ol,backendName:"webgl",kernelFunc:gQ},bQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=ht(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},xQ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=ht(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=fn("rc",a),l=fn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,c=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],d=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${p[m]}
|
|
if (${d}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},jT=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new xQ(r.shape,s,i):new bQ(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},vQ={kernelName:Qs,backendName:"webgl",kernelFunc:jT},wQ=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,kQ=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+$m+`
|
|
return result;
|
|
`,IQ=sn({opSnippet:wQ,packedOpSnippet:kQ}),NQ={kernelName:Zs,backendName:"webgl",kernelFunc:IQ};function TQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=I.parseAxisParam(s,r.shape),c=u,p=E.getAxesPermutation(c,o),d=r;p!=null&&(d=_n({inputs:{x:r},backend:n,attrs:{perm:p}}),c=E.getInnerMostAxes(c.length,o),l.push(d)),E.assertAxesAreInnerMostDims("prod",c,o);let h;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:g,outDtype:y}=j8(d.shape,d.dtype,m,c);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=E.computeOutAndReduceShapes(d.shape,c),g=I.sizeFromShape(f),y=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),b=jd(r.dtype),x=ji(y,b,"prod",n);h=ye({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=E.expandShapeToKeepDim(h.shape,u);h=ye({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var SQ={kernelName:ll,backendName:"webgl",kernelFunc:TQ},qT=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=q8(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},CQ={kernelName:oc,backendName:"webgl",kernelFunc:qT},AQ="return 1.0 / x;",FQ=Xe({opSnippet:AQ}),_Q={kernelName:ul,backendName:"webgl",kernelFunc:FQ},EQ=Ra+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,$Q=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,DQ=Xe({opSnippet:EQ,packedOpSnippet:$Q}),MQ={kernelName:ti,backendName:"webgl",kernelFunc:DQ},RQ=Ra+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,PQ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,OQ=Xe({opSnippet:RQ,packedOpSnippet:PQ}),LQ={kernelName:ai,backendName:"webgl",kernelFunc:OQ},zQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],c=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},WQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],c=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function BQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,c=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new WQ(r.shape,l,u,s,i):new zQ(r.shape,l,u,s,i);return n.runWebGLProgram(c,[r],"float32")}var VQ={kernelName:ni,backendName:"webgl",kernelFunc:BQ},UQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function GQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new UQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var HQ={kernelName:Pd,backendName:"webgl",kernelFunc:GQ},jQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],c=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function qQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,c=new jQ(r.shape,l,u,s,i);return n.runWebGLProgram(c,[r],r.dtype)}var XQ={kernelName:lc,backendName:"webgl",kernelFunc:qQ},KQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function YQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new KQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var JQ={kernelName:Rd,backendName:"webgl",kernelFunc:YQ},QQ=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=ht(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},ZQ=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=fn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ht(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,b)=>d(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function d(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function eZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=I.parseAxisParam(s,r.shape);if(i===0)return Gn({inputs:{x:r},backend:n});let l=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ZQ(r.shape,o):new QQ(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var tZ={kernelName:ri,backendName:"webgl",kernelFunc:eZ},nZ=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},aZ={kernelName:Nl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new nZ(a.shape,s),[u,c]=E.getImageCenter(i,a.shape[1],a.shape[2]),p=l.getCustomSetupFunc(u,c,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,p)}},rZ=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,sZ=Xe({opSnippet:rZ}),iZ={kernelName:si,backendName:"webgl",kernelFunc:sZ},oZ="return inversesqrt(x);",lZ=Xe({opSnippet:oZ,cpuKernelImpl:X8}),uZ={kernelName:ii,backendName:"webgl",kernelFunc:lZ},XT=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ht(r.length),l=ht(s.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function cZ(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=E.calculateShapes(s,r,i),d=[p/u,u];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=ye({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=ye({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new XT(l,o,h.shape.length,m.shape.length,c,d),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=ye({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var pZ={kernelName:pl,backendName:"webgl",kernelFunc:cZ},dZ=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=ht(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function hZ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new dZ(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ua(r.dtype,s.dtype))}var mZ={kernelName:dl,backendName:"webgl",kernelFunc:hZ},fZ=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${E.SELU_SCALEALPHA};
|
|
float scale = ${E.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,gZ=Xe({opSnippet:fZ}),yZ={kernelName:hl,backendName:"webgl",kernelFunc:gZ},bZ="return 1.0 / (1.0 + exp(-1.0 * x));",xZ=Xe({opSnippet:bZ}),vZ={kernelName:li,backendName:"webgl",kernelFunc:xZ},wZ=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,kZ=Xe({opSnippet:wZ}),IZ={kernelName:gl,backendName:"webgl",kernelFunc:kZ},NZ=oT+`
|
|
return sin(x);
|
|
`,TZ=Xe({opSnippet:NZ}),SZ={kernelName:oi,backendName:"webgl",kernelFunc:TZ},CZ=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,AZ=Xe({opSnippet:CZ}),FZ={kernelName:fl,backendName:"webgl",kernelFunc:AZ},_Z=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,EZ=Xe({opSnippet:_Z}),$Z={kernelName:yl,backendName:"webgl",kernelFunc:EZ},DZ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;I.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=jT({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=E.getReshaped(c.shape,s,o,!1),d=E.getPermuted(p.length,s.length,!1),h=E.getReshapedPermuted(c.shape,s,o,!1),m=ye({inputs:{x:c},backend:n,attrs:{shape:p}}),f=_n({inputs:{x:m},backend:n,attrs:{perm:d}}),g=ye({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(c),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},MZ={kernelName:uc,backendName:"webgl",kernelFunc:DZ};function RZ(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=E.calculateShapes(s,r,o),d=!1,h=new XT(u,l,r.shape.length,s.shape.length,c,[p,1],d),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=ye({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var PZ={kernelName:Od,backendName:"webgl",kernelFunc:RZ};function OZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=I.parseAxisParam(i,r.shape)[0],l=E.prepareSplitSize(r,s,o),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[o]=d;let m=mp({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[o]+=d,m})}var LZ={kernelName:bl,backendName:"webgl",kernelFunc:OZ},zZ="return sqrt(x);",WZ=Xe({opSnippet:zZ}),BZ={kernelName:ui,backendName:"webgl",kernelFunc:WZ},VZ="return x * x;",UZ=Xe({opSnippet:VZ}),GZ={kernelName:cc,backendName:"webgl",kernelFunc:UZ},KT="return (a - b) * (a - b);",HZ=sn({opSnippet:KT,packedOpSnippet:KT}),jZ={kernelName:di,backendName:"webgl",kernelFunc:HZ};function qZ({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ra+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new ds(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var XZ={kernelName:Gr,backendName:"webgl",kernelFunc:qZ},KZ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=ht(n.length),s=ht(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function YZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=a,{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=pn.sliceInfo(r.shape,s,i,o,l,u,c,p,d),x=ye({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let w=mp({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=ye({inputs:{x:w},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}else if(b.some(w=>w===0))v=n.makeTensorInfo(b,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let w=n.texData.get(x.dataId).values,S=Le(x.shape,x.dtype,w),A=Y8(b,S,f,m);v=n.makeTensorInfo(b,x.dtype,A.values)}else{let w=new KZ(m,f,b);v=n.runWebGLProgram(w,[x],x.dtype)}let k=ye({inputs:{x:v},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),k}var JZ={kernelName:xl,backendName:"webgl",kernelFunc:YZ},QZ="return tan(x);",ZZ=Xe({opSnippet:QZ}),eee={kernelName:vl,backendName:"webgl",kernelFunc:ZZ},tee=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,nee=Xe({opSnippet:tee}),aee={kernelName:mi,backendName:"webgl",kernelFunc:nee},see=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=ht(this.rank),r=ree(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function ree(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function YT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"){let o=n.readSync(r.dataId).map(c=>I.decodeString(c)),l=Le(r.shape,r.dtype,o),u=Q8(l,s);return n.makeTensorInfo(u.shape,u.dtype,u.values)}let i=new see(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var iee={kernelName:Ur,backendName:"webgl",kernelFunc:YT};function oee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,u]=Z8(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var lee={kernelName:wl,backendName:"webgl",kernelFunc:oee},uee=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function cee(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[c,p,d,h]=r.shape,[m,f]=u!=null?u:[p,d],g=[c,m,f,h],y=new uee(p,d,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var pee={kernelName:Ld,backendName:"webgl",kernelFunc:cee};function dee(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;cp(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=eX(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var hee={kernelName:zd,backendName:"webgl",kernelFunc:dee};function mee(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),c=0;for(let f=0;f<o;f++)f!==s&&(u[c++]=i.shape[f]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){d[s]=f;let g=mp({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),y=ye({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=y,p.push(g)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var fee={kernelName:kl,backendName:"webgl",kernelFunc:mee},gee=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";r%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function yee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,c=E.getAxesPermutation([u],o),p=r;c!=null&&(p=_n({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(p),u=E.getInnerMostAxes(1,o)[0]);let d=E.segment_util.computeOutShape(p.shape,u,i),h=I.sizeFromShape([p.shape[u]]),m=ye({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=jd(r.dtype),g=(v,k,w,S,A)=>{let F=v.shape[0],D=v.shape[1],R=E.segment_util.segOpComputeOptimalWindowSize(D,A),L={windowSize:R,inSize:D,batchSize:F,numSegments:A},W=new gee(L,k),U=n.compileAndRun(W,[v,w],S);if(l.push(U),U.shape[1]===A)return U;let G=qT({backend:n,attrs:{start:0,stop:A,step:1,dtype:"float32"}}),X=YT({inputs:{x:G},backend:n,attrs:{reps:[D/R]}});return l.push(G),l.push(X),g(U,k,X,S,A)},y=g(m,"unsortedSegmentSum",s,f,i),b=ye({inputs:{x:y},backend:n,attrs:{shape:d}}),x=b;if(c!=null){l.push(b);let v=E.getUndoAxesPermutation(c);x=_n({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var bee={kernelName:pc,backendName:"webgl",kernelFunc:yee},xee=[lJ,pJ,YX,QX,tK,rK,iK,uK,pK,hK,yK,xK,kK,TK,$K,AK,RK,zK,OK,UK,HK,qK,JK,r7,i7,d7,m7,b7,w7,EX,T7,R7,O7,F7,B7,U7,z7,j7,K7,Q7,eY,nY,sY,pY,hY,oY,gY,xY,IY,CY,EY,MY,RY,PY,LY,WY,VY,GY,jY,YY,e9,n9,r9,o9,p9,f9,x9,_X,w9,N7,N9,C9,_9,DX,M9,L9,W9,q9,G9,J9,eJ,rJ,hJ,wJ,xJ,TJ,CJ,FJ,yJ,EJ,DJ,OJ,BJ,HJ,ZJ,LX,tQ,rQ,oQ,cQ,l7,hQ,fQ,yQ,vQ,NQ,RX,SQ,CQ,u7,KJ,_Q,LQ,MQ,WX,VQ,HQ,XQ,JQ,tZ,aZ,iZ,uZ,pZ,mZ,yZ,vZ,IZ,SZ,FZ,n7,JJ,$Z,MZ,PZ,LZ,BZ,GZ,jZ,XZ,JZ,YJ,qX,eee,aee,iee,lee,pee,XX,hee,fee,bee,mQ];for(let e of xee)hc(e);var vee="3.3.0",wee={"tfjs-core":Q0,"tfjs-backend-cpu":BU,"tfjs-backend-webgl":FX,"tfjs-data":TN,"tfjs-layers":im,"tfjs-converter":xN,tfjs:vee},Hn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Hn||(Hn={}));var gp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(gp||(gp={}));var JT;function kee(e){JT=e.wasm.cwrap(gi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Iee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let A=n.dataIdMap.get(i.dataId);if(A.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${A.shape.length}.`);m=A.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=gp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=u?s.shape[1]:s.shape[2],x=r.shape[0],v=n.makeOutput([x,y,b],r.dtype),k=n.dataIdMap.get(v.dataId).id,w=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(s.shape).buffer);return JT(d,w,r.shape.length,h,S,s.shape.length,l,u,g,m,f,p||0,k),v}var Nee={kernelName:gi,backendName:"wasm",setupFunc:kee,kernelFunc:Iee};function En(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return I.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var Tee=En(So);function gn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:c}=l,p=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,m=E.assertAndGetBroadcastShape(u.shape,c.shape),f=o.makeOutput(m,h);if(I.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),b=o.dataIdMap.get(f.dataId).id,x=()=>a(p,g,u.shape.length,d,y,c.shape.length,Hn[u.dtype],b);if(t&&u.dtype==="float32")return x(),f;let v=E.getBroadcastDims(u.shape,m),k=E.getBroadcastDims(c.shape,m),w=v.every((A,F)=>A===F),S=k.every((A,F)=>A===F);if(w&&S)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var See=!0,Cee=gn(Br,See),QT;function Aee(e){QT=e.wasm.cwrap(Ns,null,["array","number","number","number"])}function Fee(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(I.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return QT(s,r.length,Hn[a.dtype],i),a}var _ee={kernelName:Ns,backendName:"wasm",setupFunc:Aee,kernelFunc:Fee};function Wm(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Eee={kernelName:Bs,backendName:"wasm",kernelFunc:Wm},ZT;function $ee(e){ZT=e.wasm.cwrap(fi,null,["number","array","number","number","number","array","number"])}function Bm(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Mee(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Dee(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Wm({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),c=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return ZT(c,h,l.shape.length,Hn[l.dtype],p,d,s.length),u}function Dee(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Mee(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Ree={kernelName:fi,backendName:"wasm",kernelFunc:Bm,setupFunc:$ee};function mu(e,t,n){let a=e.shape,r=e.shape.length,s=I.parseAxisParam(t,a),i=s,o=E.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let c=new Array(r);for(let d=0;d<c.length;d++)c[d]=a[o[d]];i=E.getInnerMostAxes(i.length,r),l=Bm({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var eS;function Pee(e){eS=e.wasm.cwrap(Ts,null,["number","number","number","number","number"])}function Oee(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:c,inputWasTransposed:p}=mu(s,r,t);if(p){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),m=t.dataIdMap.get(h.dataId).id,f=I.sizeFromShape(h.shape),g=l.shape[c[0]];return eS(o,Hn[l.dtype],f,g,m),p&&t.disposeData(u.dataId),h}var Lee={kernelName:Ts,backendName:"wasm",kernelFunc:Oee,setupFunc:Pee},tS;function zee(e){tS=e.wasm.cwrap(Ss,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Wee(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=E.computePool2DInfo(r.shape,i,o,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,b=c.strideWidth,x=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let v=a.makeOutput(c.outShape,"float32"),k=a.dataIdMap.get(v.dataId).id;return tS(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,x,k),v}var Bee={kernelName:Ss,backendName:"wasm",setupFunc:zee,kernelFunc:Wee};function Pa(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=I.sizeFromShape(a.shape),i=I.inferFromImplicitShape(r,s);return I.assert(s===I.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var Vee={kernelName:cl,backendName:"wasm",kernelFunc:Pa},nS;function Uee(e){nS=e.wasm.cwrap(Cs,null,["number","array","number","number","array","number","number","number","number"])}function Gee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,c=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=I.sizeFromShape(m),y=I.sizeFromShape(f),b=g===y||g===1||y===1;I.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);I.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,c,d]:[g,d,c],k=o?[y,h,p]:[y,p,h],w=Pa({inputs:{x:r},backend:n,attrs:{shape:v}}),S=Pa({inputs:{x:s},backend:n,attrs:{shape:k}}),A=n.dataIdMap.get(w.dataId).id,F=n.dataIdMap.get(S.dataId).id,D=i?w.shape[2]:w.shape[1],R=o?S.shape[1]:S.shape[2],L=Math.max(g,y),W=n.makeOutput([L,D,R],w.dtype),U=n.dataIdMap.get(W.dataId).id,G=new Uint8Array(new Int32Array(w.shape).buffer),X=new Uint8Array(new Int32Array(S.shape).buffer);return nS(A,G,w.shape.length,F,X,S.shape.length,i,o,U),n.disposeData(w.dataId),n.disposeData(S.dataId),W.shape=x,W}var Hee={kernelName:Cs,backendName:"wasm",setupFunc:Uee,kernelFunc:Gee};function Vm(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var jee={kernelName:As,backendName:"wasm",kernelFunc:Vm},qee=En(Fs),aS;function Xee(e){aS=e.wasm.cwrap(Vr,null,["number","number","number","number"])}function Kee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return aS(o,s,i,u),l}var Yee={kernelName:Vr,backendName:"wasm",setupFunc:Xee,kernelFunc:Kee};function rS(e){let{inputs:t,backend:n}=e,a=I.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=E.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>I.sizeFromShape(h.shape)>0);if(s.length===1)return Wm({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(I.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(E.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=I.sizeFromShape(x.shape.slice(a));return Pa({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=E.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=fv(m,r,t[0].dtype,f),y=E.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=E.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=I.sizeFromShape(s[0].shape.slice(0,a)),u=0,c=s.map(h=>{let m=I.sizeFromShape(h.shape.slice(a));return u+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<p.length;f++){let g=c[f],y=h*g,b=p[f].subarray(y,y+g);d.set(b,m),m+=g}}return i}var Jee={kernelName:Mo,backendName:"wasm",kernelFunc:rS},sS;function Qee(e){sS=e.wasm.cwrap(_s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Zee(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:d}=n,h=E.convertConv2DDataFormat(d),m=E.computeConv2DInfo(r.shape,s.shape,l,u,c,p,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,k=m.dilationHeight,w=m.dilationWidth,S=m.strideHeight,A=m.strideWidth,F=m.inChannels,D=m.outChannels,R=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let L=a.makeOutput(m.outShape,"float32"),W=a.dataIdMap.get(L.dataId).id;return sS(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,v,R,k,w,S,A,F,D,W),L}var ete={kernelName:_s,backendName:"wasm",setupFunc:Qee,kernelFunc:Zee},iS;function tte(e){iS=e.wasm.cwrap(Es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nte(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:c}=a,p=1,d=E.convertConv2DDataFormat(l),h=E.computeConv2DInfo(c,s.shape,i,p,o,u,!1,d),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:v,outHeight:k,outWidth:w,strideHeight:S,strideWidth:A}=h,F=f-1-h.padInfo.top,D=g-1-h.padInfo.left,R=h.dataFormat==="channelsLast",L=I.computeStrides(h.inShape),W=I.computeStrides(r.shape),[U,G,X]=I.computeStrides(s.shape),j=L[0],te=R?L[1]:L[2],Q=R?L[2]:1,se=R?1:L[1],ne=W[0],ie=R?W[1]:W[2],ee=R?W[2]:1,de=R?1:W[1],oe=t.makeOutput(h.inShape,"float32"),ge=t.dataIdMap.get(oe.dataId).id,fe=t.dataIdMap.get(r.dataId).id,we=t.dataIdMap.get(s.dataId).id;return iS(fe,we,m,f,g,b,x,y,k,w,v,S,A,F,D,U,G,X,j,te,Q,se,ne,ie,ee,de,ge),oe}var ate={kernelName:Es,backendName:"wasm",setupFunc:tte,kernelFunc:nte},rte=En($s),jv;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(jv||(jv={}));var oS;function ste(e){oS=e.wasm.cwrap(Po,null,["number","number","number","number","array","number","number","number","number","number"])}function ite(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,c=l.shape[0],[p,d]=i,h=[c,p,d,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Vm({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,k=new Uint8Array(new Int32Array(o.shape).buffer);return oS(g,y,b,c,k,p,d,jv[r],s,v),f!=null&&t.disposeData(f.dataId),x}var ote={kernelName:Po,backendName:"wasm",setupFunc:ste,kernelFunc:ite},lS;function lte(e){lS=e.wasm.cwrap(Ds,null,["number","number","number","number","number","number"])}function ute(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;I.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=E.getAxesPermutation([s],l),c=r;u!==null&&(c=Bm({inputs:{x:r},attrs:{perm:u},backend:n}));let p=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],m=n.dataIdMap.get(c.dataId).id,f=n.dataIdMap.get(d.dataId).id;lS(m,i?1:0,o?1:0,h,f,Hn[r.dtype]);let g=d;if(u!==null){let y=E.getUndoAxesPermutation(u);g=Bm({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var cte={kernelName:Ds,backendName:"wasm",setupFunc:lte,kernelFunc:ute},uS;function pte(e){uS=e.wasm.cwrap(Oo,null,["number","number","number","array","number","array","array","number","number"])}function dte(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;I.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=u*s,h=c/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(I.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(I.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return uS(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,v),f}var hte={kernelName:Oo,backendName:"wasm",setupFunc:pte,kernelFunc:dte},cS;function mte(e){cS=e.wasm.cwrap(Ms,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=n,d=u==null?[1,1]:u,h=E.computeConv2DInfo(r.shape,s.shape,l,d,c,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,k=h.dilationWidth,w=h.strideHeight,S=h.strideWidth,A=h.inChannels,F=h.outChannels,D=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let R=a.makeOutput(h.outShape,"float32"),L=a.dataIdMap.get(R.dataId).id;return cS(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,D,v,k,w,S,A,F,L),R}var gte={kernelName:Ms,backendName:"wasm",setupFunc:mte,kernelFunc:fte},yte=!1,bte=gn(Wo,yte,"bool"),xte=En(Ps);function qv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(I.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Pa({inputs:{x:r},backend:a,attrs:{shape:o}})}var vte={kernelName:Bo,backendName:"wasm",kernelFunc:qv};function wte(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var kte={kernelName:tc,backendName:"wasm",kernelFunc:wte},pS;function Ite(e){pS=e.wasm.cwrap(Uo,null,["number","number","number","number","number","number"])}function Nte(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,c]=a.shape;return pS(s,o,l,u,c,i),r}var Tte={kernelName:Uo,backendName:"wasm",kernelFunc:Nte,setupFunc:Ite},Ste=En(Os),Cte=!1,Ate=gn(Ls,Cte),dS;function Fte(e){dS=e.wasm.cwrap(zs,null,["number","number","number","number","number","number","number"])}function _te(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,c=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(I.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return dS(c,p,d,h,m,r,g),f}var Ete={kernelName:zs,backendName:"wasm",setupFunc:Fte,kernelFunc:_te},hS;function $te(e){hS=e.wasm.cwrap(yi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Dte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(r.shape,s.shape,l,c,u,d),g=gp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ee=a.dataIdMap.get(i.dataId);if(ee.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ee.shape.length}.`);if(ee.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ee.shape}) does not match the number of output channels (${x})`);v=ee.id}let k=f.filterHeight,w=f.filterWidth,S=f.padInfo.top,A=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,R=f.dilationHeight,L=f.dilationWidth,W=f.strideHeight,U=f.strideWidth,G=f.inChannels,X=f.padInfo.type==="SAME"?1:0,j=f.batchSize,te=f.inHeight,Q=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(se.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return hS(y,j,te,Q,b,k,w,v,S,A,F,D,X,R,L,W,U,G,x,g,ie,m||0,ne),se}var Mte={kernelName:yi,backendName:"wasm",setupFunc:$te,kernelFunc:Dte},mS;function Rte(e){mS=e.wasm.cwrap(bi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(r.shape,s.shape,l,c,u,d,!0),g=gp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ee=a.dataIdMap.get(i.dataId);if(ee.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ee.shape.length}.`);if(ee.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ee.shape}) does not match the number of output channels (${x})`);v=ee.id}let k=f.filterHeight,w=f.filterWidth,S=f.padInfo.top,A=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,R=f.dilationHeight,L=f.dilationWidth,W=f.strideHeight,U=f.strideWidth,G=f.inChannels,X=f.padInfo.type==="SAME"?1:0,j=f.batchSize,te=f.inHeight,Q=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(se.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return mS(y,j,te,Q,b,k,w,v,S,A,F,D,X,R,L,W,U,G,x,g,ie,m||0,ne),se}var Ote={kernelName:bi,backendName:"wasm",setupFunc:Rte,kernelFunc:Pte},fS;function Lte(e){fS=e.wasm.cwrap(Ho,null,["number","number","number","number","number","number","array","number"])}function zte(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=hy.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let c=r.shape,p=c[c.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return fS(d,Hn[a.dtype],h,i,p,o,m,f),u}var Wte={kernelName:Ho,backendName:"wasm",setupFunc:Lte,kernelFunc:zte},gS;function Bte(e){gS=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Vte(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=I.parseAxisParam(i,r.shape)[0],u=E.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Pa({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),p=I.sizeFromShape(s.shape),d=Pa({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:t}),h=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],m=t.makeOutput(h,r.dtype);if(I.sizeFromShape(r.shape)===0)return m;let f=c.shape.length-1,g=t.dataIdMap.get(c.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(I.computeStrides(c.shape)).buffer),v=new Uint8Array(new Int32Array(I.computeStrides(h)).buffer);return gS(g,Hn[r.dtype],x,f,y,u.batchSize,v,b),t.disposeData(c.dataId),t.disposeData(d.dataId),m.shape=u.outputShape,m}var Ute={kernelName:Go,backendName:"wasm",setupFunc:Bte,kernelFunc:Vte},Gte=!1,Hte=gn(jo,Gte,"bool"),jte=!1,qte=gn(Ws,jte,"bool"),yS;function Xte(e){yS=e.wasm.cwrap(Vs,null,["number","number","number"])}function Kte(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(I.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;yS(r,n,i)}return s}var Yte={kernelName:Vs,backendName:"wasm",setupFunc:Xte,kernelFunc:Kte},Jte=!1,Qte=gn(Yo,Jte,"bool"),Zte=!1,ene=gn(Jo,Zte,"bool"),tne=En(Us),nne=!1,ane=gn(Zo,nne,"bool"),bS;function rne(e){bS=e.wasm.cwrap(Gs,null,["number, number, number"])}function sne(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:c,originalAxes:p,inputWasTransposed:d}=mu(i,r,t);if(d){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;E.assertAxesAreInnerMostDims("max",c,h);let[m,f]=E.computeOutAndReduceShapes(l.shape,c),g=I.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(I.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;bS(o,g,b)}if(d&&t.disposeData(u.dataId),s){let b=E.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var ine={kernelName:Gs,backendName:"wasm",setupFunc:rne,kernelFunc:sne},one=!1,lne=gn(Hs,one),xS;function une(e){xS=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cne(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=E.computePool2DInfo(r.shape,i,o,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,b=c.dilationWidth,x=c.strideHeight,v=c.strideWidth,k=c.inChannels,w=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(c.outShape,"float32"),A=a.dataIdMap.get(S.dataId).id;return xS(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,x,v,k,w,A),S}var pne={kernelName:js,backendName:"wasm",setupFunc:une,kernelFunc:cne},vS;function dne(e){vS=e.wasm.cwrap(qs,null,["number, number, number"])}function hne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(c.dataId).id;v!==o&&(u=c,l=v,m=E.getInnerMostAxes(m.length,u.shape.length))}E.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=E.computeOutAndReduceShapes(u.shape,m),y=I.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=Vm({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(I.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;vS(l,y,v)}if(h&&t.disposeData(c.dataId),s){let v=E.expandShapeToKeepDim(x.shape,d);x.shape=v}return u.dtype!=="float32"&&t.disposeData(b.dataId),x}var mne={kernelName:qs,backendName:"wasm",setupFunc:dne,kernelFunc:hne},wS;function fne(e){wS=e.wasm.cwrap(Xs,null,["number, number, number"])}function gne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;x!==o&&(u=c,l=x)}let m=u.shape.length;E.assertAxesAreInnerMostDims("min",p,m);let[f,g]=E.computeOutAndReduceShapes(u.shape,p),y=I.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;wS(l,y,x)}if(h&&t.disposeData(c.dataId),s){let x=E.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var yne={kernelName:Xs,backendName:"wasm",setupFunc:fne,kernelFunc:gne},bne=!1,xne=gn(Ks,bne),vne=!0,wne=gn(Ys,vne),kne=En(tl);function Xv(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var kS;function Ine(e){kS=e.wasm.cwrap(al,"number",["number","number","number","number","number"])}function Nne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,p=kS(u,c,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=Xv(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var Tne={kernelName:al,backendName:"wasm",setupFunc:Ine,kernelFunc:Nne},IS;function Sne(e){IS=e.wasm.cwrap(rl,"number",["number","number","number","number","number","bool"])}function Cne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=IS(c,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Xv(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Ane={kernelName:rl,backendName:"wasm",setupFunc:Sne,kernelFunc:Cne},NS;function Fne(e){NS=e.wasm.cwrap(sl,"number",["number","number","number","number","number","number"])}function _ne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=NS(c,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Xv(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var Ene={kernelName:sl,backendName:"wasm",setupFunc:Fne,kernelFunc:_ne},$ne=!1,Dne=gn(nl,$ne,"bool"),TS;function Mne(e){TS=e.wasm.cwrap(Js,null,["number","number","number","number","number"])}function Rne(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,c=n.dataIdMap.get(r.dataId).id;return TS(c,s,i,o,u),l}var Pne={kernelName:Js,backendName:"wasm",setupFunc:Mne,kernelFunc:Rne};function One(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Lne={kernelName:il,backendName:"wasm",kernelFunc:One};function zne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return qv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{I.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),I.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let p=qv({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),u=rS({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeData(c.dataId)),u}var Wne={kernelName:ol,backendName:"wasm",kernelFunc:zne},SS;function Bne(e){SS=e.wasm.cwrap(Qs,null,["number","array","number","number","array","array","number","number"])}function Vne(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return SS(i,u,t.shape.length,Hn[t.dtype],d,h,r,l),o}var Une={kernelName:Qs,backendName:"wasm",kernelFunc:Vne,setupFunc:Bne},Gne=!1,Hne=gn(Zs,Gne),CS;function jne(e){CS=e.wasm.cwrap(ei,null,["number","number","number"])}function qne(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return CS(s,i,l),o}var Xne={kernelName:ei,backendName:"wasm",setupFunc:jne,kernelFunc:qne},AS;function Kne(e){AS=e.wasm.cwrap(ll,null,["number","number","number","number"])}function Yne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==o&&(u=c,l=x,m=E.getInnerMostAxes(m.length,u.shape.length))}E.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=E.computeOutAndReduceShapes(u.shape,m),y=I.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;AS(l,y,Hn[b.dtype],x)}if(h&&t.disposeData(c.dataId),s){let x=E.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var Jne={kernelName:ll,backendName:"wasm",setupFunc:Kne,kernelFunc:Yne},Qne=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=bv(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Zne={kernelName:oc,backendName:"wasm",kernelFunc:Qne},eae=!0,tae=gn(Rs,eae),nae=En(ti),aae=En(ai),FS;function rae(e){FS=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number"])}function sae(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[c,p,d,h]=r.shape,m=[c,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Vm({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(I.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return FS(y,c,p,d,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var iae={kernelName:ni,backendName:"wasm",setupFunc:rae,kernelFunc:sae},_S;function oae(e){_S=e.wasm.cwrap(ri,null,["number","array","number","array","number","number"])}function lae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=I.parseAxisParam(s,r.shape);if(r.shape.length===0)return Wm({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);_S(l,c,i.length,p,r.shape.length,u);let d=Pa({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),d}var uae={kernelName:ri,backendName:"wasm",kernelFunc:lae,setupFunc:oae},ES;function cae(e){ES=e.wasm.cwrap(Nl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function pae(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=E.getImageCenter(o,d,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(x).buffer);return ES(u,p,d,h,m,s,f,g,v,x.length,c),l}var dae={kernelName:Nl,backendName:"wasm",kernelFunc:pae,setupFunc:cae},hae=En(si),mae=En(ii),$S;function fae(e){$S=e.wasm.cwrap(pl,null,["number","number","number","number","number","number","array","number","number"])}function gae(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(I.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=my.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return $S(h,m,Hn[s.dtype],l,u,c,f,d,g),o}var yae={kernelName:pl,backendName:"wasm",setupFunc:fae,kernelFunc:gae},DS;function bae(e){DS=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function xae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:I.sizeFromShape(r.shape.slice(1));return DS(i,o,l,h,c),u}var vae={kernelName:dl,backendName:"wasm",kernelFunc:xae,setupFunc:bae},MS;function wae(e){MS=e.wasm.cwrap(li,null,["number","number"])}function kae(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return I.sizeFromShape(r.shape)===0||MS(a,s),r}var Iae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:wae,kernelFunc:kae},Nae=En(oi);function Um(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=pn.parseSliceParams(t,n,a),o=pn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),c=I.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(o){let m=pn.computeFlatOffset(s,c);return t.dtype==="string"?p.stringBytes=l.slice(m,m+I.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+I.sizeFromShape(i))),u}if(t.dtype==="string"){let m=km(l,s,i,t.shape,t.dtype);return p.stringBytes=m,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Tae(l,c[0],d,s,i);else if(h===3)Sae(l,c[0],c[1],d,s,i);else if(h===4)Cae(l,c[0],c[1],c[2],d,s,i);else{let m=km(l,s,i,t.shape,t.dtype);d.set(m)}return u}function Tae(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let c=u*t+o;n.set(e.subarray(c,c+r[1]),s),s+=r[1]}}function Sae(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],c=o+s[0],p=l+s[1];for(let d=o;d<c;d++)for(let h=l;h<p;h++){let m=d*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Cae(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],c=s[2],p=l+i[0],d=u+i[1],h=c+i[2],m=s[3];for(let f=l;f<p;f++)for(let g=u;g<d;g++)for(let y=c;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var Aae={kernelName:ml,backendName:"wasm",kernelFunc:Um},RS;function Fae(e){RS=e.wasm.cwrap(pi,null,["number","number","number","number"])}function _ae(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=I.sizeFromShape(n.shape)/o;return I.sizeFromShape(s.shape)===0||RS(r,i,o,l),s}var Eae={kernelName:pi,backendName:"wasm",setupFunc:Fae,kernelFunc:_ae};function $ae(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=I.parseAxisParam(i,r.shape)[0],l=E.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[o]=p;let h=Um({inputs:{x:r},attrs:{begin:u,size:d},backend:a});return u[o]+=p,h})}var Dae={kernelName:bl,backendName:"wasm",kernelFunc:$ae},Mae=En(ui),Rae=En(cc),Pae=!0,Oae=gn(di,Pae),PS;function Lae(e){PS=e.wasm.cwrap(Gr,null,["number","number","number"])}function zae(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return PS(i,r,l),o}var Wae={kernelName:Gr,backendName:"wasm",setupFunc:Lae,kernelFunc:zae},OS;function Bae(e){OS=e.wasm.cwrap(xl,null,["number","array","number","array","array","array","array","array","number","number"])}function Vae(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=a,h=E.slice_util.maskToAxes(c);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=E.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(D=>{s[D]=0,i[D]=1,g.splice(D,0,1)});let y=Pa({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:x,strides:v}=E.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,u,c);s=b,i=x,o=v;let k=E.slice_util.maskToAxes(d);k.forEach(D=>{i[D]=s[D]+1,o[D]=1});let w=E.slice_util.computeOutShape(s,i,o),S=w.filter((D,R)=>k.indexOf(R)===-1);if(o.every(D=>D===1)){let D=Um({inputs:{x:y},attrs:{begin:s,size:w},backend:t});t.disposeData(y.dataId);let R=Pa({inputs:{x:D},attrs:{shape:S},backend:t});return t.disposeData(D.dataId),R}let A=t.makeOutput(S,"float32");if(!S.some(D=>D===0)){let D=t.dataIdMap.get(y.dataId).id,R=new Uint8Array(new Int32Array(I.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),W=new Uint8Array(new Int32Array(i).buffer),U=new Uint8Array(new Int32Array(o).buffer),G=new Uint8Array(new Int32Array(S).buffer),X=new Uint8Array(new Int32Array(I.computeStrides(S)).buffer),j=t.dataIdMap.get(A.dataId).id;OS(D,R,y.shape.length,L,W,U,G,X,S.length,j)}t.disposeData(y.dataId);let F=Pa({inputs:{x:A},attrs:{shape:S},backend:t});return t.disposeData(A.dataId),F}var Uae={kernelName:xl,backendName:"wasm",setupFunc:Bae,kernelFunc:Vae},Gae=!0,Hae=gn(hi,Gae),LS;function jae(e){LS=e.wasm.cwrap(ci,null,["number, number, number"])}function qae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==o&&(u=c,l=x,m=E.getInnerMostAxes(m.length,u.shape.length))}E.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=E.computeOutAndReduceShapes(u.shape,m),y=I.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(I.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;LS(l,y,x)}if(h&&t.disposeData(c.dataId),s){let x=E.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var Xae={kernelName:ci,backendName:"wasm",setupFunc:jae,kernelFunc:qae},Kae=En(mi),zS;function Yae(e){zS=e.wasm.cwrap(Ur,null,["number","array","number","array","number","number"])}function Jae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(c.dataId).id;return zS(s,l,r.shape.length,u,o.length,Hn[c.dtype],p),c}var Qae={kernelName:Ur,backendName:"wasm",setupFunc:Yae,kernelFunc:Jae},WS;function Zae(e){WS=e.wasm.cwrap(wl,null,["number","array","number","number","number","bool","number","number"])}var ere=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),c=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return WS(i,o,a.shape.length,Hn[a.dtype],r,s,c,d),[u,p]},tre={kernelName:wl,backendName:"wasm",setupFunc:Zae,kernelFunc:ere};function nre(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let c=new Array(i),p=new Array(o).fill(0),d=r.shape.slice();d[s]=1;for(let h=0;h<c.length;h++)p[s]=h,c[h]=Um({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return c.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var are={kernelName:kl,backendName:"wasm",kernelFunc:nre};function rre(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var sre={kernelName:Il,backendName:"wasm",kernelFunc:rre},ire=[Tee,Cee,_ee,Lee,Bee,Hee,jee,qee,Yee,Jee,ete,ate,rte,ote,cte,hte,gte,bte,xte,vte,kte,Tte,Ste,Ate,Nee,Ete,Mte,Ote,Wte,Ute,Hte,qte,Eee,Yte,Qte,ene,tne,ane,ine,lne,pne,mne,yne,xne,wne,kne,Tne,Ane,Ene,Dne,Pne,Lne,Wne,Une,Hne,Xne,Jne,Zne,tae,nae,aae,Vee,iae,uae,dae,mae,hae,yae,vae,Iae,Nae,Aae,Eae,Dae,Mae,Rae,Oae,Wae,Uae,Hae,Xae,Kae,Qae,tre,Ree,are,sre];for(let e of ire)hc(e);var Kv=Z();Kv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Kv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Kv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var BS=Io(yF()),ore='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',lre=Io(bF()),VS=class extends ju{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new sd(this,Ua())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=I.now();return e(),{kernelMs:I.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=I.sizeFromShape(n),o=i*I.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+I.sizeFromShape(a)*I.bytesPerElement(n));return ure(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=I.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=I.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function cre(e){return(t,n)=>(I.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function US(e,t,n){if(Gm!=null)return Gm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),yp!=null&&yp[a]!=null?yp[a]:n+a}async function pre(){let[e,t]=await Promise.all([Z().getAsync("WASM_HAS_SIMD_SUPPORT"),Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=ore,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return o.endsWith(".wasm")?US(e,t,bp!=null?bp:l):l+o},Yv&&(r.instantiateWasm=cre(US(e,t,bp!=null?bp:"")));let s=!1;r.onAbort=()=>{s||xp||(xp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Gm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+BS.default.toString()],{type:"text/javascript"}),i=(0,BS.default)(r)):i=(0,lre.default)(r),i.then(o=>{s=!0,xp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function ure(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var dre=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Gm=null,bp=null,yp={},xp=!1,Yv=!1;function hre(e,t=!1){if(vy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Gm=e,Yv=t}function mre(e,t=!1){if(xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")bp=e;else{yp=e;let n=dre.filter(a=>yp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Yv=t}var fre="3.3.0",gre=2;Qd("wasm",async()=>{let{wasm:e}=await pre();return new VS(e)},gre);var ZS={};ad(ZS,{AnchorPosition:()=>ir,DrawBox:()=>Xm,DrawBoxOptions:()=>cw,DrawFaceLandmarks:()=>vw,DrawFaceLandmarksOptions:()=>xw,DrawTextField:()=>fs,DrawTextFieldOptions:()=>Ip,drawContour:()=>Tr,drawDetections:()=>Cre,drawFaceExpressions:()=>Ere,drawFaceLandmarks:()=>Dre});function Tr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var GS={};ad(GS,{computeReshapedDimensions:()=>Zv,getCenterPoint:()=>Ki,isDimensions:()=>jm,isEven:()=>Hm,isFloat:()=>Qv,isTensor:()=>qi,isTensor1D:()=>yre,isTensor2D:()=>Jv,isTensor3D:()=>Sr,isTensor4D:()=>aa,isValidNumber:()=>Oa,isValidProbablitiy:()=>fu,range:()=>rr,round:()=>Xi});var yn=class{constructor(t,n){if(!Oa(t)||!Oa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new yn(1/this.width,1/this.height)}};function qi(e,t){return e instanceof Fe&&e.shape.length===t}function yre(e){return qi(e,1)}function Jv(e){return qi(e,2)}function Sr(e){return qi(e,3)}function aa(e){return qi(e,4)}function Qv(e){return e%1!=0}function Hm(e){return e%2==0}function Xi(e,t=2){let n=10**t;return Math.floor(e*n)/n}function jm(e){return e&&e.width&&e.height}function Zv({width:e,height:t},n){let a=n/Math.max(t,e);return new yn(Math.round(e*a),Math.round(t*a))}function Ki(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function rr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Oa(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function fu(e){return Oa(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var ut=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Oa)}static assertIsValidBox(t,n,a=!1){if(!ut.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Oa),s=[a.x,a.y,a.width,a.height].every(Oa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ut.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ut({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ut({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new ut({x:t,y:n,width:a,height:r})}rescale(t){let n=jm(t)?t.width:t,a=jm(t)?t.height:t;return new ut({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new ut({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,c=i-l,p=Math.min(u,t-o),d=Math.min(c,n-l);return new ut({x:o,y:l,width:p,height:d}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new ut({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,c=this.top,p=this.right,d=this.bottom;return p>n&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),u<1&&(l=2-u,u=1),c<1&&(l=2-c,c=1),{dy:i,edy:l,dx:s,edx:o,y:c,ey:d,x:u,ex:p,w:a,h:r}}calibrate(t){return new ut({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var gu=class extends ut{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var ms=class{constructor(t,n,a,r,s){this._imageDims=new yn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ut(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ut(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new ms(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var yt=class extends ms{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new yt(a,r,s)}};function ew(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function tw(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,Infinity),r=n.reduce((o,l)=>l<o?l:o,Infinity),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new gu(a,r,s,i)}function nw(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let c=o[u],p=e[i],d=e[c];l.push(ew(p,d,a))}r=r.filter((u,c)=>l[c]<=n)}return s}function La(e,t){return M(()=>{let[n,a,r]=t,s=Sn([...e.shape.slice(0,3),1],n,"float32"),i=Sn([...e.shape.slice(0,3),1],a,"float32"),o=Sn([...e.shape.slice(0,3),1],r,"float32"),l=Je([s,i,o],3);return me(e,l)})}function aw(e,t=!1){return M(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,Sn(h,0,"float32")},l=o(s),u=r-l.shape[i],p=[t&&u?o(u):null,e,l].filter(d=>!!d).map(d=>ue(d,"float32"));return Je(p,i)})}function bre(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function vp(e){return 1/(1+Math.exp(-e))}function xre(e){return Math.log(e/(1-e))}var yu=class extends ut{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var vre=.5,wre=.43,kre=.45,ra=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new yn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof yt?t.box.floor():new ut(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/kre),l=Ki(t),u=Math.floor(Math.max(0,l.x-vre*o)),c=Math.floor(Math.max(0,l.y-wre*o));return new yu(u,c,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+c))}alignMinBbox(t){let n=tw(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var HS=class extends ra{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Ki([t[3],t[4]])]}};var bu=class extends ra{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ki)}};var wp=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Xi(this.distance)})`:""}`}};var kp=class extends ut{static assertIsValidLabeledBox(t,n){if(ut.assertIsValidBox(t,n),!Oa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var Cr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new Cr(t.label,n)}};var jS=class extends kp{static assertIsValidPredictedBox(t,n){if(kp.assertIsValidLabeledBox(t,n),!fu(t.score)||!fu(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function sr(e){return e.detection instanceof yt}function Yi(e,t){return{...e,...{detection:t}}}function rw(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function qm(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function sw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=qm();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function iw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var ow=PA(XS()),Zt;function Tre(){if(!Zt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Zt}function lw(e){Zt=e}function uw(){return iw()?lw(rw()):(0,ow.isNodejs)()?lw(sw()):null}function Sre(e){if(Zt||uw(),!Zt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Zt.Canvas,Image:n=Zt.Image}=e;Zt.Canvas=t,Zt.Image=n,Zt.createCanvasElement=e.createCanvasElement||(()=>new t),Zt.createImageElement=e.createImageElement||(()=>new n),Zt.ImageData=e.ImageData||Zt.ImageData,Zt.Video=e.Video||Zt.Video,Zt.fetch=e.fetch||Zt.fetch,Zt.readFile=e.readFile||Zt.readFile}var st={getEnv:Tre,setEnv:lw,initialize:uw,createBrowserEnv:rw,createFileSystem:qm,createNodejsEnv:sw,monkeyPatch:Sre,isBrowser:iw,isNodejs:ow.isNodejs};uw();function Ji(e){return!st.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function $n(e){let{Canvas:t,CanvasRenderingContext2D:n}=st.getEnv();if(e instanceof n)return e;let a=Ji(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var ir;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(ir||(ir={}));var Ip=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||ir.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},fs=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof fs?t.text:t,this.anchor=n,this.options=new Ip(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a===ir.BOTTOM_RIGHT||a===ir.TOP_RIGHT,s=a===ir.BOTTOM_LEFT||a===ir.BOTTOM_RIGHT,i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:c,height:p}=n,d=Math.max(Math.min(l,c-i),0),h=Math.max(Math.min(u,p-o),0);return{x:d,y:h}}return{x:l,y:u}}draw(t){let n=Ji(t),a=$n(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),c=this.measureHeight();a.fillStyle=r;let p=this.getUpperLeft(a,n);a.fillRect(p.x,p.y,u,c),a.fillStyle=s,this.text.forEach((d,h)=>{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var cw=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:ir.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Ip({...i,...s})}},Xm=class{constructor(t,n={}){this.box=new ut(t),this.options=new cw(n)}draw(t){let n=$n(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new fs([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Cre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof yt?a.score:sr(a)?a.detection.score:void 0,s=a instanceof yt?a.box:sr(a)?a.detection.box:new ut(a),i=r?`${Xi(r)}`:void 0;new Xm(s,{label:i}).draw(e)})}function Np(e){let{Image:t,Video:n}=st.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function pw(e){return new Promise((t,n)=>{if(e instanceof st.getEnv().Canvas||Np(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function dw(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=st.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Qi(e){let{Image:t,Video:n}=st.getEnv();return e instanceof t?new yn(e.naturalWidth,e.naturalHeight):e instanceof n?new yn(e.videoWidth,e.videoHeight):new yn(e.width,e.height)}function Zi({width:e,height:t}){let{createCanvasElement:n}=st.getEnv(),a=n();return a.width=e,a.height=t,a}function Tp(e,t){let{ImageData:n}=st.getEnv();if(!(e instanceof n)&&!Np(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Qi(e),s=Zi({width:a,height:r});return e instanceof n?$n(s).putImageData(e,0,0):$n(s).drawImage(e,0,0,a,r),s}async function hw(e,t){let n=t||st.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(aa(e)?1:0),i=M(()=>e.as3D(a,r,s).toInt());return await ki.toPixels(i,n),i.dispose(),n}function Km(e){let{Image:t,Canvas:n,Video:a}=st.getEnv();return e instanceof t||e instanceof n||e instanceof a}function mw(e,t,n=!1){let{Image:a,Canvas:r}=st.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Zi({width:1,height:1});let s=Qi(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=Zi({width:t,height:t}),c=e instanceof r?e:Tp(e),p=Math.abs(o-l)/2,d=n&&o<l?p:0,h=n&&l<o?p:0;return c.width>0&&c.height>0&&$n(u).drawImage(c,d,h,o,l),u}var Ar=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Sr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(aa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof st.getEnv().Canvas?a:Tp(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return rr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return Zv({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,M(()=>{let a=rr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Fe){let o=aa(i)?i:i.expandDims();return o=aw(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ka.resizeBilinear(o,[t,t])),o.as3D(t,t,3)}if(i instanceof st.getEnv().Canvas)return ki.fromPixels(mw(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Dt(a.map(s=>ue(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function mt(e){if(e instanceof Ar)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Ji);return a.forEach((r,s)=>{if(!Km(r)&&!Sr(r)&&!aa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(aa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>Km(r)&&pw(r))),new Ar(a,Array.isArray(e))}async function xu(e,t){let{Canvas:n}=st.getEnv(),a=e;if(!(e instanceof n)){let i=await mt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await hw(o)}let r=$n(a);return t.map(i=>i instanceof yt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let c=Zi({width:l,height:u});return l>0&&u>0&&$n(c).putImageData(r.getImageData(i,o,l,u),0,0),c})}async function vu(e,t){if(!Sr(e)&&!aa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(aa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return M(()=>{let[n,a,r]=e.shape.slice(aa(e)?1:0);return t.map(o=>o instanceof yt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:u,height:c})=>Wl(e.as3D(n,a,r),[l,o,0],[c,u,r]))})}async function eo(e,t){let{fetch:n}=st.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function Are(e){let t=await eo(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return dw(n)}async function fw(e){return(await eo(e)).json()}async function Fre(e){return new Float32Array(await(await eo(e)).arrayBuffer())}function Ym(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function gw(e,t){let{manifestUri:n,modelBaseUri:a}=Ym(e,t),r=await fw(n);return jt.loadWeights(r,a)}function _re(e,t,n=!1){let{width:a,height:r}=n?Qi(t):t;return e.width=a,e.height=r,{width:a,height:r}}var on=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof Hr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof Hr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Yn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await gw(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=st.getEnv(),{manifestUri:a,modelBaseUri:r}=Ym(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(c=>n(c).then(p=>p.buffer))),i=jt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Fe))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Dn(e,t,n){return M(()=>{let a=Fi(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=J(a,t.bias),a})}function Jm(e,t,n=!1){return M(()=>{let a=qe(n?J(Et(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Dn(e,t.conv0,[2,2])),r=Dn(a,t.conv1,[1,1]),s=qe(J(a,r)),i=Dn(s,t.conv2,[1,1]);return qe(J(a,J(r,i)))})}function Sp(e,t,n=!1,a=!0){return M(()=>{let r=qe(n?J(Et(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Dn(e,t.conv0,a?[2,2]:[1,1])),s=Dn(r,t.conv1,[1,1]),i=qe(J(r,s)),o=Dn(i,t.conv2,[1,1]),l=qe(J(r,J(s,o))),u=Dn(l,t.conv3,[1,1]);return qe(J(r,J(s,J(o,u))))})}function to(e,t,n="same",a=!1){return M(()=>{let r=J(Et(e,t.filters,[1,1],n),t.bias);return a?qe(r):r})}function bn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function wu(e,t){return(n,a,r,s)=>{let i=Ca(e(n*a*r*r),[r,r,n,a]),o=Qe(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Qm(e,t){return(n,a,r)=>{let s=Sa(e(n*a),[n,a]),i=Qe(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Zm=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function ku(e,t){return(n,a,r)=>{let s=Ca(e(3*3*n),[3,3,n,1]),i=Ca(e(n*a),[1,1,n,a]),o=Qe(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Zm(s,i,o)}}function Iu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Zm(n,a,r)}}function jn(e,t){return(n,a,r)=>{let s=e[n];if(!qi(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function xn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function ef(e,t){let n=wu(e,t),a=ku(e,t);function r(i,o,l,u=!1){let c=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:c,conv1:p,conv2:d}}function s(i,o,l,u=!1){let{conv0:c,conv1:p,conv2:d}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:c,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function KS(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock4Params:r}=ef(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function tf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function nf(e,t){let n=jn(e,t),a=tf(n),r=Iu(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),c=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:u,conv1:c,conv2:p}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),c=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:u,conv1:c,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function YS(e){let t=[],{extractDenseBlock4Params:n}=nf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return bn(e,t),{params:a,paramMappings:t}}var Cp=class extends on{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return M(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=La(a,[122.782,117.001,104.298]).div(ce(255)),i=Sp(s,n.dense0,!0);return i=Sp(i,n.dense1),i=Sp(i,n.dense2),i=Sp(i,n.dense3),i=Qn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await mt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return YS(t)}extractParams(t){return KS(t)}};function Ap(e,t){return M(()=>J(ze(e,t.weights),t.bias))}function JS(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=xn(e),o=Qm(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function QS(e){let t=[],n=jn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return bn(e,t),{params:r,paramMappings:t}}function af(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Fp=class extends on{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return M(()=>{let a=t instanceof Ar?this.faceFeatureExtractor.forwardInput(t):t;return Ap(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return JS(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=af(t);return this.faceFeatureExtractor.loadFromWeightMap(n),QS(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var yw=["neutral","happy","sad","angry","fearful","disgusted","surprised"],gs=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);yw.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return yw.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var rf=class extends Fp{constructor(t=new Cp){super("FaceExpressionNet",t)}forwardInput(t){return M(()=>Ta(this.runNet(t)))}async forward(t){return this.forwardInput(await mt(t))}async predictExpressions(t){let n=await mt(t),a=await this.forwardInput(n),r=await Promise.all(ct(a).map(async i=>{let o=await i.data();return i.dispose(),o}));a.dispose();let s=r.map(i=>new gs(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function bw(e){return e.expressions instanceof gs}function sf(e,t){return{...e,...{expressions:t}}}function Ere(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof gs?s:bw(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),u=sr(s)?s.detection.box.bottomLeft:a||new De(0,0);new fs(l.map(p=>`${p.expression} (${Xi(p.probability)})`),u).draw(e)})}function no(e){return sr(e)&&e.landmarks instanceof ra&&e.unshiftedLandmarks instanceof ra&&e.alignedRect instanceof yt}function $re(e){let t=(o,l,u,c)=>Math.atan2(c-l,u-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,Infinity),i=r.reduce((o,l)=>o>l._y?o:l._y,-Infinity);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function Nu(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new yt(e.detection.score,r.rescale(s.reverse()),s),o=$re(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var xw=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},vw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new xw(n)}draw(t){let n=$n(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof bu&&(n.strokeStyle=i,n.lineWidth=s,Tr(n,this.faceLandmarks.getJawOutline()),Tr(n,this.faceLandmarks.getLeftEyeBrow()),Tr(n,this.faceLandmarks.getRightEyeBrow()),Tr(n,this.faceLandmarks.getNose()),Tr(n,this.faceLandmarks.getLeftEye(),!0),Tr(n,this.faceLandmarks.getRightEye(),!0),Tr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=c=>{n.beginPath(),n.arc(c.x,c.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function Dre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ra?a:no(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new vw(r).draw(e)})}var eC="1.1.1";function Mre(e,t){let n=wu(e,t),a=ku(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),c=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:c,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),c=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:c}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function tC(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=xn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Mre(a,n),u=s(3,32,3,"entry_flow/conv_in"),c=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:u,reduction_block_0:c,reduction_block_1:p},h={};rr(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function Rre(e,t){let n=jn(e,t),a=tf(n),r=Iu(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),c=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:c}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),c=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:c}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function nC(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Rre(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),c={conv_in:o,reduction_block_0:l,reduction_block_1:u},p={};rr(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return bn(e,n),{params:{entry_flow:c,middle_flow:p,exit_flow:m},paramMappings:n}}function aC(e,t,n){return J(Et(e,t.filters,n,"same"),t.bias)}function ww(e,t,n=!0){let a=n?qe(e):e;return a=Dn(a,t.separable_conv0,[1,1]),a=Dn(qe(a),t.separable_conv1,[1,1]),a=$t(a,[3,3],[2,2],"same"),a=J(a,aC(e,t.expansion_conv,[2,2])),a}function Pre(e,t){let n=Dn(qe(e),t.separable_conv0,[1,1]);return n=Dn(qe(n),t.separable_conv1,[1,1]),n=Dn(qe(n),t.separable_conv2,[1,1]),n=J(n,e),n}var kw=class extends on{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return M(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=La(a,[122.782,117.001,104.298]).div(ce(256)),i=qe(aC(s,n.entry_flow.conv_in,[2,2]));return i=ww(i,n.entry_flow.reduction_block_0,!1),i=ww(i,n.entry_flow.reduction_block_1),rr(this._numMainBlocks,0,1).forEach(o=>{i=Pre(i,n.middle_flow[`main_block_${o}`])}),i=ww(i,n.exit_flow.reduction_block),i=qe(Dn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await mt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return nC(t,this._numMainBlocks)}extractParams(t){return tC(t,this._numMainBlocks)}};function rC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),r=Qm(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function sC(e){let t=[],n=jn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return bn(e,t),{params:r,paramMappings:t}}var Fr;(function(e){e.FEMALE="female",e.MALE="male"})(Fr||(Fr={}));var of=class extends on{constructor(t=new kw(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return M(()=>{let a=t instanceof Ar?this.faceFeatureExtractor.forwardInput(t):t,r=Qn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Ap(r,n.fc.age).as1D(),i=Ap(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return M(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Ta(a)}})}async forward(t){return this.forwardInput(await mt(t))}async predictAgeAndGender(t){let n=await mt(t),a=await this.forwardInput(n),r=ct(a.age),s=ct(a.gender),i=r.map((l,u)=>({ageTensor:l,genderTensor:s[u]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:u})=>{let c=(await l.data())[0],p=(await u.data())[0],d=p>.5,h=d?Fr.MALE:Fr.FEMALE,m=d?p:1-p;return l.dispose(),u.dispose(),{age:c,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return rC(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=af(t);return this.faceFeatureExtractor.loadFromWeightMap(n),sC(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var _p=class extends Fp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return M(()=>{let i=(p,d)=>Dt([Sn([68],p,"float32"),Sn([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>d<h),u=p=>o(p,(d,h)=>h<d);return t.mul(Sn([s,136],n,"float32")).sub(Dt(Array.from(Array(s),(p,d)=>i(l(d),u(d))))).div(Dt(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return M(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await mt(t))}async detectLandmarks(t){let n=await mt(t),a=M(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(await s.data()),l=o.filter((c,p)=>Hm(p)),u=o.filter((c,p)=>!Hm(p));return new bu(Array(68).fill(0).map((c,p)=>new De(l[p],u[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var Tu=class extends _p{constructor(t=new Cp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function iC(e){let t=[],{extractDenseBlock3Params:n}=nf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return bn(e,t),{params:a,paramMappings:t}}function oC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock3Params:r}=ef(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var Iw=class extends on{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return M(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=La(a,[122.782,117.001,104.298]).div(ce(255)),i=Jm(s,n.dense0,!0);return i=Jm(i,n.dense1),i=Jm(i,n.dense2),i=Qn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await mt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return iC(t)}extractParams(t){return oC(t)}};var lf=class extends _p{constructor(t=new Iw){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var lC=class extends Tu{};function uC(e,t){return J(B(e,t.weights),t.biases)}function Nw(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Et(e,s,n,r);return o=J(o,i),o=uC(o,t.scale),a?qe(o):o}function cC(e,t){return Nw(e,t,[1,1],!0)}function Tw(e,t){return Nw(e,t,[1,1],!1)}function uf(e,t){return Nw(e,t,[2,2],!0,"valid")}function Ore(e,t){function n(o,l,u){let c=e(o),p=c.length/(l*u*u);if(Qv(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${c.length}, numFilters: ${l}, filterSize: ${u}`);return M(()=>Ve(Ca(c,[l,p,u,u]),[2,3,1,0]))}function a(o,l,u,c){let p=n(o,l,u),d=Qe(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/bias`}),{filters:p,bias:d}}function r(o,l){let u=Qe(e(o)),c=Qe(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:c}}function s(o,l,u,c){let p=a(o,l,u,`${c}/conv`),d=r(l,`${c}/scale`);return{conv:p,scale:d}}function i(o,l,u,c,p=!1){let d=s((p?.5:1)*o,l,u,`${c}/conv1`),h=s(o,l,u,`${c}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function pC(e){let{extractWeights:t,getRemainingWeights:n}=xn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Ore(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),c=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),k=M(()=>Ve(Sa(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:c,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:v,fc:k},paramMappings:a}}function Lre(e,t){let n=jn(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function dC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Lre(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),c=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!Jv(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:c,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return bn(e,t),{params:v,paramMappings:t}}function za(e,t){let n=cC(e,t.conv1);return n=Tw(n,t.conv2),n=J(n,e),n=qe(n),n}function Ep(e,t){let n=uf(e,t.conv1);n=Tw(n,t.conv2);let a=Qn(e,2,2,"valid"),r=vt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=vt(o);n=Je([n,l],1);let u=[...n.shape];u[2]=1;let c=vt(u);n=Je([n,c],2)}return a=s?Je([a,r],3):a,n=J(a,n),n=qe(n),n}var Su=class extends on{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return M(()=>{let a=ue(t.toBatchTensor(150,!0),"float32"),s=La(a,[122.782,117.001,104.298]).div(ce(256)),i=uf(s,n.conv32_down);i=$t(i,3,2,"valid"),i=za(i,n.conv32_1),i=za(i,n.conv32_2),i=za(i,n.conv32_3),i=Ep(i,n.conv64_down),i=za(i,n.conv64_1),i=za(i,n.conv64_2),i=za(i,n.conv64_3),i=Ep(i,n.conv128_down),i=za(i,n.conv128_1),i=za(i,n.conv128_2),i=Ep(i,n.conv256_down),i=za(i,n.conv256_1),i=za(i,n.conv256_2),i=Ep(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await mt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await mt(t),a=M(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return dC(t)}extractParams(t){return pC(t)}};function zre(e){let t=new Su;return t.extractWeights(e),t}function cf(e,t){return{...e,...{descriptor:t}}}function Wre(e){return typeof e.age=="number"}function pf(e,t){return{...e,...{age:t}}}function Bre(e){return(e.gender===Fr.MALE||e.gender===Fr.FEMALE)&&fu(e.genderProbability)}function df(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Vre(e,t){function n(l,u){let c=Ca(e(3*3*l),[3,3,l,1]),p=Qe(e(l)),d=Qe(e(l)),h=Qe(e(l)),m=Qe(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:c,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,c,p,d){let h=Ca(e(l*u*c*c),[c,c,l,u]),m=Qe(e(u));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,c,p){let{filters:d,bias:h}=a(l,u,c,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,u,c){let p=n(l,`${c}/depthwise_conv`),d=r(l,u,1,`${c}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),c=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),k=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:c,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:v,conv_13:k}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),c=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),k=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),w=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),S=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),A=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),D=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),R=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:c,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:k},box_predictor_3:{box_encoding_predictor:w,class_predictor:S},box_predictor_4:{box_encoding_predictor:A,class_predictor:F},box_predictor_5:{box_encoding_predictor:D,class_predictor:R}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function hC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Vre(n,t),i=r(),o=s(),u={extra_dim:Kd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function Ure(e,t){let n=jn(e,t);function a(u,c,p){let d=n(`${u}/Conv2d_${c}_pointwise/weights`,4,`${p}/filters`),h=n(`${u}/Conv2d_${c}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(u){let c=`mobilenetv1/conv_${u}`,p=`MobilenetV1/Conv2d_${u}_depthwise`,d=`${c}/depthwise_conv`,h=`${c}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,c){let p=n(`${u}/weights`,4,`${c}/filters`),d=n(`${u}/biases`,1,`${c}/bias`);return{filters:p,bias:d}}function o(u){let c=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:c,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function mC(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Ure(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Sr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return bn(e,t),{params:s,paramMappings:t}}function xa(e,t,n){return M(()=>{let a=Et(e,t.filters,n,"same");return a=J(a,t.batch_norm_offset),Xt(a,0,6)})}var Gre=.0010000000474974513;function Hre(e,t,n){return M(()=>{let a=Qr(e,t.filters,n,"same");return a=fr(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Gre),Xt(a,0,6)})}function jre(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function fC(e,t){return M(()=>{let n,a=xa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=jre(o);a=Hre(a,s.depthwise_conv,l),a=xa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function qre(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),c=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(c-l)*(p-u);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,c),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function gC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((c,p)=>({score:c,boxIndex:p})).filter(c=>c.score>r).sort((c,p)=>p.score-c.score),l=c=>c<=a?1:0,u=[];return o.forEach(c=>{if(u.length>=i)return;let p=c.score;for(let d=u.length-1;d>=0;--d){let h=qre(e,c.boxIndex,u[d]);if(h!==0&&(c.score*=l(h),c.score<=r))break}p===c.score&&u.push(c.boxIndex)}),u}function Xre(e){let t=ct(Ve(e,[1,0])),n=[me(t[2],t[0]),me(t[3],t[1])],a=[J(t[0],xe(n[0],ce(2))),J(t[1],xe(n[1],ce(2)))];return{sizes:n,centers:a}}function Kre(e,t){let{sizes:n,centers:a}=Xre(e),r=ct(Ve(t,[1,0])),s=xe(B(dn(xe(r[2],ce(5))),n[0]),ce(2)),i=J(B(xe(r[0],ce(10)),n[0]),a[0]),o=xe(B(dn(xe(r[3],ce(5))),n[1]),ce(2)),l=J(B(xe(r[1],ce(10)),n[1]),a[1]);return Ve(Dt([me(i,s),me(l,o),J(i,s),J(l,o)]),[1,0])}function yC(e,t,n){return M(()=>{let a=e.shape[0],r=Kre(H(Ha(n.extra_dim,[a,1,1]),[-1,4]),H(e,[-1,4]));r=H(r,[a,r.shape[0]/a,4]);let s=ca(Be(t,[0,0,1],[-1,-1,-1])),i=Be(s,[0,0,0],[-1,-1,1]);i=H(i,[a,i.shape[1]]);let o=ct(r),l=ct(i);return{boxes:o,scores:l}})}function ao(e,t){return M(()=>{let n=e.shape[0],a=H(to(e,t.box_encoding_predictor),[n,-1,1,4]),r=H(to(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function bC(e,t,n){return M(()=>{let a=xa(e,n.conv_0,[1,1]),r=xa(a,n.conv_1,[2,2]),s=xa(r,n.conv_2,[1,1]),i=xa(s,n.conv_3,[2,2]),o=xa(i,n.conv_4,[1,1]),l=xa(o,n.conv_5,[2,2]),u=xa(l,n.conv_6,[1,1]),c=xa(u,n.conv_7,[2,2]),p=ao(t,n.box_predictor_0),d=ao(e,n.box_predictor_1),h=ao(r,n.box_predictor_2),m=ao(i,n.box_predictor_3),f=ao(l,n.box_predictor_4),g=ao(c,n.box_predictor_5),y=Je([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Je([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var va=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ro=class extends on{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return M(()=>{let a=ue(t.toBatchTensor(512,!1),"float32"),r=me(B(a,ce(.007843137718737125)),ce(1)),s=fC(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=bC(s.out,s.conv11,n.prediction_layer);return yC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await mt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new va(n),s=await mt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let c=Array.from(await u.data()),d=gC(l,c,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=d.map(x=>{let[v,k]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(A=>A*g),[w,S]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(A=>A*f);return new yt(c[x],new yu(w,v,S-w,k-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return mC(t)}extractParams(t){return hC(t)}};function xC(e){let t=new ro;return t.extractWeights(e),t}function Yre(e){return xC(e)}var vC=class extends ro{};var wC=.4,kC=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],IC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],NC=[117.001,114.697,97.404],TC="tiny_yolov2_model",SC="tiny_yolov2_separable_conv_model";var hf=e=>typeof e=="number";function Sw(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!hf(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>hf(t.x)&&hf(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(hf)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Cu(e){return M(()=>{let t=B(e,ce(.10000000149011612));return J(qe(me(e,t)),t)})}function _r(e,t){return M(()=>{let n=ea(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Et(n,t.conv.filters,[1,1],"valid"),n=me(n,t.bn.sub),n=B(n,t.bn.truediv),n=J(n,t.conv.bias),Cu(n)})}function Er(e,t){return M(()=>{let n=ea(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Fi(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=J(n,t.bias),Cu(n)})}function Jre(e,t){let n=wu(e,t);function a(i,o){let l=Qe(e(i)),u=Qe(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),c=a(o,`${l}/bn`);return{conv:u,bn:c}}let s=ku(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function CC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=xn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=Jre(r,i),c;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,x]=a,v=t.isFirstLayerConv2d?o(p,d,3,"conv0"):u(p,d,"conv0"),k=u(d,h,"conv1"),w=u(h,m,"conv2"),S=u(m,f,"conv3"),A=u(f,g,"conv4"),F=u(g,y,"conv5"),D=b?u(y,b,"conv6"):void 0,R=x?u(b,x,"conv7"):void 0,L=o(x||b||y,5*n,1,"conv8");c={conv0:v,conv1:k,conv2:w,conv3:S,conv4:A,conv5:F,conv6:D,conv7:R,conv8:L}}else{let[p,d,h,m,f,g,y,b,x]=a,v=l(p,d,"conv0"),k=l(d,h,"conv1"),w=l(h,m,"conv2"),S=l(m,f,"conv3"),A=l(f,g,"conv4"),F=l(g,y,"conv5"),D=l(y,b,"conv6"),R=l(b,x,"conv7"),L=o(x,5*n,1,"conv8");c={conv0:v,conv1:k,conv2:w,conv3:S,conv4:A,conv5:F,conv6:D,conv7:R,conv8:L}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:c,paramMappings:i}}function Qre(e,t){let n=jn(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=Iu(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function AC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Qre(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return bn(e,n),{params:i,paramMappings:n}}var or=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Cw=class extends on{constructor(t){super("TinyYolov2");Sw(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=_r(t,n.conv0);return a=$t(a,[2,2],[2,2],"same"),a=_r(a,n.conv1),a=$t(a,[2,2],[2,2],"same"),a=_r(a,n.conv2),a=$t(a,[2,2],[2,2],"same"),a=_r(a,n.conv3),a=$t(a,[2,2],[2,2],"same"),a=_r(a,n.conv4),a=$t(a,[2,2],[2,2],"same"),a=_r(a,n.conv5),a=$t(a,[2,2],[1,1],"same"),a=_r(a,n.conv6),a=_r(a,n.conv7),to(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Cu(to(t,n.conv0,"valid",!1)):Er(t,n.conv0);return a=$t(a,[2,2],[2,2],"same"),a=Er(a,n.conv1),a=$t(a,[2,2],[2,2],"same"),a=Er(a,n.conv2),a=$t(a,[2,2],[2,2],"same"),a=Er(a,n.conv3),a=$t(a,[2,2],[2,2],"same"),a=Er(a,n.conv4),a=$t(a,[2,2],[2,2],"same"),a=Er(a,n.conv5),a=$t(a,[2,2],[1,1],"same"),a=n.conv6?Er(a,n.conv6):a,a=n.conv7?Er(a,n.conv7):a,to(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return M(()=>{let r=ue(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?La(r,this.config.meanRgb):r,r=r.div(ce(256)),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await mt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new or(n),s=await mt(t),i=await this.forwardInput(s,a),o=M(()=>ct(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},u=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let c=u.map(g=>g.box),p=u.map(g=>g.score),d=u.map(g=>g.classScore),h=u.map(g=>this.config.classes[g.label]);return nw(c.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new ms(p[g],d[g],h[g],c[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return AC(t,this.config)}extractParams(t){let n=this.config.filterSizes||Cw.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return CC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,u=t.shape[1],c=this.config.anchors.length,[p,d,h]=M(()=>{let y=t.reshape([u,u,c,this.boxEncodingSize]),b=y.slice([0,0,0,0],[u,u,c,4]),x=y.slice([0,0,0,4],[u,u,c,1]),v=this.withClassScores?Ta(y.slice([0,0,0,5],[u,u,c,this.config.classes.length]),3):ce(0);return[b,x,v]}),m=[],f=await d.array(),g=await p.array();for(let y=0;y<u;y++)for(let b=0;b<u;b++)for(let x=0;x<c;x++){let v=vp(f[y][b][x][0]);if(!a||v>a){let k=(b+vp(g[y][b][x][0]))/u*o,w=(y+vp(g[y][b][x][1]))/u*l,S=Math.exp(g[y][b][x][2])*this.config.anchors[x].x/u*o,A=Math.exp(g[y][b][x][3])*this.config.anchors[x].y/u*l,F=k-S/2,D=w-A/2,R={row:y,col:b,anchor:x},{classScore:L,label:W}=this.withClassScores?await this.extractPredictedClass(h,R):{classScore:1,label:0};m.push({box:new gu(F,D,F+S,D+A),score:v,classScore:v*L,label:W,...R})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},Au=Cw;Au.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Fu=class extends Au{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:wC,classes:["face"],...t?{anchors:IC,meanRgb:NC}:{anchors:kC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new yt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?SC:TC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Zre(e,t=!0){let n=new Fu(t);return n.extractWeights(e),n}var mf=class extends or{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var wa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function so(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>no(l)?r(l):l.detection),i=a||(t instanceof Fe?await vu(t,s):await xu(t,s)),o=await n(i);return i.forEach(l=>l instanceof Fe&&l.dispose()),o}async function _u(e,t,n,a,r){return so([e],t,async s=>n(s[0]),a,r)}var FC=.4,_C=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],EC=[117.001,114.697,97.404];var Eu=class extends Au{constructor(){let t={withSeparableConvs:!0,iouThreshold:FC,classes:["face"],anchors:_C,meanRgb:EC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new yt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var Ze={ssdMobilenetv1:new ro,tinyFaceDetector:new Eu,tinyYolov2:new Fu,faceLandmark68Net:new Tu,faceLandmark68TinyNet:new lf,faceRecognitionNet:new Su,faceExpressionNet:new rf,ageGenderNet:new of},$C=(e,t)=>Ze.ssdMobilenetv1.locateFaces(e,t),ese=(e,t)=>Ze.tinyFaceDetector.locateFaces(e,t),tse=(e,t)=>Ze.tinyYolov2.locateFaces(e,t),DC=e=>Ze.faceLandmark68Net.detectLandmarks(e),nse=e=>Ze.faceLandmark68TinyNet.detectLandmarks(e),ase=e=>Ze.faceRecognitionNet.computeFaceDescriptor(e),rse=e=>Ze.faceExpressionNet.predictExpressions(e),sse=e=>Ze.ageGenderNet.predictAgeAndGender(e),MC=e=>Ze.ssdMobilenetv1.load(e),ise=e=>Ze.tinyFaceDetector.load(e),ose=e=>Ze.tinyYolov2.load(e),lse=e=>Ze.faceLandmark68Net.load(e),use=e=>Ze.faceLandmark68TinyNet.load(e),cse=e=>Ze.faceRecognitionNet.load(e),pse=e=>Ze.faceExpressionNet.load(e),dse=e=>Ze.ageGenderNet.load(e),hse=MC,mse=$C,fse=DC;var Aw=class extends wa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Mu=class extends Aw{async run(){let t=await this.parentTask,n=await so(t,this.input,async a=>Promise.all(a.map(r=>Ze.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>sf(a,n[r]))}withAgeAndGender(){return new $u(this,this.input)}},Ru=class extends Aw{async run(){let t=await this.parentTask;if(!t)return;let n=await _u(t,this.input,a=>Ze.faceExpressionNet.predictExpressions(a),this.extractedFaces);return sf(t,n)}withAgeAndGender(){return new Du(this,this.input)}},lo=class extends Mu{withAgeAndGender(){return new io(this,this.input)}withFaceDescriptors(){return new ys(this,this.input)}},uo=class extends Ru{withAgeAndGender(){return new oo(this,this.input)}withFaceDescriptor(){return new bs(this,this.input)}};var Fw=class extends wa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},$u=class extends Fw{async run(){let t=await this.parentTask,n=await so(t,this.input,async a=>Promise.all(a.map(r=>Ze.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return pf(df(a,i,o),s)})}withFaceExpressions(){return new Mu(this,this.input)}},Du=class extends Fw{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await _u(t,this.input,s=>Ze.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return pf(df(t,a,r),n)}withFaceExpressions(){return new Ru(this,this.input)}},io=class extends $u{withFaceExpressions(){return new lo(this,this.input)}withFaceDescriptors(){return new ys(this,this.input)}},oo=class extends Du{withFaceExpressions(){return new uo(this,this.input)}withFaceDescriptor(){return new bs(this,this.input)}};var ff=class extends wa{constructor(t,n){super();this.parentTask=t;this.input=n}},ys=class extends ff{async run(){let t=await this.parentTask;return(await so(t,this.input,a=>Promise.all(a.map(r=>Ze.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>cf(t[r],a))}withFaceExpressions(){return new lo(this,this.input)}withAgeAndGender(){return new io(this,this.input)}},bs=class extends ff{async run(){let t=await this.parentTask;if(!t)return;let n=await _u(t,this.input,a=>Ze.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return cf(t,n)}withFaceExpressions(){return new uo(this,this.input)}withAgeAndGender(){return new oo(this,this.input)}};var gf=class extends wa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?Ze.faceLandmark68TinyNet:Ze.faceLandmark68Net}},yf=class extends gf{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Fe?await vu(this.input,n):await xu(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Fe&&s.dispose()),t.map((s,i)=>Nu(s,r[i]))}withFaceExpressions(){return new lo(this,this.input)}withAgeAndGender(){return new io(this,this.input)}withFaceDescriptors(){return new ys(this,this.input)}},bf=class extends gf{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Fe?await vu(this.input,[n]):await xu(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Fe&&s.dispose()),Nu(t,r)}withFaceExpressions(){return new uo(this,this.input)}withAgeAndGender(){return new oo(this,this.input)}withFaceDescriptor(){return new bs(this,this.input)}};var xf=class extends wa{constructor(t,n=new va){super();this.input=t;this.options=n}},$p=class extends xf{async run(){let{input:t,options:n}=this,a;if(n instanceof mf)a=Ze.tinyFaceDetector.locateFaces(t,n);else if(n instanceof va)a=Ze.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof or)a=Ze.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>Yi({},a)))})}withFaceLandmarks(t=!1){return new yf(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Mu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new $u(this.runAndExtendWithFaceDetections(),this.input)}},vf=class extends xf{async run(){let t=await new $p(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Yi({},n):void 0)})}withFaceLandmarks(t=!1){return new bf(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Ru(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Du(this.runAndExtendWithFaceDetection(),this.input)}};function gse(e,t=new va){return new vf(e,t)}function wf(e,t=new va){return new $p(e,t)}async function RC(e,t){return wf(e,new va(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function yse(e,t={}){return wf(e,new or(t)).withFaceLandmarks().withFaceDescriptors()}var bse=RC;function _w(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var kf=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof Cr)return i;if(i instanceof Float32Array)return new Cr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new Cr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>_w(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new wp(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this.distanceThreshold?n:new wp("unknown",n.distance)}toJSON(){return{distanceThreshold:this.distanceThreshold,labeledDescriptors:this.labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>Cr.fromJSON(a));return new kf(n,t.distanceThreshold)}};function xse(e){let t=new Eu;return t.extractWeights(e),t}function PC(e,t){let{width:n,height:a}=new yn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>PC(r,{width:n,height:a}));if(no(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Nu(Yi(e,r),s)}return sr(e)?Yi(e,e.detection.forSize(n,a)):e instanceof ra||e instanceof yt?e.forSize(n,a):e}var vse=typeof process!="undefined",wse=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",kse={faceapi:eC,node:vse,browser:wse};export{of as AgeGenderNet,gu as BoundingBox,ut as Box,wa as ComposableTask,ys as ComputeAllFaceDescriptorsTask,ff as ComputeFaceDescriptorsTaskBase,bs as ComputeSingleFaceDescriptorTask,yf as DetectAllFaceLandmarksTask,$p as DetectAllFacesTask,gf as DetectFaceLandmarksTaskBase,xf as DetectFacesTaskBase,bf as DetectSingleFaceLandmarksTask,vf as DetectSingleFaceTask,yn as Dimensions,yw as FACE_EXPRESSION_LABELS,yt as FaceDetection,vC as FaceDetectionNet,rf as FaceExpressionNet,gs as FaceExpressions,Tu as FaceLandmark68Net,lf as FaceLandmark68TinyNet,lC as FaceLandmarkNet,ra as FaceLandmarks,HS as FaceLandmarks5,bu as FaceLandmarks68,wp as FaceMatch,kf as FaceMatcher,Su as FaceRecognitionNet,Fr as Gender,kp as LabeledBox,Cr as LabeledFaceDescriptors,Ar as NetInput,on as NeuralNetwork,ms as ObjectDetection,De as Point,jS as PredictedBox,yu as Rect,ro as SsdMobilenetv1,va as SsdMobilenetv1Options,Eu as TinyFaceDetector,mf as TinyFaceDetectorOptions,Fu as TinyYolov2,or as TinyYolov2Options,bse as allFaces,RC as allFacesSsdMobilenetv1,yse as allFacesTinyYolov2,pw as awaitMediaLoaded,dw as bufferToImage,ase as computeFaceDescriptor,Zi as createCanvas,Tp as createCanvasFromMedia,Yre as createFaceDetectionNet,zre as createFaceRecognitionNet,xC as createSsdMobilenetv1,xse as createTinyFaceDetector,Zre as createTinyYolov2,wf as detectAllFaces,DC as detectFaceLandmarks,nse as detectFaceLandmarksTiny,fse as detectLandmarks,gse as detectSingleFace,ZS as draw,st as env,_w as euclideanDistance,pf as extendWithAge,cf as extendWithFaceDescriptor,Yi as extendWithFaceDetection,sf as extendWithFaceExpressions,Nu as extendWithFaceLandmarks,df as extendWithGender,vu as extractFaceTensors,xu as extractFaces,Are as fetchImage,fw as fetchJson,Fre as fetchNetWeights,eo as fetchOrThrow,$n as getContext2dOrThrow,Qi as getMediaDimensions,hw as imageTensorToCanvas,mw as imageToSquare,xre as inverseSigmoid,ew as iou,Km as isMediaElement,Np as isMediaLoaded,Wre as isWithAge,sr as isWithFaceDetection,bw as isWithFaceExpressions,no as isWithFaceLandmarks,Bre as isWithGender,dse as loadAgeGenderModel,hse as loadFaceDetectionModel,pse as loadFaceExpressionModel,lse as loadFaceLandmarkModel,use as loadFaceLandmarkTinyModel,cse as loadFaceRecognitionModel,MC as loadSsdMobilenetv1Model,ise as loadTinyFaceDetectorModel,ose as loadTinyYolov2Model,gw as loadWeightMap,mse as locateFaces,_re as matchDimensions,tw as minBbox,Ze as nets,nw as nonMaxSuppression,La as normalize,aw as padToSquare,sse as predictAgeAndGender,rse as recognizeFaceExpressions,PC as resizeResults,Ji as resolveInput,bre as shuffleArray,vp as sigmoid,$C as ssdMobilenetv1,Gw as tf,ese as tinyFaceDetector,tse as tinyYolov2,mt as toNetInput,GS as utils,Sw as validateConfig,kse as version};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=face-api.esm.js.map
|